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Abstract
Let 𝑅 be an Artin algebra. Under certain Auslander-type
conditions, we give some equivalent characterizations of
(weakly) Gorenstein algebras in terms of the properties
ofGorenstein projectivemodules andmodules satisfying
Auslander-type conditions. As applications, we provide
some support for several homological conjectures. In
particular, we prove that if𝑅 is left quasi-Auslander, then
𝑅 is Gorenstein if and only if it is (left and) right weakly
Gorenstein; and that if 𝑅 satisfies the Auslander condi-
tion, then 𝑅 is Gorenstein if and only if it is left or right
weakly Gorenstein. This is a reduction of an Auslander–
Reiten’s conjecture, which states that 𝑅 is Gorenstein if
𝑅 satisfies the Auslander condition.
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1 INTRODUCTION

A left and right Noetherian ring is called Iwanaga–Gorenstein (Gorenstein for short) if its left and
right self-injective dimensions are finite. The fundamental theorem in [6] states that a commuta-
tive Noetherian ring 𝑅 is Gorenstein if and only if the flat dimension of the 𝑖th term in a minimal
injective coresolution of 𝑅 as an 𝑅-module is at most 𝑖 − 1 for any 𝑖 ⩾ 1. In the noncommutative
case, Auslander proved that the latter condition is left–right symmetric [9, Theorem 3.7]; in this
case, 𝑅 is said to satisfy the Auslander condition. Thus, the above result in [6] can be restated
as follows: A commutative Noetherian ring is Gorenstein if and only if it satisfies the Auslander
condition. Based on it, Auslander and Reiten [2] conjectured that an Artin algebra satisfying the
Auslander condition is Gorenstein. We call this conjecture ARC for short. It is situated between
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thewell-knownNakayama conjecture and the generalizedNakayama conjecture [2, p.2]. All these
conjectures remain still open.
As a generalization of the notion of the Auslander condition, Huang and Iyama [16] introduced

the notion of Auslander-type conditions of rings as follows. For any𝑚 ⩾ 0, a left and right Noethe-
rian ring is said to be 𝐺∞(𝑚) if for any finitely generated left 𝑅-module𝑀 and 𝑖 ⩾ 1, it holds that
Ext
0⩽𝑗⩽𝑖−1

𝑅𝑜𝑝
(𝑋, 𝑅) = 0 for any right 𝑅-submodule𝑋 of Ext𝑖+𝑚

𝑅
(𝑀, 𝑅); equivalently, if the flat dimen-

sion of the 𝑖th term in a minimal injective coresolution of 𝑅𝑅 is at most 𝑖 + 𝑚 − 1 for any 𝑖 ⩾ 1 [16,
p. 99]. Noncommutative rings satisfying Auslander-type conditions are analogues of commutative
Gorenstein rings. Such rings play a crucial role in homological algebra, representation theory of
algebras, and noncommutative algebraic geometry, see [2, 3, 8, 9, 11, 12, 16, 18, 19, 21, 24, 26] and
references therein. Recently, we introduced modules satisfying Auslander-type condition 𝐺∞(𝑚)
for any𝑚 ⩾ 0 [15], see Definition 2.3 below.
As a generalization of the notion of Gorenstein algebras, Ringel and Zhang [23] introduced

that of weakly Gorenstein algebras. Marczinzik [20] posed the following question: Is a left weakly
Gorenstein Artin algebra also right weakly Gorenstein? For the sake of convenience, we state this
question as the following conjecture.
Weakly-Gorenstein symmetry conjecture (WGSC): An Artin algebra is left weakly

Gorenstein if and only if it is right weakly Gorenstein.
It is related to the following famous conjecture.
Gorenstein symmetry conjecture (GSC): For an Artin algebra, its left self-injective

dimension is finite if and only if so is its right self-injective dimension.
Note that for a left and rightNoetherian ring, its left and right self-injective dimensions coincide

if both of them are finite [28, Lemma A]. Thus, an equivalent version of GSC is that for an Artin
algebra, its left and right self-injective dimensions coincide.
It was proved that WGSC implies GSC [23, p. 33], and that GSC holds true for Artin alge-

bras satisfying the Auslander condition [2, Corollary 5.5(b)]. We proved that an Artin algebra
satisfying the Auslander condition is Gorenstein if and only if the subcategory of finitely gen-
erated modules satisfying the Auslander condition is contravariantly finite [15, Theorem 5.8]. The
aim of this paper is to give some equivalent characterizations of (weakly) Gorenstein algebras
under certain Auslander-type conditions, and then provide some support for these conjectures
mentioned above.
The paper is organized as follows. In Section 2, we give some terminology and preliminary

results. Let 𝑅 be an arbitrary ring. We use (Mod𝑅) to denote the category of Gorenstein projec-
tive left 𝑅-modules. For any𝑚 ⩾ 0, we use (Mod𝑅)⩽𝑚 to denote the category of left 𝑅-modules
with Gorenstein projective dimension at most 𝑚, and use ∞(𝑚) to denote the category of left
𝑅-modules being 𝐺∞(𝑚).
In Section 3,𝑅 is an arbitrary ring.We prove that anymodule in ∞(𝑚) is isomorphic to a kernel

(resp. a cokernel) of a homomorphism from a module with finite flat dimension to certain syzygy
module, and as a consequence, we get that if a left 𝑅-module𝑀 satisfies the Auslander condition
(i.e.,𝑀 ∈ ∞(0)), then𝑀 is an∞-flat syzygy module, and the converse holds true if 𝑅𝑅 satisfies
the Auslander condition (Theorem 3.3). For any 𝑚, 𝑠 ⩾ 0, we prove that (Mod𝑅) = ∞(𝑚) if
and only if (Mod𝑅)⩽𝑠 = ∞(𝑚 + 𝑠) (Proposition 3.5). We also prove that if 𝑅 is a Gorenstein
ring, then any module in ∞(𝑚) has Gorenstein projective dimension at most𝑚 (Theorem 3.6).
In Section 4, 𝑅 is an Artin algebra. We get some equivalent characterizations for 𝑅𝑅 ∈ ∞(𝑚)

and 𝑅 being Gorenstein as follows. The case for𝑚 = 0 in the following result except the statement
(2) has been obtained in [27, Corollary 3.5], which is the Gorenstein version of [15, Theorem 5.9].
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3384 HUANG

Theorem 1.1 (Theorem 4.6). Let𝑚 ⩾ 0. Then, the following statements are equivalent.

(1) 𝑅𝑅 ∈ 𝐺∞(𝑚) and 𝑅 is Gorenstein.
(2) 𝑅𝑅 ∈ 𝐺∞(𝑚) and the left self-injective dimension of 𝑅 is finite.
(3) (Mod𝑅) ⊆ ∞(𝑚) ⊆ (Mod𝑅)

⩽𝑚.
(4) (Mod𝑅)⩽𝑠 ⊆ ∞(𝑚 + 𝑠) ⊆ (Mod𝑅)

⩽𝑚+𝑠 for any 𝑠 ⩾ 0.
(𝑖)𝑓 The finitely generated version of (𝑖) with 𝑖 = 3, 4.

Under certainAuslander-type conditions, we get some equivalent characterizations of (weakly)
Gorenstein algebras.

