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1. Introduction

Let M be a C∞ second countable manifold without boundary. We denote
by TM the tangent bundle and by π : TM → M the canonical projection.
A point in TM will be denoted by (x, v) with x ∈ M and v ∈ Tx M = π−1(x).
In the same way a point of the cotangent space T ∗M will be denoted by
(x, p) with x ∈ M and p ∈ T ∗

x M, a linear form on the vector space Tx M. We
will suppose that g is a complete Riemannian metric on M. For v ∈ Tx M,
the norm ‖v‖ is g(v, v)1/2. We will denote by ‖ · ‖ the dual norm on T ∗

x M.
We will also use the notations ‖v‖x , for v ∈ Tx M, and ‖p‖x , for v ∈ T ∗

x M.
We will assume in the whole paper that H : T ∗M → R is a function of

class at least C2, which satisfies the following three conditions

(1) (Uniform superlinearity) for every K ≥ 0, there exists C∗(K ) ∈ R such
that

∀(x, p) ∈ T ∗M, H(x, p) ≥ K‖p‖ − C∗(K ) ;
(2) (Uniform boundedness in the fibers) for every R ≥ 0, we have

A∗(R) = sup{H(x, p) | ‖p‖ ≤ R} < +∞ ;
(3) (Strict convexity in the fibers) for every (x, p) ∈ T ∗M, the second

derivative along the fibers ∂2H/∂p2(x, p) is positive definite.

A locally Lipschitz function u : U → R, where U is an open subset
of M, is said to be a subsolution of H(x, dxu) = c, where c ∈ R, if we
have H(x, dxu) ≤ c for almost every x ∈ U . Recall that, by Rademacher’s
theorem, a locally Lipschitz function is differentiable almost everywhere.



A. Fathi, A. Siconolfi

We say that u is a global subsolution of H(x, dxu) = c if u is defined on M
itself and is a subsolution of H(x, dxu) = c on the whole of M.

Theorem 1.1. Under assumptions (1) to (3) above, if there is a global
subsolution u : M → R of H(x, dxu) = c, then there is a global C1

subsolution v : M → R.

In fact, it is possible to show that there exists c[0] ∈ R, such that
H(x, dxu) = c admits no subsolution for c < c[0] and has subsolutions for
c ≥ c[0]. The constant c[0] will be called the critical value, or the Mañé
critical value. We will say that u : M → R is a critical subsolution if it is
a subsolution of H(x, dxu) = c[0].

It can even be shown that the equation H(x, dxu) = c[0] admits a viscos-
ity solution (see below for definition), see for example [12] or [7]. Moreover
it is also well-known that for c > c[0], there exists C∞ global subsolutions
u : M → R of H(x, dxu) = c, see [6], for the compact case, or the appendix
of [12] for the most general case.

So in fact the new result is the following.

Theorem 1.2. There exists a C1 subsolution u : M → R of H(x, dxu) =
c[0]. In other words, there exists a C1 global critical subsolution.

For an introduction to viscosity solutions of the Hamilton-Jacobi equa-
tion, see [2] or [3]. We recall the definitions of viscosity subsolution, super-
solution and solution. We will say that u : U → R, defined and continuous
on the open subset U ⊂ M, is a viscosity subsolution (resp. supersolution) of
H(x, dxu) = c, if for each C1 function φ : U → R (resp. ψ : U → R) satis-
fying φ ≥ u (resp. ψ ≤ u), and each point x0 ∈ U satisfying φ(x0) = u(x0)
(resp. ψ(x0) = u(x0)), we have H(x0, dx0φ) ≤ c (resp. H(x0, dx0ψ) ≥ c).
A function is a viscosity solution if it is both a viscosity subsolution and
a viscosity supersolution. In fact, since H(x, p) is convex and superlinear
in p, it is well-known, see [2] or [3], that a function u : U → R is a vis-
cosity subsolution of H(x, dxu) = c if and only if it is locally Lipschitz,
and a subsolution in the sense given above (i.e. H(x, dxu) ≤ c almost
everywhere).

Even if our statement of Theorems 1.1 and 1.2 do not use viscosity
solutions to give their proofs we will need to understand the viscosity
solutions of the equation H(x, dxu) = c[0].

As for subsolutions, we will say that a function u is a critical viscosity
solution, if it is a viscosity solution of H(x, dxu) = c[0]. A global critical
solution is a function u : M → R defined on the whole M and which is
a viscosity solution of H(x, dxu) = c[0] on M itself.

Since we can prove Theorems 1.1 and 1.2 connected component by con-
nected component, there is no loss of generality in assuming M connected.
Therefore, in the remainder of the paper the manifold M is assumed to be
connected.

We can give better versions of Theorem 1.2. We first need to introduce
some more tools.
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We recall that the Lagrangian L : TM → R is defined by

∀(x, v) ∈ TM, L(x, v) = max
p∈T∗

x M
〈p, v〉 − H(x, p).

Since H is of class C2 finite everywhere, superlinear, and strictly convex in
each fiber T ∗

x M, it is well known that L is finite everywhere of class C2,
strictly convex and superlinear in each fiber Tx M, and satisfies

∀(x, p) ∈ T ∗M, H(x, p) = max
v∈Tx M

〈p, v〉 − L(x, v).

The Legendre transform L : TM → T ∗M defined by

L(x, v) =
(

x,
∂L

∂v
(x, v)

)

is a diffeomorphism of class C1. Moreover, we have the equality 〈p, v〉 =
H(x, p) + L(x, v) if and only if (x, p) = L(x, v).

As in [12], if c ∈ R, we say that a function u : M → R is dominated by
L + c, and we denote this by u ≺ L + c, if for every piecewise C1 curve
γ : [a, b] → M, with a ≤ b we have

u(γ(b)) − u(γ(a)) ≤
∫ b

a
L(γ(s), γ̇ (s)) ds + c(b − a).

A function u : M → R is dominated by L +c if and only if it is a (viscosity)
subsolution of H(x, dxu) = c. See [12], for this and other properties of
dominated functions.

The quantity L(γ) = ∫ b
a L(γ(s), γ̇ (s)) ds is classically called the action

of the curve γ : [a, b] → M.
As done by Mather [17], it is convenient to introduce, for t > 0, and

x, y ∈ M the following quantity

ht(x, y) = inf
∫ t

0
L(γ(s), γ̇ (s)) ds,

where the infimum is taken over all piecewise C1 paths γ : [0, t] → M,
with γ(0) = x, γ(t) = y. It is obvious that u ≺ L + c if and only if for each
x, y ∈ M, and each t > 0, we have u(y) − u(x) ≤ ht(x, y) + ct.

The Mañé critical potential φ : M × M → R and the Peierls barrier
h : M × M →] − ∞,+∞] are defined by

φ(x, y) = inf t>0ht(x, y) + c[0]t,
h(x, y) = lim inf

t→∞ ht(x, y) + c[0]t.
We have h(x, y) ≥ φ(x, y) and φ(x, x) = 0. It is clear that the functions φ
and h satisfy

∀x, y, z ∈ M,∀t > 0 φ(x, z) ≤ φ(x, y) + ht(y, z) + c[0]t
h(x, z) ≤ h(x, y) + ht(y, z) + c[0]t.
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In particular, they even satisfy the triangle inequalities

∀x, y, z ∈ M, φ(x, z) ≤ φ(x, y) + φ(y, z),
h(x, z) ≤ h(x, y) + φ(y, z),
h(x, z) ≤ h(x, y) + h(y, z).

It follows that the function h is either identically +∞ or is finite everywhere.
If M is compact h is finite everywhere. As is well-known (see Sect. 4 below
for proofs) for a given x ∈ M, the function φx(·) = φ(x, y) is a critical
subsolution, and a critical viscosity solution on M \ {x}. On the other hand,
if h is finite, then for each x ∈ M, the function hx(·) = h(x, ·) is a global
critical viscosity solution.

We recall that the projected Aubry set A is defined by

A = {x ∈ M | h(x, x) = 0}.
If u : M → R is a critical subsolution then u is differentiable at each x ∈ A,
and H(x, dxu) = c[0], for such an x, see [9].

The following theorem improves 1.2

Theorem 1.3. There exists a C1 function u : M → R such that H(x, dx u) =
c[0], for x ∈ A, and H(x, dxu) < c[0], for x /∈ A.

We say that a critical subsolution u : M → R is strict at some point x if
there is an open neighborhood U of x, and a constant c < c[0] such that the
restriction u|U is a subsolution of H(x, dxu) = c on the open set U .

As a step in the proof of Theorem 1.3, we also obtain the following
characterization of the Aubry set A.

