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HOMOLOGICAL INVARIANTS UNDER FROBENIUS EXTENSIONS

BY

WEILI GU, ZHAOYONG HUANG and TIWEI ZHAO

Abstract. Let A/S be a Frobenius extension of artin algebras such that S is commu-
tative and A is an S-algebra. We prove that if (C, T ) is a tilting pair of right S-modules,
then (C ⊗S A, T ⊗S A) is a tilting pair of right A-modules; conversely, if (C, T ) is a tilt-
ing pair of right A-modules, then (C, T ) is also a tilting pair of right S-modules. We also
prove that the so-called (l, n)-condition and certain classes of algebras are preserved under
right-split or separable Frobenius extensions. Finally, we prove that the validity of some
homological conjectures is preserved under (separable) Frobenius extensions.

1. Introduction. As a generalization of Frobenius algebras, Frobenius
extensions were introduced by Kasch [23], and then studied by Nakayama
and Tsuzuku [30] and Morita [28]. As a generalization of separable algebras,
separable extensions were introduced by Hirata and Sugano [16], who made
a thorough study of these in connection with Galois theory for noncommu-
tative rings and generalizations of Azumaya algebras. Separable extensions
are closely related to Frobenius extensions. A ring extension that is both a
separable extension and a Frobenius extension is called a separable Frobe-
nius extension. In addition, if the base ring is commutative, then a Frobenius
extension is both left-split and right-split [8, III.4.8, Lemma 2].

Many algebraists have studied the invariant properties of artin algebras
under (separable) Frobenius extensions, such as projectivity, injectivity,
Gorensteinness, (Gorenstein) homological dimension, representation dimen-
sion, tilting theory and homological conjectures; see [13, 18, 32, 33, 42, 43, 44]
and references therein. In particular, Zhang [42] proposed a question: Is the
validity of some homological conjectures preserved under excellent exten-
sions? Fu, Xu and Zhao [13] showed that the validity of the Gorenstein sym-
metric conjecture is preserved under Frobenius extensions, which generalized
a result in [42].
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In this paper, we focus on connecting (separable) Frobenius extensions
with tilting theory, homological conjectures and certain algebraic structures.
The outline of this article is as follows.

In Section 2, we give some notations and preliminary results.
For a ring R, we use modR to denote the category of finitely generated

right R-modules. Let A and S be artin algebras. In Section 3, let A/S be a
Frobenius extension such that S is commutative and A is an S-algebra. We
prove that if (C, T ) is a tilting pair in modS, then (C ⊗S A, T ⊗S A) is a
tilting pair in modA; conversely, if (C, T ) is a tilting pair in modA, then
(CS , TS) is a tilting pair in modS (Theorem 3.7). In particular, we obtain
tilting modules under Frobenius extensions, which is then used to study the
Wakamatsu tilting conjecture and tilted algebras.

In Section 4, we prove that the so-called (l, n)-condition is preserved un-
der right-split Frobenius extensions (Theorem 4.5). As applications, we find
that the dominant dimension is invariant under right-split Frobenius ex-
tensions (Corollary 4.6). In addition, we show that the quasi-tilted algebra
(respectively, tilted algebra) is preserved under (separable) Frobenius exten-
sions when the base ring is commutative; see Theorem 4.13 (respectively,
Theorem 4.14).

In Section 5, some homological conjectures are studied, such as the
(strong) Nakayama conjecture, the finitistic dimension conjecture, the
Auslander–Reiten conjecture, and others. We prove that the validity of these
homological conjectures is preserved under (separable) Frobenius extensions
when the base ring is commutative; see Corollary 5.1 and Theorems 5.2–5.6.

In Section 6, we give some examples to illustrate the results obtained.

2. Preliminaries. Recall that if S is a subring of a ring A such that S
and A have the same identity, then A is called a ring extension of S, denoted
by A/S. Let A/S be a ring extension and let S

l
↪→ A be the inclusion of rings.

Then there exists a restriction functor Res : modA → modS which sends
MA 7→ MS , given by m · s := m · l(s). In the opposite direction, there exist
two natural functors:

(1) T = −⊗S AA : modS → modA, given by MS 7→ M ⊗ SAA.
(2) H=HomS(AAS ,−) :modS→modA, given by MS 7→HomS(AAS ,MS).

It is easy to check that both (T,Res) and (Res,H) are adjoint pairs.

Definition 2.1 (see [22, Definition 1.1 and Theorem 1.2]). A ring exten-
sion A/S is a Frobenius extension if one of the following equivalent conditions
holds:

(1) The functors T and H are naturally equivalent.
(2) SAA

∼= HomS(AAS , SSS) and AS is finitely generated projective.
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(3) AAS
∼= HomSop(SAA, SSS) and SA is finitely generated projective.

(4) There exist an S-S-homomorphism τ : A → S and elements xi, yi ∈ A
such that

∑
i xiτ(yia) = a and

∑
i τ(axi)yi = a for any a ∈ A.

Remark 2.2. If A/S is a Frobenius extension, then both (T,Res) and
(Res,T) are adjoint pairs. So T and Res are exact functors, and hence they
preserve projectives and injectives.

Definition 2.3. Let A/S be a ring extension.