Theorem1.2 (Theorem4.9). If 𝑅𝑅 ∈ ∞(𝑚)and𝑅𝑅 ∈ ∞(𝑚′)𝑜𝑝 with𝑚,𝑚′ ⩾ 0, then the following
statements are equivalent.

(1) 𝑅 is Gorenstein.
(2) 𝑅 is left and right weakly Gorenstein.
(3) The left self-injective dimension of 𝑅 is finite.
(4) 𝑅 is left weakly Gorenstein.
(5) (Mod𝑅) coincides with the left orthogonal category of projective left 𝑅-modules.
(𝑖)𝑜𝑝 The opposite version of (𝑖) with 3 ⩽ 𝑖 ⩽ 5.

Furthermore, we consider algebras satisfying small Auslander-type conditions. We prove that
if 𝑅 is left quasi-Auslander (i.e., 𝑅𝑅 ∈ ∞(1)), then 𝑅 is Gorenstein if and only if the left or right
self-injective dimension of 𝑅 is finite, and if and only if 𝑅 is (left and) right weakly Gorenstein
(Theorem 4.10). Moreover, we get some equivalent characterizations of Auslander–Gorenstein
algebras (Theorem4.11), which yields that if𝑅 satisfies theAuslander condition (i.e., 𝑅𝑅 ∈ ∞(0)),
then 𝑅 is Gorenstein if and only if 𝑅 is left or right weakly Gorenstein (Corollary 4.12).
Consequently, we conclude that

(1) Over an Artin algebra 𝑅 satisfying 𝑅𝑅 ∈ ∞(𝑚) and 𝑅𝑅 ∈ ∞(𝑚′)𝑜𝑝 with 𝑚,𝑚′ ⩾ 0, both
WGSC and GSC hold true (Theorem 1.2).

(2) Over a left quasi-AuslanderArtin algebra,GSCholds true, butwe donot knowwhetherWGSC
holds true or not (Theorem 4.10).

(3) Assume that an Artin algebra 𝑅 satisfies the Auslander condition (equivalently, 𝑅𝑅 ∈ ∞(0)
and 𝑅𝑅 ∈ ∞(0)𝑜𝑝). Then, both WGSC and GSC hold true for 𝑅 by putting 𝑚 = 𝑚′ = 0 in
Theorem 1.2. Note that GSC holds true for an Artin algebra 𝑅 satisfying the Auslander condi-
tion has been obtained in [2, Corollary 5.5(b)]. Moreover, we have that 𝑅 is Gorenstein if and
only if it is left or right weakly Gorenstein (Corollary 4.12). This is a reduction of ARC, since
Gorenstein algebras are left and right weakly Gorenstein, but the converse does not hold true
in general [20, 22, 23].

2 PRELIMINARIES

Throughout this paper, all rings are associative rings with unit and all modules are unital. For
a ring 𝑅, we use Mod𝑅 to denote the category of left 𝑅-modules, and use mod𝑅 to denote the
category of finitely generated left 𝑅-modules. For a module 𝑀 ∈ Mod𝑅, we use pd𝑅 𝑀, fd𝑅 𝑀,
and id𝑅 𝑀 to denote the projective, flat, and injective dimensions of𝑀, respectively.
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AUSLANDER-TYPE CONDITIONS ANDWEAKLY GORENSTEIN ALGEBRAS 3385

Let 𝑅 be a ring. We write (−)∗ ∶= Hom(−, 𝑅). Let 𝑀 ∈ Mod𝑅 and let 𝜎𝑀 ∶ 𝑀 → 𝑀∗∗ via
𝜎𝑀(𝑥)(𝑓) = 𝑓(𝑥) for any 𝑥 ∈ 𝑀 and 𝑓 ∈ 𝑀∗ be the canonical evaluation homomorphism. Recall
that 𝑀 is called torsionless if 𝜎𝑀 is a monomorphism, and is called reflexive if 𝜎𝑀 is an
isomorphism. Let

⋯→ 𝑃𝑖 → ⋯→ 𝑃1 → 𝑃0 → 𝑀 → 0

and

0 → 𝑀 → 𝐸0(𝑀) → 𝐸1(𝑀) → ⋯→ 𝐸𝑖(𝑀) → ⋯

be a projective resolution and a minimal injective coresolution of𝑀, respectively. For any 𝑛 ⩾ 1,
Ω𝑛(𝑀) ∶= Im(𝑃𝑛 → 𝑃𝑛−1) and Ω−𝑛(𝑀) ∶= Im(𝐸𝑛−1(𝑀) → 𝐸𝑛(𝑀)) are called the 𝑛-syzygy and
𝑛-cosyzygy of 𝑀, respectively. In particular, Ω0(𝑀) = 𝑀. Note that the 𝑛-syzygy of 𝑀 is defined
up to projective summands. We write

Ω𝑛(Mod𝑅) ∶= {𝑀 ∈ Mod𝑅 ∣ 𝑀 is an 𝑛-syzygy module} for any 𝑛 ⩾ 1,

Ω∞(Mod𝑅) ∶= ∩𝑛⩾1Ω
𝑛(Mod𝑅) and Ω∞(mod𝑅) ∶= Ω∞(Mod𝑅) ∩ mod𝑅.

For a subcategory  ofMod𝑅, we write

⊥ ∶= {𝑀 ∈ Mod𝑅 ∣ Ext⩾1
𝑅
(𝑀,𝑋) = 0 for any 𝑋 ∈ },

and write ⊥𝑋 ∶= ⊥ if  = {𝑋}.
Let 𝑅 be a left and right Noetherian ring and𝑀 ∈ mod𝑅, and let

𝑃1
𝑓
⟶ 𝑃0 → 𝑀 → 0

be a projective presentation of 𝑀 in mod𝑅. Recall from [1] that Tr𝑀 ∶= Coker 𝑓∗ is called the
transpose of 𝑀. Note that the transpose of 𝑀 is defined up to projective summands [1, p.51]. A
module𝑀 ∈ mod𝑅 is called∞-torsionfree if Tr𝑀 ∈ ⊥𝑅𝑅 ∩ mod𝑅𝑜𝑝. We write

 (mod𝑅) ∶= {𝑀 ∈ mod𝑅 ∣ 𝑀 is∞-torsionfree}.

By [1, Theorem 2.17], we have  (mod𝑅) ⊆ Ω∞(mod𝑅).

Definition 2.1 [1]. Let 𝑅 be a left and right Noetherian ring. A module𝑀 ∈ mod𝑅 is said to have
Gorentein dimension zero if

Ext⩾1
𝑅
(𝑀, 𝑅) = 0 = Ext⩾1

𝑅𝑜𝑝
(Tr𝑀, 𝑅);

equivalently, if𝑀 is reflexive and

Ext⩾1
𝑅
(𝑀, 𝑅) = 0 = Ext⩾1

𝑅𝑜𝑝
(𝑀∗, 𝑅).
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3386 HUANG

Let 𝑅 be a ring. We write (Mod𝑅) ∶= {projective lef t 𝑅-modules}. Recall from [7] that a
module𝑀 ∈ Mod𝑅 is called Gorenstein projective if there exists an exact sequence

⋯→ 𝑃1 → 𝑃0 → 𝑃
0 → 𝑃1 → ⋯

in Mod𝑅 with all 𝑃𝑖, 𝑃𝑖 in (Mod𝑅), such that it remains exact after applying the functor
Hom𝑅(−, 𝑃) for any 𝑃 ∈ (Mod𝑅) and𝑀 ≅ Im(𝑃0 → 𝑃0). We write

(Mod𝑅) ∶= {Gorenstein projective left 𝑅-modules} and (mod𝑅) ∶= (Mod𝑅) ∩ mod𝑅.

