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Abstract

Let R be a ring and let M be a left R-module such that M = lim−→
i∈I

Mi with I a directed

index set. For a class X of left R-modules, we construct certain coresolution of M from

strong coproper X -coresolutions of all Mi. As a consequence, we get that if X is core-

solving and closed under direct limits, then the supremum of X -injective dimensions of

all left R-modules and that of all finitely presented left R-modules coincide. Some known

results are obtained as corollaries. Moreover, we get some equivalent characterizations of

weakly Gorenstein algebras.

1. Introduction

It is well known that the notion of direct limits is fundamental in homological theory,

which plays a very important role in studying the structure and classification of modules

and rings. For example, any module is a direct limit of its finitely presented submodules,

and any flat module is a direct limit of finitely generated projective modules [28]. These

results provide useful tools for investigating the transfer of certain homological properties

between infinitely generated modules and finitely presented ones. In addition, a ring R is

left Noetherian if and only if any direct limit of injective left R-modules is injective [5],

and a ring R is left coherent if and only if any direct limit of FP-injective left R-modules

is FP-injective [32]. These are partial classical results about direct limits. Recently, many

authors studied certain properties of direct limits in (relative) homological theory, see

[13, 15, 18, 20, 24, 30, 31, 34] and references therein. In particular, it was proved in [18]

that if R is a left Noetherian ring and M is a left R-module such that M = lim−→
i∈I

Mi with

I a directed index set, then a (minimal) injective coresolution of M can be constructed

from those of all Mi. The aim of this paper is to generalize this result to a much more

general setting and give some applications. This paper is organized as follows.
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In Section 2, some terminology and preliminary results are given. Let R be a ring and

let M be a left R-module such that M = lim−→
i∈I

Mi with I a directed index set. In Section 3,

we prove that certain coresolution of M can be constructed from injective coresolutions

of all Mi; and if X is a class of left R-modules closed under direct limits, then a strong

coproper X -coresolution of M can be constructed from those of all Mi (Theorem 3.5).

Let X ′ be the class of finitely presented submodules of modules in X , and letM = lim−→
i∈I

Mi

with all Mi finitely presented. As a consequence of the above result, we get that if both X

and the left 1-orthogonal class of X are closed under direct limits and each Mi admits a

strong coproper n-X ′-coresolution, where X ′ is the class of finitely presented submodules

of modules in X , then M admits a strong coproper n-X -coresolution (Proposition 3.6).

In Section 4, we give some applications of the results obtained in Section 3. We prove

that if X is a class of left R-modules which is coresolving and closed under direct limits,

then the supremum of X -injective dimensions of all left R-modules and that of all finitely

presented left R-modules coincide (Theorem 4.1). Some known results are obtained as

corollaries. Finally, we obtain some equivalent characterizations of weakly Gorenstein

algebras (Theorem 4.8).

2. Preliminaries

In this paper, R is an arbitrary associative ring with unit. We use ModR to denote

the class of left R-modules, and use modR to denote the class of finitely presented left

R-modules. Let C be a subclass of ModR. We write

⊥1C := {M ∈ ModR | Ext1R(M,C) = 0 for any C ∈ C },

⊥C := {M ∈ ModR | Ext≥1R (M,C) = 0 for any C ∈ C },

C ⊥1 := {M ∈ ModR | Ext1R(C,M) = 0 for any C ∈ C },

C ⊥ := {M ∈ ModR | Ext≥1R (C,M) = 0 for any C ∈ C }.

Definition 2.1. ([10, 11]) Let C ⊆ D be two subclasses of ModR. A homomorphism

f : D → C in ModR with D ∈ C and C ∈ C is called a C -preenvelope of D if HomR(f, C
′)

is epic for any C ′ ∈ C . A homomorphism f : D → C in ModR is called left minimal if

any endomorphism h : C → C is an automorphism whenever f = hf . A C -preenvelope

f : D → C of D is called a C -envelope of D if f is left minimal. A C -preenvelope

f : D → C of D is called special if f is monic and Cokerf ∈ ⊥1C . The subclass C is said

to be (pre)enveloping in D if any module in D admits a C -(pre)envelope, and it is said to

be special preenveloping in D if any module in D admits a special C -preenvelope. Dually,

the notions of a (special) C -precover of D and a special precovering subclass are defined.
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By the Wakamatsu lemma (cf. [11, Proposition 7.2.4]), if C is closed under extensions,

then any monic C -envelope of a left R-module M is a special C -preenvelope of M , and

any epic C -cover of a left R-module M is a special C -precover of M .

Let C be a subclass of ModR. The C -injective dimension C -idM of M is defined as

inf{n | there exists an exact sequence

0→M → C0 → C1 → · · · → Cn → 0

in ModR with all Ci ∈ C }, and set C -idM = ∞ if no such integer exists. Recall that

C is called coresolving if C contains all injective left R-modules, and C is closed under

extensions and cokernels of monomorphisms. A sequence

S : · · · → S1 → S2 → S3 → · · ·

in ModR is called HomR(−,C )-exact if HomR(S, C) is exact for any C ∈ C ; dually, the

notion of HomR(C ,−)-exact sequences is defined [11].

Definition 2.2. Let C be a subclass of ModR and n ≥ 0. A module M ∈ ModR is said

to admit a coproper n-C -coresolution if there exists a HomR(−,C )-exact exact sequence

0→M
f0

−→ C0 f1

−→ C1 f2

−→ · · · fn

−→ Cn (2.1)

in ModR with all Ci in C }, and M is said to admit a coproper ∞-C -coresolution if M

admits a coproper n-C -coresolution for all n ≥ 0.