(1) ([22, Definition 2.12]) A/S is called a separable extension if

µ : A⊗S A → A, a⊗ b 7→ ab,

is a split epimorphism of A-A-bimodules.
(2) ([39, p. 35]) A/S is called right-split (respectively, left-split) if the in-

clusion map S ↪→ A is a split monomorphism of right (respectively,
left) S-modules. Moreover, A/S is called split if it is both left-split and
right-split.

Many examples of Frobenius extensions can be found in [9, 12, 18, 21, 22,
32, 34, 35, 40, 41]. If a ring extension A/S is both a Frobenius extension and
a separable extension, then it is called a separable Frobenius extension. If a
ring extension A/S is both a Frobenius extension and a right-split extension,
then it is called a right-split Frobenius extension. In particular, when S is
a commutative ring, if A/S is an excellent extension of rings, then it is
separable [31]; if A/S is a Frobenius extension of rings, then it is split [8,
III.4.8, Lemma 2].

Let A/S be a ring extension and MA an A-module. Then MS is a right
S-module. There exists a natural surjective map π : M ⊗S A → M given by
m⊗ a 7→ ma for any m ∈ M and a ∈ A. It is easy to check that π is split as
a homomorphism of S-modules. However, π is not split as a homomorphism
of A-modules in general; see Example 6.1(1) below.

The following lemma is a characterization of separable extensions.

Lemma 2.4 ([32, Lemma 2.9]). Let A/S be a ring extension. Then the
following statements are equivalent:

(1) A/S is a separable extension.
(2) For any A-A-bimodule M , M ⊗S A → M is a split epimorphism of

A-A-bimodules.
(3) There exists an element e ∈ A ⊗S A such that µ(e) = 1A and ae = ea

for any a ∈ A.

For any M ∈ modA, we use addM to denote the subcategory of modA
consisting of all direct summands of finite direct sums of M . For two right
A-modules M and N , we use MA |NA to denote that MA is a direct summand
of NA.
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Lemma 2.5. Assume that S is commutative and A is an S-algebra. Then
add(M ⊗S AA) ⊆ addMA for any M ∈ modA. Moreover, if A/S is separa-
ble, then addMA = add(M ⊗S AA).

Proof. By [35, Lemma 3], we have AA⊗S AA ∈ addAAA. Then

MS ⊗S AA
∼= (M ⊗A A)⊗S AA

∼= M ⊗A (A⊗S A)A ∈ addMA.

Note that MA |M ⊗S AA by Lemma 2.4, so addMA = add(M ⊗S AA).

3. Tilting modules. In this section we assume that all rings are artin
algebras, all modules are finitely generated right modules unless stated oth-
erwise, and A/S is a Frobenius extension of artin algebras. Let M ∈ modA.
We say that M is selforthogonal if Ext≥1

A (M,M) = 0. We use pdAM (re-
spectively, idAM , fdAM) to denote the projective (respectively, injective,
flat) dimensions of M .

Definition 3.1 ([26]). A module T ∈ modA is called n-tilting if it
satisfies the following conditions:

(T1) pdA T ≤ n.
(T2) T is selforthogonal.
(T3) There exists an exact sequence

0 → AA → T0 → T1 → · · · → Tn−1 → Tn → 0

in modA with all Ti in addT .

Note that a 1-tilting module is called classical tilting [7, 15]; in this case,
(T3) is equivalent to |T | = |A|, where |T | denotes the number of pairwise
nonisomorphic indecomposable direct summands of T in modA. Moreover,
if T is an n-tilting A-module, then |T | = |A| by [26, Theorem 1.19].

To construct tilting modules, Miyashita [27] introduced the notion of
tilting pairs.

Definition 3.2 ([27]). A pair (C, T ) of modules in modA is called tilting
if it satisfies the following conditions:

(1) C and T are selforthogonal.
(2) There exist exact sequences

0 → C → T0 → T1 → · · · → Tm−1 → Tm → 0,

0 → Cn → Cn−1 → · · · → C1 → C0 → T → 0

in modA with m,n ≥ 0, all Ti in addT and all Ci in addC.

Let (C, T ) be a tilting pair as in Definition 3.2. Then m = n (see [27]);
in this case, we call (C, T ) an n-tilting pair. We also say that T is C-tilting
or C is T -cotilting. If C = A, then C-tilting modules are exactly tilting
modules [27].
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Remark 3.3. Let (C, T ) be a tilting pair and (C ′, T ′) be a pair in modA.
If addC ′ = addC and addT ′ = addT , then (C ′, T ′) is also a tilting pair by
[38, Lemma 2.1].

As a generalization of tilting modules, we recall the notion of Wakamatsu
tilting modules.

Definition 3.4 ([25, 37]). A module T ∈ modA is called Wakamatsu
tilting if T is selforthogonal, and there exists an exact sequence

0 → AA → T0 → T1 → · · · → Ti → · · ·
in modA with all Ti in addT and such that after applying the functor
HomA(−, T ) the sequence is still exact.

For convenience, we give the following result.

Lemma 3.5. Let M ∈ modA and N ∈ modS. Then for any i ≥ 0,

ExtiS(MS , NS) ∼= ExtiA(MA, N ⊗S AA),

ExtiS(MS , SS) ∼= ExtiA(MA, AA).