It is well known that over a left and right noetherian ring, a finitely generated module has
Gorenstein dimension zero if and only if it is Gorenstein projective [4, 7], and thus,

(mod𝑅) = (⊥𝑅𝑅 ∩ mod𝑅) ∩  (mod𝑅).

Now, finitely generatedmodules having Gorenstein dimension zero over left and right noetherian
rings are usually referred to as Gorenstein projective modules.
For any 𝑀 ∈ mod𝑅 (resp. mod𝑅𝑜𝑝), it is well known that 𝑀 and Tr Tr𝑀 are projectively

equivalent. So, we have the following observation.

Lemma 2.2. Let 𝑅 be a left and right Noetherian ring. Then, a module𝑀 ∈ mod𝑅 (resp.mod𝑅𝑜𝑝)
is Gorenstein projective if and only if so is Tr𝑀.

Recall from [9] that a left and right Noetherian ring 𝑅 is said to satisfy the Auslander condition
if fd𝑅 𝐸𝑖(𝑅𝑅) ⩽ 𝑖 for any 𝑖 ⩾ 0. As a generalization of rings satisfying the Auslander condition,
Huang and Iyama [16] introduced the notion of rings satisfying Auslander-type conditions, which
was extended to that of modules satisfying Auslander-type conditions as follows.

Definition 2.3 [15]. Let 𝑅 be a ring and let 𝑚 ⩾ 0. A module 𝑀 ∈ Mod𝑅 is said to be 𝐺∞(𝑚) if
fd𝑅 𝐸
𝑖(𝑀) ⩽ 𝑖 + 𝑚 for any 𝑖 ⩾ 0. In particular,𝑀 is said to satisfy the Auslander condition if it is

𝐺∞(0).

Let 𝑅 be a left and right Noetherian ring. Then, 𝑅𝑅 is𝐺∞(𝑚) if and only if the ring 𝑅 is𝐺∞(𝑚)𝑜𝑝
in the sense of [16] (cf. Introduction). Notice that the notion of the Auslander condition is left–
right symmetric [9, Theorem 3.7], so the ring𝑅 satisfies the Auslander condition if and only if both
𝑅𝑅 and 𝑅𝑅 satisfy the Auslander condition. However, in general, the notion of 𝑅 being 𝐺∞(𝑚) is
not left–right symmetric when 𝑚 ⩾ 1 [3, 16]. It should be pointed out that modules satisfying
Auslander-type conditions are ubiquitous. For example, if 𝑅 is a left and right Noetherian ring
and id𝑅𝑜𝑝 𝑅 ⩽ 𝑚, then any module inMod𝑅 is 𝐺∞(𝑚) [15, Example 4.2(3)]. For more examples of
modules satisfying Auslander-type conditions, the reader is referred to [15, Example 4.2].
Let  be a subcategory ofMod𝑅 and𝑀 ∈ Mod𝑅. The -projective dimension -pd𝑅 𝑀 of𝑀 is

defined as inf {𝑛 ∣ there exists an exact sequence

0 → 𝑋𝑛 → ⋯→ 𝑋1 → 𝑋0 → 𝑀 → 0

inMod𝑅 with all 𝑋𝑖 in }. If no such an integer exists, then set -pd𝑅 𝑀 = ∞. For any 𝑠 ⩾ 0, we
write

⩽𝑠 ∶= {𝑀 ∈ Mod𝑅 ∣ - pd𝑅 𝑀 ⩽ 𝑠}.
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When  = (Mod𝑅) or (mod𝑅), the -projective dimension of𝑀 is exactly the Gorenstein
projective dimension G-pd𝑅 𝑀 of𝑀.

3 SYZYGYMODULES AND GORENSTEIN PROJECTIVE
DIMENSION

In this section, 𝑅 is an arbitrary ring. For any𝑚 ⩾ 0, we write

∞(𝑚) ∶= {𝑀 ∈ Mod𝑅 ∣ 𝑀 is 𝐺∞(𝑚)}.

Then, we have the following inclusion chain:

∞(0) ⊆ ∞(1) ⊆⋯ ⊆ ∞(𝑚) ⊆ ⋯ .

Lemma 3.1. If 𝑅 is a left Noetherian ring and 𝑅𝑅 ∈ ∞(𝑚), then any flat module in Mod𝑅 is in
∞(𝑚).

Proof. It follows from [15, Corollary 3.2]. □

The following lemma is used frequently in the sequel.

Lemma 3.2. Let

0 → 𝑀 → 𝑋0 → 𝑋1 → ⋯→ 𝑋𝑖 → ⋯ (3.1)

be an exact sequence in Mod𝑅 and let 𝑚 ⩾ 0. If 𝑋𝑖 ∈ ∞(𝑚) for any 𝑖 ⩾ 0, then 𝑀 ∈ ∞(𝑚). In
particular, the subcategory ∞(𝑚) is closed under kernels of epimorphisms.

Proof. By the exact sequence (3.1) and [13, Corollary 3.9(1)], we get the following exact sequence:

0 → 𝑀 → 𝐸0(𝑋0) → 𝐸1(𝑋0) ⊕ 𝐸0(𝑋1) → ⋯→ ⊕𝑛
𝑖=0
𝐸𝑛−𝑖(𝑋𝑖) → ⋯ .

For the reader’s convenience, we give an outline of the construction of this exact sequence, which
is dual to that in the proof of [13, Theorem 3.6]. Put𝑀𝑖 ∶= Im(𝑋𝑖−1 → 𝑋𝑖) for any 𝑖 ⩾ 1. Let 𝑛 be
an arbitrary positive integer. We have an exact sequence

0 → 𝑀𝑛 → 𝐸0(𝑋𝑛). (3.2)

From (3.2) and the exact sequence 0 → 𝑋𝑛−1 → 𝐸0(𝑋𝑛−1) → 𝐸1(𝑋𝑛−1), we obtain the following
exact sequence:

0 → 𝑀𝑛−1 → 𝐸0(𝑋𝑛−1) → 𝐸1(𝑋𝑛−1) ⊕ 𝐸0(𝑋𝑛). (3.3)

Then, from (3.3) and the exact sequence 0 → 𝑋𝑛−2 → 𝐸0(𝑋𝑛−2) → 𝐸1(𝑋𝑛−2) → 𝐸2(𝑋𝑛−2), we
obtain the following exact sequence:

0 → 𝑀𝑛−2 → 𝐸0(𝑋𝑛−2) → 𝐸1(𝑋𝑛−2) ⊕ 𝐸0(𝑋𝑛−1) → 𝐸2(𝑋𝑛−2) ⊕ 𝐸1(𝑋𝑛−1) ⊕ 𝐸0(𝑋𝑛).
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3388 HUANG

Continuing this process, we obtain the following exact sequence:

0 → 𝑀 → 𝐸0(𝑋0) → 𝐸1(𝑋0) ⊕ 𝐸0(𝑋1) →⋯→ ⊕𝑛
𝑖=0
𝐸𝑛−𝑖(𝑋𝑖).

