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Abstract

Let R be a ring and let M be a left R-module such that M = limM; with I a directed
index set. For a class 2 of left R-modules, we construct certain lgéresolution of M from
strong coproper % -coresolutions of all M;. As a consequence, we get that if 2" is core-
solving and closed under direct limits, then the supremum of 2 -injective dimensions of
all left R-modules and that of all finitely presented left R-modules coincide. Some known
results are obtained as corollaries. Moreover, we get some equivalent characterizations of

weakly Gorenstein algebras.

1. Introduction

It is well known that the notion of direct limits is fundamental in homological theory,
which plays a very important role in studying the structure and classification of modules
and rings. For example, any module is a direct limit of its finitely presented submodules,
and any flat module is a direct limit of finitely generated projective modules [28]. These
results provide useful tools for investigating the transfer of certain homological properties
between infinitely generated modules and finitely presented ones. In addition, a ring R is
left Noetherian if and only if any direct limit of injective left R-modules is injective [5],
and a ring R is left coherent if and only if any direct limit of FP-injective left R-modules
is FP-injective [32]. These are partial classical results about direct limits. Recently, many
authors studied certain properties of direct limits in (relative) homological theory, see
[13, 15, 18, 20, 24, 30, 31, 34] and references therein. In particular, it was proved in [18§]

that if R is a left Noetherian ring and M is a left R-module such that M = limM; with
el

I a directed index set, then a (minimal) injective coresolution of M can be constructed

from those of all M;. The aim of this paper is to generalize this result to a much more

general setting and give some applications. This paper is organized as follows.
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In Section 2, some terminology and preliminary results are given. Let R be a ring and

let M be a left R-module such that M = limM; with I a directed index set. In Section 3,
iel
we prove that certain coresolution of M can be constructed from injective coresolutions

of all M;; and if 2" is a class of left R-modules closed under direct limits, then a strong
coproper 2 -coresolution of M can be constructed from those of all M; (Theorem 3.5).
Let Z” be the class of finitely presented submodules of modules in 27, and let M = lim M;
with all M; finitely presented. As a consequence of the above result, we get that if boltelrf Z
and the left 1-orthogonal class of 2 are closed under direct limits and each M, admits a
strong coproper n-2"'-coresolution, where 2" is the class of finitely presented submodules
of modules in 2, then M admits a strong coproper n-% -coresolution (Proposition 3.6).

In Section 4, we give some applications of the results obtained in Section 3. We prove
that if 2 is a class of left R-modules which is coresolving and closed under direct limits,
then the supremum of 2 -injective dimensions of all left R-modules and that of all finitely
presented left R-modules coincide (Theorem 4.1). Some known results are obtained as
corollaries. Finally, we obtain some equivalent characterizations of weakly Gorenstein

algebras (Theorem 4.8).

2. Preliminaries

In this paper, R is an arbitrary associative ring with unit. We use ModR to denote
the class of left R-modules, and use modR to denote the class of finitely presented left
R-modules. Let € be a subclass of ModR. We write

L1¢ .= {M € ModR | Extp(M,C) =0 for any C € ¢},
1% .= {M € ModR | Ext3'(M,C) = 0 for any C € €},
€+ = {M € ModR | Exty,(C, M) = 0 for any C € €},
€+ = {M € ModR | Ext3'(C, M) = 0 for any C € %}.

Definition 2.1. ([10, 11]) Let € C 2 be two subclasses of ModR. A homomorphism
f:D — CinModR with D € ¢ and C € % is called a € -preenvelope of D if Hompg(f, C")
is epic for any C’ € €. A homomorphism f : D — C in ModR is called left minimal if
any endomorphism h : C' — (' is an automorphism whenever f = hf. A %-preenvelope
f: D — C of D is called a €-envelope of D if f is left minimal. A %-preenvelope
f:D — C of Dis called special if f is monic and Cokerf € +1%. The subclass ¥ is said
to be (pre)enveloping in Z if any module in & admits a €-(pre)envelope, and it is said to
be special preenveloping in & if any module in & admits a special €-preenvelope. Dually,

the notions of a (special) € -precover of D and a special precovering subclass are defined.
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By the Wakamatsu lemma (cf. [11, Proposition 7.2.4]), if ¢ is closed under extensions,
then any monic %-envelope of a left R-module M is a special €-preenvelope of M, and
any epic €-cover of a left R-module M is a special @-precover of M.

Let € be a subclass of ModR. The % -injective dimension €-idM of M is defined as

inf{n | there exists an exact sequence
0—-M—=>C"=C'— .- = C" =0

in ModR with all C* € €}, and set ¥-idM = oo if no such integer exists. Recall that
¢ is called coresolving if € contains all injective left R-modules, and % is closed under

extensions and cokernels of monomorphisms. A sequence
S:v- >S5 -85, — 53— ---
in ModR is called Hompg(—, % )-ezact if Homg(S, C) is exact for any C' € €; dually, the

notion of Hompg(%, —)-ezact sequences is defined [11].

