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Abstract Motivated by τ -tilting theory developed by T. Adachi, O. Iyama,
I. Reiten, for a finite-dimensional algebra Λ with action by a finite group G, we
introduce the notion of G-stable support τ -tilting modules. Then we establish
bijections among G-stable support τ -tilting modules over Λ, G-stable two-term
silting complexes in the homotopy category of bounded complexes of finitely
generated projective Λ-modules, and G-stable functorially finite torsion classes
in the category of finitely generated left Λ-modules. In the case when Λ is the
endomorphism of a G-stable cluster-tilting object T over a Hom-finite 2-Calabi-
Yau triangulated category C with a G-action, these are also in bijection with
G-stable cluster-tilting objects in C . Moreover, we investigate the relationship
between stable support τ -tilitng modules over Λ and the skew group algebra
ΛG.
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1 Introduction

It is well known that tilting theory is a theoretical basis in the representation
theory of finite-dimensional algebras, in which the notion of tilting modules is
fundamental. Moreover, in the representation theory of algebras, the notion
of “mutation” often plays an important role. Mutation is an operation for
a certain class of objects in a fixed category to construct a new object from a
given one by replacing a summand. Happel and Unger [12] gave some necessary
and sufficient conditions under which mutation of tilting modules is possible;
however, mutation of tilting modules is not always possible. Adachi et al. [2]
introduced the notion of support τ -tilting modules which generalizes that of
tilting modules, and showed that mutation of support τ -tilting modules is
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always possible. This is a big advantage of “support τ -tilting mutation” which
“tilting mutation” does not have. Note that the τ -tilting theory developed in
[2] has stimulated several investigations; in particular, there is a close relation
between support τ -tilting modules and some other important notions in the
representation theory of algebras, such as torsion classes, silting complexes,
cluster-tilting objects, Grothendieck groups, and ∗-modules, see [2,3,7,13–15,19]
and so on. Moreover, Adachi [1] gave a classification of τ -tilting modules over
Nakayama algebras and an algorithm to construct the exchange quiver of
support τ -tilting modules. Zhang [20] studied τ -rigid modules which are direct
summands of support τ -tilting modules over algebras with radical square zero.

On the other hand, the notion of skew group algebras was introduced in
[18]. Let Λ be a finite-dimensional algebra, and let G be a finite group such
that its order |G| is invertible in Λ acting on Λ. The algebra Λ and the skew
group algebra ΛG have a lot of properties in common.

The aim of this paper is to introduce and study G-stable support τ -tilting
modules, and moreover, to establish bijections among them and G-stable two-
term silting complexes, G-stable functorially finite torsion classes, and G-stable
cluster-tilting objects. Moreover, we investigate the relationship between stable
support τ -tilting modules over Λ and the skew group algebra ΛG. This paper
is organized as follows.

In Section 2, we give some terminology and some known results.

In Section 3, we prove the following theorem.

Theorem 1.1 (Theorems 3.4, 3.7, 3.13, 3.15) Let Λ be a finite-dimensional
algebra, and let G be a finite group acting on Λ. Then there exist bijections
among

(1) the set G-sτ - tiltΛ of isomorphism classes of basic G-stable support
τ -tilting modules in modΛ;

(2) the set G-2- siltΛ of isomorphism classes of basic G-stable two-term
silting complexes in Kb(projΛ);

(3) the set G-f - torsΛ of G-stable functorially finite torsion classes in
modΛ.

Furthermore, if Λ = EndC (T ), where C is a Hom-finite 2-Calabi-Yau
triangulated category with a G-action and T is a G-stable cluster-tilting
object, then there exists also a bijection between the following set and any one
of the above sets:

(4) the set G-c- tiltC of isomorphism classes of basic G-stable cluster-tilting
objects in C .