A coproper n-C -coresolution of M as in (2.1) is called minimal if all Imf i � Ci are

left minimal. A coproper n-C -coresolution of M as in (2.1) is called strong if all Cokerf i

are in ⊥1C . If (2.1) is a strong coproper n-C -coresolution of M , then

0→M
f0

−→ C0 f1

−→ C1 f2

−→ · · · fn

−→ Cn → Cokerfn → 0

is called a partial strong coproper n-C -coresolution of M .

Dually, the notions of proper∞-C -resolutions and (partial) strong proper n-C -resolutions

are defined.

It is easy to see that (2.1) is a coproper n-C -coresolution of M if and only if each

Imf i � Ci is a monic C -preenvelope of Imf i, and that (2.1) is a strong coproper n-C -

coresolution of M if and only if each Imf i � Ci is a special C -preenvelope of Imf i.

The following observation might be known.

Lemma 2.3. Let C be an enveloping class of left R-modules and n ≥ 0. If M admits a

coproper n-C -coresolution

0→M
f0

−→ C0 → C1 → · · · → Cn, (2.2)

then M admits a minimal coproper n-C -coresolution in the following form:

0→M
f ′0
−→ C ′0

f ′1
−→ C ′1

f ′2
−→ · · · f ′n

−→ C ′n, (2.3)
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where C ′i is a direct summand of Ci for any 0 ≤ i ≤ n.

Proof. Since C is an enveloping class, we have that M admits a monic C -envelope

f ′0 : M → C ′0 by (2.2). Set M1 := Cokerf 0 and M ′1 := Cokerf ′0. Then we get an exact

commutative diagram:

0

��

0

��

0 // M
f ′0

// C ′0 //

��

M ′1 //

g1

��

0

0 // M //
f0

// C0 //

��

M1 //

��

0

C ′′0

��

C ′′0

��
0 0.

By [11, Proposition 6.1.2], the middle column splits (and hence C ′0 is a direct summand of

C0). It follows that the rightmost column splits. Thus we get a C -preenvelope M ′1 � C1,

which is the composition M ′1 g1

� M1 ↪→ C1. Similar to above, we get a monic C -envelope

f ′1 : M ′1 → C ′1 of M ′1 such that C ′1 is a direct summand of C1. Continuing this

procedure, the assertion follows. �

We write

P(ModR) := the class of projective left R-modules,

P(modR) := the class of finitely generated projective left R-modules,

I(ModR) := the class of injective left R-modules.

Definition 2.4. ([11])

(1) A module M ∈ ModR is called Gorenstein projective if M ∈ ⊥P(ModR) and M

admits a coproper ∞-P(ModR)-coresolution.

(2) A module N ∈ ModRop is called Gorenstein injective if N ∈ I(ModRop)⊥ and N

admits a proper ∞-I(ModRop)-resolution.

We write

GP(ModR) := the class of Gorenstein projective left R-modules,

GP(modR) := the class of finitely generated Gorenstein projective left R-modules,

GI(ModRop) := the class of Gorenstein injective right R-modules,

GI(modRop) := the class of finitely generated Gorenstein injective right R-modules.
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3. Constructions of coproper coresolutions

We begin with the following lemma.

Lemma 3.1. Let κ be a limit ordinal number. Suppose that

Sα : = 0→Mα → X0
α → X1

α → · · ·
fn
α−→ Xn

α

is an exact sequence in ModR for any α ≤ κ and {Sα, Fβα : Sα → Sβ | α ≤ β < κ} is a

direct system of exact sequences. If there exists a chain map from lim−→
α<κ

Sα to Sκ, that is,

lim−→
α<κ

Sα :

��

0 // lim−→
α<κ

Mα
//

��

lim−→
α<κ

X0
α

//

��

lim−→
α<κ

X1
α

//

��

· · · // lim−→
α<κ

Xn
α

��

// lim−→
α<κ

Cokerfn
α

��

// 0

Sκ : 0 // Mκ
// X0

κ
// X1

κ
// · · · // Xn

κ
// Cokerfn

α
// 0,

Diagram (3.1)

then {Sα, Fβα : Sα → Sβ | α ≤ β ≤ κ} is also a direct system of exact sequences.

Proof. Consider the following commutative diagram:

Sα :

Gκα

��
Fκα

��

0 // Mα

gκα

��

//

fκα

��

X0
α

//

g0κα

��

��

X1
α

��

//

g1κα

��

· · · // Xn
α

��

gnκα

��

// Cokerfn
α

��

��

// 0

lim−→
α<κ

Sα :

Hκ

��

0 // lim−→
α<κ

Mα
//

hκ

��

lim−→
α<κ

X0
α

//

h0
κ

��

lim−→
α<κ

X1
α

//

h1
κ

��

· · · // lim−→
α<κ

Xn
α

hn
κ

��

// lim−→
α<κ

Cokerfn
α

��

// 0

Sκ : 0 // Mκ
// X0

κ
// X1

κ
// · · · // Xn

κ
// Cokerfn

κ
// 0,

where Gκα is the colimit map and Hκ is obtained by assumption. For each α < κ, set

Fκα := HκGκα. It follows that Fκα = FκβFβα for any α ≤ β < κ. As a consequence,

{Sα, Fβα : Sα → Sβ |α ≤ β ≤ κ} is a direct system. �

As a consequence, we obtain the following result, which plays a crucial role in proving

the main result.