Then, the desired exact sequence is obtained because of the arbitrariness of 𝑛. Since𝑋𝑖 ∈ 𝐺∞(𝑚),
we have fd𝑅 𝐸𝑗(𝑋𝑖) ⩽ 𝑗 + 𝑚 for any 𝑖, 𝑗 ⩾ 0. So, fd𝑅 ⊕𝑛𝑖=0𝐸

𝑛−𝑖(𝑋𝑖) ⩽ 𝑛 + 𝑚 for any 𝑛 ⩾ 0, and thus
𝑀 ∈ 𝐺∞(𝑚). □

For any 𝑛 ⩾ 1, we write Ω𝑛

(Mod𝑅) ∶= {𝑀 ∈ Mod𝑅 ∣ there exists an exact sequence

0 → 𝑀 → 𝐹0 → 𝐹1 → ⋯→ 𝐹𝑛−1

inMod𝑅 with all 𝐹𝑖 f lat}, and write Ω∞

(Mod𝑅) ∶= ∩𝑛⩾1Ω

𝑛

(Mod𝑅).

The first assertion in the following result shows that any module in ∞(𝑚) is isomorphic to a
kernel (resp. a cokernel) of a homomorphism from a module with finite flat dimension to certain
syzygy module.

Theorem 3.3. It holds that

(1) Let𝑀 ∈ ∞(𝑚) with𝑚 ⩾ 0. Then, for any 𝑛 ⩾ 1, there exists an exact sequence

0 → 𝐺0 → 𝑋0 → 𝐺1 → 𝑋1 → 0

inMod𝑅 with𝑀 ≅ Im(𝑋0 → 𝐺1) such that the following conditions are satisfied.
(a) fd𝑅 𝐺0 ⩽ 𝑚 − 1 and fd𝑅 𝐺1 ⩽ 𝑚.
(b) 𝑋0 ∈ Ω𝑛 (Mod𝑅) and 𝑋1 ∈ Ω

𝑛−1(Mod𝑅).
(2) ∞(0) ⊆ Ω

∞

(Mod𝑅) with equality if 𝑅 is a left Noetherian ring and 𝑅𝑅 ∈ ∞(0).

Proof.

(1) Let𝑀 ∈ ∞(𝑚) and 𝑛 ⩾ 1. We have the following two exact and commutative diagrams:
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AUSLANDER-TYPE CONDITIONS ANDWEAKLY GORENSTEIN ALGEBRAS 3389

and

with all 𝑃𝑖 projective in Mod𝑅 and 𝑋1 ∶= Im(𝑃0 → 𝑃1) ∈ Ω𝑛−1(Mod𝑅). Since 𝑀 ∈ ∞(𝑚),
we have fd𝑅 𝐸𝑖(𝑀) ⩽ 𝑖 + 𝑚 for any 𝑖 ⩾ 0, and thus fd𝑅 𝐾𝑖 ⩽ 𝑖 + 𝑚 − 1 for any 1 ⩽ 𝑖 ⩽ 𝑛 − 1. It
follows from the upper row in the first diagram that fd𝑅 𝐾′1 ⩽ 𝑚.
Consider the following pull-back diagram (Diagram (3.1)):

From the middle column, we obtain fd𝑅 𝐺1 ⩽ 𝑚, and there exists an exact sequence

0 → 𝐺0 → 𝐹 → 𝐺1 → 0
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3390 HUANG

inMod𝑅with 𝐹 flat and fd𝑅 𝐺0 ⩽ 𝑚 − 1. Consider the following pull-back diagram (Diagram
(3.2)):

From the middle row, we obtain 𝑋0 ∈ Ω𝑛 (Mod𝑅). Now splicing the middle row in Diagram
(3.1) (i.e., the bottom row in Diagram (3.2)) and the leftmost column in Diagram (3.2), we get
the desired exact sequence.

(2) To prove ∞(0) ⊆ Ω∞ (Mod𝑅), it suffices to prove that if 𝑀 ∈ ∞(0), then 𝑀 ∈ Ω
𝑛

(Mod𝑅)

for any 𝑛 ⩾ 1. Let𝑀 ∈ ∞(0) and 𝑛 ⩾ 1. By (1), there exists an exact sequence

0 → 𝑀 → 𝐹 → 𝐺1 → 0

inMod𝑅 with 𝐹 flat and 𝐺1 ∈ Ω𝑛−1(Mod𝑅), and so𝑀 ∈ Ω𝑛 (Mod𝑅).
Now assume that 𝑅 is a left Noetherian ring and 𝑅𝑅 ∈ ∞(0). Then any flat module in
Mod𝑅 is in ∞(0) by Lemma 3.1, and thus Ω∞ (Mod𝑅) ⊆ ∞(0) by Lemma 3.2. □

We need the following lemma.

Lemma 3.4. For any𝑚, 𝑠 ⩾ 0, we have

∞(𝑚)
⩽𝑠 ⊆ ∞(𝑚 + 𝑠)

with equality if (Mod𝑅) ⊆ ∞(0).

Proof. Let𝑀 ∈ ∞(𝑚)⩽𝑠 and

0 → 𝑋𝑠 → ⋯→ 𝑋1 → 𝑋0 → 𝑀 → 0

be an exact sequence inMod𝑅 with all 𝑋𝑖 in ∞(𝑚). According to [13, Corollary 3.5], we get the
following two exact sequences:

0 → 𝑀 → 𝐸 → ⊕𝑠
𝑖=0
𝐸𝑖+1(𝑋𝑖) → ⊕

𝑠
𝑖=0
𝐸𝑖+2(𝑋𝑖) → ⊕

𝑠
𝑖=0
𝐸𝑖+3(𝑋𝑖) → ⋯ , (3.2)

0 → 𝐸𝑠(𝑋0) → 𝐸
𝑠−1(𝑋0) ⊕ 𝐸

𝑠(𝑋1) → ⋯→ ⊕𝑠
𝑖=1
𝐸𝑖−1(𝑋𝑖) → ⊕

𝑠
𝑖=0
𝐸𝑖(𝑋𝑖) → 𝐸 → 0. (3.3)
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AUSLANDER-TYPE CONDITIONS ANDWEAKLY GORENSTEIN ALGEBRAS 3391

Since all 𝑋𝑖 are in ∞(𝑚), we have fd𝑅 𝐸𝑗(𝑋𝑖) ⩽ 𝑗 + 𝑚 for any 𝑗 ⩾ 0 and 0 ⩽ 𝑖 ⩽ 𝑠. Thus,
fd𝑅 ⊕

𝑠
𝑖=0
𝐸𝑖+𝑗(𝑋𝑖) ⩽ 𝑗 + 𝑚 + 𝑠 for any 𝑗 ⩾ 1. By (3.3), we have that 𝐸 is a direct summand of

⊕𝑠
𝑖=0
𝐸𝑖(𝑋𝑖) and fd𝑅 𝐸 ⩽ 𝑚 + 𝑠. Therefore, we obtain𝑀 ∈ ∞(𝑚 + 𝑠) by (3.2).