Theorem 1.4. For a point x ∈ M, the following conditions are equivalent
(i) the point x is in A;
(ii) there does not exist a critical subsolution u : M → R which is strict

at x;
(iii) every critical subsolution is differentiable at x;
(iv) the function φx : M → R is a viscosity solution on the whole of M;
(v) the function φx : M → R is differentiable at x.

If u : M → R is a critical subsolution, we define � (u) as the set of points
x ∈ M, for which there exists a piecewise C1 curve γ :] − ∞,+∞[→ M
such that γ(0) = x, and u(γ(t)) − u(γ(t′)) = ∫ t

t ′ L(γ(s), γ̇ (s)) ds +
c[0](t − t′), for every t, t′ ∈ R with t′ ≤ t. In this case, the curve γ is
a minimizer of the action and γ(t) ∈ � (u), for all t ∈ R. Moreover, we
always have � (u) ⊃ A, and the function u is differentiable at each point
of � (u), the derivative x → dxu is locally Lipschitz on � (u), see [9].

If M is compact, we can improve Theorem 1.3

Theorem 1.5. Suppose that M is compact, and that u : M → R is a critical
subsolution. For each ε > 0, there exists a C1 function ũ : M → R such
that ũ(x) = u(x), H(x, dxu) = c[0], for x ∈ A, and |ũ(x) − u(x)| < ε,
H(x, dxu) < c[0], for x /∈ A.
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We now state two consequences of the main theorem. The first one is
a slight generalization of a theorem of Mañé, see [15]. In the Riemannian
case, this generalization is due to Bangert, see [1].

Theorem 1.6 (Mañé). Suppose M compact. Call HM the set of probabil-
ity measures µ on TM such that

∫
TM ‖v‖ dµ is finite and

∫
TM dxϕ(v) dµ(x, v)

= 0, for each ϕ : M → R of class C∞. Then −c[0] = inf{∫TM L dµ | µ ∈
HM}. Moreover, each measure µ ∈ HM such that

∫
TM L dµ = −c[0] is

necessarily invariant under the Euler-Lagrange flow of L, and is therefore
a minimizing measure.

The second application to the stable norm of a Riemannian metric is
new. See [13] for the definition and properties of the stable norm.

Theorem 1.7. Suppose M is a compact Riemannian manifold. Each closed
1-form ω on M is cohomologous to a C0 closed 1-form ω̃ such that ‖ω̃x‖x ≤
‖[ω]‖s, and such that {x ∈ M | ‖ω̃x‖x = ‖[ω]‖s} is the support of a geodesic
lamination.

It is a pleasure to thank the referee for an unusually careful reading of
our manuscript.

2. Extremals and Euler-Lagrange flow

We need some facts from the classical calculus of variations, see [4] or [9].
If γ : [a, b] → M is a continuous piecewise C1 curve, its action L(γ) is

L(γ) =
∫ b

a
L(γ(s), γ̇ (s)) ds.

Such a curve γ is called an extremal (for L) (resp. a minimizer) if it
is a critical point (resp. a minimum) of the action on the set of curves
δ : [a, b] → M with δ(a) = γ(a) and δ(b) = γ(b).

Extremals satisfy (in local coordinates) the Euler-Lagrange equation

d

dt

[
∂L

∂v
(γ(s), γ̇ (s))

]
= ∂L

∂x
(γ(s), γ̇ (s)).

Since ∂2 L
∂v2 is everywhere non-degenerate, this equation defines a second

order differential equation on M, hence a flow ϕL
t : TM → TM. A curve

γ : [a, b] → M is an extremal for L , if and only if its speed curve
s �→ (γ(s), γ̇ (s)) is an orbit of ϕL

t , i.e. if and only if ϕL
t−s(γ(s), γ̇ (s)) =

(γ(t), γ̇ (t)), for s, t ∈ [a, b].
As is well known, the Euler-Lagrange flow ϕL

t preserves the energy
E : TM → R defined by

E(x, v) = H

(
x,

∂L

∂v
(x, v)

)
= ∂L

∂v
(x, v)(v) − L(x, v).
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We have to study the behavior of E(x, v) for ‖v‖ → +∞.
Replacing the constant C∗(K ) expressing the superlinearity of H by

a smaller one if necessary we can assume

C∗(K ) = sup(x,p)∈T∗M K‖p‖ − H(x, p) < +∞.

A proof of the following is contained in [12].

Lemma 2.1. a) A(R) = sup{L(x, v) | ‖v‖ ≤ R} = C∗(R) < +∞.
b) C(K ) = sup(x,v)∈TM K‖v‖ − L(x, v) = A∗(R) < +∞.
c) The function θ1(R) = sup{E(x, v) | ‖v‖ ≤ R} is non decreasing and

finite everywhere.
d) The function θ2(R) = sup{‖v‖ | E(x, v) ≤ R} is non decreasing and

finite everywhere.

As a consequence of the last part of this lemma and the conservation
of energy the flow ϕL

t is complete. Moreover, see [4] or [9], we can apply
Tonelli’s theorem to obtain

Theorem 2.2. For any pair of points x, y ∈ M, and any a, b ∈ R, with
a < b we can find a curve γ : [a, b] → M, with γ(a) = x, γ(b) = y, and
L(γ) ≤ L(δ) for every curve δ : [a, b] → M, with δ(a) = x, δ(b) = y. Such
a curve γ is called a minimizer, it is necessarily an extremal.

We draw further consequences of the Lemma 2.1.

Proposition 2.3. 1) There exists a non-decreasing function θ : R → R
such that for each extremal γ : [a, b] → M, we have

sups∈[a,b]‖γ̇ (s)‖ ≤ θ
(
infs∈[a,b]‖γ̇ (s)‖).

2) For every continuous piecewise C1 curve γ : [a, b] → M, and each
K ≥ 0, we have

length(γ) =
∫ b

a
‖γ̇ (s)‖ ds ≤ L(γ) + C(K )(b − a)

K
.

In particular

infs∈[a,b]‖γ̇ (s)‖ ≤ L(γ)

K(b − a)
+ C(K )

K
.

3) If γ : [a, b] → M is an extremal then

sups∈[a,b]‖γ̇ (s)‖ ≤ θ

[
L(γ)

K(b − a)
+ C(K )

K

]
.

Proof. 1) We can take θ = θ2 ◦θ1, where θ2 and θ1 are given by Lemma 2.1
above. In fact ‖γ̇ (s)‖ ≤ θ2[E(γ(s), γ̇ (s))]. Since γ is an extremal
Eγ = E(γ(s), γ̇ (s)) is constant. Moreover if s0 is such that ‖γ̇ (s0)‖ =
infs∈[a,b]‖γ̇ (s)‖, we have Eγ = E(γ(s0), γ̇ (s0)) ≤ θ1(‖γ̇ (s0)‖).
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2) For (x, v) ∈ TM, we have K‖v‖ ≤ L(x, v) + C(K ). In particular

K‖γ̇ (s)‖ ≤ L(γ(s), γ̇ (s)) + C(K ).

Integrating between a and b gives

K
∫ b

a
‖γ̇ (s)‖ ds ≤ L(γ) + C(K )(b − a).

It remains to observe that
∫ b

a ‖γ̇ (s)‖ ds ≥ (b − a)infs∈[a,b]‖γ̇ (s)‖.
3) This is an easy consequence of 1) and 2). ��

3. Dominated functions and calibrated curves

As recalled above, if c ∈ R, we say that a function u : U → R, defined
on some open set U of M is dominated by L + c, and we denote this by
u ≺ L + c, if for every piecewise C1 curve γ : [a, b] → M, with a ≤ b,
and γ([a, b]) ⊂ U , we have

u(γ(b)) − u(γ(a)) ≤
∫ b

a
L(γ(s), γ̇ (s)) ds + c(b − a).

We need to understand some of the properties of dominated functions. Most
of this is well known by now, see for example [9] or [12].

Parametrizing a curve by arclength, we obtain

Lemma 3.1. If u : U → R is defined on the open subset U of M, and
u ≺ L + c, then for every continuous piecewise C1 curve γ : [a, b] → U,
we have

|u(γ(b)) − u(γ(a))| ≤ (A(1) + c)
∫ b

a
‖γ̇ (s)‖ ds.

In particular, if u : M → R is a function such that u ≺ L + c, then u is
Lipschitzian with Lipschitz constant ≤ A(1) + c.

Another important result is the characterization of viscosity subsolutions,
see [9].

