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Abstract

Under appropriate assumptions on the dimension of the ambient manifold and

the regularity of the Hamiltonian, we show that the Mather quotient is small in

term of the Hausdorff dimension. Then we present applications in dynamics.
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1 Introduction

Let M be a smooth manifold without boundary. We denote by TM the tangent

bundle and by � W TM ! M the canonical projection. A point in TM will

be denoted by .x; v/ with x 2 M and v 2 TxM D ��1.x/. In the same way

a point of the cotangent bundle T �M will be denoted by .x; p/ with x 2 M

and p 2 T �
x M a linear form on the vector space TxM . We will suppose that

g is a complete Riemannian metric on M . For v 2 TxM , the norm kvkx is

gx.v; v/
1=2. We will denote by k � kx the dual norm on T �M . Moreover, for every

pair x; y 2 M , d.x; y/ will denote the Riemannian distance from x to y.

We will assume throughout this paper that H W T �M ! R is a Hamiltonian of

class C k;˛, with k � 2, ˛ 2 Œ0; 1�, which satisfies the three following conditions:

(H1) C 2-strict convexity: 8.x; p/ 2 T �M , the second derivative along the

fibers @2H=@p2.x; p/ is strictly positive definite;

(H2) uniform superlinearity: for everyK � 0 there exists a finite constantC.K/

such that

8.x; p/ 2 T �M; H.x; p/ � Kkpkx C C.K/I

(H3) uniform boundedness in the fibers: for every R � 0, we have

sup
x2M

fH.x; p/ j kpkx � Rg < C1:
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By the weak KAM theorem we know that, under the above conditions, there is

c.H/ 2 R such that the Hamilton-Jacobi equation

H.x; dxu/ D c

admits a global viscosity solution u W M ! R for c D c.H/ and does not ad-

mit such solution for c < c.H/; see [7, 13, 15, 17, 24]. In fact, for c < c.H/,

the Hamilton-Jacobi equation does not admit any viscosity subsolution (for the

theory of viscosity solutions, we refer the reader to the monographs [1, 2, 15]).

Moreover, if M is assumed to be compact, then c.H/ is the only value of c for

which the Hamilton-Jacobi equation above admits a viscosity solution. The con-

stant c.H/ is called the critical value or the Mañé critical value of H . In what

follows, a viscosity solution u W M ! R of H.x; dxu/ D c.H/ will be called a

critical viscosity solution or a weak KAM solution, while a viscosity subsolution

u of H.x; dxu/ D c.H/ will be called a critical viscosity subsolution (or critical
subsolution if u is at least C 1).

The Lagrangian L W TM ! R associated to the Hamiltonian H is defined by

8.x; v/ 2 TM; L.x; v/ D max
p2T �

x M
fp.v/ �H.x; p/g:

Since H is of class C k , with k � 2, and satisfies the three conditions (H1)–

(H3), it is well-known (see, for instance, [15] or [17, lemma 2.1])) that L is finite

everywhere of class C k and is a Tonelli Lagrangian, i.e., satisfies the analogues of

conditions (H1)–(H3). Moreover, the Hamiltonian H can be recovered from L by

8.x; p/ 2 T �
x M; H.x; p/ D max

v2TxM
fp.v/ � L.x; v/g:

Therefore the following inequality is always satisfied:

p.v/ � L.x; v/CH.x; p/:

This inequality is called the Fenchel inequality. Moreover, due to the strict convex-

ity of L, we have equality in the Fenchel inequality if and only if

.x; p/ D L.x; v/;

where L W TM ! T �M denotes the Legendre transform defined as

L.x; v/ D

�
x;
@L

@v
.x; v/

�
:

Under our assumption L is a diffeomorphism of class at least C 1. We will

denote by �L
t the Euler-Lagrange flow of L, and by XL the vector field on TM

that generates the flow �L
t . If we denote by �H

t the Hamiltonian flow of H on

T �M , then, as is well-known (see, e.g., [15]), this flow �H
t is conjugate to �L

t by

the Legendre transform L. Moreover, thanks to assumptions (H1)–(H3), the flow

�H
t (and so also �L

t ) is complete; see [17].
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As done by Mather in [29], it is convenient to introduce for t > 0 fixed the

function ht W M �M ! R defined by

8x; y 2 M; ht .x; y/ D inf

Z t

0

L.�.s/; P�.s//ds;

where the infimum is taken over all the absolutely continuous paths � W Œ0; t � ! M

with �.0/ D x and �.t/ D y. The Peierls barrier is the function h W M �M ! R

defined by

h.x; y/ D lim inf
t!1

fht .x; y/C c.H/tg :

It is clear that this function satisfies for all t > 0

8x; y; ´ 2 M; h.x; ´/ � h.x; y/C ht .y; ´/C c.H/t;

h.x; ´/ � ht .x; y/C c.H/t C h.y; ´/;

and therefore it also satisfies the triangle inequality

8x; y; ´ 2 M; h.x; ´/ � h.x; y/C h.y; ´/:

Moreover, given a weak KAM solution u, we have

8x; y 2 M; u.y/ � u.x/ � h.x; y/:

In particular, we have h > �1 everywhere. It follows, from the triangle inequal-

ity, that the function h is either identically C1 or is finite everywhere. If M is

compact, h is finite everywhere. In addition, if h is finite, then for each x 2 M

the function hx. � / D h.x; � / is a critical viscosity solution (see [15] or [18]). The

projected Aubry set A is defined by

A D fx 2 M j h.x; x/ D 0g:

Following Mather, see [29, p. 1370], we symmetrize h to define the function ıM W

M �M ! R by

8x; y 2 M; ıM .x; y/ D h.x; y/C h.y; x/:

Since h satisfies the triangle inequality and h.x; x/ � 0 everywhere, the func-

tion ıM is symmetric and everywhere nonnegative and satisfies the triangle in-

equality. The restriction ıM W A � A ! R is a genuine semidistance on the

projected Aubry set. We will call this function ıM the Mather semidistance (even

when we consider it on M rather than on A). We define the Mather quotient
.AM ; ıM / to be the metric space obtained by identifying two points x; y 2 A if

their semidistance ıM .x; y/ vanishes (we mention that this set is also called the

quotient Aubry set). When we consider ıM on the quotient space AM , we will call

it the Mather distance.

In [32], Mather formulated the following problem:

Mather’s problem. If L is C1, is the set AM totally disconnected

for the topology of ıM ; i.e., is each connected component of AM

reduced to a single point?
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In [31], Mather brought a positive answer to that problem in low dimension.

More precisely, he proved that if M has dimension 2 or if the Lagrangian is the

kinetic energy associated to a Riemannian metric onM in dimension � 3, then the

Mather quotient is totally disconnected. Notice that one can easily show that for

a dense set of Hamiltonians, the set .AM ; ıM / is reduced to one point; see [26].

Mather mentioned in [32, p. 1668] that it would be even more interesting to be

able to prove that the Mather quotient has vanishing one-dimensional Hausdorff

measure, because this implies the upper semicontinuity of the mapping H 7! A.

He also stated that for Arnold’s diffusion a result generic in the Lagrangian but

true for every cohomology class was more relevant. This was obtained recently by

Bernard and Contreras [6].

The aim of the present paper is to show that the vanishing of the one-dimen-

sional Hausdorff measure of the Mather quotient is satisfied under various assump-

tions. Let us state our results.

THEOREM 1.1 If dimM D 1; 2 and H of class C 2 or dimM D 3 and H of
class C k;1 with k � 3, then the Mather quotient .AM ; ıM / has vanishing one-
dimensional Hausdorff measure.

Above the projected Aubry A, there is a compact subset QA � TM called the

Aubry set (see Section 2.1). The projection � W TM ! M induces a homeo-

morphism �j QA from QA onto A (whose inverse is Lipschitz by a theorem due to

Mather). The Aubry set can be defined as the set of .x; v/ 2 TM such that x 2 A

and v is the unique element in TxM such that dxu D @L=@v.x; v/ for any critical

viscosity subsolution u. The Aubry set is invariant under the Euler-Lagrange flow

�L
t W TM ! TM . Therefore, for each x 2 A, there is only one orbit of �L

t in QA

whose projection passes through x. We define the stationary Aubry set QA0 � QA as

the set of points in QA that are fixed points of the Euler-Lagrange flow �t .x; v/, i.e.,

QA0 D f.x; v/ 2 QA j 8t 2 R; �L
t .x; v/ D .x; v/g:

In fact (see Proposition 3.2), it can be shown that QA0 is the intersection of QA with

the zero section of TM ,

QA0 D f.x; 0/ j .x; 0/ 2 QAg:

We define the projected stationary Aubry set A0 as the projection onto M

of QA0,

A0 D fx j .x; 0/ 2 QAg:

At the very end of his paper [31], Mather noticed that the argument he used in the

case where L is a kinetic energy in dimension 3 proves the total disconnectedness

of the Mather quotient in dimension 3 as long as A0
M is empty. In fact, if we

consider the restriction of ıM to A0, we have the following result on the quotient

metric space .A0
M ; ıM /:
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THEOREM 1.2 Suppose that L is at least C 2 and that the restriction x 7! L.x; 0/

of L to the zero section of TM is of class C k;1. Then .A0
M ; ıM / has vanishing

Hausdorff measure in dimension 2 dimM=.kC3/. In particular, if k � 2 dimM�3

then H1.A0
M ; ıM / D 0, and if x 7! L.x; 0/ is C1, then .A0

M ; ıM / has zero
Hausdorff dimension.

As a corollary, we have the following result, which was more or less already

mentioned by Mather in [32, sec. 19, p. 1722] and proved by Sorrentino [36].

COROLLARY 1.3 Assume thatH is of class C 2 and that its associated Lagrangian
L satisfies the following conditions:

(i) 8x 2 M , minv2TxM L.x; v/ D L.x; 0/.
(ii) The mapping x 2 M 7! L.x; 0/ is of class C l;1.M/ with l � 1.

If dimM D 1; 2 or dimM � 3 and l � 2 dimM � 3, then .AM ; ıM / is totally
disconnected. In particular, if L.x; v/ D 1

2
kvk2

x � V.x/, with V 2 Cl;1.M/

and l � 2 dimM � 3 (V 2 C2.M/ if dimM D 1; 2), then .AM ; ıM / is totally
disconnected.

Since A0 is the projection of the subset QA0 � QA consisting of points in QA

that are fixed under the Euler-Lagrange flow �L
t , it is natural to consider Ap the

set of x 2 A that are projections of a point .x; v/ 2 QA whose orbit under the

Euler-Lagrange flow �L
t is periodic with strictly positive period. We call this set

the projected periodic Aubry set. We have the following result:

THEOREM 1.4 If dimM � 2 and H of class C k;1 with k � 2, then .Ap
M ; ıM /

has vanishing Hausdorff measure in dimension 8 dimM=.k C 8/. In particular, if
k � 8 dimM � 8, then H1.A

p
M ; ıM / D 0, and if H is C1, then .Ap

M ; ıM / has
zero Hausdorff dimension.

In the case of compact surfaces, using the finiteness of exceptional minimal sets

of flows, we have:

THEOREM 1.5 IfM is a compact surface of class C1 andH is of class C1, then
.AM ; ıM / has zero Hausdorff dimension.

In the last section, we present applications to the theory of dynamical systems,

of which Theorem 1.6 below is a corollary. If X is a C k vector field on M , with

k � 2, the Mañé Lagrangian LX W TM ! R associated to X is defined by

8.x; v/ 2 TM; LX .x; v/ D
1

2
kv �X.x/k2

x :

We will denote by AX the projected Aubry set of the Lagrangian LX .

The first author has raised the following problem; compare with the list of ques-

tions http://www.aimath.org/WWN/dynpde/articles/html/20a/.
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Problem. Let LX W TM ! R be the Mañé Lagrangian associated to the C k vector

field X (k � 2) on the compact connected manifold M .

(1) Is the set of chain-recurrent points of the flow of X on M equal to the

projected Aubry set AX ?

(2) Give a condition on the dynamics of X that insures that the only weak

KAM solutions are the constants.

The theorems obtained in the first part of the paper together with the applica-

tions in dynamics developed in Section 6 give an answer to this question when

dimM � 3.

THEOREM 1.6 Let X be a C k vector field, with k � 2, on the compact connected
C1 manifold M . Assume that one of the following conditions hold:

(i) The dimension of M is 1 or 2.
(ii) The dimension of M is 3, and the vector field X never vanishes.

(iii) The dimension of M is 3, and X is of class C 3;1.

Then the projected Aubry set AX of the Mañé Lagrangian LX W TM ! R associ-
ated to X is the set of chain-recurrent points of the flow of X on M . Moreover, the
constants are the only weak KAM solutions for LX if and only if every point of M
is chain-recurrent under the flow of X .

The outline of the paper is the following: Sections 2 and 3 are devoted to

preparatory results. Section 4 is devoted to the proofs of Theorems 1.1, 1.2, and 1.4.

Sections 5 and 6 present applications in dynamics.

2 Preliminary Results

Throughout this section,M is assumed to be a complete Riemannian manifold.

As before,H W T �M ! R is a Hamiltonian of class at least C 2 satisfying the three

usual conditions (H1)–(H3), and L is the Tonelli Lagrangian that is associated to it

by Fenchel’s duality.

2.1 Some Facts about the Aubry Set

We recall the results of Mather on the Aubry set and also an important comple-

ment due to Dias Carneiro.

The following results are due to Mather; see [28, 29] for the proof in the com-

pact case.

THEOREM 2.1 (Mather) There exists a closed subset QA � TM such that:

(i) The set QA is invariant under the Euler-Lagrange flow.
(ii) The projection � W TM ! M is injective on QA. Moreover, we have

�. QA/ D A, and the inverse map .�j QA/�1 W A ! QA is locally Lipschitz.
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(iii) Let .x; v/ be in QA, and call �.x;v/ the curve that is the projection of the
orbit �L

t .x; v/ of the Euler-Lagrange flow through .x; v/

�.x;v/.t/ D ��t .x; v/:

This curve is entirely contained in A, and it is an L-minimizer. Moreover,
we have

8t; t 0 2 R; ıM .�.t/; �.t
0// D 0I

therefore the whole curve �.x;v/ projects to the same point as x in the
Mather quotient.

(iv) If x 2 A and �n W Œ0; tn� ! M is a sequence of L-minimizers such that
tn ! C1, �n.0/ D �n.tn/ D x, and

R tn

0 L.�n.s/; P�n.s//dsC c.H/tn !

0, then both sequences P�n.0/; P�n.tn/ converge in TxM to the unique v 2

TxM such that .x; v/ 2 QA.

The following theorem of Dias Carneiro [9] is a nice complement to the theorem

above:

THEOREM 2.2 For every .x; v/ 2 QA, we have

H

�
x;
@L

@v
.x; v/

�
D c.H/:

We end this subsection with the following important estimation of the Mather

semidistance (due to Mather); see [29, p. 1375].

PROPOSITION 2.3 For every compact subsetK � M , we can find a finite constant
CK such that

8x 2 A \K; 8y 2 K; ıM .x; y/ � CKd.x; y/
2;

where d is the Riemannian distance on M .

Note that one can prove directly this proposition from the fact that h is lo-

cally semiconcave on M � M by using that ıM � 0, together with the fact that

ıM .x; x/ D 0 for every x 2 A.

2.2 Aubry Set and the Hamilton-Jacobi Equation

In this section we recast the above results in terms of viscosity solutions of the

Hamilton-Jacobi as is done in [15, 17, 18].

We first recall the notion of domination. If c 2 R, a function u W M ! R is said

to be dominated by LCc (which we denote by u � LCc), if for every continuous

piecewise C 1 curve � W Œa; b� ! M , a < b, we have

u.�.b// � u.�.a// �

Z b

a

L.�.s/; P�.s//ds C c.b � a/:

In fact, this is simply a different way to define the notion of viscosity subsolu-

tion for H . More precisely, we have (see [15] or [17, prop. 5.1, p. 12]):
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THEOREM 2.4 A u W M ! R is dominated by LC c if and only if it is a viscosity
subsolution of the Hamilton-Jacobi equation H.x; dxu/ D c. Moreover, we have
u � LC c if and only if u is Lipschitz and H.x; dxu/ � c almost everywhere.

Note that Rademacher’s theorem states that every Lipschitz function is differ-

entiable almost everywhere. For the proof that dominated functions are Lipschitz,

see Lemma B.2. It is not difficult to see that a function u W M ! R is dominated

by LC c if and only if

8t > 0; 8x; y 2 M; u.y/ � u.x/ � ht .x; y/C ct:

With this notation, we observe that a function u is a critical subsolution if and only

if u � LC c.H/.

We now give the definition of calibrated curves. If u W M ! R and c 2 R, we

say that the curve � W Œa; b� ! M is .u; L; c/-calibrated if we have the equality

u.�.b// � u.�.a// D

Z b

a

L.�.s/; P�.s//ds C c.b � a/:

If � is a curve defined on the not necessarily compact interval I , we will say that �

is .u; L; c/-calibrated if its restriction to any compact subinterval of I is .u; L; c/-

calibrated.

In fact, this condition of calibration is useful only when u � L C c. In this

case � is an L-minimizer. Moreover, if Œa0; b0� is a subinterval of Œa; b�, then the

restriction � jŒa0; b0� is also .u; L; c/-calibrated.