Lemma 3.2. Let X be a subclass of ModR, and let κ be an ordinal number. Suppose

that {Mα, fβα : Mα →Mβ | α ≤ β < κ} is a direct system in ModR and

Sα : = 0→Mα
φ0
α−→ X0

α → X1
α → · · ·

φn
α−→ Xn

α

is an exact sequence in ModR with all X i
α in X . If one of the conditions is satisfied:
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(1) Sα is an injective coresolution of Mα,

(2) Sα is a strong coproper n-X -coresolution of Mα and both X and ⊥1X are closed

under direct limits,

then these exact sequences Sα are the members of a direct system indexed by α < κ in

such a way that if α ≤ β < κ, the map from the sequence indexed by α into that indexed

by β with the origin map fβα : Mα →Mβ. In particular, we obtain an exact sequence

lim−→
α<κ

Sα : 0→ lim−→
α<κ

Mα → lim−→
α<κ

X0
α → lim−→

α<κ

X1
α → · · · → lim−→

α<κ

Xn
α → lim−→

α<κ

Cokerφn
α → 0.

In Case (2), the sequence lim−→
α<κ

Sα is a partial strong coproper n-X -coresolution of lim−→
α<κ

Mα.

Proof. We need construct a direct system S = {Sα, Fβα : Sα → Sβ |α ≤ β < κ} indexed
by κ, where each Sα is a coproper n-X -coresolution of Mα and Fβα is a sequence of maps

(fβα, f
0
βα, · · · , fn

βα) such that the following diagram

Sα :

Fβα

��

0 // Mα

fβα

��

// X0
α

//

f0
βα

��

X1
α

//

f1
βα

��

· · · // Xn
α

fn
βα

��
Sβ : 0 // Mβ

// X0
β

// X1
β

// · · · // Xn
β

commutes. In the following, we use transfinite induction on β < κ to construct Fβα :

Sα → Sβ with α ≤ β < κ.

(i) For the successor case, assume that we have constructed Fγα for any α ≤ γ ≤ β.

Since Sβ is a strong coproper X -n-coresolution of Mβ, there exists f i
β+1,β : X i

β → X i
β+1

for any 0 ≤ i ≤ n, such that the following diagram

Sβ :

Fβ+1,β

��

0 // Mβ

fβ+1,β

��

// X0
β

//

f0
β+1,β

��

X1
β

//

f1
β+1,β

��

· · · // Xn
β

fn
β+1,β

��
Sβ+1 : 0 // Mβ+1

// X0
β+1

// X1
β+1

// · · · // Xn
β+1.

commutes. Let Fβ+1,β := (fβ+1,β, f
0
β+1,β, f

1
β+1,β, · · · , fn

β+1,β) and Fβ+1,α := Fβ+1,βFβα for

any ordinal α < β. Then we complete the proof for the successor case.

(ii) For the limit case, let β < κ be a limit ordinal. Assume that we have constructed

Fγα for any α ≤ γ < β. Now we need construct Fβα for any α < β. Note that {Sα, Fγα :

Sα → Sγ |α ≤ γ < β} is a direct subsystem of S. We need to find the chain map in

Diagram (3.1).

For Case (1), since X i
β is injective, it is clear.

For Case (2), we get an exact sequence lim−→
α<β

Sα and a colimt mapGβα = (gβα, g
0
βα, g

1
βα, · · · , gnβα).

Set K1
α := Cokerφ0

α for any α < β. Then {K1
α}α<β is also a direct system. Since Kα ∈

⊥1X and ⊥1X is closed under direct limits, we have lim−→
α<β

Kα ∈ ⊥1X and lim−→
α<β

Mα � lim−→
α<β

X0
α
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is a special X -preenvelope of lim−→
α<β

Mα. Since K
1
α � X1

α is a special X -preenvelope of K1
α,

we get that lim−→
α<β

K1
α � lim−→

α<β

X1
α is a special X -preenvelope of lim−→

α<β

K1
α by using an argu-

ment similar to that as above. Continuing this procedure, we have that lim−→
α<β

Sα is a strong

coproper n- X -coresolution. By using the universal property of lim−→
α<β

Mα, there exists a

unique hβ such that hβgβα = fβα, and we get Hβ = (hβ, h
0
β, · · · , hn

β) induced by the origin

map hβ. Then by Lemma 3.1 and transfinite induction, we get the desired system S. �

Definition 3.3. ([21]) Let β be an ordinal number. A set S is called a continuous union

of a family of subsets indexed by ordinals α with α < β if for each such α we have a

subset Sα ⊂ S such that if α ≤ α′ then Sα ⊂ Sα′ , and such that if γ < β is a limit ordinal

then Sγ = ∪α<γSα.

The following lemma is [14, Lemma 2.14].

Lemma 3.4. If X is a class of left R-modules closed under direct limits of well-ordered

chains, then X is closed under direct limits.

In Lemma 3.4, if M = lim−→
i∈I

Mi with I infinite, then I can be written as a continuous

union I = ∪α<βIα for some ordinal β, where each Iα is a directed index set with the

order induced by that of I and where |Iα| < |I| for each α < β. Set Nα := lim−→
i∈Iα

Mi. Then

lim−→
α<β

Nα = lim−→
i∈I

Mi, see [14, Lemma 2.14] and its proof.

Our main result is the following theorem.

Theorem 3.5. Let M ∈ ModR such that M = lim−→
i∈I

Mi with I a directed index set. Keep

the notations as above.