Lemma 3.2. A function u : U → R, defined on some open set U of M, is
dominated by L+c if and only if it is a viscosity subsolution of H(x, dx u) = c
on U.

Suppose u is a real valued function defined on some part U of M, and
c ∈ R. A continuous piecewise C1 curve γ : [a, b] → U, a < b is said to
be (u, L, c)-calibrated if

u(γ(b)) − u(γ(a)) =
∫ b

a
L(γ(s), γ̇ (s)) ds + c(b − a).

This notion is interesting only when u ≺ L + c.
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Proposition 3.3. Let u : U → R, with U an open set of M, be such that
u ≺ L + c. Suppose that γ : [a, b] → U is (u, L, c)-calibrated, then we
have

1) for each [a′, b′] ⊂ [a, b], the curve γ |[a′, b′] is (u, L, c)-calibrated;
2) the curve γ minimizes action among all curves δ : [a, b] → U with

δ(a) = γ(a) and δ(b) = γ(b). Hence γ is an extremal.

The proposition above is by now well-known. For a proof, we refer to [9].
Let us prove another property of calibrated curves.

Proposition 3.4. Given c there exists a constant K(c), such that for every
u : U → R, with U an open set of M, satisfying u ≺ L + c, and every
(u, L, c)-calibrated γ : [a, b] → U, a < b, we have

∀s ∈ [a, b], ‖γ̇ (s)‖ ≤ K(c).

In fact, we can take K(c) = C[A(1) + c + 1] − c.

Proof. Since γ |[t, t′] is also (u, L, c)-calibrated for each t ≤ t′, t, t′ ∈ [a, b]

∀t ≤ t′, t, t′ ∈ [a, b], u(γ(t′)) − u(γ(t)) =
∫ t ′

t
L(γ(s), γ̇ (s)) ds + c(t′ − t),

By 3.1, we have u(γ(t′)) − u(γ(t)) ≤ (A(1) + c)
∫ t ′

t ‖γ̇ (s))‖ ds, therefore

∀t ≤ t′, t, t′ ∈ [a, b],∫ t ′

t
L(γ(s), γ̇ (s)) ds + c(t′ − t) ≤ (A(1) + c)

∫ t ′

t
‖γ̇ (s))‖ ds.

Dividing by t′ − t > 0 and letting t′ → t, we see that

∀t ∈ [a, b], L(γ(t), γ̇ (t)) + c ≤ (A(1) + c)‖γ̇ (t))‖.
Since L(x, v) ≥ (A(1) + c + 1)‖v‖ − C[A(1) + c + 1]. We conclude that
‖γ̇ (t)‖ ≤ C[A(1) + c + 1] − c. ��

We will use the following well-known characterization of viscosity so-
lutions. For a proof, one can refer to [12].

Proposition 3.5. Suppose that u : U → R is such that u ≺ L + c, and for
each y ∈ U, there exists a (u, L, c)-calibrated curve γy : [−εy, 0] → U,
with εy > 0 and γy(0) = y, then u is a viscosity solution of H(x, dxu) = c.

Conversely if u : M → R is a global viscosity solution of H(x, dxu) = c,
then for each y ∈ M we can find a (u, L, c)-calibrated curve γy :] − ∞, 0]
→ M, with γy(0) = y.
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4. Viscosity properties of Mañé potential and the Peierls barrier

The inequalities

∀x, y, z ∈ M,∀t > 0 φ(x, z) ≤ φ(x, y) + ht(y, z) + c[0]t
h(x, z) ≤ h(x, y) + ht(y, z) + c[0]t

prove that φx is always a global critical subsolution, and also, if h is finite,
that the function hx is a global critical subsolution. In particular, they are Lip-
schitzian with Lipschitz constant ≤ A(1)+c[0]. Since φx(x) = φ(x, x) = 0,
we obtain φ(x, y) ≤ [A(1) + c[0]]d(x, y)

We would like to first prove that φx is a viscosity solution on M \ {x},
and that hx is a global viscosity solution when h is finite.

Proposition 4.1. Suppose that the Peierls barrier h is finite. For each
x, y ∈ M we can find a curve γ :] − ∞, 0] such that γ(0) = y, and

∀t ≥ 0, hx(γ(0)) − hx(γ(−t)) =
∫ 0

−t
L(γ(s), γ̇ (s)) ds + c[0]t.

In particular, when the Peierls barrier is finite, for each x ∈ M, the
function hx is a global critical viscosity solution.

Proof. By Tonelli’s Theorem 2.2, and the definition of the Peierls barrier,
we can pick a sequence of minimizing extremals γn : [−tn, 0] → M such
that tn → +∞, γn(−tn) = x, γn(0) = y, and

∫ 0

−tn

L(γn(s), γ̇n(s)) ds + c[0]tn → h(x, y).

Discarding the first terms we can also assume that tn ≥ 1 and

∫ 0

−tn

L(γn(s), γ̇n(s)) ds + c[0]tn ≤ h(x, y) + 1.

By part 3) of Proposition 2.3, we have the estimate

sups∈[−tn,0]‖γ̇n(s)‖ ≤ θ

[
h(x, y) + 1 − c[0]tn

tn
+ C(1)

]

≤ θ(|h(x, y)| + 1 − c[0] + C(1)).

In particular the sequence (γn(0), γ̇n(0)) = (y, γ̇n(0)) remains in a compact
subset of TM. Since the speed curves s �→ (γn(s)γ̇n(s)) of the extremals
γn are orbits of the Euler-Lagrange flow ϕL

t , extracting a subsequence if
necessary, we can assume that γn converges towards a limit γ uniformly
in the C1 topology on each compact subinterval of ] − ∞, 0]. Fix t > 0,
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set δn = d(γn(−t), γ(−t)), we have δn → 0. We can find a smooth curve
γ̃n : [−t,−t + δn] → M from γn(−t) to γ(−t) whose action is less than
Kδn , with K = A(1). If we piece together the restriction of γn to [−tn,−t]
and γ̃n, we see that

htn−t+δn(x, γ(−t)) + c[0](tn − t + δn) ≤ (K + c[0])δn +∫ −t

−tn

L(γn(s), γ̇n(s)) ds + c[0](tn − t).

Since γn converges uniformly to γ on [−t, 0] in the C1 topology, we obtain

h(x, γ(−t)) +
∫ 0

−t
L(γ(s), γ̇ (s)) ds + c[0]t ≤ lim inf

n→∞

[
(K + c[0])δn +

∫ −t

−tn

L(γn(s), γ̇n(s)) ds + c[0](tn − t)

]
+

lim
n→∞

[ ∫ 0

−t
L(γn(s), γ̇n(s)) ds + c[0]t

]

= lim inf
n→∞

[
(K + c[0])δn +

∫ 0

−tn

L(γn(s), γ̇n(s)) ds + c[0]tn
]

= h(x, y).

So we obtained the inequality h(x, γ(−t)) + ∫ 0
−t L(γ(s), γ̇ (s)) ds + c[0]t ≤

h(x, y), but the reverse equality is also true.
The fact that hx is a global critical viscosity solution now follows from

Proposition 3.5. ��
Proposition 4.2. For each x ∈ M, the function φx is a global critical
subsolution.

For each x, y ∈ M, with x �= y, we can find ε > 0 and a curve γ :]−ε, 0]
such that γ(0) = y, and

∀t ∈ [0, ε], φx(γ(0)) − φx(γ(t)) =
∫ 0

−t
L(γ(s), γ̇ (s)) ds + c[0]t.

In particular, for each x ∈ M, the function φx is a critical viscosity
solution on M \ {x}.
Proof. We consider first the case where the infimum φ(x, y) = inft>0ht(x, y)
+ c[0]t is attained for t → ∞. In that case h(x, y) = φ(x, y), hence h is
finite, and we can find a curve γ :] − ∞, 0] such that γ(0) = y, and

∀t ≥ 0, h(x, γ(0)) − h(x, γ(−t)) =
∫ 0

−t
L(γ(s), γ̇ (s)) ds + c[0]t.
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Since we also have the inequalities

h(x, y) = h(x, γ(−t)) +
∫ 0

−t
L(γ(s), γ̇ (s)) ds + c[0]t

≥ φ(x, γ(−t)) +
∫ 0

−t
L(γ(s), γ̇ (s)) ds + c[0]t

≥ φ(x, y) = h(x, y)

we obtain

∀t ≥ 0, φx(γ(0)) − φx(γ(−t)) =
∫ 0

−t
L(γ(s), γ̇ (s)) ds + c[0]t.