Definition 2.2. Let € be a subclass of ModR and n > 0. A module M € ModR is said
to admit a coproper n-% -coresolution if there exists a Hompg(—, ¢)-exact exact sequence

0 Moo Lyor I om (2.1)

in ModR with all C? in €'}, and M is said to admit a coproper co-% -coresolution if M
admits a coproper n-%-coresolution for all n > 0.

A coproper n-%-coresolution of M as in (2.1) is called minimal if all Imf* »— C? are
left minimal. A coproper n-%-coresolution of M as in (2.1) is called strong if all Coker f*

are in 11¢. If (2.1) is a strong coproper n-%-coresolution of M, then
fo 0 fl 1 f2 s n n
0O—-M-—C"——C —---— C" — Cokerf" — 0

is called a partial strong coproper n-€ -coresolution of M.
Dually, the notions of proper co-% -resolutions and (partial) strong proper n-€ -resolutions
are defined.

It is easy to see that (2.1) is a coproper n-%-coresolution of M if and only if each
Imf? > C" is a monic €-preenvelope of Imf?, and that (2.1) is a strong coproper n-%-
coresolution of M if and only if each Im f? — C* is a special €-preenvelope of Im f*.

The following observation might be known.

Lemma 2.3. Let € be an enveloping class of left R-modules and n > 0. If M admits a

coproper n-€ -coresolution
0
0M-I50 =0t = 5 om (2.2)
then M admits a minimal coproper n-€ -coresolution in the following form:

/0 71 12 m
0 MI5o0 o I I om (2.3)
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where C" is a direct summand of C* for any 0 < i < n.

Proof. Since € is an enveloping class, we have that M admits a monic %-envelope
M — C"” by (2.2). Set M! := Cokerf° and M" := Cokerf”°. Then we get an exact

commutative diagram:

0 0
| |
f/() \l/ \l/
0 M c" MY —=0
| |
|
0
0 M o M 0
| |
| |
\ \
M = = ="
| |
| |
\ \
0 0.

By [11, Proposition 6.1.2], the middle column splits (and hence C” is a direct summand of
C?). It follows that the rightmost column splits. Thus we get a € -preenvelope M’ »— C*,

1
which is the composition Mt 2 M < €. Similar to above, we get a monic €-envelope
ft MY — O of M such that C"' is a direct summand of C!. Continuing this

procedure, the assertion follows. U

We write
P(ModR) := the class of projective left R-modules,

P(modR) := the class of finitely generated projective left R-modules,
Z(ModR) := the class of injective left R-modules.

Definition 2.4. ([11])

(1) A module M € ModR is called Gorenstein projective if M € +P(ModR) and M
admits a coproper co-P(ModR)-coresolution.

(2) A module N € ModR® is called Gorenstein injective if N € Z(ModR°)* and N
admits a proper oo-Z(ModR)-resolution.

We write
GP(ModR) := the class of Gorenstein projective left R-modules,

GP(modR) := the class of finitely generated Gorenstein projective left R-modules,
GZ(ModR) := the class of Gorenstein injective right R-modules,

GZ(modR) := the class of finitely generated Gorenstein injective right R-modules.



3. Constructions of coproper coresolutions
We begin with the following lemma.
Lemma 3.1. Let k be a limit ordinal number. Suppose that
Sa:=0— M, — X° — X! ... J& yn

is an exact sequence in ModR for any o < k and {Sa, Fa : Sa = Sg | a < B < K} isa

direct system of exact sequences. If there exists a chain map from limS, to Sy, that is,

a<k
limS,: 0— lim M, — lim X2 — lim X} — -+ — lim X — lim Coker f? — 0
— — — — — —
a<k a<k a<lk a<k a<k a<k
| | | | | |
| | ! | | I
v Y ¥ Y ¥ ¥
: 0 1
Sk : 0 M, X, X, e X7 Coker fI! — 0,

Diagram (3.1)

then {Sa, Fia : Sa = Sp | a < B < Kk} is also a direct system of exact sequences.

Proof. Consider the following commutative diagram:

. 0 1 n n
Sa : 0 — M, X, X, e X7 Coker ff! —= 0
/ /1 /1 /1 /1
/o /o a /o
/ Gra ¥ Ire / | 9o / | 9ha / | Iha / |
/ [a1e%
. . | 4. | . . .
Fro I limSy: 0 lglMa—Tlﬂng—TlinXé—>---—%1@X§—>1@Cokerf§—>0
\\a</{ a<k \ <K \ o<k \ a<Kk a?n
[ [ [ [ [
N i | e \\ | B \\ | \\ P \\ |
<Y Y Ly Y Ny Ny
. 0 1 n n
Sk 0 M, X, X, e X Coker f! — 0,

where Gy, is the colimit map and H, is obtained by assumption. For each a < k, set

F.o := H.,G,. It follows that Fy., = F,3Fp, for any o < 8 < k. As a consequence,
{Sa, Fa : Sa = Sp|a < f < k} is a direct system. O

As a consequence, we obtain the following result, which plays a crucial role in proving
the main result.