(1) If

Si : = 0→Mi → E0
i → E1

i → · · ·
fn
i−→ En

i

is an injective coresolution of Mi for any i ∈ I, then we have an exact sequence

lim−→
i∈Iα

Si : = 0→ Nα → lim−→
i∈Iα

E0
i → lim−→

i∈Iα
E1

i → · · · → lim−→
i∈Iα

En
i → lim−→

i∈Iα
Cokerfn

i → 0. (3.1)

Furthermore, if

S′α : = 0→ Nα → E0
α → E1

α → · · ·
fn
α−→ En

α

is an injective coresolution of Nα, then we have the following exact sequence

S : = 0→M → lim−→
α<β

E0
α → lim−→

α<β

E1
α → · · · → lim−→

α<β

En
α → lim−→

α<β

Cokerfn
α → 0. (3.2)
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(2) Let X be a subclass of ModR such that both X and ⊥1X are closed under direct

limits. If

Si : = 0→Mi → X0
i → X1

i → · · ·
gni−→ Xn

i

is a strong coproper n-X -coresolution of Mi for any i ∈ I, then Nα admits a

partial strong coproper n-X -coresolution

lim−→
i∈Iα

Si : = 0→ Nα → lim−→
i∈Iα

X0
i → lim−→

i∈Iα
X1

i → · · · → lim−→
i∈Iα

Xn
i → lim−→

i∈Iα
Cokergni → 0; (3.3)

furthermore, M admits a partial strong coproper n-X -coresolution

S : = 0→M → lim−→
α<β

Y 0
α → lim−→

α<β

Y 1
α → · · · → lim−→

α<β

Y n
α → lim−→

α<β

Cn
α → 0, (3.4)

where Y j
α = lim−→

i∈Iα
Xj

i and Cn
α = lim−→

i∈Iα
Cokergni for any 0 ≤ j ≤ n.

Proof. We prove it by transfinite induction on |I|. The case for |I| <∞ is clear.

Suppose that |I| = ℵ0 and I = {in |n ∈ N} with N the set of non-negative integers.

We construct a sequence j0, j1, · · · of elements in I by letting j0 = i0, then we choose j1
such that j1 ≥ j0, i1 by the upper directed set I. By induction, we choose jn ≥ jn−1, in.

Let J = {jn | n ∈ N}. Then J is cofinal well-ordered subset of I and

M = lim−→
i∈I

Mi = lim−→
j∈J

Mj.

The assertions follow from Lemma 3.2.

When |I| > ℵ0, using Lemma 3.4, we may write I = ∪α<βIα for some ordinal β and we

have

M = lim−→
i∈I

Mi = lim−→
α<β

Nα,

where Nα = lim−→
i∈Iα

Mi. Since |Iα| < |I| for each α, we get (3.1) and (3.3) by induction

hypothesis.

For (1), there exists a chain map from lim−→
i∈Iα

Si to S′α as follows:

Si :

��

0 // Mi

��

// E0
i

//

��

E1
i

//

��

· · · // En
i

��

// Cokerfn
i

��

// 0

lim−→
i∈Iα

Si :

��

0 // Nα
// lim−→
i∈Iα

E0
i

//

��

lim−→
i∈Iα

E1
i

//

��

· · · // lim−→
i∈Iα

En
i

��

// lim−→
i∈Iα

Cokerfn
i

��

// 0

S′α : 0 // Nα
// E0

α
// E1

α
// · · · // En

α
// Cokerfn

α
// 0.

For (2), note that each Nα admits a strong coproper n-X -coresolution. Thus we get (3.2)

and (3.4) from Lemma 3.2. �
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Let R be a left Noetherian but not left Artinian ring with global dimension at least

two (for example, the polynomial ring in n indeterminates over the ring of integers with

n ≥ 1). Then there exists a flat left R-module M which is not torsionless by [8, Theorem

4.1]. Note that M = lim−→
i∈I

Mi with all Mi finitely generated projective left R-modules by

[28, Thmorem 5.40]. Set X := P(ModR). It is easy to see that each Mi admits a strong

coproper 0-X -coresolution. But M is not torsionless, so M does not admit a (strong)

coproper 0-X -coresolution. On the other hand, we have that R is not left perfect by [1,

Corollary 15.23 and Theorem 28.4], and hence X is not closed under direct limits. This

means that the condition that the class X is closed under direct limits in Theorem 3.5(2)

is necessary.

Proposition 3.6. Let X be a subclass of ModR, and let M ∈ ModR such that M =

lim−→
i∈I

Mi with all Mi in modR. Set X ′ := {all finitely presented submodules of modules in

X }. If both X and ⊥1X are closed under direct limits and each Mi admits a strong

coproper n-X ′-coresolution, then M admits a strong coproper n-X -coresolution.

Proof. Let

0→Mi

φ0
i−→ X0

i

φ1
i−→ X1

i −→ · · ·
φn
i−→ Xn

i (3.5)

be a strong coproper n-X ′-coresolution of Mi for any i ∈ I. Set Kj
i := Cokerφj

i for any

0 ≤ j ≤ n. Then all Kj
i are in

⊥1X ′. Notice that all Kj
i are in modR, they are in ⊥1X by

[14, Lemma 6.6]. Thus (3.5) is a strong coproper n-X -coresolution of Mi for any i ∈ I.

Now the assertion follows from Theorem 3.5(2). �

By [14, Lemma 2.5], we have that any module is a direct limit of its finitely presented

submodules. Thus by Theorem 3.5(2) and Proposition 3.6, we obtain the following result.

Corollary 3.7. Let X be a subclass of ModR such that both X and ⊥1X are closed

under direct limits. If one of the following conditions is satisfied, then X is special

preenveloping in ModR.

(1) Any module in modR admits a special X -preenvelope.

(2) X ′ is special preenveloping in modR, where X ′ = {all finitely presented submod-

ules of modules in X }.

