NORMED MODULES AND THE CATEGORIZATION OF LEBESGUE INTEGRATION

YU-ZHE LIU, SHENGDA LIU, ZHAOYONG HUANG*, AND PANYUE ZHOU

Abstract

We explore the assignment of norms to Λ-modules over a finite-dimensional algebra Λ, resulting in the establishment of normed Λ-modules. Our primary contribution lies in constructing a new category $\mathscr{N o r}^{p}$ related to normed modules along with its full subcategory \mathscr{A}^{p}. By examining the objects and morphisms in these categories, we establish a framework for understanding the categorization of Lebesgue integration.

Contents

1. Introduction 2
2. Preliminaries 5
2.1. Categories and limits 5
2.2. $\quad \mathbb{k}$-algebras and their completions 7
2.2.1. \mathbb{k}-algebras 7
2.2.2. Topologies on \mathbb{k}-algebras 8
2.2.3. Completions induced by \mathcal{J}-topologies 10
2.3. The total order of \mathbb{k}-algebras 12
3. Normed \mathbb{k}-algebras 12
3.1. Norms of k_{k}-algebras 12
3.2. Completions of normed \mathbb{k}-algebras 13
3.3. Elementary simple functions 14
4. Normed modules over \mathbb{k}-algebras 16
4.1. Norms of Λ-modules 16
4.2. Completions of normed Λ-modules 19
4.3. $\quad \sigma$-algebras and the elementary simple function set $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$ 20
5. Two categories 22
5.1. The categories $\mathscr{N o r}^{p}$ and \mathscr{A}^{p} 22
5.2. The triple $\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right)$ 23
5.3. $\quad \mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$ is a direct limit 25
6. The \mathscr{A}^{p}-initial object in Nor^{p} 26
6.1. The existence of morphism from $\left.\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right.}\right), \mathbf{1}, \widehat{\gamma} \xi\right)$ 26
6.2. The uniqueness of morphism from $\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}}, \widehat{\gamma}_{\xi}\right)$ 28
6.3. The \mathscr{A}^{p}-initial object in $\mathscr{N o r}^{p}$ 29
7. The categorization of Lebesgue integration 30
8. Applications 32
8.1. Lebesgue integration 32
8.2. Cauchy-Schwarz inequality 34
Acknowledgements 35
References 35
MSC2020: 16G10; 46B99; 46M40.
Keywords: Categorization; Lebesgue integration; Normed modules, Finite-dimensional algebras; Banach spaces.
*Corresponding author.

1. Introduction

Lebesgue integration, introduced by Henri Lebesgue [15], is fundamentally pivotal in the field of mathematical analysis. The process of understanding the Lebesgue's integrability and its application to the real number line typically involves a series of methodical and incremental steps. This journey begins with defining measurable sets and null sets, followed by an exploration of convergence in measure. It then advances through the concepts of step functions and simple functions, along with their convergence sequences, culminating in the meticulous construction of spaces for integrable functions and the validation of consistent integration methods. While this path is comprehensive, it serves as an elaborate gateway to fully grasp the essence of Lebesgue integration, see $[7,12]$ and so on. Indeed, building upon the foundational methods for defining integrals previously mentioned, our exploration extends well beyond traditional boundaries. The versatility and adaptability of these principles lay the groundwork for deriving more specialized forms of integration, designed to address the complex requirements of various fields. This notably includes the development of the Bochner integral [6], which is particularly effective in handling vector-valued functions and proves invaluable in the realm of functional analysis. In a similar vein, this framework also leads to the emergence of the Ito integral [14], a fundamental element in stochastic calculus that provides deep insights into the complex behavior of stochastic processes. These advancements are not merely extensions; they are crucial in bridging the theoretical concepts of integration with their practical applications across diverse domains, reflecting the dynamic interplay between theoretical constructs and their real-world implications.

As the landscape of integration theory expands, so too does the exploration into its algebraic facets, marking a significant evolution in the approach to integration. Algebraic approaches to integration can be traced back at least to Segal's work [20]. Building upon the foundational works of Escardó-Simpson [10] and Freyd [11], Leinster [16] constructed a special category \mathscr{A}^{p}, where p is a real number at least 1 . In this category, objects are triples consisting of a Banach space V, an element v in V with $|v| \leq 1$, and a k-linear map $\delta: V \oplus_{p} V \rightarrow V$ that satisfies $\delta(v, v)=v$. Here, the notation " $V_{1} \oplus_{p} V_{2}$ " represents the direct sum of two normed spaces V_{1} and V_{2}, where the norm is defined as $\left|\left(v_{1}, v_{2}\right)\right|=\left(\frac{1}{2}\left(\left|v_{1}\right|^{p}+\left|v_{2}\right|^{p}\right)\right)^{1 / p}$. Furthermore, Leinster established three significant results as follows:
(1) $\left(L_{p}([0,1]), 1, \gamma\right)$ is the initial object in \mathscr{A}^{p}, where γ is a special \mathbb{k}_{k}-linear map from $L_{p}([0,1]) \oplus_{p} L_{p}([0,1])$ to $L_{p}([0,1])$ (indeed, γ is the map $\gamma_{\frac{1}{2}}$ given in Corollary 8.1);
(2) $(\mathbb{R}, 1, m)$ is an object in \mathscr{A}^{1}, where $m: \mathbb{R} \oplus_{1} \mathbb{R} \rightarrow \mathbb{R}$ sends (x, y) to $\frac{1}{2}(x+y)$;
(3) there exists a unique morphism

$$
H:\left(L_{1}([0,1]), 1, \gamma\right) \rightarrow(\mathbb{R}, 1, m)
$$

in \mathscr{A}^{1},
see [16, Theorem 2.1 and Proposition 2.2]. The map H is a \mathbb{k}-linear map from $L_{1}([0,1])$ to \mathbb{k} that adheres to specific criteria enabling its interpretation as a morphism in the category \mathscr{A}^{1}. Significantly, H establishes a fundamental link between Lebesgue integration on \mathbb{R} and the aforementioned category \mathscr{A}^{p}. Explicitly, for any function f in $L_{1}([0,1])$, the map is defined as

$$
H(f)=\int_{0}^{1} f \mathrm{~d} \mu
$$

where μ denotes the Lebesgue measure on \mathbb{R}. This profound relationship illustrates Lebesgue integrability and integration are not merely abstract constructs; rather, they naturally emerge from the foundational principles of Banach spaces. Consequently, it can be logically inferred that the categorization of Lebesgue integration is inherently connected to, and can be derived from, the categorization of Banach spaces.

Some authors have been trying to characterize calculus by using the category theory, including differential algebras/categories $[1,4,5,13,17,18]$ and integral algebras/categories $[8,9]$. In this paper, we depart from the conventional trajectory and propose a novel approach. We extend the domain of Lebesgue integration beyond the real numbers to the broader framework of normed modules over normed finite-dimensional \mathbb{k}-algebras. At the core of our approach lies the aim to provide a categorical interpretation of traditional analytical methods, thus paving a novel categorical route to the underlying principles of Lebesgue integration. To establish this extended framework, we revisit pivotal results in the category theory and representation theory. These foundational elements enable us to elegantly circumvent traditional methodologies, offering a more direct and algebraically inclined understanding of integrable function spaces and the integration operator. Our exploration requires a foundational grasp of key concepts and conclusions in the category theory, representation theory, and the groundbreaking work of Leinster [16].

Firstly, we introduce functions defined on a finite-dimensional algebra Λ, along with the norm defined on Λ and any Λ-module M. It is pertinent to note that all Λ modules considered in this paper are left Λ-modules. The specifics of these structures are elaborated in Subsections 3.1 and 4.1, respectively. A pivotal motivation for us to introduce normed modules is the pursuit of an integration definition that transcends the conventional reliance on L_{p} spaces. This approach is rooted in the understanding that an equivalent definition of L_{p} spaces can emerge through the integration itself. However, as highlighted by Leinster, the notion of Lebesgue integrals is intrinsically linked to Banach spaces. Consequently, our investigation also necessitates considering the completions of normed finite-dimensional algebras and normed modules, see Subsections 3.2 and 4.2.

Secondly, for a special subset, denoted \mathbb{I}_{Λ}, of Λ, we construct the category $\mathscr{N o r}^{p}$ in Subsection 5.1. Its object has the form (N, v, δ), where N is a normed Λ-module, v is an element in V satisfying $|v| \leq \mu\left(\mathbb{I}_{\Lambda}\right)$, and $\delta: V^{\oplus_{p} 2^{n}} \rightarrow V$ is a Λ-homomorphism sending (v, \ldots, v) to v. The morphism $h:(N, v, \delta) \rightarrow\left(N^{\prime}, v^{\prime}, \delta^{\prime}\right)$ is induced by a special Λ-homomorphism $V \rightarrow V^{\prime}$ satisfying $h \delta=\delta^{\prime}\left(h^{\oplus p^{2}}\right)$. Furthermore, we consider the full subcategory \mathscr{A}^{p} of \mathscr{N} or ${ }^{p}$ where each object (N, v, δ) consists of a Banach Λ-module N, an element $v \in N$, and a Λ-homomorphism $\delta: N^{\oplus} 2^{n} \rightarrow N$.

Thirdly, we investigate the set $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$ of elementary simple functions (a special step function defined on Λ), where τ is a homomorphism between two \mathbb{k}-algebras. We demonstrate its structure as a Λ-module (Lemma 4.8). Consequently, we obtain an object $\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right)$ (Lemma 5.5) in $\mathscr{N o r}^{p}$ and an object $\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma}_{\xi}\right)$ in \mathscr{A}^{p}, where $\widehat{\mathbf{S} \tau\left(\mathbb{I}_{\Lambda}\right)}$ is the completion of $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$ and $\widehat{\gamma}_{\xi}$ is induced by γ_{ξ}.

Fourthly, we prove our main result in Section 6.

Theorem 1.1. (Theorem 6.3 and Remark 6.4) The triple $\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right)$ is an object in $\mathscr{N o r}^{p}$. For any object (N, v, δ) in \mathscr{A}^{p}, there exists a unique morphism

$$
h \in \operatorname{Hom}_{\mathcal{K o r}^{p} p}\left(\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right),(N, v, \delta)\right)
$$

such that the diagram

commutes, where \widehat{h} is given by the completion of $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$.
Furthermore, we construct an object $\left(\mathbb{k}, \mu\left(\mathbb{I}_{\Lambda}\right), m\right)$ in \mathscr{A}^{p}, where $m: \mathbb{k}^{\oplus_{p} 2^{n}} \rightarrow \mathbb{k}$ is a Λ-homomorphism whose definition is given in Section 7. Take $(N, v, \delta)=\left(\mathbb{k}, \mu\left(\mathbb{I}_{\Lambda}\right), m\right)$ in Theorem 1.1, we obtain the following result.

Theorem 1.2. (Theorem 7.6) If $\mathbb{k}=(\mathbb{k},|\cdot|, \preceq)$ is an extension of \mathbb{R}, then there exists a unique Λ-homomorphism $T: \mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right) \rightarrow \mathbb{k}$ such that

$$
T:\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right) \rightarrow\left(\mathbb{k}, \mu\left(\mathbb{I}_{\Lambda}\right), m\right)
$$

is a morphism in $\operatorname{Hom}_{\mathcal{K o r p}^{p}}\left(\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right),\left(\mathbb{k}, \mu\left(\mathbb{I}_{\Lambda}\right), m\right)\right)$ and the diagram

commutes, where \widehat{T} is the unique morphism lying in $\left.\operatorname{Hom}_{\mathscr{A} p}\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma}\right),\left(\mathbb{k}^{\prime}, \mu\left(\mathbb{I}_{\Lambda}\right), m\right)\right)$. Furthermore, we have the following three properties of \widehat{T} by the direct limits $\underline{\underline{\lim } T_{i}}: \widehat{T}=$ $\xrightarrow{\lim } E_{i} \rightarrow \mathbb{k}$ (The definitions of E_{i} and T_{i} are given in Notation 5.3 and Section 7, respectively):
(1) (The formula (7.1)) $\widehat{T}(1)=\mu\left(\mathbb{I}_{\Lambda}\right)$;
(2) (Lemma 7.1) $\widehat{T}: \mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right) \rightarrow \mathbb{k}$ is a homomorphism of Λ-modules;
(3) (Proposition 7.5) $\widehat{T}(|f|) \leq|\widehat{T}(f)|$.

The morphism \widehat{T} provides the categorization for integration, that is,

$$
\begin{equation*}
\int_{\mathbb{I}_{A}} f \mathrm{~d} \mu:=\widehat{T}(f) . \tag{1.1}
\end{equation*}
$$

The above (1), (2) and (3) show that

$$
\begin{gather*}
\int_{\mathbb{I}_{\Lambda}} 1 \mathrm{~d} \mu=\mu\left(\mathbb{I}_{\Lambda}\right), \\
\int_{\mathbb{I}_{\Lambda}}\left(\lambda_{1} \cdot f_{1}+\lambda_{2} \cdot f_{2}\right) \mu=\lambda_{1} \cdot \int_{\mathbb{I}_{\Lambda}} f_{1} \mu+\lambda_{2} \cdot \int_{\mathbb{I}_{\Lambda}} f_{2} \mu\left(\lambda_{1}, \lambda_{2} \in \Lambda\right), \tag{1.2}
\end{gather*}
$$

and

$$
\left|\int_{\mathbb{I}_{\Lambda}} f \mathrm{~d} \mu\right| \leq \int_{\mathbb{I}_{\Lambda}}|f| \mathrm{d} \mu
$$

respectively.
Finally, we provide two applications for our main results in Section 8. In Subsection 8.1, we assume $\mathbb{k}=\mathbb{R},\left(\Lambda, \prec,\|\cdot\|_{\Lambda}\right)=(\mathbb{R}, \leq,|\cdot|), B_{\mathbb{R}}=\{1\}, \mathfrak{n}: B_{\mathbb{R}} \rightarrow\{1\} \subseteq \mathbb{R}^{\geq 0}$,
$\mathbb{I}_{\mathbb{R}}=[0,1], \xi=\frac{1}{2}, \kappa_{0}(x)=\frac{x}{2}, \kappa_{1}(x)=\frac{x+1}{2}$ and $\tau=\mathrm{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}$, and let μ be the Lebesgue measure. Then (1.1) is a Lebesgue integration

$$
\int_{\mathbb{I}_{\mathbb{R}}=[0,1]} f \mathrm{~d} \mu=\int_{0}^{1} f \mathrm{~d} \mu,
$$

and (1.2) shows that Lebesgue integration is \mathbb{R}-linear. This result provides a categorization of Lebesgue integration. In Subsection 8.2, we show that the functor \widehat{T} satisfies the Cauchy-Schwarz inequality.

2. Preliminaries

In this section we recall some concepts in the category theory and representation theory of algebras. These concepts are familiar to algebraists, but may not be as familiar to those in the field of analysts.
2.1. Categories and limits. Recall that a category \mathcal{C} consists of three ingredients: a class of objects, a set $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ of morphisms for any objects X and Y in \mathcal{C}, and the composition $\operatorname{Hom}_{\mathcal{C}}(X, Y) \times \operatorname{Hom}_{\mathcal{C}}(Y, Z) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Z)$, denoted by

$$
(f: X \rightarrow Y, g: Y \rightarrow Z) \mapsto g f: X \rightarrow Z
$$

for any objects X, Y and Z in \mathcal{C}. These ingredients are subject to the following axioms:
(1) the Hom sets are pairwise disjoint;
(2) for any object X, the identity morphism $1_{X}: X \rightarrow X$ in $\operatorname{Hom}_{\mathcal{C}}(X, X)$ exists;
(3) the composition is associative: given morphisms $U \xrightarrow{f} V \xrightarrow{g} W \xrightarrow{h} X$, we have

$$
h(g f)=(h g) f
$$

Next, we review the limits in the category theory.
Definition 2.1 (c.f. [19, Chapter 5, Section 5.2$]$). Let $\mathfrak{I}=(\mathfrak{I}, \preceq)$ be a partially ordered set, and let \mathcal{C} be a category. A direct system in \mathcal{C} over \mathfrak{I} is an ordered pair $\left(\left(M_{i}\right)_{i \in \mathfrak{I}},\left(\varphi_{i j}\right)_{i \prec j}\right)$, where $\left(M_{i}\right)_{i \in \mathfrak{I}}$ is an indexed family of objects in \mathcal{C} and $\left(\varphi_{i j}: M_{i} \rightarrow\right.$ $\left.M_{j}\right)_{i \prec j}$ is an indexed family of morphisms for which $\varphi_{i i}=1_{M_{i}}$ for all i, such that the following diagram

commutes whenever $i \prec j \prec k$. Furthermore, for the above direct system $\left(\left(M_{i}\right)_{i \in \mathcal{I}},\left(\varphi_{i j}\right)_{i \prec j}\right)$, the direct limit (also called inductive limit or colimit) is an object, say $\underset{\longrightarrow}{\lim } M_{i}$, and insertion morphisms $\left(\alpha_{i}: M_{i} \rightarrow \xrightarrow{\lim } M_{i}\right)_{i \in \mathfrak{I}}$ such that
(1) $\alpha_{j} \varphi_{i j}=\alpha_{i}$ whenever $i \preceq j$;
(2) for any object X in \mathcal{C} such that there are given morphisms $f_{i}: M_{i} \rightarrow X$ satisfying $f_{j} \varphi_{i j}=f_{i}$ for all $i \preceq j$, there exists a unique morphism $\theta: \xrightarrow[\longrightarrow]{\lim } M_{i} \rightarrow X$ making
the following diagram

commutes.
Example 2.2. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}^{+}}$be a monotonically increasing sequence of real numbers, and let \mathbb{R} be the partially ordered category (\mathbb{R}, \leq), in which the elements are real numbers and the morphisms are of the form $\leq_{r_{2} r_{1}}: r_{1} \rightarrow r_{2}\left(r_{2} \leq r_{1}\right)$. If $\left\{x_{n}\right\}_{n \in \mathbb{N}^{+}}$has the limit x in analysis, i.e., for any $\epsilon>0$, there exists $N \in \mathbb{N}^{+}$such that $\left|x_{n}-x\right|<\epsilon$ holds for all $n>N$, then $x=\underset{\longrightarrow}{\lim x_{n}}$. Indeed, for any $x^{\prime} \in \mathbb{R}$ such that the morphisms $\left(\alpha_{i}=\leq_{x_{i} x^{\prime}}: x_{i} \rightarrow x^{\prime}\right)_{i \in \mathbb{N}^{+}}$exist, there is a morphism $\theta=\leq_{x x^{\prime}}: x \rightarrow x^{\prime}$ such that the following diagram

commutes. It is clear that the morphism θ is unique in this example. Furthermore, $x \leq x^{\prime}$ holds because if $x^{\prime}<x$ then we can find some x_{t} such that $x_{t}>x^{\prime}$, i.e., $\alpha_{t} \in \operatorname{Hom}_{(\mathbb{R}, \leq)}\left(x^{\prime}, x_{t}\right)=\varnothing$, this is a contradiction.

Definition 2.3 (c.f. [19, Chapter 5 , Section 5.2$]$). Let $\mathfrak{I}=(\mathfrak{I}, \preceq)$ be a partially ordered set, and let \mathcal{C} be a category in this subsection. An inverse system in \mathcal{C} over \mathfrak{I} is an ordered pair $\left(\left(M_{i}\right)_{i \in \mathfrak{I}},\left(\psi_{i j}\right)_{j \prec i}\right)$, where $\left(M_{i}\right)_{i \in \mathfrak{I}}$ is an indexed family of objects in \mathcal{C} and $\left(\psi_{i j}: M_{j} \rightarrow M_{i}\right)_{j<i}$ is an indexed family of morphisms for which $\psi_{i i}=1_{M_{i}}$ for all i, such that the following diagram

commutes whenever $i \prec j \prec k$. Furthermore, for the above direct system $\left(\left(M_{i}\right)_{i \in \mathcal{I}},\left(\psi_{i j}\right)_{j \prec i}\right)$, the inverse limit (also called projective limit or limit) is an object, say ${\underset{L}{i}}_{\leftrightarrows} M_{i}$, and projects morphisms $\left(\alpha_{i}: \lim _{\leftrightarrows} M_{i} \rightarrow M_{i}\right)_{i \in \mathfrak{I}}$ such that
(1) $\psi_{j i} \alpha_{j}=\alpha_{i}$ whenever $i \preceq j$;
(2) for any object X in \mathcal{C} such that there are given morphisms $f_{i}: X \rightarrow M_{i}$ satisfying $\psi_{j i} f_{j}=f_{i}$ for all $i \preceq j$, there exists a unique morphism $\vartheta: X \rightarrow \underline{\longrightarrow}{ }_{l}^{\lim } M_{i}$ making
the following diagram

commutes.
Example 2.4. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}^{+}}$be a monotonically decreasing sequence of real numbers, and let \mathbb{R} be the partially ordered category (\mathbb{R}, \leq). If $\left\{x_{n}\right\}_{n \in \mathbb{N}^{+}}$has the limit x in analysis, then we have $x=\lim _{幺} x_{n}$ by a way similar to that in Example 2.3.
2.2. \mathbb{k}-algebras and their completions. Let \mathbb{k} be a field. In this subsection we recall the definitions of \mathfrak{k}-algebras and the completions of \mathbb{k}-algebras. All concepts in this subsection are parallel to those in [3, Chapter 10, Section 10.1] which extracts some important results about the completions of Abelian groups.

2.2.1. \mathbb{k}-algebras.

Definition 2.5. A \mathbb{k}-algebra A defined over \mathbb{k} is both a ring and a \mathbb{k}-linear space such that

$$
k\left(a a^{\prime}\right)=(k a) a^{\prime}=a\left(k a^{\prime}\right) .
$$

Let e_{1}, \ldots, e_{t} be the complete set of primitive orthogonal idempotents, i.e., any e_{i} is a primitive idempotent and $e_{i} e_{j}=0$ holds for all $i \neq j$. Then A has a decomposition $A=\bigoplus_{i=1}^{t} A e_{i}$, where each direct summand $A e_{i}$ is an indecomposable left A-module. We say A is basic if $A e_{i} \not \neq A e_{j}$ for all $1 \leq i \neq j \leq t$.