Lemma 3.2. Let 2 be a subclass of ModR, and let k be an ordinal number. Suppose
that {M,, fsa : My — Mp | o < B < Kk} is a direct system in ModR and

0 n
PR Pa 0 1 Pa n
Se :=0—-M, =X, = X, = — X

is an exact sequence in ModR with all X! in 2 . If one of the conditions is satisfied:



(1) S, is an injective coresolution of M,,
(2) S, is a strong coproper n-2 -coresolution of M, and both 2" and *' 2" are closed
under direct limits,

then these exact sequences S, are the members of a direct system indexed by o < Kk in
such a way that if o < B < K, the map from the sequence indexed by a into that indexed
by B with the origin map fgo : My — Mpg. In particular, we obtain an evact sequence
limS, : 0 — lim M, — lim X° — lim X} — -+ — lim X” — lim Cokery” — 0.
- — — — — —

a<k a<K a<k a<k a<k a<k

In Case (2), the sequence lim S, is a partial strong coproper n-Z -coresolution of lim M,.

a<k a<k

Proof. We need construct a direct system S = {S,, Fg : S = Sg|a < 8 < k} indexed
by k, where each S, is a coproper n-.2 -coresolution of M, and Fj, is a sequence of maps
(f8ar f8ar -+ > f3,) such that the following diagram

Sa : 0 M, Xg Xé X
| | |
Lfba lfga | fBa | fha I fBa
A Y Y
Sgp : 0 Mg Xg Xé Xg

commutes. In the following, we use transfinite induction on 8 < s to construct Fp, :
Sa = Sp with o < 8 < k.

(i) For the successor case, assume that we have constructed F,, for any o < v < B.
Since Sg is a strong coproper 2 -n-coresolution of Mg, there exists fé BE Xé — Xé 41
for any 0 < ¢ < n, such that the following diagram

SBS 0 A45 .Xg _X% ce ){g
| | !
lFB“FLB fﬂ+1,ﬁ | fg_»,_Lﬁ | fé_'.l”g | f§+1yg
Y Al %
Spt1: 0— Mgy — X, — Xjy — - — X3,
commutes. Let Fpi13 = (fa41,8, f341. f341.8 7+ fhi1p) and Fppia = Fai1pFsa for

any ordinal o < 8. Then we complete the proof for the successor case.

(ii) For the limit case, let § < x be a limit ordinal. Assume that we have constructed
F,, for any a <y < . Now we need construct Fj, for any a < 5. Note that {S,, F}q
Sa = S,|a < v < S} is a direct subsystem of S. We need to find the chain map in
Diagram (3.1).

For Case (1), since X}, is injective, it is clear.

: : _ 0 1 n
For Case (2), we get an exact sequence lim S, and a colimt map Gga = (9sa; 93a: Jgar "+ Ifa)-

a<fB
Set K := Cokery? for any a < 3. Then {K!},<p is also a direct system. Since K, €

112 and 11 2 is closed under direct limits, we have liLn K, € ' 2 and liLn M, — liLn X?
a<p a<p a<pf
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is a special 2 -preenvelope of lim M,. Since K} — X! is a special 2 -preenvelope of K},
a<f
we get that lim K Lo lim X 1'is a special 2 -preenvelope of lim K ! by using an argu-
a<f a<f a<f
ment similar to that as above. Continuing this procedure, we have that li_n} S, is a strong
a<f
coproper n- 2 -coresolution. By using the universal property of li_1>n M., there exists a
a<f
unique hg such that hggse = fsa, and we get Hg = (hg, hY, - , h3) induced by the origin

map hg. Then by Lemma 3.1 and transfinite induction, we get the desired system S. [

Definition 3.3. ([21]) Let /5 be an ordinal number. A set S is called a continuous union
of a family of subsets indexed by ordinals o with a@ < § if for each such a we have a
subset S, C S such that if @ < o’ then S, C S,, and such that if v < 3 is a limit ordinal
then S, = UyeySa.

The following lemma is [14, Lemma 2.14].

Lemma 3.4. If 2 is a class of left R-modules closed under direct limits of well-ordered

chains, then 2 is closed under direct limits.

In Lemma 3.4, if M = liglMi with [ infinite, then I can be written as a continuous
iel
union / = Uy<pl, for some ordinal 3, where each I, is a directed index set with the
order induced by that of I and where |I,| < [I] for each a < B. Set N, := limM;. Then
i€ly
lim NV, = limM;, see [14, Lemma 2.14] and its proof.
a<B el
Our main result is the following theorem.

Theorem 3.5. Let M € ModR such that M = li_H>1MZ- with I a directed index set. Keep
iel
the notations as above.

