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COMMUNICATIONS IN ALGEBRA, 27(3), 1457-1464 (1999) 

EXTENSION CLOSURE OF k-TORSIONFREE MODULES 

Department of Mathematics, Beijing Normal University, 
Beijing 100875, People's Republic of China 

and 
Department of Mathematics, 

Faculty of Education, 
Yamanashi University. Kofu-Ski, Yamanashi, 400-0016 Japan 

To the memory  of Professor Maurzce Auslander 

ABSTRACT. Let A be a left and right Noetherian ring. For a positive integer 
k ;  we give an equivalent condition that flat dimensions of the first k terms in 
the minimal injective resolution of A are less than or equal to k. In t,his case 
we show that the subcategory consisting of k-torsionfree modules is extension 
closed. Moreover we prove that. for a Noetherian algebra every subcategory 
consisting of i-torsionfree modules is extension closed for any 1 5 z 5 k if 
and only if every subcategory consisting of i-th syzygy modules is extension 
closed for any 1 < i < k .  Our results generalize the main results in Auslander 
and Reiten [4]. 

Key words. extension closed, k-torsionfree modules: Noetherian rings, flat dimension. 

Throughout this paper A is a left and right Noetherian ring and mod A 
(resp. mod hop) is t,he category of finitely generated left (resp. right) A- 
modules. Let X be a full subcategory of mod A. X is called extension closed, 
if the middle term B of any short exact sequence 0 i A i B -t C + 0 is in 
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1458 HUANG 

X, provided the end terms A, C are in X. For a left (resp. right) A-module A, 
we use the notation I. f d ~ ( A )  (resp. r. fdh(A)) and l . i d ~ ( A )  (resp. r . i d ~ ( A ) )  
t,o denot,e left (resp. right) flat dimension and left (resp. right) injective 
dimension of A respectively, and we put A* = Hom*(A, A). In addition, we 
assume t,hat 

O + A + I O + I 1 . . . + I i +  . . .  

is a minimal injective resolution of A as a right A-module. 
Let X be in mod A and i a non-negative integer. We denote grade X 2 i 

if Errti(X, A) = 0 for any 0 5 j < i. We denote s.grade X > i if grade 
A 2 i for each submodule A of X. Let b be a positive integer, and assume 
there is an exact sequence 0 + Y -i . . . + Po -+ X + 0 with the P,'s 
pr~ject~ive A-modules. Then Y is the k-th syzygy module of X. By flk((modA) 
we denote the full subcategory of mod A consisting pf I;-th syzygy modules 
and by add Ok(modA) we denot>e the full subcategory of mod A consisting 
of direct summands of k-th syzygy modules. Auslander and Reiten st,udied 
when flk(modh) is extension closed in [3] and [4]. This condition is stat,ed 
in term of flat dmension and grade of A-modules by them as follows. 

Theorem AR (14, Theorem 4.71). Let A be a left and right Noetherinn 
ring and k a positive integer. Then the following conditions are equivalent. 

(a) Ri(modA) is extension closed for 1 < i 5 k ;  
(b) add Ri(modA) is extension closed for 1 5 i < k ;  
(c)r.fdh(I,) 5 i + 1  f o r O L . i < b - 1 ;  
(d) s.grade ~rc t ;+ ' (~ ,  A) > i for all Y in mod A and 1 5 i 5 k .  
If A is a Noetherian algebra, that is, A is an algebra over a commutative 

Noetherian ring R and A is a finitely generated R-module, then the following 
condition is equi,valent to the above conditions. 

(e) grade Ext;(X, A) > i for all X in mod AOP and 1 <_ i 5 k .  