Proof. By the adjoint isomorphism, for any i ≥ 0, we have

ExtiS(MS , NS) ∼= ExtiS(M ⊗A AS , NS)

∼= ExtiA(MA,HomS(AAS , NS))

∼= ExtiA(MA, N ⊗S AA).

The last isomorphism is obvious.

In the rest of this section, we always assume that S is commutative and
A is an S-algebra.

Lemma 3.6.

(1) If M,N ∈ modS with Ext≥0
S (M,N) = 0, then

Ext≥0
A (M ⊗S A,N ⊗S A) = 0.

In particular, if M is a selforthogonal S-module, then M ⊗S AA is a
selforthogonal A-module.

(2) Let M,N ∈ modA be such that Ext≥0
A (M,N) = 0. Then

Ext≥0
S (MS , NS) = 0.

In particular, if M is a selforthogonal A-module, then MS is a selforthog-
onal S-module.

Proof. (1) By the adjoint isomorphism, we have

ExtiA(M ⊗S AA, N ⊗S AA) ∼= ExtiS(MS ,HomA(SAA, N ⊗S AA))

∼= ExtiS(MS , N ⊗S AS)
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for any i ≥ 0. Noticing that N ⊗S AS ∈ addNS , it follows that

ExtiA(M ⊗S AA, N ⊗S AA) = 0

from the assumption that ExtiS(M,N) = 0.
(2) Let

P• := · · · → Pi → Pi−1 → · · · → P1 → P0 → 0

be the deleted complex of projective resolution of MA. For any i ≥ 0, we
have

ExtiS(MS , NS) ∼= ExtiA(MA, N ⊗S AA) (by Lemma 3.5)
∼= H i(HomA(P

•, N ⊗S A))

∼= H i(HomA(P
•, N)⊗S A)

∼= H i(HomA(P
•, N))⊗S A

∼= ExtiA(M,N)⊗S A

= 0 (by assumption).

Theorem 3.7. For any n ≥ 0, the following hold:

(1) If (C, T ) is an n-tilting pair in modS, then (C ⊗S AA, T ⊗S AA) is an
n-tilting pair in modA.

(2) If (C, T ) is an n-tilting pair in modA, then (CS , TS) is an n-tilting pair
in modS.

Proof. (1) By Lemma 3.6(1), C ⊗S AA and T ⊗S AA are selforthogonal
A-modules.

By assumption, there exist two exact sequences

0 → Cn → Cn−1 → · · · → C1 → C0 → T → 0

and
0 → C → T0 → T1 → · · · → Tn−1 → Tn → 0

in modS with Ci ∈ addC and Ti ∈ addT for any 0 ≤ i ≤ n. Since SA is
projective, we get the exact sequences

0 → Cn ⊗S AA → Cn−1 ⊗S AA → · · · → C1 ⊗S AA

→ C0 ⊗S AA → T ⊗S AA → 0

and

0 → C ⊗S AA → T0 ⊗S AA → T1 ⊗S AA → · · ·
→ Tn−1 ⊗S AA → Tn ⊗S AA → 0

in modA with Ci ⊗S AA ∈ add(C ⊗S AA) and Ti ⊗S AA ∈ add(T ⊗S AA)
for any 0 ≤ i ≤ n. Thus (C ⊗S AA, T ⊗S AA) is a tilting pair in modA.
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(2) By Lemma 3.6(2), CS and TS are selforthogonal S-modules. By as-
sumption, there exist two exact sequences

0 → Cn → Cn−1 → · · · → C1 → C0 → T → 0

and
0 → C → T0 → T1 → · · · → Tn−1 → Tn → 0

in modA with Ci ∈ addC and Ti ∈ addT for any 0 ≤ i ≤ n, which are also
exact in modS with Ci ∈ addCS and Ti ∈ addTS for any 0 ≤ i ≤ n.. Thus
(CS , TS) is a tilting pair in modS.

Corollary 3.8. For any n ≥ 0, the following hold:

(1) If T is an n-tilting S-module, then T ⊗S AA is an n-tilting A-module.
(2) If T is an n-tilting A-module, then TS is an n-tilting S-module.

Proof. (1) By assumption, (SS , TS) is an n-tilting pair in modS. It fol-
lows from Theorem 3.7(1) that (S⊗SAA

∼= AA, T ⊗SAA) is an n-tilting pair
in modA, and hence T ⊗S AA is an n-tilting A-module.

(2) By assumption, (AA, TA) is an n-tilting pair in modA. It follows from
Theorem 3.7(2) that (AS , TS) is an n-tilting pair in modS. Note that SS |AS

and AS is projective, so addSS = addAS . Then (SS , TS) is an n-tilting pair
in modS by Remark 3.3, and hence TS is an n-tilting S-module.

If S is not commutative, then assertion (2) in Corollary 3.8 may not be
true in general; see Example 6.2 below.

Lemma 3.9.

(1) If T ∈ modA is n-tilting, then addTA = addT ⊗S AA.
(2) If T ∈ modS is n-tilting, then addTS = addT ⊗S AS.