As in [15], if u W M ! R is a critical subsolution, we denote by QI.u/ the subset

of TM defined as

QI.u/ D f.x; v/ 2 TM j �.x;v/ is .u; L; c.H//-calibratedg;

where �.x;v/ is the curve (already introduced in Theorem 2.1) defined on R by

�.x;v/.t/ D ��L
t .x; v/:

The following properties of QI.u/ are shown in [15]:

THEOREM 2.5 The set QI.u/ is invariant under the Euler-Lagrange flow �L
t . If

.x; v/ 2 QI.u/, then dxu exists, and we have

dxu D
@L

@v
.x; v/ and H.x; dxu/ D c.H/:

It follows that the restriction �j QI.u/ of the projection is injective; therefore, if we

set I.u/ D �. QI.u//, then QI.u/ is a continuous graph over I.u/. Moreover, the
map x 7! dxu is locally Lipschitz on I.u/.

Since the inverse of the restriction �j QI.u/ is given by x 7! L�1.x; dxu/, and
the Legendre transform L is C 1, it follows that the inverse of �j QI.u/ is also locally
Lipschitz on I.
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Using the sets QI.u/, one can give the following characterization of the Aubry

set and its projection:

THEOREM 2.6 The Aubry set QA is given by

QA D
\

u2SS

QI.u/;

where SS is the set of critical viscosity subsolutions. The projected Aubry set A,
which is simply the image �. QA/, is also

A D
\

u2SS

I.u/:

Note that the fact that the Aubry set is a locally Lipschitz graph (i.e., part (ii)

of Theorem 2.1) follows from the above results, since QA � QI.u/ for any critical

subsolution u. Moreover, Theorem 2.2 also follows from the results above.

2.3 Mather Semidistance and Critical Subsolutions

While generalizing Mather’s examples given in [32], the first author observed

(see [14]) that a representation formula for ıM in terms of C 1 critical subsolutions

is extremely useful. This has also been used more recently by Sorrentino [36].

To explain this representation formula, as in Theorem 2.6, we call SS the set of

critical viscosity subsolutions and S� the set of critical viscosity (or weak KAM)

solutions. Hence S� � SS. If u W M ! R is a critical viscosity subsolution, we

recall that

8x; y 2 M; u.y/ � u.x/ � h.x; y/:

In [18], Fathi and Siconolfi proved that for every critical viscosity subsolution u W
M ! R, there exists a C 1 critical subsolution whose restriction to the projected

Aubry set is equal to u. Recently Patrick Bernard [4] has even shown that u can be

assumed C 1;1, i.e., differentiable everywhere with a (locally) Lipschitz derivative;

see also Appendix B below. In what follows, we denote by SS1 (respectively,

SS1;1) the set of C 1 (respectively, C 1;1) critical subsolutions. The representation

formula is given by the following lemma:

LEMMA 2.7 For every x; y 2 A,

ıM .x; y/ D max
u1;u22S�

f.u1 � u2/.y/ � .u1 � u2/.x/g

D max
u1;u22SS

f.u1 � u2/.y/ � .u1 � u2/.x/g

D max
u1;u22SS1

f.u1 � u2/.y/ � .u1 � u2/.x/g

D max
u1;u22SS1;1

f.u1 � u2/.y/ � .u1 � u2/.x/g:
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PROOF: Let x; y 2 A be fixed. First, we notice that if u1 and u2 are two

critical viscosity subsolutions, then we have

.u1 � u2/.y/ � .u1 � u2/.x/ D .u1.y/ � u1.x//C .u2.x/ � u2.y//

� h.x; y/C h.y; x/ D ıM .x; y/:

On the other hand, if we define u1; u2 W M ! R by u1.´/ D h.x; ´/ and u2.´/ D
h.y; ´/ for any ´ 2 M , by the properties of h the functions u1 and u2 are both

critical viscosity solutions. Moreover,

.u1 � u2/.y/ � .u1 � u2/.x/ D .h.x; y/ � h.y; y// � .h.x; x/ � h.y; x//

D h.x; y/C h.y; x/ D ıM .x; y/;

since h.x; x/ D h.y; y/ D 0. Thus we easily obtain the first and second equalities.

The last equalities are an immediate consequence of the work of Fathi and Siconolfi

and that of Bernard recalled above. �

2.4 Norton’s Generalization of the Morse Vanishing Lemma

We will need in a crucial way Norton’s elegant generalization of the Morse

vanishing lemma; see [33, 35]. This result, like Ferry’s lemma (see Lemma A.3)

are the two basic pieces that allow us to prove generalizations of the Morse-Sard

theorem (see, e.g., the work of Bates).

LEMMA 2.8 (Generalized Morse Vanishing Lemma) Suppose M is an n-dimen-
sional (separable) manifold endowed with a distance d coming from a Riemannian
metric. Let k 2 N and ˛ 2 Œ0; 1�. Then for any subset A � M , we can find a
countable family Bi ; i 2 N, of C 1 embedded compact disks in M of dimension
� n and a countable decomposition of A D

S
i2NAi , with Ai � Bi for every

i 2 N such that every f 2 Ck;˛.M;R/ vanishing on A satisfies, for each i 2 N,

(2.1) 8y 2 Ai ; x 2 Bi ; jf .x/ � f .y/j � Mid.x; y/
kC˛;

for a certain constant Mi (depending on f /.

Let us make some comments. In his statement of the lemma above (see [35]),

Norton distinguishes a countable A0 in his decomposition. In fact, in the statement

we give, this corresponds to the (countable numbers of) disks in the family Bi

where the dimension of the disk Bi is 0, in which case Ai is also a point. Therefore

there is no need to distinguish this countable subset when formulating the gener-

alized Morse vanishing lemma. The second comment is that we have stated this

generalized Morse vanishing lemma, Lemma 2.8, directly for (separable) mani-

folds. This is a routine generalization of the case M D Rn, which is done by

Norton (see, for example, the way we deduce Lemma A.3 from Lemma A.1).
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3 Proofs of Theorems 1.1, 1.2, 1.4, and 1.5

3.1 Proof of Theorem 1.1

Let us first assume that dimM D 1; 2. The proof is the same as Mather’s proof

of total disconnectedness given in [31]. It also uses Proposition 2.3, but instead of

using the results of Mather contained in [30], it uses the stronger Lemma A.3 due

to Ferry and proved in Appendix A below.

We cover M by an increasing countable union Kn of compact subsets. For a

given n, by Proposition 2.3 we can find a finite constant Cn such that

8x; y 2 A \Kn; ıM .x; y/ � Cnd.x; y/
2:

Since dimM � 2 by Lemma A.3, we obtain that .A\Kn; ıM / has vanishing one-

dimensional Hausdorff measure. Since A is the countable union of the A \ Kn,

we also conclude that .A; ıM / has vanishing one-dimensional Hausdorff measure.

Let us now assume that dimM D 3. The fact that .A0
M ; ıM / has vanishing

one-dimensional Hausdorff measure will follow from Theorem 1.2. So it suffices

to prove that the semimetric space .A n A0; ıM / has vanishing one-dimensional

Hausdorff measure.

Consider for every x 2 A the unique vector vx 2 TxM such that .x; vx/ 2 QA.

Call �x the curve defined by �x.t/ D ��L
t .x; vx/. Since QA is invariant by �L

t ,

the projected Aubry set is laminated by the curves �x; x 2 A. Let us define A0 D

A n A0. Since, by Proposition 3.2, any point of the form .´; 0/ 2 QA is fixed under

�L
t and P�x.0/ D vx , we have �x.t/ 2 A0 for all x 2 A0 and all t 2 R. Moreover,

the family �x; x 2 A0, is a genuine one-dimensional Lipschitz lamination on A0 D
A n A0. For each x 2 A0, we can find a small C1 two-dimensional submanifold

Sx of M such that Sx is transverse to �x . By transversality and continuity, the

union Ux of the curves �y ; y 2 A0, such that �y \ Sx ¤ ¿ is a neighborhood of

x in A0 (for the topology induced by the manifold topology). Therefore since M

is metric separable, we can find a countable subfamily .Sxi
/i2N such that �y \

.
S

i2N Sxi
/ ¤ ¿ for every y 2 A0. By part (iii) of Theorem 2.1 above, for every

´ 2 A and every t; t 0 2 R, we have

ıM .�´.t/; �´.t
0// D 0:

It follows that the countable union of the images of Sxi
\A in AM covers the image

of A0 in AM . Therefore by the countable additivity of the Hausdorff measure, we

have to show that .Sxi
\A; ıM / has one-dimensional Hausdorff measure equal to 0.

Since Sxi
is two-dimensional, this follows from Proposition 2.3 and Lemma A.3

as above.

3.2 Proof of Theorem 1.2

Before giving the proof we need a better understanding of the sets QA0 and A0.
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LEMMA 3.1 The function QH W M ! R defined by

QH.x/ D inffH.x; p/ j p 2 T �
x M g

satisfies the following properties:

(i) For every x 2 M , we have QH.x/ � c.H/.
(ii) We have H.x; p/ D QH.x/ if and only if p D @L=@v.x; 0/.

(iii) For every x 2 M , we have

QH.x/ D H

�
x;
@L

@v
.x; 0/

�
D �L.x; 0/:

Therefore QH is as smooth as x 7! L.x; 0/.
(iv) The point x is a critical point of QH (or of x 7! L.x; 0// if and only if

the point .x; @L=@v.x; 0// is a critical point of H . In particular, the point
.x; @L=@v.x; 0// is a critical point of H for every x such that QH.x/ D
c.H/.

PROOF: Since there exists a C 1 critical subsolution u W M ! R that satisfies

8x 2 M; H.x; dxu/ � c.H/;

we must have
QH.x/ D inffH.x; p/ j p 2 T �

x M g � c.H/:

By strict convexity the infimum QH.x/ is attained at the unique point Qp.x/ 2 T �
x M

that satisfies

(3.1)
@H

@p
.x; Qp.x// D 0:

Because .x; p/ 7! .x; @H=@p.x; p// is the inverse of the Legendre transform

.x; v/ 7! @L=@v.x; v/, we obtain

Qp.x/ D
@L

@v
.x; 0/;

and therefore by the Fenchel equality

QH.x/ D H.x; Qp.x// D
@L

@v
.x; 0/ � 0 � L.x; 0/ D �L.x; 0/:

To prove part (iv), we first observe that

@H

@p

�
x;
@L

@v
.x; 0/

�
D 0:

Then we differentiate (in a coordinate chart) the equality obtained in (ii) to obtain

dx
QH D

@H

@x

�
x;
@L

@v
.x; 0/

�
C
@H

@p

�
x;
@L

@v
.x; 0/

�
ı
@2L

@v @x
.x; 0/

D
@H

@x

�
x;
@L

@v
.x; 0/

�
:
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Therefore, by the two previous equations, the first part of (iv) follows. The last part

of (iv) is a consequence of (i), which implies that each x satisfying QH.x/ D c.H/

is a global maximum of QH . �

We can now give a characterization of the stationary Aubry set QA0.

PROPOSITION 3.2 The set QA0 of points in QA that are fixed for the Euler-Lagrange
flow �L

t is exactly the intersection of QA with the zero section in TM , i.e.,

QA0 D QA \ f.x; 0/ j x 2 M g:

Its projection A0 D �. QA0/ on M is precisely the set of points x in M at which QH
takes the value c.H/, i.e.,

A0 D fx 2 M j QH.x/ D c.H/g:

PROOF: Let .x; v/ be in QA0. Since the Euler-Lagrange flow �L
t is conjugated

to the Hamiltonian flow �H
t of H by the Legendre transform L, we obtain that

.x; @L=@v.x; v// is fixed under �H
t , and therefore .x; @L=@v.x; v// is a critical

point of H . In particular, we have

@H

@p

�
x;
@L

@v
.x; v/

�
D 0:

Since .x; p/ 7! .x; @H=@p.x; p// is the inverse of the Legendre transform, we

conclude that v D 0, yielding the proof of the inclusion QA0 � QA \ f.x; 0/ j
x 2 M g.

Suppose now that that .x; 0/ is in QA. By Theorem 2.2, the Legendre transform

of the Aubry set is contained in the set where H is equal to c.H/, i.e.,

H

�
x;
@L

@v
.x; 0/

�
D c.H/:

We obtain by Lemma 3.1 that x is a critical point of QH , and therefore we get that

.x; @L=@v.v; 0// is a critical point of H . This implies that this point is invariant

under �H
t ; hence .x; 0/ is fixed under the Euler-Lagrange flow �L

t . By this we get

the equality QA0 D QA \ f.x; 0/ j x 2 M g.

Note that we have proved that if .x; 0/ in QA, then QH.x/ D c.H/. Therefore

A0 is contained in the set QH�1.c.H//.

It remains to show that any x such that QH.x/ D c.H/ is in A0. Suppose that x

is such that QH.x/ D c.H/. Since QH.x/ D �L.x; 0/, we get L.x; 0/Cc.H/ D 0.

If we consider now the constant curve � W ��1;C1Œ ! fxg, we see thatZ t

0

L.�.s/; P�.s//ds C c.H/t D

Z t

0

L.x; 0/ds C c.H/t D 0:

Therefore ht .x; x/ C c.H/t D 0 for every t � 0. This implies that x 2 A. It

remains to show that the point .x; v/ 2 QA above x is necessarily .x; 0/, which will
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imply that x 2 A0. Note that again by Theorem 2.2 we have

H

�
x;
@L

@v
.x; v/

�
D c.H/:

But infp2T �
x M H.x; p/ D QH.x/ D c.H/, and this infimum is only attained at p D

@L=@v.x; 0/. This implies that @L=@v.x; v/ D @L=@v.x; 0/. The invertibility of

the Legendre transform yields v D 0. �

We now start the proof of Theorem 1.2. Replacing L by L C c.H/, we can

assume, without loss of generality, that c.H/ D 0. Notice now that, for every

compact subset K � M , there exists ˛K � 0 such that

(3.2) x 2 K; H.x; p/ � 0 H) kp � Qp.x/kx � ˛K

q
� QH.x/:

In fact, since @2H=@p2.x; p/ is positive definite everywhere and the set

S.K/ D f.x; p/ 2 T �M j x 2 K; H.x; p/ � 0g

is compact, Taylor’s formula (in integral form) yields a ˇK > 0 such that

8.x; p/; .x; p0/ 2 S.K/;

H.x; p/ � H.x; p0/C
@H

@p
.x; p0/.p � p0/C ˇKkp � p0k2

x :

Using the equalities (3.1) and QH.x/ D H.x; Qp.x//, and that H.x; p/ � 0 on

S.K/, the inequality above yields

8.x; p/ 2 S.K/; 0 � QH.x/C ˇKkp � Qp.x/k2
x :

This yields (3.2) with ˛K D 1=
p
ˇK . If u W M ! R is a C 1 critical subsolution,

we know that H.x; dxu/ � 0 for every x 2 M ; therefore we obtain

8x 2 M; kdxu � Qp.x/kx � ˛K

q
� QH.x/:

It follows that for every pair u1; u2 of critical subsolutions, we have

(3.3) 8x 2 M; kdx.u2 � u1/kx � 2˛K

q
� QH.x/:

We now use Lemma 2.8 for C k;1 functions to decompose A0 as

A0 D
[
i2N

Ai ;

with each Ai � Bi , where Bi � M is a C 1 embedded compact disk of dimension

� dimM . Since QH is a C k;1 function vanishing on A0, by (2.1) we know that we

can find for each i 2 N a finite constant Mi such that

8x 2 Ai ; 8y 2 Bi ; � QH.y/ D j QH.x/ � QH.y/j � Mid.x; y/
kC1:
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Since Bi is compact, we can combine this last inequality with (3.3) above to obtain

for every pair of critical subsolutions u1; u2 and every i 2 N

8x 2 Ai ; 8y 2 Bi ; kdy.u2 � u1/ky � 2˛Bi

p
Mid.x; y/

.kC1/=2:

We know that Bi is C 1 diffeomorphic to the unit ball Bni , with ni 2 f0; : : : ;

dimM g. To avoid heavy notation we will identify in the remainder of the proof Bi

with Bni . Since this identification is C 1, we can replace in the inequality above the

Riemannian norm by the Euclidean norm k � keuc on Rni to obtain the inequality

8x 2 Ai ; 8y 2 Bi 	 B
ni ; kdy.u2 � u1/keuc � Ciky � xk.kC1/=2

euc :

for some suitable finite constant depending on i . If we integrate this inequality

along the segment from x to y in Bni 	 Bi , we obtain

8x 2 Ai ; 8y 2 Bi 	 B
ni ;

j.u1 � u2/.y/ � .u1 � u2/.x/j � QCiky � xk
kC1

2
C1

euc :

By Lemma 2.7 we deduce that

8x; y 2 Ai ; ıM .x; y/ � QCiky � xk
kC1

2
C1

euc :

Since Ai � Bi 	 Bni � Rni , and obviously 1 C kC1
2

> 1, we conclude from

Lemma A.1 that the Hausdorff measure Hni =.1C.kC1/=2/.Ai ; ıM / is equal to 0.

Therefore, since ni � dimM and A0 is the countable union of theAi , we conclude

that

H2 dim M=.kC3/.A0; ıM / D 0:

In particular, if k C 3 � 2 dimM , that is, k � 2 dimM � 3, the one-dimensional

Hausdorff dimension of .A0
M ; ıM / vanishes.