Example 2.6. The set $\mathbf{M}_{n}(\mathbb{k})$ of all $n \times n$ matrices over \mathbb{k}, the polynomial ring $\mathfrak{k}\left[x_{1}, \cdots, x_{n}\right]$, and the field \mathbb{k} itself are \mathbb{k}-algebras. Aa \mathbb{k}-algebra Λ is called finitedimensional if its \mathbb{k}-dimension $\operatorname{dim}_{\mathfrak{k}^{k}} \Lambda$, i.e., the dimension of Λ as a \mathbb{k}_{k}-linear space, is finite.

Recall that a quiver is a quadruple $\mathcal{Q}=\left(\mathcal{Q}_{0}, \mathcal{Q}_{1}, \mathfrak{s}, \mathfrak{t}\right)$ where \mathcal{Q}_{0} is the set of vertices, \mathcal{Q}_{1} is the set of arrows, and $\mathfrak{s}, \mathfrak{t}: \mathcal{Q}_{1} \rightarrow \mathcal{Q}_{0}$ are functions respectively sending each arrow to its starting point and ending point. Then any vertex $v \in \mathcal{Q}_{0}$ can be seen as a path on \mathcal{Q} whose length is zero, and any arrow $\alpha \in \mathcal{Q}_{1}$ can be seen as a path on \mathcal{Q} whose length is one. A path \wp of length l, denoted $\ell(\wp)$, is the composition $\alpha_{l} \cdots \alpha_{2} \alpha_{1}$ of arrows $\alpha_{1}, \ldots, \alpha_{l}$, where $\mathfrak{t}\left(\alpha_{i}\right)=\mathfrak{s}\left(\alpha_{i+1}\right)$ for all $1 \leq i<l$. Then, naturally, we define the composition of two paths $\wp_{1}=\alpha_{l} \cdots \alpha_{1}$ and $\wp_{2}=\beta_{\ell} \cdots \beta_{1}$ as:

$$
\wp_{2} \wp_{1}=\beta_{\ell} \cdots \beta_{1} \alpha_{l} \cdots \alpha_{1}
$$

provided that the ending point $\mathfrak{t}\left(\wp_{1}\right)$ of \wp_{1} coincides with the starting point $\mathfrak{s}\left(\wp_{2}\right)$ of \wp_{2}, otherwise (i.e., $\left.\mathfrak{t}\left(\wp_{1}\right) \neq \mathfrak{s}\left(\wp_{2}\right)\right)$, then the composition is defined to be zero. Consequently, let \mathcal{Q}_{l} be the set of all paths of length l. Then $\mathbb{k} \mathcal{Q}:=\operatorname{span}_{\mathbb{k}}\left(\bigcup_{l \geq 0} \mathcal{Q}_{l}\right)$, known as the path algebra of \mathcal{Q}, is a \mathbb{k}-algebra whose multiplication defined as follows:

$$
\mathbb{k}_{\mathfrak{k}} \mathcal{Q} \times \mathbb{k}^{\mathcal{Q}} \rightarrow \mathbb{k}^{\mathcal{Q}} \text { via }\left(k_{1} \wp_{1}, k_{2} \wp_{2}\right) \mapsto\left\{\begin{array}{cl}
k_{1} k_{2} \cdot \wp_{2} \wp_{1}, & \text { if } \mathfrak{t}\left(\wp_{1}\right)=\mathfrak{s}\left(\wp_{2}\right) \\
0, & \text { otherwise }
\end{array}\right.
$$

The following result shows that we can describe all finite-dimensional \mathbb{k}-algebras using quivers.

Theorem 2.7 (Gabriel). For any finite-dimensional \mathbb{k}-algebra A, there is a finite quiver \mathcal{Q}, i.e., the vertex set and arrow set are finite sets, and an admissible ideal ${ }^{1} \mathcal{I}$ of $\mathbb{k}^{\mathcal{Q}}$ such that the module category of A is equivalent to that of $\mathfrak{k} \mathcal{Q} / \mathcal{I}$. Furthermore, if A is basic, we have $A \cong \mathbb{k}^{\mathcal{Q}} / \mathcal{I}$.

Remark 2.8. We provide a remark for the isomorphism $A \cong \mathbb{k} \mathcal{Q} / \mathcal{I}$ given in Theorem 2.7 here: the existence of the quiver \mathcal{Q} is unique if A is basic and \mathcal{I} is admissible; the definition of admissible can be found in [2, Chapter I, Section I.6].
2.2.2. Topologies on \mathfrak{k}-algebras. Now we recall the topologies of \mathfrak{k}-algebras A (not necessarily basic or finite-dimensional). Let $\mathfrak{i}(A)$ be the set of all ideals of A, which forms a partially ordered set $\mathfrak{i}(A)=(\mathfrak{i}(A), \underline{)}$ with the partial order defined by the inclusion. That is, for any $A_{1}, A_{2} \in \mathfrak{i}(A)$, we have

$$
A_{1} \preceq A_{2} \text { if and only if } A_{1} \subseteq A_{2}
$$

Naturally, we have at least one descending chain, denoted by \mathcal{J}, of ideals

$$
A_{0}=A \succeq A_{1} \succeq A_{2} \succeq \cdots
$$

We say a subset U of A satisfies the N-condition, if it meets the following criteria:
(N1) U contains the zero of A;
(N2) there exists some $j \in \mathbb{N}$ such that $U \supseteq A_{j}$.
Furthermore, we denote by $\mathfrak{U}_{A}(0)$ the set of all subsets satisfying the N-condition, which forms a partially ordered set with the partial order " \preceq " given by " \subseteq ".

Lemma 2.9. The set $\mathfrak{U}_{A}(0)$ is a topology defined on A, in other words, it satisfies the following four conditions.
(1) For any $U \in \mathfrak{U}_{A}(0)$, we have $0 \in U$.
(2) $\mathfrak{U}_{A}(0)$ is closed under finite intersection, that is, for any $U_{1}, \ldots, U_{t} \in \mathfrak{U}_{A}(0)$, we have $\bigcap_{1 \leq j \leq t} U_{j} \in \mathfrak{U}_{A}(0)$.
(3) If $U \in \mathfrak{U}_{A}(0)$ and $U \subseteq V \subseteq A$, then $V \in \mathfrak{U}_{A}(0)$.
(4) If $U \in \mathfrak{U}_{A}(0)$, then there is a set $V \in \mathfrak{U}_{A}(0)$ such that $V \subseteq U$ and $U-y:=$ $\{u-y \mid u \in U\} \in \mathfrak{U}_{A}(0)$ for all $y \in V$.

Proof. First, (1) is trivial by the condition (N1).
Second, for arbitrary two subset U_{1} and U_{2}, there are $A_{j_{1}}$ and $A_{j_{2}}$ such that $U_{1} \supseteq A_{j_{1}}$ and $U_{2} \supset A_{j_{2}}$. Then $U_{1} \cap U_{2} \supseteq A_{j_{1}} \cap A_{j_{2}}$. By the definition of A_{j}, we have $A_{j_{1}} \cap A_{j_{2}}=$ $A_{\min \left\{j_{1}, j_{2}\right\}}$, that is,

$$
U_{1} \cap U_{2} \supseteq A_{\min \left\{j_{1}, j_{2}\right\}} .
$$

Since $0 \in U_{1} \cap U_{2}$ trivially, we have $U_{1} \cap U_{2} \in \mathfrak{U}_{A}(0)$. By induction, we obtain (2).
Third, assume $U \in \mathfrak{U}_{A}(0)$ and $U \subseteq V \subseteq A$. By the definition of $\mathfrak{U}_{A}(0)$, we have $0 \in U$ and $U \supseteq A_{j}$ for some j. Thus, $0 \in V$ and $V \supseteq A_{j}$, so we obtain (3).

Finally, for each $U \in \mathfrak{U}_{A}(0)$, we can find V in the following way. There exists an index \jmath such that $U \nsupseteq A_{\jmath-1}$ and $U \supseteq A_{\jmath} \supseteq A_{\jmath+1} \supseteq \cdots$. Take $V=\bigcap_{j \leq \jmath} A_{j}\left(=A_{\jmath} \subseteq U\right)$. For any $y \in V$, we have (N1), that is, $0=y-y \in U-y=\{u-y \mid u \in U\}$ by $y \in V \subseteq U$; and have (N2) since $a=(a+y)-y$ holds for any $a \in V$ and $a+y \in V$. Then we obtain $U-y \in \mathfrak{U}_{A}(0)$, that is, (4) holds.

Definition 2.10. The set $\mathfrak{U}_{A}(0)$ is called the \mathcal{J}-topology of A. Furthermore, we can define open sets on A.

[^0](1) The subset in $\mathfrak{U}_{A}(0)$ is called a neighborhood of 0 . For any $U \in \mathfrak{U}_{A}(0)$, the union $\bigcup_{V} V$ of all subsets V given in Lemma 2.9 (4) is called the interior of U and denote $\bigcup_{V} V$ by U°.
(2) A neighborhood U is called open if $U=U^{\circ}$. An open set O defined on A is one of the following cases:
(a) O equals either A or \varnothing;
(b) O is the intersection of a finite number of open neighborhoods;
(c) O is the union of any number of open neighborhoods.

It induces the definitions of continuous homomorphisms of \mathbb{k}-algebras.
Definition 2.11. Let A_{1} and A_{2} be two \mathbb{k}-algebras, and let \mathcal{J}_{1} and \mathcal{J}_{2} be two descending chains of ideals in A_{1} and A_{2}, respectively. Let $\mathfrak{U}_{A_{1}}(0)$ and $\mathfrak{U}_{A_{2}}(0)$ be the \mathcal{J}_{1}-topology \mathcal{J}_{2}-topology given by \mathcal{J}_{1} and \mathcal{J}_{2}, respectively. A homomorphism $h: A_{1} \rightarrow A_{2}$ of \mathbb{k} algebras is called continuous if the preimage of arbitrary open set on A_{2} is an open set on A_{1}.

Lemma 2.12. Let A be a \mathfrak{k}-algebra with a \mathcal{J}-topology. Then the addition $+: A \times A \rightarrow$ A and each \mathbb{k}-linear transformation $h_{\lambda}: A \rightarrow A$ defined by $a \mapsto \lambda a(\lambda \in A)$ are continuous.

Proof. It is obvious that $\operatorname{id}_{A}=h_{1}: A \rightarrow A$ via $a \mapsto a$ is continuous. The continuity of h_{λ} can be given by id_{A}.

Let $\mathcal{J}=$

$$
A=A_{0} \succeq A_{1} \succeq A_{2} \succeq \cdots
$$

For any open neighborhood U of 0 , its preimage is

$$
+^{-1}(U)=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}+x_{2} \in U\right\}=: \widetilde{U} .
$$

We need show that $\widetilde{U} \in \mathfrak{U}_{A \times A}((0,0))$ and $\widetilde{U}^{\circ}=\widetilde{U}$ in the case for $A \times A$ being a \mathbb{k}_{k}-algebra, where the descending chain, say $\mathcal{J}_{A \times A}$, of $A \times A$ is induced by \mathcal{J} as follows.

$$
A \times A=A_{0} \times A_{0} \succeq A_{1} \times A_{1} \succeq A_{2} \times A_{2} \succeq \cdots
$$

First of all, the zero element of $A \times A$ is $(0,0)$ which satisfies that $0 \in U$ and $0+0=$ $0 \in U$, then $(0,0) \in \widetilde{U}$.

Secondly, since U is a neighborhood of 0 , there exists an ideal A_{j} of \mathcal{J} such that $U \supseteq A_{j}$. Then for any $x_{1}, x_{2} \in A_{j}$, we have $x_{1}+x_{2} \in A_{j} \subseteq U$, that is, $\left(x_{1}, x_{2}\right) \in \widetilde{U}$. It follows that $A_{j} \times A_{j} \subseteq \widetilde{U}$. We obtain $\widetilde{U} \in \mathfrak{U}_{A \times A}((0,0))$.

Thirdly, for any $\left(y_{1}, y_{2}\right) \in \widetilde{U}$, we have $y_{1}+y_{2} \in U$ by the definition of \widetilde{U}, then,

$$
(0,0)=\left(y_{1}-y_{1}, y_{2}-y_{2}\right) \in \widetilde{U}-\left(y_{1}, y_{2}\right)=\left\{\left(x_{1}-y_{1}, x_{2}-y_{2}\right) \mid x_{1}+x_{2} \in U\right\}
$$

that is, (N1) holds. On the other hand, for any $\left(z_{1}, z_{2}\right) \in A_{j} \times A_{j}$, we have

$$
\left(z_{1}, z_{2}\right)=\left(\left(z_{1}+y_{1}\right)-y_{1},\left(z_{2}+y_{2}\right)-y_{2}\right) .
$$

Note that $z_{1}+y_{1}+z_{2}+y_{2}=\left(y_{1}+y_{2}\right)+\left(z_{1}+z_{2}\right)$ is an element lying in $U+\left(z_{1}+z_{2}\right)$. Since U is open, we have

$$
U+\left(z_{1}+z_{2}\right)=U^{\circ}-\left(-\left(z_{1}+z_{2}\right)\right)=\left\{u+\left(z_{1}+z_{2}\right) \mid u \in U\right\} \in \mathfrak{U}_{A}(0)
$$

by Lemma 2.9 (4) and Definition 2.10, that is, $U+\left(z_{1}+z_{2}\right)$ is a set satisfying Lemma 2.9 (4). Then

$$
U^{\circ}=\bigcup_{\substack{V \subseteq U, V \text { satisfies } \\ \text { Lemme } 2.9(4)}} V \supseteq U+\left(z_{1}+z_{2}\right),
$$

and so, we obtain $\left(y_{1}+y_{2}\right)+\left(z_{1}+z_{2}\right) \in U+\left(z_{1}+z_{2}\right) \subseteq U^{\circ}$, that is, $\left(y_{1}+y_{2}\right)+\left(z_{1}+z_{2}\right) \in U$. Thus, $\left(z_{1}, z_{2}\right) \in \widetilde{U}$. It follows that $A_{j} \times A_{j} \subseteq \widetilde{U}-\left(y_{1}, y_{2}\right)$, and thus (N2) holds. Therefore, $\widetilde{U}-\left(y_{1}, y_{2}\right) \in \mathfrak{U}_{A \times A}((0,0))$. In summary, we have that \widetilde{U} satisfies Lemma 2.9 (4), and so, by Definition 2.10 , it is clear that $\widetilde{U}^{\circ}=\widetilde{U}$.

Definition 2.13 (c.f. [3, Chapter 10, page 101]). A topology \mathbb{k}-algebra is a \mathbb{k}-algebra equipped with a topology such that the addition $+: A \times A \rightarrow A$ and each \mathbb{k}-linear transformation $-h_{1}: A \rightarrow A$ via $a \mapsto-a$ are continuous.

The following result is a consequence of Lemma 2.12.
Proposition 2.14. Given an arbitrary \mathfrak{k}-algebra A and its descending chain \mathcal{J} of ideals. Then A becomes a topology \mathfrak{k}-algebra with the \mathcal{J}-topology $\mathfrak{U}_{A}(0)$.

In this paper, we refer to A as a \mathcal{J}-topological \mathbb{k}-algebra.
2.2.3. Completions induced by \mathcal{J}-topologies. Assume that $|\cdot|: \mathbb{k} \rightarrow \mathbb{R}^{\geq 0}$ be a norm defined on the field \mathbb{k} in this subsection, that is, $|\cdot|$ is the map satisfying
(1) $|k|=0$ if and only if $k=0$;
(2) $\left|k_{1} k_{2}\right|=\left|k_{1}\right|\left|k_{2}\right|$ holds for all $k_{1}, k_{2} \in \mathbb{k}$;
(3) and the triangle inequality $\left|k_{1}+k_{2}\right| \leq\left|k_{1}\right|+\left|k_{2}\right|$ holds for all $k_{1}, k_{2} \in \mathbb{k}$.

Then $\left\{\mathfrak{B}_{r}=\{a \in A| | a \mid<r\} \mid r \in \mathbb{R}^{+}\right\}$induces a standard topology $\mathfrak{U}_{\mathrm{k}}(0)$ on \mathbb{k} whose element is called the neighborhood of $0 \in \mathbb{k}$.

Let A be a \mathcal{J}-topological \mathbb{k}_{k}-algebra whose dimension is finite and let $B_{A}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis of A. Then, naturally, we can define the Cauchy sequence by the \mathcal{J}-topology. More precisely, a sequence $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ in A is called a \mathcal{J}-Cauchy sequence if for any U, lying in $\mathfrak{U}_{A}(0)$, containing some subset $\sum_{i=1}^{n} \mathfrak{u}_{i} b_{i}$ of A with $\mathfrak{u}_{i} \in \mathfrak{U}_{\mathrm{k}}(0)(1 \leq i \leq n)$, there is $n \in \mathbb{N}$ such that $x_{s}-x_{t} \in U$ holds for all $s, t \geq n$. Two \mathcal{J}-Cauchy sequences $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ and $\left\{y_{i}\right\}_{i \in \mathbb{N}}$ are called equivalent, denoted by $\left\{x_{i}\right\}_{i \in \mathbb{N}} \sim\left\{y_{i}\right\}_{i \in \mathbb{N}}$, if for any $U \in \mathfrak{U}_{A}(0)$, there is an integer $n \in \mathbb{N}$ such that $x_{i}-y_{i} \in U$ holds for all $i \geq N$. It is easy to see that " \sim " is an equivalence relation. We use $\left[\left\{x_{i}\right\}_{i \in \mathbb{N}}\right]$ to denote the equivalence class containing $\left\{x_{i}\right\}_{i \in \mathbb{N}}$, and use $\mathfrak{C}_{\mathcal{J}}(A)$ to denote the set of all equivalence classes of \mathcal{J}-Cauchy sequences. Then we have three families of A-homomorphisms:
(1) $\left(\varphi_{j i}: A / A_{j} \rightarrow A / A_{i}\right)_{j \geq i}$, where all $\varphi_{j i}$ are naturally induced by $A_{i} \supseteq A_{j}$;
(2) $\left(p_{i}: \mathfrak{C}_{\mathcal{J}}(A) \rightarrow A / A_{i}\right)_{i \in \mathbb{N}}$, where $p_{i}\left(x_{0}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots\right)=x_{i}\left(p_{i}\right.$ is called the i-th projection);
(3) $\left(u_{i}: A / A_{i} \rightarrow \mathfrak{C}_{\mathcal{J}}(A)\right)_{i \in \mathbb{N}}$, where $u_{i}\left(a+A_{i}\right)=(0, \ldots, \stackrel{i-1}{0}, a, \stackrel{i+1}{0}, 0 \ldots)$.

Let \mathcal{X} be the category whose object set is $\left\{A / A_{i} \mid i \in \mathbb{N}\right\} \cup\left\{\mathfrak{C}_{\mathcal{J}}(A)\right\}$ and morphism set is the collection of all A-homomorphisms as above. Then we obtain the following commutative diagram

It follows from the above construction that the following proposition holds.

Proposition 2.15 (c.f. [3, Chapter 10, page 103]). Using the notations as above, we have

$$
\lim _{\leftrightarrows} A / A_{i} \cong \mathfrak{C}_{\mathcal{J}}(A)
$$

We write $\widehat{A}:=\mathfrak{C}_{\mathcal{J}}(A)$ and call it the completion of A. In particular, if $A=\mathbb{k}$, then the descending chain \mathcal{J} :

$$
A_{0}=\mathbb{k} \succeq A_{1}=0
$$

induces a \mathcal{J}-topology

$$
\mathfrak{U}_{A}(0)=\{\text { the neighborhood of } 0\}
$$

of A. In this case, the \mathcal{J}-Cauchy sequence coincides with the usual Cauchy sequence.
Proposition 2.16. Let A be a basic finite-dimensional \mathfrak{k}-algebra and let \mathcal{J} be the descending chain

$$
A_{0}=A=\operatorname{rad}^{0} A \succeq A_{1}=\operatorname{rad} A \succeq A_{2}=\operatorname{rad}^{2} A \succeq \cdots
$$

Then A is complete (in the sense of \mathcal{J}-topology) if and only if \mathfrak{k} is complete.
Proof. Let A be a basic finite-dimensional \mathbb{k}-algebra. Then, by Theorem 2.7, there is a finite quiver \mathcal{Q} and an ideal \mathcal{I} of $\mathbb{k} \mathcal{Q}$ such that

$$
A \cong \mathbb{k} \mathcal{Q} / \mathcal{I}=\bigoplus_{l \in \mathbb{N}} \mathbb{k}^{\mathcal{Q}} \mathcal{Q}_{l}
$$

Thus, up to isomorphism, each element $a \in A$ can be written as $\sum_{j=1}^{n} k_{j} \not \wp_{j}$, where n is the dimension of $A, k_{u} \in \mathbb{k}$ and \wp_{u} is a path on \mathcal{Q}.

Assume that \mathbb{k}_{k} is complete. Since A is finite-dimensional, we have $\operatorname{rad}^{l} A=\operatorname{span}_{\mathbb{k}}\left\{\mathcal{Q}_{i} \mid\right.$ $i \geq l\}$. Thus, $\operatorname{rad}^{L+1} A=0$, where $L=\max _{\wp \in \mathcal{Q} \geq 0} \ell(\wp)$, that is,

$$
\mathcal{J}=\quad A \succeq \operatorname{rad} A \succeq \operatorname{rad}^{2} A \succeq \cdots \operatorname{rad}^{L} A \succeq 0 \succeq 0 \succeq \cdots
$$

Let $\left\{x_{i}=\sum_{j=1}^{n} k_{i j} \wp_{j}\right\}_{i \in \mathbb{N}}$ be a \mathcal{J}-Cauchy sequence in A. Take

$$
U=\left\{\sum_{\ell(\wp)=L} k_{\wp \wp} \mid k_{\wp} \text { lie in some neighborhood in } \mathfrak{U}_{\mathrm{k}}(0)\right\} \quad\left(\supsetneq \operatorname{rad}^{L+1} A=0\right) .
$$

Then, there is $N(U) \in \mathbb{N}$ such that

$$
x_{s}-x_{t}=\sum_{j=1}^{n}\left(k_{s j}-k_{t j}\right) \wp_{j} \in \operatorname{rad}^{L} A \text { holds for all } s, t \geq N(U)
$$

Thus, $k_{s j}-k_{t j}$ lies in some neighborhood in $\mathfrak{U}_{\mathrm{k}}(0)$, and so, for all $i,\left\{k_{i j}\right\}_{i \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{k}. Then it is clear that A is complete.

