
Lecture 1. Viscosity solutions of the
Hamilton-Jacobi equation on a non-compact

manifold: Preliminaries:

Albert Fathi

ZoomTown, May 31, 2021



Introduction



The auxiliary Riemannian Metric

We consider a connected manifold M endowed with a
Riemannian metric.
A point of the tangent bundle TM will be denoted by (x, v),
where x ∈M and v ∈ TxM is a tangent vector at x.
A point of the cotangent bundle T ∗M will be denoted by (x, p),
where x ∈M and p ∈ T ∗xM is a tangent covector at x. Therefore
p is a linear form on TxM . The canonical projections from the
tangent and cotangent bundle are π : TM →M, (x, v) 7→ x and
π∗ : T ∗M →M, (x, p) 7→ x. Hence TxM = π−1(x) and
T ∗xM = (π∗)−1(x) are respectively the fibers of the tangent and
cotangent bundle at x.
We will denote by ‖·‖x the norm induced by the Riemannian
metric on either TxM or T ∗xM on the fibers above x of the
tangent TM or cotangent T ∗M bundle of M .
We endow R×M,R×M ×M , and M ×M with the product
Riemannian metrics, where the Riemannian metric on R is the
usual one.



If γ : [a, b]→M is a piecewise C1 (or even an absolutely
continuous) curve, its Riemannian length `g(γ) is

`g(γ) =

∫ b

a
‖γ̇(s)‖γ(s) ds.

We will denote by d the Riemannian distance on M obtained from
the Riemannian metric, namely

d(x, y) = inf
γ
`g(γ),

where the inf is taken over all piecewise C1 curves γ : [a, b]→M ,
with γ(a) = x, γ(b) = y.
As is well-known d is a distance on M that defines its topology.
Moreover, this distance is complete (i.e. Cauchy sequences
converge) if and only if the geodesic flow is complete (i.e.
geodesics are defined for all time) if and only if the closed subsets
bounded for d are the compact subsets.
For the rest of the lectures, we will assume that the Riemannian
metric on M is complete.
Of course, when M is compact all Riemannian metrics are
complete. However our main focus in these lectures are
non-compact manifolds.



Hamilton-Jacobi Equation



Stationary Hamilton-Jacobi equation
Throughout the lecture H : T ∗M → R will denote a continuous
function which we will call the Hamiltonian.
A good example to keep in mind is the Hamiltonian
HV : T ∗M → R is defined by

HV (x, p) =
1

2
‖p‖2x + V (x),

where V : M →M is a continuous function.
The (stationary) Hamilton-Jacobi equation associated to H is the
equation

H(x, dxu) = c,

where c ∈ R is some constant.
A classical solution of the Hamilton-Jacobi equation H(x, dxu) = c
on the open subset U of M is a C1 map u : U → R such that
H(x, dxu) = c, for each x ∈ U .
Usually, one deals only with the case H(x, dxu) = 0, since it is
possible to reduce the general case to that case by replacing the
Hamiltonian H by Hc, defined by Hc(x, p) = H(x, p)− c.



Evolutionary Hamilton-Jacobi equation

The evolutionary Hamilton-Jacobi equation associated to the
Hamiltonian H is the equation

∂u

∂t
(t, x) +H

(
x,
∂u

∂x
(t, x)

)
= 0.

A classical solution to this evolutionary Hamilton-Jacobi equation
on the open subset W of R× T ∗M is a C1 map u : W → R such
that

∂u

∂t
(t, x) +H

(
x,
∂u

∂x
(t, x)

)
= 0,

for each (t, x) ∈W .
The evolutionary form can be reduced to the stationary form by
introducing the Hamiltonian Ĥ : T ∗(R×M) defined by

Ĥ(t, x, s, p) = s+H(x, p),

where (t, x) ∈ R×M , and (s, p) ∈ T ∗(t,x)(R×M) = R× T ∗xM . .



There usually do not exist smooth global subsolutions,
supersolutions or solutions to these PDE’s.
Therefore, we have to define a weaker notion of solution.
The well-adapted concept for us is the concept of viscosity
subsolutions, supersolutions or solutions, that we presently
introduce.
We start by recalling the parts of

Albert Fathi, Weak KAM from a PDE point of view: viscosity
solutions of the Hamilton-Jacobi equation and Aubry set, Proc.
Roy. Soc. Edinburgh Sect. A, 120 (2012) 1193–1236

that are relevant here.