3.3 Proof of Theorem 1.4

We will give a proof of Theorem 1.4 that does not use conservation of energy

(complicating a little bit some of the steps). It will use instead the completeness of

the Euler-Lagrange flow, which is automatic for Tonelli Lagrangians independent

of time; see [17, cor. 2.2, p. 6]. It can therefore be readily adapted to the case where

L depends on time, is 1-periodic in time, and has a complete Euler-Lagrange flow

as in the work of Mather [28, 29].

In a flow the period function on the periodic nonfixed points is not necessarily

continuous. Therefore when we pick a local Poincaré section for a closed orbit, the

nearby periodic points of the flow do not give rise to fixed points of the Poincaré

return map. This will cause us some minor difficulties in the proof of Theorem 1.4.

We will use the following general lemma to get around these problems easily.

PROPOSITION 3.3 Let X be a metric space and .�t /t2R a continuous flow on X .
Call Fix.�t / the set of fixed points of the flow .�t /t2R, and Per.�t / the set of
periodic nonfixed points of .�t /t2R. Let T W Per.�t / ! �0;1Œ be the function
such that T .x/ is the smallest period > 0 of x 2 Per.�t /.
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We can write Per.�t / as a countable union Per.�t / D
S

n2N Cn where each
Cn is a closed subset on which the period map T is continuous.

PROOF: For t 2 R, call Ft the set of fixed points of the map �t . Using the

continuity of .�t /t2R on the product R�X , it is not difficult to see that
S

t2Œa;b� Ft

is a closed subset of X for every compact subinterval Œa; b� contained in R. For

n 2 Z we set

F n D
[

2n�t�2nC1

Ft D fx 2 X j 9t 2 Œ2n; 2nC1� with �t .x/ D xg:

Note that Fm is closed. Moreover, since �t .x/ D x with 2m�1 � t � 2m implies

�2t .x/ D �t ı �t .x/ D �t .x/ D x and 2m � 2t � 2mC1, we get Fm�1 � Fm

for every m 2 Z. Therefore we have that F n n F n�1 D F n n
S

i�n�1 F
i is the

set of periodic nonfixed points with 2n < T.x/ � 2nC1. In particular, Per.�t / DS
n2Z F

n n F n�1. Note also that if x 2 F n n F n�1 and t 2 �0; 2nC1� are such

that �t .x/ D x, then necessarily t D T .x/. In fact, we have t=T .x/ 2 N�, but

t=T .x/ � 2nC1=T .x/ < 2, hence t=T .x/ D 1.

We now show that the period map T is continuous on F n n F n�1. For this

we have to show that for a sequence x` 2 F n n F n�1 that converges to x1 2
F n n F n�1, we necessarily have T .x`/ ! T .x1/ when ` ! 1. Since T .x`/ 2
Œ2n; 2nC1�, which is compact, it suffices to show that any accumulation point T of

T .x`/ satisfies T D T .x1/. Pick up an increasing subsequence `k % 1 such

that T .x`k
/ ! T when k ! 1. By continuity of the flow, T 2 Œ2n; 2nC1� and

�T .x1/ D x1. Since x1 2 F n n F n�1, by what we have shown above we have

T D T .x1/.

Since Per.�t / is the countable union
S

n2Z F
n n F n�1, to finish the proof of

the lemma it remains to show that each F n n F n�1 is itself a countable union of

closed subsets of X . This is obvious because F n n F n�1 D F n \ .X n F n�1/ is

the intersection of a closed and an open subset in the metric X , but an open subset

in a metric space is itself a countable union of closed sets. �

We will also need the following proposition, which relates the size of the de-

rivative of a C 1;1 critical subsolution at a point to minimal actions of loops at that

point. We will need to use Lipschitz functions from a compact subset of M to a

compact subset of TM . We therefore need distances on M and TM . On M we

already have a distance coming from the Riemannian metric. Since all distances

obtained from Riemannian metrics are Lipschitz equivalent on compact subsets,

the precise distance we use on TM is not important. We therefore just assume that

we have chosen some Riemannian metric on TM (not necessarily related to the

one on M ), and we will use the distance on TM coming from this Riemannian

metric.

PROPOSITION 3.4 Suppose thatK is a given compact set and that t0; t 00 2 R satisfy
0 < t0 � t 00. We can find a compact set K 0 such that, for any finite number `, we
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can find a finite number C such that any critical C 1 subsolution u W M ! R such
that x 7! .x; dxu/ is Lipschitz on K 0 with Lipschitz constant � ` satisfies

8x 2 K; 8t 2 Œt0; t
0
0�; Œc.H/ �H.x; dxu/�

2 � C Œht .x; x/C c.H/t�:

Moreover, for every such `, we can find a constant C 0 such that any pair of critical
C 1 subsolutions u1; u2 W M ! R such that both maps x 7! .x; dxui /, i D 1; 2;

are Lipschitz on K 0 with Lipschitz constant � ` satisfies

8x 2 K; 8t 2 Œt0; t
0
0�; kdxu2 � dxu1k4

x � C 0Œht .x; x/C c.H/t�:

When M is compact, we can take t 00 D C1, and the above proposition be-

comes:

PROPOSITION 3.5 Suppose the manifold M is compact and that t0 > 0 is given.
For any finite number `, we can find a finite number C such that any critical C 1

subsolution u W M ! R such that x 7! .x; dxu/ is Lipschitz on M with Lipschitz
constant � ` satisfies

8x 2 M; 8t � t0; Œc.H/ �H.x; dxu/�
2 � C Œht .x; x/C c.H/t�:

Moreover, for every such `, we can find a constant C 0 such that any pair of critical
C 1 subsolutions u1; u2 W M ! R such that both maps x 7! .x; dxui /, i D 1; 2;

are Lipschitz on M with Lipschitz constant � ` satisfies

8x 2 M; 8t � t0; kdxu2 � dxu1k4
x � C 0Œht .x; x/C c.H/t�:

To prove these propositions, we first need to prove some lemmas.

LEMMA 3.6 Suppose K is a compact subset of M and that t0; t 00 2 R satisfy
0 < t0 � t 00. We can find a compact subset K 0 � M containing K (and depending
on K; t0; t 00) such that any L-minimizer � W Œa; b� ! M with t0 � b � a � t 00 and
�.a/; �.b/ 2 K is contained in K 0.

Of course, whenM is compact we could takeK 0 D M and the lemma is trivial.

PROOF OF LEMMA 3.6: SinceM is a complete Riemannian manifold, we can

find g W Œa; b� ! M , a geodesic with g.a/ D �.a/, g.b/ D �.b/, and whose

length is d.�.a/; �.b//. Since g is a geodesic, the norm k Pg.s/kg.s/ of its speed is

a constant that we denote by C . Therefore we have

d.�.a/; �.b// D length.g/ D

Z b

a

k Pg.s/kg.s/ ds D C.b � a/:

This yields that the norm of speed k Pg.s/kg.s/ D C D d.�.a/; �.b//=.b � a/ is

bounded by diam.K/=t0. If we set

A D supfL.x; v/ j .x; v/ 2 TM; kvkx � diam.K/=t0g;
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we know that A is finite by the uniform boundedness of L in the fiber. It follows

that we can estimate the action of g byZ b

a

L.g.s/; Pg.s//ds � A.b � a/:

Since � is a minimizer with the same endpoints as g, we also getZ b

a

L.�.s/; P�.s//ds � A.b � a/:

By the uniform superlinearity of L in the fibers, we can find a constant C > �1
such that

8.x; v/ 2 TM; C C kvkx � L.x; v/:

Applying this to .�.s/; P�.s// and integrating, we get

C.b � a/C length.�/ �

Z b

a

L.�.s/; P�.s//ds � A.b � a/:

Therefore

length.�/ � .A � C/.b � a/:

Therefore � is contained in the set K defined by

K 0 D NV.A�C /.b�a/.K/ D fy j 9x 2 K; d.x; y/ � .A � C/.b � a/g:

Notice that K 0 is contained in a ball of radius .diamK C .A � C/.b � a//, which

is finite, and balls of finite radius are compact in a complete Riemannian manifold.

Therefore K 0 is compact. �

LEMMA 3.7 For every compact subset K 0 of M and every t0 > 0, we can find
a constant C D C.t0; K

0/ such that every L-minimizer � W Œa; b� ! M , with
b � a � t0 and �.Œa; b�/ � K 0, satisfies

8s 2 Œa; b�; k P�.s/k�.s/ � C:

PROOF: Since any s 2 Œa; b� with b � a � t0 is contained in a subinterval of

length exactly t0, and any subcurve of a minimizer is a minimizer, it suffices to

prove the lemma under the condition b � a D t0. Using the action of a geodesic

from �.a/ to �.b/, and the uniform boundedness of L in the fibers as in the proof

of Lemma 3.6, we can find a constant A (depending on diam.K/ and t0 but not on

�) such that Z b

a

L.�.s/; P�.s//ds � A.b � a/:

Therefore, we can find s0 2 Œa; b� such that L.�.s0/; P�.s0// � A. By the uniform

superlinearity of L, the subset

K D f.x; v/ 2 TM j x 2 K 0; L.x; v/ � Ag

is compact (and does not depend on �). Since � is a minimizer, we have

.�.s/; P�.s// D �s�s0
.�.s0/; P�.s0//
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and js � s0j � b � a D t0; we conclude that the speed curve of the minimizer � is

contained in the set (independent of �)

K0 D
[

jt j�t0

�L
t .K/;

which is compact by the continuity of the Euler-Lagrange flow. �

LEMMA 3.8 For every K compact subset of M , every t0 > 0, and every t 00 2
Œt0;C1Œ (respectively, t 00 D C1 when M is compact), we can find K 0 
 K

a compact subset of M (respectively, K 0 D M when M is compact) and finite
constants C0 and C1 such that for every C 1 critical subsolution u W M ! R, if
!u;K0 W Œ0;1Œ ! Œ0;1Œ is a continuous, nondecreasing modulus of continuity of
x 7! .x; dxu/ onK 0, then for every x; y 2 K and every t 2 R with t0 � t � t 00 we
have

!�1
u;K0

�
c.H/ �H.x; dxu/

2C1

�
c.H/ �H.x; dxu/

2C0
�

ht .x; y/C c.H/t C u.x/ � u.y/;

where

!�1
u;K0.t/ D

(
infft 0 j !u;K0.t 0/ D tg if t 2 !u;K0.Œ0;C1Œ/;

C1 otherwise.

In particular, if !u;K0 is the linear function t 7! Ct , with C > 0, then for every
x; y 2 K and every t 2 R with t0 � t � t 00, we have

Œc.H/ �H.x; dxu/�
2

4CC0C1
� ht .x; y/C c.H/t C u.x/ � u.y/:

PROOF: We first choose K 0. If M is compact, we set K 0 D M and we allow

t 00 D C1. If M is not compact, we assume t 00 < C1. By Lemma 3.6, we can

find a compact subset K 0 
 K of M such that every L-minimizer � W Œa; b� ! M

with t0 � b � a � t 00 and �.a/; �.b/ 2 K is contained in K 0. With this choice of

K 0, we apply Lemma 3.7 to find a finite constant C0 such that every L-minimizer

� W Œa; b� ! M contained in K 0, with b � a � t0, has a speed bounded in norm

by C0.

Therefore we conclude that for every L-minimizer � W Œ0; t � ! M , with t0 � t 0

and �.0/; �.t/ 2 K, we have �.Œ0; t �/ � K 0, and k P�.s/k�.t/ � C0 (this is valid

both in the compact and noncompact case). In particular, for such a minimizer � ,

we have

8s; s0 2 Œ0; t �; d.�.s/; �.s0// � C0js � s0j:

We call C1 a Lipschitz constant of H on the compact subset f.x; p/ 2 T �M j
x 2 K 0;H.x; p/ � c.H/g.
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Suppose now u is a critical subsolution. Given x; y 2 K and t 2 Œt0; t
0
0�, we

pick � W Œ0; t � ! M , a minimizer with �.0/ D x and �.t/ D y. Therefore we have

ht .x; y/ D

Z t

0

L.�.s/; P�.s//ds:

Since �.Œ0; t �/ � K 0 and H.�.s/; d�.s/u/ � c.H/, we have

8s; s0 2 Œ0; t �; jH.�.s0/; d�.s0/u/ �H.�.s/; d�.s/u/j

� C1dŒ.�.s
0/; d�.s0/u/; .�.s/; d�.s/u/�

� C1!u;K0.d.�.s0/; �.s// � C1!u;K0.C0js � s0j/:

(3.4)

Integrating the Fenchel inequality

d�.s/u. P�.s// � L.�.s/; P�.s//CH.�.s/; d�.s/u/;

we get

u.y/ � u.x/ � ht .x; y/C

Z t

0

H.�.s/; d�.s/u/ds:

SinceH.�.s/; d�.s/u/ � c.H/, for every t 0 2 Œ0; t �, from (3.4) above we can writeZ t

0

H.�.s/; d�.s/u/ds

D

Z t

0

c.H/C ŒH.�.s/; d�.s/u/ � c.H/� ds

� c.H/t C

Z t 0

0

H.�.s/; d�.s/u/ � c.H/ds

� c.H/t C

Z t 0

0

H.�.0/; d�.0/u/ � c.H/C C1!u;K0.C0s/ds

D c.H/t C

Z t 0

0

H.x; dxu/ � c.H/C C1!u;K0.C0s/ds:

Therefore we obtain

8t 0 2 Œ0; t �; u.y/ � u.x/ � ht .x; y/C c.H/t C

Z t 0

0

H.x; dxu/ � c.H/

C C1!u;K0.C0s/ds;

which yields

(3.5) 8t 0 2 Œ0; t �;

Z t 0

0

c.H/ �H.x; dxu/ � C1!u;K0.C0s/ds �

ht .x; y/C c.H/t C u.x/ � u.y/:
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Since c.H/ �H.x; dxu/ � c.H/ � inffH.x; p/ j .x; p/ 2 T �M g < C1, up to

a choice of C0 big enough, we can assume

t0 >
1

C0
!�1

u;K0

�
c.H/ �H.x; dxu/

2C1

�
:

Then, recalling that t � t0, if we set

t 0 D
1

C0
!�1

u;K0

�
c.H/ �H.x; dxu/

2C1

�
;

since !u;K0 is nondecreasing, we obtain

8s 2 Œ0; t 0�; C1!u;K0.C0s/ �
c.H/ �H.x; dxu/

2
:

Hence

8s 2 Œ0; t 0�; c.H/ �H.x; dxu/ � C1!u;K0.C0s/ �
c.H/ �H.x; dxu/

2
:

Combining this with (3.5), we obtain

!�1
u;K0

�
c.H/ �H.x; dxu/

2C1

�
c.H/ �H.x; dxu/

2C0
�

ht .x; y/C c.H/t C u.x/ � u.y/:

This finishes the proof. �

PROOF OF PROPOSITION 3.4: We apply Lemma 3.8 above to obtain the com-

pact set K 0. This lemma also gives for every ` � 0 a constant A D A.`/ such that

any C 1;1 critical subsolution u W M ! R that is `-Lipschitz on K 0 satisfies

8x 2 K; 8t 2 Œt0; t
0
0�;

Œc.H/ �H.x; dxu/�
2

A
� ht .x; x/C c.H/t:

To prove the second part, we will use the strictC 2 convexity ofH . Since the set

f.x; p/ j x 2 K;H.x; p/ � c.H/g is compact, the C 2 strict convexity allows us

to find ˇ > 0 such that for all x 2 K and p1; p2 2 T �
x M , with H.x; pi / � c.H/,

we have

H.x; p2/ �H.x; p1/ �
@H.x; p1/

@p
.p2 � p1/C ˇkp2 � p1k2

x :

SinceH is convex in p for all x 2 K and p1; p2 2 T �
x M , withH.x; pi / � c.H/,

we also have H.x; .p1 C p2/=2/ � c.H/. Therefore we can apply the above

inequality to the pairs ..p1 C p2/=2; p1/ and ..p1 C p2/=2; p2/ to obtain

H.x; p1/ �H

�
x;
p1 C p2

2

�
�
@H.x; p1Cp2

2
/

@p

�p1 � p2

2

�
C ˇ

���p1 � p2

2

���2

x
;

H.x; p2/ �H

�
x;
p1 C p2

2

�
�
@H.x; p1Cp2

2
/

@p

�p2 � p1

2

�
C ˇ

���p2 � p1

2

���2

x
:
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If we add these two inequalities, using H.x; pi / � c.H/ and dividing by 2, we

obtain

c.H/ �H

�
x;
p1 C p2

2

�
� ˇ

���p2 � p1

2

���2

x
:

Therefore if u1; u2 W M ! R are two C 1 critical subsolutions, we get

(3.6) c.H/ �H

�
x;
dxu1 C dxu2

2

�
� ˇ

����dxu2 � dxu1

2

����
2

x

:

We denote by T �M˚T �M the Whitney sum of T �M with itself (i.e., we consider

the vector bundle over M whose fiber at x 2 M is T �
x M � T �

x M ). The maps

T �M ! T �M ˚ T �M; .x; p/ 7! .x; p; 0/;

T �M ! T �M ˚ T �M; .x; p/ 7! .x; 0; p/;

and

T �M ˚ T �M ! T �M; .x; p1; p2/ 7!