In the following, we list the dual counterparts of Lemma 3.2, Theorem 3.5(2), Proposi-

tion 3.6 and Corollary 3.7. Since their proofs are completely dual to those of the previous

corresponding results, we omit them.

Lemma 3.8. (Dual to Lemma 3.2) Let X be a subclass of ModR, and let κ be an ordinal

number. Suppose that {Mα, fβα : Mα → Mβ | α ≤ β < κ} is a direct system in ModR

and

Sα : = Xn
α

φn
α−→ · · · → X1

α → X0
α

φ0
α−→Mα → 0
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is an exact sequence in ModR with all X i
α in X . If Sα is a strong proper n-X -resolution of

Mα and both X and X⊥1 are closed under direct limits, then these exact sequences Sα are

the members of a direct system indexed by α < κ in such a way that if α ≤ β < κ, the map

from the sequence indexed by α into that indexed by β with the origin map fβα : Mα →Mβ.

In particular, we obtain a partial strong proper n-X -resolution of lim−→
α<κ

Mα:

lim−→
α<κ

Sα : 0→ lim−→
α<κ

Kerφn
α → lim−→

α<κ

Xn
α → · · · → lim−→

α<κ

X1
α → lim−→

α<κ

X0
α → lim−→

α<κ

Mα → 0.

Theorem 3.9. (Dual to Theorem 3.5(2)) Let M ∈ ModR such that M = lim−→
i∈I

Mi with I a

directed index set. Keep the notations as above. Let X be a subclass of ModR such that

both X and X⊥1 are closed under direct limits. If

Si : = Xn
i

gni−→ · · · → X1
i → X0

i →Mi → 0

is a strong proper n-X -resolution of Mi for any i ∈ I, then Nα admits a partial strong

proper n-X -resolution

lim−→
i∈Iα

Si : = 0→ lim−→
i∈Iα

Kergni → lim−→
i∈Iα

X0
i → · · · → lim−→

i∈Iα
X1

i → lim−→
i∈Iα

X0
i → Nα → 0; (5.1)

furthermore, M admits a partial strong proper n-X -resolution

S : = 0→ lim−→
α<β

Cn
α → lim−→

α<β

Y 0
α → · · · → lim−→

α<β

Y 1
α → lim−→

α<β

Y n
α →M → 0, (5.2)

where Y j
α = lim−→

i∈Iα
Xj

i and Cn
α = lim−→

i∈Iα
Kergni for any 0 ≤ j ≤ n.

Note that all finitely presented modules are pure injective over Artin algebras.

Proposition 3.10. (Dual to Proposition 3.6) Let R be an Artin algebra and X be a

subclass of ModR which is closed under direct limits, and let M ∈ ModR such that

M = lim−→
i∈I

Mi with all Mi in modR. Set X ′ := {all finitely presented submodules of modules

in X}. If X⊥1 is closed under direct limits and each Mi admits a strong proper n-X ′-
resolution, then M admits a strong proper n-X -resolution.

Corollary 3.11. (Dual to Corollary 3.7) Let R be an Artin algebra, X be a subclass of

ModR such that both X and X⊥1 are closed under direct limits. If one of the following

conditions is satisfied, then X is special precovering in ModR.

(1) Any module in modR admits a special X -precover.
(2) X ′ is special precovering in modR, where X ′ = {all finitely presented submodules

of modules in X}.

In the final of this section, we raise the following question.

Question 3.12. Is there a dual counterpart of Theorem 3.5(1)?
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4. Applications

In this section, we give some applications of the results obtained in Section 3.

4.1. Relative injective dimension. As an application of Theorem 3.5(1), we get the

following result.

Theorem 4.1. Let X be a subclass of ModR which is coresolving and closed under direct

limits. Then

sup{X -idM |M ∈ ModR} = sup{X -idM |M ∈ modR}.

Proof. It is trivial that sup{X -idM |M ∈ ModR} ≥ sup{X -idM |M ∈ modR}.
Now suppose sup{X -idM | M ∈ modR} = n < ∞. Let M ∈ ModR. Then M =

lim−→
i∈I

Mi with all Mi finitely presented submodules of M by [14, Lemma 2.5]. For any i ∈ I,

we have X -idMi ≤ n. Since X is coresolving, there exists an exact sequence

0→Mi → E0
i → E1

i → · · · → En
i → Xn+1

i → 0

in ModR with all Ej
i injective and Xn+1

i in X by the dual version of [35, Lemma 2.1]

(cf. the dual version of [4, Lemma 3.12]). Keep the notations Nα and Iα as in Theorem

3.5(1). Then we get an exact sequence

0→ Nα → lim−→
i∈Iα

E0
i → lim−→

i∈Iα
E1

i → · · · → lim−→
i∈Iα

En
i → lim−→

i∈Iα
Xn+1

i → 0.

Since X is closed under direct limits, we have that all lim−→
i∈Iα

Ej
i and lim−→

i∈Iα
Xn+1

i are in X ,

and thus X -idNα ≤ n. As above, there exists an exact sequence

0→ Nα → E0
α → E1

α → · · · → En
α → Xn+1

α → 0

in ModR with all Ej
α injective and Xn+1

α in X , which induces an exact sequence

0→M → lim−→
α<β

E0
α → lim−→

α<β

E1
α → · · · → lim−→

α<β

En
α → lim−→

α<β

Xn+1
α → 0

with all lim−→
α<β

Ej
α and lim−→

i∈Iα
Xn+1

α are in X . Thus X -idM ≤ n, and the assertion follows. �

Recall that a module M ∈ ModR is called weak injective [12], or absolutely clean [6],

if Ext1R(A,M) = 0 for any left R-module A admitting a degreewise finite R-projective

resolution. We use WI(ModR) to denote the class of weak injective left R-modules.