Crash Course on Viscosity



Viscosity Subsolution
A function u : V → R is a viscosity subsolution of H(x, dxu) = c
on the open subset V ⊂M , if for every C1 function φ : V → R,
with φ ≥ u everywhere, at every point x0 ∈ V where
u(x0) = φ(x0) we have H(x0, dx0φ) ≤ c.

Graph(u)

(x0, u(x0))

Graph(φ)

Subsolution: φ ≥ u, u(x0) = φ(x0)⇒ H(x0, dx0φ) ≤ c.



Viscosity Supersolution

A function u : V → R is a viscosity supersolution of H(x, dxu) = c
on the open subset V ⊂M , if for every C1 function ψ : V → R,
with u ≥ ψ everywhere, at every point x0 ∈ V where
u(x0) = ψ(x0) we have H(x0, dx0ψ) ≥ c.

(x0, u(x0))
Graph(u)

Graph(ψ)

Supersolution: ψ ≤ u, u(x0)=ψ(x0)⇒H(x0, dx0ψ)≥c.



Viscosity Solution

A function u : V → R is a viscosity solution of H(x, dxu) = c on
the open subset V ⊂M , if it is both a subsolution and a
supersolution.

In the sequel of this lecture, we will concentrate on viscosity
solutions of the evolutionary Hamilton-Jacobi equation

∂u

∂t
(t, x) +H

(
x,
∂u

∂x
(t, x)

)
= 0.

We will mainly address the problem of uniqueness of the solution
on [0, T [×M for a given initial condition on {0} ×M and its
companion the Lax-Oleinik formula in the case of Tonelli
Hamiltonians.



Some facts about viscosity solutions

We enumerate some facts about viscosity subsolutions,
supersolutons, and solutions.

I A C1 function is a viscosity solution of the Hamilton-Jacobi
equation if and only if it is a classical solution.

I If the viscosity subsolution u (resp. supersolution, solution) of
the Hamilton-Jacobi equation H(x, dxu) = c is differentiable
at x0, then H(x0, dx0u) ≤ c (resp. H(x0, dx0u) ≥ c,
H(x0, dx0u) = c).

I (Stability) Suppose that vn : M → R is a sequence of
continuous functions converging uniformly on compact subsets
to v : M → R. If, for each n, the function vn is a viscosity
subsolution (resp. supersolution, solution) of H(x, dxu) = 0,
then v is a viscosity subsolution (resp. supersolution, solution)
of H(x, dxu) = 0.



I If H(x, p) in convex in the momentum variable p, then a
locally Lipschitz function u is a viscosity subsolution of
H(x, dxu) = c if and only if H(x, dxu) ≤ c almost
everywhere.

I If H(x, p) in convex in the momentum variablep and the two
locally Lipschitz function u1, u2 : O → R are viscosity
subsolutions of H(x, dxu) = c, on the open subset O ⊂M ,
then so is min(u1, u2).

I If H(x, p) in convex in the momentum variable, and
u : O → R is a locally Lipschitz viscosity subsolution of
H(x, dxu) = c, defined on the open subset O ⊂M , then for
any ε > 0 we can find a C∞ function v : O → R which is a
viscosity subsolution of H(x, dxv) = c+ ε on O and such that
supx∈O|v(x)− u(x)| ≤ ε.



To give further properties we need to introduce:

Definition 1 (Coercive)

A continuous function H : T ∗M → R is said to be coercive above
every compact subset, if for each compact subset K ⊂M and each
c ∈ R the set {(x, p) ∈ T ∗M | x ∈ K,H(x, p) ≤ c} is compact.

It is not difficult to see that H is coercive if and only if for each
compact subset K ⊂M , we have lim‖p‖x→∞H(x, p) = +∞, the
limit being uniform in x ∈ K.

Theorem 2
Suppose that H : T ∗M → R is coercive above every compact
subset, and c ∈ R. Then a viscosity subsolution of H(x, dxu) = c
is necessarily locally Lipschitz, and therefore satisfies
H(x, dxu) ≤ c almost everywhere.



Note however that the Hamiltonian

Ĥ(t, x, s, p) = s+H(x, p),

which give rise to the evolutionary Hamilton-Jacobi equation is
never coercive even if H is coercive, since s can → −∞.
Therefore, it is difficult to assume (or obtain) a priori that a
viscosity subsolution of the evolutionary Hamilton-Jacobi equation
is locally Lipschitz.
In fact, if U is a viscosity subsolution of

∂U

∂t
(t, x) +H

(
x,
∂u

∂x
(t, x)

)
= 0,

and ρ : [0,+∞[→ R which is continuous and non-increasing, then
V (x, s) = U(x, s) + ρ(s) is a viscosity subsolution of the same
equation.
At this point, it is useful to note that the Hamiltonian

H̃(t, x, s, p) = |s|+H(x, p),

is coercive above compact subsets, if H is.