Proof. (1) By Lemma 2.5, we have add(T ⊗S AA) ⊆ addTA. It follows
from Corollary 3.8 that TS is an n-tilting S-module and T ⊗S AA is an
n-tilting A-module. By [26, Theorem 1.19], we have |T ⊗S AA| = |A| = |TA|,
and thus addTA = add(T ⊗S AA).

(2) It follows from Corollary 3.8 that T ⊗S AA is an n-tilting A-module
and T ⊗S AS is an n-tilting S-module. So |T ⊗S AS | = |S| = |TS | by [26,
Theorem 1.19]. Since SA is projective, we have T ⊗S AS ∈ addTS , and thus
addTS = add(T ⊗S AS).

For a ring R, we say that two modules M and N in modR are add-
isomorphic if addM = addN . We use n-tiltR to denote the class of n-tilting
modules in modR up to add-isomorphism.

Theorem 3.10. For any n ≥ 0, we have a bijection

n-tiltA
Ψ
// n-tiltS

Φoo
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given by Φ(TS) = T ⊗S AA and Ψ(T ′
A) = T ′

S for any TS ∈ n- tiltS and any
T ′
A ∈ n-tiltA.

Proof. By Corollary 3.8, it suffices to show ΨΦ = Id and ΦΨ = Id.
For any TS ∈ n-tiltS, we have ΨΦ(TS) = Ψ(T ⊗S AA) = T ⊗S AS . It

follows from Lemma 3.9 that add(T ⊗S AS) = addTS , and thus ΨΦ = Id.
On the other hand, for any T ′

A ∈ n-tiltA, we have ΦΨ(T ′
A) = Φ(T ′

S) =
T ′ ⊗S AA. It follows from Lemma 3.9 that add(T ′ ⊗S AA) = addT ′

A, and
thus ΦΨ = Id.

Fu, Xu and Zhao [13, Proposition 3.4] showed that if TS is a Wakamatsu
tilting S-module, then T⊗SAA is a Wakamatsu tilting A-module. Conversely,
we have the following result.

Proposition 3.11. If TA is a Wakamatsu tilting A-module, then TS is
a Wakamatsu tilting S-module.

Proof. By assumption, TA is a selforthogonal A-module and there exists
an exact sequence

0 → AA
f0−→ T0

f1−→ T1 → · · · fi−→ Ti → · · ·
with Ti ∈ addT for any i ≥ 0 such that after applying HomA(−, T ) the
sequence is still exact. Set Ki := Coker fi. Then Ext1A(Ki, T ) = 0. On the
other hand,

0 → AS → T0 → T1 → · · · → Ti → · · ·
is also exact in modS. By Lemma 3.6(2), TS is a selforthogonal S-module
and Ext1S((Ki)S , TS) = 0. Since AS is projective, we have Ext1S(AS , TS) = 0.
Since SS |AS , we get from [38, Lemma 2.1] an exact sequence

0 → SS
f ′
0−→ T ′

0

f ′
1−→ T ′

1 → · · ·
f ′
i−→ T ′

i → · · ·(3.1)

in modS with T ′
i ∈ addTS and Ext1S((Coker f

′
i)S , TS) = 0 for any i ≥ 0.

Then after applying the functor HomS(−, TS) the sequence (3.1) is still exact.
Thus TS is a Wakamatsu tilting S-module.

4. Certain classes of algebras. Let A be a two-sided noetherian ring.
Recall that A is called Iwanaga–Gorenstein (Gorenstein for short) if idAA =
idAop A < ∞.

Definition 4.1 ([4, 19]). Let A be a two-sided noetherian ring.

(1) For any l, n ≥ 1, A is said to satisfy the (l, n)-condition if in the minimal
injective coresolution

(4.1) 0 → AA → I0 → I1 → · · ·
of AA, we have fdA Ii < l for any 0 ≤ i < n.



HOMOLOGICAL INVARIANTS UNDER FROBENIUS EXTENSIONS 85

(2) For any k ≥ 1, A is called Auslander k-Gorenstein if A satisfies the
(l, l)-condition for any 0 < l ≤ k. If A is Auslander k-Gorenstein for all
k, then A is said to satisfy the Auslander condition.

(3) A is called Auslander–Gorenstein if it satisfies the Auslander condition
and is Gorenstein.

(4) A is called Auslander–regular if it satisfies the Auslander condition and
its global dimension gl.dimA is finite.

Definition 4.2.

(1) ([17]) Let A be a two-sided Noetherian ring. The flat-dominant dimen-
sion fd.dom.dimA of A is defined as

fd.dom.dimA := sup {n | A satisfies the (1, n)-condition}.
If no such integer exists, then we set fd.dom.dimA = ∞.

(2) ([2, 36]) Let A be an artin algebra. The dominant dimension dom.dimA
of A is defined as

dom.dimA := sup {n | A satisfies the (1, n)-condition}.
If no such integer exists, then we set dom.dimA = ∞.

If A is an artin algebra, then fd.dom.dimA = dom.dimA.

Definition 4.3 ([20]). For any n ≥ 1, A is called n-Auslander if gl.dimA
≤ n+ 1 ≤ dom.dimA. In particular, 1-Auslander algebras are exactly clas-
sical Auslander algebras.