For a positive integer z let X, be the full subcategory of mod A consisting 
of 2-torsionfree modules (see Definition 2.2). It is not difficult to see that 
X, flb(modA). Under the assumption of (c) in the above Theorem, it 
follows from Auslander and Reiten [4, Theorem 1.7 and Proposition 2.21 that 
X, = O"ntodA). We attempt to generalize and develope above Theorem by 
using the extension closure of X,. In fact for a positive integer k we will prove 
that if r. fdA(@,kzi I,) 5 k ,  then Xk is extension closed (Theorem 2.3), and 
a necessary and suffcient condition for r. f dA(@fzl I,) 5 k is that s.grade 
EX~:+'(M,A) 2 k for any M in mod A (Theorem 2.8). In section 3 we will 
prove that if A is a Noetherian algebra, then X, is extension closed for any 
1 _< z 5 k if and only if flz(modA) is extension closed for any 1 < i 5 k .  In 
this case X, = na(rnodA) for any 1 5 z 5 k  (Theorem 3.1). 

From this sectmion we assume that all modules are finitely generated and 
k  is a positive integer. 
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EXTENSION CLOSURE OF k-TORSIONFREE MODULES 1459 

Definition 2.1. A left (resp. right) A-module 114 is called a left (resp. right) 
Wk-module if Eztl(A1. A) = 0 for 1 5 i 5 k .  

Let M be a w'-module. If Pk+l i . . . i PI i PO i 111 i 0 is 
a projective resolution of M ,  we have an exact sequence of the form 0 + 
M* -+ P,* i P; ...i Pi+,. 

We also recall a definition from Auslander and Reiten [4]. 

Definition 2.2. Let M be in mod A. M is said to be a k-torsionfree module 
if T r M  is a ?Vk-module, where T r M  is t'he transpose of M .  

Remark. For any M in mod A, from the exact sequence 0 i ExtA(Trn/l, A) 
-i M 2 &I** -+ E z t i ( T r M > A )  i 0 (see Auslander [l, Proposkion 6.31) 
we know that M is 1-torsionfree if and only if M is torsionless, and M is 
2-torsionfree if and only if M is reflexive. In addition, If k 2 2 and r.gl.dim 
A (right global dimension of A) = 1; - 2, then M is k-torsionfree if and only 
if M is projective. 

Theorem 2.3. If r.fd.h($fzi I;) < k, then Xk is eztension closed 

Proof. Let 0 -i A f. B i C i 0 be an exact sequence of mod A with A, C 
k-torsionfree. We want to prove that B is also I;-torsionfree. 

We first prove that grade Coker f *  2 k. If k = 1. then by [4, Proposition 
2.21 s.grade E x t i ( C , A )  ', 1 because of fdA(Io)  5 1. But Cokerf* is a 
submodule of E x t i ( C ,  A), so grade Coker f *  3 1. If k = 2. then C is 2- 
torsionfree, that is. C i s  reflexive. Suppose PI + Po i C* i 0 is a projective 
resolution of C*. Then we get an exact sequence of the form 

where H = Coker(Pt -+ P;). Now suppose k 2 3. Then A*, C*  are 
w k - - 2  -modules. Consider an exact sequence of the form 

where P,' s are projective modules. We have an exact sequence 

where H = C ~ k e r ( P i - ~  i P,*-,). iFrom the above exact sequences (1) 
and (2) for k )_ 2 and from [5, Chapter VI, Proposition 5.31 it follows that 
HornA(Exti (C,  A). @,"zd 1%) 2 ~ o r t ( @ f ~ J  I,, C )  Z  TOT^+^ (@:.I; I z ,  H )  = 

0.  We then have HornA(Coker f * ,  $,"zd 1%) = 0 since Coker f * is a submod- 
ule of E z t i ( C , A )  and @::; Ii is injective. It is easy to see t2hat 
Exti(Cokerf*:A) = O for 0 < i < k -  1. 
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split rows; 
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EXTENSION CLOSURE OF k-TORSIONFREE MODULES 1461 

fact that I .  fdA(IA) < 1 if and only if r. f&(Io)  < 1. In fact Hoshino M. had 
given t,he following example. Let A be a finit,e dimensional algebra which is 
given by quiver 

a 

modulo t'he ideal cups. Then 1 .  f dA(Ih) = 1 and r. f dji(I0) 2 2.  