The main ingredient to prove uniqueness properties for viscosity
solutions is the following one:

Theorem 3
Let H : T ∗M → R be any continuous Hamiltonian on the
manifold M . Suppose that u : M → R is a viscosity subsolution of
H(x, dxu) = c1, and v : M → R is a viscosity supersolution of
H(x, dxv) = c2. Assume further that either u or v is locally
Lipschitz on M . If u− v has a local maximum, then necessarily
c2 ≤ c1.

Note that, if at x0 the difference u− v vanishes, then x0 is a local
maximum of u− v if and only if v ≥ u in a neighborhood of x0.

Because this Theorem 3 needs at least one of the functions to be
locally Lipschitz, to apply it to the evolution case, we will need to
approximate subsolutions by subsolutions which are locally
Lipschitz. More on that later.



This previous Theorem 3 implies a maximum principle in the
evolutionary case.

Theorem 4 (Maximum Principle)
Let H : T ∗M → R be a continuous Hamiltonian on the manifold
M . Assume u, v : [a, b]× C → R are continuous, where C ⊂M is
a compact subset, with u a viscosity subsolution and v a viscosity
supersolution of ∂tU +H(x, ∂xU) = 0. If either u or v is locally
Lipschitz on ]a, b[× C̊, then

max
[a,b]×C

u− v = max
{a}×C∪[a,b]×∂C

u− v.

{a} × C ∪ [a, b]× ∂C

a b

C

M

0 +∞



Proof.
As usual in proofs of that form of the maximum principle, for
ε, δ > 0, we introduce the function uε,δ : [a, b[×C → R defined by

uε,δ(t, x) = u(t, x)− ε(t− a)− δ

b− t .

Note that uε,δ(t, x)→ −∞, as t→ b, and uε,δ ≤ u.

Moreover, since t 7→ −ε(t− a)− δ/(b− t) is C1, with derivative
t 7→ −ε− δ/(b− t)2 ≤ −ε, the function uε,δ is, on ]a, b[×C̊, a
viscosity subsolution of

∂tuε,δ +H(x, ∂xuε,δ) = −ε.

Introducing as above the Hamiltonian Ĥ : T ∗(R×M) defined by

Ĥ
(
(t, x), (s, p)

)
= s+H(x, p),

we obtain that uε,δ is a (stationary) viscosity subsolution of

Ĥ
(
(t, x), dt,xuε,δ

)
= −ε on ]a, b[×C̊.



In the same way, the function v is a viscosity supersolution of
Ĥ
(
(t, x), dt,xv

)
= 0 on ]a, b[×C̊.

Since, either u or v is locally Lipschitz on ]a, b[×C̊ and uε,δ − u is

C1, either uε,δ or v is locally Lipschitz on ]a, b[×C̊. Therefore, we

can apply Theorem 3 with Hamiltonian Ĥ to the viscosity
subsolution uε,δ of

Ĥ
(
(t, x), dt,xuε,δ

)
= −ε

on ]a, b[×C̊ and the viscosity supersolution v of

Ĥ
(
(t, x), dt,xv

)
= 0

on ]a, b[×C̊. Since −ε < 0, by this Theorem 3, we conclude that
uε,δ − v cannot have a local maximum in ]a, b[×C̊.
Since uε,δ(t, x)→ −∞, as t→ b and [a, b]× C is compact, the
function uε,δ − v achieves a maximum on [a, b]×C. this maximum

cannot be attained in in ]a, b[×C̊. Therefore uε,δ − v attains its
maximum at a point in [a, b[×∂C ∪ {a} × C.



Using that uε,δ ≤ u, we obtain

uε,δ − v ≤ max
[a,b[×∂C∪{a}×C

uε,δ − v ≤ max
[a,b]×∂C∪{a}×C

u− v,

everywhere on [a, b[×C. Letting δ, ε→ 0, we obtain

u− v ≤ max
[a,b]×∂C∪{a}×C

u− v,

on [a, b[×C. Continuity of both u and v yields

max
[a,b]×C

u− v ≤ max
[a,b]×∂C∪{a}×C

u− v.

Remark 5
When H is coercive above compact subsets, as we will show later,
this last Theorem remains valid without the assumptions that
either u or v is locally Lipschitz.