Now suppose (Mod𝑅) ⊆ ∞(0). We will prove ∞(𝑚 + 𝑠) ⊆ ∞(𝑚)⩽𝑠 by induction on 𝑠. The
case for 𝑠 = 0 follows trivially. Suppose 𝑠 ⩾ 1 and𝑀 ∈ ∞(𝑚 + 𝑠). Let

0 → 𝐾 → 𝑃 → 𝑀 → 0

be an exact sequence inMod𝑅with 𝑃 projective. Since 𝑃 ∈ ∞(0), it follows from [15, Proposition
4.12] that 𝐾 ∈ ∞(𝑚 + 𝑠 − 1), and hence ∞(𝑚)-pd𝐾 ⩽ 𝑠 − 1 by the induction hypothesis. This
implies ∞(𝑚)-pd𝑅 𝑀 ⩽ 𝑠 and𝑀 ∈ ∞(𝑚)⩽𝑠. □

By Lemma 3.4, we obtain the following result.

Proposition 3.5. If (Mod𝑅) ⊆ ∞(0), then it holds that

(1) (Mod𝑅) = ∞(𝑚) if and only if (Mod𝑅)⩽𝑠 = ∞(𝑚 + 𝑠) for any 𝑠 ⩾ 0.
(2) If 𝑅 is a left and right Noetherian ring, then (mod𝑅) = ∞(𝑚) ∩ mod𝑅 if and only if

(mod𝑅)⩽𝑠 = ∞(𝑚 + 𝑠) ∩ mod𝑅 for any 𝑠 ⩾ 0.

About the condition (Mod𝑅) ⊆ ∞(0) in Proposition 3.5, we remark that if 𝑅 is a left Noethe-
rian ring, then this condition is satisfied if and only if 𝑅𝑅 satisfied the Auslander condition by
[15, Theorem 4.9], and that if 𝑅 is an Artin algebra, then (Mod𝑅) = ∞(0) if and only if 𝑅 is
Auslander-regular (i.e., the algebra 𝑅 satisfies Auslander condition and the global dimension of
𝑅 is finite) [15, Theorem 5.9].

Theorem 3.6. It holds that

(1) If 𝑅 is a Gorenstein ring, then ∞(𝑚) ⊆ (Mod𝑅)
⩽𝑚 for any𝑚 ⩾ 0.

(2) If 𝑅 is a left Noetherian ring and id𝑅 𝑅 < ∞, then (Mod𝑅) = Ω∞(Mod𝑅).

Proof.

(1) Let 𝑅 be a Gorenstein ring with id𝑅 𝑅 = id𝑅𝑜𝑝 𝑅 ⩽ 𝑛, and let𝑀 ∈ ∞(𝑚). Then G-pd𝑅 𝑀 ⩽ 𝑛
by [7, Theorem 12.3.1]. It suffices to prove G-pd𝑅 𝑀 ⩽ 𝑚. The case for 𝑛 ⩽ 𝑚 is trivial. Now
suppose 𝑛 > 𝑚 and 𝑡 ∶= 𝑛 − 𝑚. Consider the following exact sequence:

0 → 𝑀 → 𝐸0(𝑀) → 𝐸1(𝑀) → ⋯→ 𝐸𝑡−1(𝑀) → 𝐾𝑡 → 0,

where 𝐾𝑡 ∶= Im(𝐸𝑡−1(𝑀) → 𝐸𝑡(𝑀)). By [7, Theorem 12.3.1] again, we have G-pd𝑅 𝐾𝑡 ⩽ 𝑛(=
𝑡 + 𝑚). Since 𝑀 ∈ ∞(𝑚), we have pd𝑅 𝐸𝑖(𝑀) ⩽ 𝑖 + 𝑚 for any 0 ⩽ 𝑖 ⩽ 𝑡 − 1. Then, it is easy
to get G-pd𝑅 𝑀 ⩽ 𝑚 by [14, Theorem 3.2 and Remark 4.4(3)(a)].

(2) It suffices to prove Ω∞(Mod𝑅) ⊆ (Mod𝑅). If 𝑅 is a left Noetherian ring and id𝑅 𝑅 < ∞,
then id𝑅 𝑃 < ∞ for any 𝑃 ∈ (Mod𝑅) by [5, Theorem 1.1]. Assume that𝑀 ∈ Ω∞(Mod𝑅) and

0 → 𝑀 → 𝑃0 → 𝑃1 → ⋯→ 𝑃𝑖 → ⋯

is an exact sequence inMod𝑅 with all 𝑃𝑖 in (Mod𝑅). It is easy to see that the kernel of each
homomorphism in the above exact sequence is in ⊥(Mod𝑅) by dimension shifting. Thus,
𝑀 ∈ (Mod𝑅) and Ω∞(Mod𝑅) ⊆ (Mod𝑅). □
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3392 HUANG

4 (WEAKLY) GORENSTEIN ALGEBRAS

In this section, 𝑅 is an Artin algebra. Under certain Auslander-type conditions, we will give
some equivalent characterizations for id𝑅 𝑅 < ∞ as well as for (weakly) Gorenstein algebras. As
applications, we give some partial answers to some related homological conjectures.

4.1 Auslander-type conditions

For any𝑀 ∈ Mod𝑅 and𝑚 ⩾ 0, we write

⊥⩾𝑚+1𝑀 ∶= {𝐴 ∈ Mod𝑅 ∣ Ext⩾𝑚+1
𝑅
(𝐴,𝑀) = 0}.

Lemma 4.1. Let 𝑀 ∈ mod𝑅 such that Ω∞(mod𝑅) ⊆ ⊥⩾𝑚+1𝑀 ∩mod𝑅 for some 𝑚 ⩾ 0. If there
exists some 𝑛 ⩾ 0 such that pd𝑅 𝐸𝑖(𝑀) ⩽ 𝑛 for any 𝑖 ⩾ 𝑛 + 𝑚 + 1, then id𝑅 𝑀 ⩽ 𝑛 +𝑚.

Proof. Let 𝑀 ∈ mod𝑅. Set 𝐾𝑖 ∶= Im(𝐸𝑖−1(𝑀) → 𝐸𝑖(𝑀)) for any 𝑖 ⩾ 1. Since pd𝑅 𝐸𝑖(𝑀) ⩽ 𝑛 for
any 𝑖 ⩾ 𝑛 + 𝑚 + 1, by the horseshoe lemma, we obtain the following exact and commutative
diagram:

in mod𝑅 with all 𝑃𝑗 and 𝑃𝑡𝑗 projective. Then, 𝐾
𝑛+𝑚+1
𝑛 ∈ Ω∞(mod𝑅), and thus 𝐾𝑛+𝑚+1𝑛 ∈

⊥⩾𝑚+1𝑀 ∩mod𝑅 by assumption. It follows from the leftmost column in the above diagram that
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AUSLANDER-TYPE CONDITIONS ANDWEAKLY GORENSTEIN ALGEBRAS 3393

𝐾𝑛+𝑚+1 ∈ ⊥⩾𝑛+𝑚+1𝑀 ∩mod𝑅. Now applying the functorHom𝑅(𝐾𝑛+𝑚+1, −) to the exact sequence