(1) If
Si:i=0— My — E° = E} - ... 15 g

15 an injective coresolution of M; for any i € I, then we have an exact sequence

imS; : =0 — N, — limE} — limE! — - — IimE" — limCokerf/* — 0.  (3.1)
— — — — —
i€ly 1€1n i€ly 1€l i€1n

Furthermore, if
Sl =0 N, = E° - E! ... 2% pn
18 an injective coresolution of N, then we have the following exact sequence

S:=0— M — limE? - limE! — -+ — IimE"” — limCoker f”" — 0. (3.2)
Y — —_ —
a<f a<f a<f a<f



(2) Let 2 be a subclass of ModR such that both 2~ and 22 are closed under direct
limats. If
Si::O—>MZ~—>X?—>X}—>~--g—?>X{“‘
is a strong coproper n-Z -coresolution of M; for any i € I, then N, admits a

partial strong coproper n-Z -coresolution

limS; : =0 — N, — lim X — lim X} — --- = lim X" — limCokerg! — 0; (3.3)
— = — — =
i€l iel, i€l i€l iel,

furthermore, M admits a partial strong coproper n-Z -coresolution

S:=0— M — limY? - limY,! = --- — limY” — imC” — 0, (3.4)
- - - —
a<f a<f a<p a<pB

where Y = limX,L-j and C?' = limCokerg!" for any 0 < j < n.
- —
i€la =
Proof. We prove it by transfinite induction on |I|. The case for |I| < oo is clear.
Suppose that |I| = Xy and I = {i,,|n € N} with N the set of non-negative integers.
We construct a sequence jg, ji,- -+ of elements in I by letting j, = ig, then we choose j;
such that j; > jg, %1 by the upper directed set I. By induction, we choose j, > jn_1,n-
Let J = {jn | n € N}. Then J is cofinal well-ordered subset of I and
= =
il jet
The assertions follow from Lemma 3.2.

When |I| > Ry, using Lemma 3.4, we may write / = U,<l, for some ordinal § and we

have
M = lim M; = lim N,,
s —
i€l a<f
where N, = lim M;. Since |I,| < || for each a, we get (3.1) and (3.3) by induction
iclq
hypothesis.
For (1), there exists a chain map from lim S; to S;, as follows:
iclq
Si 0— M, E? E} e Er Coker " — 0
| | | !
| ! | !
I A A
¥ Y v Y
lim S; : 0 — N, — lim EY — lim E! — --- — lim E — lim Coker f/* — 0
— — — — —
i€la i€la i€la i€la i€la
| H | | | |
| | | | |
Y Y Y Y Y
S, : 0— N, E? E} fee E? Coker f?! — 0.

For (2), note that each N, admits a strong coproper n-% -coresolution. Thus we get (3.2)
and (3.4) from Lemma 3.2. O
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Let R be a left Noetherian but not left Artinian ring with global dimension at least
two (for example, the polynomial ring in n indeterminates over the ring of integers with
n > 1). Then there exists a flat left R-module M which is not torsionless by [8, Theorem

4.1]. Note that M = limM/; with all M; finitely generated projective left R-modules by
28, Thmorem 5.40)]. SSJI% = P(ModR). It is easy to see that each M; admits a strong
coproper 0-2 -coresolution. But M is not torsionless, so M does not admit a (strong)
coproper 0-Z2 -coresolution. On the other hand, we have that R is not left perfect by [1,
Corollary 15.23 and Theorem 28.4], and hence 2" is not closed under direct limits. This
means that the condition that the class 2" is closed under direct limits in Theorem 3.5(2)

is necessary.

Proposition 3.6. Let 2 be a subclass of ModR, and let M € ModR such that M =

imM; with all M; in modR. Set 2" = {all finitely presented submodules of modules in
iel
X}, If both 2 and ' 2 are closed under direct limits and each M; admits a strong

coproper n-Z"'-coresolution, then M admits a strong coproper n-Z -coresolution.

Proof. Let
W0 $il vl O n
0= M —X, — X, — - — X] (3.5)
be a strong coproper n-2"-coresolution of M; for any i € I. Set Kij = Cokergp{ for any
0 < j <n. Then all Kij are in +1.2"". Notice that all Kf are in modR, they are in +*.2" by

[14, Lemma 6.6]. Thus (3.5) is a strong coproper n-2 -coresolution of M; for any i € I.
Now the assertion follows from Theorem 3.5(2). O

By [14, Lemma 2.5], we have that any module is a direct limit of its finitely presented
submodules. Thus by Theorem 3.5(2) and Proposition 3.6, we obtain the following result.

Corollary 3.7. Let Z be a subclass of ModR such that both 2 and “* 2 are closed
under direct limits. If one of the following conditions is satisfied, then 2 is special

preenveloping in ModR.

(1) Any module in modR admits a special 2 -preenvelope.
(2) X" is special preenveloping in modR, where 2" = {all finitely presented submod-
ules of modules in Z"}.