Recall from [32] that a module M ∈ ModR is called FP-injective (or absolutely pure) if

Ext1R(A,M) = 0 for any finitely presented left R-module A. If R is a left Noetherian ring,

then the class I(ModR) of injective left R-modules coincides with WI(ModR), and if R

is a left coherent ring, then the class FI(ModR) of FP-injective left R-modules coincides

with WI(ModR).
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Recall that a ring R is called left Π-coherent if any finitely generated torsionless left

R-module is finitely presented, and a module M ∈ ModR is called FGT-injective if

Ext1R(A,M) = 0 for any finitely generated torsionless left R-module A [7, 9]. We use

FT I(ModR) to denote the class of FGT-injective left R-modules.

Let R and S be rings. An (R, S)-bimodule RCS is called semidualizing if the following

conditions are satisfied: (1) RC admits a degreewise finite R-projective resolution and

CS admits a degreewise finite Sop-projective resolution, (2) the homothety maps RRR
Rγ→

HomSop(C,C) and SSS
γS→ HomR(C,C) are isomorphisms, and (3) Ext≥1R (C,C) = 0 =

Ext≥1Sop(C,C). The Bass class BC(R) with respect to C consists of all left R-modules M

satisfying the following conditions: (1) Ext≥1R (C,M) = 0, (2) TorS≥1(C,HomR(C,M)) = 0,

and (3) the canonical evaluation homomorphism θM : C ⊗S HomR(C,M) → M defined

by θM(x ⊗ f) = f(x) for any x ∈ C and f ∈ HomR(C,M) is an isomorphism of left

R-modules [16].

We collect some known facts that we need to use.

Fact 4.2. It holds that

(1) By [6, Lemma 2.7(3)(4)], the class WI(ModR) is coresolving and closed under

direct limits.

(2) If R is a left Π-coherent ring, then the class FT I(ModR) is coresolving and closed

under direct limits by [9, Propositions 1.4 and 2.2].

(3) The class GI(ModR) of Gorenstein injective left R-modules is coresolving by [15,

Theorem 2.6]. If R is a left Artinian ring such that the injective envelope of every

simple left R-module is finitely generated (in particular, if R is an Artin algebra),

then GI(ModR) is closed under direct limits by [20, Theorem 2] and [24, Theorem

2.3].

(4) Recall that a module T ∈ ModR is called tilting if the following conditions are

satisfied: (i) the projective dimension of T is finite; (ii) Ext≥1R (T, T (I)) = 0 for any

set I; and (iii) there exists an exact sequence

0→ R→ T 0 → T 1 → · · · → T n → 0

in ModR with all T i direct summands of direct sums of copies of T . Let T ∈ ModR

be tilting. Then T⊥ is clearly coresolving, and it is closed under direct limits by

[14, Corollary 13.42].

(5) Let PP(R) be the class of pure projective left R-modules, then PP(R)⊥ is core-

solving by [33, Proposition 39]. If R is left coherent, then PP(R)⊥ is closed under

direct limits [33, Theorem 47].

(6) The Bass class BC(R) with respect to a semidualizing bimodule RCS is coresolving

and closed under direct limits [16, Theorem 6.2 and Proposition 4.2(a)].
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Following the usual customary notation, we write

w-idRM :=WI(ModR)-idM, idRM := I(ModR)-idM,

FP-idRM := FI(ModR)-idM, FGT-idRM := FT I(ModR)-idM,

G-idRM := GI(ModR)-idM.

Let M ∈ ModR. If R is a left Noetherian ring, then w-idRM = idRM . If R is a left

coherent ring, then w-idRM = FP-idRM .

By Theorem 4.1 and Fact 4.2, we obtain the following result.

Corollary 4.3. It holds that

(1) sup{w-idRM |M ∈ ModR} = sup{w-idRM |M ∈ modR}. In particular, we have

(a) ([26, Theorem C]) If R is a left Noetherian ring, then

sup{idRM |M ∈ ModR} = sup{idRM |M ∈ modR}.

(b) ([32, Theorem 3.3]) If R is a left coherent ring, then

sup{FP-idRM |M ∈ ModR} = sup{FP-idRM |M ∈ modR}.

(2) If R is a left Π-coherent ring, then

sup{FGT-idRM |M ∈ ModR} = sup{FGT-idRM |M ∈ modR}.

(3) If R is a left Artinian ring such that the injective envelope of every simple left

R-module is finitely generated (in particular, if R is an Artin algebra), then

sup{G-idRM |M ∈ ModR} = sup{G-idRM |M ∈ modR}.

(4) If T ∈ ModR is a tilting module, then

sup{T⊥-idM |M ∈ ModR} = sup{T⊥-idM |M ∈ modR}.

(5) If R is a left coherent ring, then

sup{PP(R)⊥-idM |M ∈ ModR} = sup{PP(R)⊥-idM |M ∈ modR}.

(6) We have

sup{BC(R)-idM |M ∈ ModR} = sup{BC(R)-idM |M ∈ modR}.