Enter Tonelli



Tonelli Hamiltonian
Our results will be valid for Tonelli Hamiltonians that we now
introduce.
We will assume that H : T ∗M → R is a Tonelli Hamiltonian (with
respect to the Riemannian metric), i.e. H is at least C2 and
satisfies:

(a∗) (Uniform superlinearity) For every K ≥ 0, we have

C∗(K) = sup
(x,p)∈T ∗M

K‖p‖x −H(x, p) <∞.

(b∗) (Uniform boundedness in the fibers) For every R ≥ 0, we have

A∗(R) = sup{H(x, p) | ‖p‖x ≤ R} < +∞ ;

(c∗) (C2 strict convexity in the fibers) for every (x, p) ∈ T ∗M , the
second derivative ∂2H/∂p2(x, p) is positive (strictly) definite.

A∗(R) and C∗(R) are both non-decreasing as functions of
R ∈ [0 +∞[.
Note also that (a∗) and (b∗) imply

∀(x, p) ∈ T ∗M,H(x, p) ≥ K‖p‖x − C∗(K).

∀(x, p) ∈ T ∗M ∈ TM,H(x, p) ≤ A∗(‖p‖x).



Example

1) The easiest example of a Tonelli Hamiltonian is H0 : T ∗M → R
defined by

H0(x, p) =
1

2
‖p‖2x.

In fact, in this case

A∗0(R) = sup{H0(x, v) | ‖p‖x ≤ R} =
R2

2
,

C∗0 (K) = sup
(x,p)∈T ∗M

K‖p‖x −H0(x, p) = sup
(x,p)∈T ∗M

K‖p‖x −
1

2
‖p‖2x =

K2

2
.

2) Let V : M → R be a Cr function, with r ≥ 2, the Hamiltonian
HV : T ∗M → R defined by

HV (x, v) =
1

2
‖p‖2x + V (x)

is a Tonelli Hamiltonian if and only if V is bounded.



Why Tonelli? The Lagrangian!
The important feature of Tonelli Hamiltonians is that they allow to
define an action for curves, using the associated Lagrangian which
is convex in the speed. This in turn allows to apply Calculus of
Variations.
The Lagrangian L : TM → R, (x, v) 7→ L(x, v), associated to the
Tonelli Hamiltonian H : T ∗M → R, is defined by

L(x, v) = sup
p∈T ∗xM

p(v)−H(x, p).

Note that L(x, v) is everywhere finite, since

L(x, v) ≥ 0(v)−H(x, 0) = −H(x, 0)

and

p(v)−H(x, p) ≤ ‖v‖x‖p‖x −H(x, p) ≤ C∗(‖v‖x),

which implies
L(x, v) ≤ C∗(‖v‖x).



Tonelli Lagrangian
The Lagrangian L : TM → R associated to the Tonelli
Hamiltonian H : T ∗M → R is also Tonelli (with respect to the
Riemannian metric).
This means that L : TM → R is at least C2 and satisfies:

(a) (Uniform superlinearity) For every K ≥ 0, we have

C(K) = sup
(x,v)∈TM

K‖v‖x − L(x, v) <∞.

(b) (Uniform boundedness in the fibers) For every R ≥ 0, we have

A(R) = sup{L(x, v) | ‖v‖x ≤ R} < +∞ ;

(c) (C2 strict convexity in the fibers) for every (x, v) ∈ TM , the
second derivative ∂2L/∂v2(x, v) is positive strictly definite.

A(R) and C(R) are both non-decreasing as functions of
R ∈ [0 +∞[.
Note again that (a) and (b) imply

∀(x, v) ∈ TM,L(x, v) ≥ K‖v‖x − C(K). (1)

∀(x, v) ∈ TM,L(x, v) ≤ A(‖v‖x). (2)



Example
1) The Tonelli Lagrangian L0 : TM → R associated to the Tonelli
Hamiltonian H0(x, p) = 1

2‖p‖2x is

L0(x, v) =
1

2
‖v‖2x,

for which

A0(R) = sup{L0(x, v) | ‖v‖x ≤ R} =
R2

2
,

C0(K) = sup
(x,v)∈TM

K‖v‖x − L0(x, v) = sup
(x,v)∈TM

K‖v‖x −
1

2
‖v‖2x =

K2

2
.