Conversely, if A is complete, we assume that \mathbb{k}_{k} is not complete, and $\widehat{\mathbb{k}}$ be the completion of \mathbb{k}. Then we have a natural \mathbb{k}-linear embedding $\mathfrak{e}: \mathbb{k} \rightarrow \widehat{\mathbb{k}}$ sending $k \in \mathbb{k}$ to $\left\{k_{i}\right\}_{i \in \mathbb{N}}$, where $k_{1}=k_{2}=\cdots=k$. Then there is a Cauchy sequence $\left\{x_{i}\right\}_{i \in \mathbb{N}} \in \widehat{\mathbb{k}} \backslash \mathfrak{e}(\mathbb{k})$. Consider the sequence $\left\{x_{i} \cdot \wp\right\}_{i \in \mathbb{N}}$ in A, where $\wp \in \operatorname{rad}^{L} A$ is a path of length L. Then $\left\{x_{i} \cdot \wp\right\}_{i \in \mathbb{N}}$ is a \mathcal{J}-Cauchy sequence in A. However, we have $\left\{x_{i} \cdot \wp\right\}_{i \in \mathbb{N}} \in \widehat{A} \backslash A$ in this case, which contradicts that A is complete.
2.3. The total order of \mathbb{k}-algebras. Recall that a field \mathbb{k} equipped with a total order " \preceq " is a ordered field if it satisfies the following four conditions:
(1) for any $a, b \in \mathbb{k}$, either $a \preceq b, b \preceq a$ or $a=b$ holds;
(2) if $a \preceq b, b \preceq c$, then $a \preceq c$;
(3) if $a \preceq b$, then $a+c \preceq b+c$ for all $c \in \mathbb{k}$;
(4) if $a \preceq b$ and $0 \preceq c$, then $a c \preceq b c$.

In order to give the definition of integration defined on finite-dimensional $\mathfrak{l k}$-algebra Λ, we need to assume that \mathbb{k}_{k} is a field with the total order " \preceq ". However, it is well-known that \mathbb{k} might not always be an ordered field, as the case for \mathfrak{k} being the complex field \mathbb{C}. Interestingly, for our purposes, the existence of such a total order is not a prerequisite. We only require that the finite-dimensional \mathbb{k}-algebra involved in our study, encompasses certain partially ordered subsets. Specifically, the subset \mathbb{I}_{Λ} outlined in Subsection 3.3 is sufficient. For the sake of simplicity, we assume that \mathbb{k}_{k} is fully ordered, although this assumption does not sacrifice generality. This simplification aids in our definition of integration within the context of category theory.
Remark 2.17. We provide a remark to show that if \mathbb{k} is total ordered, then any finitedimensional \mathbb{k}-algebra Λ can be endowed with a total order. Let $B_{\Lambda}=\left\{b_{i} \mid 1 \leq i \leq n\right\}$ be a \mathbb{k}-basis of Λ. If B_{Λ} is totally ordered (assuming $b_{i} \preceq b_{j}$ if and only if $i \leq j$), then we can define a total order for Λ as follows.

Step 1. For any two arbitrary elements $a, a^{\prime} \in \Lambda$, we define $a \prec_{p} a^{\prime}$ if and only if $\varphi(a) \prec_{p} \varphi\left(a^{\prime}\right)$, where φ is a map from Λ to $\mathbb{R}^{\geq 0}$ (for example, φ is the norm $\|\cdot\|_{p}$ defined in Section 3).

Step 2. Assume $a=\sum_{i=1}^{m} k_{i} b_{i}$ and $a^{\prime}=\sum_{i=1}^{m} k_{i}^{\prime} b_{i}(0 \leq m \leq n)$ such that $k_{i}=k_{i}^{\prime}$ holds for all $i<m$. If $\varphi(a)=\varphi\left(a^{\prime}\right)$, then we define $a \preceq_{p} a^{\prime}$ if and only if $k_{m} \preceq k_{m}^{\prime}$.

3. Normed \mathbb{k}-ALGEbras

In the sequel, let Λ be a finite-dimensional \mathbb{k}-algebra with a \mathbb{k}-basis $B_{\Lambda}=\left\{b_{i} \mid 1 \leq\right.$ $i \leq n\}$. Then any element $a \in \Lambda$ is of the form $a=\sum_{i=1}^{n} k_{i} b_{i}$. In this section, we define some algebraic structure for Λ.
3.1. Norms of \mathbb{k}-algebras. Take $\mathfrak{n}: B_{\Lambda} \rightarrow \mathbb{R}^{+}$a map from Λ to \mathbb{R}^{+}and, for any $p>1,\|\cdot\|_{p}: \Lambda \rightarrow \mathbb{R}^{\geq 0}$ is the function defined by

$$
\begin{equation*}
\|a\|_{p}=\left\|\sum_{i=1}^{n} k_{i} b_{i}\right\|_{p}:=\left(\left(\left|k_{1}\right| \mathfrak{n}\left(b_{1}\right)\right)^{p}+\cdots+\left(\left|k_{n}\right| \mathfrak{n}\left(b_{n}\right)\right)^{p}\right)^{\frac{1}{p}} \tag{3.1}
\end{equation*}
$$

Proposition 3.1. Any triple $\left(\Lambda, \mathfrak{n},\|\cdot\|_{p}\right)(=\Lambda$ for short) is a normed \mathfrak{k}-linear space.
Proof. First of all, for any $a=\sum_{i=1}^{n} k_{i} b_{i} \in \Lambda$, we have $\|a\|_{p} \geq 0$ because $\mathfrak{n}\left(b_{i}\right)>0$ and $\left|k_{i}\right| \geq 0(1 \leq i \leq n)$. In particular, if $\|a\|_{p}=0$, then

$$
\left(\left|k_{1}\right| \mathfrak{n}\left(b_{1}\right)\right)^{p}+\cdots+\left(\left|k_{n}\right| \mathfrak{n}\left(b_{n}\right)\right)^{p}=0
$$

Since $\left|k_{i}\right| \mathfrak{n}\left(b_{i}\right) \geq 0$ and $\mathfrak{n}\left(b_{i}\right)>0$ hold for all $1 \leq i \leq n$, we obtain $\left|k_{i}\right| \mathfrak{n}\left(b_{i}\right)=0$, and so $k_{i}=0$. Thus, $a=\sum_{i=1}^{n} 0 b_{i}=0$. Then it is easy to see that $\|a\|_{p}=0$ if and only if $a=0$.

Next, for any $k \in \mathbb{k}$ and $a=\sum_{i=1}^{n} k_{i} b_{i} \in \Lambda$, we have

$$
\begin{aligned}
\|k a\|_{p} & =\left\|k\left(k_{1} b_{1}+\cdots+k_{n} b_{n}\right)\right\|_{p} \\
& =\left(\sum_{i=1}^{n}\left(\left|k k_{i}\right| \mathfrak{n}\left(b_{i}\right)\right)^{p}\right)^{\frac{1}{p}}=\left(\sum_{i=1}^{n}|k|^{p}\left(\left|k_{i}\right| \mathfrak{n}\left(b_{i}\right)\right)^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

$$
=|k|\left(\sum_{i=1}^{n}\left(\left|k_{i}\right| \mathfrak{n}\left(b_{i}\right)\right)^{p}\right)^{\frac{1}{p}}=|k| \cdot\|a\|_{p} .
$$

Finally, we prove the triangle inequality $\left\|a+a^{\prime}\right\|_{p} \leq\|a\|_{p}+\left\|a^{\prime}\right\|_{p}$ for arbitrary two elements $a=\sum_{i=1}^{n} k_{i} b_{i}$ and $a^{\prime}=\sum_{i=1}^{n} k_{i}^{\prime} b_{i}$. It can be induced by the discrete Minkowski inequality $\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n} y_{i}^{p}\right)^{\frac{1}{p}} \geq\left(\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{p}\right)^{\frac{1}{p}}$ as follows:

$$
\begin{aligned}
\|a\|_{p}+\left\|a^{\prime}\right\|_{p} & =\left(\sum_{i=1}^{n}\left(\left|k_{i}\right| \mathfrak{n}\left(b_{i}\right)\right)^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}\left(\left|k_{i}^{\prime}\right| \mathfrak{n}\left(b_{i}\right)\right)^{p}\right)^{\frac{1}{p}} \\
& \geq\left(\sum_{i=1}^{n}\left(\left|k_{i}\right| \mathfrak{n}\left(b_{i}\right)+k_{i}^{\prime} \mathfrak{n}\left(b_{i}\right)\right)^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{i=1}^{n}\left(\left|k_{i}+k_{i}^{\prime}\right| \mathfrak{n}\left(b_{i}\right)\right)^{p}\right)^{\frac{1}{p}}=\left\|a+a^{\prime}\right\|_{p} .
\end{aligned}
$$

Therefore, $\left(\Lambda, \mathfrak{n},\|\cdot\|_{p}\right)$ is a normed space.
Definition 3.2. A normed \mathfrak{k}-algebra is a triple $\left(\Lambda, \mathfrak{n},\|\cdot\|_{p}\right)$, where $\mathfrak{n}: B_{\Lambda} \rightarrow \mathbb{R}^{+}$and $\|\cdot\|_{p}: \Lambda \rightarrow \mathbb{R}^{\geq 0}$ are called the normed basis function and norm of Λ, respectively.
3.2. Completions of normed \mathbb{k}-algebras. We can define open neighborhoods $B(0, r)$ of 0 for any normed \mathbb{k}-algebra $\left(\Lambda, \mathfrak{n},\|\cdot\|_{p}\right)$ by

$$
B(0, r):=\left\{a \in \Lambda \mid\|a\|_{p}<r\right\} .
$$

Let $\mathfrak{U}_{\Lambda}^{B}(0)$ be the class of all subsets U of Λ satisfying the following conditions.
(1) U is the intersection of a finite number of $B(0, r)$;
(2) U is the union of any number of $B(0, r)$.

Then $\mathfrak{U}_{\Lambda}^{B}(0)$ is a topology, say $\|\cdot\|_{p}$-topology, defined on Λ, and we can define the Cauchy sequence, say $\|\cdot\|_{p}$-Cauchy sequence, by the above topology.

Recall that Λ has a \mathcal{J}-topology $\mathfrak{U}_{\Lambda}(0)$ given by the descending chain

$$
\Lambda=\operatorname{rad}^{0} \Lambda \succeq \operatorname{rad}^{1} \Lambda \succeq \operatorname{rad}^{2} \Lambda \succeq \cdots .
$$

Thus, we obtain two completions $\widehat{\Lambda}^{B}$ and $\widehat{\Lambda}$ by $\|\cdot\|_{p}$-topology and \mathcal{J}-topology, respectively. The following lemma establishes the relation between $\widehat{\Lambda}^{B}$ and $\widehat{\Lambda}$.
Proposition 3.3. Let $\Lambda=\left(\Lambda, \mathfrak{n},\|\cdot\|_{p}\right)$ be an n-dimensional normed \mathbb{k}-algebra with the \mathcal{J}-topology $\mathfrak{U}_{\Lambda}(0)$ given by $\Lambda=\operatorname{rad}^{0} \Lambda \succeq \operatorname{rad}^{1} \Lambda \succeq \operatorname{rad}^{2} \Lambda \succeq \cdots\left(\|\cdot\|_{p}\right.$ is a norm defined on Λ given in Proposition 3.1). Then $\widehat{\Lambda}^{B}=\widehat{\Lambda}$.
Proof. Similar to Proposition 2.16 we can show that $\widehat{\Lambda}^{B}=\Lambda$ (i.e., Λ is complete) if and only if $\widehat{\mathbb{k}}=\mathbb{k}$. By using Proposition 2.16 again, we have that $\widehat{\Lambda}=\Lambda$ if and only if $\widehat{\mathbb{k}}=\mathbb{k}$. Then $\widehat{\mathbb{k}}=\mathbb{k}$ if and only if $\widehat{\Lambda}^{B}=\Lambda=\widehat{\Lambda}$, Equivalently,

$$
\widehat{\Lambda}^{B}=\left(\widehat{\sum_{i=1}^{n} \mathbb{k} b_{i}}\right)^{B}=\sum_{i=1}^{n} \widehat{\mathbb{k}} b_{i}=\widehat{\sum_{i=1}^{n} \mathbb{k} b_{i}}=\widehat{\Lambda} .
$$

Remark 3.4. (1) Note that the norms defined on A is not unique. In Section 4, we will introduce normed Λ-modules N over any finite-dimensional normed \mathbb{k}-algebra Λ. In this case, we need a homomorphism $\tau: \Lambda \rightarrow \Lambda^{\prime}$ between two finite-dimensional normed \mathbb{k}-algebras Λ and Λ^{\prime}, and the norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ respectively defined on Λ and Λ^{\prime} may not necessarily be the form of $\|\cdot\|_{p}$.
(2) If $A=\mathbb{k}$ and $\mathfrak{n}(1)=1$, then the norm $\|\cdot\|_{p}$ given in Proposition 3.1 is the norm $|\cdot|$, i.e, $\|a\|_{p}=\left(|a|^{p}\right)^{\frac{1}{p}}=|a|$.
3.3. Elementary simple functions. Denote \mathbb{I}_{Λ} by the subset

$$
\left\{\sum_{i=1}^{n} k_{i} b_{i} \mid k_{i} \in \mathbb{I}\right\} \stackrel{1-1}{\longleftrightarrow} \prod_{i=1}^{n}\left(\mathbb{I} \times\left\{b_{i}\right\}\right)
$$

of Λ. A function defined on \mathbb{I}_{Λ} is a map $f: \mathbb{I}_{\Lambda} \rightarrow \mathbb{k}$ from \mathbb{I}_{Λ} to \mathbb{k}. Since $\left(\Lambda, \mathfrak{n},\|\cdot\|_{p}\right)$ is a normed space, Λ is also a topological space induced by the norm $\|\cdot\|_{p}$, and so is \mathbb{I}_{Λ}. Thus, we can define the open set for every subset of Λ, including \mathbb{I}_{Λ}. The function f is called continuous if the preimage of any open subset of \mathfrak{k} is an open set of \mathbb{I}_{Λ}.

An elementary simple function on \mathbb{I}_{Λ} is a finite sum

$$
\sum_{i=1}^{t} k_{i} \mathbf{1}_{I_{i}}
$$

where
(1) for any $1 \leq i \leq t, k_{i} \in \mathbb{k}$;
(2) $I_{i}=I_{i 1} \times \cdots \times I_{i n}$, and, for any $1 \leq j \leq n, I_{i j}$ is a subset of \mathbb{I} which is one of the following forms
(a) $\left(c_{i j}, d_{i j}\right)_{\mathbb{k}}:=\left\{k \in \mathbb{k}_{\mathbf{k}} \mid c_{i j} \prec k \prec d_{i j}\right\}$,
(b) $\left[c_{i j}, d_{i j}\right)_{\mathrm{k}}:=\left\{k \in \mathbb{k} \mid c_{i j} \preceq k \prec d_{i j}\right\}$,
(c) $\left(c_{i j}, d_{i j}\right]_{\mathbb{k}}:=\left\{k \in \mathbb{k} \mid c_{i j} \prec k \preceq d_{i j}\right\}$,
(d) $\left[c_{i j}, d_{i j}\right]_{\mathbb{k}}:=\left\{k \in \mathbb{k} \mid c_{i j} \preceq k \preceq d_{i j}\right\}$,
where $a \preceq c_{i j} \prec d_{i j} \preceq b$;
(3) and $\mathbf{1}_{I_{i}}$ is the function $I_{i} \rightarrow\{1\}$ such that $I_{i} \cap I_{j}=\varnothing$ holds for all $1 \leq i \neq j \leq t$. We denote $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ by the set of all elementary simple functions. Then $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ is a \mathbb{k}-linear space, and $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ induces the direct sum $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)^{\oplus 2^{n}}$ whose element can be seen as the sequence

$$
\left\{f_{\left(\delta_{1}, \ldots, \delta_{n}\right)}\left(\sum_{i=1}^{n} k_{i} b_{i}\right)\right\}_{\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{a, b\} \times \cdots \times\{a, b\}}=: \boldsymbol{f}\left(k_{1}, \ldots, k_{n}\right),
$$

$\sum_{i=1}^{n} k_{i} b_{i}$ is written as $\left(k_{1}, \ldots, k_{n}\right)$ since $\left\{b_{1} \mid 1 \leq i \leq n\right\}=B_{\Lambda}$ is the \mathbb{k}_{k}-basis of Λ. Then we can characterize $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ together with two further pieces of data: the function $\mathbf{1}_{\mathbb{I}_{\Lambda}}: \mathbb{I}_{\Lambda} \rightarrow\{1\}$ (1 is the identity element of \mathbb{k}), and the map

$$
\begin{equation*}
\gamma_{\xi}: \mathbf{S}\left(\mathbb{I}_{\Lambda}\right)^{\oplus 2^{n}} \rightarrow \mathbf{S}\left(\mathbb{I}_{\Lambda}\right) \tag{3.2}
\end{equation*}
$$

say juxtaposition map, sending \boldsymbol{f} to the function

$$
\begin{gathered}
\gamma_{\xi}(\boldsymbol{f})\left(k_{1}, \ldots, k_{n}\right)=\sum_{\left(\delta_{1}, \ldots, \delta_{n}\right)} \mathbf{1}_{\kappa_{\delta_{1}}(\mathbb{I}) \times \cdots \times \kappa_{\delta_{n}}(\mathbb{I})} \cdot f_{\left(\delta_{1}, \ldots, \delta_{n}\right)}\left(\kappa_{\delta_{1}}^{-1}\left(k_{1}\right), \ldots, \kappa_{\delta_{n}}^{-1}\left(k_{n}\right)\right), \\
\left(k_{1} \neq \xi, \ldots, k_{n} \neq \xi\right),
\end{gathered}
$$

where ξ is an element with $a \prec \xi \prec b$ such that the order preserving bijections

$$
\kappa_{a}: \mathbb{I} \rightarrow[a, \xi]_{\mathrm{k}} \text { and } \kappa_{b}: \mathbb{I} \rightarrow[\xi, b]_{\mathrm{k}}
$$

exist.
Example 3.5. (1) Take Λ is the \mathbb{k}-algebra whose dimension is 2 , and assume that basis of Λ is $\left\{b_{1}, b_{2}\right\}$. Then $\mathbb{I}_{\Lambda} \cong_{\mathfrak{k}}[a, b]_{\mathbb{k}} b_{1} \times[a, b]_{\mathbb{k}} b_{2}$.