Corollary 2.4. If r. f dA( I i )  5 i + 1 for i 5 I; - I ,  then each X, is extension 
closed for i < I;. 

In next section, we will show that. the converse to Corollary 2.4 holds. 

Corollary 2.5. If l . i d ~ ( A )  = k ,  then each X, is extension closed for i >_ k .  

Proof. B y  Theorem 2.3 and Iwanaga [8, Proposition 11. 

Lemma 2.6. For any injective hop-module I ,  r . f d ~ ( I )  5 k if and only if 
~ o r n ~ ( E x t ? '  (C ,  A) ,  I )  = 0 for any C in mod A. 

Proof. It is easy from Cartan and Eilenberg [5, Chapter VI, Proposition 
5.31. 0 

Corollary 2.7. (1) If there is an injective AOP-module I satisfying r. f d A ( I )  
= k and I a cogenerator for mod AOP, then l.idA(A) = k .  

(2) If r. f d*($fZo I ,)  5 k ,  then $Lo I, is a cogenerator for mod AOp if 
and only i f  l . i d ~ ( A )  5 k .  

Proof. (1)  Suppose I is an injective cogenerat,er for mod AOp and r. fdh( I )  = 
k .  By Lemma 2.6 ~ o m A ( ~ x t i + ~ ( ~ , A ) ,  I )  = 0 for any M E mod A, and 
there is a module N E mod A such that HornA(Ext:(N: A ) ,  I )  # 0. So 
~ z t ; + - \ + ' ( ~ ,  h )  = 0 and E x t i ( ~ , A )  # 0. We conclude that l . idA(h)  = k.  

(2) The necessity follows from (I) ,  and the sufficiency from Iwanaga [7, 
Theorem 21 (Note: His argument remains valid in our assumption). 

Theorem 2.8. Let m be a non-negative integer. Then r. f d A ( @ 1 t  I , )  5 
k + m if and only zf s.grade ~ x t ~ + ~ ~ ' ( l l . f , A )  > I; for any M in mod A. 
Particularly, r. f d ~ ( @ ~ i  I L )  5 k if and only zf  s.grade E.rt?+'(M, A)  2 k 
for any M in mod A. 

Proof. "The sufficiency". We proceed by induction on i. Suppose s.grade 
E X ~ ; + ~ + ' ( M ,  A)  2 k for any M in mod A. We first prove that r. fdA( Io)  < 
k+m. Since s.grade E X ~ ~ + ~ + ' ( M ,  A) 2 k ,  ~ o r n ~ ( ~ z t ~ + " + ~ ( ~ ,  A) ,  A) = 0. 
We claim that ~ o r n A ( ~ x t ~ + ~ + ' ( ~ ,  A) ,  10) = 0. Otherwise, there is a non- 
zero homomorphism f : ~ x t y ~ + ' ( M ,  A)  -+ I0 and I m  f n A # 0 since A is 



D
ow

nl
oa

de
d 

B
y:

 [N
an

jin
g 

U
ni

ve
rs

ity
] A

t: 
15

:0
3 

28
 J

un
e 

20
07

 

1462 HUANG 

essential in Io. In this case there is a submodule X of Ez t :+"" (~ ,  A) such 
t,hat H o m ~ ( x ,  A) # 0, which contradicts that. s.grade ~ z t ; + " " ( ~ ,  A) > k .  
So we conclude that r. f dA(Io)  < k + m by Lemma 2.6. 