If φ(x, y) �= h(x, y), then we can find tn → t∞ ∈ [0,+∞[ such that
htn(x, y)+ c[0]tn → φ(x, y). Discarding the first few terms we will assume
that htn(x, y)+ c[0]tn ≤ φ(x, y)+ 1. By Tonelli’s Theorem 2.2, we can find
a sequence of extremals γn : [−tn, 0] → M with γn(−tn) = x, γn(0) = y,
and L(γn) = htn(x, y). By part 2) of Proposition 2.3, we have

∀K > 0, d(x, y) ≤ length(γn) ≤ φ(x, y) + 1

K
+ C(K )tn

K
.

Since d(x, y) > 0, we can choose K such that (φ(x, y) + 1)/K ≤ d(x, y)/2.
Letting then n go to +∞, we obtain

0 <
d(x, y)

2
≤ C(K )t∞

K
.

Therefore t∞ > 0, and we can therefore assume 2t∞ > tn > t∞/2 by
dropping the first few terms of the sequence γn. By part 3) of Proposition 2.3,
we get

‖γ̇n(0)‖ ≤ θ

[
2(φ(x, y) + 1)

t∞
+ C(1)

]
.

Since the γn are extremals, by the completeness of the Euler-Lagrange
flow, we can extend them to extremals γn : R → M. Since the points
(γn(0), γ̇n(0)) = (y, γ̇n(0)) remain in a compact set of TM, by continuity
of the Euler-Lagrange flow, extracting a subsequence if necessary, we can
assume that γn converge uniformly on compact intervals in the C1 topology
to the extremal γ : R → M. It is clear that γ(−t∞) = x, γ(0) = y, and
φ(x, y) = ∫ 0

−t∞ L(γ(s), γ̇ (s)) ds + c[0]t∞. Since φ(x, x) = 0, this can be
rewritten as

φx(γ(0)) − φx(γ(−t∞)) =
∫ 0

−t∞
L(γ(s), γ̇ (s)) ds + c[0]t∞.
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Because φx ≺ L + c[0], this implies

∀t ∈ [0, t∞], φx(γ(0)) − φx(γ(−t)) =
∫ 0

−t
L(γ(s), γ̇ (s)) ds + c[0]t.

The fact that φx is a viscosity solution on M \ {x} follows from Proposi-
tion 3.5. ��
Theorem 4.3. The function φx is a global viscosity solution if and only if
x ∈ A.

Proof. If x ∈ A then φx = hx , and φx is therefore a global viscosity
solution. Conversely, by a well-known result, see Proposition 3.5, if φx is
a global viscosity solution, then we can find an extremal γ :]−∞, 0] → M
with γ(0) = x, and such that

∀t ≥ 0, φx(γ(0)) − φx(γ(−t)) =
∫ 0

−t
L(γ(s), γ̇ (s)) ds + c[0]t.

Since γ(0) = x and φx(x) = φ(x, x) = 0, this can be rewritten as

∀t ≥ 0, φx(γ(−t)) +
∫ 0

−t
L(γ(s), γ̇ (s)) ds + c[0]t = 0.

Fix now T > 0, ε > 0, we can find a curve γT,ε : [0, tT,ε] → M such that
γT,ε(0) = x, γT,ε(tT,ε) = γ(−T ), and such that

∫ tT,ε

0
L(γT,ε(s), γ̇T,ε(s)) ds + c[0]tT,ε ≤ φ(x, γ(−T )) + ε.

If we piece together the curve γT,ε and γ |[−T, 0], we obtain a curve γ̃T,ε :
[0, tT,ε + T ] → M defined by γ̃T,ε(s) = γT,ε(s), for s ∈ [0, tT,ε], and
γ̃T,ε(s) = γ(s − T − tT,ε), for s ∈ [tT,ε, tT,ε + T ]. In particular γ̃T,ε(0) =
γ̃T,ε(tT,ε + T ) = x, and

∫ tT,ε+T

0
L(γ̃T,ε(s), ˙̃γ T,ε(s)) ds + c[0](tT,ε + T )

≤ φ(x, γ(−T )) + ε +
∫ 0

−T
L(γ(s), γ̇ (s)) ds + c[0]T ≤ ε.

Since ε and T are arbitrary, we conclude h(x, x) = 0, which means
x ∈ A. ��
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5. Differentiability properties for critical subsolutions

For a proof of the following proposition, see [9].

Proposition 5.1. Let u : U → R, with U an open set of M, be such that
u ≺ L + c. Suppose that γ : [a, b] → U is (u, L, c)-calibrated, then we
have

1) if dγ(t)u exists then it is equal to ∂L/∂v(γ(t), dγ(t)u) and H(γ(t), dγ(t)u)
= c;

2) if t ∈]a, b[ then dγ(t)u exists.

In particular, if u ≺ L + c and � (u) is the set of x ∈ M such that there
exists γ : R → M, with γ(0) = x, and γ is (u, L, c)-calibrated, then u is
differentiable at each point of � (u).

In the situation above one can even show that the derivative of u on � (u) is
a locally Lipschitz map.

Proposition 5.2. If x ∈ A, then there exists a curve γ : R → M such that
γ(0) = x and

∀t ≥ 0, h(γ(t), x) = −
∫ t

0
L(γ(s), γ̇ (s)) ds − c[0]t;

h(x, γ(−t)) = −
∫ 0

−t
L(γ(s), γ̇ (s)) ds − c[0]t.

In particular, for each critical subsolution u, the curve γ is (u, L, c[0])-
calibrated. Therefore A ⊂ � (u), and u is differentiable at each point of A.

Proof. If x ∈ A, we can find a sequence of C1 curves γn : [0, tn] → M,
with γn(0) = γn(tn) = x, tn → ∞, and∫ tn

0
L(γn(s), γ̇n(s)) ds + c[0]tn → 0. (∗)

Without loss of generality we can assume that γn is an extremal, and tn ≥ 1.
Therefore by Sect. 3) of Proposition 2.3

sup{‖γ̇n(s)‖ | s ∈ [0, tn], n ≥ 0} < +∞.

As the speed curves of the γn are orbits of the Euler-Lagrange flow, ex-
tracting a sequence if necessary, we can assume that γn converges in the C1

topology to a limit γ : [0,+∞[→ M uniformly on each compact interval
contained in [0,+∞[. We fix t ∈ [0,+∞[, for n large enough to have t < tn ,
setting dn = d(γ(t), γn(t)), we construct a curve γ̃ : [t − dn, tn] → M from
γ(t) to x, by piecing together a geodesic from γ(t) to γn(t), parametrized by
arc-length, and γn|[t, tn]. We have∫ tn

t−dn

L(γ̃n(s), ˙̃γ n(s)) ds ≤ A(1)dn +
∫ tn

t
L(γn(s), γ̇n(s)) ds,
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moreover, since tn − (t − dn) ≥ tn − t → +∞, and dn → 0, we obtain

h(γ(t), x) ≤ lim inf
n→+∞

∫ tn

0
L(γn(s), γ̇n(s)) ds + c[0](tn − t).

It now follows from (∗), and the convergence of γn → γ in the C1 topology,
that ∫ t

0
L(γ(s), γ̇ (s)) ds + c[0]t + h(γ(t), x) ≤ 0.

But we also have h(x, γ(t)) = h(x, γ(t))−h(x, x) ≤ ∫ t
0 L(γn(s), γ̇n(s)) ds+

c[0]t, and h(x, γ(t)) + h(γ(t), x) ≥ 0. Therefore we must have∫ t

0
L(γ(s), γ̇ (s)) ds + c[0]t + h(γ(t), x) = 0.

To construct the curve γ on ] − ∞, 0], it suffices, in an analogous way, to
extract a converging subsequence of the curves γ̄n : [−tn, 0] → M, with
γ̄n(t) = γ(t + tn).

Suppose now that u ≺ L + c, for t ≥ 0, we get

u(γ(t)) − u(x) ≤
∫ t

0
L(γ(s), γ̇ (s)) ds + c[0],

and

u(x) − u(γ(t)) ≤ h(γ(t), x) = −
∫ t

0
L(γ(s), γ̇ (s)) ds − c[0]t.

Hence

u(γ(t)) − u(x) =
∫ t

0
L(γ(s), γ̇ (s)) ds + c[0]t.

This shows that γ is (u, L, c[0])-calibrated on [0,+∞[. An analogous
argument shows that is also calibrated on ] − ∞, 0], and therefore on the
whole of R. ��
Theorem 5.3. The function φx is differentiable at x if and only if x ∈ A.