In the following, we list the dual counterparts of Lemma 3.2, Theorem 3.5(2), Proposi-
tion 3.6 and Corollary 3.7. Since their proofs are completely dual to those of the previous

corresponding results, we omit them.

Lemma 3.8. (Dual to Lemma 3.2) Let X' be a subclass of ModR, and let k be an ordinal
number. Suppose that {My, faa : Mo — Mp | o < < K} is a direct system in ModR
and

Sut= X" XD X0 P 0



10

is an exact sequence in Mod R with all X!, in X. IfS, is a strong proper n-X -resolution of
M, and both X and X' are closed under direct limits, then these exact sequences S, are
the members of a direct system indexed by o < K in such a way that if « < § < K, the map
from the sequence indexed by o into that indexed by 5 with the origin map fgq : My — Msp.

In particular, we obtain a partial strong proper n-X -resolution of lim M,:

a<k

limS, : 0 — lim Keryp” — lim X — -+ — lim X} — lim X2 — lim M, — 0.
— — — — — —

a<k a<k a<k a<k a<k a<lk
Theorem 3.9. (Dual to Theorem 3.5(2)) Let M € ModR such that M = limM; with I a
i€l

directed index set. Keep the notations as above. Let X be a subclass of ModR such that
both X and X+ are closed under direct limits. If

Si;:ng—?>~~—>Xi1%X?—>Mi—>0

s a strong proper n-X -resolution of M; for any i € I, then N, admits a partial strong
proper n-X -resolution

limS; : = 0 — limKerg? — lim X} — -+ — lim X — lim X} — N, — 0; (5.1)
iy — iy — iy
i€ln i€ln i€l i€ln i€ln

furthermore, M admits a partial strong proper n-X -resolution

S:=0—lmC" — limY? — --- = limY,) — lim¥,” — M — 0, (5.2)
—= —= = =
a<p a<p a<f a<p

where YJ = lim X7 and C" = limKerg? for any 0 < j < n.
icln iel,

Note that all finitely presented modules are pure injective over Artin algebras.

Proposition 3.10. (Dual to Proposition 3.6) Let R be an Artin algebra and X be a
subclass of ModR which is closed under direct limits, and let M € ModR such that

M = limM; with all M; in modR. Set X’ = {all finitely presented submodules of modules
el
in X}. If X1 s closed under direct limits and each M; admits a strong proper n-X'-

resolution, then M admits a strong proper n-X -resolution.

Corollary 3.11. (Dual to Corollary 3.7) Let R be an Artin algebra, X be a subclass of
ModR such that both X and X+t are closed under direct limits. If one of the following
conditions is satisfied, then X is special precovering in ModR.

(1) Any module in modR admits a special X -precover.
(2) X' is special precovering in modR, where X' = {all finitely presented submodules
of modules in X'}.

In the final of this section, we raise the following question.

Question 3.12. Is there a dual counterpart of Theorem 3.5(1)7



11

4. Applications
In this section, we give some applications of the results obtained in Section 3.

4.1. Relative injective dimension. As an application of Theorem 3.5(1), we get the

following result.

Theorem 4.1. Let 2" be a subclass of Mod R which is coresolving and closed under direct
limits. Then

sup{Z -idM | M € ModR} = sup{Z -idM | M € modR}.

Proof. 1t is trivial that sup{ Z-idM | M € ModR} > sup{Z-idM | M € modR}.
Now suppose sup{Z-idM | M € modR} = n < oco. Let M € ModR. Then M =
lim M; with all M; finitely presented submodules of M by [14, Lemma 2.5|. For any ¢ € I,
iel
we have 2 -idM; < n. Since 2" is coresolving, there exists an exact sequence

0= M —>E —-E —-.- = E'" X" 50

in ModR with all E/ injective and X" in 2" by the dual version of [35, Lemma 2.1]
(cf. the dual version of [4, Lemma 3.12]). Keep the notations N, and I, as in Theorem
3.5(1). Then we get an exact sequence

0 — Ny — limE - limE! — -+ — ImE" — lim X" — 0.
— — — —
i€ly 1€ly i€ly i€ly

Since 2" is closed under direct limits, we have that all lglEf and 1ig1Xf+1 are in 2,
iclq iclq
and thus 2 -idN, < n. As above, there exists an exact sequence

0 1 1
0—+N,—>E) > E—--—E'"—= X' 50
in ModR with all E injective and X"+ in 2", which induces an exact sequence

0— M —limE? - limE! — - = ImE” — lim X" — 0
— — i iy
a<f a<f a<p a<B

with all lim £, and lim X" are in 2. Thus 27-idM < n, and the assertion follows. [
a<f i€l

Recall that a module M € ModR is called weak injective [12], or absolutely clean [6],
if Exth(A, M) = 0 for any left R-module A admitting a degreewise finite R-projective
resolution. We use WZ(ModR) to denote the class of weak injective left R-modules.
Recall from [32] that a module M € ModR is called FP-injective (or absolutely pure) if
Exty(A, M) = 0 for any finitely presented left R-module A. If R is a left Noetherian ring,
then the class Z(ModR) of injective left R-modules coincides with WZ(ModR), and if R
is a left coherent ring, then the class FZ(ModR) of FP-injective left R-modules coincides
with WZ(ModR).
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Recall that a ring R is called left II-coherent if any finitely generated torsionless left
R-module is finitely presented, and a module M € ModR is called FGT-injective if
Extp(A, M) = 0 for any finitely generated torsionless left R-module A [7, 9]. We use
FTZ(ModR) to denote the class of FGT-injective left R-modules.