The following result seems to be well-known.

Lemma 4.4. Let A/S be a Frobenius extension between noetherian rings.
For any M ∈ modA and N ∈ modS, the following hold:

(1) pdS M ≤ pdAM , idS M ≤ idAM , and fdS M ≤ fdAM .
(2) pdAN ⊗S A ≤ pdS N , idAN ⊗S A ≤ idS N , and fdAN ⊗S A ≤ fdS N .
(3) If A/S is separable, then pdS M = pdAM .
(4) If S is commutative, then pdAN ⊗S A = pdS N .

Theorem 4.5. Let A/S be a Frobenius extension between noetherian
rings. If S satisfies the (l, n)-condition, then so does A. The converse holds
true if A/S is right-split.

Proof. Assume that S satisfies the (l, n)-condition. Let

0 → SS → I0 → I1 → · · ·

be a minimal injective coresolution of SS with fdS Ii < l for any 0 ≤ i < n.
Since SA is projective, we have the exact sequence

0 → S ⊗S AA
∼= AA → I0 ⊗S AA → I1 ⊗S AA → · · ·
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of right A-modules with all Ii ⊗S AA injective. One can take a minimal
injective coresolution

0 → AA → J0 → J1 → · · ·
of AA, where J i is a direct summand of Ii ⊗S AA for any i ≥ 0. So fdA J i ≤
fdA Ii ⊗S AA ≤ fdS Ii < l for any 0 ≤ i < n by Lemma 4.4, and thus A
satisfies the (l, n)-condition.

Conversely, assume that A/S is right-split and A satisfies the (l, n)-
condition. Let

0 → AA → I0 → I1 → · · ·
be a minimal injective coresolution of AA with fd Ii < l for any 0 ≤ i < n,
which is also an exact sequence of right S-modules. Noticing that SS |AS ,
one can take a minimal injective coresolution

0 → SS → J0 → J1 → · · ·
of SS , where J i is a direct summand of Ii for any i ≥ 0. So fdS J i ≤
fdS Ii ≤ fdA Ii < l for any 0 ≤ i < n by Lemma 4.4, and thus S satisfies the
(l, n)-condition.

The following result is an immediate consequence of Theorem 4.5, which
has been obtained in [39]. Note that there are examples of Frobenius exten-
sions A/S such that dom.dimA > dom.dimS [39, Remark 2.5(2)].

Corollary 4.6 (cf. [39, p. 35]). Let A/S be a Frobenius extension.

(1) If A and S are noetherian rings, then fd.dom.dimA ≥ fd.dom.dimS.
Furthermore, if A/S is right-split, then fd.dom.dimS = fd.dom.dimA.

(2) If A and S are artin algebras, then dom.dimA ≥ dom.dimS. Further-
more, if A/S is right-split, then dom.dimS = dom.dimA.

The following result provides a partial answer to [45, Section 5, Question].

Corollary 4.7. Let A/S be a Frobenius extension between noetherian
rings. For any k ≥ 1, if S is Auslander k-Gorenstein, then so is A. The
converse holds true if A/S is right-split.

The following lemma is easy.

Lemma 4.8. Let A/S be a Frobenius extension between noetherian rings.

(1) idAA ≤ idS S and idAop A ≤ idSop S.
(2) If A/S is right-split (respectively, left-split), then idS S = idAA

(respectively, idSop S = idAop A).

In particular, if S is commutative, then idS S = idAA and idSop S =
idAop A; moreover, A is selfinjective (respectively, Gorenstein) if and only
if so is S [13, Corollaries 3.11, 3.12]. By Theorem 4.5 and Lemma 4.8, we
obtain the following result.
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Corollary 4.9. Let A/S be a Frobenius extension between noetherian
rings. If S is Auslander–Gorenstein, then so is A. The converse holds true
if A/S is split.

The following is a consequence of Theorem 4.5 and [13, Corollary 4.13].

Corollary 4.10. Let A/S be a Frobenius extension between noetherian
rings. Assume that S is commutative. If A is an Auslander-regular algebra
(respectively, n-Auslander algebra), then so is S. The converse holds true if
A/S is separable.

In the rest of this section, A is an artin algebra.

Definition 4.11 ([15]). The algebra A is called tilted if there exists a
hereditary algebra H and a 1-tilting H-module such that A = EndH T .

Let A be a tilted algebra. Following [1, Lemma VIII.3.2], we know that
gl.dimA ≤ 2 and pdAX ≤ 1 or idAX ≤ 1 for any finitely generated inde-
composable A-module. As a generalization of tilted algebra, Happel, Reiten
and Smalø introduced the notion of quasi-tilted algebras.

Definition 4.12 ([10, 14]). The algebra A is called quasi-tilted if it sat-
isfies the following conditions:

(1) gl.dimA ≤ 2.
(2) For any finitely generated indecomposable A-module X, either pdAX≤1

or idAX≤1.

Theorem 4.13. Assume that A/S is a Frobenius extension and S is
commutative. If A is a quasi-tilted algebra, then so is S. The converse holds
true if A/S is separable.