For any element

$$
f=\left(f_{(a, a)}, f_{(b, a)}, f_{(a, b)}, f_{(b, b)}\right) \in \mathbf{S}\left(\mathbb{I}_{\Lambda}\right)^{\oplus 4}
$$

where $f_{\left(\delta_{1}, \delta_{2}\right)}: \mathbb{I}_{\Lambda} \rightarrow \mathbb{k}_{\mathrm{k}}$ is a function in $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ sending each $k_{1} b_{1}+k_{2} b_{2}$ to the element $f_{\left(\delta_{1}, \delta_{2}\right)}\left(k_{1}, k_{2}\right)$ in $\mathbb{k},\left(\delta_{1}, \delta_{2}\right) \in\{a, b\} \times\{a, b\}=\{(a, a),(b, a),(a, b),(b, b)\}, \gamma_{\xi}$ juxtapose $f_{(a, a)}, f_{(b, a)}, f_{(a, b)}$ and $f_{(b, b)}$ into a new function

$$
\gamma_{\xi}\left(f_{(a, a)}, f_{(b, a)}, f_{(a, b)}, f_{(b, b)}\right)\left(k_{1}, k_{2}\right)=\tilde{f}_{(a, a)}\left(k_{1}, k_{2}\right)+\tilde{f}_{(b, a)}\left(k_{1}, k_{2}\right)+\tilde{f}_{(a, b)}\left(k_{1}, k_{2}\right)+\tilde{f}_{(b, b)}\left(k_{1}, k_{2}\right)
$$

as shown in Figure 3.1, where

$$
\begin{aligned}
& \tilde{f}_{(a, a)}\left(k_{1}, k_{2}\right)=\mathbf{1}_{[a, \xi) \times[a, \xi)} \cdot f_{(a, a)}\left(\kappa_{a}^{-1}\left(k_{1}\right), \kappa_{a}^{-1}\left(k_{2}\right)\right), \\
& \tilde{f}_{(b, a)}\left(k_{1}, k_{2}\right)=\mathbf{1}_{(\xi, b] \times[a, \xi)} \cdot f_{(b, a)}\left(\kappa_{b}^{-1}\left(k_{1}\right), \kappa_{a}^{-1}\left(k_{2}\right)\right), \\
& \tilde{f}_{(a, b)}\left(k_{1}, k_{2}\right)=\mathbf{1}_{[a, \xi) \times(\xi, b]} \cdot f_{(a, b)}\left(\kappa_{a}^{-1}\left(k_{1}\right), \kappa_{b}^{-1}\left(k_{2}\right)\right), \\
& \tilde{f}_{(b, b)}\left(k_{1}, k_{2}\right)=\mathbf{1}_{(\xi, b] \times(\xi, b]} \cdot f_{(b, b)}\left(\kappa_{b}^{-1}\left(k_{1}\right), \kappa_{b}^{-1}\left(k_{2}\right)\right) .
\end{aligned}
$$

Figure 3.1. Juxtaposition map
(2) This example is used to establish the relation between Banach space and Lebesgue intersections in [16]. Take $\mathbb{k}=\mathbb{R}, \mathbb{I}=[0,1], \xi=\frac{1}{2}, \Lambda=\mathbb{R}$ and the order preserving bijections $\kappa_{0}: \mathbb{I}=[0,1] \rightarrow \mathbb{k}=\mathbb{R}$ and $\kappa_{1}: \mathbb{I}=[0,1] \rightarrow \mathbb{k}=\mathbb{R}$ are given by $x \mapsto \frac{x}{2}$ and $\frac{1+x}{2}$, respectively. Then $\mathbf{S}\left(\mathbb{I}_{\mathbb{R}}\right)=\mathbf{S}([0,1])$ is a normed space together with two further pieces of data: the function $\mathbf{1}_{[0,1]}:[0,1] \rightarrow\{1\}$ and the juxtaposition map

$$
\gamma_{\frac{1}{2}}: \mathbf{S}([0,1]) \oplus \mathbf{S}([0,1]) \rightarrow \mathbf{S}([0,1])
$$

sending $\left(f_{1}, f_{2}\right)$ to the following function

$$
\gamma_{\frac{1}{2}}\left(f_{1}, f_{2}\right)(x)=\mathbf{1}_{\kappa_{0}([0,1))} \cdot f_{1}\left(\kappa_{0}^{-1}(x)\right)+\mathbf{1}_{\kappa_{1}((0,1])} \cdot f_{1}\left(\kappa_{1}^{-1}(x)\right)
$$

$$
= \begin{cases}f_{1}(2 x) & x \in \kappa_{0}([0,1))=\left[0, \frac{1}{2}\right) \\ f_{2}(2 x-1) & x \in \kappa_{1}((0,1])=\left(\frac{1}{2}, 1\right]\end{cases}
$$

Lemma 3.6. The map γ_{ξ} is a \mathbb{k}-linear map.
Proof. Take $a, b \in \mathbb{k}, f, g \in \mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ and let $\left(k_{i}\right)_{i}, \mathbf{1}$ and $\left(\delta_{i}\right)_{i}$ be the element $\left(k_{1}, \ldots, k_{n}\right)$ in $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)^{\oplus 2^{n}}$, the identity function $\mathbf{1}_{\kappa_{\delta_{1}}(\mathbb{I}) \times \cdots \times \kappa_{\delta_{n}}(\mathbb{I})}$ and the n-multiple $\left(\delta_{1} \times \cdots \times \delta_{n}\right)$, respectively. Then

$$
\begin{aligned}
\gamma_{\xi}(a f+b g)\left(\left(k_{i}\right)_{i}\right) & =\sum_{\left(\delta_{i}\right)_{i}} \mathbf{1} \cdot(a f+b g)_{\left(\delta_{i}\right)_{i}}\left(\left(\kappa_{\delta_{i}}^{-1}\left(k_{i}\right)\right)_{i}\right) \\
& =\sum_{\left(\delta_{i}\right)_{i}}\left(\mathbf{1} \cdot a f_{\left(\delta_{i}\right)_{i}}\left(\left(\kappa_{\delta_{i}}^{-1}\left(k_{i}\right)\right)_{i}\right)+\mathbf{1} \cdot b g_{\left(\delta_{i}\right)_{i}}\left(\left(\kappa_{\delta_{i}}^{-1}\left(k_{i}\right)\right)_{i}\right)\right) \\
& =a \sum_{\left(\delta_{i}\right)_{i}} \mathbf{1} \cdot f_{\left(\delta_{i}\right)_{i}}\left(\left(\kappa_{\delta_{i}}^{-1}\left(k_{i}\right)\right)_{i}\right)+b \sum_{\left(\delta_{i}\right)_{i}} \mathbf{1} \cdot g_{\left(\delta_{i}\right)_{i}}\left(\left(\kappa_{\delta_{i}}^{-1}\left(k_{i}\right)\right)_{i}\right) \\
& =a \gamma_{\xi}(f)\left(\left(k_{i}\right)_{i}\right)+b \gamma_{\xi}(g)\left(\left(k_{i}\right)_{i}\right) .
\end{aligned}
$$

Thus, γ_{ξ} is a \mathbb{k}-linear map.
Example 3.7. Take $\mathbb{k}=\mathbb{R}, \mathbb{I}=[0,1], \xi=\frac{1}{2}, \Lambda=\mathbb{R}$ and the order preserving bijections $\kappa_{0}: \mathbb{I}=[0,1] \rightarrow \mathbb{k}=\mathbb{R}$ and $\kappa_{1}: \mathbb{I}=[0,1] \rightarrow \mathbb{k}=\mathbb{R}$ are given by $x \mapsto \frac{x}{2}$ and $\frac{x+1}{2}$, respectively. Then $\mathbf{S}\left(\mathbb{I}_{\mathbb{R}}\right)=\mathbf{S}([0,1])$ is a normed space together with two further pieces of data: the function $\mathbf{1}_{[0,1]}:[0,1] \rightarrow\{1\}$ and the juxtaposition map

$$
\gamma_{\frac{1}{2}}: \mathbf{S}([0,1]) \oplus \mathbf{S}([0,1]) \rightarrow \mathbf{S}([0,1])
$$

sending $\left(f_{1}, f_{2}\right)$ to the following function

$$
\begin{aligned}
\gamma_{\frac{1}{2}}\left(f_{1}, f_{2}\right)(x) & =\mathbf{1}_{\kappa_{0}([0,1])} \cdot f_{1}\left(\kappa_{0}^{-1}(x)\right)+\mathbf{1}_{\kappa_{1}([0,1])} \cdot f_{1}\left(\kappa_{1}^{-1}(x)\right) \\
& = \begin{cases}f_{1}(2 x) & x \in \kappa_{0}([0,1])=\left[0, \frac{1}{2}\right) ; \\
f_{2}(2 x-1) & x \in \kappa_{1}([0,1])=\left(\frac{1}{2}, 1\right] .\end{cases}
\end{aligned}
$$

4. Normed modules over \mathbb{k}-ALGEbras

Let \mathbb{I} be a subset of the field $\mathbb{k}=(\mathbb{k}, \preceq)$ with the totally ordered " \preceq ". Then \mathbb{I} is also a total ordered set. For simplicity, we denote by $[x, y]_{\mathbb{k}}$ the set of all elements $k \in \mathbb{k}^{2}$ with $x \preceq k \preceq y$ in our paper, that is,

$$
[x, y]_{\mathfrak{k}}:=\{k \in \mathbb{k} \mid x \preceq k \preceq y\} .
$$

In particular, if $x=y$ then $[x, y]_{\mathrm{k}}=\{x\}=\{y\}$ is a set containing only one element.
In our paper, assume that \mathbb{k} and $[a, b]_{\mathbb{k}}$ are infinite sets and consider only the case for $\mathbb{I}=[a, b]_{\mathbb{k}}$ with $a \prec b$ such that there exists an element ξ with $a \prec \xi \prec b$ such that the order preserving bijections $\kappa_{a}: \mathbb{I} \rightarrow[a, \xi]_{\mathbb{k}}$ and $\kappa_{b}: \mathbb{I} \rightarrow[\xi, b]_{\mathbb{k}}$ exist (for example, the case of the cardinal number of \mathbb{I} to be either \aleph_{0} or \aleph_{1}). In this section, we introduce the category $\mathscr{N o r}^{p}$, which is used to explore the categorization of integration.
4.1. Norms of Λ-modules. Recall that a left A-module ($=A$-module for short) over a \mathbb{K}_{k}-algebra A is a \mathbb{k}^{k}-linear space V with a \mathbb{k}-linear map $h: A \rightarrow \operatorname{End}_{\mathrm{k}} V$ sending a to h_{a}. Thus, h provides a right action $A \times V \rightarrow V,(a, v) \mapsto v a:=h_{a}(v)$ which satisfies the following properties:
(1) $a\left(v+v^{\prime}\right)=a v+a v^{\prime}$ for any $v, v^{\prime} \in V$ and $a \in A$;
(2) $\left(a+a^{\prime}\right) v=a v+a^{\prime} v$ for any $v \in V$ and $a, a^{\prime} \in A$;
(3) $a^{\prime}(a v)=\left(a^{\prime} a\right) v$ for any $v \in V$ and $a, a^{\prime} \in A$;
(4) $1 v=v$ for any $v \in V$;
(5) $(k a) v=k(a v)=a(k v)$ for any $v \in V, a \in A$ and $k \in \mathbb{k}$.

Take $A=\Lambda$ is the normed space with whose norm $\|\cdot\|_{p}: \Lambda \rightarrow \mathbb{R}^{+}$given by (3.1), where the \mathbb{k}-basis of Λ is $B_{\Lambda}=\left\{b_{i} \mid 1 \leq i \leq n=\operatorname{dim}_{\mathbb{k}} \Lambda\right\}$.
Definition 4.1. Let $\tau: \Lambda \rightarrow \mathbb{k}$ be a homomorphism between two normed \mathbb{k}-algebras $\left(\Lambda,\|\cdot\|_{p}\right)$ and $(\mathbb{k},|\cdot|)$. A τ-normed Λ-module is a Λ-module M with a norm $\|\cdot\|: M \rightarrow$ $\mathbb{R}^{\geq 0}$ such that

$$
\begin{equation*}
\|a m\|=|\tau(a)| \cdot\|m\| \text { holds for all } a \in \mathbb{k} \text { and } m \in M \tag{4.1}
\end{equation*}
$$

Thus, each normed Λ-module can be seen as a triple $(M, h,\|\cdot\|)$ of the \mathbb{k}-linear space M, the \mathbb{k}-linear map $h: M \rightarrow \operatorname{End}_{\mathbb{k}} M$ and $\|\cdot\|: M \rightarrow \mathbb{R} \geq 0$ a norm.

The norms of Λ-modules yield that the following fact.

Fact 4.2.

(1) Note that $\|\cdot\|_{p}$ defined by (3.1) is the norm of Λ as a \mathbb{k}-linear space. It is easy to see that Λ is also a left Λ-module, say regular module, where the scalar multiplication is given by the multiplication $\Lambda \times \Lambda \rightarrow \Lambda,(a, x) \mapsto a x$ of Λ as a finite-dimensional \mathbb{k}-algebra. Thus, it is natural to ask whether $\|\cdot\|_{p}$ is a norm of Λ as a Λ-module. Indeed, the norm of Λ as a finite-dimensional \mathbb{k}-algebra may not be equal to the norm $\|\cdot\|$ of Λ as a regular module. However, if Λ as the left Λ-module defined by

$$
\begin{equation*}
\Lambda \times \Lambda \rightarrow \Lambda,(a, x) \mapsto a \star x:=\tau(a) x \tag{4.2}
\end{equation*}
$$

where $\tau(a) x$ is defined by the scalar multiplication of Λ as the $\mathbb{k}_{\text {-linear space }}$ ${ }_{\mathrm{k}} \Lambda$, then, for any $x=\sum_{i=1}^{n} k_{i} b_{i} \in \Lambda$, we obtain

$$
\begin{aligned}
\|a \star x\|_{p} & =\left\|\tau(a) \sum_{i=1}^{n} k_{i} b_{i}\right\|_{p}=\left(\sum_{i=1}^{n}\left|\tau(a) k_{i}\right|^{p} \mathfrak{n}\left(b_{i}\right)^{p}\right)^{\frac{1}{p}} \\
& =|\tau(a)|\left(\sum_{i=1}^{n}\left|k_{i}\right|^{p} \mathfrak{n}\left(b_{i}\right)^{p}\right)^{\frac{1}{p}}=|\tau(a)|\|x\|_{p} .
\end{aligned}
$$

To be more precise, Λ is a (Λ, Λ)-bimodule with two norms, and Λ is a normed module satisfying Definition 4.1 when it is considered as a module defined in (4.2).
(2) For any Λ-homomorphism $f: M \rightarrow N$ of two Λ-modules M and N, if M and N are normed Λ-modules, that is, $M=\left(M, h_{M},\|\cdot\|_{M}\right)$ and $N=\left(N, h_{N},\|\cdot\|_{N}\right)$, then we have

$$
\|f(a m)\|_{N}=\|a f(m)\|_{N}=|\tau(a)| \cdot\|f(m)\|_{N}
$$

Example 4.3. Let

$$
\Lambda=\left(\begin{array}{ll}
\mathbb{k}_{\mathrm{k}} & 0 \\
\mathfrak{k}_{\mathrm{k}} & \mathbb{k}_{\mathrm{k}}
\end{array}\right) .
$$

Then a \mathbb{k}-basis of Λ is $B_{\Lambda}=\left\{\boldsymbol{E}_{11}, \boldsymbol{E}_{21}, \boldsymbol{E}_{22}\right\}$, where $\boldsymbol{E}_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), \boldsymbol{E}_{21}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), \boldsymbol{E}_{22}=$ $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. Take \mathfrak{n} be the map $B_{\Lambda} \rightarrow \mathbb{R}^{+}$defined by $\mathfrak{n}\left(\boldsymbol{E}_{11}\right)=\mathfrak{n}\left(\boldsymbol{E}_{21}\right)=\mathfrak{n}\left(\boldsymbol{E}_{22}\right)=1$, then for any element $x=\left(\begin{array}{ll}k_{11} & 0 \\ k_{21} & k_{22}\end{array}\right)$ in Λ, we have $\|x\|_{p}=\left(\left|k_{11}\right|^{p}+\left|k_{21}\right|^{p}+\left|k_{22}\right|^{p}\right)^{\frac{1}{p}}$.

There are three indecomposable Λ-modules up to Λ-isomorphism:

$$
P(1)=\left(\begin{array}{ll}
\mathbb{k} & 0 \\
\mathbb{k} & 0
\end{array}\right) \cong\left(\begin{array}{cc}
0 & \mathbb{k} \\
0 & \mathbb{k}
\end{array}\right), P(2)=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right), \text { and the cokernel } \operatorname{coker}\left(P(2) \rightarrow P(1) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right) .
$$

Then each Λ-module M is isomorphic to the direct sum $P(1)^{\oplus t_{1}} \oplus P(2)^{\oplus t_{2}} \oplus(P(1) / P(2))^{\oplus t_{3}}$ for some $t_{1}, t_{2}, t_{3} \in \mathbb{N}$. Assume that $M=\left(M, h_{M},\|\cdot\|_{M}\right)$ and $N=\left(N, h_{N},\|\cdot\|_{N}\right)$ are
two normed Λ-modules. Then, naturally, $M \oplus N$ is also a Λ-module, where the left Λ-action is the map

$$
h_{M} \oplus h_{N}:=\left(\begin{array}{cc}
h_{M} & 0 \\
0 & h_{N}
\end{array}\right): \Lambda \times M \oplus N \rightarrow M \oplus N
$$

which sends $\left(a,\binom{m}{n}\right)$ to

$$
\left(\begin{array}{cc}
h_{M} & 0 \\
0 & h_{N}
\end{array}\right)\binom{m}{n}=\binom{\left(h_{M}\right)_{a}(m)}{\left(h_{N}\right)_{a}(n)}=\binom{a m}{a n} .
$$

Furthermore, we can use the τ-norms of M and N, that is, $\|\cdot\|_{M}$ and $\|\cdot\|_{N}$, to define a τ-norm $\|\cdot\|_{M \oplus N}$ of $M \oplus N$ by

$$
\|(m, n)\|_{M \oplus N}:=\left(|k|\left(\|m\|_{M}^{p}+\|n\|_{N}^{p}\right)\right)^{\frac{1}{p}} \text { for given } k \in \mathbb{k} \backslash\{0\} .
$$

Then we have

$$
\begin{aligned}
\|a(m, n)\|_{M \oplus N} & =\left(|k|\left(\|a m\|_{M}^{p}+\|a n\|_{N}^{p}\right)\right)^{\frac{1}{p}}=\left(|k|\left(|\tau(a)|^{p}\|m\|_{M}^{p}+|\tau(a)|^{p}\|n\|_{N}^{p}\right)\right)^{\frac{1}{p}} \\
& =|\tau(a)|\left(|k|\left(\|m\|_{M}^{p}+\|n\|_{N}^{p}\right)\right)^{\frac{1}{p}}=|\tau(a)|\|(m, n)\|_{M \oplus N}
\end{aligned}
$$

for any $a \in \Lambda$.
Example 4.4. The quiver of the \mathbb{k}-algebra Λ given in Example 4.3 is $\mathcal{Q}=1 \xrightarrow{\alpha} 2$. By the representation theory all Λ-modules M can be represented by $M_{1} \xrightarrow{\varphi_{a}} M_{2}$, where M_{1} and M_{2} are two \mathbb{k}-linear spaces and φ_{a} is a \mathbb{k}-linear map. Indeed, the identity element of Λ is $\boldsymbol{E}=\boldsymbol{E}_{11}+\boldsymbol{E}_{22}$, where $\boldsymbol{E}_{11}, \boldsymbol{E}_{22}$ are the complete set of primitive orthogonal idempotents. Thus, M, as a \mathbb{k}-linear space, has a decomposition $M=$ $\boldsymbol{E}_{11} M \oplus \boldsymbol{E}_{22} M$ (because $\boldsymbol{E}_{11} \boldsymbol{E}_{22}=0$ yields $\boldsymbol{E}_{11} M \cap \boldsymbol{E}_{22} M=0$). For any $a=k_{11} \boldsymbol{E}_{11}+$ $k_{22} \boldsymbol{E}_{22}+k_{21} \boldsymbol{E}_{21}$ and $m \in M$, we have

$$
\begin{align*}
a m & =\left(k_{11} \boldsymbol{E}_{11}+k_{22} \boldsymbol{E}_{22}+k_{21} \boldsymbol{E}_{21}\right)\left(\boldsymbol{E}_{11} m+\boldsymbol{E}_{22} m\right) \\
& =k_{11} \boldsymbol{E}_{11}\left(\boldsymbol{E}_{11} m\right)+k_{22} \boldsymbol{E}_{22}\left(\boldsymbol{E}_{22} m\right)+k_{21} \boldsymbol{E}_{21}\left(\boldsymbol{E}_{11} m\right) \\
& =k_{11}\left(h_{M}\right)_{\boldsymbol{E}_{11}}\left(\boldsymbol{E}_{11} m\right)+k_{22}\left(h_{M}\right)_{\boldsymbol{E}_{22}}\left(\boldsymbol{E}_{22} m\right)+k_{21}\left(h_{M}\right)_{\boldsymbol{E}_{21}}\left(\boldsymbol{E}_{11} m\right) \\
& =\left(h_{M}\right)_{\boldsymbol{E}_{11}}\left(k_{11} \boldsymbol{E}_{11} m\right)+\left(h_{M}\right)_{k_{22} \boldsymbol{E}_{22}}\left(\boldsymbol{E}_{22} m\right)+\left(h_{M}\right)_{\boldsymbol{E}_{21}}\left(k_{21} \boldsymbol{E}_{11} m\right), \tag{4.3}
\end{align*}
$$

where
(a) $h_{M}: \Lambda \rightarrow \operatorname{End}_{\mathbb{k}} M$ is a homomorphism of \mathbb{k}-algebras sending a to $\left(h_{M}\right)_{a}$, which satisfies $\mathbf{1}_{M}=\left(h_{M}\right)_{\boldsymbol{E}}=\left(h_{M}\right)_{\boldsymbol{E}_{11}}+\left(h_{M}\right)_{\boldsymbol{E}_{22}}$;
(b) $\left(h_{M}\right)_{\boldsymbol{E}_{i i}}=\mathbf{1}_{\boldsymbol{E}_{i i} M}(i=1,2)$;
(c) $\left(h_{M}\right)_{\boldsymbol{E}_{12}}$ is a k -linear map from $\boldsymbol{E}_{11} M$ to $\boldsymbol{E}_{22} M$ (this is equivalent to (4.3)).

Therefore, we obtain that the representation corresponding to $M=\boldsymbol{E}_{11} M \oplus \boldsymbol{E}_{22} M$ is

$$
\boldsymbol{E}_{11} M \xrightarrow{\boldsymbol{E}_{21}} \boldsymbol{E}_{22} M
$$

Generally, $M_{1} \xrightarrow{\varphi_{a}} M_{2}$ corresponds to the module $M_{1} \oplus M_{2}$, where the Λ-action $\Lambda \times M_{1} \oplus M_{2} \rightarrow M_{1} \oplus M_{2}$ is defined by
$\boldsymbol{E}_{11}\left(m_{1}, m_{2}\right)=\left(m_{1}, 0\right), \boldsymbol{E}_{22}\left(m_{1}, m_{2}\right)=\left(0, m_{2}\right)$ and $\boldsymbol{E}_{12}\left(m_{1}, m_{2}\right)=\left(0, \varphi_{\alpha}\left(m_{1}\right)\right)$.
Without loss of generality, for any representation $M_{1} \xrightarrow{\varphi_{a}} M_{2}$ of \mathcal{Q}, assume that $M_{1}=\mathbb{k}^{\oplus t_{1}}, M_{2}=\mathbb{k}^{\oplus t_{2}}$ and $\varphi_{a} \in \operatorname{Mat}_{t_{2} \times t_{1}}(\mathbb{k})$ (up to Λ-isomorphism), and for any $i=1,2, M_{i}$ is a normed space equipping with the norm $\|\cdot\|_{M_{i}}: M_{i}=\mathbb{k}^{\oplus t_{i}} \rightarrow \mathbb{R}^{+}$ sending $m_{i}=\left(m_{i j}\right)_{1 \leq j \leq t_{i}}$ to $\left(\sum_{j=1}^{t_{i}}\left|m_{i j}\right|^{p}\right)^{\frac{1}{p}}$. Then we can define a norm $\|\cdot\|_{M_{1} \oplus M_{2}}$ by

$$
\left\|\left(m_{1}, m_{2}\right)\right\|_{M_{1} \oplus M_{2}}=\left(|k|\left(\left\|m_{1}\right\|_{M_{1}}^{p}+\left\|m_{2}\right\|_{M_{2}}^{p}\right)\right)^{\frac{1}{p}}
$$

where k is a given element in $\mathbb{k} \backslash\{0\}$. The direct sum " \oplus " of \mathbb{k}-linear spaces is the p powers of the norm preserving in the case for $k=1$, that is, $\left\|\left(m_{1}, m_{2}\right)\right\|_{M_{1} \oplus M_{2}}^{p}=$
$\left\|m_{1}\right\|_{M_{1}}^{p}+\left\|m_{2}\right\|_{M_{2}}^{p}$. Furthermore, if $\|\cdot\|_{M_{1}}$ and $\|\cdot\|_{M_{2}}$ are τ-norms of M_{1} and M_{2}, respectively, then, for any $a \in \Lambda$, we have

$$
\begin{aligned}
\left\|a\left(m_{1}, m_{2}\right)\right\|_{M_{1} \oplus M_{2}} & =\left(|k|\left(\left\|a m_{1}\right\|_{M_{1}}^{p}+\left\|a m_{2}\right\|_{M_{2}}^{p}\right)\right)^{\frac{1}{p}} \\
& =\left(|k|\left(|\tau(a)|^{p}\left\|m_{1}\right\|_{M_{1}}^{p}+|\tau(a)|^{p}\left\|m_{2}\right\|_{M_{2}}^{p}\right)\right)^{\frac{1}{p}} \\
& =|\tau(a)|\left(|k|\left(\left\|m_{1}\right\|_{M_{1}}^{p}+\left\|m_{2}\right\|_{M_{2}}^{p}\right)\right)^{\frac{1}{p}} \\
& =|\tau(a)|\left\|a\left(m_{1}, m_{2}\right)\right\|_{M_{1} \oplus M_{2}} .
\end{aligned}
$$

4.2. Completions of normed Λ-modules. Let $N=(N, h,\|\cdot\|)$ be a normed Λ module. In this part we construct its completion. For us, we need the completion of the finite-dimensional \mathbb{k}_{k}-algebra Λ. Otherwise, there is at least one Λ-module which is not complete, for instance, Λ is a non-complete Λ-module. Therefore, we assume that $\mathbb{k}_{\mathfrak{k}}$ is complete in this subsection by Propositions 2.16 and 3.3.