Let R and S be rings. An (R, S)-bimodule zCy is called semidualizing if the following
conditions are satisfied: (1) rC admits a degreewise finite R-projective resolution and
Cs admits a degreewise finite S°P-projective resolution, (2) the homothety maps grRg =
Homger (C, C) and ¢Ss 23 Homp(C,C) are isomorphisms, and (3) Ext3'(C,C) = 0 =
Extg., (C,C). The Bass class Bo(R) with respect to C' consists of all left R-modules M
satisfying the following conditions: (1) Ext3'(C, M) = 0, (2) Tor3, (C, Homp(C, M)) = 0,
and (3) the canonical evaluation homomorphism 6y, : C' ®g Homg(C, M) — M defined
by Oy (z @ f) = f(z) for any x € C and f € Hompg(C, M) is an isomorphism of left
R-modules [16].

We collect some known facts that we need to use.

Fact 4.2. It holds that
(1) By [6, Lemma 2.7(3)(4)], the class WZ(ModR) is coresolving and closed under

direct limits.

(2) If R is a left II-coherent ring, then the class F7Z(ModR) is coresolving and closed
under direct limits by [9, Propositions 1.4 and 2.2].

(3) The class GZ(ModR) of Gorenstein injective left R-modules is coresolving by [15,
Theorem 2.6]. If R is a left Artinian ring such that the injective envelope of every
simple left R-module is finitely generated (in particular, if R is an Artin algebra),
then GZ(ModR) is closed under direct limits by [20, Theorem 2] and [24, Theorem
2.3).

(4) Recall that a module 7' € ModR is called tilting if the following conditions are
satisfied: (i) the projective dimension of T is finite; (ii) Extz' (T, 7)) = 0 for any
set I; and (iii) there exists an exact sequence

0—R—=>T° =T = ... =T" =0

in Mod R with all 7% direct summands of direct sums of copies of T. Let T € ModR
be tilting. Then T is clearly coresolving, and it is closed under direct limits by
[14, Corollary 13.42].

(5) Let PP(R) be the class of pure projective left R-modules, then PP(R)* is core-
solving by [33, Proposition 39]. If R is left coherent, then PP(R)* is closed under
direct limits [33, Theorem 47].

(6) The Bass class B¢ (R) with respect to a semidualizing bimodule zCy is coresolving
and closed under direct limits [16, Theorem 6.2 and Proposition 4.2(a)].
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Following the usual customary notation, we write
w-idg M := WI(ModR)-idM, idgM = Z(ModR)-idM,
FP-idgM = FZ(ModR)-idM, FGT-idgM := FTZ(ModR)-idM,
G-idgM := GZ(ModR)-id M.
Let M € ModR. If R is a left Noetherian ring, then w-idgM = idgM. If R is a left

coherent ring, then w-idgM = FP-idg M.
By Theorem 4.1 and Fact 4.2, we obtain the following result.

Corollary 4.3. It holds that
(1) sup{w-idgM | M € ModR} = sup{w-idgM | M € modR}. In particular, we have
(a) ([26, Theorem CJ) If R is a left Noetherian ring, then

sup{idgM | M € ModR} = sup{idgM | M € modR}.
(b) ([32, Theorem 3.3)) If R is a left coherent ring, then
sup{FP-idgM | M € ModR} = sup{FP-idgM | M € modR}.
(2) If R is a left 11-coherent ring, then
sup{FGT-idgM | M € ModR} = sup{FGT-idgM | M € modR}.

(3) If R is a left Artinian ring such that the injective envelope of every simple left
R-module is finitely generated (in particular, if R is an Artin algebra), then

sup{G-idgM | M € ModR} = sup{G-idgM | M € modR}.
(4) If T € ModR is a tilting module, then
sup{T+-4dM | M € ModR} = sup{T*-idM | M € modR}.
(5) If R is a left coherent ring, then
sup{PP(R)*>4dM | M € ModR} = sup{PP(R)*-idM | M € modR}.
(6) We have
sup{Bc(R)-idM | M € ModR} = sup{B¢(R)-idM | M € modR}.