Let Λ be a finite-dimensional self-injective algebra, and let G = ⟨ν⟩ be
the subgroup of the automorphism group of Λ generated by the Nakayama
automorphism. Then ν-stable support τ -tilting modules introduced by Mizuno
[17] are exactly G-stable support τ -tilting modules in our sense. So Theorem
1.1 is a generalization of [17, Theorem 1.1].
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In Section 4, we investigate the relationship between G-stable support τ -
tilting Λ-modules and X-stable support τ -tilting ΛG-modules, where X, the
group of characters of G, naturally acts on ΛG. We have the following result.

Theorem 1.2 (Theorems 4.2 (3), 4.6) Let Λ be a finite-dimensional algebra,
and let G be a finite group acting on Λ such that |G| is invertible in Λ. Then
the functor ΛG ⊗Λ − : modΛ → modΛG preserves stability and induces the
following injection:

G-sτ - tiltΛ → X-sτ - tiltΛG,

T 7→ ΛG⊗Λ T.

Moreover, if G is solvable, then this map is a bijection.

Finally, we give an example to illustrate this theorem.

2 Preliminaries

In this section, we give some terminology and some known results.
Let k be an algebraically closed field and we denote by D := Homk(−, k).

By an algebra Λ, we mean a finite-dimensional algebra over k. We denote by
modΛ the category of finitely generated left Λ-modules, by projΛ and injΛ the
subcategories of modΛ consisting of projective modules and injective modules,
respectively, and by τ the Auslander-Reiten translation of Λ. We denote by
Kb(projΛ) the homotopy category of bounded complexes of projΛ. For X ∈
modΛ, we denote by addX the subcategory of modΛ consisting of all direct
summands of finite direct sums of copies of X, and by FacX the subcategory
of modΛ consisting of all factor modules of finite direct sums of copies of X.

2.1 τ -tilting theory

First, we recall the definition of support τ -tilting modules from [2].
Let (X,P ) be a pair with X ∈ modΛ and P ∈ projΛ.

(1) We call X in modΛ τ -rigid if HomΛ(X, τX) = 0. We call (X,P ) a
τ -rigid pair if X is τ -rigid and HomΛ(P,X) = 0.

(2) We call X in modΛ τ -tilting (resp., almost complete τ -tilting) if X is
τ -rigid and |X| = |Λ| (resp., |X| = |Λ| − 1), where |X| denotes the number of
non-isomorphic indecomposable direct summands of X.

(3) We call X in modΛ support τ -tilting if there exists an idempotent e
of Λ such that X is a τ -tilting (Λ/⟨e⟩)-module. We call (X,P ) a support τ -
tilting pair (resp., almost complete support τ -tilting pair) if (X,P ) is τ -rigid and
|X|+ |P | = |Λ| (resp., |X|+ |P | = |Λ| − 1).

We say that (X,P ) is basic if X and P are basic. Moreover, X determines
P uniquely up to isomorphism. We denote by sτ - tiltΛ the set of isomorphism
classes of basic support τ -tilting Λ-modules.

Proposition 2.1 [2, Proposition 2.3] Let X ∈ modΛ and P,Q ∈ projΛ, and
let e be an idempotent of Λ such that addP = addΛe.
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(1) (X,P ) is a τ -rigid pair for Λ if and only if X is a τ -rigid (Λ/⟨e⟩)-
module.

(2) If both (X,P ) and (X,Q) are support τ -tilting pairs for Λ, then addP =
addQ. In other words, X determines P and e uniquely up to equivalence.

Let T be a full subcategory of modΛ. Assume that T ∈ T and D ∈ modΛ.
The morphism f : D → T is called a left T -approximation of D if

HomΛ(T, T
′) → HomΛ(D,T ′) → 0

is exact for any T ′ ∈ T . The subcategory T is called covariantly finite in
modΛ if every module in modΛ has a left T -approximation. The notions of
right T -approximations and contravariantly finite subcategories of modΛ are
defined dually. The subcategory T is called functorially finite in modΛ if it is
both covariantly finite and contravariantly finite in modΛ ([4]).