�
x;
p1 C p2

2

�
;

are all C1. Therefore they are Lipschitz on any compact subset. Since for a

critical subsolution u W M ! R the values .x; dxu/ for x 2 K 0 are all in the

compact subset f.x; p/ j x 2 K 0; H.x; p/ � c.H/g, we can find a constant

B < 1 such that for any two C 1 critical subsolutions u1; u2 W M ! R such

that x 7! .x; dxui /, i D 1; 2; has a Lipschitz constant � ` on K 0, the map x 7!
.x; .dxu1 C dxu2/=2/ has a Lipschitz constant � B`. Since .u1 C u2/=2 is also

a critical subsolution, applying the first part of the proposition proved above with

Lipschitz constant `1 D B`, we can find a constant C1 such that

8x 2 K; 8t 2 Œt0; t
0
0�;�

c.H/ �H

�
x;
dxu1 C dxu2

2

��2

� C1.ht .x; x/C c.H/t/:

Combining this inequality with (3.6) above, we get

8x 2 K; 8t 2 Œt0; t
0
0�; ˇ2

����dxu2 � dxu1

2

����
4

x

� C1.ht .x; x/C c.H/t/:

This yields the second part of the proposition with C 0 D ˇ�2C1. �

We now can start the proof of Theorem 1.2. Let QAp be the set of points in

the Aubry set QA that are periodic but not fixed under the Euler-Lagrange flow �L
t .

This set projects on Ap. Denote by T W QAp ! �0;C1Œ the period map of Euler-

Lagrange flow �L
t ; i.e., if .x; v/ 2 QAp, the number T .x/ is the smallest positive

number t such that �L
t .x; v/ D .x; v/. Using Proposition 3.3 above, we can write

QAp D
S

n2N
QFn, with each QFn compact and such that the restriction T j QFn is

continuous. We denote by Fn the projection of QFn � TM on the baseM . We have
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Ap D
S

n2N Fn. If we want to show that Hd .Ap; ıM / D 0 for some dimension

d > 0, by the countable additivity of the Hausdorff measure in dimension d , it

suffices to show that Hd .Fn; ıM / D 0 for every n 2 N.

Therefore from now on we fix some compact subset QF � QAp on which the

period map is continuous, and we will show that its Hausdorff measure in the ap-

propriate dimension d is 0. We now perform one more reduction. In fact, we claim

that it suffices for each .x; v/ 2 QF to find QS.x;v/ � TM , a C1 codimension 1

transverse section to the Euler-Lagrange flow �L
t such that .x; v/ 2 QS.x;v/ and

Hd .�. QF \ QS.x;v//; ıM / D 0, where � W TM ! M is the canonical projection.

Indeed, if this were the case, since, by transversality of QS to the flow �L
t , the set

QV.x;v/ D
S

t2R �
L
t .

QS.x;v// would be open in TM , we could cover the compact

set QF by a finite number of sets QV.xi ;vi /, i D 1; : : : ; `. Note that by part (iii) of

Mather’s theorem, Theorem 2.1, the sets �. QF \ QV.x;v// and �. QF \ QS.x;v// have

the same image in the quotient Mather set; therefore we get

Hd .�. QF \ QV.x;v//; ıM / D Hd .�. QF \ QS.x;v//; ıM / D 0:

Hence F D �. QF /, which is covered by the finite number of sets �. QF \ QV.xi ;vi //,

also satisfies Hd .F; ıM / D 0.

Fix now .x0; v0/ in QF � QAp. We proceed to construct the transverse QS D
QS.x0;v0/. We start with a C1 codimension 1 submanifold QS0 � TM that is trans-

verse to the flow �L
t and that intersects the compact periodic orbit �L

t .x0; v0/ at

exactly .x0; v0/. IfL (orH ) is C k;1, the Poincaré first return time � W QS1 ! �0;1Œ

on T0 is defined and C k�1;1 on some smaller transverse QS1 � QS0 containing

.x0; v0/. We set � W QS1 ! QS0; .x; v/ 7! �L
�.x;v/

.x; v/. This is the Poincaré return

map, and it is also C k�1;1, as a composition of C k�1;1 maps. Of course, we have

�.x0; v0/ D T .x0; v0/ and �.x0; v0/ D .x0; v0/. Since T is continuous on F , it

is easy to show that T D � and � is the identity on F \ QS2, where QS2 � QS1 is a

smaller section containing .x0; v0/.

Pick � > 0 small enough so that the radius of injectivity of the Riemannian

manifold M is � � for every x 2 Bd .x0; �/ D fy 2 M j d.x0; y/ < �g, where d

is the distance obtained from the Riemannian metric on M . This implies that the

restriction of the square d2 of the distance d is of class C1 (like the Riemannian

metric) on Bd .x0; �=2/ � Bd .x0; �=2/.

We now take a smaller section QS3 � QS2 around .x0; v0/ such that for every

.x; v/ 2 QS3 both x and ��.x; v/ ofM are in the ball Bd .x0; �=2/. This is possible

by continuity since �.x0; v0/ D .x0; v0/. For .x; v/ 2 QS3, we set

�.x; v/ D �.x; v/C d.��.x; v/; x/:

We will now give an upper bound for h�.x;v/.x; x/Cc.H/�.x; v/when .x; v/ 2
QS3. For this we choose a loop �.x;v/ W Œ0; �.x; v/� ! M at x. This loop �.x;v/ is
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equal to the curve �.x;v/;1.t/ D ��t .x; v/ for t 2 Œx; �.x; v/�, which joins x

to ��.x; v/, followed by the shortest geodesic �.x;v/;2 W Œ�.x; v/; �.x; v/� ! M

for the Riemannian metric, parametrized by arc length and joining ��.x; v/ to x.

Since �.x;v/;2 is parametrized by arc length and is contained inBd .x0; �/, its action

is bounded by Kd.��.x; v/; x/, where K D supfL.x; v/ j d.x; x0/ � �; kvkx �
1g < 1. On the other hand, the action a.x; v/ of �.x;v/;1.t/ is given by

a.x; v/ D

Z �.x;v/

0

LŒ�L
s .x; v/�ds:

Note that a is also of class C k�1;1. It follows that, for .x; v/ 2 QS3, we have

h�.x;v/.x; x/C c.H/�.x; v/ �

Œa.x; v/C c.H/�.x; v/�C ŒK C c.H/�d.��.x; v/; x//:

Therefore if, for .x; v/ 2 QS3, we define

‰.x; v/ D Œa.x; v/C c.H/�.x; v/�2 C d2.��.x; v/; x/;

we obtain

8.x; v/ 2 QS3; 0 � h�.x;v/.x; x/C c.H/�.x; v/

� Œ1CK C jc.H/j�
p
‰.x; v/:

Notice that ‰ is C k�1;1 like a and � , because x; ��.x; v/ 2 B.x0; �=2/ and

d2 is C1 on the ball B.x0; �=2/. We now observe that ‰ is identically 0 on
QF \ QS3. Indeed, for .x; v/ 2 QF \ QS3, we have �.x; v/ D .x; v/; therefore

d2.��.x; v/; x/ D 0. Moreover, since .x; v/ 2 QF � QA, the curve t 7! ��L
t .x; v/

calibrates any critical subsolution u W M ! R; in particular,

u
�
��L

�.x;v/.x; v/
	

� u.�.x; v// D

Z �.x;v/

0

L�L
s .x; v/ds C c.H/�.x; v/

D a.x; v/C c.H/�.x; v/:

But �L
�.x;v/

.x; v/ D �.x; v/ D .x; v/ for .x; v/ 2 QF \ QS3. Hence a.x; v/ C

c.H/�.x; v/ D 0 for .x; v/ 2 QF \ QS3. Therefore ‰ is identically 0 on QF \ QS3.

To sum up, we have found two functions �;‰ W QS3 ! Œ0;C1Œ such that

(1) the function � is continuous and > 0 everywhere,

(2) the function ‰ is C k�1;1 and vanishes identically on QF \ QS3, and

(3) there exists a finite constant C such that

8.x; v/ 2 QS3; 0 � h�.x;v/.x; x/C c.H/�.x; v/ � C
p
‰.x; v/:

This is all that we will use in the remainder of the proof.

We now fix a smaller Poincaré section QS4 containing .x0; v0/ whose closure

Cl. QS4/ is compact and contained in QS3. We now observe that K D �.Cl. QS4// is a
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compact subset of M and that

t0 D minf�.x; v/ j .x; v/ 2 Cl. QS4/g; t 00 D maxf�.x; v/ j .x; v/ 2 Cl. QS4/g;

are finite and> 0 since � is continuous and> 0 on the compact set Cl. QS4/. We can

therefore apply Proposition 3.4 to obtain a set K 0. We have to choose a constant

` needed to apply this Proposition 3.4. For this we invoke Theorem B.1: we can

find a constant ` such that for any critical subsolution u W M ! R we can find a

C 1;1 critical subsolution v W M ! R that is equal to u on the projected Aubry set

A and such that x 7! .x; dxv/ has Lipschitz constant � ` on K 0. It follows from

Lemma 2.7 that

8x; y 2 A; ıM .x; y/ D max f.u1 � u2/.y/ � .u1 � u2/.x/g ;

where the maximum is taken over all the pairs of C 1;1 critical subsolutions u1; u2 W
M ! R such that x 7! .x; dxui /, i D 1; 2, have a Lipschitz constant � ` on K 0.

Using this `, we obtain, from Proposition 3.4, a constant C 0 such that

8.x; v/ 2 Cl. QS4/; kdxu2 � dxu1k4
x � C 0Œh�.x;v/.x; x/C c.H/�.x; v/�

for every pair of C 1;1 critical subsolutions u1; u2 W M ! R such that x 7!
.x; dxui /, i D 1; 2; have a Lipschitz constant � ` onK 0. Therefore by the proper-

ties of � and ‰ described above, we obtain

8.x; v/ 2 Cl. QS4/; kdxu2 � dxu1kx � C‰.x; v/1=8;

again for every pair of C 1;1 critical subsolutions u1; u2 W M ! R such that x 7!
.x; dxui /, i D 1; 2; have a Lipschitz constant � ` on K 0. Since ‰ is of class

C k�1;1 and is identically 0 on QF \ QS4, we can invoke Lemma 2.8 to obtain a

decomposition

QF \ QS4 D
[
i2N

Ai ;

with Ai a compact subset, a family .Bi /i2N of C 1 compact embedded discs in QS4,

and constants .Ci /i2N such that

8.x; v/ 2 Ai ; 8.y; w/ 2 Bi ;

‰.y;w/ D j‰.y;w/ �‰.x;w/j � Ci
QdŒ.y;w/; .x; v/�k ;

where Qd is the distance obtained from a fixed Riemannian metric on QS4. Combining

with what we obtained above, we find constants C 0
i (independent of the pair of

functions u1; u2) such that

8.x; v/ 2 Ai ; 8.y; w/ 2 Bi ; kdyu1 � dyu2ky � C 0
i

QdŒ.y;w/; .x; v/�k=8:

Since we want to consider u1 and u2 as functions on Bi � TM composing with

� W TM ! M , we can rewrite this as

8.x; v/ 2 Ai ; 8.y; w/ 2 Bi ;

kd.y;w/u1 ı � � d.y;w/u2 ı �ky � C 0
i

QdŒ.y;w/; .x; v/�k=8:
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Again, as in the proof of the previous theorem, to simplify things we can iden-

tify BI with a Euclidean ball Bi of some dimension, and since the identification is

done by a C 1 diffeomorphism, we can find constants C 00
i (independent of the pair

of functions u1; u2) such that

8.x; v/ 2 Ai ; 8.y; w/ 2 Bi ;

kd.y;w/u1 ı � � d.y;w/u2 ı �keuc � C 00
i k.y; w/ � .x; v/kk=8

euc :

In the Euclidean disc Bi , we can integrate this inequality along the Euclidean seg-

ment joining .x; v/ to .y; w/ to obtain

8.x; v/ 2 Ai ; 8.y; w/ 2 Bi ;

j.u1 � u2/.y/ � .u1 � u2/.x/j �
C 00

i

1C .k=8/
k.y; w/ � .x; v/k1C.k=8/

euc :

Of course, since the identification of Bi � TM with Bi is done by a C 1 diffeomor-

phism changing constants again to some QCi (independent of the pair of functions

u1; u2), we get

8.x; v/ 2 Ai ; 8.y; w/ 2 Bi ;

j.u1 � u2/.y/ � .u1 � u2/.x/j � QCidŒ.y;w/; .x; v/�
1C.k=8/;

where d is a distance on TM obtained from a Riemannian metric. Observe now

that, by Mather’s theorem, the projection � W QA ! A is bijective with an inverse

that is locally Lipschitz. Therefore, since Ai is compact and contained in QF � QA,

changing again the constants to QC 0
i (independent of the pair of functions u1; u2),

we obtain

8x; y 2 �.Ai /; j.u1 � u2/.y/ � .u1 � u2/.x/j � QC 0
idŒy; x�

1C.k=8/:

Since this inequality is true now for every pair of C 1;1 critical subsolutions u1; u2 W
M ! R such that x 7! .x; dxui /, i D 1; 2; have a Lipschitz constant � ` on K 0

(with the constant QC 0
i independent of the pair of functions u1; u2), we conclude

that

8x; y 2 �.Ai /; ıM .x; y/ � QC 00
i dŒy; x�

1C.k=8/:

Therefore by Lemma A.3 we obtain that

H8 dim M=.kC8/.�.Ai // D 0:

Again by countable additivity this gives H8 dim M=.kC8/.�. QF \ QS4// D 0. This

finishes the proof of the theorem.

Remark 3.9. We observe that, from our proof, for any QF � QA, the semimetric

space .�. QF /; ıM / has vanishing one-dimensional Hausdorff measure as soon as

the following properties are satisfied: there are r > 0, k0; l 2 N, and a function

G W TM ! R of class C k0;1 such that

(i) G.x; v/ � 0 on QF ,
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(ii) fmr.x/g
l � G.x; v/ for all .x; v/ 2 TM , and

(iii) k0 � 4l.dimM � 1/ � 1,

where mr.x/ D inft�r fht .x; x/C c.H/tg.

Remark 3.10. By Proposition 2.3, for every compact subset K � M there is a

constant CK > 0 such that

8x 2 K; h.x; x/ � CKd.x;A/
2;

where d.x;A/ denotes the Riemannian distance from x to the set A (which is

assumed to be nonempty). Therefore, from the remark above, we deduce that if

there are l 2 N and a function G W M ! R of class C k0;1 with k0 � 2l.dimM �
1/ � 1 such that

8x 2 M; d.x;A/l � G.x/;

then .AM ; dM / has vanishing one-dimensional Hausdorff measure.

3.4 Proof of Theorem 1.5

By Theorems 1.2 and 1.4, we know that .A0
M [ A

p
M ; ıM / has zero Hausdorff

dimension. Thus the result will follow once we will show that AM n .A0
M [ A

p
M /

is a finite set.

We recall that the Aubry set QA � TM is given by the set of .x; v/ 2 TM such

that x 2 A and v is the unique v 2 TxM such that dxu D @L
@v
.x; v/ for any critical

viscosity subsolution. This set is invariant under the Euler-Lagrange flow �L
t . For

every x 2 A, we denote by O.x/ the projection on A of the orbit of �L
t that passes

through x. We observe that by Theorem 2.1(iii) the following simple fact holds:

LEMMA 3.11 If x; y 2 A and O.x/ \ O.y/ ¤ ¿, then ıM .x; y/ D 0.

Let us define

C0 D fx 2 A j O.x/ \ A0 ¤ ¿g; Cp D fx 2 A j O.x/ \ Ap ¤ ¿g:

Thus, if x 2 C0 [Cp, by Lemma 3.11 the Mather distance between x and A0 [Ap

is 0, and we are done.

Let us now define C D An.C0 [Cp/, and let .CM ; ıM / be the quotiented metric

space. To conclude the proof, we show that this set consists of a finite number of

points.

Let u be a C 1;1 critical subsolution (whose existence is provided by [4]), and

let X be the Lipschitz vector field uniquely defined by the relation

L.x;X.x// D .x; dxu/;

where L denotes the Legendre transform. Its flow extends on the whole manifold

the flow considered above on A. We fix x 2 C. Then O.x/ is a nonempty, com-

pact, invariant set that contains a nontrivial minimal set for the flow of X (see [34,

chap. 1]). By [27], we know that there exists at most a finite number of such non-

trivial minimal sets. Therefore, again by Lemma 3.11, .CM ; ıM / consists only in a

finite number of points.
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4 Applications in Dynamics

Throughout this section,M is assumed to be compact. As before,H W T �M !
R is a Hamiltonian of class at least C 2 satisfying the two usual conditions (H1)–

(H2) (note that (H3) is automatically satisfied ifM is compact), andL is the Tonelli

Lagrangian that is associated to it by Fenchel’s duality.

As in Section 2.3, we denote by SS the set of critical viscosity subsolutions

and by S� the set of critical viscosity (or weak KAM) solutions, so that S� � SS.

4.1 More about Aubry Sets on Compact Manifolds

From the characterization of the Aubry set given by Theorem 2.6, it is natural

to introduce the Mañé set QN given by

QN D
[

u2SS

QI.u/:

As is the case for QA, the subset QN of TM is compact and invariant under the

Euler-Lagrange flow �L
t of L.

THEOREM 4.1 (Mañé) When M is compact, each point of the invariant set QA is
chain-recurrent for the restriction �L

t j QA. Moreover, the invariant set QN is chain-
transitive for the restriction �L

t j QN .