Recall from [25] that a module M € ModR is called strong Gorenstein injective,
which is usually called Ding injective [13, 20], if M € FZ(ModR)* and there exists a
Hompg(FZ(ModR), —)-exact exact sequence

0—-M—E —-FE" —... 5 E — ...

in ModR with all E* in Z(ModR). Recall from [11] that a module N € ModR is called
Gorenstein flat if there exists an exact sequence

RN SN I N O G L ) e A
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in Mod R with all F* flat, such that it remains exact after applying the functor — @ E
for any £ € Z(ModR), and N = Im(F, — F°). For a module M € ModR, we call
Homy(M,Q/Z) its character module, where Z is the additive group of integers and Q is
the additive group of rational numbers.

Note that the class SGZ(ModR) of strong Gorenstein injective left R-modules is core-
solving by [17, Remark 4.4(4)(b)]. About its direct limit closure, we have the following
result, which extends [20, Theorem 2.

Proposition 4.4. The following statements are equivalent.

(1) SGZ(ModR) is closed under direct limits.

(2) GZ(ModR) is closed under direct limits.

(3) R is a left Noetherian ring and the character module of any Gorenstein injective
left R-module is Gorenstein flat.

Proof. The equivalence (2) <= (3) has been proved in [20, Theorem 2]. It is well known
that FZ(ModR) = Z(ModR) if R is a left Noetherian ring, thus we have (2)+(3) = (1).

Now suppose that the assertion (1) holds true, to prove that (2) also holds true, it suf-
fices to prove that R is a left Noetherian ring by the above argument. Since SGZ(ModR)
is closed under direct limits by (1), we have that SGZ(ModR) is closed under direct
products and pure submodules by [13, Theorem 44] and [30, Theorem 3.5]. Notice that
the direct sum of modules is a pure submodule of the direct product of the modules, so
SGZ(ModR) is closed under direct sums.

Let {E; | i € I} be a family of injective left R-modules. Then @®;c;E; € SGZ(ModR),
and thus there exists a Homg(FZ(ModR), —)-exact exact sequence

FE i) @iEIEi —0

in ModR with £ € Z(ModR). For each standard embedding A; : E; — @,.; £;, there
exists f; € Hompg(E;, F) such that ¢f; = A\;. By the universal property of direct sums,
there exists ¢’ € Hompg(®,er E;, E) such that ¢'\; = f;, and thus

()i = ofi = A
It yields that o’ is the identity homomorphism of @;c;E; and ¢ is a split epimorphism.
So Pier By is a direct summand of E, and hence it is injective. It follows from [5, Theorem
1.1] that R is a left Noetherian ring. O

For a module M € ModR, we use fdgM to denote the flat dimension of M. The
assertion (1) in the following result generalizes [18, Theorem 3.1].
Proposition 4.5. Let M € ModR such that M = limM; with I a directed index set, and
iel
let 2 be a subclass of ModR such that both & and ** 2 are closed under direct limits.
Assume that
0— M — X = X} == X"
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is a strong coproper n-% -coresolution of M; for any i € I. Then M admits a strong

coproper n-Z -coresolution

0—+M— X" X — ... 5 X"

such that for any j > 0, it holds that

(1) fdg X’ = sup{fdz X7 | i € I}.

(2) w-idgX? = sup{w-idgX? | i € I}.
In particular, if Z is enveloping, then a minimal coproper n-2 -coresolution of M as
(3.3) also satisfies (1) and (2).

Proof. (1) Since the functor Tor commutes with direct limits, the assertion follows from
Theorem 3.5.

(2) For any X € ModR and n > 0, it is easy to see that w-idgX = n if and only
if n = inf{i | Extz"" (A, X) = 0 for any left R-module A admitting a degreewise finite
R-projective resolution}. Now the assertion follows from Theorem 3.5(2) and [14, Lemma
6.6].

According to (1) and (2), the last assertion follows from Lemma 2.3. O

4.2. Weakly Gorenstein algebras. As an application of Proposition 3.6, we have the
following result.

Proposition 4.6. If R is a right coherent and left perfect ring, then the following state-

ments are equivalent.

(1) GP(modR) = * R N modR.
(2) GP(ModR) = L gR.

Proof. The implication (2) = (1) is clear.

(1) = (2) Let M € +xR. Then M = lim M; with all M; finitely presented submodules
of M by [14, Lemma 2.5]. Since R is azerlight coherent and left perfect ring, then any
projective left R-module has a decomposition as a direct sum of indecomposable projective
submodules by [1, Theorem 27.11]. It follows from [29, Theorem 5] and [22, Corollary
2.7] that any projective left R-module is pure injective. Then 11P(ModR) is closed under
direct limits and

lim Ext},(M;, R) 2 Ext},(lim M;, R) = Ext},(M, R) = 0

i€l il
for any j > 1 by [3, Proposition 1.10.1]. Then for any ¢ € I and j > 1, we have
Ext?,(M;, R) = 0, that is, M; € *xRNmodR, and hence M; € GP(modR) by (1). Thus
each M; admits a strong coproper co-P(modR)-coresolution. Since R is left perfect, a
left R-module is flat if and only if it is projective by [1, Theorem 28.4], and so P(ModR)
is closed under direct limits by [23, Proposition 4.4]. It follows from Proposition 3.6 that
M admits a strong coproper oco-P(ModR)-coresolution and M € GP(ModR). O
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For an Artin algebra R, we use D to denote the usual duality between modR and
modR?. We need the following easy observation.