Similar to finite-dimensional \mathbb{k}-algebras, we can define open neighborhoods $B(0, r)$ of 0 for any normed Λ-module $N=(N, h,\|\cdot\|)$ by

$$
B(0, r):=\{x \in N \mid\|x\|<r\} .
$$

Let $\mathfrak{U}_{N}^{B}(0)$ be the class of all subsets U of N satisfying the following conditions.
(1) U is the intersection of a finite number of $B(0, r)$;
(2) U is the union of any number of $B(0, r)$.

Then $\mathfrak{U}_{N}^{B}(0)$ is a topology defined on Λ, and we can define the Cauchy sequence by the above topology.

Lemma 4.5. Let $\mathfrak{C}^{*}(N)$ be the set of all Cauchy sequences in the normed Λ-module $N=(N, h,\|\cdot\|)$. Then $\mathfrak{C}^{*}(N)$ is a Λ-module.
Proof. First of all, $\mathfrak{C}^{*}(N)$ is a \mathbb{k}-linear space whose addition and \mathbb{k}-action are given by

$$
\begin{gathered}
\left\{x_{i}\right\}_{i \in \mathbb{N}}+\left\{y_{i}\right\}_{i \in \mathbb{N}}=\left\{x_{i}+y_{i}\right\}_{i \in \mathbb{N}}\left(\forall\left\{x_{i}\right\}_{i \in \mathbb{N}},\left\{y_{i}\right\}_{i \in \mathbb{N}} \in \mathfrak{C}^{*}(N)\right) \\
\text { and } k\left\{x_{i}\right\}_{i \in \mathbb{N}}=\left\{k x_{i}\right\}_{i \in \mathbb{N}}(\forall k \in \mathbb{k}),
\end{gathered}
$$

respectively. Furthermore, define

$$
\Lambda \times \mathfrak{C}^{*}(N) \rightarrow \mathfrak{C}^{*}(N),\left(a,\left\{x_{i}\right\}_{i \in \mathbb{N}}\right) \mapsto a \cdot\left\{x_{i}\right\}_{i \in \mathbb{N}}:=\left\{a \cdot x_{i}\right\}_{i \in \mathbb{N}},
$$

where $a \cdot x_{i}=h_{a}\left(x_{i}\right)$. Then $\mathfrak{C}^{*}(N)$ is a Λ-module.
Two Cauchy sequences $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ and $\left\{y_{i}\right\}_{i \in \mathbb{N}}$ in N are called equivalent, denoted by $\left\{x_{i}\right\}_{i \in \mathbb{N}} \sim\left\{y_{i}\right\}_{i \in \mathbb{N}}$, if for any $U \in \mathfrak{U}_{N}^{B}(0)$, there is $r \in \mathbb{N}$ such that $x_{s}-x_{t} \in U$ holds for all $s, t \geq r$. It is easy to see that " \sim " is an equivalence relation. Let $\left[\left\{x_{i}\right\}_{i \in \mathbb{N}}\right]$ be the equivalent class of Cauchy sequences containing $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ and let $\mathfrak{C}(N)$ be the set of all equivalent classes. We naturally obtain a map

$$
h: \mathfrak{C}^{*}(N) \rightarrow \mathfrak{C}(N), \quad\left\{x_{i}\right\}_{i \in \mathbb{N}} \mapsto\left[\left\{x_{i}\right\}_{i \in \mathbb{N}}\right] .
$$

We can show that $\mathfrak{C}(N)$ is a Λ-module by using an argument similar to that in the proof of Lemma 4.5, and further obtain $\operatorname{Ker}\left(h: \mathfrak{C}^{*}(N) \rightarrow \mathfrak{C}(N)\right)=\left[\{0\}_{i \in \mathbb{N}}\right]$. Thus we have

$$
\mathfrak{C}(N) \cong \mathfrak{C}^{*}(N) /\left[\{0\}_{i \in \mathbb{N}}\right] .
$$

Then $\mathfrak{C}(N)$ is complete, and we call it is the completion of N. We use \widehat{N} to denote the completion $\mathfrak{C}(N)$ of N. The Λ-module \widehat{N} is a normed Λ-module, where the norm defined on \widehat{N} is induced by the norm $\|\cdot\|: N \rightarrow \mathbb{R}^{\geq 0}$ defined on N.
Definition 4.6. Assume that Λ is complete. A normed Λ-module N is called a Banach Λ-module if $\widehat{N}=N$ (i.e. N is complete).
4.3. σ-algebras and the elementary simple function set $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$. Take τ to be a homomorphism of \mathbb{k}-algebras $\tau: \Lambda \rightarrow \mathbb{k}$. Then the elementary simple function set $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ with the above homomorphism τ, denoted by $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$, is a Λ-module, where the Λ-action $\Lambda \times \mathbf{S}\left(\mathbb{I}_{\Lambda}\right) \rightarrow \mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ is given by

$$
\left(a, f=\sum_{i=1}^{t} k_{i} \mathbf{1}_{I_{i}}\right) \mapsto a f:=\sum_{i=1}^{t} \tau(a) k_{i} \mathbf{1}_{I_{i}}
$$

because, for all $a \in \Lambda, a^{\prime} \in \Lambda, k \in \mathbb{k}, f=\sum_{i} k_{i} \mathbf{1}_{I_{i}} \in \mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ and $f^{\prime}=\sum_{j} k_{j}^{\prime} \mathbf{1}_{I_{j}^{\prime}} \in \mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$, the following conditions are satisfied:
(1) $a\left(f+f^{\prime}\right)=a f+a f^{\prime}$ (trivial);
(2) $\left(a+a^{\prime}\right) f=a f+a^{\prime} f$ (trivial);
(3) $\left(a a^{\prime}\right) f=a\left(a^{\prime} f\right)$ because

$$
\begin{aligned}
\left(a a^{\prime}\right) f & =\left(a a^{\prime}\right) \sum_{i} k_{i} \mathbf{1}_{I_{i}}=\sum_{i} \tau\left(a a^{\prime}\right) k_{i} \mathbf{1}_{I_{i}}=\sum_{i} \tau(a) \tau\left(a^{\prime}\right) k_{i} \mathbf{1}_{I_{i}} \\
& =a \sum_{i} \tau\left(a^{\prime}\right) k_{i} \mathbf{1}_{I_{i}}=a\left(a^{\prime} \sum_{i} k_{i} \mathbf{1}_{I_{i}}\right)=a\left(a^{\prime} f\right)
\end{aligned}
$$

(4) $1 f=f$ (trivial);
(5) We have

$$
\begin{aligned}
& -(k a) f=(k a) \sum_{i} k_{i} \mathbf{1}_{I_{i}}=\sum_{i} \tau(k a)\left(k_{i} \mathbf{1}_{I_{i}}\right), \\
& -k(a f)=k\left(a \sum_{i} k_{i} \mathbf{1}_{I_{i}}\right)=k \sum_{i} \tau(a) k_{i} \mathbf{1}_{i}=\sum_{i} k\left(\tau(a)\left(k_{i} \mathbf{1}_{I_{i}}\right)\right), \\
& - \text { and } a(k f)=a \sum_{i} k\left(k_{i} \mathbf{1}_{I_{i}}\right)=\sum_{i} \tau(a)\left(k\left(k_{i} \mathbf{1}_{I_{i}}\right)\right) .
\end{aligned}
$$

Since τ is a homomorphism of \mathbb{k}-algebras, we have

$$
\tau(k a)\left(k_{i} \mathbf{1}_{I_{i}}\right)=k\left(\tau(a)\left(k_{i} \mathbf{1}_{I_{i}}\right)\right)=\sum_{i} \tau(a)\left(k\left(k_{i} \mathbf{1}_{I_{i}}\right)\right)=\sum_{i} k k_{i} \tau(a) \mathbf{1}_{I_{i}},
$$

for all i. Then $(k a) f=k(a f)=a(k f)$.
Now, we introduce a norm for $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$ such that it is a normed Λ-module. To do this, we firstly recall the definition of σ-algebras.

Definition 4.7. Let S be a set and $P(S)$ the power set of S, that is, $P(S)$ is the set of all subsets of S. A σ-algebra is a subset \mathcal{A} of $P(S)$ satisfying the following conditions:
(1) \varnothing and S lie in \mathcal{A};
(2) for any $X \in \mathcal{A}$, the complement set $X^{c}:=S \backslash X$ of X lies in \mathcal{A};
(3) for any $X_{1}, \ldots, X_{n} \ldots \in \mathcal{A}$, the union $\bigcup_{i=1}^{\infty} X_{i}$ is an element in \mathcal{A}.

For a class \mathcal{C} of some sets lying in $P(S)$, we call \mathcal{A} is a σ-algebra generated by \mathcal{C} if \mathcal{A} is the minimal σ-algebra containing \mathcal{C}.

Let $\Sigma_{\mathrm{lk}_{\mathbf{k}}}$ be the σ-algebra generated by $\left\{(a, b)_{\mathrm{l}_{\mathfrak{k}}},[a, b)_{\mathfrak{l}_{\mathfrak{k}}},(a, b]_{\mathfrak{k}},[a, b]_{\mathrm{k}_{\mathbf{k}}} \mid a \preceq b\right\}$, and let $\mu: \Sigma_{\mathrm{k}} \rightarrow \mathbb{R}^{\geq 0}$ be a measure such that $\mu(\{k\})=0$ holds for any $k \in \mathbb{k}$, that is, μ is a function satisfying the following conditions:
(1) $\mu(\varnothing)=0$;
(2) $\mu\left(\bigcup_{i \in \mathbb{N}} X_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(X_{i}\right)$ holds for all sets X_{1}, X_{2}, \ldots satisfying $X_{i} \cap X_{j}=\varnothing$ $(i \neq j)$.
Any two functions f and g in $\mathbf{S}\left(\mathbb{I}_{A}\right)$ are called equivalent if

$$
\mu\left(\left\{\boldsymbol{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{k}^{\oplus n} \mid f(\boldsymbol{k}) \neq g(\boldsymbol{k})\right\}\right)=0 .
$$

The equivalent class containing f is written as $[f]$. Then we obtain an epimorphism

$$
\mathbf{S}\left(\mathbb{I}_{\Lambda}\right) \rightarrow \overline{\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)}:=\left\{[f] \mid f \in \mathbf{S}\left(\mathbb{I}_{\Lambda}\right)\right\}
$$

sending each function to its equivalent classes. It is easy to see that the kernel of the above epimorphism is [0], then we have

$$
\overline{\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)} \cong \mathbf{S}\left(\mathbb{I}_{\Lambda}\right) /[0] .
$$

For simplification, we do not differentiate between two equivalent functions under the above isomorphism. Therefore, we treat $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ and the quotient $\overline{\mathbf{S}}\left(\mathbb{I}_{\Lambda}\right)$ equivalently.

Lemma 4.8. Let $\tau: \Lambda \rightarrow \mathbb{k}$ be a homomorphism between two \mathbb{k}-algebras. Then the Λ-module $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$ with the map

$$
\|\cdot\|_{p}: \mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right) \rightarrow \mathbb{R}^{\geq 0}, f=\sum_{i=1}^{t} k_{i} \mathbf{1}_{I_{i}} \mapsto\left(\sum_{i=1}^{t}\left(\left|k_{i}\right| \mu\left(I_{i}\right)\right)^{p}\right)^{\frac{1}{p}}
$$

is normed.
Proof. Let f be an arbitrary function lying in $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$. It is trivial that $\|f\|_{p}$ is nonnegative. Let a be an arbitrary element in Λ and assume $f=\sum_{i=1}^{t} k_{i} \mathbf{1}_{I_{i}}$. We have

$$
\begin{aligned}
\|a f\|_{p} & =\left\|\sum_{i=1}^{t} \tau(a) k_{i} \mathbf{1}_{I_{i}}\right\|_{p}=\left(\sum_{i=1}^{t}\left|\tau(a) k_{i}\right|^{p} \mu\left(\mathbf{1}_{I_{i}}\right)^{p}\right)^{\frac{1}{p}} \\
& =|\tau(a)| \cdot\left(\sum_{i=1}^{t}\left|k_{i}\right|^{p} \mu\left(\mathbf{1}_{I_{i}}\right)^{p}\right)^{\frac{1}{p}}=|\tau(a)| \cdot\|f\|_{p}
\end{aligned}
$$

which satisfies the formula (4.1) for the case $\left(\Lambda^{\prime},\|\cdot\|_{2}\right)=(\mathbb{k},|\cdot|)$. In particular, if $\|f\|_{p}=0$, then so is $\left(\left|k_{i}\right| \mu\left(I_{i}\right)\right)^{p}=0$ for all i, and we have $\left|k_{i}\right|=0$ in the case for $\mu\left(I_{i}\right) \neq 0$. If $\mu\left(I_{j}\right)=0$ holds for some $j \in J(\subseteq\{1,2, \ldots, t\})$, then we have $f=\sum_{j \in J} k_{j} \mathbf{1}_{I_{j}}$. Clearly,

$$
\mu\left(\left\{x \in \mathbb{I}_{\Lambda} \mid f(x) \neq 0\right\}\right)=\sum_{j \in J} \mu\left(I_{j}\right)=0
$$

that is, $f=0$ in treating $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ and the quotient $\overline{\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)}$ equivalently. Thus, $\|f\|_{p}=0$ if and only if $f=0$.

Next, we prove the the triangle inequality. For two arbitrary functions $f=\sum_{i} k_{i} \mathbf{1}_{I_{i}}$ and $g=\sum_{j} l_{j} \mathbf{1}_{I_{j}^{\prime}}$, we have

$$
\begin{equation*}
f+g=\sum_{i} k_{i} \mathbf{1}_{I_{i} \backslash \cup_{j} I_{j}^{\prime}}+\sum_{j} l_{j} \mathbf{1}_{I_{j}^{\prime} \backslash \cup_{i} I_{i}}+\sum_{I_{i} \cap I_{j}^{\prime} \neq \varnothing}\left(k_{i} \mathbf{1}_{I_{i} \cap I_{j}^{\prime}}+l_{j} \mathbf{1}_{I_{i} \cap I_{j}^{\prime}}\right) \tag{4.4}
\end{equation*}
$$

by $I_{i} \cap I_{\imath}=\varnothing(\forall i \neq \imath)$ and $I_{j}^{\prime} \cap I_{\jmath}^{\prime}=\varnothing(\forall j \neq \jmath)$. Then we can compute the norm of $f+g$ by (4.4) as the following formula:

$$
\|f+g\|_{p}=(R+G+B)^{\frac{1}{p}},
$$

where

$$
\begin{aligned}
& R=\sum_{i}\left|k_{i}\right|^{p} \mu\left(I_{i} \backslash \bigcup_{j} I_{j}^{\prime}\right)^{p} \\
& G=\sum_{j}\left|l_{j}\right|^{p} \mu\left(I_{j}^{\prime} \backslash \bigcup_{i} I_{i}\right)^{p} ; \\
& B=\sum_{I_{i} \cap \sum_{j}^{\prime} \neq \varnothing}\left(\left|k_{i}\right|^{p}+\left|l_{j}\right|^{p}\right) \mu\left(I_{i} \cap I_{j}^{\prime}\right)^{p} .
\end{aligned}
$$

On the other hand, we have the following inequality by the discrete Minkowski inequality:

$$
\begin{align*}
\|f\|_{p}+\|g\|_{p} & =\left(\sum_{i}\left|k_{i}\right|^{p} \mu\left(I_{i}\right)^{p}\right)^{\frac{1}{p}}+\left(\sum_{j}\left|l_{i}\right|^{p} \mu\left(I_{i}^{\prime}\right)^{p}\right)^{\frac{1}{p}} \\
& \geq\left(\sum_{i}\left|k_{i}\right|^{p} \mu\left(I_{i}\right)^{p}+\sum_{j}\left|l_{i}\right|^{p} \mu\left(I_{i}^{\prime}\right)^{p}\right)^{\frac{1}{p}}=: \mathfrak{S} . \tag{4.5}
\end{align*}
$$

Since, by the definition of measure, $\mu(X \cup Y)=\mu(X)+\mu(Y)$ holds for any X, Y with $X \cap Y=\varnothing$, we obtain

$$
\begin{equation*}
\mu(X \cup Y)^{p} \geq \mu(X)^{p}+\mu(Y)^{p} \tag{4.6}
\end{equation*}
$$

then

$$
\mu\left(I_{i}\right)^{p} \geq \mu\left(I_{i} \backslash \bigcup_{j} I_{j}^{\prime}\right)^{p}+\mu\left(I_{i} \cap \bigcup_{j} I_{j}^{\prime}\right)^{p}
$$

Thus,

$$
\begin{align*}
\sum_{i}\left|k_{i}\right|^{p} \mu\left(I_{i}\right)^{p} & \geq \sum_{i}\left|k_{i}\right|^{p} \mu\left(I_{i} \backslash \bigcup_{j} I_{j}^{\prime}\right)^{p}+\sum_{i}\left|k_{i}\right|^{p} \mu\left(I_{i} \cap \bigcup_{j} I_{j}^{\prime}\right)^{p} \\
& =R+\sum_{i}\left|k_{i}\right|^{p}\left(\sum_{I_{i} \cap I_{j}^{\prime} \neq \varnothing} \mu\left(I_{i} \cap I_{j}^{\prime}\right)\right)^{p} \\
& \stackrel{(4.6)}{\geq} R+\sum_{I_{i} \cap I_{j}^{\prime} \neq \varnothing}\left|k_{i}\right|^{p} \mu\left(I_{i} \cap I_{j}^{\prime}\right)^{p} . \tag{4.7}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\sum_{j}\left|l_{j}\right|^{p} \mu\left(I_{j}^{\prime}\right)^{p} \geq G+\sum_{I_{j}^{\prime} \cap I_{i} \neq \varnothing}\left|l_{j}\right|^{p} \mu\left(I_{j}^{\prime} \cap I_{i}\right)^{p} \tag{4.8}
\end{equation*}
$$

Notice that

$$
\sum_{I_{i} \cap I_{j}^{\prime} \neq \varnothing}\left|k_{i}\right|^{p} \mu\left(I_{i} \cap I_{j}^{\prime}\right)^{p}+\sum_{I_{j}^{\prime} \cap I_{i} \neq \varnothing}\left|l_{j}\right|^{p} \mu\left(I_{j}^{\prime} \cap I_{i}\right)^{p}=\sum_{I_{i} \cap I_{j}^{\prime} \neq \varnothing}\left(\left|k_{i}\right|^{p}+\left|l_{j}\right|^{p}\right) \mu\left(I_{i} \cap I_{j}^{\prime}\right)^{p}=B,
$$

then (4.7)+(4.8) induces $\mathfrak{S}^{p} \geq R+G+B$. Thus, the triangle inequality $\|f\|_{p}+\|g\|_{p} \geq$ $\|f+g\|_{p}$ holds.