COROLLARY 4.2 WhenM is compact, the restriction �L
t j QA to the invariant subset

QA is chain-transitive if and only if QA is connected.

PROOF: This is an easy, well-known result in the theory of dynamical systems:

Suppose �t , t 2 R, is a flow on the compact metric space X . If every point of X is

chain-recurrent for �t , then �t is chain-transitive if and only if X is connected. �

For the following result see [15] or [12, théorème 1].

THEOREM 4.3 When M is compact, the following properties are satisfied:

(i) Two weak KAM solutions that coincide on A are equal everywhere.
(ii) For every u 2 SS, there is a unique weak KAM solution u� W M ! R

such that u� D u on AI moreover, the two functions u and u� are also
equal on I.u/.

It follows from the second statement in this theorem that we have

QN D
[

u2S�

QI.u/:

Moreover, it can be easily shown from the results of [15] that

A D
\

u2S�

I.u/:
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We give now the general relationship between uniqueness of weak KAM solu-

tions and the quotient Mather set; see also [7, cor. 4.7, p. 445], [5, cor. 4.7], and [8,

prop. 3.4, p. 657].

PROPOSITION 4.4 Suppose M is compact. The following two statements are
equivalent:

(i) Any two weak KAM solutions differ by a constant.
(ii) The Mather quotient .AM ; ıM / is trivial, i.e., is reduced to one point.

Moreover, if any one of these conditions is true, then QA D QN , and therefore QA

is connected and the restriction of the Euler-Lagrange flow �L
t to QA is chain-

transitive.

PROOF: For every fixed x 2 M , the function y 7! h.x; y/ is a weak KAM

solution. Therefore if we assume that any two weak KAM solutions differ by a

constant, then for x1; x2 2 M we can find a constant Cx1;x2
such that

8y 2 M; h.x1; y/ D Cx1;x2
C h.x2; y/:

If x2 2 A, then h.x2; x2/ D 0; therefore, evaluating the equality above for y D x2,

we obtain Cx1;x2
D h.x1; x2/. Substituting in the equality and evaluating, we

conclude

8x1 2 M; 8x2 2 A; h.x1; x1/ D h.x1; x2/C h.x2; x1/:

This implies

8x1; x2 2 A; h.x1; x2/C h.x2; x1/ D 0;

which means that ıM .x1; x2/ D 0 for every x1; x2 2 A.

To prove the converse, let us recall that for every critical subsolution u, we have

8x; y 2 M; u.y/ � u.x/ � h.x; y/:

Therefore applying this for a pair u1; u2 2 SS , we obtain

8x; y 2 M; u1.y/ � u1.x/ � h.x; y/; u2.x/ � u2.y/ � h.y; x/:

Adding and rearranging, we obtain

8x; y 2 M; .u1 � u2/.y/ � .u1 � u2/.x/ � h.x; y/C h.y; x/:

Since the right-hand side is symmetric in x; y, we obtain

8x; y 2 M; j.u1 � u2/.y/ � .u1 � u2/.x/j� h.x; y/C h.y; x/:

If we assume that (ii) is true, this implies that u1 � u2 is a constant c on the

projected Aubry set A, that is, u1 D u2 C c on A. Thus, if u1; u2 are weak KAM

solutions, then we have u1 D u2 C c on M , because any two solutions equal on

the Aubry set are equal everywhere by (ii) of Theorem 4.3.

It remains to show the last statement. Notice that if u1; u2 2 SS differ by a

constant, then QI.u1/ D QI.u2/. Therefore if any two elements in S� differ by a

constant, then
QA D QI.u/ D QN ;
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where u is any element in S�. But, by Mañé’s theorem, Theorem 4.1, the invariant

set QN is chain-transitive for the flow �t ; hence it is connected by Corollary 4.2. �

We now denote by XL the Euler-Lagrange vector field of L; that is, the vector

field on TM that generates �L
t . We recall that an important property of XL is that

8.x; v/ 2 TM; T�.XL.x; v// D v;

where T� W T .TM/ ! TM denotes the canonical projection.

Here is a last ingredient that we will have to use.

PROPOSITION 4.5 (Lyapunov Property) Suppose u1; u2 2 SS. The function .u1 �

u2/ ı� is nondecreasing along any orbit of the Euler Lagrange flow �L
t contained

in QI.u2/. If we assume u1 is differentiable at x 2 I.u2/ and .x; v/ 2 QI.u2/, then,
using that u2 is differentiable on I.u2/, we obtain

XL � Œ.u1 � u2/ ı ��.x; v/ D dxu1.v/ � dxu2.v/ � 0:

Moreover, the inequality above is an equality if and only if dxu1 D dxu2. In that
case H.x; dxu1/ D H.x; dxu2/ D c.H/.

PROOF: If .x; v/ 2 QI.u2/, then t 7! ��t .x; v/ is .u2; L; c.H//-calibrated,

hence

8t1 � t2; u2 ı �.�t2
.x; v// � u2 ı �.�t1

.x; v// DZ t2

t1

L.�s.x; v//ds C c.H/.t2 � t1/:

Since u1 2 SS, we get

8t1 � t2; u1 ı �.�t2
.x; v// � u1 ı �.�t1

.x; v// �Z t2

t1

L.�s.x; v//ds C c.H/.t2 � t1/:

Combining these two facts, we conclude

8t1 � t2; u1 ı �.�t2
.x; v// � u1 ı �.�t1

.x; v// �

u2 ı �.�t2
.x; v// � u2 ı �.�t1

.x; v//:

This implies

8t1 � t2; .u1 � u2/ ı �.�t2
.x; v// � .u1 � u2/ ı �.�t1

.x; v//:

Recall that u2 is differentiable at every x 2 I.u2/. Thus, if dxu1 also exists, if

.x; v/ 2 QI.u2/ we obtain

XL � Œ.u1 � u2/ ı ��.x; v/ � 0:

We remark that XL � Œ.u1 � u2/ ı ��.x; v/ D dx.u1 � u2/.T � ıXL.x; v//. Since

T� ıXL.x; v/ D v, we obtain

XL � Œ.u1 � u2/ ı ��.x; v/ D dxu1.v/ � dxu2.v/ � 0:
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If the last inequality is an equality, we get dxu1.v/ D dxu2.v/. Since .x; v/ 2
QI.u2/, we have dxu2 D @L

@v
.x; v/ and H.x; dxu2/ D c.H/; therefore the Fenchel

inequality yields the equality

dxu2.v/ D L.x; v/CH.x; dxu2/ D L.x; v/C c.H/:

Since u1 2 SS, we know that H.x; dxu1/ � c.H/. The previous equality, us-

ing the Fenchel inequality dxu1.v/ � L.x; v/ C H.x; dxu1/ and the fact that

dxu1.v/ D dxu2.v/, implies

H.x; dxu1/ D c.H/ and dxu1.v/ D L.x; v/CH.x; dxu1/:

This means that we have equality in the Fenchel inequality dxu1.v/ � L.x; v/C

H.x; dxu1/; we therefore conclude that dxu1 D @L
@v
.x; v/, but the right-hand side

of this last equality is dxu2. �

4.2 Mather Disconnectedness Condition

DEFINITION 4.6 We will say that the Tonelli Lagrangian L on M satisfies the

Mather disconnectedness condition if for every pair u1; u2 2 S�, the image .u1 �
u2/.A/ � R is totally disconnected.

Notice that by part (ii) of Theorem 4.3, if L satisfies the Mather disconnect-

edness condition, then for every pair of critical subsolutions u1; u2, the image

.u1 � u2/.A/ � R is also totally disconnected.

PROPOSITION 4.7 If H1.AM ; ıM / D 0, then L satisfies the Mather disconnect-
edness condition.

PROOF: If u1; u2 2 SS , u1 � u2 is 1-Lipschitz with respect to ıM ; see the

proof of Proposition 4.4. Therefore the one-dimensional Hausdorff measure (i.e.,

Lebesgue measure) of .u1 � u2/.A/ is 0 like H1.AM ; ıM /. The result follows

since a subset of R of Lebesgue measure 0 is totally disconnected. �

By Proposition 4.7, the results obtained above contain the following theorem

(assertions (i) and (ii) have already been proved in [31] and assertion (iv) in [36]).
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THEOREM 4.8 Let L be a Tonelli Lagrangian on the compact manifold M I it
satisfies the Mather disconnectedness condition in the following five cases:

(i) The dimension of M is 1 or 2.
(ii) The dimension of M is 3, and QA contains no fixed point of the Euler-

Lagrange flow.
(iii) The dimension of M is 3, and L is of class C 3;1.
(iv) The Lagrangian is of class C k;1, with k � 2 dimM � 3, and every point

of QA is fixed under the Euler-Lagrange flow �L
t .

(v) The Lagrangian is of class C k;1, with k � 8 dimM � 8, and either each
point of QA is fixed under the Euler-Lagrange flow �L

t or its orbit in the
Aubry set is periodic with (strictly) positive period.

LEMMA 4.9 Suppose that L is a Tonelli Lagrangian L on the compact manifold

M that satisfies the Mather disconnectedness condition. For every u 2 SS, the set

of points in QI.u/ that are chain-recurrent for the restriction �L
t j QI.u/ of the Euler-

Lagrange flow is precisely the Aubry set QA.

PROOF: First of all, we recall that, from Theorem 4.1, each point of A is chain-

recurrent for the restriction �L
t j QA. By [18, theorem 1.5], we can find a C 1 critical

viscosity subsolution u1 W M ! R that is strict outside A, i.e., for every x … A

we have H.x; dxu1/ < c.H/. We define � on TM by � D .u1 � u/ ı � . By

Proposition 2.5, we know that at each point .x; v/ of QI.u/ the derivative of � exists

and depends continuously on .x; v/ 2 QI.u/. By Proposition 4.5, at each point of

.x; v/ of QI.u/, we have

XL � �.x; v/ D dxu1.v/ � dxu.v/ � 0;

with the last inequality an equality if and only if dxu1 D dxu, and this implies

H.x; dxu1/ D c.H/. Since u1 is strict outside A, we conclude that XL � � < 0 on
QI.u/ n QA.

Suppose that .x0; v0/ 2 QI.u/ n QA. By the invariance of both QA and QI.u/,

every point on the orbit �L
t .x0; v0/; t 2 R, is also contained in QI.u/ n QA; therefore

t 7! c.t/ D �.�t .x0; v0// is (strictly) decreasing, and so we have c.1/ < c.0/.

Observe now that �. QA/ D .u1 � u/.A/ is totally disconnected by the Mather

disconnectedness condition. Therefore we can find c 2 �c.1/; c.0/Œ n �. QA/. By

what we have seen, the directional derivativeXL �� is< 0 at every point of the level

set Lc D f.x; v/ 2 QI.u/ j �.x; v/ D cg. Since � is everywhere nonincreasing on

the orbits of �L
t and XL � � < 0 on Lc , we get

8t > 0; 8.x; v/ 2 Lc ; �.�t .x; v// < c:

Consider the compact set Kc D f.x; v/ 2 QI.u/ j �.x; v/ � cg. Using again that �

is nonincreasing on the orbits of �L
t j QI.u/, we have

8t � 0; �L
t .Kc/ � Kc and �L

t .Kc n Lc/ � Kc n Lc :
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Using what we obtained above on Lc , we conclude that

8t > 0; �L
t .Kc/ � Kc n Lc :

We now fix some metric on QI.u/ defining its topology. We then consider

the compact set �L
1 .Kc/. It is contained in the open set Kc n Lc D f.x; v/ 2

QI.u/ j �.x; v/ < cg. We can therefore find � > 0 such that the �-neighborhood

V�.�1.Kc// of �L
1 .Kc/ in QI.u/ is also contained in Kc . Since for t � 1 we have

�L
t�1.Kc/ � Kc , and therefore �L

t .Kc/ � �1.Kc/, it follows that

V�

� [
t�1

�L
t .Kc/

�
� Kc :

It is now easy to conclude that every �-pseudo orbit for �L
t j QI.u/ that starts in

Kc remains in Kc . Since �.�L
1 .x0; v0// D c.1/ < c < c.0/ D �.x0; v0/, no

˛-pseudo orbit starting at .x0; v0/ can return to .x0; v0/ for ˛ � � such that the ball

of center �L
1 .x0; v0/ and radius ˛ in QI.u/ is contained in Kc . Therefore .x0; v0/

cannot be chain-recurrent. �

THEOREM 4.10 Let L be a Tonelli Lagrangian on the compact manifold M . If L
satisfies the Mather disconnectedness condition, then the following statements are
equivalent:

(i) The Aubry set QA, or its projection A, is connected.
(ii) The Aubryset QA is chain-transitive for therestriction of the Euler-Lagrange

flow �L
t j QA.

(iii) Any two weak KAM solutions differ by a constant.
(iv) The Aubry set QA is equal to the Mañé set QN .
(v) There exists u 2 SS such that QI.u/ is chain-recurrent for the restriction

�t j QI.u/ of the Euler-Lagrange flow.

Remark 4.11. Note that by Proposition 4.4 the above conditions are also equivalent

to the triviality of the Mather quotient. In fact, this last condition is equivalent to

(iii). Moreover, we observe that, without requiring the Mather disconnectedness

condition, one can only prove

.i/ ” .ii/ and .iii/ H) .iv/ H) .v/:

The assumption that the Mather disconnectedness condition holds allows us to

prove that .i/ H) .iii/ and .v/ H) .ii/.

PROOF: From Corollary 4.2, we know that (i) and (ii) are equivalent.

If (i) is true, then for u1; u2 2 S�, the image .u1 � u2/.A/ is a subinterval

of R, but by the Mather disconnectedness condition, it is also totally disconnected;

therefore u1 � u2 is constant. Hence (i) implies (iii).

If (iii) is true, then (iv) follows from Proposition 4.4.
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Suppose now that (iv) is true. Since for every u 2 SS we have QA � QI.u/ � QN ,

we obtain QI.u/ D QN . But QN is chain-transitive for the restriction �L
t j QN . Hence

(iv) implies (v).

If (v) is true for some u 2 SS, then every point of QI.u/ is chain-recurrent for

the restriction �L
t j QI.u/. Lemma 4.9 then implies that QA D QI.u/, and we therefore

satisfy (ii). �

Remark 4.12. For each integer d > 0 and each � > 0, John Mather has constructed

on the torus T d D Rd=Zd a Tonelli Lagrangian L of class C 2d�3;1�� such that
QA is connected and contained in the fixed points of the Euler-Lagrange flow, and

the Mather quotient .AM ; ıM / is isometric to an interval; see [32]. In particular,

for such a Lagrangian, Theorem 4.10 cannot be true.

4.3 Mañé Lagrangians

We now give an application to the Mañé example associated to a vector field.

Suppose M is a compact Riemannian manifold where the metric g is of class

C1. If X is a C k vector field on M with k � 2, we define the Lagrangian

LX W TM ! R by

LX .x; v/ D
1

2
kv �X.x/k2

x;

where as usual kv � X.x/k2
x D gx.v � X.x/; v � X.x//. We will call LX the

Mañé Lagrangian of X ; see the appendix in [25]. The following proposition gives

the obvious properties of LX :

PROPOSITION 4.13 LetLX be the Mañé Lagrangian of the C k vector fieldX , with
k � 2, on the compact Riemannian manifold M . We have

@LX

@v
.x; v/ D gx.v �X.x/; � /:

Its associated Hamiltonian HX W T �M ! R is given by

HX .x; p/ D
1

2
kpk2

x C p.X.x//:

The constant functions are solutions of the Hamilton-Jacobi equation

HX .x; dxu/ D 0:

Therefore, we obtain c.H/ D 0. Moreover, we have

QI.0/ D Graph.X/ D f.x;X.x// j x 2 M g:

If we call �t the Euler-Lagrange flow of LX on TM , then for every x 2 M and

every t 2 R, we have �t .x;X.x// D .�X
x .t/; P�X

x .t//, where �X
x is the solution of

the vector field X that is equal to x for t D 0. In particular, the restriction �t j QI.0/

of the Euler-Lagrange flow to QI.0/ D Graph.X/ is conjugated (by �j QI.0// to the

flow of X on M .
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PROOF: Computing @LX=@v is easy. For HX , we recall that HX .x; p/ D
p.vp/ � L.x; vp/, where vp 2 TxM is defined by p D @LX=@v.x; vp/. Solving

for vp and substituting yields the result.

If u is a constant function, then dxu D 0 everywhere, and we obviously have

HX .x; dxu/ D 0. The fact that c.H/ D 0 follows, since c.H/ is the only

value c for which there exists a viscosity solution of the Hamilton-Jacobi equa-

tion H.x; dxu/ D c.

Define u0 as the null function on M . Suppose now that � W .�1;C1/ ! M

is a solution of X (by compactness of M , solutions of X are defined for all time).

We have d�.t/u0. P�.t// D 0 and HX .�.t/; d�.t/u0/ D 0; moreover, since P�.t/ D
X.�.t//, we also get LX .�.t/; P�.t// D 0. It follows that

d�.t/u0. P�.t// D LX .�.t/; P�.t//CHX .�.t/; d�.t/u0/ D LX .�.t/; P�.t//:

By integration, we see that � is .u0; LX ; 0/-calibrated; therefore it is an extremal.