Recall from [25] that a module M ∈ ModR is called strong Gorenstein injective,

which is usually called Ding injective [13, 20], if M ∈ FI(ModR)⊥ and there exists a

HomR(FI(ModR),−)-exact exact sequence

0→M → E0 → E1 → · · · → Ei → · · ·

in ModR with all Ei in I(ModR). Recall from [11] that a module N ∈ ModRop is called

Gorenstein flat if there exists an exact sequence

· · · → Fi → · · · → F1 → F0 → F 0 → F 1 → · · · → F i → · · ·
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in ModRop with all F i flat, such that it remains exact after applying the functor −⊗R E

for any E ∈ I(ModR), and N ∼= Im(F0 → F 0). For a module M ∈ ModR, we call

HomZ(M,Q/Z) its character module, where Z is the additive group of integers and Q is

the additive group of rational numbers.

Note that the class SGI(ModR) of strong Gorenstein injective left R-modules is core-

solving by [17, Remark 4.4(4)(b)]. About its direct limit closure, we have the following

result, which extends [20, Theorem 2].

Proposition 4.4. The following statements are equivalent.

(1) SGI(ModR) is closed under direct limits.

(2) GI(ModR) is closed under direct limits.

(3) R is a left Noetherian ring and the character module of any Gorenstein injective

left R-module is Gorenstein flat.

Proof. The equivalence (2)⇐⇒ (3) has been proved in [20, Theorem 2]. It is well known

that FI(ModR) = I(ModR) if R is a left Noetherian ring, thus we have (2)+(3) =⇒ (1).

Now suppose that the assertion (1) holds true, to prove that (2) also holds true, it suf-

fices to prove that R is a left Noetherian ring by the above argument. Since SGI(ModR)

is closed under direct limits by (1), we have that SGI(ModR) is closed under direct

products and pure submodules by [13, Theorem 44] and [30, Theorem 3.5]. Notice that

the direct sum of modules is a pure submodule of the direct product of the modules, so

SGI(ModR) is closed under direct sums.

Let {Ei | i ∈ I} be a family of injective left R-modules. Then ⊕i∈IEi ∈ SGI(ModR),

and thus there exists a HomR(FI(ModR),−)-exact exact sequence

E
φ−→ ⊕i∈IEi → 0

in ModR with E ∈ I(ModR). For each standard embedding λi : Ei �
⊕

i∈I Ei, there

exists fi ∈ HomR(Ei, E) such that φfi = λi. By the universal property of direct sums,

there exists φ′ ∈ HomR(⊕i∈IEi, E) such that φ′λi = fi, and thus

(φφ′)λi = φfi = λi.

It yields that φφ′ is the identity homomorphism of ⊕i∈IEi and φ is a split epimorphism.

So ⊕i∈IEi is a direct summand of E, and hence it is injective. It follows from [5, Theorem

1.1] that R is a left Noetherian ring. �

For a module M ∈ ModR, we use fdRM to denote the flat dimension of M . The

assertion (1) in the following result generalizes [18, Theorem 3.1].

Proposition 4.5. Let M ∈ ModR such that M = lim−→
i∈I

Mi with I a directed index set, and

let X be a subclass of ModR such that both X and ⊥1X are closed under direct limits.

Assume that

0→Mi → X0
i → X1

i → · · · → Xn
i
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is a strong coproper n-X -coresolution of Mi for any i ∈ I. Then M admits a strong

coproper n-X -coresolution

0→M → X0 → X1 → · · · → Xn

such that for any j ≥ 0, it holds that

(1) fdRX
j = sup{fdRX

j
i | i ∈ I}.

(2) w-idRX
j = sup{w-idRX

j
i | i ∈ I}.

In particular, if X is enveloping, then a minimal coproper n-X -coresolution of M as

(3.3) also satisfies (1) and (2).

Proof. (1) Since the functor Tor commutes with direct limits, the assertion follows from

Theorem 3.5.

(2) For any X ∈ ModR and n ≥ 0, it is easy to see that w-idRX = n if and only

if n = inf{i | Ext≥i+1
R (A,X) = 0 for any left R-module A admitting a degreewise finite

R-projective resolution}. Now the assertion follows from Theorem 3.5(2) and [14, Lemma

6.6].

According to (1) and (2), the last assertion follows from Lemma 2.3. �

4.2. Weakly Gorenstein algebras. As an application of Proposition 3.6, we have the

following result.

Proposition 4.6. If R is a right coherent and left perfect ring, then the following state-

ments are equivalent.

(1) GP(modR) = ⊥
RR ∩modR.

(2) GP(ModR) = ⊥
RR.

Proof. The implication (2) =⇒ (1) is clear.

(1) =⇒ (2) Let M ∈ ⊥RR. Then M = lim−→
i∈I

Mi with all Mi finitely presented submodules

of M by [14, Lemma 2.5]. Since R is a right coherent and left perfect ring, then any

projective left R-module has a decomposition as a direct sum of indecomposable projective

submodules by [1, Theorem 27.11]. It follows from [29, Theorem 5] and [22, Corollary

2.7] that any projective left R-module is pure injective. Then ⊥1P(ModR) is closed under

direct limits and

lim←−
i∈I

ExtjR(Mi, R) ∼= ExtjR(lim−→
i∈I

Mi, R) = ExtjR(M,R) = 0

for any j ≥ 1 by [3, Proposition I.10.1]. Then for any i ∈ I and j ≥ 1, we have

ExtjR(Mi, R) = 0, that is, Mi ∈ ⊥RR ∩modR, and hence Mi ∈ GP(modR) by (1). Thus

each Mi admits a strong coproper ∞-P(modR)-coresolution. Since R is left perfect, a

left R-module is flat if and only if it is projective by [1, Theorem 28.4], and so P(ModR)

is closed under direct limits by [23, Proposition 4.4]. It follows from Proposition 3.6 that

M admits a strong coproper ∞-P(ModR)-coresolution and M ∈ GP(ModR). �
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For an Artin algebra R, we use D to denote the usual duality between modR and

modRop. We need the following easy observation.