Proof. If x ∈ A, the function φx is differentiable at x by Proposition 5.2.
Conversely, assume that φx is differentiable at x. By Theorem 4.3, we have to
prove that φx is a viscosity solution on the whole of M. Suppose this is false.
For each y ∈ M\{x}, by Proposition 4.2, we can pick a curve γy :]−ty, 0] →
M \ {x}, with ty > 0, such that γy(0) = y, and γy is (φx, L, c[0])-calibrated.
Since γy is an extremal, we can extend it to an extremal defined for all time,
we will assume that ty is the largest t such that both γy(] − t, 0]) ⊂ M \ {x}
and γy |] − t, 0] is (φx, L, c[0])-calibrated. If ty < +∞ then necessarily
γy(−ty) = x. In fact, if we had y− = γy(−ty) �= x, we can piece together γy−
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and γy to find a curve γ̃y :]− ty − ty−, 0] → M \ {x} which is calibrated and
satisfies γ̃y|[−ty, 0] = γy|[−ty, 0]. Therefore γ̃y being also an extremal has
to coincide with γy everywhere, this gives a contradiction since ty +ty− > ty.

We claim that lim supy→x ty = 0. In fact if this is not true, we could
find a sequence yn → x and ε > 0 such that tyn > ε. Then each ex-
tremal γyn : [−ε, 0] → M is (φx, L, c[0])-calibrated for every n ≥ 0. Since
γn(0) = yn → x, and supn≥0‖γ̇yn(0)‖ < +∞ by Proposition 3.4, extract-
ing a subsequence if necessary, we can assume that γyn : [−ε, 0] → M
converges uniformly in the C1 topology to the extremal γ : [−ε, 0] → M.
It is clear that γ(0) = x, and that γ is (φx, L, c[0])-calibrated; It follows
from Propositions 3.5 and 4.2 that φx is a a critical viscosity solution. This
is contrary to our assumption.

We have thus obtained lim supy→x ty = 0. We now use the differentia-
bility property at x. First we know that if dxφx exists then we must have
H(x, dxφx) ≤ c[0], because φx is a global critical subsolution. Moreover, if
ty is finite, we have γy(−ty)) = x, and since γy is (φx, L, c[0])-calibrated
on [−ty, 0], by Proposition 3.3, for δ > 0 small enough, we have

φx(γy(−ty + δ)) − φx(γy(−ty)) =
∫ −ty+δ

−ty

L(γy(s), γ̇y(s)) ds + c[0]δ.

If we divide by δ and we let δ → 0, we obtain

dxφx(γ̇y(−ty)) = L(x, γ̇y(−ty)) + c[0].
Together with the inequality H(x, dxφx) ≤ c[0], this implies H(x, dxφx) =
c[0], and dxφx = ∂L/∂v(x, γ̇y(−ty)). By the bijectivity of the Legendre
transform, this forces vx = γ̇y(−ty) to be independent of the y ∈ M \ {x}
such that ty < +∞. If we now call γ the extremal with γ(0) = x and
γ̇ (0) = vx , using also that γy is an extremal we must have γy(s) = γ(s + ty)
therefore y = γ(ty) if ty < +∞. Since lim supy→x ty = 0, it follows that
for each δ > 0, the image γ([0, δ]) contains a neighborhood of x in M.
Since γ is at least C1 this is impossible if the dimension of M is ≥ 2. If
the dimension of M is 1 then there exists points on γ([0, δ]) (locally) to the
right and the left of x, therefore we can find η ∈]0, δ] with γ(η) = x = γ(0).
Since γ is (u, L, c[0])-calibrated, we have∫ η

0
L(γ(s), γ̇ (s)) ds + c[0]η = 0,

going n times through the loop γ |[0, η], and letting n → ∞, we obtain
h(x, x) = 0. ��

6. Strict critical subsolutions

As already said a critical subsolution u : M → R is said to be strict at
x ∈ M, if there exists an open subset U ⊂ M and c < c[0] such that x ∈ U ,
and u|U is a subsolution of H(x, dxu) = c.
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Proposition 6.1. There exists a global critical subsolution which is strict
at each point of M \ A.

Proof. We first show that given x ∈ M \ A, we can find a global critical
subsolution ux : M → R which is strict on an open set Ux containing x,
i.e. there exists cx < c[0] such that the restriction ux |Ux is a subsolution of
H(y, dyux) = cx on the open subset Ux .

We start with φx . By Proposition 4.2 we know that φx is a global critical
subsolution and a viscosity solution on M \ {x}. Since by Theorem 4.3,
the subsolution φx is not a viscosity solution, the supersolution viscosity
condition must be violated. But the only point where it can be violated is
x itself this means that we can find a C1 function θ : V → R defined
on a open neighborhood V of x such that θ(y) < φx(y), for y ∈ V \ {x},
θ(x) = φx(x), and H(x, dxθ) < c[0]. We can then find cx < c[0] and an
open neighborhood W of x whose closure W̄ is compact and contained in
V of x such that H(y, dyθ) < cx , for each y ∈ W̄ . In particular, θ is a strict
critical subsolution on W .

We pick ε > 0 such that φx(y) > θ(y) + ε, on the compact boundary
W̄ \ W , and we define u on W̄ by ux(y) = max(φx(y), θ(y) + ε). By
the choice of ε, the function ux coincides with φx on a neighborhood of
W̄ \ W , hence we can extend ux continuously by φx to M. The function u is
obviously locally Lipschitz. Moreover, it is a global critical subsolution. In
fact, if A ⊂ W is a compact set outside which φx and ux coincide, then ux
is obviously a critical subsolution outside A. Moreover, it is also a critical
subsolution on U , since a max of viscosity subsolutions is itself a viscosity
subsolution.

It remains to observe that θ(x)+ε > φx(x) = θ(x) to conclude that there
exists an open neighborhood Ux of x such that Ux ⊂ U and ux(y) = θ(y)+ε.
Obviously, for y ∈ Ux , we have H(y, dyux) = H(y, dyθ) < cx < c[0]. This
of course implies that ux is dominated by L + c[0] on M, and the restriction
ux |Ux is dominated by L + cx on Ux .

We now fix some base point y0 in M. Since ux is dominated by L +c[0],
it is Lipschitz with Lipschitz constant bounded by A(1) + c[0]. Hence, for
any y ∈ M, we have |ux(y) − ux(y0)| ≤ (A(1) + c[0])d(y, y0). Replacing
ux by ux − ux(y0), we see that we can assume, without loss of generality,
that for each compact subset K ⊂ M we have

sup{|ux(y)| | x ∈ M \ A, y ∈ K} < +∞. (∗)

Since the set M\A is covered by the open sets Ux, x ∈ M\A, we can extract
a countable subcover Uxn , n ∈ N. We define u = ∑

n∈N uxn/2n+1. From (∗)
this series is uniformly convergent on each compact subset of M. Observe
that

∑
n∈N 1/2n+1 = 1, hence u is an infinite convex combination of the uxn .

Since each uxn is dominated by L+c[0] on M, it is not difficult to see that the
infinite convex combination u is also dominated by L+c[0] on M. Moreover,
since uxn |Uxn is dominated by L + cxn on Uxn , the same convexity argument
shows that u|Uxn is dominated by cxn/2n+1 + ∑

m �=n c[0]/2m+1 < c[0]. ��
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Of course the function u being a critical subsolution is differentiable at
each point of A. We would like to find one with the same property of being
strict at each point of M \A and which has the property that its derivative is
continuous at each point of A. Since any T −

t u with t > 0 is semi-concave,
it suffices to show that it is itself a critical subsolution which is strict at each
point of M \ A. This is proved in the proposition below.

Proposition 6.2. If u is a critical subsolution which is strict at each point
of M \ � (u), then T −

t u is also a critical subsolution which is strict at each
point of M \ � (u)

We start with a lemma.

Lemma 6.3. If u is a critical subsolution, then for each t > 0, the function
T −

t u is also a critical subsolution. Moreover � (T −
t u) = � (u), and u =

T −
t u + tc[0] on � (u) = � (T −

t u).
If t > 0, x /∈ � (u), and γ : [0, t] → M are such that x = γ(t), and

T −
t u(x) = u(γ(0)) + ∫ t

0 L(γ(s), γ̇ (s)) ds, then γ([0, t]) ⊂ M \ � (u).

Proof. We know that u ≺ L + c[0] is equivalent to u ≤ T −
s u + c[0]s, for

all s ≥ 0, and therefore T −
s+tu + c[0]s ≥ T −

t u, for all s, t ≥ 0, since the
semi-group T −

t preserves the order. Hence T −
t u is also a critical subsolution.