0 → 𝑀 → 𝐸0(𝑀) → 𝐸1(𝑀) → ⋯→ 𝐸𝑛+𝑚−1(𝑀) → 𝐾𝑛+𝑚 → 0

yields Ext1
𝑅
(𝐾𝑛+𝑚+1, 𝐾𝑛+𝑚) = 0. It implies that the exact sequence

0 → 𝐾𝑛+𝑚 → 𝐸𝑛+𝑚(𝑀) → 𝐾𝑛+𝑚+1 → 0

splits and𝐾𝑛+𝑚 is a direct summand of𝐸𝑛+𝑚(𝑀). Thus,𝐾𝑛+𝑚 is injective and id𝑅 𝑀 ⩽ 𝑛 +𝑚. □

Remark 4.2. The same argument as above essentially proves the following result: Let 𝑅 be an arbi-
trary ring (not necessarily an Artin algebra) and let𝑀 ∈ Mod𝑅 such that Ω∞(Mod𝑅) ⊆ ⊥⩾𝑚+1𝑀
for some 𝑚 ⩾ 0. If there exists some 𝑛 ⩾ 0 such that pd𝑅 𝐸𝑖(𝑀) ⩽ 𝑛 for any 𝑖 ⩾ 𝑛 + 𝑚 + 1, then
id𝑅 𝑀 ⩽ 𝑛 +𝑚.

Recall from [23] that an Artin algebra 𝑅 is called left weakly Gorenstein if (mod𝑅) = ⊥𝑅𝑅 ∩
mod𝑅. Symmetrically, the notion of right weakly Gorenstein algebras is defined.

Proposition 4.3.

(1) Assume that there exists some 𝑛,𝑚 ⩾ 0 such that pd𝑅 𝐸𝑖(𝑅𝑅) ⩽ 𝑛 for any 𝑖 ⩾ 𝑛 + 𝑚 + 1. If
Ω∞(mod𝑅) ⊆ ⊥⩾𝑚+1𝑅𝑅 ∩ mod𝑅, then id𝑅 𝑅 ⩽ 𝑛 + 𝑚.

(2) Assume that there exists some 𝑛 ⩾ 0 such that pd𝑅 𝐸𝑖(𝑅𝑅) ⩽ 𝑛 for any 𝑖 ⩾ 𝑛 + 1. If 𝑅 is right
weakly Gorenstein andΩ∞(mod𝑅) =  (mod𝑅), then id𝑅 𝑅 ⩽ 𝑛.

Proof.

(1) Putting𝑀 = 𝑅𝑅 in Lemma 4.1, the assertion follows.
(2) Let 𝑀 ∈ Ω∞(mod𝑅). Then 𝑀 ∈  (mod𝑅) by assumption, and so Tr𝑀 ∈ ⊥𝑅𝑅 ∩ mod𝑅𝑜𝑝.

Since 𝑅 is right weakly Gorenstein by assumption, we have Tr𝑀 ∈ ⊥𝑅𝑅 ∩ mod𝑅𝑜𝑝 =
(mod𝑅𝑜𝑝). Thus, 𝑀 ∈ (mod𝑅) ⊆ ⊥𝑅𝑅 ∩ mod𝑅 by Lemma 2.2. This shows
Ω∞(mod𝑅) ⊆ ⊥𝑅𝑅 ∩ mod𝑅, and then the assertion follows from (1). □

The following lemma shows that all modules satisfying certain Auslander-type condition over
an Artin algebra satisfy the condition about projective dimension in Lemma 4.1.

Lemma 4.4. If 𝑀 ∈ ∞(𝑚) (resp. 𝑁 ∈ ∞(𝑚)𝑜𝑝) with 𝑚 ⩾ 0, then there exists some 𝑛 ⩾ 0 such
that pd𝑅 𝐸𝑖(𝑀) (resp. pd𝑅𝑜𝑝 𝐸𝑖(𝑁)) ⩽ 𝑛 for any 𝑖 ⩾ 0.

Proof. Since 𝑅 is an Artin algebra, there exist only finitely many nonisomorphic indecomposable
injective left 𝑅-modules. Let 𝑀 ∈ ∞(𝑚). Without of generalization, suppose that {𝐸0, … , 𝐸𝑡} is
the complete set of nonisomorphic indecomposable injective left modules that occur as direct
summands of all 𝐸𝑖(𝑀). Then, there exists some 𝑛 ⩾ 0 such that pd𝑅 𝐸𝑖 ⩽ 𝑛 for any 1 ⩽ 𝑖 ⩽ 𝑡, and
thus pd𝑅 𝐸𝑖(𝑀) ⩽ 𝑛 for any 𝑖 ⩾ 0. Symmetrically, if 𝑁 ∈ ∞(𝑚)𝑜𝑝, then there exists some 𝑛 ⩾ 0
such that pd𝑅𝑜𝑝 𝐸𝑖(𝑁) ⩽ 𝑛 for any 𝑖 ⩾ 0. □

As a consequence, we obtain the following result.
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3394 HUANG

Proposition 4.5. If (mod𝑅) = ∞(𝑚) ∩ mod𝑅 for some𝑚 ⩾ 0, then id𝑅 𝑅 < ∞.

Proof. Since 𝑅𝑅 ∈ (mod𝑅), we have 𝑅𝑅 ∈ ∞(𝑚) by assumption, It follows from Lemma 4.4
that pd𝑅 𝐸𝑖(𝑅𝑅) ⩽ 𝑛 for any 𝑖 ⩾ 0. Since any projective module inmod𝑅 is in ∞(𝑚), we have

Ω∞(mod𝑅) ⊆ ∞(𝑚) ∩ mod𝑅 (by Lemma 3.2)

= (mod𝑅) (by assumption)

⊆ ⊥𝑅𝑅 ∩ mod𝑅.

Thus, id𝑅 𝑅 ⩽ 𝑛 by Proposition 4.3(1). □

Weare now in a position to prove the following result, inwhich assertions (5) and (6) are finitely
generated versions of (3) and (4), respectively.

Theorem 4.6. For any𝑚 ⩾ 0, the following statements are equivalent.

(1) 𝑅𝑅 ∈ ∞(𝑚) and 𝑅 is Gorenstein.
(2) 𝑅𝑅 ∈ ∞(𝑚) and id𝑅 𝑅 < ∞.
(3) (Mod𝑅) ⊆ ∞(𝑚) ⊆ (Mod𝑅)

⩽𝑚.
(4) (Mod𝑅)⩽𝑠 ⊆ ∞(𝑚 + 𝑠) ⊆ (Mod𝑅)

⩽𝑚+𝑠 for any 𝑠 ⩾ 0.
(5) (mod𝑅) ⊆ ∞(𝑚) ∩ mod𝑅 ⊆ (mod𝑅)

⩽𝑚.
(6) (mod𝑅)⩽𝑠 ⊆ ∞(𝑚 + 𝑠) ∩ mod𝑅 ⊆ (mod𝑅)

⩽𝑚+𝑠 for any 𝑠 ⩾ 0.