Now suppose i > 1. Consider the exact sequence 0 li K,-1 i I,-1 li 
K,  i 0. where K,-l = K e ~ ( l ~ - ~  + I i )  and Ki = Im(Ii-? -t I z ) .  Then for 
any submodule X of ~ z t ~ + " " ( ~ , h ) ,  we have an exact sequence 
H o ~ ~ ( X , I , - ~ )  -t HomA(X ,Ki )  -t Ext i (X ,K , -1 ) .  Since 
s.grade E X ~ ~ + ~ ' ~ ( M , A )  > k and 1 5 i 5 k - I ,  E x t i ( X ;  Ki-1) 2 

Ex t%(X ,  A) = 0. By induction assumption and Lemma 2.6 we have t,hat 
~ o r n ~ ( E x t ~ ' " + ' ( ~ ,  A), I ;-*)  = 0. Since is injective, Hom,i(X, I,-l) 
= 0. It follows that HomA(X,  Ki )  = 0. Noting that Ii is the inject'ive enve- 
lope of K;:  t,hen By a similar argument to the proof of the case i = 0; we get 
that ~ o m ~ ( E z t : ' ~ ' ~ ( ~ ,  A),  I ,)  = 0 and r. f d A  ( I i )  < k + m .  Hence we are 
done. 

"The necessity". Suppose r. f d A ( $ f z i  I i )  k + m. Then 

~ o r n , j  (ExtFm+' ( M ,  A) ,  $f"&,! 1') = 0. Let X be a submodule of 
~atf"\ t""(nd,A),  we have that HomA(X,  $f"zi 1,) = 0. Set Ko = A and 
h', = Im(I,-l  -+ I,) for 1 5 i _< k - 1. Then H o m ~ ( x ,  K , )  = 0 for 
0 5 i 5 k - 1. It is not difficult to prove that EX~;' '(X, KO)  2 E z t i ( X :  Ki) 
and E x t i ( X ,  K, )  HornA(X, Ki+1) for 0 5 i < k - 2. So we have 
Hom,,(X, A) = 0 = E z t i ( X ,  A) for 1 < i 5 k - 1. 

Corollary 2.9. Let rn be a non-negative integer. Then r. f d ~ ( & )  < i + m + 1 
for 0 _< i < k - 1 if and only if s.grade ~ z t i ' ~ + ' ( M ,  A) 2 i for any 1LI in 
mod A and 1 < i < k .  Particularly,, r. fdA(Ii)  5 i + 1 for 0 < i < k - 1 if 
and only if s.grade EX~;+'(M, A) > i for any M in mod A and 1 5 i 5 k .  

In this sect,ion A is a Noetherian algebra. We will prove the following 
result. 

Theorem 3.1. X ,  is extension closed for any 1 5 i < k if and only if 
OL(modA) is extension closed for any 1 5 i 5 k .  In this case, X, = RYmodA) 
for any 1 < i 5 k .  

To prove this theorem we need a lemma. 

Lemma 3.2. The following statements are equivalent. 
(1) ~ z t f ' ( ~ z t % ( ~ ,  A) ,  A)  = 0 for any X in mod AOp and 1 5 i 5 k .  
(2)  s.grade ~ z t ; + + ' ( ~ ,  A) > i for any M in mod A and 1 5 i < k .  
(3) Xi  is extension closed for 1 < i 5 k .  
( 4 )  s.grade E z t i ( Y ,  A) 1 i for any i-torsionfree module Y in mod A and 

1 5 i S k .  
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EXTENSION CLOSURE OF k-TORSIONFREE MODULES 1463 