2) If V : M → R be a bounded Cr function, with r ≥ 2, the
Tonelli Lagrangian LV : TM → R associated to the Tonelli
Hamiltonian HV (x, p) = 1

2‖p‖2x + V (x) is

LV (x, v) =
1

2
‖v‖2x − V (x)



Action and Minimizers
Although we assume familiarity with action, minimizers, extremals
and Euler-Lagrange Equation for the Lagrangian L, we now sketch
some of the definition and properties.
We recall that the action L(γ) of a piecewise C1 curve
γ : [a, b]→M is defined by

L(γ) =

∫ b

a
L(γ(s), γ̇(s)) ds.

By the superlinearity of L, the action is always bounded below by
−C(0)(b− a).

Definition 6 (Minimizer)

A minimizer (for L) is a curve γ : [a, b]→M such that

L(δ) =

∫ b

a
L(δ(s), δ̇(s)) ds ≥ L(γ) =

∫ b

a
L(γ(s), γ̇(s)) ds,

for every curve δ : [a, b]→M , with δ(a) = γ(a), δ(b) = γ(b).



γ

δ

γ(a) = δ(a)

γ(b) = δ(b)

γ minimizer⇔∫ b
a L(δ(s), δ̇(s)) ds ≥

∫ b
a L(γ(s), γ̇(s)) ds,

for all δ with δ(a) = γ(a), δ(b) = γ(b)



I Minimizers play a crucial role in Aubry-Mather theory.

I Minimizers (like all minimums of a function) must be critical
points for the action functional L.

These critical points are called extremals.

I More precisely, an extremal (for L) is a curve γ : [a, b]→M
such that the derivative DγL|Eγ at γ vanishes, with

Eγ = {δ : [a, b]→M | δ(a) = γ(a), δ(b) = γ(b)}.

I By classical theory of Calculus of Variations, the curve γ is an
extremal if and only if it satisfies Euler-Lagrange equation,
given in local coordinates by

d

dt

[
∂L

∂v
(γ(t), γ̇(t))

]
=
∂L

∂x
(γ(t), γ̇(t)). (3)

This last first order ODE (3) on TM defines a second order ODE
on M .



Since the extremals satisfy a second order ODE on M , if two
extremals coincide at some time t0 in position and speed they have
to be equal on their common interval of definition.
Moreover, there exists a flow ϕt on TM , defined for all time by
conservation of energy, called the Euler-Lagrange flow, such that
γ : [a, b]→M is an extremal if and only if its speed curve
s 7→ (γ(s), γ̇(s)) is an orbit of ϕt.
Moreover, for any (x, v) ∈ TM , the projected curve
γx,v(t) = πϕt(x, v), where π : TM →M is the canonical
projection, is an extremal with (γx,v(t), γ̇x,v(t)) = ϕt(x, v).
Since the Lagrangian L does not depend on time, it is important
to note that for every t ∈ R and every curve γ : [a, b]→M the
action L(γ) is the same as the action L(γt) of the curve
γt : [a− t, b− t]→M , defined by

γt(s) = γ(t+ s).

Therefore γ : [a, b]→M is a minimizer if and only if
γt : [a− t, b− t]→M is a minimizer



Tonelli’s theorem and minimal action

We know recall Tonelli’s theorem.

Theorem 7 (Tonelli)

For every a, b ∈ R, with a < b, and every x, y ∈M , there exists a
minimizer γ : [a, b]→M , with γ(a) = x, γ(b) = y. Any such
minimizer γ is as smooth as L and is a solution of the
Euler-Lagrange equation.

Definition 8 (Minimal action ht)

For x, y ∈M , and t > 0 , we define the minimal action ht(x, y) to
join x to y in time t by

ht(x, y) = inf
γ

∫ t

0
L(γ(s), γ̇(s)) ds,

where the infimum is taken over all piecewise C1 (or even
absolutely continuous) curves γ : [0, t]→M , with γ(0) = x and
γ(t) = y.



By Tonelli’s theorem, the infimum

ht(x, y) = inf
γ

∫ t

0
L(γ(s), γ̇(s)) ds

in the definition of ht(x, y) is always attained by a minimizer which
is as smooth as the Lagrangian.
Since L does not depend on time, it is also useful to note that for
x, y ∈M and a, b ∈ R, with a > b, we have

hb−a(x, y) = inf
γ

∫ b

a
L(γ(s), γ̇(s)) ds,

where the infimum is taken over all piecewise C1 (or even
absolutely continuous) curves γ : [a, b]→M , with γ(a) = x and
γ(b) = y.
We also note that γ : [a, b]→M is a minimizer if and only if
hb−a(γ(a), γ(b)) = L(γ), i.e.

hb−a(γ(a), γ(b)) =

∫ b

a
L(γ(s), γ̇(s)) ds.