Proof. (1) Assume that A is a quasi-tilted algebra. Then gl.dimS ≤
gl.dimA ≤ 2 by [13, Corollary 4.13]. Since S is commutative, A/S is split
by [8, III.4.8, Lemma 2], and thus SSS ∈ add SAS . Let M ∈ modS be
indecomposable. Then MS

∼= M ⊗S SS |M ⊗S AS . Notice that M ⊗S AA ∈
modA, so there exists an indecomposable module N ∈ modA such that
MS |NS . If pdAN ≤ 1, then pdS M ≤ pdS N ≤ pdAN ≤ 1 by Lemma 4.4.
If pdAN = 2, then idAN ≤ 1 by assumption. So idS N ≤ idAN ≤ 1 by
Lemma 4.4, and hence idS M ≤ 1. Thus S is quasi-tilted.

Conversely, assume that A/S is separable and S is a quasi-tilted algebra.
By [13, Corollary 4.13], we have gl.dimA = gl.dimS ≤ 2. Let M ∈ modA be
indecomposable. Then M is also a right S-module. Notice that MA |M⊗SAA

by Lemma 2.4, so there exists an indecomposable module N ∈ modS such
that MA |N⊗SAA. If pdS N ≤ 1, then pdAN⊗SAA ≤ pdS N ≤ 1 by Lemma
4.4, and so pdAM ≤ 1. If pdS N = 2, then idS N ≤ 1 by assumption. So
idAN ⊗S AA ≤ idS N ≤ 1 by Lemma 4.4, and hence idAM ≤ 1. Thus A is
quasi-tilted.
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Let T ∈ modA be 1-tilting. It is well known that (T ,F) is a torsion pair,
where

T = GenT := {M ∈ modA | there exists an exact sequence

T̃ → M → 0 with T̃ ∈ addT}
and

F := {M ∈ modA | HomA(T,M) = 0}.
By [6], A is tilted if and only if there exists a 1-tilting module T ∈ modA
such that HomA(M,T ) = 0 for any M ∈ add(T \ T ). For brevity, we call
this equivalent condition of tilted algebras the TA-condition.

Theorem 4.14. Assume that A/S is a Frobenius extension such that S
is commutative and A is an S-algebra. If A/S is separable, then A is a tilted
algebra if and only if so is S.

Proof. IfA is tilted, then there exists a 1-tiltingA-module T satisfying the
TA-condition. By Corollary 3.8, TS is 1-tilting. Let MS ∈ add(GenTS \ TS).
Then

MS ⊗S AA ∈ add(Gen(T ⊗S A) \ T ⊗S A) = add(GenTA \ TA)

by Lemma 2.5. On the other hand, we have

HomS(MS , TS) ∼= HomS(MS ,HomA(SAA, TA))
∼= HomA(M ⊗S AA, TA).

By assumption, HomA(M ⊗S AA, TA) = 0, and so HomS(MS , TS) = 0. Thus
S is tilted.

Conversely, if S is tilted, then there exists a 1-tilting S-module T satis-
fying the TA-condition. By Corollary 3.8, T ⊗S AA is a 1-tilting A-module.

We claim that

if MA ∈ add(Gen(T ⊗S A) \ T ⊗S A), then MS ∈ add(GenTS \ TS).

In fact, suppose MS = T ′
S ⊕M ′

S with 0 ̸= T ′
S ∈ addTS and addM ′

S ∩ addTS

= {0}. Note that MA |M⊗SAA = (T ′
S⊗SAA)⊕(M ′

S⊗SAA). By assumption,
we have (addT ′

S ⊗S AA) ∩ addMA = {0}, so MA |M ′
S ⊗S AA, and hence

MS |M ′
S ⊗S AS ∈ addM ′

S . It follows that T ′
S = 0, which is a contradiction.

Thus MS ∈ add(GenTS \ TS). The claim is proved.
Since HomS(MS , TS) = 0 by assumption, we have

HomA(MA, T ⊗S AA) ∼= HomS(HomA(SAA,MA), TS)
∼= HomS(MS , TS) = 0.

Thus A is tilted.

5. Homological conjectures. The following homological conjectures
are important in the representation theory of artin algebras [4, 5, 24].
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Let A be an artin algebra.

Finitistic Dimension Conjecture (FDC).

fin.dimA := sup {pdAM | M ∈ modA with pdAM < ∞} < ∞.

Nakayama Conjecture (NC). If dom.dimA = ∞, then A is self-
injective.

Strong Nakayama Conjecture (SNC). For any module M ∈modA,
if Ext≥0

A (M,A)= 0, then M = 0.

Auslander–Reiten Conjecture (ARC). For any moduleM∈modA,
if Ext≥0

A (M,M) = 0 = Ext≥0
A (M,A), then M is projective.

Auslander and Reiten [4] raised the following conjecture, but they did
not name it. To avoid confusion, we name it the Auslander–Gorenstein Con-
jecture according to its meaning.

Auslander–Gorenstein Conjecture (AGC). If A satisfies the Aus-
lander condition, then A is Gorenstein.

Recall that a module M ∈ modA is said to have Gorenstein dimension
zero [3] (or be Gorenstein projective [11]) if the following conditions are sat-
isfied: (1) M is reflexive; (2) Ext≥1

A (M,A) = 0 = Ext≥1
Aop(HomA(M,A), A).