If γ :] − ∞,+∞[→ M is a (u, L, c[0])-calibrated curve, then

u(γ(s)) = u(γ(s − t)) +
∫ t

0
L(γ(σ + s − t), γ̇ (σ + s − t)) dσ + tc[0].

It follows that T −
t u(γ(s)) + tc[0] ≤ u(γ(s)). The reverse equality is true,

as said above, since u ≺ L + c[0]. This shows that u = T −
t u + tc[0] on

γ(]−∞,+∞[). Therefore γ is also (T −
t u, L, c[0])-calibrated. This proves

� (u) ⊂ � (T −
t u), and u = T −

t u + tc[0] on � (u).
Let us now take a curve γ :] − ∞,+∞[→ M that is (T −

t u, L, c[0])-
calibrated. We have T −

t u(γ(s)) = T −
t u(γ(s− t))+∫ t

0 L(γ(σ +s− t), γ̇ (σ +
s−t)) dσ+tc[0]. Since T −

t u(γ(s−t))+tc[0] ≥ u(γ(s−t)), and T −
t u(γ(s)) ≤

u(γ(s−t))+∫ t
0 L(γ(σ +s−t), γ̇ (σ +s−t)) dc, we conclude that T −

t u(γ(s−
t)) + tc[0] = u(γ(s − t)). Therefore T −

t u + tc[0] = u on γ(] − ∞,+∞[),
and γ is also (u, L, c[0])-calibrated. This proves � (u) ⊃ � (T −

t u).
Suppose now that t > 0, x /∈ � (u), and γ : [0, t] → M are such

that x = γ(t), and T −
t u(x) = u(γ(0)) + ∫ t

0 L(γ(s), γ̇ (s)) ds. Suppose that
γ(0) ∈ � (u). Then u(γ(0)) = T −

t u(γ(0)) + tc[0], and γ(0) ∈ � (T −
t u).

In particular, the curve γ is (T −
t u, L, c[0])-calibrated, and we can pick an

extremal δ :] − ∞,+∞[ which is (T −
t u, L, c[0])-calibrated and satisfies

δ(0) = γ(0). It follows that the curve obtained by piecing up δ|] − ∞, 0]
and γ , is continuous on ] − ∞, t] and also (T −

t u, L, c[0])-calibrated. This
forces this curve to be an extremal therefore γ = δ|[0, t]. Since x = γ(t),
and the curve δ is contained in � (T −

t u) = � (u), we see that x ∈ � (u). This
is a contradiction. Therefore γ(0) /∈ � (u).
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It remains to show that the other points of the curve γ are not in � (u).
But, from the semi-group property of T −

t , we know that for t′ < t, we have

T −
t u(x) = T −

t ′ u(γ(t′)) +
∫ t

t ′
L(γ(s), γ̇ (s)) ds,

therefore from what we just obtained γ(t′) /∈ � (T −
t ′ u) = � (u). ��

Proof of Proposition 6.2. Fix t > 0, and a compact set K contained in
M \ � (u). It suffices to show that there exists c < c[0] such that for each
γ : [a, b] → K , we have

T −
t u(γ(b)) − T −

t u(γ(a)) ≤
∫ b

a
L(γ(s), γ̇ (s)) ds + (b − a)c.

Consider the set E of extremals γ : [0, t] → M such that γ(t) ∈ K , and

T −
t u(γ(t)) = u(γ(0)) +

∫ t

0
L(γ(s), γ̇ (s)) ds.

Since the speed γ̇ (s) of such a curve is bounded by a constant independent
of γ , the set E is compact in the C1 topology, therefore K ′ = {γ(s) | s ∈
[0, t], γ ∈ E} is a compact set disjoint from � (u). We pick a neighborhood
V of this set K ′ whose closure V̄ is compact and disjoint from � (u). Since u
is strict at each point not in � (u), by compactness of V̄ , we can find c < c[0]
such that u|V is a subsolution of H(x, dxu) = c on V . In particular, for each
piecewise C1 curve δ : [α, β] → V , we have

u(δ(β)) − u(δ(α)) ≤
∫ β

α

L(δ(s), δ̇(s)) ds + (β − α)c.

Let us now pick a piecewise C1 curve γ : [a, b] → K , we want to show that

T −
t u(γ(b)) − T −

t u(γ(a)) ≤
∫ b

a
L(γ(s), γ̇ (s)) ds + (b − a)c.

It suffices to prove the inequality for b − a < t, since we can break the
interval [a, b] into a finite family of intervals of length < t and then add up
the inequalities obtained.

We pick an extremal γ− : [0, t] → M such that γ−(t) = γ(a) and

T −
t u(γ(a)) = u(γ−(0)) +

∫ t

0
L(γ−(s), γ̇−(s)) ds.
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Of course, the extremal γ− is in E , and therefore γ−([0, t]) ⊂ V . We define
δ : [0, t] → V by δ(s) = γ−(s + b − a), for 0 ≤ s ≤ t − (b − a), and
δ(s) = γ(s − (t − b)), for s ∈ [t − (b − a), t]. We have

T −
t u(δ(t)) ≤ u(δ(0)) +

∫ t

0
L(δ(s), δ̇(s)) ds

= u(δ(0)) +
∫ t

b−a
L(γ−(s), γ̇−(s)) ds +

∫ b

a
L(γ(s), γ̇ (s)) ds.

We also do have δ(0) = γ−(b − a) and

u(γ−(b − a)) ≤ u(γ−(0)) +
∫ b−a

0
L(γ−(s), γ̇−(s)) ds + (b − a)c.

Since δ(t) = γ(b), we obtain

T −
t u(γ(b)) ≤ u(γ−(0)) +

∫ t

0
L(γ−(s), γ̇−(s)) ds

+
∫ b

a
L(γ(s), γ̇ (s)) ds + (b − a)c

= T −
t u(γ(a)) +

∫ b

a
L(γ(s), γ̇ (s)) ds + (b − a)c.

��
Theorem 1.3 is now a consequence of what we just obtained. In fact,

we can find a global critical subsolution u : M → R which is strict at
each point of M \ A. Replacing u by T −

t u, which is locally semi-concave
for t > 0, we can assume that x �→ dxu is continuous on the domain of
definition dom(du) of the derivative. We have A ⊂ dom(du). Since u is
a strict critical subsolution on U = M \ A, we can find an open cover Vn
of U and a sequence cn ∈ R, such that cn < c[0] and H(x, dxu) ≤ cn
at each point of Vn ∩ dom(du). We choose a partition of unity ϕn on U
subordinated to the cover Vn. If we define the continuous function ψ by
ψ(x) = ∑

n cnϕn(x), we have ψ(x) < c[0], for each x ∈ U and H(x, dxu) ≤
ψ(x) for x ∈ U ∩ dom(du). We can now apply Theorem 9.2 of Appendix A
with F = {(x, p) ∈ T ∗U | H(x, p) ≤ ψ(x)} as the closed set and U =
{(x, p) ∈ T ∗U | H(x, p) < (ψ(x) + c[0])/2} as the open set containing F
to obtain the required C1 subsolution. ��

7. Approximation

In this section, we will suppose that our manifold M is compact, and we
will prove Theorem 1.5.

We start by observing that any critical subsolution u : M → R is
the uniform limit of subsolutions which are strict on M \ A. In fact if
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u0 : M → R is a critical subsolution which is strict then, for each ε > 0,
the function εu0 + (1 − ε)u is also a critical subsolution which is strict on
M \ A. Obviously, the uniform limit of εu0 + (1 − ε)u as ε → 0 is u.

If u : M → R is a critical subsolution, since M is compact we know
from [11] that we can find u− and u+, with u− = u+ = u on A, such that u−
is a viscosity solution of H(x, dxv) = c[0], and −u+ is a viscosity solution
of Ȟ(x, dxv) = c[0], where Ȟ(x, p) = H(x,−p). We have u+ ≤ u ≤ u−,
and the set � (u) ⊃ A is precisely {x ∈ M | u+(x) = u−(x)}.

For each x ∈ M \ � (u), we construct a critical subsolution ux , such
that ‖ux − u‖∞ ≤ ε, ux = u on � (u), the critical subsolution ux is strict
at x. Since x ∈ M \ � (u), we have either u−(x) > u(x) or u+(x) < u(x).
We will treat the first case, the second is similar. We choose δ > 0 such
that 3δ < u−(x) − u(x), and 3δ < ε. We choose u1 : M → R a critical
subsolution which is strict on M \ A � x, and such that ‖u1 − u‖∞ ≤ δ.
We have u ≤ u + δ ≤ u1 + 2δ ≤ u + 3δ. By the choice of δ, it follows
that u1(x) + 2δ < u−(x). Moreover since u− = u on � (u), we obtain that
u1+2δ > u− on a neighborhood of � (u). If we define the critical subsolution
ux by ux = min(u−, u1 + δ). We have ux = u1 in a neighborhood of x,
and therefore ux is strict at x. Since ux = u− on a neighborhood of � (u),
we obtain ux = u on � (u). It remains to check that ‖ux − u‖∞ ≤ ε.
Since u− ≥ u, and u1 ≥ u, we have u ≤ ux . Of course we also have
ux ≤ u1 + 2δ ≤ u + 3δ. this gives ‖ux − u‖∞ ≤ 3δ < ε.