Proof. The implications (1)⟹ (2), (4)⟹ (3)⟹ (5) and (4)⟹ (6)⟹ (5) are trivial. By the
symmetric version of [11, Corollary 3], we get (2)⟹ (1).
(1)⟹ (3) Since𝑅 is Gorenstein by (1), we have ∞(𝑚) ⊆ (Mod𝑅)⩽𝑚 by Theorem 3.6(1). On

the other hand, since 𝑅𝑅 ∈ ∞(𝑚) by (1), we have (Mod𝑅) ⊆ ∞(𝑚) by Lemma 3.1, and thus,

(Mod𝑅) ⊆ Ω∞(Mod𝑅) ⊆ ∞(𝑚)

by Lemma 3.2.
(5)⟹ (2) Since any projective module inmod𝑅 is in ∞(𝑚) ∩ mod𝑅 by (5), we have

Ω∞(mod𝑅) ⊆ ∞(𝑚) ∩ mod𝑅 ⊆ (mod𝑅)
⩽𝑚 ⊆ ⊥⩾𝑚+1𝑅𝑅 ∩ mod𝑅

by Lemma 3.2 and (5). Since 𝑅𝑅 ∈ ∞(𝑚) ∩ mod𝑅, there exists some 𝑛 ⩾ 0 such that pd𝑅 𝐸𝑖(𝑅𝑅) ⩽
𝑛 for any 𝑖 ⩾ 0 by Lemma 4.4, and thus, id𝑅 𝑅 ⩽ 𝑛 + 𝑚 by Proposition 4.3(1).
(1) + (3)⟹ (4) Let 𝑠 ⩾ 0. Since (Mod𝑅) ⊆ ∞(𝑚) by (3), we have

(Mod𝑅)⩽𝑠 ⊆ ∞(𝑚)
⩽𝑠 ⊆ ∞(𝑚 + 𝑠)

by Lemma 3.4. Since 𝑅 is Gorenstein by (1), we have ∞(𝑚 + 𝑠) ⊆ (Mod𝑅)
⩽𝑚+𝑠 by Theo-

rem 3.6(1). □

We need the following result.

Proposition 4.7. If id𝑅 𝑅 < ∞, then 𝑅 is right weakly Gorenstein. The converse holds true if one of
the following conditions is satisfied.
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AUSLANDER-TYPE CONDITIONS ANDWEAKLY GORENSTEIN ALGEBRAS 3395

(1) 𝑅𝑅 ∈ ∞(1).
(2) 𝑅𝑅 ∈ ∞(𝑚) and 𝑅𝑅 ∈ ∞(𝑚′)𝑜𝑝 for some𝑚,𝑚′ ⩾ 0.

Proof. The former assertion follows from the symmetric versions of [17, Lemma 3.4] and [23,
Theorem 1.2].
Conversely, since 𝑅𝑅 ∈ ∞(1) or 𝑅𝑅 ∈ ∞(𝑚) with 𝑚 ⩾ 0 by assumption, it follows from

Lemma 4.4 that there exists some 𝑛 ⩾ 0 such that pd𝑅 𝐸𝑖(𝑅𝑅) ⩽ 𝑛 for any 𝑖 ⩾ 0. When 𝑅𝑅 ∈ ∞(1),
we haveΩ∞(mod𝑅) =  (mod𝑅) by [3, Proposition 1.6(a)] and the symmetric version of [3, The-
orem 0.1]; when 𝑅𝑅 ∈ ∞(𝑚′)𝑜𝑝 with 𝑚′ ⩾ 0, that is, the algebra 𝑅 is 𝐺∞(𝑚′), we also have
Ω∞(mod𝑅) =  (mod𝑅) by [16, Theorem 3.4]. Thus, id𝑅 𝑅 ⩽ 𝑛 by Proposition 4.3(2). □

The following corollary was proved in [23, p.33], we give it a shorter proof.

Corollary 4.8. WGSC implies GSC.

Proof. Suppose that WGSC holds true. If id𝑅 𝑅 = 𝑛 < ∞, then 𝑅 is right weakly Gorenstein by
Proposition 4.7, and hence is left weakly Gorenstein. It follows that any 𝑛-syzygy module in
mod𝑅 is in ⊥𝑅𝑅 ∩ mod𝑅 = (mod𝑅). So G-pd𝑅 𝑀 ⩽ 𝑛 for any 𝑀 ∈ mod𝑅, and hence, 𝑅 is
𝑛-Gorenstein (i.e., id𝑅 𝑅 = id𝑅𝑜𝑝 𝑅 ⩽ 𝑛) by [7, Theorem 12.3.1]. Symmetrically, we have that if
id𝑅𝑜𝑝 𝑅 = 𝑛 < ∞, then 𝑅 is 𝑛-Gorenstein. Thus, GSC holds true. □

The following result shows that the Gorensteinness and weakly Gorensteinness of an Artin
algebra are equivalent under certain Auslander-type conditions. It also shows that both GSC
and WGSC hold true for an Artin algebra 𝑅 such that 𝑅𝑅 and 𝑅𝑅 satisfy certain Auslander-type
conditions.

Theorem 4.9. If 𝑅𝑅 ∈ ∞(𝑚) and 𝑅𝑅 ∈ ∞(𝑚′)𝑜𝑝 with 𝑚,𝑚′ ⩾ 0, then the following statements
are equivalent.

(1) 𝑅 is Gorenstein.
(2) 𝑅 is left and right weakly Gorenstein.
(3) id𝑅 𝑅 < ∞.
(4) 𝑅 is left weakly Gorenstein.
(5) (Mod𝑅) = ⊥(Mod𝑅).
(𝑖)𝑜𝑝 Opposite version of (𝑖) with 3 ⩽ 𝑖 ⩽ 5.

Proof. It is trivial that (5)⟹ (4) and (2)⟹ (4). By Proposition 4.7 and its symmetric version,
we have (1)⟹ (2) and (3)⟺ (4)𝑜𝑝. By Theorem 4.6 and its symmetric version, we have (1)⟺
(3)⟺ (3)𝑜𝑝. By [7, Corollary 11.5.3], we have (1)⟹ (5).
By symmetry, the proof is finished. □

4.2 Small Auslander-type conditions

Recall from [12] that 𝑅 is called left quasi-Auslander if 𝑅𝑅 ∈ ∞(1). Compare the following result
with Theorem 4.9.
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3396 HUANG

Theorem 4.10. Let 𝑅 be a left quasi-Auslander algebra. Then, the following statements are
equivalent.

(1) 𝑅 is Gorenstein.
(2) id𝑅 𝑅 < ∞.
(3) id𝑅𝑜𝑝 𝑅 < ∞.
(4) 𝑅 is left and right weakly Gorenstein.
(5) 𝑅 is right weakly Gorenstein.
(6) (Mod𝑅𝑜𝑝) = ⊥(Mod𝑅𝑜𝑝).

Proof. It is trivial that (4)⟹ (5) and (6)⟹ (5).
By Proposition 4.7 and its symmetric version, we have (1)⟺ (4). By [11, Corollary 4], we have
(1)⟺ (2)⟺ (3). By Proposition 4.7(1), we have (2)⟺ (5). By [7, Corollary 11.5.3], we have
(1)⟹ (6). □

Theorem 4.10 means that over a left quasi-Auslander Artin algebra, GSC holds true, but we do
not know whetherWGSC holds true or not.
Recall that 𝑅 is called Auslander–Gorenstein if 𝑅 satisfies the Auslander condition and 𝑅 is

Gorenstein. In the following result, assertions (5)–(7) are finitely generated versions of (2)–(4),
respectively.

Theorem 4.11. The following statements are equivalent.