Lemma 4.7. Let R be an Artin algebra, and let M ∈ modR and M ′ ∈ ModR. Then for

any i ≥ 1, it holds that

ExtiRop(D(M ′),D(M)) ∼= D2ExtiR(M,M ′),

in particular, if M ′ ∈ modR, then

ExtiRop(D(M ′),D(M)) ∼= ExtiR(M,M ′).

Proof. For any M ∈ modR, M ′ ∈ ModR and i ≥ 1, we have

ExtiRop(D(M ′),D(M))

∼= DTorRi (D(M ′),M) (by [14, Lemma 2.16(b)])

∼= D2ExtiR(M,M ′). (by [14, Lemma 2.16(d)])

If M,M ′ ∈ modR, then D2ExtiR(M,M ′) ∼= ExtiR(M,M ′), and thus the latter assertion

follows. �

Recall from [27] that an Artin algebra R is called left weakly Gorenstein if GP(modR) =
⊥
RR ∩ modR. A Gorenstein algebra R (that is, idRR = idRopR < ∞) is left weakly

Gorenstein, but the converse does not holds true in general [19, 27]. In the following

result, we give some equivalent characterizations of weakly Gorenstein algebras, which

generalizes part of [19, Theorem 4.9] (that is, the equivalence (4)⇐⇒ (5) there).

Theorem 4.8. For an Artin algebra R, the following statements are equivalent.

(1) R is left weakly Gorenstein, that is, GP(modR) = ⊥
RR ∩modR.

(2) GP(ModR) = ⊥
RR.

(3) GP(ModR) = ⊥P(ModR).

(4) GI(modRop) = D(RR)⊥ ∩modRop.

(5) GI(ModRop) = D(RR)⊥.

(6) GI(ModRop) = I(ModRop)⊥.

Proof. The equivalence (1) ⇐⇒ (2) follows from Proposition 4.6, and the implication

(5) =⇒ (4) is clear. Since

GP(ModR) ⊆ ⊥P(ModR) ⊆ ⊥RR and GI(ModRop) ⊆ I(ModRop)⊥ ⊆ D(RR)⊥,

we have (2) =⇒ (3) and (5) =⇒ (6).

(3) =⇒ (1) Let M ∈ ⊥RR ∩modR. Then M ∈ ⊥P(ModR) by [32, Theorem 3.2], and

hence M ∈ GP(ModR) ∩modR = GP(modR) by (3).

(4) =⇒ (1) Let M ∈ ⊥RR ∩modR. Then we have

ExtiRop(D(RR),D(M)) ∼= ExtiR(M, RR) = 0
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for any i ≥ 1 by Lemma 4.7, so D(M) ∈ D(RR)⊥ ∩modRop = GI(modRop) by (4). Thus

M ∈ GP(modR) by [15, Theorem 3.6] and [34, Corollary 3.7].

(1) =⇒ (4) Let N ∈ D(RR)⊥ ∩modRop. Then we have

ExtiR(D(N), RR) ∼= ExtiR(D(N),D2(RR)) ∼= ExtiRop(D(RR), N) = 0

for any i ≥ 1 by Lemma 4.7, so D(N) ∈ ⊥RR ∩ modR = GP(modR) by (1). It follows

from [15, Theorem 3.6] and [34, Corollary 3.7] that N ∼= D2(N) ∈ GI(modRop).

(4) =⇒ (5) Let N ∈ D(RR)⊥. Then N = lim−→
i∈I

Ni with all Ni finitely presented submod-

ules of N by [14, Lemma 2.5]. Since

lim−→
i∈I

ExtjRop(D(RR), Ni) ∼= ExtjRop(D(RR), lim−→
i∈I

Ni) = ExtjRop(D(RR), N) = 0

for any j ≥ 1 by [14, Lemma 6.6], we have Ext≥1Rop(D(RR), Ni) = 0, and hence Ni ∈
D(RR)⊥ ∩modRop = GI(modRop) for any i ∈ I by (4). It follows from Fact 4.2(3) that

N ∈ GI(ModRop).

(6) =⇒ (4) Let N ∈ D(RR)⊥ ∩modRop. Then for any i ≥ 1, we have

ExtiR(D(N), RR) ∼= ExtiRop(D(RR),D2(N)) ∼= ExtiRop(D(RR), N) = 0

by Lemma 4.7. It follows from [32, Theorem 3.2] that ExtiR(D(N),P(ModR)) = 0. Then

for any set J , we have

ExtiRop(D(RR)J , N) ∼= ExtiRop(D(RR(J)), N) ∼= ExtiRop(D(RR(J)),D2(N))

∼= D2ExtiR(D(N), RR
(J)) (by Lemma 4.7)

= 0.

Since any modules in I(ModRop) is a direct summand of D(RR)J for some set J , we have

that N ∈ I(ModRop)⊥, and hence N ∈ GI(ModRop) ∩modR = GI(modRop) by (6). �

As a consequence, we obtain the following result.

Corollary 4.9. If R is an Artin algebra with idRR < ∞, then the following statements

are equivalent.

(1) R is Gorenstein.

(2) R is left weakly Gorenstein.

(3) GP(ModR) = ⊥
RR.

(4) GI(ModRop) = D(RR)⊥.

Proof. The assertion (2)⇐⇒ (3)⇐⇒ (4) follows from Theorem 4.8, and the assertion

(1)⇐⇒ (3) follows from [2, Proposition 3.10]. �
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