As in the proof of Theorem 1.3, we can form a convex combination ū
of the family ux, x ∈ M \ � (u) to obtain a global critical subsolution such
that ū is a strict subsolution at each x ∈ M \ � (u), and ū = u on � (u).
These last two conditions do imply that � (ū) = � (u). Moreover, by convex
combination ‖ū − u‖ < ε. We can now replace ū by ¯̄u = T −

t ū, with t > 0

small enough to have ‖ ¯̄u−u‖∞ < ε. By Proposition 6.2 and Lemma 6.3, the
global critical subsolution ¯̄u satisfies ¯̄u = u on � (u) = � ( ¯̄u), and it is also
a strict critical subsolution at each point of the complement of � (u) = � ( ¯̄u).
The derivative of ¯̄u is continuous on its domain of definition which contains
� (u) = � ( ¯̄u).

It is not difficult to adapt the arguments of the end of the proof of
Theorem 1.3 to finish the proof of Theorem 1.5. ��

8. Applications

We prove first Mañé’s Theorem 1.6.
Suppose that M is compact, and that µ is a probability measure on

TM with
∫

TM ‖v‖x dµ(x, v) < +∞. Remark that since M is compact all
Riemannian norms on TM are equivalent, therefore the norm used to check
the condition

∫
TM ‖v‖x dµ(x, v) < +∞ is irrelevant. Since the norm ‖dx g‖x

is bounded if g : M → R is C1, the integral
∫

TM dx g(v) dµ(x, v) makes
sense.
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Suppose now that
∫

TM dx f(v) dµ(x, v) = 0, for each C∞ function
f : M → R. If g : M → R is C1, we can approximate it in the uniform
C1 topology by a sequence fn : M → R of C∞ functions. In particular,
there is a constant K < +∞ such that ‖dx fn‖x ≤ K , for each x ∈ M, and
each n ∈ N. In particular, we have |dx fn(v)| ≤ K‖v‖x . Since the right hand
side of this last inequality is µ-integrable and dx fn(v) → dx g(v), by the
dominated convergence theorem we obtain that

∫
TM dx g(v) dµ(x, v) = 0.

Therefore if u : M → R is a C1 critical subsolution, integrating the in-
equality dxu(v) ≤ L(x, v) + c[0], we obtain −c[0] ≤ ∫

TM L dµ. Of course
we could have used the easier fact that for each ε > 0, there exists a C∞
function uε : M → R such that H(x, dxuε) ≤ c[0] + ε, for each x ∈ M,
see [6], to obtain a proof of that fact.

Suppose that µ does also satisfy
∫

TM L dµ = −c[0]. We first show
that the support of µ is contained in the Aubry set Ã ⊂ TM. We choose
u : M → R a C1 critical subsolution such that H(x, dxu) < c[0], for
x ∈ M \ A. If we integrate the inequalities

dxu(v) ≤ L(x, v) + H(x, dxu) ≤ L(x, v) + c[0],
we obtain 0 ≤ ∫

TM L(x, v)H(x, dxu) dµ = 0. Therefore, we must have the
equalities

dxu(v) = L(x, v) + H(x, dxu) = L(x, v) + c[0]
for (x, v) in the support of µ. The second equality gives H(x, dxu) = c[0],
therefore x ∈ A. The first shows that dxu = ∂L/∂v(x, v), hence (x, v) is
precisely the point above x ∈ A which is in the Aubry set Ã ⊂ TM.

By Mather’s graph theorem, the projection π : TM → M induces a bi-
Lipschitz homeomorphism from Ã onto A. Hence Ã = {(x, X(x))|x ∈ A},
where X is a Lipschitz vector field defined on A. We can extend X to
a Lipschitz vector field defined on M. Since the Aubry set Ã is invariant
by the Euler-Lagrange flow ϕL

t , it is not difficult to see that π induces
a conjugacy between ϕL

t |Ã and ψX
t |Ã, where ψX

t is the flow generated by
the Lipschitz vector field X. Hence to check the invariance under ϕL

t of µ

whose support is contained in Ã, it suffices to check that the image measure
π∗µ is invariant by ψX

t . By Proposition 10.3 of Appendix B, we must see
that

∫
M dx f(X(x)) dπ∗µ(x) = 0, for every f : M → R of class C∞. This

follows from µ ∈ HM, in fact, since the support of µ is in Ã, we have∫
M dx f(X(x)) dπ∗µ(x) = ∫

TM dx f(v) dµ(x, v). ��
It remains to prove Theorem 1.7. If ω is a smooth 1-form, we can

consider the Lagrangian L(x, v) = 1
2‖v‖2

x − ωx(v). Because ω is closed, its
Euler-Lagrange flow ϕL

t is the geodesic flow, so its projected Aubry set A
is a geodesic lamination. It is well-known that its associated Hamiltonian
is H(x, p) = 1

2‖p + ωx‖2
x . Moreover, we have c[0] = 1

2‖[ω]‖2
s . It results

from Theorem 1.3 that there exists a C1 function u : M → R such that
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H(x, dxu) = 1
2‖dxu + ωx‖2

x ≤ c[0] = 1
2‖[ω]‖2

s , with equality if and only if
x ∈ A. It suffices to set ω̃ = ω + du. ��

9. Appendix A

We will denote by N a smooth metrizable manifold. We will suppose that
N is endowed with some auxiliary Riemannian metric (not necessarily
complete), we will denote by ‖ · ‖ the associated norm on any fiber Tx N or
T ∗

x N. We will denote by π∗ : T ∗N → N the canonical projection.
If f : N → R is a locally Lipschitz function, we will denote by dom(d f )

the set of x ∈ N where the derivative dx f exists. By Rademacher’s theorem
dom(d f ) is of full (Lebesgue) measure in N.

The following theorem was established in the appendix of [12].

Theorem 9.1. Let N be a smooth metrizable manifold, and f : N → R be
a locally Lipschitz function. Suppose that F ⊂ O are respectively a closed
and an open subset of T ∗N, such that each Fx = F ∩ T ∗

x N is convex
with dx f ∈ Fx for almost every x in dom(d f ). If ε : N →]0,+∞[ is
a continuous function, then there exists a C∞ function g : N → R such that
(x, dx g) ∈ O and | f(x) − g(x)| < ε(x), for each x ∈ N.

We need an improvement.

Theorem 9.2. Let N be a smooth metrizable manifold, and f : N → R be
a locally Lipschitz function. Suppose A ⊂ B ⊂ N satisfy

(1) A is closed in N,
(2) N \ B is of (Lebesgue) measure 0,
(3) B ⊂ dom(d f ) and the restriction of the derivative B → T ∗N, x �→

(x, dx f ) is continuous at each point of A.

Given any continuous function ε : N \ A →]0,+∞[, and any subsets
F ⊂ O ⊂ T ∗(N \ A), which are respectively a closed and an open subset
of T ∗(N \ A), such that

(4) for each x ∈ N \ A, the intersection Fx = F ∩ T ∗
x N is convex,

(5) for almost every x in (N \ A), we have dx f ∈ Fx,

then there exists a C1 function g : N → R such that (x, dx g) ∈ O,
| f(x)− g(x)| < ε(x), for each x ∈ N \ A, and g(x) = f(x), dx g = dx f , for
x ∈ A.

Proof. We set U = N \ A. We want to apply Theorem 9.1 with U instead
of N. The problem is to make sure that we can extend the map obtained on
U to a C1 map on N.