Hence we get �t .�.0/; P�.0// D .�.t/; P�.t// and .�.0/; P�.0// 2 QI.u0/. But P�.0/ D
X.�.0//, and �.0/ can be an arbitrary point of M . This implies Graph.X/ �
QI.u0/. This finishes the proof because we know that QI.u0/ is a graph on a part of

the base M . �

LEMMA 4.14 Let LX W TM ! R be the Mañé Lagrangian associated to the
C k vector field X on the compact connected manifoldM with k � 2. Assume that
LX satisfies the Mather disconnectedness condition. Then we have the following:

(i) The projected Aubry set A is the set of chain-recurrent points of the flow of
X on M .

(ii) The constants are the only weak KAM solutions if and only if every point
of M is chain-recurrent under the flow of X .

PROOF: To prove (i), we apply Lemma 4.9 to obtain that the Aubry set QA is

equal to a set of points in QI.0/ D Graph.X/ that are chain-recurrent for the restric-

tion �t jGraph.X/. But from Proposition 4.13 the projection �jGraph.X/ conjugates

�t jGraph.X/ to the flow of X on M . It now suffices to observe that A D �. QA/.

We now prove (ii). Suppose that every point ofM is chain-recurrent for the flow

ofX . From what we have just seen, A D M and thus property (i) of Theorem 4.10

holds. Therefore by property (iii) of that same theorem, we have uniqueness up to

constants of weak KAM solutions, but the constants are weak KAM solutions.

To prove the converse, assume that the constants are the only weak KAM solu-

tions. This implies that property (iii) of Theorem 4.10 holds. Therefore by property

(iv) of that same theorem QA D QN . But QI.0/ D Graph.X/ is squeezed between
QA and QN . Therefore QA D Graph.X/. Taking images by the projection � , we

conclude that A D M . By part (i) of the present lemma, every point of M is

chain-recurrent for the flow of X on M . �

Combining this last lemma and Theorem 4.8 completes the proof of Theo-

rem 1.6.
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4.4 Examples of Gradientlike Vector Fields

We recall the definition of a gradientlike vector field.

DEFINITION 4.15 A vector field X on M is said to be gradientlike if we can find

a C 1 function f W M ! R such that

(i) for every x 2 M , we have X � f .x/ D dxf .X.x// � 0, and

(ii) for a given x 2 M , we have X � f .x/ D 0 if and only if X.x/ D 0.

As an example of a gradientlike vector field, we can take X D � gradf , where

f W M ! R is C 1 and the gradient is taken with respect to the Riemannian metric

on M . In this case

X � f .x/ D �dxf .gradf .x// D �
1

2
kdxf k2

x :

Note that if ' W M ! R is a function such that

8x 2 M; '.x/ D 0 ” X.x/ D 0;

and X is gradientlike, then 'X is also gradientlike.

The following fact is easy to prove:

PROPOSITION 4.16 If X is a C 1 gradientlike vector field, then the nonwandering
set 	.�X

t / is equal to the zero set Z.X/ D fx 2 M j X.x/ D 0g of X (or
equivalently 	.�X

t / D Fix.�X
t //.

In the case of a Mañé example associated to gradientlike vector field, we have:

PROPOSITION 4.17 Let X be a gradientlike vector field, and denote by A the
Aubry set of the Mañé Lagrangian LX . Then the image of A0 in the Mather
quotient .AM ; ıM / is full. Therefore, if X is C k with k � 2 dimM � 2, then
H1.AM ; ıM / D 0, and LX satisfies the Mather disconnectedness condition.

PROOF: If x 2 A, the whole orbit �X
t .x/ is contained in A, and any limit point

x1 of �X
t .x/ as t ! 1 is in 	.�X

t /, and it is therefore fixed. We also know by

(iii) of Theorem 2.1 that ıM .x; x1/ D 0. Therefore the image of A0 in the Mather

quotient .AM ; ıM / is full. The rest of the proof follows by Theorem 1.2. �

Let us now give some examples.

We start with a Whitney counterexample to the Sard theorem (see, for example,

[20]). Such a counterexample gives a function f W T n ! R that is C n�1 and for

which we can find a connected set C � T n such that dxf D 0 for every x 2 C

and f is not constant on C . Therefore f .C / D Œa; b� � R with a < b. If we now

consider X D � gradf and LX .v/ D 1
2
kv �X.x/k2

x on TT n, then f is a critical

C 1 subsolution. In fact,

HX .x; dxf / D dxf .X.x//C
1

2
kdxf k2

x

D �kdxf k2
x C

1

2
kdxf k2

x D �
1

2
kdxf k2

x :
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We see that this critical subsolution is strict outside Z.X/; therefore we have

Z.X/ D C 
 A. Since f and 0 are both critical subsolutions, by the proof

of Proposition 4.4 the function f is 1-Lipschitz seen as a map from .AM ; ıM /

to R. This implies that

H1.AM ; ıM / � H1.f .A// � H1.f .C // D H1.Œa; b�/ D b � a > 0:

It follows that, for this X , H1.AM ; ıM / > 0 and LX does not satisfy the Mather

disconnectedness condition.

Note that we can assume that f is C1 outside C . Indeed, if this were not the

case, we could approximate f in theC n�1 topology onM nC with aC1 function,

so that this approximation would glue back with f on C to a C n�1 function.

By a standard result (see, for example, [11]), we can find a C1 function ' W
M ! Œ0;C1Œ, with 'jM n C > 0 and 'jC D 0, and such that 'X is C1. Of

course, the vector field 'X is still gradientlike, but, since 'X is C1, the associated

Mañé Lagrangian satisfies the Mather disconnectedness condition, and its Aubry

set is still Z.X/. Note that the orbits of X and 'X are the same as ' > 0 on

M nZ.X/.

We can also modify a little bit f as suggested by Hurley in [22] to construct

a C n�1 function f W T n ! R such that its Euclidean gradient gradf has a

chain-recurrent point that is not a critical point of f and for which there exists a

connected set C � T n such that dxf D 0 for every x 2 C and f is not constant

on C . Although Hurley in [22, pp. 453–454] does it for n D 2 or 3, starting from

a Whitney counterexample to the Sard theorem, it is clear that one can obtain it for

any n � 2.

Note that again, if we take X D � gradf and denote by AX the Aubry set of

LX as above, we will have AX D Z.X/, and in that case the chain-recurrent set of

X is strictly larger than AX . Therefore one must have some high differentiability

assumption on the vector field X in order to assure that AX is equal to the set of

chain-recurrent points.

Again taking some care in the construction of Hurley, and applying an approx-

imation theorem, we can assume that f is C1 outside C . As above, we can find

a C1 function ' W T n ! Œ0;C1Œ, with 'jT n n C > 0 and 'jC D 0 and such

that 'X is C1. Note that A'X is equal to the chain-recurrent set of 'X (which is

the same as the chain-recurrent set of X ) because L'X satisfies the Mather discon-

nectedness condition.

Appendix A: A Lemma of Ferry and a Result of Mather

A.1 Ferry’s Lemma

In this appendix, we state and prove a generalization of a lemma due to Ferry

in 1976 [19]. This lemma was rediscovered by Bates in 1992 [3] to prove his

generalization of Sard’s theorem. They proved that if E � Rn is a measurable set,
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f W E ! R is continuous, and n � 2 is such that f satisfies

8x; y 2 E; jf .x/ � f .y/j � Ckx � ykn;

then f .E/ has Lebesgue measure zero.

Their proof yields in fact the following generalization:

LEMMA A.1 Let ‰ W E ! X be a map where E is a subset of Rn and .X; dX / is
a semimetric space. Suppose that there are p and M such that

8x; y 2 E; dX .‰.x/;‰.y// � Mkx � ykp:

If p > 1, then the .n=p/-dimensional Hausdorff measure of .‰.E/; dX / is 0.

PROOF: Since all norms on Rn are equivalent, we can assume

8x D .x1; : : : ; xn/ 2 R
n; kxk D

n
max
iD1

jxi j:

Since it suffices to prove that H
n
p .‰.E \K// D 0 for each compact set K � Rn,

we can assume that E is bounded, which in particular implies Ln.E/ < C1 (we

denote by Ln the Lebesgue measure on Rn). We now write E D E1 [ E2, where

E1 is the set of density points for E and E2 D E nE1. By the definition of density

points

8x 2 E1; lim
r!0

Ln.E \ B.x; r//

Ln.B.x; r//
D 1:

It is a standard result in measure theory that Ln.E2/ D 0. Thus for each � > 0

fixed, there exists a countable family of balls fBigi2I such that

E2 �
[
i2I

Bi and
X
i2I

.diamBi /
n � �:

Then we have

H
n
p .‰.E2// �

X
i2I

.diamX ‰.Bi \E2//
n=p

� M
n
p

X
i2I

Œ.diamBi /
p�n=p � M n=p

X
i2I

.diamBi /
n � M n=p�:

Letting � ! 0, we obtain H
n=p

.‰.E2// D 0. Note that in this part of the argument

we have not used the condition p > 1.

We now want to prove that H
n=p

.‰.E1// D 0. Fix N 2 N. For every density

point x 2 E1, there exists �.x/ > 0 such that

8r � �.x/;
Ln.E1 \ B.x; r//

Ln.B.x; r//
D

Ln.E \ B.x; r//

Ln.B.x; r//
� 1 �

1

2N n
:

Note that, since Ln.B.y; s// D 2nsn, this implies that for such an x 2 E1, we

have

8r � �.x/; 8y 2 R
n; Ln.B.x; r/ nE1/ �

1

2
Ln

�
B

�
y;
r

N

��
:
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Therefore, since for y 2 B.x; N �1
N

r/ we have B.y; r
N
// � B.x; r/, we obtain

(A.1) 8r � �.x/; 8y 2 B.x;
N � 1

N
r/; E1 \ B

�
y;
r

N

�
¤ ¿:

Fix x 2 E1. It is now simple to prove that for all y 2 E1 \B.x; r/, with r � �.x/,

there exist N C 1 points x0; : : : ; xN 2 E1, with x0 D x and xN D y, such that

81 � i � N; jxi � xi�1j �
3r

N
:

Indeed, first take y1; : : : ; yN �1, theN�1 points on the line segment Œy; x� such

that jyi � yi�1j D jy�xj
N

: We then observe that, for i D 1; : : : ; N � 1, we have

kyi �xk � i jy�xj
N

� .N �1/ r
N

. Hence, by (A.1), the intersection B.yi ;
rx

N
/\E1

is not empty for each i D 1; : : : ; N � 1, and so it suffices to take a point xi in that

intersection. Then, for all y 2 E1 \ B.x; r/,

(A.2) dX .‰.x/;‰.y// �

NX
iD1

dX .‰.xi�1/; ‰.xi //

� M

NX
iD1

jxi � xi�1jp � MN

�
3r

N

�p

D 3pMN 1�prp:

It follows that

8x 2 E1; 8r � �.x/; diam.‰.B.x; r/ \E1/

� 2.3pMN 1�prp/

D 21�p3pMN 1�pŒdiam.B.x; r//�p:

(A.3)

We are now able to prove that Hn=p.‰.E1// D 0. Take an open set 	 
 E1

such that Ln.	/ � Ln.E1/ C 1 D Ln.E/ C 1 < C1, and consider the fine

covering F given by F D fB.x; r/gx2E1
with r such that B.x; r/ � 	 and

r � �.x/
5

, where �.x/ is as defined above. By Vitali’s covering theorem (see [10,

par. 1.5.1]), there exists a countable collection G of disjoint balls in F such that

E1 �
[

B2G

5B;

where 5B denotes the ball concentric to B with radius 5 times that of B . Since the

balls in F are disjoint and contained in 	, we getX
B2G

Ln.B/ � Ln.	/ � Ln.E/C 1 < C1:

Since the norm on Rn is the max norm, we have Ln.B/ D diam.B/n for every B

that is a ball for the norm. Therefore

(A.4)
X
B2G

diam.B/n � Ln.	/ � Ln.E/C 1 < C1:



484 A. FATHI, A. FIGALLI, AND L. RIFFORD

We can thus consider the covering of ‰.E1/ given by
S

B2G ‰.5B \ E1/. In

this way, by (A.3), we get

H
n
p .‰.E1// �

X
B2G

.diamX ‰.5B \E1//
n
p

�
X
B2G

.21�p3pMN 1�pŒ5 diam.B/�p/
n
p

D
X
B2G

2
n.1�p/

p 3nM
n
pN

n.1�p/
p 5n diam.B/n

D 2
n.1�p/

p 3nM
n
pN

n.1�p/
p 5n

X
B2G

diam.B/n:

Using (A.4), we obtain

H
n
p .‰.E1// � 2

n.1�p/
p 3nM

n
pN

n.1�p/
p 5n.Ln.E/C 1/:

Because Ln.E/ C 1 < 1 and 1 � p < 0, by letting N ! 1 we obtain

Hn=p.‰.E1// D 0. �

Remark A.2. As we said at the beginning of the appendix, the original case of

Ferry’s lemma plays a crucial role in Steve Bates’s [3] version of the Morse-Sard

theorem: If f W M ! R is of class C n�1;1, where n D dimM � 2, then the set

of critical values of f is of Lebesgue measure zero.

In fact, the original case of Ferry’s lemma is also a consequence of Bates’s [3]

version of the Morse-Sard theorem. Indeed, note first that, by uniform continuity,

we can extend f to the closure NE of E in Rn. Of course, by continuity we will

also have

8x; y 2 NE; jf .x/ � f .y/j � Ckx � ykn:

On the closed set the family f;Df D 0; : : : ;Dn�1f D 0 satisfy the condition of

Whitney’s extension theorem withDk�1f Lipschitz (see [37, theorem 4, p. 177]);

therefore there exists an extension Nf W Rn ! R that is, of class C n�1;1. Of course,

all points of NE are critical points of Nf , so by Bates’s version of the Morse-Sard

theorem, Nf . NE/ D f . NE/ has measure zero.

It is easy to generalize this result to a finite-dimensional manifolds, since such

manifolds are always assumed metric and separable, and therefore second count-

able.

Before stating this generalization, we recall that on a smooth (in fact, at least

C 1) finite-dimensional manifoldM the notion of locally Hölder of exponent p � 0

makes sense. A map f W A ! X where .X; dX / is a metric space and A � M is

said to be locally Hölder of exponent p (we allow p � 1!) if for every x 2 A, we

can find a neighborhood Ux of x and Mx < 1 such that

8y; y0 2 Ux \ A; dX .f .y/; f .y
0// � MxdM .y; y

0/p;
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where dM is a distance obtained from a Riemannian metric on M . Note that this

notion is independent of the choice of dM , since all distances obtained from Rie-

mannian metrics are locally Lipschitz equivalent. It is not difficult to show that

f W A ! X is locally Hölder of exponent p if and only if we can find a fam-

ily .Ui ; 'i /i2I of smooth (or at least C 1) charts of M , with Ui open subsets

of Rn, where n D dimM , and a family Mi 2 I of finite numbers such that

A �
S

i2I 'i .Ui / and

8i 2 I; 8x; x0 2 Ui ; dX .f 'i .x/; f 'i .x
0// � Mikx � x0kp;

where k � k is a norm on Rn. Since M is second countable, we can always assume

that I is itself countable, and therefore we can deduce the following generalization

of Lemma A.1.

LEMMA A.3 Let M be a (metric separable) manifold of dimension n < 1 and
.X; dx/ be a semimetric space. Suppose ‰ W A ! X , where A � M is a locally
Hölder map of exponent p > 1. Then the .n=p/-dimensional Hausdorff measure
of .‰.A/; dx/ is 0.

A.2 Mather’s Result

We would like to show how one can deduce from Ferry’s lemma the following

result of Mather (compare with [30, prop. 1, p. 1507]):

PROPOSITION A.4 Let X be a compact, connected subset of Rd , d � 2. Let
x; y 2 X and � > 0. Then there exists a sequence x D x0; : : : ; xk D y of points
in X such that

Pk�1
iD0 kxiC1 � xik

d < �.

In fact, if .A; d/ is a metric space and p > 0, we can introduce a semimetric ıp
on A defined by

ıp.a; a
0/ D

inf


 k�1X
iD0

d.aiC1; ai /
p j k � 1; a1; : : : ak�1 2 A; a0 D a; ak D a0

�
:

It is not difficult to check that ıp is symmetric and satisfies the triangular inequality,

and that ıp.a; a/ D 0 for every a 2 A. Note that when p � 1, the function dp

is already a metric. Therefore it follows by the triangular inequality that ıp D dp

when p � 1. However, when p > 1, we might have ıp.a; a
0/ D 0 with a ¤ a0.

This is indeed the case when A D Œ0; 1� with distance d.t; t 0/ D jt � t 0j. In fact,

if we divide the segment Œt; t 0� by N equally spaced points, we obtain ıp.t; t
0/ �

N.jt � t 0j=N/p; hence, letting N ! 1, since p > 1 we obtain ıp D 0. This

yields the first of the following remarks.

Remark A.5.

(1) If p > 1 and there exists a Lipschitz curve � W Œ0; 1� ! A with �.0/ D a

and �.1/ D a0, then ıp.a; a
0/ D 0 for every p > 1.
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(2) We will say that A is Lipschitz-arcwise-connected if for every a; a0 2 A

there is a Lipschitz curve � W Œ0; 1� ! A with �.0/ D a and �.1/ D a0. It follows

from (1) that ıp � 0 if A is Lipschitz-arcwise-connected and p > 1.