Example

1) For the Tonelli Lagrangian L0 : TM → R defined by
L0(x, v) = 1

2‖v‖2x, we have

h0t (x, y) =
d(x, y)2

2t
.

2) For the Tonelli Lagrangian LV : TM → R defined by

LV (x, v) =
1

2
‖v‖2x − V (x),

where V : M → R is a bounded Cr function, with r ≥ 2, we have

d(x, y)2

2t
− supV ≤ hVt (x, y) ≤ d(x, y)2

2t
− inf V.



Properties of minimal action
Some of the properties of the ht’s that we will use are the
following ones:

(a) For every K ∈ [0,∞[, t > 0 and every x, y ∈M , we have:

Kd(x, y)− C(K)t ≤ ht(x, y) ≤ tA
(
d(x, y)

t

)
.

(b) (semi-group property) For every t, t′ > 0 and every x, y ∈M ,
we have:

ht+t′(x, y) = inf
z∈M

ht(x, z) + ht′(z, y).

Proof.
To prove part (a), consider a curve γ : [0, t]→M , with γ(0) = x
and γ(t) = y, then by the superlinearity property of the Tonelli
Lagrangian L, we have

L(γ(s), γ̇(s)) ≥ K‖γ̇(s)‖γ(s) − C(K), for all s ∈ [0, t].



Integrating the inequality

L(γ(s), γ̇(s)) ≥ K‖γ̇(s)‖γ(s) − C(K)

between 0 and t yields

L(γ) ≥ K`g(γ)− C(K)t ≥ Kd(x, y)− C(K)t,

where we used `g(γ) ≥ d(x, y), for the last inequality.
Taking the infimum over all curves γ : [0, t]→M , with γ(0) = x
and γ(t) = y, we obtain the inequality

Kd(x, y)− C(K)t ≤ ht(x, y),

which is the left hand side of (a). To finish the proof of (a),
consider a (length-)minimizing geodesic γ : [0, t]→M , with
γ(0) = x and γ(t) = y. Since `g(γ) = d(x, y) and ‖γ̇(s)‖γ(s) is
constant, we obtain

‖γ̇(s)‖γ(s) =
d(x, y)

t
.

Therefore by the boundedness of the Tonelli Lagrangian L, we have

L(γ(s), γ̇(s)) ≤ A
(
d(x, y)

t

)
, for all s ∈ [0, t].



Integrating the inequality

L(γ(s), γ̇(s)) ≤ A
(
d(x, y)

t

)

between 0 and t yields

L(γ) ≤ tA
(
d(x, y)

t

)
.

Since ht(x, y) ≤ L(γ), we obtain

ht(x, y) ≤ tA
(
d(x, y)

t

)
,

which is the right hand side of (a).
Part (b) ht+t′(x, y) = infz∈M ht(x, z) + ht′(z, y) is left to the
reader.



The Lax-Oleinik semi-group
We now come to the definition of the (negative) Lax-Oleinik
semi-group T−t , t ≥ 0.
If u : M → [−∞,+∞] is a function and t > 0, the function
T−t u : M → [−∞,+∞] is defined by

T−t u(x) = inf
γ
u(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds,

where the infimum is taken over all piecewise C1 curves
γ : [0, t]→M , with γ(t) = x. Using that

ht(y, x) = inf
γ

∫ t

0
L(γ(s), γ̇(s)) ds,

where the infimum is taken over all piecewise C1 curves
γ : [0, t]→M , with γ(0) = y and γ(t) = x. We can equivalently
define T−t u by

T−t u(x) = inf
y∈M

u(y) + ht(y, x).

We also set T−0 u = u.



First properties of the Lax-Oleinik semi-group

Let u : M → [−∞,+∞] be a function, we have:

(a) T−t u(x) ≤ u(x) +A(0)t, for x ∈M and every t ≥ 0.

(b) If u < +∞ at one point in M , then T−t u < +∞ everywhere
t > 0.

(c) If u = −∞ at one point in M , then T−t u = −∞ everywhere,
for t > 0.

(d) T−t (u+ c) = T−t (u) + c, for c ∈ R.

(e) If u ≤ v everywhere, then T−t u ≤ T−t v.

(f) −‖u− v‖∞ + T−t v ≤ T−t u ≤ T−t v + ‖u− v‖∞, where
‖u− v‖∞ = supx∈M |u(x)− v(x)|.

(g) (semi-group property) T−t+t′ = T−t ◦ T−t′ for t, t′ ≥ 0.