(1) 𝑅 is Auslander–Gorenstein.
(2) 𝑅 satisfies the Auslander condition and (Mod𝑅) = ⊥(Mod𝑅).
(3) (Mod𝑅) = ∞(0).
(4) (Mod𝑅)⩽𝑠 = ∞(𝑠) for any 𝑠 ⩾ 0.
(5) 𝑅 satisfies the Auslander condition and 𝑅 is left weakly Gorenstein.
(6) (mod𝑅) = ∞(0) ∩ mod𝑅.
(7) (mod𝑅)⩽𝑠 = ∞(𝑠) ∩ mod𝑅 for any 𝑠 ⩾ 0.
(𝑖)𝑜𝑝 Opposite version of (𝑖) with 2 ⩽ 𝑖 ⩽ 7.

Proof. The implications (2)⟹ (5), (3)⟹ (6) and (4)⟹ (7) are trivial.
Note that𝑅 satisfies theAuslander condition if and only if 𝑅𝑅 ∈ ∞(0) and𝑅𝑅 ∈ ∞(0)𝑜𝑝, and if

and only if 𝑅𝑅 ∈ ∞(0) or𝑅𝑅 ∈ ∞(0)𝑜𝑝. The implications (3)⟺ (4) and (6)⟺ (7) follow from
Proposition 3.5(1)(2), respectively. The implication (6)⟹ (1) follows fromProposition 4.5 and [2,
Corollary 5.5(b)]. The implications (1)⟺ (3) and (1)⟺ (2)⟺ (5) follow from Theorems 4.6
and 4.9, respectively.
By symmetry, the proof is finished. □

Let𝑀 be an 𝑅-module. An injective coresolution

0 → 𝑀 → 𝐸0
𝛿1

⟶ 𝐸1
𝛿2

⟶ ⋯
𝛿𝑛

⟶ 𝐸𝑛
𝛿𝑛+1

⟶ ⋯

is called ultimately closed if there exists some 𝑛 such that Im𝛿𝑛 = ⊕𝑊𝑗 with each𝑊𝑗 isomorphic
to a direct summand of some Im𝛿𝑖𝑗 with 𝑖𝑗 < 𝑛. It is clear that a left𝑅-module𝑀 has an ultimately
closed injective coresolution if id𝑅 𝑀 < ∞. An algebra 𝑅 is said to be of ultimately closed type if
the minimal injective coresolution of any finitely generated left 𝑅-module is ultimately closed
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AUSLANDER-TYPE CONDITIONS ANDWEAKLY GORENSTEIN ALGEBRAS 3397

[25]. The class of algebras of ultimately closed type includes: (1) Artin algebras with finite global
dimension; (2) Artin algebras with radical square zero; (3) Representation-finite algebras; and (4)
Artin algebras 𝑅 with Loewy length 𝑚 such that 𝑅∕𝐽𝑚−1 is representation-finite, where 𝐽 is the
Jacobson radical of 𝑅 [25, p.110].
Recall from [22] that 𝑅 is called torsionless-finite if there exists only finitely many isomorphism

classes of indecomposable torsionless modules in mod𝑅. We claim that any torsionless-finite
algebra is of ultimately closed type. Let 𝑅 be a torsionless-finite algebra. It follows from [22,
Corollary 2.2] that 𝑅𝑜𝑝 is also a torsionless-finite algebra and there exists only finitely many iso-
morphism classes of indecomposable torsionless modules in mod𝑅𝑜𝑝. Using the usual duality
between mod𝑅 and mod𝑅𝑜𝑝 yields that there exists only finitely many isomorphism classes of
indecomposable 1-cosyzygy modules in mod𝑅. Thus, 𝑅 is of ultimately closed type. The claim
is proved. The class of torsionless-finite algebras includes: (1) Artin algebras 𝑅 with 𝑅∕ soc(𝑅𝑅)
representation-finite, where soc(𝑅𝑅) is the socle of 𝑅𝑅; (2) Minimal representation-infinite alge-
bras; (3) Artin algebras stably equivalent to hereditary algebras; (4) left or right glued algebras; and
(5) special biserial algebras without indecomposable projective-injective modules [22, Section 5].
Note that algebras 𝑅 such that 𝑅𝑅 has an ultimately closed injective coresolution (particularly,

algebras 𝑅 of ultimately closed type) are right weakly Gorenstein algebras by the symmetric ver-
sions of [17, Theorem 2.4] and [23, Theorem 1.2]. However, such algebras are not Gorenstein in
general, thus the following result can be regarded as a reduction of ARC.

Corollary 4.12. If 𝑅 satisfies the Auslander condition, then the following statements are
equivalent.

(1) 𝑅 is Gorenstein.
(2) 𝑅 is left or right weakly Gorenstein.
(3) 𝑅 is left and right weakly Gorenstein.
(4) (mod𝑅) =  (mod𝑅).
(5) (mod𝑅) =  (mod𝑅) = ⊥𝑅𝑅 ∩ mod𝑅.

Proof. Since 𝑅 satisfies the Auslander condition, we have

∞(0) ∩ mod𝑅 = Ω
∞(mod𝑅) =  (mod𝑅)

by [15, Lemma 5.7]. Now the assertion follows from Theorem 4.11. □

As indicated above, if 𝑅𝑅 (resp. 𝑅𝑅) has an ultimately closed injective coresolution, then 𝑅 is
a right (resp. left) weakly Gorenstein algebra. As a consequence of Corollary 4.12, we obtain the
following result.

Corollary 4.13. ARC holds true for the following classes of algebras 𝑅.

(1) 𝑅𝑅 or 𝑅𝑅 has an ultimately closed injective coresolution.
(2) Algebras of ultimately closed type.

In the following, we give an alternative proof of Corollary 4.13, which is independent of
Corollary 4.12. Recall that the finitistic dimension f in.dim𝑅 of 𝑅 is defined as

f in.dim𝑅 ∶= sup{pd𝑅 𝑀 ∣ 𝑀 ∈ mod𝑅 with pd𝑅 𝑀 < ∞}.
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3398 HUANG

Assume that 𝑅 satisfies the Auslander condition. Then, 𝑅𝑜𝑝 also satisfies the Auslander condition
by [9, Theorem 3.7]. It follows from [2, Corollary 5.5(b)] that id𝑅 𝑅 < ∞ if and only if id𝑅𝑜𝑝 𝑅 < ∞,
and hence, id𝑅 𝑅 = id𝑅𝑜𝑝 𝑅 by [28, Lemma A]. Then,

f in.dim𝑅 = id𝑅 𝑅 = id𝑅𝑜𝑝 𝑅 = f in.dim𝑅
𝑜𝑝 (4.1)

by [16, Corollary 5.3(1)]. When 𝑅𝑅 has an ultimately closed injective coresolution, it is known
from [10, p.2983] that this injective coresolution has a strongly redundant image in the sense of
[10]. Then applying [10, Theorem 3] yields f in.dim𝑅𝑜𝑝 < ∞. Symmetrically, when 𝑅𝑅 has an ulti-
mately closed injective coresolution (particularly, when 𝑅 is of ultimately closed type), we have
f in.dim𝑅 < ∞. So, in both cases, we have id𝑅 𝑅 = id𝑅𝑜𝑝 𝑅 < ∞ by (4.1), that is, 𝑅 is Gorenstein.
Consequently, we conclude that ARC holds true for 𝑅.
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