Call d the distance on N obtained from the Riemannian metric. We can
assume ε(x) ≤ d(x, A)2, for each x ∈ U . If this was not the case, we could
replace the continuous positive function ε, by x �→ min(ε(x), d(x, A)2),
this function is still continuous > 0 on the open set U = N \ A.
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To simplify the matter, by Tietze-Urysohn theorem, we choose a contin-
uous section s : N → T ∗N, x �→ s(x) ∈ T ∗

x N, with s(x) = dx f , for x ∈ A.
For each n ∈ N, the set Un = {(x, p) ∈ T ∗N | ‖p − s(x)‖ < 1/(n + 1)}
is open and contains (x, dx f ), for each x ∈ A. Since the derivative d f
restricted to B is continuous at each point of A, we can find an open set
Vn ⊂ N, such that A ⊂ Vn, and for each x ∈ Vn∩B, we have (x, dx f ) ∈ Un .
Shrinking Vn, if necessary, we can assume V̄n+1 ⊂ Vn, and A = ∩n∈NVn.
We define

F1 = π−1
∗ (U \ V0) ∪

⋃
n∈N

{(x, p) | x ∈ Vn \ Vn+1, ‖p − s(x)‖ ≤ 1/(n + 1)}),

O1 = π−1
∗ (U \ V̄1) ∪

⋃
n∈N

(O ∩ {(x, p) | x ∈ Vn \ V̄n+2, ‖p − s(x)‖ < 1/n}.

It is not difficult to check the following properties:

(a) F1 ⊂ O1, furthermore F1 and O1 are respectively closed and open in
T ∗U

(b) (x, dx f ) ∈ F1, for each x ∈ U ∩ B
(c) for each x ∈ U , the intersection F1 ∩ T ∗

x U is convex.

If we set F̃ = F1 ∩ F and Õ = O1 ∩ O, we evidently have:

(d) F̃ ⊂ Õ, furthermore F̃ and Õ are respectively closed and open in T ∗U .

Conditions (2), (5), and (b) give:

(e) (x, dx f ) ∈ F̃, for almost every x ∈ U .

Conditions (4), and (c) give:

(f) for each x ∈ U , the intersection F̃ ∩ T ∗
x U is convex.

Applying Theorem 9.1 with U, F̃, Õ instead of N, F, O, we find g :
U → R, of class C∞, and such that (x, dx g) ∈ Õ, | f(x) − g(x)| < ε(x), for
each x ∈ U . We extend g by f on A. Since | f(x)−g(x)| < ε(x) ≤ d(x, A)2,
it is easy to see that the extension is also differentiable at each point x ∈ A,
with dx g = dx f . Since (x, dx g) ∈ Õ, for x ∈ U , we see that ‖dx g−s(x)‖ <
1/n, for x ∈ Vn. This implies the continuity of the derivative at each point
of A, since s(x) = dx f = dx g at such a point. ��

10. Appendix B

Suppose that N is a manifold and f : N → R is a function. If (x, v) ∈ TN,
we will say that f has a derivative at x in the direction of v, if for each C1

curve γ : [−η, η] → N, such that η > 0 and (γ(0), γ̇ (0)) = (x, v), the
function t �→ f(γ(t)) has a derivative at 0 and the derivative d

dt f(γ(t))|t=0 is
independent of γ . We will then denote by v f this common value. Moreover,
if X is a vector field on N, and the derivative of f at each x ∈ N in the



A. Fathi, A. Siconolfi

direction of X(x) exists, we will say that f is differentiable in the direction
of X, and we will denote by X f the function x �→ X(x) f .

The following lemma gives a criterion for verifying directional differ-
entiability when f is Lipschitz (a mild restriction).

Lemma 10.1. Suppose f : N → R is Lipschitz on a neighborhood of
x ∈ N. If v ∈ Tx N, and there exists a curve γ0 : [−η0, η0] → N, with
η0 > 0, γ(0) = x, admitting a derivative γ̇0(0) = v, and such that both γ
and the function t �→ f(γ0(t)) have a derivative at 0, then f has a derivative
at x in the direction of v.

Proof. This is a local statement, hence we can assume that N is an open
subset of Rn, and that f : N → R is Lipschitz for the norm ‖ · ‖ on Rn,
with Lipschitz constant C. If γ : [−η, η] → N is a curve, differentiable at
t =, with (γ(0), γ̇ (0)) = (x, v), then γ(t) − γ0(t) = tε(t), with ε(t) → 0, as
t → 0. Therefore, we can write∣∣∣∣ f(γ(t)) − f(γ(0))

t
− f(γ0(t)) − f(γ0(0))

t

∣∣∣∣ =
∣∣∣∣ f(γ(t)) − f(γ0(t)

t

∣∣∣∣
≤ C

t
‖γ(t) − γ0(t)‖

≤ ε(t) →t→0 0. ��
Proposition 10.2. Suppose that N is a metrizable manifold, and that f :
N → R is locally Lipschitz. We can find a sequence gn : N → R of C∞
functions converging uniformly to f , and satisfying the following property:

for each continuous vector field X such that X f exists and is continuous,
the sequence of functions Xgn converges pointwise to X f .

Moreover, we can choose the functions gn with the further property that
the subset {(x, dx gn) | x ∈ K, n ∈ N} is relatively compact in TN, for each
compact subset K ⊂ N.

Proof. As usual in non-smooth analysis, see [5], we call ∂ f(x) the convex
hull of the set of accumulation of derivatives dy f (at points where they exist)
when y → x. Because f is locally lipschitz and Tx N is finite dimensional,
the set is also compact and non empty.

We first show that if X is a continuous vector field such that X f ex-
ists and is continuous, then p(X(x)) = X f(x), for each x ∈ N, and
each p ∈ ∂ f(x). Suppose first that p = limn→∞ dyn f , where yn → x,
and yn ∈ dom(d f ), the set of points where f is differentiable, then since nec-
essarily X f(yn) = dyn f(X(yn)), and by continuity of X we have p(X(x)) =
limn→∞ dyn f(X(yn)), we do obtain by continuity of X f that X f(x) =
p(X(x)). Since ∂ f(x) is the convex envelope of the accumulation points
of dy f as y → x, this gives the same equality p(X(x)) = X f(x), for
p ∈ ∂ f(x).

In fact, since N is finite-dimensional, say of dimension d, a theorem
of Carathéodory states that every convex combination of a set of points is
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a convex combination of a subset with at most d + 1 points. It is then not
difficult to show that C = ∪x∈N∂ f(x) is closed in TN. Moreover, for every
compact set K ⊂ N, the intersection C ∩ π−1∗ (K ) is compact, because the
almost everywhere defined derivative is bounded on every compact subset
of N. Since TN is a metric space, we can write C = ⋂

n∈N Un, where Un is

open in TN, we can also assume Un+1 ⊂ Un, and Ū0 ∩ π−1∗ (K ) is compact,
for each compact set K ⊂ N, since the same thing is true for C. We can
apply Theorem 9.1, to obtain a sequence gn : N → R of C∞ functions
converging uniformly to f and such that (x, dx gn) ∈ Un, for x ∈ N, and
n ∈ N. It remains to show that dx gn(X(x)) converges to X f(x). Since
dx gn is contained in the compact subset Ū0 ∩ T ∗

x N, it suffices to show that
dx gnk(X(x)) converges to X f(x) if dx gnk converges to p. But this follows
from what we proved above, since necessarily p ∈ T ∗

x N ∩ ⋂
n∈N Un =

∂ f(x). ��
Proposition 10.3. Suppose that µ is a probability measure on the compact
manifold N. If X is a Lipschitz vector field on N such that

∫
N dx g(X(x))dµ(x)

= 0, for every C∞ function g : N → R, then µ is invariant by the flow ψX
t

generated by X.

Proof. Using Lebesgue’s dominated convergence theorem, it is not difficult
to obtain from Proposition 10.2 above, that

∫
N X f dµ = 0, for every Lip-

schitz function which is continuously differentiable in the direction of X.
Suppose now that g : N → R is a C∞ function. For each t ∈ R the
map x �→ ψX

t (x) is locally Lipschitz on N → R, therefore the function
g◦ψX

t : N → R is Lipschitz. Moreover, this function g◦ψX
t is continuously

differentiable in the direction of X with

X
(
g ◦ ψX

t

)
(x) = d

ds

[
g ◦ ψX

s (x)
]
|s=t

= (Xg) ◦ ψX
t (x).

It follows that
∫

N
d
ds [g ◦ ψX

s (x)] dµ(x) = 0, therefore since g ◦ ψX
t (x) −

g(x) = ∫ t
0

d
ds [g ◦ ψX

s (x)] ds, by Fubini theorem we obtain

∫
N

(
g ◦ ψX

t − g
)

dµ =
∫ t

0

∫
N

d

ds

[
g ◦ ψX

s (x)
]

dµ(x)ds = 0.

Since C∞ functions are dense in C0(N, R) for the sup-norm, we do obtain∫
N f ◦ ψX

t dµ = ∫
N f dµ, for every f ∈ C0(N, R). ��
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