Sketch of Proof

From the properties of ht shown above, we obtain
ht(x, x) ≤ tA(d(x, x)/t) = A(0)t. Therefore
T−t u(x) ≤ u(x) + ht(x, x) ≤ u(x) +A(0)t. This proves (a).

Note that from the definition T−t u(x) = infy∈M u(y) + ht(y, x),
we get T−t u(x) ≤ u(y) + ht(y, x), for every y ∈M . Since ht(y, x)
is finite everywhere, this proves (b), namely: T−t u < +∞
everywhere if u < +∞ at one point in M , and (c), namely:
T−t u = −∞ everywhere if u = −∞ at one point in M .

Parts (d), namely: T−t (u+ c) = T−t (u) + c, and (e), namely
T−t u ≤ T−t v if u ≤ v, are clear from the definition of T−t u .

Part (f), namely −‖u− v‖∞ + T−t v ≤ T−t u ≤ T−t v + ‖u− v‖∞, is
a consequence of (d) and (e) since
−‖u− v‖∞ + v ≤ u ≤ v + ‖u− v‖∞.

(g) is a consequence of the semi-group property of ht.



Lax-Oleinik evolution, evolution domination

Definition 9
For a function u : M → [−∞,+∞], its Lax-Oleinik evolution
û : [0,+∞[×M → [−∞,+∞] is defined by û(t, x) = T−t u(x).

At this point it is useful to recall here the notion of evolution
domination.

Definition 10 (Evolution dominated)

We will say that a function U : [0,+∞[×M → [−∞,+∞] is
evolution dominated by the Lagrangian L if for every piecewise C1

curve γ : [a, b]→M , with 0 ≤ a < b, we have

U(b, γ(b)) ≤ U(a, γ(a)) +

∫ b

a
L(γ(s), γ̇(s)) ds,

or equivalently

U(t+ s, x) ≤ U(t, y) + hs(y, x), for all x, y ∈M, t ≥ 0, s > 0.



Lemma 11
For any function u : M → [−∞,+∞], its Lax-Oleinik evolution
û : [0,+∞[×M → [−∞,+∞] is evolution dominated by L.

Proof.
The semi-group property T−t+s = T−s ◦ T−t for s, t ≥ 0 and the
definition of T−s , for s > 0 imply

T−t+su(x) = T−s
(
T−t u(x)

)
≤ T−t u(y) + hs(y, x).

By the definition of û, this translates to

û(t+ s, x) ≤ û(t, y) + hs(y, x), for all x, y ∈M, t ≥ 0, s > 0,

which precisely mean that û is evolution dominated by L



Lax-Oleinik and Viscosity

We now explain some of the relationship between the Lax-Oleinik
semi-group and viscosity. More on that later on.

Theorem 12
Suppose U : [0,+∞[×M → [−∞,+∞] is evolution dominated by
L. If U is finite on ]0, τ [×M , for some τ ∈]0,+∞], then U is a
viscosity subsolution of

∂U

∂t
(t, x) +H(x,

∂U

∂x
(t, x)) = 0,

on the open subset ]0, τ [×M .

Proof.
Suppose φ ≥ U on ]0, τ [×M , with φ of class C1 and
φ(t0, x0) = U(t0, x0), where t0 ∈]0, τ [.
Fix v ∈ Tx0M , and pick a C1 curve γ : [0, t0]→M such that
(γ(t0), γ̇(t0)) = (x0, v).



If 0 ≤ t ≤ t0 < τ , by the domination inequality, we have

U(t0, γ(t0))− U(t, γ(t)) ≤
∫ t0

t
L(γ(s), γ̇(s)) ds, for all t ∈ [0, t0].

Since φ ≥ U , with equality at (t0, x0) = (t0, γ(t0)), we obtain

φ(t0, γ(t0))− φ(t, γ(t)) ≤
∫ t0

t
L(γ(s), γ̇(s)) ds, for all t ∈ [0, t0].

Dividing both sides of this last inequality by t0 − t > 0, and letting
t→ t0, we get

∂φ

∂t
(t0, x0) +

∂φ

∂x
(t0, x0)(v) ≤ L(x0, v).

Since this is true for all v ∈ Tx0M , and

H(x0,
∂φ

∂x
(t0, x0)) = sup

v∈Tx0M

∂φ

∂x
(t0, x0)(v)− L(x0, v),

we obtain
∂φ

∂t
(t0, x0) +H(x0,

∂φ

∂x
(t0, x0)) ≤ 0.