Lemma 4.7. Let R be an Artin algebra, and let M € modR and M’ € ModR. Then for
any i > 1, it holds that

Extl,, (D(M'),D(M)) = D*Exth,(M, M),
in particular, if M' € modR, then
Extho, (D(M'), D(M)) = Ext’ (M, M').
Proof. For any M € modR, M’ € ModR and ¢ > 1, we have
Exxth, (D(M'), D(M))
=~ DTor; (D(M'), M) (by [14, Lemma 2.16(b)])
=~ D*Ext’ (M, M'). (by [14, Lemma 2.16(d)])

If M, M’ € modR, then D?*Extl(M, M') = Ext’ (M, M’), and thus the latter assertion
follows. O

Recall from [27] that an Artin algebra R is called left weakly Gorenstein if GP(modR) =
LrR N modR. A Gorenstein algebra R (that is, idgR = idgwR < o0) is left weakly
Gorenstein, but the converse does not holds true in general [19, 27]. In the following
result, we give some equivalent characterizations of weakly Gorenstein algebras, which
generalizes part of [19, Theorem 4.9] (that is, the equivalence (4) <= (5) there).

Theorem 4.8. For an Artin algebra R, the following statements are equivalent.

(1) R is left weakly Gorenstein, that is, GP(modR) = * g R N modR.
(2) GP(ModR) = *gR.

(3) GP(ModR) = +P(ModR).
(4)
()
(6)

GZ(modR?) = D(xR)* N modR.
5) GZ(ModR™) = D(zR)*.
6) GI(ModR*?) = Z(ModR*?)".

Proof. The equivalence (1) <= (2) follows from Proposition 4.6, and the implication
(5) = (4) is clear. Since

GP(ModR) C *P(ModR) C *gR and GZ(ModR®) C Z(ModR?)* C D(zR)*,

we have (2) = (3) and (5) = (6).

(3) = (1) Let M € txRNmodR. Then M € +P(ModR) by [32, Theorem 3.2, and
hence M € GP(ModR) N modR = GP(modR) by (3).

(4) = (1) Let M € *gRNmodR. Then we have

Extlo, (D(rR),D(M)) = Ext’ (M, gkR) =0
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for any i > 1 by Lemma 4.7, so D(M) € D(zrR)* N modR” = GZ(modR) by (4). Thus
M € GP(modR) by [15, Theorem 3.6] and [34, Corollary 3.7].
(1) = (4) Let N € D(xR)* NmodR’. Then we have

Ext’%(D(N), gR) = Exthy(D(N),D*(zR)) = Exthe, (D(zR), N) =0

for any i > 1 by Lemma 4.7, so D(N) € 1R N modR = GP(modR) by (1). It follows
from [15, Theorem 3.6] and [34, Corollary 3.7] that N = D?*(N) € GZ(modR).
(4) = (5) Let N € D(zR)*. Then N = lim N; with all N; finitely presented submod-

iel

ules of N by [14, Lemma 2.5]. Since

lim Extd., (D(rR), N;) & Exth, (D(rR), im N;) = Ext}, (D(rR), N) =0

el el

for any j > 1 by [14, Lemma 6.6], we have Extz,,(D(zrR),N;) = 0, and hence N; €
D(zrR)* NmodR?® = GZ(modR) for any i € I by (4). Tt follows from Fact 4.2(3) that
N € GZ(ModR).

(6) = (4) Let N € D(gR)* NmodR°’. Then for any i > 1, we have

Ext (D(N), gR) = Exto,(D(gR), D*(N)) = Extlo, (D(gR), N) = 0
by Lemma 4.7. It follows from [32, Theorem 3.2] that Extz(D(N), P(ModR)) = 0. Then
for any set J, we have
Extlon (D(rR)7, N) 2 Extl, (D(rRY)), N) 2 Extie, (D(rRY)), D*(N))
>~ D?Exty,(D(N), gkRY) (by Lemma 4.7)
=0.

Since any modules in Z(ModR?) is a direct summand of D(zR)’ for some set J, we have
that N € Z(ModR)*, and hence N € GZ(ModR°) N modR = GZ(modR’) by (6). O

As a consequence, we obtain the following result.

Corollary 4.9. If R is an Artin algebra with idgR < oo, then the following statements
are equivalent.

(1) R is Gorenstein.

(2) R is left weakly Gorenstein.
(3) GP(ModR) = *gR.

(4) GZ(ModR?) = D(gR)™*.

Proof. The assertion (2) <= (3) <= (4) follows from Theorem 4.8, and the assertion
(1) <= (3) follows from [2, Proposition 3.10]. O
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