5. Two categories

Let $\operatorname{dim}_{\mathrm{k}} \Lambda=n$, and let N be a normed Λ-module equipped with two additional pieces of data: an element $v \in N$ such that $\|v\| \leq \mu\left(\mathbb{I}_{\Lambda}\right)$, and a continuous Λ-homomorphism $\delta: N^{\oplus_{p} 2^{n}} \rightarrow N$. Here, \oplus_{p} denotes the direct sum of $2^{n} \Lambda$-modules $X_{1}, \ldots, X_{2^{n}}$ with the norm defined as follows:

$$
\|\cdot\|_{p}: \bigoplus_{i=1}^{2^{n}} p X_{i} \rightarrow \mathbb{R}^{\geq 0},\left(x_{1}, x_{2}, \ldots, x_{2^{n}}\right) \mapsto\left(\left(\frac{\mu(\mathbb{I})}{\mu\left(\mathbb{I}_{\Lambda}\right)}\right)^{n} \sum_{i=1}^{2^{n}}\left\|x_{i}\right\|^{p}\right)^{\frac{1}{p}}
$$

5.1. The categories $\mathscr{N o r}{ }^{p}$ and \mathscr{A}^{p}. Let $\mathscr{N o r} r^{p}$ be a class of triples which are of the form (N, v, δ), where N is a normed Λ-module, $v \in N$ is an element with $\|v\|_{p} \leq \mu\left(\mathbb{I}_{\Lambda}\right)$ and $\delta: N^{\oplus_{p} 2^{n}} \rightarrow N$ is a Λ-homomorphism satisfying $\delta(v, v, \ldots, v)=v$ such that for any Cauchy sequence $\left\{x_{i}\right\}_{i \in \mathbb{N}} \in \widehat{N^{\oplus} 2^{n}} \cong \widehat{N}^{\oplus_{p} 2^{n}}$, the commutativity

$$
\begin{equation*}
\lim _{\leftrightarrows} \delta\left(x_{i}\right)=\delta\left(\lim _{\leftrightarrows} x_{i}\right) \tag{5.1}
\end{equation*}
$$

of the inverse limit and the Λ-homomorphism holds. For any two triples (N, v, δ) and $\left(N^{\prime}, v^{\prime}, \delta^{\prime}\right)$ in $\mathscr{N o r}^{p}$, we define the morphism $(N, v, \delta) \rightarrow\left(N^{\prime}, v^{\prime}, \delta^{\prime}\right)$ to be the Λ homomorphism $\theta: N \rightarrow N^{\prime}$ with $\theta(v)=v^{\prime}$ such that the following diagram
commutes, that is, for any $\left(v_{1}, \ldots, v_{2^{n}}\right) \in N^{\oplus_{p} 2^{n}}, \theta\left(\delta\left(v_{1}, \ldots, v_{2^{n}}\right)\right)=\delta^{\prime}\left(\theta\left(v_{1}\right), \ldots, \theta\left(v_{2^{n}}\right)\right)$. Then it is easy to check that Nor^{p} is a category.
Lemma 5.1. Let
(1) ξ be an element in $\mathbb{I}=[a, b]_{\mathbb{k}}$ with $a \prec \xi \prec b$ such that there exists an element ξ with $a \prec \xi \prec b$ such that the order preserving linear bijections $\kappa_{a}: \mathbb{I} \rightarrow[a, \xi]_{\mathbb{k}}$ and $\kappa_{b}: \mathbb{I} \rightarrow[\xi, b]_{\mathfrak{k}}$ exist,
(2) $\mathbf{1}$ be the identity function $\mathbf{1}_{\mathbb{I}_{\Lambda}}: \mathbb{I}_{\Lambda} \rightarrow\{1\}$,
(3) γ_{ξ} be the map given in (3.2),
(4) $\tau: \Lambda \rightarrow \mathbb{k}$ be the homomorphism of \mathfrak{k}-algebras given in Lemma 4.8.

Then the following statements hold.
(a) $\gamma_{\xi}(\mathbf{1}, \mathbf{1}, \cdots, \mathbf{1})=\mathbf{1}$;
(b) γ_{ξ} is a Λ-homomorphism.

First, we provide a remark for the above lemma.
Remark 5.2. Indeed, $\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right)$ is an object in the category $\mathscr{N o r}{ }^{p}$. However, Lemma 5.1 points out that $\gamma_{\xi}(\mathbf{1}, \mathbf{1}, \cdots, \mathbf{1})=\mathbf{1}$ and γ_{ξ} is a Λ-homomorphism. Thus, we need to show that the commutativity of the inverse limit and γ_{ξ} holds. We will prove this result in the following content, as shown in Lemma 5.5.

Next, we prove Lemma 5.1.
Proof. (a) We have that $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$ is a normed Λ-module by Lemma 4.8, and γ_{ξ} is a \mathbb{k} linear map by Lemma 3.6. The formula $\gamma_{\xi}(\mathbf{1}, \ldots, \mathbf{1})=\mathbf{1}$ can be directly induced by the definition of γ_{ξ}.
(b) Take $\lambda \in \Lambda, f \in \mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ and let $\left(k_{i}\right)_{i}, \mathbf{1}$ and $\left(\delta_{i}\right)_{i}$ be an arbitrary element $\left(k_{1}, \ldots, k_{n}\right)$ in $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)^{\oplus 2^{n}}$, the identity function $\mathbf{1}_{\kappa \delta_{1}(\mathbb{I}) \times \cdots \times \kappa \delta_{n}(\mathbb{I})}$ and the n-multiple $\left(\delta_{1} \times \cdots \times \delta_{n}\right)$, respectively. Then we have

$$
\begin{aligned}
& \gamma_{\xi}(\lambda \cdot f)\left(\left(k_{i}\right)_{i}\right) \\
= & \sum_{\left(\delta_{i}\right)_{i}} \mathbf{1} \cdot(\tau(\lambda) f)_{\left(\delta_{i}\right)_{i}}\left(\left(\kappa_{\delta_{i}}^{-1}\left(k_{i}\right)\right)_{i}\right) \\
= & \tau(\lambda) \gamma_{\xi}(f)\left(\left(k_{i}\right)_{i}\right) \quad(\text { similar to Lemma 3.6) } \\
= & \lambda \cdot \gamma_{\xi}(f)\left(\left(k_{i}\right)_{i}\right) .
\end{aligned}
$$

Thus γ_{ξ} is a Λ-homomorphism.
Let \mathscr{A}^{p} denote a class of triples which are of the form $(\widehat{N}, v, \widehat{\delta})$, where \widehat{N} is a Banach $\Lambda-$ module (see Definition 4.6), $v \in \widehat{N}$ is an element with $\|v\|_{p} \leq \mu\left(\mathbb{I}_{\Lambda}\right)$ and $\delta: \widehat{N}^{\oplus p^{2 n}} \rightarrow \widehat{N}$ is a Λ-homomorphism satisfying $\widehat{\delta}(v, v, \ldots, v)=v$. Obviously, \mathscr{A}^{p} is a full subcategory of $\mathcal{N o r}^{p}$.
5.2. The triple $\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right)$. Let (N, v, δ) be an object in $\mathscr{N o r}^{p}$ and \widehat{N} the completion of the Λ-module N. Then \widehat{N}, as a \mathbb{k}-linear space, is a Banach space which is a Banach Λ-module. And, naturally, we obtain the Λ-homomorphism

$$
\widehat{\delta}: \widehat{N}^{\oplus_{p} 2^{n}} \rightarrow \widehat{N}
$$

induced by the Λ-homomorphism δ. Furthermore, we have that $(\widehat{N}, v, \widehat{\delta})$ is also an object in $\mathscr{N o r}^{p}$, and there is a naturally embedding morphism

$$
\mathrm{emb}:(N, v, \delta) \hookrightarrow(\widehat{N}, v, \widehat{\delta})
$$

which is induced by $N \subseteq \widehat{N}$.

Notation 5.3. Keep the notations $\xi=: \xi_{11}, \kappa_{a}, \kappa_{b}, \mathbf{1}, \gamma_{\xi}$ and τ as in Lemma 5.1. Then ξ_{11} divides $\mathbb{I}=: \mathbb{I}^{(01)}$ to two subsets $\left[a, \xi_{11}\right]_{\mathbb{k}}=: \mathbb{I}^{(11)}$ and $\left[\xi_{11}, b\right]_{\mathbb{k}}=: \mathbb{I}^{(12)}$. Next, let $\xi_{22}=\xi_{11}(=\xi)$, and denote by ξ_{21} and ξ_{23} the two elements in \mathbb{I}_{Λ} such that

$$
\text { - } a \prec \xi_{21}=\kappa_{a} \kappa_{a}(b)=\kappa_{a} \kappa_{b}(a)=\kappa_{b} \kappa_{a}(a)=\kappa_{a}\left(\xi_{11}\right) \prec \xi_{22} ;
$$

$$
\text { - } \xi_{22} \prec \xi_{23}=\kappa_{b} \kappa_{b}(a)=\kappa_{b} \kappa_{a}(b)=\kappa_{b} \kappa_{a}(b)=\kappa_{b} \xi_{11} \prec b .
$$

Then \mathbb{I}_{Λ} is divided to four subsets which are of the form $\mathbb{I}^{(2 t)}=\left[\xi_{2 t}, \xi_{2} t+1\right]_{\mathrm{k}}(0 \leq t \leq 3)$ by $a=\xi_{20} \prec \xi_{21} \prec \xi_{22} \prec \xi_{23} \prec \xi_{24}=b$. Repeating the above step t times, we obtain a sequence of $2^{t}-1$ elements lying in \mathbb{I}_{A}

$$
a=\xi_{t 0} \prec \xi_{t 1} \prec \xi_{t 2} \prec \cdots \prec \xi_{t 2^{t}}=b
$$

all 2^{t} subsets which are of the form $\mathbb{I}^{\left(t{ }^{s+1)}\right.}=\left[\xi_{t s}, \xi_{t s+1}\right]_{\mathbb{k}}$, and 2^{t} order preserving bijections $\kappa_{\xi_{t s}}$ from $\mathbb{I}^{(t s+1)}$ to $\mathbb{I}^{(01)}$.

For any family of subsets $\left(\mathbb{I}^{\left(u_{i} v_{i}\right)}\right)_{1 \leq i \leq n}\left(1 \leq v_{i} \leq 2^{u_{i}}\right)$, we denote by $\mathbf{1}_{\left(u_{i} v_{i}\right)_{i}}$ the function

$$
\mathbf{1}_{\left(u_{i} v_{i}\right)_{i}}:=\mathbf{1}_{\mathbb{I}_{\Lambda}} \prod_{i=1}^{n} \mathbb{I}^{\left(u_{i} v_{i}\right)}: \mathbb{I}_{\Lambda} \rightarrow\{0,1\}, x \mapsto \begin{cases}1, & x \in \prod_{i=1}^{n} \mathbb{I}^{\left(u_{i} v_{i}\right)} ; \\ 0, & \text { otherwise },\end{cases}
$$

where $\mathbb{I}^{\left(u_{i} v_{i}\right)} \cong \mathbb{I}^{\left(u_{i} v_{i}\right)} \times\left\{b_{i}\right\} \subseteq \mathbb{I}_{\Lambda}$ holds for all i and $B_{\Lambda}=\left\{b_{i} \mid 1 \leq i \leq n\right\}$ is the \mathbb{k}-basis of Λ.

Let E_{u} be the set of all step functions constant on each of $\prod_{i=1}^{n} \mathbb{I}^{\left(u_{i} v_{i}\right)}\left(1 \leq v_{i} \leq 2^{u_{i}}\right.$ for all i), that is, every step function in E_{u} is of the form

$$
\sum_{\left(u_{i} v_{i}\right)_{i}} k_{\left(u_{i} v_{i}\right)_{i}} \mathbf{1}_{\left(u_{i} v_{i}\right)_{i}}
$$

where each $k_{\left(u_{i} v_{i}\right)_{i}}$ lies in \mathbb{k}, the number of summands is $\left(2^{u}\right)^{n}=2^{u n}$, and each $\left(u_{i} v_{i}\right)_{i}$ corresponds to the Cartesian product $\prod_{i=1}^{n} \mathbb{I}^{\left(u_{i} v_{i}\right)}$. Then it is easy to check that each E_{n} is a normed submodule of $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$, and $E_{u} \subseteq E_{u+1}$ because each step function constant on each of $\mathbb{I}^{(u v)}$ is equivalent to a step function constant on each of $\mathbb{I}^{(u+1 v)}$. Thus,

$$
\mathbb{k}^{\mathfrak{k}} \cong E_{0} \subseteq E_{1} \subseteq \ldots \subseteq E_{t} \subseteq \ldots \subseteq \mathbf{S}\left(\mathbb{I}_{\Lambda}\right) \subseteq \widehat{\mathbf{S}\left(\mathbb{\mathbb { I }}_{\Lambda}\right)}
$$

Moreover, for any $\mathbb{I}^{(u v)}=\left[\xi_{u v-1}, \xi_{u v}\right]_{\mathbb{k}}$, we have two cases (i) $\xi_{u v} \preceq \xi$ and (ii) $\xi \preceq \xi_{u v-1}$ by the definition of E_{u}. Therefore, we obtain a map

$$
\mathfrak{p}:\left\{\mathbb{I}^{(u v)} \mid u \in \mathbb{N}\right\} \rightarrow\{a, b\}, \mathbb{I}^{(u v)} \mapsto \begin{cases}a, & \mathbb{I}^{(u v)} \text { lies in case (i) } \\ b, & \mathbb{I}^{(u v)} \text { lies in case (ii). }\end{cases}
$$

Now we use the above map to prove the following lemma.
Lemma 5.4. The map $\gamma_{\xi}: \mathbf{S}\left(\mathbb{I}_{\Lambda}\right)^{\oplus_{p} 2^{n}} \rightarrow \mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$ induces the following \mathbb{k}-linear map

$$
\gamma_{\xi}: E_{u}^{\oplus p^{2}} \xrightarrow{\cong} E_{u+1}
$$

which is an isomorphism of Λ-modules.
Proof. The \mathbb{k}-linear space E_{u} is a Λ-module, where $\Lambda \times E_{u} \rightarrow E_{u}$ is defined by

$$
\left(a, f=\sum_{i} 1 \cdot \mathbf{1}_{I_{i}}\right) \mapsto a \cdot f=\sum_{i} \tau(a) \cdot \mathbf{1}_{I_{i}} .
$$

Then it is easy to see that γ_{ξ} is a Λ-homomorphism. Since $\operatorname{Ker}\left(\gamma_{\xi}\right)=0$, we have γ_{ξ} is injective. Next, we prove that it is surjective.

Any step function $f: \mathbb{k}^{\oplus n} \rightarrow \mathbb{k}$ lying in E_{u+1} can be written as

$$
f\left(k_{1}, \ldots, k_{n}\right)=\sum_{\left(u_{i} v_{i}\right)_{i}} f_{i}=\sum_{\left(\omega_{1}, \ldots, \omega_{n}\right) \in\{a, b\} \times \cdots \times\{a, b\}} f_{\left(\omega_{1}, \ldots, \omega_{n}\right)}
$$

where

- $f_{i}=k_{\left(u_{i} v_{i}\right)_{i}} \mathbf{1}_{\left(u_{i} v_{i}\right)_{i}} ;$

$$
f_{\left(\omega_{1}, \ldots, \omega_{n}\right)}\left(k_{1}, \ldots, k_{n}\right)=\sum_{\left.\Pi_{i=1}^{n} \mathfrak{p} \mathbb{I}\left(u_{i} v_{i}\right)\right)=\left(\omega_{1}, \ldots, \omega_{n}\right)} f_{i}
$$

thus, the number of all summands of it is $\left(2^{u}\right)^{n}=2^{u n}$;

- the number of all summands of $\sum_{\left(\omega_{1}, \ldots, \omega_{n}\right) \in\{a, b\} \times \cdots \times\{a, b\}}$ is 2^{n} (thus the number of all summands of $\sum_{\left(u_{i} v_{i}\right)_{i}} f_{i}$ is $\left.2^{u n} \cdot 2^{n}=2^{(u+1) n}\right)$.
Then

$$
\tilde{f}_{\left(\omega_{1}, \ldots, \omega_{n}\right)}\left(k_{1}, \ldots, k_{n}\right)=f_{\left(\omega_{1}, \ldots, \omega_{n}\right)}\left(\kappa_{\omega_{1}}^{-1}\left(k_{1}\right), \ldots, \kappa_{\omega_{n}}^{-1}\left(k_{n}\right)\right) \in E_{u}
$$

and γ_{ξ} sends $\left\{f_{\left(\omega_{1}, \ldots, \omega_{n}\right)}\right\}_{\left(\omega_{1}, \ldots, \omega_{n}\right) \in\{a, b\} \times \cdots \times\{a, b\}}$ to f by the definition of γ_{ξ}, see (3.2). We obtain that γ_{ξ} is surjective. Therefore, γ_{ξ} is a Λ-isomorphism.

By Lemma 5.4, the following result holds.
Lemma 5.5. The commutativity of the inverse limit and the map $\widehat{\gamma}_{\xi}: \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)^{\oplus} 2^{n}} \rightarrow$ $\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$ induced by the completion of $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$ holds, that is, for any sequence $\left\{\boldsymbol{f}_{i}\right\}_{i \in \mathbb{N}^{+}}$in $\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}{ }^{\oplus} 2^{n}$, if its inverse limit exists, then we have

$$
\widehat{\gamma}_{\xi}\left(\lim _{\leftrightarrows} \boldsymbol{f}_{i}\right)=\lim _{\leftrightarrows} \widehat{\gamma}_{\xi}\left(\boldsymbol{f}_{i}\right) .
$$

Furthermore, $\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right)$ is an object in Nor^{p}.
Proof. Since γ_{ξ} is a Λ-isomorphism, it is clear that $\widehat{\gamma}_{\xi}$ is also a Λ-isomorphism. Then, the commutativity of the inverse limit and the map $\widehat{\gamma}_{\xi}$ holds. Thus, for any sequence $\left\{\boldsymbol{f}_{i}\right\}_{i \in \mathbb{N}^{+}}$in $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)^{\oplus_{p} 2^{n}}$, if its inverse limit exists, then this inverse limit is also an element in $\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)} \oplus^{2^{2}}$, and so

$$
\gamma_{\xi}\left(\lim _{\check{m}} \boldsymbol{f}_{i}\right)=\widehat{\gamma}_{\xi}\left(\lim _{\check{\prime}} \boldsymbol{f}_{i}\right) \stackrel{\curvearrowleft}{=} \lim _{\check{ }} \widehat{\gamma}_{\xi}\left(\boldsymbol{f}_{i}\right)=\lim _{\check{ }} \gamma_{\xi}\left(\boldsymbol{f}_{i}\right),
$$

where holds since $\widehat{\gamma}_{\xi}$ is a Λ-isomorphism (see Lemma 5.4). Therefore, by Lemma 5.1, $\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right)$ is an object in Nor^{p}.
5.3. $\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$ is a direct limit. Let nor Λ be the category of normed Λ-modules and Λ-homomorphisms between them. Then it is easy to check that all E_{u} are objects in nor Λ. Furthermore, for any $u \leq v$, we have a Λ-homomorphism $\varphi_{u v}: E_{u} \rightarrow E_{v}$ which is induced by $E_{u} \subseteq E_{v}$. Thus we obtain a direct system $\left(\left(E_{i}\right)_{i \in \mathbb{N}},\left(\varphi_{u v}\right)_{u \leq v}\right)$ in nor Λ over \mathbb{N}. Let Ban Λ be the category of Banach Λ-modules and continuous Λ-homomorphisms between them. Then Ban Λ is a full subcategory of nor Λ, and so, naturally, we obtain a direct system $\left(\left(E_{i}\right)_{i \in \mathbb{N}},\left(\varphi_{u v}\right)_{u \leq v}\right)$ in Ban Λ if Λ is a complete \mathbb{k}-algebra.

The following lemma establishes the relation between E_{n} and $\mathbf{S}\left(\mathbb{I}_{\Lambda}\right)$.
Lemma 5.6. Let Λ be a complete \mathbb{k}-algebra. Consider the category $\operatorname{Ban} \Lambda$ and take $\left(\alpha_{i}: E_{i} \rightarrow \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}\right)_{i \in \mathbb{N}}$, where every α_{i} is the embedding given by $E_{i} \subseteq \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$. Then $\underset{\longrightarrow}{\lim E_{i}} \cong \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$.
(Note that we assume that all morphisms in $\operatorname{Ban}(\Lambda)$ are continuous, which ensures the commutativity $\lim _{\leftrightarrows} \vartheta\left(x_{i}\right)=\vartheta\left(\lim _{\leftrightarrows} x_{i}\right)$ between the inverse limit and any morphism starting from $\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$.)

Proof. Let X be an arbitrary object in nor Λ such that there is $\left(f_{i}: E_{i} \rightarrow X\right)_{i \in \mathbb{N}}$ satisfying $f_{i} \varphi_{i j}=f_{j}$ for all $i \leq j$. Then we can find the Λ-homomorphism $\theta: \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)} \rightarrow$ X in the following way.

For any $x \in \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$, there exists a sequence $\left\{x_{t}\right\}_{t \in \mathbb{N}}$ in $\bigcup_{i} E_{i}$ such that $\left\{\left\|x_{t}-x\right\|_{p}\right\}_{t}$ is a monotonically decreasing sequence of positive real numbers. Then we have $\lim _{\rightleftarrows}\left\{\| x_{t}-\right.$ $\left.x \|_{p}\right\}_{t}=0$ by Example 2.4 which induces $\lim _{亡} x_{t}=x$. Since α_{i}, α_{j} and $\varphi_{i j}(\forall i \leq j)$ are Λ-homomorphisms induced by " \subseteq " (thus they are \mathbb{k}-linear maps induced by " \subseteq ") and every x_{t} has a preimage in some $E_{u(t)}$, then Λ-homomorphisms $\left(f_{i}\right)_{i \in \mathbb{N}}$ send $\left\{x_{t}\right\}_{t \in \mathbb{N}}$ to a sequence $\left\{f_{u(t)}\left(x_{t}\right)\right\}_{t \in \mathbb{N}}$ in X. By the completeness of $X, \lim f_{u(t)}\left(x_{t}\right) \in X$ holds. Define

$$
\theta(x)=\lim _{\rightleftarrows} f_{u(t)}\left(x_{t}\right)=\left.\lim _{\leftrightarrows} f\right|_{E_{u(t)}}\left(x_{t}\right)=\varliminf_{\leftrightarrows} f\left(x_{t}\right),
$$

where f is the map $\lim E_{u} \rightarrow X$ induced by the direct limit of $\left(\left(E_{i}\right)_{i \in \mathbb{N}},\left(\varphi_{u v}\right)_{u \leq v}\right)$. Then one can check that θ is well-defined and is a Λ-homomorphism making the following diagram commute.

Next, we show that the existence of θ is unique. Assume that θ^{\prime} is also a Λ homomorphism with $\theta^{\prime} \alpha_{i}=f_{i}$ for all i. Then for any $x \in \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$, taking the sequence $\left\{x_{t}\right\}_{t \in \mathbb{N}}$ in $\bigcup_{i} E_{i}$ satisfying $\lim _{\leftrightarrows} x_{t}=x$, we have
$\theta^{\prime}(x)=\theta^{\prime}\left(\lim _{\leftrightarrows} \alpha_{i}\left(x_{t}\right)\right)=\lim _{\leftrightarrows} \theta^{\prime}\left(\alpha_{i}\left(x_{t}\right)\right)=\lim _{\leftrightarrows} f_{i}\left(x_{t}\right)=\lim _{\leftrightarrows} \theta\left(\alpha_{i}\left(x_{t}\right)\right)=\theta\left(\lim _{\leftrightarrows} \alpha_{i}\left(x_{t}\right)\right)=\theta(x)$, that is, $\theta=\theta^{\prime}$. Therefore, by the definition of direct limits, we have $\underset{\longrightarrow}{\lim E_{i}} \cong \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$.