(3) If M is a connected, smooth manifold with a distance d coming from a

Riemannian metric, then ıp � 0 for every p > 1. This follows from (1) above

since any two points in a connected manifold can be joined by a smooth path.

(4) If A0 � A we can consider the distance ı0
p associated to .A0; d jA/ and

p > 0. We always have ıpjA0 � ı0
p with equality when A0 is dense in A.

(5) If f W A ! B is Lipschitz with constant Lipschitz constant � K, then f

is also Lipschitz as a map from .A; ıA
p / to .B; ıB

p /, with Lipschitz constant � Kp .

In what follows, we will denote by . OAp; ıp/, or simply OAp, the metric space

obtained by identifying points a; a0 2 A such that ıp.a; a
0/ D 0. We denote by

O�p W A ! OAp the canonical projection. It is clear that ıp.a; a
0/ � d.a; a0/p;

therefore the projection is Hölder of exponent p > 0. It follows that one has the

following consequence of Lemma A.3.

PROPOSITION A.6 Suppose that A is a subset of an n-dimensional manifold M
and that d is a distance that is locally Lipschitz equivalent to a restriction to A of
a distance on M coming from a Riemannian metric. Then Hn=p. OAp/ D 0 for all
p > 1. In particular, if n � 2, we have H1. OAn/ D 0, and therefore OAn is totally
disconnected.

This proposition follows from Lemma A.3 except for the last statement, which

is a general fact: If a metric space X has 0 one-dimensional Hausdorff measure,

it is totally disconnected. In fact, if x is fixed, note that the map dx W X ! R,

y 7! d.x; y/ is Lipschitz; hence the image dx.X/ also has one-dimensional Haus-

dorff measure, i.e., Lebesgue measure, in R equal to 0. In particular, we can find

a sequence rn > 0, with rn ! 0 and rn … dx.X/. This last condition means that

fy 2 X j d.x; y/ D rng is empty; therefore the boundary of the ball NBd .x; rn/ is

empty.

It is now easy to obtain Proposition A.4. In fact, if under the hypotheses of

Proposition A.6 we also assume that A is connected, then OAn is also connected

because O�p is continuous and surjective. But a connected and totally disconnected

metric space contains at most one point; therefore ın.x; y/ D 0 for every pair of

points in the connected subset A of Rn when n � 2.

Note that we could have obtained Proposition A.4 directly from Bates’s [3]

version of the Morse-Sard theorem along the lines mentioned in Remark A.2.

Mather gave an extension, Proposition A.4, to Lipschitz laminations; see [30,

prop. 2, p. 1510]. In fact, by our method we can give a much more general result.

For this we introduce the following definition:
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DEFINITION A.7 (Agglutination) A subset A of the finite n-dimensional manifold

M is a Lipschitz agglutination of codimension k if every x 2 A is contained in a

subset B � A that is Lipschitz-arcwise-connected and of topological dimension

� n � k.

Obviously any subset of the manifold that admits a codimension k Lipschitz

lamination, as considered in [30], is a codimension k Lipschitz agglutination.

Moreover, any union of Lipschitz agglutination of codimension k is itself a Lip-

schitz agglutination of codimension k. In particular, any union of codimension k

immersed Lipschitz submanifolds is a Lipschitz agglutination of codimension k.

We can now state our generalization.

PROPOSITION A.8 Suppose that A is a codimension-k Lipschitz agglutination of
the n-dimensional manifold M , and that d is a distance that is locally Lipschitz-
equivalent to the restriction to A of a distance on M coming from a Riemannian
metric. Then Hk=p. OAp/ D 0 for all p > 1. In particular, if k � 2, we have
H1. OAk/ D 0, and therefore OAk is totally disconnected.

We first prove a well-known lemma.

LEMMA A.9 IfM is a finite-dimensional (metric separable) manifold, and d is an
integer with 0 � d � n, we can find a sequence .Di /i2N of subsets of M , each of
which is C1 diffeomorphic to a Euclidean disc of dimension n � d such that the
topological dimension of M n

S
i2N Di is � d � 1. In particular, any subset B

of M of topological dimension � d has to intersect one of the Di .

PROOF: We first consider the case M D Rn. Call Sd
n the family of subsets of

f1; : : : ; ng with exactly d elements. For every I 2 Sd
n and every .r1; : : : ; rn/ 2

Qn, we define

V I
.r1;:::;rn/ D f.x1; : : : ; xn/ 2 R

n j xj D rj 8j 2 I g:

Each V I
.r1;:::;rn/

is an affine subspace of dimension n� d , and this family is count-

able.

If we denote by Md�1
n the complement in Rn of the countable union of the

subsets V I
r , I 2 Sd

n , r 2 Qn, then the points in Md�1
n are precisely the points in

Rn that have at most d � 1 rational coordinates. By [21, example III.6, p. 29] the

topological dimension of Md�1
n is � d � 1 (in fact, it is d � 1).

We now consider a general (metric separable), n-dimensional smooth mani-

fold M . We can find a countable family of charts 'j W Rn ! M , j 2 N, such thatS
j 2N 'j . NB/ D M , where NB is the unit closed Euclidean ball in Rn. We consider

the countable collection Dj;I;r , j 2 N, I 2 Sd
n , r 2 Qn, defined by

Dj;I;r D 'j .V
I

r /:
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EachDj;I;r is C1 diffeomorphic to a Euclidean disc of dimension n�d . We now

show that the topological dimension of the complement

C D M n
[

j 2N

I2Sd
n

r2Qn

Dj;I;r

is � d � 1. We can write C D
S

j 2N C \ 'j . NB/. Since each C \ 'j . NB/ is

closed in C , by the countable sum theorem [21, theorem III.2, p. 30], it suffices

to show that each C \ 'j . NB/ has topological dimension � d � 1. But the map

'�1
j W 'j .R

n/ ! Rn sends C \ 'j . NB/ to a subset of Md�1
n that has topological

dimension � d � 1. This implies that the topological dimension of C \ 'j . NB/ is

d � 1 by [21, theorem III.1, p. 26]. Note that this last reference also proves the last

statement in the lemma. �

PROOF OF PROPOSITION A.8: We apply the lemma above with d D n � k to

obtain a countable family Di , i 2 N, of C1 discs of dimension n � d D k such

that each subset ofM whose topological dimension is � d D n�k has to intersect

one of the Di . Consider then a Lipschitz agglutination A � M of codimension k,

and fix p > 1.

We first claim that OAp D
S

i2N O�p.A\Di /. In fact, if x 2 A, by the definition

of a Lipschitz agglutination of codimension k, we can find a Lipschitz-arcwise-

connected subset Bx � A of dimension � n � k containing x. By the property of

the familyDi , there exists i0 2 I such that Bx \Di0
¤ ¿. Choose y 2 Bx \Di0

.

By (2) of Remark A.5, we have ı
Bx
p .x; y/ D 0. Since Bx � A, we conclude that

ıA
p .x; y/ D 0. Therefore O�p.x/ D O�p.y/ 2 O�p.Bx \Di / � O�p.A \Di /. Since

the family Di is countable, it remains to show that Hk=p.Di \ A; ıA
p / D 0. Note

that since Di is a submanifold of M , the distance d on M induces a distance on

Di that is locally Lipschitz equivalent to a distance coming from a Riemannian

metric. Therefore by Proposition A.6, we have Hk=p.Di \ A; ı
Di \A
p / D 0. But

the inclusion Di \ A ,! A is Lipschitz with Lipschitz constant 1 for the metrics

ı
Di \A
p on Di \ A and ıA

p on A. Therefore Hk=p.Di \ A; ıA
p / D 0. �

Appendix B: Existence of C
1;1

loc
Critical Subsolution

on Noncompact Manifolds

In [4], using a kind of Lasry-Lions regularization (see [23]), Bernard proved the

existence of C 1;1 critical subsolutions on compact manifolds. Here, adapting his

proof, we show that the same result holds in the noncompact case, and we make

clear that the Lipschitz constant of the derivative of the C
1;1
loc critical subsolution
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can be uniformly bounded on compact subsets of M . We consider the two Lax-

Oleinik semigroups T �
t and TC

t defined by

T �
t u.x/ D inf

y2M
u.y/C ht .y; x/; TC

t u.x/ D sup
y2M

u.y/ � ht .x; y/;

for every x 2 M .

For any c 2 M , these two semigroups preserve the set of functions dominated

by LC c; see, for example, [15] for the compact case or [17] for the noncompact

case. It is also well-known that these semigroups have some regularizing effects:

namely, for every t > 0 and every Lipschitz (or even continuous, when M is

compact) function u W M ! R, the function TC
t u is finite everywhere and locally

semiconvex, while T �
t u is finite everywhere and locally semiconcave; see, for

example, [15] or the explanations below.

In [4], the idea for proving the existence of C 1;1 critical subsolutions on com-

pact manifolds is the following: it is a known fact that a function is C 1;1 if and only

if it is both locally semiconcave and locally semiconvex. Let now u be a critical

viscosity subsolution. If we apply the semigroup TC
t to u, we obtain a semiconvex

critical viscosity subsolution TC
t u. Thus, if one proves that, for s small enough,

T �
s T

C
t u is still semiconvex, since we already know that it is semiconcave, we

would have found a C 1;1 critical subsolution. Since we want to give a uniform

bound on the Lipschitz constant of the derivative of the C
1;1
loc critical subsolution

on compact sets, we will have to bound the constant of semiconvexity of TC
t u on

compact subsets of M . Let us now prove the result in the noncompact case.

THEOREM B.1 Assume that H is of class C 2. For every compact subset K of M ,
there is a constant ` D `.K/ > 0 such that, if u W M ! R is a critical viscos-
ity subsolution, then there exists a C 1;1

loc critical subsolution v W M ! R whose
restriction to the projected Aubry set is equal to u and such that the mapping
x 7! .x; dxv/ is `-Lipschitz on K.

Before proving Theorem B.1, we need a few lemmas.

LEMMA B.2 There is a constant A < C1 such that for any c 2 R, any function
u W M ! R dominated by LC c is .AC c/-Lipschitz on M , that is,

8x; y 2 M; ju.y/ � u.x/j � .AC c/d.x; y/;

where d denotes the Riemannian distance associated to the Riemannian metric g
on M .

PROOF: Let u W M ! R be dominated by L C c and x; y 2 M be fixed.

Let �x;y W Œ0; d.x; y/� ! M be a minimizing geodesic with constant unit speed

joining x to y. By definition of hd.x;y/.x; y/, one has

hd.x;y/.x; y/ �

Z d.x;y/

0

L.�x;y.t/; P�x;y.t//dt � Ad.x; y/;
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where A D supx2M fL.x; v/ j kvkx � 1g is finite thanks to the uniform bounded-

ness of L in the fibers. Thus one has

u.x/ � u.y/ � hd.x;y/.x; y/C cd.x; y/ � .AC c/d.x; y/:

Exchanging x and y, we conclude that u is .AC c/-Lipschitz. �

Next we give some estimates on the functions ht .

LEMMA B.3 There exists a constant B < C1 such that

8t > 0; 8x 2 M; ht .x; x/ � Bt:

Moreover, for every constant C < C1, we can find D.C/ > �1 such that

8t > 0; 8x; y 2 M; ht .x; y/ � Cd.x; y/CD.C/t:

PROOF: Using a constant curve at x, we get

ht .x; x/ �

Z t

0

L.x; 0/ds:

Therefore, if we set B D supfL.x; 0/ j x 2 M g < C1, we obtain

8t > 0; 8x 2 M; ht .x; x/ � Bt:

Using the uniform superlinearity of L, for every C < C1, we can find a constant

D.C/ > �1, depending only on C , such that

8.x; v/ 2 TM; L.x; v/ � Ckvkx CD.C/:

Fix now x; y 2 M . If � W Œ0; t � ! M is such that �.0/ D x, �.t/ D y, we can

apply the above equality to .�.s/; P�.s// and integrate to obtainZ t

0

L.�.s/; P�.s//ds � C length.�/CD.C/t � Cd.x; y/CD.C/t:

To find ht .x; y/, we have to minimize
R t

0 L.�.s/; P�.s//ds over all curves with

�.0/ D x, �.t/ D y. Therefore, by what we just obtained, we get

ht .x; y/ � Cd.x; y/CD.C/t: �

LEMMA B.4 If C < C1 is a given constant, we can find B.C/ < C1 such that
for every u W M ! R that is Lipschitz, with Lipschitz constant � C , we have

8t � 0; 8x 2 M;

T �
t u.x/ D inffu.y/C ht .y; x/ j y 2 M;d.x; y/ � B.C/tg;

TC
t u.x/ D supfu.y/ � ht .x; y/ j y 2 M;d.x; y/ � B.C/tg;

jT �
t u.x/ � u.x/j � B.C/t;

jTC
t u.x/ � u.x/j � B.C/t:
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PROOF: We will do the proof for T �
t , as the proof for TC

t is analogous. Using

the first part of Lemma B.3, we get

T �
t u.x/ � u.x/C ht .x; x/ � u.x/C Bt:

By the second part of Lemma B.3, we get

T �
t u.x/ � inf

y2M
u.y/C Cd.x; y/CD.C/t:

Since u is C -Lipschitz, we have u.x/ � u.y/ C Cd.x; y/; hence T �
t u.x/ �

u.x/CD.c/t . It follows that

jT �
t u.x/ � u.x/j � maxfB;�D.C/gt:

Since u.x/C ht .x; x/ � u.x/C Bt , we obtain

T �
t u.x/ D inffu.y/C ht .y; x/ j y 2 M;u.y/C ht .y; x/ � u.x/C Btg:

Using again the second part of Lemma B.3 and the fact that u is C -Lipschitz, we

know that

u.y/C ht .y; x/ � u.y/C .C C 1/d.x; y/CD.C C 1/t

� u.x/C d.x; y/CD.C C 1/t:

It follows that

T �
t u.x/ D inffu.y/C ht .y; x/ j y 2 M; d.x; y/ � Bt �D.C C 1/tg:

Hence we can take any finite number � maxfB;�D.C/;B�D.C C1/g as B.C/.

�

For the next lemmas we need to introduce some notation. We will suppose that

.U; '/ is a C1 chart on M . Here U is an open subset, and ' W U ! Rk is a

C1 diffeomorphism on the open subset '.U / of Rk . We will denote by k � keuc the

canonical Euclidean norm on Rk . For r � 0, we set

B.r/ D fv 2 R
k j kvkeuc � rgI

i.e., the subset B.r/ is the closed Euclidean ball of radius r and center 0 in Rk .

LEMMA B.5 Suppose that .U; '/ is a C1 chart on M and B.r/ � '.U /. For any
data r 0 < r , A � 1, B � 1, and � > 0, there is a ı > 0 such that for any function
u W B.r/ ! R satisfying

(a) the function u is C 1;1
loc on B.r/,

(b) the Lipschitz constant (for the canonical Euclidean metric on Rk/ of u on
B.r/ is � A, and

(c) the Lipschitz constant (for the canonical Euclidean metric on Rk) of the
derivative x 7! dx.u ı '�1/ on B.r/ is bounded by B ,
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and any t � ı, the function T �;'
t u W B.r/ ! R defined by

T
�;'
t u.x/ D inf

y2B.r/
u.y/C ht .'

�1.y/; '�1.x//

satisfies

(a0) the function T �;'
t u is C 1;1 on a neighborhood of B.r 0/,

(b0) the Lipschitz constant (for the canonical Euclidean metric on Rk/ of T �;'
t u

is bounded by AC �,
(c0) the Lipschitz constant (for the canonical Euclidean metric on Rk/ of x 7!

dx.T
�;'
t u/ on B.r 0/ is bounded by B C �, and

(d0) for every x 2 B.r 0/, there is one and only one yx 2 B.r/ such that

'�1.x/ D ���H
t .'

�1.yx/; d'�1.yx/.u ı '//;

where �� W T �M ! M is the canonical projection, and �H
t is the Hamil-

tonian flow of H on T �M . Moreover, we have

.'�1.x/; d'�1.x/.u ı '// D �H
t .'

�1.yx/; d'�1.yx/.u ı '//:

PROOF: We can assume that r < C1. To simplify notation, we will suppose

that ' is the “identity”; i.e., we will write things in the coordinate system given

by '. Let us choose r 00 and R such that r 0 < r 00 < r < R and '.U / 
 B.R/. If we

set A1 D supfL.x; v/ j x 2 B.R/; kvkeuc � 1g, any function u � LC c has, on

B.R/, a Lipschitz constant � A D A1 C c. In particular, kdxukeuc � A at every

point x 2 B.R/ where dxu exists.

By continuity and compactness we can find ı1 > 0 such that

8x 2 B.r/; 8p 2 .Rk/� with kpkeuc � A; 8t 2 Œ�ı1; ı1�;

�H
t .x; p/ 2 B.R/ � .Rk/�:

By Lemma B.4 we can find ı2 > 0, with ı2 � ı1 depending only c, such that

for any function u W M ! R with u � LC c and any t � ı2, we have

8x 2 B.r 00/; T �
t u.x/ D inf

y2B.r/
u.y/C ht .y; x/:

Fix a function u satisfying (a), (b), and (c) of the lemma. We will show that T �
t u

is C 1;1 on B.r 00/ for t small enough (depending on A and B and not on u), and we

will compute the Lipschitz constant of the derivative of this function. Classically

one shows that T �
t u is C 1;1 by using the inverse function theorem for a Lipschitz

perturbation of the identity. For a change, we will do it in a (very slightly) different

way using that T �
t u is Lipschitz.