Gorenstein Projective Conjecture (GPC). If M is a Gorenstein
projective A-module such that ExtiA(M,M) = 0 for any i ≥ 1, then M is
projective.

Wakamatsu Tilting Conjecture (WTC). If T is a Wakamatsu tilt-
ing A-module with pdA T < ∞, then T is tilting.

Gorenstein Symmetric Conjecture (GSC). idAA < ∞ if and only
if idAop A < ∞; equivalently, idAA = idAop A.

In this section, assume that A/S is a Frobenius extension of artin al-
gebras. We will study the invariance of some homological conjectures under
Frobenius extensions. The following result shows that NC is preserved under
right-split Frobenius extensions, where the sufficiency has been obtained in
[39, p. 35].

Corollary 5.1. If A/S is right-split, then A satisfies NC if and only if
so does S.

Proof. Assume that A satisfies NC and dom.dimS=∞. Then dom.dimA
= ∞ by Corollary 4.6, and so A is selfinjective by assumption. By Lemma
4.8, S is selfinjective. Thus S satisfies NC.

Conversely, assume that S satisfies NC and dom.dimA = ∞. Then
dom.dimS = ∞ by Corollary 4.6, and so S is selfinjective by assumption.
By Lemma 4.8, A is selfinjective. Thus A satisfies NC.
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Theorem 5.2. If either A/S is split or S is commutative, then A satisfies
GSC if and only if so does S.

Proof. By Lemma 4.8, A satisfies GSC if and only if idAA = idAop A, if
and only if idS S = idSop S, and if and only if S satisfies GSC.

Theorem 5.3. Assume that A/S is right-split. If S satisfies AGC, then
so does A. The converse holds true if A/S is split.

Proof. Assume that S satisfies AGC. If A satisfies the Auslander condi-
tion, then so does S by Theorem 4.5, and so S is Gorenstein by assumption.
By Lemma 4.8, A is Gorenstein. Thus A satisfies AGC.

Now assume that A/S is split and A satisfies AGC. If S satisfies the
Auslander condition, then so does A by Theorem 4.5, and so A is Gorenstein
by assumption. By Lemma 4.8, S is Gorenstein. Thus S satisfies AGC.

Theorem 5.4.

(1) Assume that A/S is separable. If S satisfies FDC, then so does A.
(2) Assume that S is commutative. If A satisfies FDC, then so does S.

Proof. (1) Assume that S satisfies FDC and fin.dimS = n < ∞. Let
M ∈ modA with pdAM < ∞. Then pdS M ≤ pdAM < ∞ by Lemma 4.4,
and hence pdS M ≤ n. By Lemma 4.4, we have pdAM = pdS M ≤ n. Thus
fin.dimA ≤ n and A satisfies FDC.

(2) Assume that A satisfies FDC and fin.dimA = n < ∞. Let M ∈ modS
with pdS M < ∞. Then pdAM ⊗S AA ≤ pdS M < ∞ by Lemma 4.4,
and hence pdAM ⊗S AA ≤ n. It follows from Lemma 4.4 that pdS M =
pdAM ⊗S AA ≤ n. Thus fin.dimS ≤ n and S satisfies FDC.

Theorem 5.5.

(1) Assume that A/S is separable. If S satisfies SNC, then so does A.
(2) Assume that S is commutative. If A satisfies SNC, then so does S.

Proof. (1) Assume thatS satisfies SNC. LetM ∈modAwithExt≥0
A (M,A)

= 0. Then by Lemma 3.5, we have

(5.1) ExtiS(MS , SS) ∼= ExtiA(MA, AA) = 0

for any i ≥ 0. It follows that MS = 0 and M⊗SAA = 0. Since MA |M⊗SAA

by Lemma 2.4, we find that MA = 0 and A satisfies SNC.
(2) Assume that A satisfies SNC. Let M ∈ modS with Ext≥0

S (M,S) = 0.
Then

(5.2) ExtiA(M ⊗S AA, AA) ∼= ExtiS(MS ,HomA(SAA, AA))

∼= ExtiS(MS , AS)



HOMOLOGICAL INVARIANTS UNDER FROBENIUS EXTENSIONS 91

for any i ≥ 0. Note that AS ∈ addSS , so ExtiA(M⊗SAA, AA) = 0. It follows
that M ⊗S AA = 0, and so M ⊗S AS = 0 as a right S-module. Notice that
MS |M ⊗S AS , thus MS = 0 and S satisfies SNC.

Theorem 5.6. Assume that S is commutative and A is an S-algebra. If
A satisfies ARC (respectively, GPC, WTC ), then so does S. The converse
holds true if A/S is separable.

Proof. (ARC) Assume that A satisfies ARC. Let M ∈ modS with

Ext≥1
S (M,M) = 0 = Ext≥1

S (M,S).

Then ExtiA(M ⊗S AA,M ⊗S AA) = 0 by Lemma 3.6(1), and consequently
ExtiA(M ⊗S AA, AA) = 0 by (5.2). It follows that M ⊗S AA is projective. So
M ⊗S AS is a projective right S-module, and hence MS is a projective right
S-module because MS |M ⊗S AS . Thus S satisfies ARC.