6. The \mathscr{A}^{p} - initial object in $\mathscr{N}^{\text {r }}{ }^{p}$

Let \mathcal{C} be a category. Recall that an object O in \mathcal{C} is an initial object if for any object Y we have $\operatorname{Hom}_{\mathcal{C}}(O, Y)$ contains only one morphism. Obviously, if \mathcal{C} has initial objects, then the initial object is unique up to isomorphism. Let \mathcal{D} be a full subcategory of \mathcal{C}. An object $C \in \mathcal{C}$ is called a \mathcal{D}-initial object if it is a subobject of the initial object in \mathcal{D}, that is, there is an object C^{\prime} in \mathcal{D} such that the following conditions hold:

- there is a monomorphism from C to C^{\prime};
- for any $D \in \mathcal{D}, \operatorname{Hom}_{\mathcal{D}}\left(C^{\prime}, D\right)$ contains a unique morphism.

It is trivial that an initial object in \mathcal{C} is a \mathcal{C}-initial object.
Let Λ is a complete \mathbb{k}_{k}-algebra. In this section, we show that $\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma}_{\xi}\right)$ is an \mathscr{A}^{p}-initial object in \mathscr{N} or ${ }^{p}$. The proof is divided to two parts: (1) there is at least one morphism from $\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{A}\right)}, \mathbf{1}, \widehat{\gamma}_{\xi}\right)$ to any object in $\mathscr{A}^{p} ;(2)$ the above morphism is unique.
6.1. The existence of morphism from $\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma}_{\xi}\right)$. In this subsection we show that $\operatorname{Hom}_{\mathscr{A}^{p}}\left(\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma}_{\xi}\right),(V, v, \delta)\right)$ is not empty for every object (V, v, δ) in \mathscr{A}^{p}.
Lemma 6.1. For any object $(V, v, \delta) \in \mathscr{A}^{p}$, we have

$$
\left.\operatorname{Hom}_{\mathscr{A}^{p} p}\left(\widehat{\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)\right.}, 1, \widehat{\gamma}_{\xi}\right),(V, v, \delta)\right) \neq \varnothing
$$

Proof. For each $u \in \mathbb{N}$, consider the map $\theta_{n}: E_{n} \rightarrow V$ as follows:
(i) $\theta_{0}: E_{0} \rightarrow V$ is a map induced by the \mathbb{k}-linear map $\mathbb{k} \rightarrow V$ sending 1 to v (note that $E_{0} \cong \mathbb{k}$). Then one can check that θ is a Λ-homomorphism.
(ii) θ_{u+1} is induced by θ_{u} through the composition

$$
\theta_{u+1}:=\left(E_{u+1} \xrightarrow{\gamma_{\xi}^{-1}} E_{u}^{\oplus p^{2}} \xrightarrow{\theta_{u}^{\oplus 2^{n}}} V^{\oplus_{p} 2^{n}} \xrightarrow{\delta} V\right),
$$

where the inverse γ_{ξ}^{-1} of the map γ_{ξ} is given in Lemma 5.4.
Notice that $\gamma_{\xi}^{-1}(f) \in E_{u-1}$ for any $f \in E_{u} \subseteq E_{u+1}$, then for the case $u=0$, we have that $f=k \mathbf{1}_{E_{0}}$ is a constant defined on E_{0}, and

$$
\theta_{1}(f)=\delta\left(\theta_{0}^{\oplus 2^{n}}\left(\gamma_{\xi}^{-1}(f)\right)\right)=\delta\left(\theta_{0}\left(k \mathbf{1}_{E_{0}}\right), \theta_{0}\left(k \mathbf{1}_{E_{0}}\right), \ldots, \theta_{0}\left(k \mathbf{1}_{E_{0}}\right)\right)=k v,
$$

that is, θ_{1} is an extension of θ_{0}. It yields $\theta_{1}\left(\mathbf{1}_{E_{1}}\right)=v$ by $\theta_{0}\left(\mathbf{1}_{E_{0}}\right)=v$ (see (i)). Furthermore, we can check that θ_{u+1} is an extension of θ_{u} and

$$
\begin{equation*}
\theta_{u}\left(\mathbf{1}_{E_{u}}\right)=v(\forall u \in \mathbb{N}) \tag{6.1}
\end{equation*}
$$

by induction, that is, the following diagram

commutes, where $\alpha_{i}: E_{i} \rightarrow \underset{\longrightarrow}{\lim } E_{i}$ and $\alpha_{i j}: E_{i} \rightarrow E_{j}(i \leq j)$ are the embeddings induced by $E_{i} \subseteq \underline{\lim } E_{i}$ and $E_{i} \subseteq E_{j}$, respectively. Then, for any $i \leq j$, there is a unique Λ-homomorphism θ such that the following diagram

commutes. By Lemma 5.6 , we have that $\theta: \underset{\longrightarrow}{\lim E_{i} \cong \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}} \rightarrow V$ is a Λ-homomorphism in $\operatorname{Hom}_{\Lambda}\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, V\right)$.

Next, we prove that θ is a morphism in $\mathcal{N o r}^{p}$. First of all, we have

$$
\theta(\mathbf{1})=\left.\underset{\rightleftharpoons}{\lim } \theta\right|_{E_{i}}\left(\mathbf{1}_{E_{i}}\right)=\underset{\rightleftharpoons}{\lim } \theta\left(\alpha_{i}\left(\mathbf{1}_{E_{i}}\right)\right)=\lim _{\rightleftharpoons} \theta_{i}\left(\mathbf{1}_{E_{i}}\right) \xlongequal{(6.1)} \underset{\rightleftharpoons}{\lim } v=v .
$$

In the following, we show that the following diagram

is commutative. Notice that each $\boldsymbol{f}=\left(f_{1}, \ldots, f_{2^{n}}\right) \in \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)^{\oplus} 2^{2^{n}}}$ can be seen as the inverse limit $\lim _{i} \boldsymbol{f}_{i}$ of some sequence $\left\{\boldsymbol{f}_{i}=\left(f_{1 i}, \ldots, f_{2^{n} i}\right)_{i \in \mathbb{N}}\right\}$ in $\bigcup_{u \in \mathbb{N}} E_{u}^{\oplus_{p} 2^{n}}$, where $f_{j i} \in E_{u_{i}}\left(1 \leq j \leq 2^{n}\right), u_{i} \in \mathbb{N}$, such that for any $i \leq j$, we have $u_{i} \leq u_{j}$. Thus, naturally, we need consider the following diagram $\left(e_{u_{i}}: E_{u_{i}} \rightarrow \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}\right.$ is the embedding induced by $\left.E_{u_{i}} \subseteq \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}\right)$:

Since

$$
\begin{aligned}
& \theta\left(\gamma_{\xi}(\boldsymbol{f})\right)=\lim _{\leftrightarrows} \theta\left(\gamma_{\xi}\left(e_{u_{i}}^{\oplus 2^{n}}\left(\boldsymbol{f}_{i}\right)\right)\right) \\
& =\lim _{\Longleftarrow} \theta\left(e_{u_{i}+1}\left(\left.\gamma_{\xi}\right|_{E^{\oplus p^{2}}}\left(\boldsymbol{f}_{i}\right)\right)\right) \\
& =\lim _{\longleftarrow} \theta_{u_{i}}\left(\left.\gamma_{\xi}\right|_{E^{\oplus p^{2}}}\left(\boldsymbol{f}_{i}\right)\right) \\
& =\lim _{幺} \delta\left(\theta_{u_{i}}^{\oplus 2^{n}}\left(\boldsymbol{f}_{i}\right)\right) \quad\left(\left.\theta_{u_{i}} \gamma_{\xi}\right|_{E^{\oplus p^{2}}}=\delta \theta_{u_{i}}^{\oplus 2^{n}}\right) \\
& =\lim _{\rightleftharpoons} \delta\left(\theta^{\oplus 2^{n}}\left(e_{u_{i}}^{\oplus 2^{n}}\left(\boldsymbol{f}_{i}\right)\right)\right) \quad\left(\theta_{u}^{\oplus 2^{n}}=\theta^{\oplus 2^{n}} e_{u_{i}}^{\oplus 2^{n}}\right) \\
& =\delta\left(\theta^{\oplus 2^{n}}\left(\lim _{\longleftarrow} e_{u_{i}+1}^{\oplus 2^{n}}\left(\boldsymbol{f}_{i}\right)\right)\right)=\delta\left(\theta^{\oplus 2^{n}}(\boldsymbol{f})\right), \quad(\text { by }(5.1))
\end{aligned}
$$

the assertion follows.
6.2. The uniqueness of morphism from $\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma} \xi\right)$. Now, we show that, for any object (V, v, δ) in \mathscr{A}^{p}, if the morphism in the category \mathscr{A}^{p} from $\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma}_{\xi}\right)$ exists, then it is unique.
Lemma 6.2. Let $(V, v, \delta) \in \mathscr{A}^{p}$ be an object in \mathscr{A}^{p}. If

$$
\operatorname{Hom}_{\mathscr{A}^{p} p}\left(\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, 1, \widehat{\gamma}_{\xi}\right),(V, v, \delta)\right) \neq \varnothing
$$

then $\operatorname{Hom}_{\mathscr{A} p}\left(\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma_{\xi}}\right),(V, v, \delta)\right)$ contains a unique morphism.
Proof. Let θ and θ^{\prime} be two Λ-homomorphisms from $\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right)$ to (V, v, δ) in \mathscr{A}^{p}. Then $\theta(\mathbf{1})=v=\theta^{\prime}(\mathbf{1})$. Since θ and θ^{\prime} are maps in \mathscr{A}^{p}, the square
commutes. Then for any $f \in E_{u+1}$, we have

$$
\left(\left.\theta\right|_{E_{u+1}}-\left.\theta^{\prime}\right|_{E_{u+1}}\right)(f)=\left(\delta \circ\left(\left.\theta\right|_{E_{u}}-\left.\theta^{\prime}\right|_{E_{u}}\right)^{\oplus 2^{n}} \circ\left(\left.\gamma_{\xi}\right|_{E_{u}^{\oplus 2^{n}}}\right)^{-1}\right)(f),
$$

that is, $\left.\theta\right|_{E_{u+1}}-\left.\theta^{\prime}\right|_{E_{u+1}}$ is determined by $\left.\theta\right|_{E_{u}}-\left.\theta^{\prime}\right|_{E_{u}}$. Consider the case for $u=0$, since $\left.\theta\right|_{E_{0}}$ and $\left.\theta^{\prime}\right|_{E_{0}}: E_{0} \rightarrow V$ are defined by $\theta_{0}\left(\mathbf{1}_{E_{0}}\right)=v$, we have

$$
\left(\left.\theta\right|_{E_{0}}-\left.\theta^{\prime}\right|_{E_{0}}\right)\left(k \mathbf{1}_{E_{0}}\right)=k\left(\left.\theta\right|_{E_{0}}\left(\mathbf{1}_{E_{0}}\right)-\left.\theta^{\prime}\right|_{E_{0}}\left(\mathbf{1}_{E_{0}}\right)\right)=k(v-v)=0 .
$$

Therefore $\left.\theta\right|_{E_{u}}-\left.\theta^{\prime}\right|_{E_{u}}=0$ for all $u \in \mathbb{N}$ by induction.
On the other hand, consider the embeddings $e_{u}: E_{u} \rightarrow \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$ and $e_{u v}: E_{u} \rightarrow E_{v}$ ($u \leq v$) induced by " \subseteq " and the direct system

$$
\left(E_{u}^{\oplus_{p} 2^{n}},\left(e_{u}^{\oplus 2^{n}}: E_{u}^{\oplus_{p} 2^{n}} \rightarrow \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)^{\oplus_{p} 2^{n}}}\right)_{u \in \mathbb{N}}\right),
$$

we have the following commutative diagram

Since

$$
\xrightarrow[\longrightarrow]{\lim } E_{i}^{\oplus_{p} 2^{n}} \cong\left(\underset{\longrightarrow}{\lim } E_{i}\right)^{\oplus_{p} 2^{n}} \cong \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)^{\oplus_{p} 2^{n}}}
$$

there is a unique Λ-homomorphism $\phi: \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)} \oplus_{p} 2^{n} \rightarrow V$ such that the following diagram

commutes. Since $\left(\theta-\theta^{\prime}\right) e_{u}^{\oplus 2^{n}}=\left.\theta\right|_{E_{i}}-\left.\theta^{\prime}\right|_{E_{j}}$, we know that the case for $\phi=\theta-\theta^{\prime}$ making the above diagram commute. On the other hand, the case for $\phi=0$ making the above diagram commute. Thus $\theta-\theta^{\prime}=0$ and $\theta=\theta^{\prime}$.
6.3. The \mathscr{A}^{p}-initial object in $\mathscr{N o r}^{p}$. Now, we can prove the following result of this paper.

Theorem 6.3. The triple $\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right)$ is an \mathscr{A}^{p}-initial object in $\mathscr{N o r}^{p}$.
Proof. For any object (V, v, δ) in \mathscr{A}^{p}, the existence of morphisms in $\operatorname{Hom}_{\mathscr{A}^{p}}\left(\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma}_{\xi}\right)\right.$, $(V, v, \delta))$ is proved in Lemma 6.1, and its uniqueness is proved in Lemma 6.2. Thus, the triple $\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma}_{\xi}\right)$, as an object in \mathscr{A}^{p}, is an initial object in \mathscr{A}^{p}. It follows that $\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \widehat{\gamma}_{\xi}\right)$ is an \mathscr{A}^{p}-initial object in $\mathscr{N o r}^{p}$.

We give a remark for Theorem 6.3.
Remark 6.4. For any object (V, v, δ) in \mathscr{A}^{p}, there is a unique morphism

$$
h:\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right) \rightarrow(V, v, \delta)
$$

in \mathscr{N} or ${ }^{p}$, which can be extended to $\widehat{h}:\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma}_{\xi}\right) \rightarrow(V, v, \delta)$, In other words, if there exists a morphism h making the diagram

commute, then the existence of h is guaranteed to be unique.

7. The categorization of Lebesgue integration

Take $\mathbb{k}=(\mathbb{k},|\cdot|, \preceq)$ to be an extension of \mathbb{R}. Recall the symbols given in Notation 5.3, any step function f in E_{u} can be written as

$$
f=\sum_{\left(u_{i} v_{i}\right)_{i}} k_{\left(u_{i} v_{i}\right)_{i}} \mathbf{1}_{\left(u_{i} v_{i}\right)_{i}} .
$$

We define the map $T_{u}: E_{u} \rightarrow \mathbb{k}$ by

$$
\begin{equation*}
T_{u}(f)=\sum_{\left(u_{i} v_{i}\right)_{i}} k_{\left(u_{i} v_{i}\right)} \mu\left(\prod_{i} \mathbb{I}^{\left(u_{i} v_{i}\right)}\right) \tag{7.1}
\end{equation*}
$$

(note that if all coefficients $k_{\left(u_{i} v_{i}\right)}$ equal to 1 , then $T_{u}(f)=\mu\left(E_{u}\right)$).
Then the Λ-isomorphism γ_{ξ} shown in Lemma 5.4 points out the following fact: there is a map $m_{u}: \mathbb{k}^{\oplus_{p} 2^{n}} \rightarrow \mathbb{k}$ such that the following diagram

commutes. Indeed, for the function $f_{k}=\frac{k}{\mu\left(\mathbb{I}_{\Lambda}\right)} \mathbf{1}_{\mathbb{I}_{A}}$ with $k \in \mathbb{k}$, we have

$$
T_{u}\left(f_{k}\right)=T_{u}\left(\frac{k}{\mu\left(\mathbb{I}_{\Lambda}\right)} \mathbf{1}_{\mathbb{I}_{\Lambda}}\right)=\frac{k}{\mu\left(\mathbb{I}_{\Lambda}\right)} T_{u}\left(\mathbf{1}_{\mathbb{I}_{\Lambda}}\right)=k
$$

by (7.1). Then for any $\boldsymbol{k}=\left(k_{1}, \ldots, k_{2^{n}}\right) \in \mathbb{k}^{\oplus_{p} 2^{n}}, \boldsymbol{f}_{\boldsymbol{k}}=\left(f_{k_{1}}, \ldots, f_{k_{2} n}\right) \in E_{u}^{\oplus_{p} 2^{n}}$ is a preimage of \boldsymbol{k} under the \mathbb{k}-linear map $T_{u}^{\oplus 2^{n}}$. We define

$$
m_{u}(\boldsymbol{k})=T_{u+1}\left(\gamma_{\xi}\left(f_{k}\right)\right) .
$$

It is easy to see that m_{u} is a \mathbb{k}-linear map. In particular, for the constant function $\mathbf{1}_{\mathbb{I}_{\Lambda}}$ given by the measure $\mu\left(\mathbb{I}_{\Lambda}\right)$ of \mathbb{I}_{Λ}, we obtain that $f_{\mu\left(E_{u}\right)}$ is a preimage of $\mu\left(\mathbb{I}_{\Lambda}\right) \in \mathbb{k}$, and then

$$
m_{u}\left(\mu\left(\mathbb{I}_{\Lambda}\right), \ldots, \mu\left(\mathbb{I}_{\Lambda}\right)\right)=T_{u+1} \gamma_{\xi}\left(\mathbf{1}_{\mathbb{I}_{\Lambda}}, \ldots, \mathbf{1}_{\mathbb{I}_{\Lambda}}\right)=\sum_{\left(u_{i} v_{i}\right)_{i}} 1 \cdot \mu\left(\prod_{i} \mathbb{I}^{\left(u_{i} v_{i}\right)}\right)=\mu\left(\mathbb{I}_{\Lambda}\right)
$$

Lemma 7.1. Let $\mathbb{k}=(\mathbb{k},|\cdot|, \preceq)$ be an extension of \mathbb{R}. Then $T_{u}: E_{u} \rightarrow \mathbb{k}$ is a亿-homomorphism.

Proof. Note that \mathbb{k} is a Λ-module given by

$$
\Lambda \times \mathbb{k} \rightarrow \mathbb{k},(\lambda, k) \mapsto \lambda \cdot k:=\tau(\lambda) k
$$

For arbitrary two elements $\lambda_{1}, \lambda_{2} \in \Lambda$ and arbitrary two functions $f=\sum_{i} k_{i} \mathbf{1}_{I_{i}}, g=$ $\sum_{j} k_{j}^{\prime} \mathbf{1}_{I_{j}^{\prime}} \in E_{u}$, we have

$$
\begin{aligned}
T_{u}\left(\lambda_{1} \cdot f+\lambda_{2} \cdot g\right) & =T_{u}\left(\sum_{i} \tau\left(\lambda_{1}\right) k_{i} \mathbf{1}_{I_{i}}+\sum_{j} \tau\left(\lambda_{2}\right) k_{j}^{\prime} \mathbf{1}_{I_{j}^{\prime}}\right) \\
& =\tau\left(\lambda_{1}\right) T_{u}\left(\sum_{i} k_{i} \mathbf{1}_{I_{i}}\right)+\tau\left(\lambda_{2}\right) T_{u}\left(\sum_{j} k_{j}^{\prime} \mathbf{1}_{I_{j}^{\prime}}\right) \\
& =\tau\left(\lambda_{1}\right) T_{u}(f)+\tau\left(\lambda_{2}\right) T_{u}(g) \\
& =\lambda_{1} \cdot T_{u}(f)+\lambda_{2} \cdot T_{u}(g) .
\end{aligned}
$$

Lemma 7.2. Let $\mathbb{k}=(\mathbb{k},|\cdot|, \preceq)$ be an extension of \mathbb{R} and let m_{u} be the \mathbb{k}-linear map given in the diagram (7.2). Then m_{u} is a Λ-homomorphism.

Proof. We can prove that m_{u} is a Λ-homomorphism by using an argument similar to proving that m_{u} is a \mathbb{k}-linear mapping (note that this proof needs to use Lemma 7.1).

Remark 7.3. Since $E_{0} \subseteq E_{1} \subseteq \cdots \subseteq E_{u} \subseteq \cdots \subseteq \mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right) \subseteq \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}=\underset{\longrightarrow}{\lim } E_{i}$, we have that μ is independent on u. Thus, we can use m to present all maps $m_{i}(i \in \mathbb{N})$ because $m_{0}=m_{1}=m_{2}=\ldots$
Proposition 7.4. Let $\mathbb{k}=(\mathbb{k},|\cdot|, \preceq)$ be an extension of \mathbb{R}. Then the triple $\left(\mathbb{k}, \mu\left(\mathbb{I}_{\Lambda}\right), m\right)$ is an object in $\mathscr{N o r}^{p}$. Furthermore, since Λ is complete, so is \mathbb{k}. Then $\mathbb{k}^{\oplus_{p} 2 n}$ is a Banach Λ-module, and so $\left(\mathbb{k}, \mu\left(\mathbb{I}_{\Lambda}\right), m\right)$ is an object in \mathscr{A}^{p}.