Suppose t � ı1. For x 2 B.r 00/ choose a point yx 2 B.r/ such that T �
t u.x/ D

u.yx/ C ht .yx; x/. If we choose a minimizer � W Œ0; t � ! M with �.0/ D yx ,

�.t/ D x, and whose action is ht .x; y/, we know that @L=@v.x; P�.t// is in the

upper gradient of T �
t u at x, and @L=@v.x; P�.0// is in the lower gradient of u

at yx . Since u is differentiable at yx , we necessarily have @L=@v.x; P�.0// D
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dyx
u. Moreover, at each point x 2 B.r 00/ where the Lipschitz function T �

t u is

differentiable, we must have dxT
�
t u D @L=@v.x; P�.t//. Since � is a minimizer, its

speed curve s 7! .�.s/; P�.s// is an orbit of the Euler-Lagrange flow �L
s associated

to L. Since the conjugate of �L
s is the Hamiltonian flow �H

s of the Hamiltonian

H W T �M ! R associated by Fenchel duality to L, we obtain that at each x where

T �
t u is differentiable

(B.1) .x; dxT
�
t u/ D �H

t .yx; dyx
u/:

Therefore x D ���H
t .yx; dyx

u/, where �� is the canonical projection from T �M

to M . In the local coordinates that we are using, �� W B.r/ � .Rk/� ! B.r/ is the

projection on the first factor.

To simplify computations we use the norm k.x; p/k D max.kxkeuc; kpkeuc/ on

B.R/ � .Rk/� � Rk � .Rk/�. Let us set  .s; y; p/ D ��.�H
s .y; p// � y. This

map is C 1 and is identically 0 when s D 0; therefore on the compact set f.y; p/ 2

B.r/� .Rk/� j kpk � Ag the Lipschitz constant `.s/ of .y; p/ 7!  .s; y; p/ tends

to 0 as s ! 0. Since y 7! dyu has a Lipschitz constant bounded by B � 1 on

B.r/, the map y 7! .y; dyu/ has also a Lipschitz constant bounded by B on B.r/.

Moreover, since kdyukeuc is bounded by A on B.r/, we see that on B.r/ we have

���H
t .y; dyu/ D y C �t;u.y/;

where the map �t;u has Lipschitz constant � B`.t/. Note that this `.t/ depends

only on A and not on u. Let us set ‚t;u.y/ D y C �t;u.y/. Note that

k‚t;u.y
0/ �‚t;u.y/k D kŒy0 C �t;u.y

0/� � Œy C �t;u.y/�k

� ky0 � yk � k�t;u.y
0/ � �t;u.y/k

� ky0 � yk � B`.t/ky0 � yk

D .1 � B`.t//ky0 � yk:

Therefore, for t small enough to have 1 � B`.t/ > 0, the map ‚t;u W B.r/ !

‚t;u.B.r// is invertible and its inverse ‚�1
t;u W ‚t;u.B.r// ! B.r/ has a Lips-

chitz constant � .1 � B`.t//�1. Note that equation (B.1) above shows that, for

every x 2 B.r 00/ at which T �
t u is differentiable, we can find yx 2 B.r/ such that

x D ‚t;u.yx/. Since T �
t u is Lipschitz, it is differentiable a.e., and so the image

‚t;u.B.r// contains a set of full Lebesgue measure in B.r 00/.

The compactness of ‚t;u.B.r// implies that this image has to contain B.r 00/.

Equation (B.1) tells us now that at each point x 2 B.r 00/ where T �
t u is differen-

tiable we have

(B.2) .x; dxT
�
t u/ D �H

t .‚
�1
t;u.x/; d‚�1

t;u.x/u/:

But the right-hand side above is a continuous function defined at least on B.r 00/.

This implies that the Lipschitz function T �
t u is differentiable on B.r 00/ and its

derivative satisfies equation (B.2) above. Therefore on B.r 00/ the derivative x 7!
dxT

�
t u has a Lipschitz constant bounded by L.t/B.1 � B`.t//�1, with L.t/ the
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Lipschitz constant of .y; p/ 7! �2�
H
t .y; p/ on the set f.y; p/ 2 B.r/ � .Rk/� j

kpk � Ag, where �2 W B.r/ � .Rk/� ! .Rk/� is the projection on the second

factor. Since �H
t is a C 1 flow and �H

0 is the identity, we have L.t/ ! 1 as t ! 0.

This finishes the proof since `.t/ ! 0, and `.t/ and L.t/ depend only on A and

not on u. �

Recall that a function f W C ! R defined on the convex subset C of Rk is said

to be K-semiconvex if x 7! f .x/C Kkxk2
euc is convex on C . If K � 0 is fixed,

for an open convex subset C of Rk , the following conditions are equivalent:

� the function f W C ! R is K-semiconvex;

� for every x 2 C we can find px 2 .Rk/� such that

8y 2 C; f .y/ � px.y � x/ �Kkxk2
eucI

� for every x 2 C , if Qpx 2 .Rk/� is a subdifferential of f at x, we have

8y 2 C; f .y/ � Qpx.y � x/ �Kkxk2
euc:

It is not difficult to see that, if C is an open convex subset of Rk , a C 1 function

f W C ! R whose derivative has on C a (global) Lipschitz constant � B is
B
2

-semiconvex.

We now state the regularization property of the semigroups T �
t and TC

t . These

properties are well-known. They have been extensively exploited for viscosity

solutions; see [1, 2]. For a proof in the compact case, see [15]. We will sketch a

proof relying on the semiconcavity of ht .

THEOREM B.6 Suppose that t0 > 0, that c is a finite constant, and that .U; '/
is a C1 chart with B.r/ � '.U /. We can find a constant K such that for every
function u � LC c and any t � t0, the restriction T �

t u ı '�1jB.r/ (respectively,
TC

t u ı '�1jB.r// is K-semiconcave (respectively, K-semiconvex).

PROOF: We do the proof for T �
t . By Lemma B.2, there exists a constant A

such that all functions dominated by LC c have Lipschitz constant on M , which

is � AC c. It follows from Lemma B.4 that we can find a finite constant B such

that for any u � LC c and any x 2 M

T �
t u.x/ D inffu.y/C ht .y; x/ j y 2 M;d.x; y/ � Btg:

In particular, if Ct is the compact set fy 2 M j d.y; '�1.B.r// � Btg, we get

8x 2 '�1.B.r//; T �
t u.x/ D inf

y2Ct

u.y/C ht .y; x/:

Since ht is locally semiconcave onM �M (see, for example, [16, theorem B.19])

and Ct is a compact subset, using standard arguments for the theory of locally

semiconcave functions (again see, for example, [16, app. A]) we can find a constant

Kt such that T �
t u ı '�1jB.r/ is Kt -semiconcave for every u � LC c.

It remains to show that we can take Kt independently of t � t0 > 0. In fact,

since T �
t preserves the set of functions dominated by L C c, we have T �

t�t0
u �
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LC c for any u � LC c. Therefore, we conclude that T �
t u D T �

t0
ŒT �

t�t0
u� also

satisfies that T �
t u ı '�1jB.r/ is Kt0

-semiconcave. �

Next we show that T �
t preserves semiconvexity for small time t .

LEMMA B.7 Suppose that .U; '/ is a C1 chart on M and B.r/ � '.U /. For any
r 0 < r , any finite number A � 0, any finite number K � 1

2
, and finite � > 0, we

can find ı > 0 such that for any function u W B.r/ ! R satisfying

(i) the function u has a Lipschitz constant � A on B.r/ and
(ii) the function u is K-semiconvex,

and any t � ı, the function T �;'
t u W B.r 0/ ! R defined by

T
�;'
t u.x/ D inf

y2B.r/
u.y/C ht .'

�1.y/; '�1.x//

is .K C �/-semiconvex in B.r 0/.

PROOF: As in the previous proof we will assume that ' is the “identity.” We

also choose r 00 and r 000 such that r 0 < r 00 < r 000 < r . Consider the family of

functions v˛;x;p W B.r/ ! R, where ˛ 2 R, x 2 B.r/, and p 2 .Rk/�, with

kpkeuc � A defined by

v˛;x;p.y/ D ˛ C p.y � x/ �Kky � xk2
euc:

It is not difficult to see that the derivative of v˛;x;p has, on B.r/, a Lipschitz con-

stant � 2K, and that this derivative is bounded in norm byAC4Kr . Since 2K � 1,

we can apply Lemma B.5 and find ı > 0 such that T
�;'
t v˛;x;p is C 1;1 on B.r 00/

with a Lipschitz constant for its derivative � 2K C 2� for any t � ı. In particular,

any such function T
�;'
t v˛;x;p is .K C �/-semiconvex on B.r 00/.

Taking ı > 0 smaller if necessary, we can assume that, for every u satisfying

condition (a) of the lemma, every t � ı, and every x 2 B.r 00/, we can find yx 2
B.r 000/ such that

T
�;'
t u.x/ D u.yx/C ht .yx; x/:

If we pick up a minimizer � W Œ0; t � ! M with �.0/ D yx and �.t/ D x, we know

that Qpx D @L=@v.yx; P�.0// will be a subdifferential of u at yx , and also

(B.3) ���H
t .yx; Qpx/ D x:

Since u is K-semiconvex on B.r/ and Qpx is in the subdifferential of u at yx ,

we have

8y 2 B.r/; u.y/ � u.yx/C Qpx.y � yx/ �Kky � yxk2
euc D vu.yx/;yx ; Qpx

.y/:

Set v D vu.yx/;yx ; Qpx
to simplify notation. From the inequality above we get

(B.4) T
�;'
t u � T

�;'
t v:

We also know that T
�;'
t v is C 1;1 and .K C �/-semiconvex. We now show that

T
�;'
t u and T

�;'
t v take the same value at x. By the proof of the previous lemma

we know that T
�;'
t v.x/ D v.y0

x/Cht .y
0
x; x/, where y0

x is the only point y 2 B.r/
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such that ���H
t .y; dyv/ D x. But dyx

v D Qpx; therefore by equation (B.3)

we obtain y0
x D yx . Since we also have v.yx/ D u.yx/, we conclude that

T
�;'
t v.x/ D v.yx/ C ht .yx; x/ D u.yx/ C ht .yx; x/ D T

�;'
t u.x/. Since v

is .K C �/-semiconvex on B.r 00/, for every y 2 B.r 00/ we have

T
�;'
t v.y/ � T

�;'
t v.x/C px.y � x/ � .K C �/ky � xk2

euc;

where px is the derivative at x of the C 1;1 function T
�;'
t v. Therefore by equation

(B.4) we obtain

8y 2 B.r 00/; T
�;'
t u.y/ � T

�;'
t u.x/C px.y � x/ � .K C �/ky � xk2

euc:

Since x was an arbitrary point in B.r 00/, this finishes the proof. �

Before giving the proof of Theorem B.1, we also notice that since L is uni-

formly superlinear in the fibers, there exists a finite constant C.K 0/ such that

8.x; v/ 2 TM; L.x; v/ � 2K 0kvkx C C.K 0/:

From that, we deduce that for every t > 0,

(B.5) 8x; y 2 M; ht .x; y/; ht .y; x/ � 2K 0d.x; y/C C.K 0/t:

The previous two lemmas are also true if we replace T
�;'
t u by

T
C;'
t u.x/ D sup

y2B.r/

u.y/ � ht .x; y/;

and also replace semiconvexity in the second lemma by semiconcavity.

PROOF OF THEOREM B.1: First we choose a countable family of C1 charts

.Un; 'n/n�1 on M such that 'n.Un/ D Rk and M D
S

n�0 '
�1
n .B.1//.

Fix a c 2 R. We know that any function u W M ! R dominated by L C c is

Lipschitz with Lipschitz constant � A C c, where A is the constant provided by

Lemma B.2. Therefore, for each integer n � 1, we can find a finite constant An

such that, for every u W M ! R dominated by L C c, the function u ı '�1
n has

on B.2/ a Lipschitz constant � An for the canonical Euclidean norm on Rk . We

will construct by induction a sequence Bn 2 Œ1;C1Œ and two sequences of > 0

numbers t�n and tCn such that if we define, for u W M ! R, the function Sn.u/ on

m by

Sn.u/ D T �
t�
n
TC

t
C
n

T �
t�
n�1
TC

t
C

n�1

� � �T �
t�
1
TC

t
C

1

.u/;

with S0 the identity, then for every u � LC c defined on the whole M and every

k D 1; : : : ; n, we have

(i) the supremum supx2M jSn.u/.x/ � Sn�1.u/.x/j is less than 1=2n,

(ii) the function Sn.u/ ı '�1
k

is C 1;1 on B.1C 2�n/,

(iii) the function Sn.u/ ı '�1
k

has on B.2/ Lipschitz constant � Ak , and

(iv) the derivative of Sn.u/ ı '�1
k

on B.1 C 2�n/ has Lipschitz constant �

Bk C 1 � 2�n.
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Note that, since T �
t and TC

t preserve functions dominated by LCc onM , we will

have Sn.u/ � L C c, and condition (iii) above will be satisfied for any choice of

tCn ; t
�
n .

Suppose that Sn has been constructed. We first pick tCnC1. It follows from

Lemma B.4 that there exists ı1 such that for every u � LC c and t 2 Œ0; ı1�, we

have

sup
x2M

jTC
t .u/.x/ � u.x/j �

1

2nC2
:

Given that (i), (ii), (iii), and (iv) are verified, we can apply the version of Lem-

ma B.5 for TC
t to the finite set of charts .Uk; 'k/, k D 1; : : : ; n, with ball B.1 C

2�n/ and constants Ak and Bk C 1 � 2�n, to find ı2 > 0 such that for every

t 2 Œ0; ı2� and every u � L C c, the function TC
t Sn.u/ ı '�1

k
is C 1;1 on B.1 C

2�n �2�.nC2//with Lipschitz constant of its derivative � Bk C1�2�n C2�.nC2/.

Let us now fix tCnC1 > 0 with tCnC1 � min.ı1; ı2/. Since tCnC1 > 0, we know by

Theorem B.6 that there exists a finite constant QBnC1 such that for every u � LCc,

the function TC

t
C

nC1

S.u/ ı '�1
nC1 is QBnC1-semiconvex on the ball B.2/. Therefore,

for every u � LC c, we have

(a) the supremum supx2M jTC

t
C

nC1

Sn.u/.x/ � Sn.u/.x/j is less than 1=2nC2,

(b) the function TC

t
C

nC1

Sn.u/ ı '�1
k

is C 1;1 on B.1C 2�n � 2�.nC2// for k D

1; : : : ; n,

(c) the function TC

t
C

nC1

Sn.u/ ı '�1
k

has on B.2/ Lipschitz constant � Ak for

k D 1; : : : ; nC 1,

(d) the derivative of TC

t
C

nC1

Sn.u/ ı '�1
k

on B.1C 2�n/ has Lipschitz constant

� Bk C 1 � 2�n C 2�.nC2/, and

(e) the function TC

t
C

nC1

Sn.u/ ı '�1
nC1 is QBnC1-semiconvex on the ball B.2/.

We first pick t�nC1. It follows from Lemma B.4 that there exists ı0
1 such that for

every u � LC c and t 2 Œ0; ı0
1�, we have

sup
x2M

jT �
t .u/.x/ � u.x/j �

1

2nC2
:

Given that (b), (c), and (d) are verified, we can apply Lemma B.5 to the finite set

of charts .Uk; 'k/, k D 1; : : : ; n, with ball B.1 C 2�n � 2�.nC2// and constants

Ak and Bk C 1� 2�n C 2�.nC2/ to find ı0
2 > 0 such that for every t 2 Œ0; ı0

2� and

every u � LC c, the function

T �
t T

C

t
C

nC1

Sn.u/ ı '�1
k

is C 1;1 on B.1 C 2�.nC1// D B.1 C 2�n � 2�.nC2/ � 2�.nC2// with Lipschitz

constant of its derivative � Bk C1�2�nC2�.nC2/C2�.nC2/ D Bk C1�2�.nC1/.
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By condition (e) above, we can also apply Lemma B.7 to find ı0
3 such that for

every t 2 Œ0; ı0
3� and each u � LC c, the function

T �
t T

C

t
C

nC1

Sn.u/ ı '�1
nC1

is . QBnC1 C 1/-semiconvex on B.1 C 2�.nC1//. Let us now fix t�nC1 > 0 with

t�nC1 � min.ı0
1; ı

0
2; ı

0
3/. Since t�nC1 > 0, we know by Theorem B.6 that there

exists a finite constant OBnC1 such that, for every u � LC c, the function

T �
t�
nC1

TC

t
C

nC1

Sn.u/ ı '�1
nC1

is OBnC1-semiconcave on the ball B.1 C 2�.nC1//. Hence, if we set BnC1 D

2maxf QBnC1 C 1; OBnC1g � 1, for every u � LC c the function

TC
t�
nC1

TC

t
C

nC1

Sn.u/ ı '�1
nC1

is both BnC1=2-semiconvex and BnC1=2-semiconcave on B.1 C 2�.nC1//. It is

therefore C 1;1 on B.1 C 2�.nC1//, with a derivative with Lipschitz constant �

BnC1. It is not difficult now to verify that with this choice of tCnC1; t
�
nC1, the

operator SnC1 satisfies the required conditions (i), (ii), (iii), and (iv). �
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