This finishes to show that U is a viscosity subsolution.



Theorem 13
Suppose u : M → [−∞,+∞] is a function for which there exists
τ ∈]0,+∞] such that its Lax-Oleinik evolution û is finite on
]0, τ [×M and, for every (t, x) ∈]0, τ [×M , the infimum in the
definition of the Lax-Oleinik evolution

û(t, x) = inf
y∈M

u(y) + ht(y, x)

is attained at some point y ∈M .
Then û is a viscosity solution of

∂û

∂t
(t, x) +H(x,

∂û

∂x
(t, x)) = 0,

on the open subset ]0, τ [×M .

Proof.
Since û is evolution dominated by L, from the previous theorem, it
is a viscosity subsolution on ]0, τ [×M .



We now prove that û is a supersolution.
Suppose that ψ :]0, τ [×M is of class C1, with ψ ≤ û and
û(t0, x0) = ψ(t0, x0), with (t0, x0) ∈]0, τ [×M .
By the hypothesis, we can find a y ∈M such that

û(t0, x0) = u(y) + ht0(y, x0).

By Tonelli’s theorem, we can find a curve γ : [0, t0]→M , with
γ(t0) = x0, γ(0) = y, and whose action is precisely ht0(y, x0).
Therefore

û(t0, x0) = u(γ(0)) +

∫ t0

0
L(γ(s), γ̇(s)) ds.

Note that u(γ(0)) is finite, both since both û(t0, x0) and∫ t0
0 L(γ(s), γ̇(s)) ds are finite.

Using û(0, γ(0)) = u(γ(0)), the inequality above can be rewritten
as

û(t0, x0) = û(0, γ(0)) +

∫ t0

0
L(γ(s), γ̇(s)) ds.



We have thus obtained

û(t0, x0) = û(0, γ(0)) +

∫ t0

0
L(γ(s), γ̇(s)) ds. (4)

Since û is evolution dominated by L, for every t ∈]0, t0[, we have

û(t0, x0) ≤ û(t, γ(t)) +

∫ t0

t
L(γ(s), γ̇(s)) ds

û(t, γ(t)) ≤ û(0, γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds.

Note that û(t, γ(t)) is finite since (t, γ(t)) ∈]0, τ [×M .
Adding the two inequalities above, we get in fact the equality (4).
Therefore both inequalities must be equalities. Hence

û(t0, γ(t0)) = û(t, γ(t))+

∫ t0

t
L(γ(s), γ̇(s)) ds, for every t ∈ [0, t0].

Since ψ ≤ û, with equality at (t0, γ(t0), we obtain

ψ(t0, γ(t0)) ≥ ψ(t, γ(t))+

∫ t0

t
L(γ(s), γ̇(s)) ds, for every t ∈ [0, t0].



The inequality

ψ(t0, γ(t0)) ≥ ψ(t, γ(t)) +

∫ t0

t
L(γ(s), γ̇(s)) ds

obtained above, for all t ∈]0, t0[, can be rewritten as

ψ(t0, γ(t0))−ψ(t, γ(t)) ≥
∫ t0

t
L(γ(s), γ̇(s)) ds, for every t ∈ [0, t0].

Dividing by t0 − t > 0, and letting t→ t0, we get

∂ψ

∂t
(t0, x0) +

∂ψ

∂x
(t0, x0)(γ̇(t0)) ≥ L(x0, γ̇(t0)).

By definition of L, we have

L(x0, γ̇(t0)) ≥
∂ψ

∂x
(t0, x0)(γ̇(t0))−H(x0,

∂ψ

∂x
(t0, x0)).

It follows that
∂ψ

∂t
(t0, x0)+

∂ψ

∂x
(t0, x0)(γ̇(t0)) ≥

∂ψ

∂x
(t0, x0)(γ̇(t0))−H(x0,

∂ψ

∂x
(t0, x0)).

Therefore
∂ψ

∂t
(t0, x0) +H(x0,

∂ψ

∂x
(t0, x0)) ≥ 0.



Remark 14
As we will later see, if the Lax-Oleinik û of u : M → [−∞,+∞] is
finite on ]0, τ [×M , then û is automatically continuous on
]0, τ [×M . In fact û is even locally semi-concave on ]0, τ [×M .
Moreover, up to replacing u by its lower semi-continuous
regularization if necessary, for every (t, x) ∈]0, τ [×M , the infimum
in the definition of the Lax-Oleinik evolution

û(t, x) = inf
y∈M

u(y) + ht(y, x)

is attained at some point y ∈M .