Proof. It follows from Lemmas 7.1 and 7.2 and Remark 7.3.
The following proposition shows that T_{u} satisfies the triangle inequality.
Proposition 7.5. If $\mathbb{k}=(\mathbb{k},|\cdot|, \preceq)$ is an extension of \mathbb{R}, then for any $f \in E_{u}$, the following inequality holds for all $u \in \mathbb{N}$.

$$
\begin{equation*}
\left|T_{u}(f)\right| \leq T_{u}(|f|) \tag{7.3}
\end{equation*}
$$

Proof. Assume that $f=\sum_{i} k_{i} \mathbf{1}_{I_{i}} \in E_{u}$, where $I_{i} \cap I_{j}=\varnothing$ for all $i \neq j$. Then $|f|=\left|\sum_{i} k_{i} \mathbf{1}_{I_{i}}\right|$ is also a step function in E_{u}, and we have

$$
\begin{aligned}
T_{u}(|f|) & =T_{u}\left(\left|\sum_{i} k_{i} \mathbf{1}_{I_{i}}\right|\right) \stackrel{(\star)}{=} T_{u}\left(\sum_{i}\left|k_{i}\right| \mathbf{1}_{I_{i}}\right) \\
& =\sum_{i}\left|k_{i}\right| \mu\left(\prod_{i} \mathbb{I}^{\left(u_{i} v_{i}\right)_{i}}\right) \\
& \geq\left|\sum_{i} k_{i} \mu\left(\prod_{i} \mathbb{I}^{\left(u_{i} v_{i}\right)_{i}}\right)\right|=\left|T_{u}(f)\right|,
\end{aligned}
$$

where (\star) is given by $I_{i} \cap I_{j}=\varnothing$.
Theorem 7.6. If $\mathfrak{k}=(\mathbb{k},|\cdot|, \preceq)$ is an extension of \mathbb{R}, then there exists a unique morphism

$$
T:\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right) \rightarrow\left(\mathbb{k}, \mu\left(\mathbb{I}_{\Lambda}\right), m\right)
$$

in $\operatorname{Hom}_{\mathcal{N o r p}^{p}}\left(\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right),\left(\mathbb{k}, \mu\left(\mathbb{I}_{\Lambda}\right), m\right)\right)$ such that the diagram

commutes, where \widehat{T} is the morphism in $\operatorname{Hom}_{\mathscr{A}^{p}}\left(\left(\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}, \mathbf{1}, \widehat{\gamma}_{\xi}\right),\left(\mathbb{k}_{k}, \mu\left(\mathbb{I}_{\Lambda}\right), m\right)\right)$ whose existence is unique. Furthermore, \widehat{T} is given by the direct limit $\underset{\longrightarrow}{\lim } T_{i}: \underset{\longrightarrow}{\lim } E_{i} \rightarrow \mathbb{k}$.
Proof. Denote by $\alpha_{i j}: E_{i} \rightarrow E_{j}(i \leq j)$ and $\alpha_{i}: E_{i} \rightarrow \xrightarrow{\lim } E_{i}$ the monomorphism induced by $E_{i} \subseteq E_{j} \subseteq \underset{\longrightarrow}{\lim } E_{i}$. Then there is a unique morphism $\xrightarrow[\longrightarrow]{\lim } T_{i}: \underset{\longrightarrow}{\lim } E_{i} \rightarrow \mathbb{k}$ such that the following diagram

commutes. By Lemma 5.6, we have $\underset{\longrightarrow}{\lim } E_{i} \cong \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$, then $\xrightarrow[\longrightarrow]{\lim T_{i}}$ induces a morphism in \mathscr{A}^{p} from $\left(\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right), \mathbf{1}, \gamma_{\xi}\right)$ to $\left(\mathbb{k}, \mu\left(\mathbb{I}_{A}\right), m\right)$. Theorem 6.3 and its remark show that $\xrightarrow{\lim } T_{i}=\widehat{T}$ and $T=\left.\widehat{T}\right|_{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$.

Definition 7.7. Let \mathbb{k} be a field with the norm $|\cdot|: \mathbb{k} \rightarrow \mathbb{R}^{\geq 0}$ and the total ordered " \preceq ", and let $f: \Lambda \rightarrow \mathbb{k}$ be a function in $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$. If \mathbb{k} is an extension of $\mathbb{R}=(\mathbb{R},|\cdot|, \leq)$, then we call that f is a integrable function on \mathbb{I}_{A} and whose integration, denoted by $\int_{\mathbb{I}_{A}} f \mathrm{~d} \mu$, is defined by

$$
\int_{\mathbb{I}_{\Lambda}} f \mathrm{~d} \mu:=\widehat{T}(f)
$$

By using the limit $\underset{\longrightarrow}{\lim } T_{i}: \underset{\longrightarrow}{\lim } E_{i} \rightarrow \mathbb{k}$ given in Theorem 7.6, the formula (7.1), Lemma 7.1 and Proposition 7.5 show that

$$
\begin{gathered}
\int_{\mathbb{I}_{\Lambda}} 1 \mathrm{~d} \mu=\mu\left(\mathbb{I}_{\Lambda}\right), \\
\int_{\mathbb{I}_{\Lambda}}\left(\lambda_{1} \cdot f_{1}+\lambda_{2} \cdot f_{2}\right) \mu=\lambda_{1} \cdot \int_{\mathbb{I}_{\Lambda}} f_{1} \mu+\lambda_{2} \cdot \int_{\mathbb{I}_{\Lambda}} f_{2} \mu\left(\lambda_{1}, \lambda_{2} \in \Lambda\right)
\end{gathered}
$$

and

$$
\left|\int_{\mathbb{I}_{\Lambda}} f \mathrm{~d} \mu\right| \leq \int_{\mathbb{I}_{\Lambda}}|f| \mathrm{d} \mu,
$$

respectively.
In the subsection 8.1 of Section 8, we point out that Theorem 7.6 and Definition 7.7 provide a categorization of Lebesgue integration.

8. Applications

8.1. Lebesgue integration. Take $\mathbb{k}=\mathbb{R},\left(\Lambda, \prec,\|\cdot\|_{\Lambda}\right)=\left(\mathbb{R}, \leq,\|\cdot\|_{\mathbb{R}}\right), B_{\mathbb{R}}=\{1\}$ and $\mathfrak{n}: B_{\mathbb{R}} \rightarrow\{1\} \subseteq \mathbb{R}^{\geq 0}$. Then $\operatorname{dim} \mathbb{R}=1, \mathbb{R}$ is a normed \mathbb{R}-algebra with the norm $\|\cdot\|_{\mathbb{R}}=|\cdot|: \mathbb{R} \rightarrow \mathbb{R}^{\geq 0}$ sending each real number r to its absolute value $|r|$, and any normed \mathbb{R}-module is a normed \mathbb{k}-linear space. Take $\mathbb{I}_{\mathbb{R}}=[0,1], \xi=\frac{1}{2}, \kappa_{0}(x)=\frac{x}{2}$, $\kappa_{1}(x)=\frac{x+1}{2}$ and $\tau=\operatorname{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}$ in this subsection. Then any object (N, v, δ) in $\mathscr{N o r}^{p}$ is a triple of a normed \mathbb{k}-module $N=\left(N, h_{N},\|\cdot\|\right)$, an element $v \in N$ with $\|v\|_{1}$ and the \mathbb{k}-linear map $\delta: N \oplus_{1} N \rightarrow N$, where the norm $\|\cdot\|$ satisfies

$$
\|r x\|=|\tau(r)| \cdot\|x\|=|r| \cdot\|x\|
$$

for any $r \in \Lambda=\mathbb{R}$ and $x \in N$. In this case, we have the following properties for \mathscr{N} or ${ }^{p}$.
(L1) The normed \mathbb{k}-module $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)=\mathbf{S}_{\mathbf{1}_{\mathbb{R}}}([0,1])$ (= \mathbf{S} for short) is a \mathbb{k}-linear space of all elementary simple functions which are of the form

$$
f=\sum_{x=i}^{t} k_{i} \mathbf{1}_{\left[x_{i}, y_{i}\right]},
$$

where $\left[x_{i}, y_{i}\right] \cap\left[x_{j}, y_{j}\right]=\varnothing$ for any $i \neq j$, and for any $f(r), g(r) \in \mathbf{S}$, it holds that

$$
\gamma_{\frac{1}{2}}(f, g)= \begin{cases}f(2 r), & 1 \leq r<\frac{1}{2} \\ g(2 r-1), & \frac{1}{2}<r \leq 1\end{cases}
$$

by the definition of γ_{ξ}, see (3.2).
(L2) \mathscr{A}^{p} is a full subcategory, ($\left.\mathbf{S}, \mathbf{1}_{[0,1]}, \gamma_{\frac{1}{2}}\right)$ is an object in $\mathscr{N o r}{ }^{p}$, but is not an object in \mathscr{A}^{p} because \mathbf{S} is not complete.
(L3) Let $\widehat{\mathbf{S}}$ be the completion of \mathbf{S}, and let $\widehat{\gamma}_{\frac{1}{2}}$ be the map $\widehat{\mathbf{S}} \oplus_{1} \widehat{\mathbf{S}} \rightarrow \widehat{\mathbf{S}}$ induced by $\gamma_{\frac{1}{2}}$. Then $\left(\widehat{\mathbf{S}}, \mathbf{1}_{[0,1]}, \widehat{\gamma}_{\frac{1}{2}}\right)$ is an object in \mathscr{A}^{p}.
By Theorem 6.3, we obtain the following result directly.
Corollary 8.1. The triple $\left(\mathbf{S}, \mathbf{1}_{[0,1]}, \gamma_{\frac{1}{2}}\right)$ is an \mathscr{A}^{p}-initial object in $\mathscr{N o r}^{p}$.
Remark 8.2. It follows from Theorem 6.3 that $\left(\widehat{\mathbf{S}}, \mathbf{1}[0,1], \widehat{\gamma}_{\frac{1}{2}}\right)$ is an initial object in \mathscr{A}^{p}, and then Corollary 8.1 holds. In [16], Leinster showed that the initial object in \mathscr{A}^{p} is $\left(L^{p}([0,1]), \mathbf{1}_{[0,1]}, \gamma_{\frac{1}{2}}\right)$. Then we obtain $L^{p}([0,1]) \cong \widehat{\mathbf{S}}$ since the uniqueness (up to isomorphism) of initial objects in arbitrary categories.

Consider the triple $(\mathbb{R}, 1, m)$ of the normed \mathbb{R}-module \mathbb{R}, the constant function and the map

$$
m: \mathbb{R} \oplus_{p} \mathbb{R} \rightarrow \mathbb{R}
$$

sending (x, y) to $\frac{1}{2}(x+y)$. Then $(\mathbb{R}, 1, m)$ is an object in \mathscr{A}^{p}, and there are a family of \mathbb{R}-linear maps $\left(L_{i}: E_{i} \rightarrow \mathbb{k}\right)_{i \in \mathbb{N}}$ such that the diagram

commutes, where E_{i} is the set of all step function constants on each $\left(\frac{t-1}{2^{i}}, \frac{t}{2^{2}}\right), L_{i}$ sends $f=\sum_{i} k_{i} \mathbf{1}_{\left[a_{i}, b_{i}\right]}$ to $\sum_{i} k_{i}\left|b_{i}-a_{i}\right|$, and $m=\underset{\longrightarrow}{\lim } m_{i}$. Furthermore, we have the following result.
Corollary 8.3. There exists a unique morphism

$$
L:\left(\mathbf{S}, \mathbf{1}_{[0,1]}, \gamma_{\frac{1}{2}}\right) \rightarrow(\mathbb{R}, 1, m)
$$

in $\operatorname{Hom}_{\mathcal{K o r}^{1}}\left(\left(\mathbf{S}, \mathbf{1}_{[0,1]}, \gamma_{\frac{1}{2}}\right),(\mathbb{R}, 1, m)\right)$ such that the diagram

commutes, where \widehat{L} is the morphism in $\operatorname{Hom}_{\mathscr{A} \mathcal{P}}\left(\left(\widehat{\mathbf{S}}, \mathbf{1}_{[0,1]}, \widehat{\gamma}_{\frac{1}{2}}\right),(\mathbb{R}, 1, m)\right)$ whose existence is unique. Furthermore, \widehat{L} is given by the direct limit $\xrightarrow{\lim } L_{i}: \xrightarrow{\lim } E_{i} \rightarrow \mathbb{k}$.

Proof. It is an immediate consequence of Theorem 7.6.
Remark 8.4. The morphism \widehat{L} induces a \mathbb{k}-linear map sending f to $\widehat{L}(f)$. Indeed, $\widehat{L}(f)$ is Lebesgue integration of f, that is,

$$
\widehat{L}(f)=\int_{0}^{1} f \mathrm{~d} \mu
$$

where μ is the Lebesgue measure in this case, see [16, Proposition 2.2].
8.2. Cauchy-Schwarz inequality. Take $\mathbb{k}=\mathbb{R}$. In this subsection we will establish the Cauchy-Schwarz inequality for the morphism \widehat{T} in $\mathscr{N}_{\text {or }}{ }^{p}$. We need the following lemma.
Lemma 8.5. If $f \in \widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$ is non-negative, then so is $\widehat{T}(f)$. That is, $f \geq 0$ yields

$$
\int_{\mathbb{I}_{\Lambda}} f \mathrm{~d} \mu \geq 0
$$

Proof. By $\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}=\underline{\longrightarrow} \lim _{u}$, there is a monotonically increasing sequence $\left\{f_{t}\right\}_{t \in \mathbb{N}^{+}}$of non-negative functions with $f_{t}=\sum_{i=1}^{2^{u_{t}}} k_{t i} \mathbf{1}_{I_{t i}} \in E_{u_{t}}$, such that $I_{t i} \cap I_{t j}=\varnothing$ for any $i \neq j ; t_{1}<t_{2}$ yields $u_{t_{1}}<u_{t_{2}}$ and $f_{t_{1}} \leq f_{t_{2}}$; and $f=\underline{\longrightarrow} \varliminf_{t}$. Thus, for any $1 \leq i \leq 2^{u_{t}}$ and $t \in \mathbb{N}^{+}$, we have $k_{t i \geq 0}$, and then the following inequality

$$
\widehat{T}\left(f_{t}\right)=T_{u_{t}}\left(f_{t}\right)=\sum_{i=1}^{2^{u_{t}}} k_{t i} \mu\left(I_{t i}\right) \geq 0
$$

holds. Furthermore, we obtain

$$
\widehat{T}(f)=\underset{\longrightarrow}{\lim } T_{u_{t}}\left(f_{t}\right)=\left.\underset{\longrightarrow}{\lim } T\right|_{E_{u_{t}}}\left(f_{t}\right)=\underset{\lim _{l}}{ } T\left(f_{t}\right) \geq 0
$$

as required, where $\underset{\longrightarrow}{\lim } T\left(f_{t}\right)=\lim _{t \rightarrow+\infty} T\left(f_{t}\right)$ is the usual limit in \mathbb{R} in analysis.
Theorem 8.6 (Cauchy-Schwarz inequality). Let f and g be two functions lying in $\widehat{\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)}$. Then

$$
\left(\int_{\mathbb{I}_{A}} f g\right)^{2} \leq\left(\int_{\mathbb{I}_{\Lambda}} f^{2} \mathrm{~d} \mu\right)\left(\int_{\mathbb{I}_{A}} g^{2} \mathrm{~d} \mu\right) .
$$

Proof. Take the quadratic function

$$
\varphi(t)=\widehat{T}\left(f^{2}\right) \cdot t^{2}+2 \widehat{T}(f g) \cdot t+\widehat{T}\left(g^{2}\right)(t \in \mathbb{R})
$$

Notice that \widehat{T} is a Λ-homomorphism, thus it is also an \mathbb{R}-linear map. Then

$$
\begin{aligned}
\varphi(t) & =\widehat{T}\left(f^{2} \cdot\left(t \mathbf{1}_{\mathbb{R}}\right)^{2}+2 f g \cdot\left(t \mathbf{1}_{\mathbb{R}}\right)+g^{2}\right) \\
& =\widehat{T}\left(\left(f \cdot\left(t \mathbf{1}_{\mathbb{R}}\right)+g\right)^{2}\right)
\end{aligned}
$$

Notice that $\left(f \cdot\left(t \mathbf{1}_{\mathbb{R}}\right)+g\right)^{2}$, written as h, is also a function defined on \mathbb{I}_{Λ} lying in $\mathbf{S}_{\tau}\left(\mathbb{I}_{\Lambda}\right)$, thus for any $x \in \mathbb{I}_{\Lambda}$, we have $h(x)=(t f(x)+g(x))^{2} \geq 0$. Then $\varphi(t) \geq 0$ by Lemma 8.5. It follows that the discriminant $(2 \widehat{T}(f g))^{2}-4 \widehat{T}\left(f^{2}\right) \widehat{T}\left(g^{2}\right)$ of $\varphi(x)$ is at most zero, that is,

$$
\left(\int_{\mathbb{I}_{A}} f g \mathrm{~d} \mu\right)^{2} \leq\left(\int_{\mathbb{I}_{A}} f^{2} \mathrm{~d} \mu\right)\left(\int_{\mathbb{I}_{\Lambda}} g^{2} \mathrm{~d} \mu\right) .
$$

The above inequality yields the Cauchy-Schwarz inequality

$$
\left(\int_{0}^{1} f g \mathrm{~d} \mu\right)^{2} \leq\left(\int_{0}^{1} f^{2} \mathrm{~d} \mu\right)\left(\int_{0}^{1} g^{2} \mathrm{~d} \mu\right)
$$

for Lebesgue integration if \mathscr{N} or ${ }^{p}$ satisfies the conditions (L1)-(L3) given in Subsection 8.1.

Acknowledgements

Yu-Zhe Liu is supported by the National Natural Science Foundation of China (Grant No. 12171207), Guizhou Provincial Basic Research Program (Natural Science) (Grant No. ZK[2024]YiBan066) and Scientific Research Foundation of Guizhou University (Grant Nos. [2022]53, [2022]65). Shenda Liu is supported by the National Natural Science Foundation of China (Grant No. 62203442). Zhaoyong Huang is supported by the National Natural Science Foundation of China (Grant Nos. 12371038, 12171207). Panyue Zhou is supported by the National Natural Science Foundation of China (Grant No. 12371034) and the Hunan Provincial Natural Science Foundation of China (Grant No. 2023JJ30008). The authors are greatly indebted to Zhenxing Di, Jian He, Yajun Ma, Yucheng Wang and Yuan Yuan for helpful suggestions.

References

[1] M. Alvarez-Picallo and J.-S. P. Lemay. Cartesian difference categories. Log. Methods Comput. Sci., 17(3): Paper No.23, 48, 2021. DOI:10.46298/lmcs-17(3:23)2021.
[2] I. Assem, D. Simson and A. Skowroński. Elements of the Representation Theory of Associative Algebras, Volume 1, Techniques of Representation Theory. Cambridge University Press, 2006. DOI:10.1017/CBO9780511614309.
[3] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. CRC Press, 2018.
[4] R. F. Blute, J. R. B. Cockett and R. A. G. Seely. Differential categories. Math. Struct. Comput. Sci., 16(6): 1049-1083, 2006. DOI:10.1017/S0960129506005676.
[5] R. F. Blute, J. R. B. Cockett and R. A. G. Seely. Cartesian differential storage categories. Theor. Appl. Categ., 30: 620-687, 2015. AMS:MR3346979.
[6] S. Bochner. Integration von funktionen, deren werte die elemente eines vektorraumes sind Fund. Math., 20(1): 262-176, 1933. https://bibliotekanauki.pl/articles/1385181.
[7] F. Burk. Lebesgue Measure and Integration: An Introduction. John Wiley \& Sons, Inc., 2011.
[8] J. R. B. Cockett and J.-S. P. Lemay. Cartesian integral categories and contextual integral categories. In Proceedings of the Thirty-Fourth Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIV), pp.45-72, Elsevier Science Publishers B.V., 2018. DOI:10.1016/j.entcs.2018.11.004.
[9] J. R. B. Cockett and J.-S. P. Lemay. Integral categories and calculus categories. Math. Struct. Comp. Sci., 29(2): 243-308, 2018. DOI:10.1017/S0960129518000014.
[10] M. H. Escardó and A. K. Simpson. A universal characterization of the closed euclidean interval. In Proceedings 16th Annual IEEE Symposium on Logic in Computer Science, pp.108-126. IEEE Computer Society, 2001. DOI: 10.1109/LICS.2001.932488.
[11] P. Freyd. Algebraic real analysis. Theor. Appl. Catego., 20(10): 215-306, 2008. https://emis.dsd.sztaki.hu/journals/TAC/volumes/20/10/20-10abs.html.
[12] S. Hartman and J. Mikusinski. The theory of Lebesgue measure and integration. Elsevier, 2014.
[13] S. Ikonicoff and J.-S. P. Lemay. Cartesian differential comonads and new models of Cartesian differential categories. Cah. Topol. Géom. Différ. Catég., 64(2): 198-239, 2023. AMS:MR4605864.
[14] K. Ito. Stochastic integral. Proc. Imp. Acad., 20(8): 519-524, 2008. DOI:10.3792/pia/1195572786.
[15] H. L. Lebesgue. Leçons sur l'intégration et la recherche des fonctions primitives: professees au college de France (deuxiemeedition). Collection de monographies sur la theorie des fonctions, 1928.
[16] T. Leinster. A categorical derivation of lebesgue integration. J. Lond. Math. Soc., 107(6): 19591982, 2023. DOI:10.1112/jlms. 12730.
[17] J.-S. P. Lemay. Differential algebras in codifferential categories. J. Pure. Appl. Algebra, 223(10): 4191-4225, 2019. DOI:10.1016/j.jpaa.2019.01.005.
[18] J.-S. P. Lemay. Cartesian Differential Kleisli Categories. Electronic Notes in Theoretical Informatics and Computer Science, 3, 2023.
[19] J. J. Rotman. An Introduction to Homological Algebra (Second Edition). Springer, 2009.
[20] I. Segal. Algebraic integration theory. Bull. Amer. Math. Soc., 71(3): 419-489, 1965. DOI:S0002-9904-1965-11284-8.

School of Mathematics and Statistics, Guizhou University, Guiyang 550025, Guizhou, P. R. China

E-mail address: liuyz@gzu.edu.cn / yzliu3@163.com
The State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P. R. China.

E-mail address: thinksheng@foxmail.com
Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu, P. R. ChiNA

E-mail address: huangzy@nju.edu.cn
School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, Hunan, P. R. China

E-mail address: panyuezhou@163.com

[^0]: ${ }^{1}$ An admissible ideal \mathcal{I} of $\mathbb{k}_{\mathfrak{\mathcal { L }}} \mathcal{Q}$ is an ideal such that $R_{\mathcal{Q}}^{m} \subseteq \mathcal{I} \subseteq R_{\mathcal{Q}}^{2}$ holds for some $m \geq 2$, see [2, Chapter II, Section II.1, page 53], where $R_{\mathcal{Q}}^{t}$ is the ideal of $\mathfrak{k} \mathcal{Q}$ generated by all paths of length $\geq t$.