Conversely, assume that A/S is separable and S satisfies ARC. Let
M be an A-module such that Ext≥1

A (M,M) = 0 = Ext≥1
A (M,A). Then

ExtiS(MS ,MS) = 0 by Lemma 3.6(2), and hence ExtiS(MS , SS) = 0 by (5.1).
It follows that MS is projective. So M ⊗SAA is a projective right A-module.
Note that MA |M ⊗S AA by Lemma 2.4, so MA is projective, and therefore
A satisfies ARC.

(GPC) Assume that A satisfies GPC. Let M ∈ modS be Gorenstein
projective with Ext≥1

S (M,M) = 0. Then M ⊗S AA is Gorenstein projective
with Ext≥1

A (M⊗SAA,M⊗SAA) = 0 by [32, Lemma 2.3] and Lemma 3.6(1).
It follows that M ⊗S AA is projective, and so M ⊗S AS is a projective
S-module. Notice that MS |M ⊗S AS , thus MS is projective and S satisfies
GPC.

Conversely, assume that A/S is separable and S satisfies GPC. Let
M ∈ modA be Gorenstein projective with Ext≥1

A (M,M) = 0. Then MS

is Gorenstein projective with ExtiS(MS ,MS ) = 0 by [43, Theorem 3.2] (or
[32, Lemma 2.2]) and Lemma 3.6(2). It follows that MS is projective, and
hence M ⊗S AA is a projective right A-module. Notice that MA |M ⊗S AA

by Lemma 2.4, thus MA is projective and A satisfies GPC.
(WTC) Assume that A satisfies WTC. Let T ∈ modS be Wakamatsu

tilting with pdS T < ∞. Then T ⊗S AA ∈ modA is Wakamatsu tilting
and pdA T ⊗S AA = pdS T < ∞ by [13, Proposition 3.4] and Lemma 4.4.
Thus T ⊗S AA is a tilting right A-module. It follows from Corollary 3.8 that
T ⊗S AS is a tilting right S-module. Notice that TS |T ⊗S AS ∈ addTS , so
addTS = add(T ⊗S AS). Thus TS is a tilting right S-module and S satisfies
WTC.

Conversely, assume that A/S is separable and S satisfies WTC. Let T ∈
modA be Wakamatsu tilting with pdA T < ∞. Then TS is Wakamatsu
tilting and pdS T = pdA T < ∞ by Proposition 3.11 and Lemma 4.4. Thus
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TS is tilting. It follows from Corollary 3.8 that T ⊗S AA is a tilting right
A-module. Notice that addTA = add(T ⊗S AA) by Lemma 2.5, thus TA is
tilting and A satisfies WTC.

6. Examples. Now we give some examples to explain the results ob-
tained. In this section, we assume that k is an algebraically closed field.

Example 6.1. Let S be a finite-dimensional k-algebra given by the quiver

1
β−→ 2.

Set A := S[x]/(x2). Then A is a finite-dimensional k-algebra given by the
quiver

1
β
//

α
��

2

γ

��

with relations α2 = 0 = γ2 and αβ = βγ. By [32, Lemma 3.1], A/S is a Frobe-
nius extension. The Auslander–Reiten quivers of S and A are, respectively,

1
2

��
2

??

1

and
1

��

1
2

��

2

��
12
2

��

//

@@

1
12
2

// 1
12

��

@@

12
2

@@

//

��

1
12
2

// · · ·

2

��

@@

12
12

@@

  

1

@@

2
2

>>

1
1

??

(1) Take an A-module M = 12
12 . Then M ⊗S A =

1
12
2
⊕ 2

2 ⊕ 1
1 . It is trivial

that M is not a direct summand of M ⊗S A as A-modules. Thus the
natural surjective map π : M ⊗S A → M given by m⊗ a 7→ ma for any
m ∈ M and a ∈ A is not a split epimorphism of A-modules.

(2) Take a minimal injective coresolution

0 → SS → 1
2 ⊕ 1

2 → 1 → 0

of SS . Since S satisfies the (2, 2)-condition, so does A by Theorem 4.5.
In fact, AA has a minimal injective coresolution

0 → AA → 1
12
2
⊕ 1

12
2

→ 1
1 → 0.



HOMOLOGICAL INVARIANTS UNDER FROBENIUS EXTENSIONS 93

On the other hand, S also satisfies the (1, 1)-condition, hence so does
A by Theorem 4.5. Clearly, dom.dimS = 1 = dom.dimA since A/S is
right-split. This also follows from [39, Remark 2.5].

Example 6.2. Let A = M4(k) be a finite-dimensional k-algebra, and let
S be the subalgebra generated by

e1 := E11 + E44, e2 := E22 + E33, E21, E31, E41, E42, E43,

where all Eij are primitive orthogonal idempotents for any 0 ≤ i, j ≤ 4.
By [29, Example 7.1], A/S is a Frobenius extension. Obviously, S is not
commutative. Notice that AA is a tilting A-module and AS = (e1S)

⊕4, so
|AS | = 1 < 2 = |S|, and thus AS is not a tilting S-module. This shows that
the condition that S is commutative in Corollary 3.8(2) is necessary.
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