Proof. ( 1 )  =+ ( 2 )  Suppose ~ z t : < ' ( E x t f , ( X , A ) ,  A) = 0 for any X in mod 
AuP and i 5 k .  We will prove that s.grade ~ztf\+'(-Vl.  A)  2 i for any kc E 
mod A and i 5 k by induction on k .  If k = 1 and H o m A ( E z t i ( X ,  A).  A) = 
0 ,  then by Theorem A R ,  s.grade E x t i ( ~ , A )  2 1 for any M E mod A. 
Suppose k >_ 2 and s.grade E.E~!:'(M~ A)  2 i for any M E mod A and 
i 5 k - 1. Then it follows from Auslander and Bridger [2, Proposition 
2.261 that X, = R"rnodA) for 1 < i 5 k. Suppose ill E mod A and 
Y is a submodule of Ezt;"(M, A). By Corollary 2.9 and Lemma 2.6 we 

have bhat ~ o m n  ( M :  A ) ,  $::: 1%) = 0. Since $::: I& is injective, 

H o r n ~ ( Y ,  $:lo" IL) = 0. I t  is easy to see that grade Y > k - 1. 
Consider an exact sequence of the form 

where P,' s are projectwe modules. By Hoshmo [6, Lemma 1.51 Ext;+'(M. A)  
is isomorphic to a submodule of T T R ~ ( ( M .  so we have an exact sequence 
0 + Y 4 T T R ~ ( M )  -+ Cokerg + 0. Since R k ( M )  is k-torsionfre by above 
argument. T r n k ( M )  is a flrk-module. So EX~;- ' (Y .  A) 2 Ezt;(Cokerg, A) 
Then from the condition ( 1 )  we get that E a t ; - ' ( ~ z t ; - ' ( Y ,  A ) ,  A) 2 Eat:-' 
(Ezt$,(Cokerg, A ) ,  A)  = 0. Since s.grade E r t i ' ' ( ~ .  A)  2 I for any M E mod 
A and t ( k - 1 (mduction assumption), it follows from Theorem A R  that 
grade Ezt;-'(Y, A)  2 k - 1. So grade E z t ; - ' ( ~ ,  A) 2 k .  Then by Hoshno 
[6, Lemma 6.21 we have grade Y 2 k and s.grade EX~:+' (M.  A)  > k .  

(2)  + ( 3 )  B y  Auslander and Reit en [4, Theorem 1.71. 
(3) * (1 )  For case k = 1 the conclusion follows from Theorem AR. Now 

we assume k > 2 and E x t f i - ' ( E z t l \ ( ~ ,  A ) ,  A)  = 0 for any X E mod AOp and 
z < k-1. Then by the proof of ( 1 )  implying (2) we know that X, = fl"(modA) 
for 1 5 2 5 k. and by the condition (3) Cl'(rnodA) is extension closed for 
1 5 z 5 k. Then from Theorem AR it follows that grade E z t i ( x .  A) 2 I; 
and Ext : - ' (Ez t i (X ,  A),  A) = 0 for any X E mod hop. 

(3) FS (4) see [4, Corollary 1.51. 

Now Theorem 3.1 is an immediate consequence of [4, Theorem 1.71 and 
Lemma 3.2. 

Putting the results from this section toget,her with Theorem AR we have 
the following. 

Theorem 3.3. The following conditions are equivalent. 
( 1 )  OL(modA) is extension closed for 1 5 i 5 k ;  
(2) add Ri(modA) is extension closed for 1 5 i 5 k ;  
( 3 ) r . f d ~ ( I i ) S i + l  f o r O 5 i s k - 1 ;  
(4 )  s.grade E X ~ ~ + * ( Y ;  A)  2 i for all Y in mod A and 1 < i 5 k .  



D
ow

nl
oa

de
d 

B
y:

 [N
an

jin
g 

U
ni

ve
rs

ity
] A

t: 
15

:0
3 

28
 J

un
e 

20
07

 

1464 HUANG 

(5) grade E x t i ( X ,  A) 2 i for all X in mod AoP and 1 < i 5 k .  
( 6 )  X, is extension closed for 1 5 i < k .  
(7) Ext f i - ' (EX~;(X,  A), A) = 0 for any X in mod AOP and 1 5 i < k .  
(8) s.grade Ext i (Y .  A) 2 i for any i-torsionfree module Y in mod A and 

l < i < k .  
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