Recall that T ∈ modΛ is called partial tilting if the projective dimension of
T is at most one and Ext1Λ(T, T ) = 0. A partial tilting module is called tilting
if there exists an exact sequence

0 → Λ → T ′ → T ′′ → 0

in modΛ with T ′, T ′′ ∈ addT (see [6,11]). We have |T | = |Λ| for any tilting
module T by [6, Theorem 2.1]. The following result gives a similar criterion for
a τ -rigid Λ-module to be support τ -tilting.

Proposition 2.2 [15, Proposition 2.14] Let M be a τ -rigid Λ-module. Then
M is a support τ -tilting Λ-module if and only if there exists an exact sequence

Λ
f→ M ′ g→ M ′′ → 0

in modΛ with M ′,M ′′ ∈ addM and f a left addM -approximation of Λ.

2.2 Functorially finite torsion classes

Let T be a full subcategory of modΛ. Recall that T is called a torsion class
if it is closed under factor modules and extensions. We denote by f - torsΛ the
set of functorially finite torsion classes in modΛ. We say that X ∈ T is Ext-
projective if Ext1Λ(X,T ) = 0. We denote by P (T ) the direct sum of one copy
of each of the indecomposable Ext-projective objects in T up to isomorphism.
We have P (T ) ∈ modΛ if T ∈ f - torsΛ ([5, Corollary 4.4]). The following
result establishes a relation between sτ - tiltΛ and f - torsΛ.

Theorem 2.3 [2, Theorem 2.7] There exists a bijection

sτ - tiltΛ ↔ f - torsΛ

given by sτ - tiltΛ ∋ T 7→ FacT ∈ f - torsΛ and f - torsΛ ∋ T 7→ P (T ) ∈
sτ - tiltΛ.
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2.3 Silting complexes

Recall from [3] that P ∈ Kb(projΛ) is called silting if

HomKb(projΛ)(P, P [i]) = 0

for any i > 0 and Kb(projΛ) is the smallest full subcategory of Kb(projΛ)
containing P and is closed under cones, [±1] and direct summands; and a
complex P = (P i, di) in Kb(projΛ) is called two-term if P i = 0 for all i ̸=
0,−1. We denote by 2- siltΛ the set of isomorphism classes of basic two-term
silting complexes in Kb(projΛ). The following result establishes a relation
between 2- siltΛ and sτ - tiltΛ.

Theorem 2.4 [2, Theorem 3.2] There exists a bijection:

2- siltΛ ↔ sτ - tiltΛ

given by
2- siltΛ ∋ P 7→ H0(P ) ∈ sτ - tiltΛ,

sτ - tiltΛ ∋ (M,P ) 7→ (P1 ⊕ P
(f,0)→ P0) ∈ 2- siltΛ,

where f : P1 → P0 is a minimal projective presentation of M.

2.4 Cluster tilting objects

Let C be a k-linear Hom-finite Krull-Schmidt triangulated category. Assume
that C is a 2-Calabi-Yau triangulated category, that is, there exists a functorial
isomorphism:

D Ext1C (X,Y ) ∼= Ext1C (Y,X).

An important class of objects in such categories is that of cluster-tilting objects.
Following [8], an object T ∈ C is called cluster-tilting if

addT = {X ∈ C | HomC (T,X[1]) = 0}.

We denote by c- tiltC the set of isomorphism classes of basic cluster-tilting
objects in C . Assume that C has a cluster-tilting object T and Λ := EndC (T )

op.
For X ∈ C , we have a triangle

T1
g→ T0

f→ X → T1[1], (∗)

where T1, T0 ∈ addT and f is a minimal right addT -approximation.
We have the following results, which will be used frequently in this paper.

Theorem 2.5 [9, Theorem 2.2], [16, p. 126] There exists an equivalence of
categories

(−) := HomC (T,−) : C /[T [1]] → modΛ,

where [T [1]] is the ideal of C consisting of morphisms which factor through
addT [1].
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Theorem 2.6 [2, Theorem 4.1] There exists a bijection

c- tiltC ↔ sτ - tiltΛ

given by

c- tiltC ∋ X = X ′ ⊕X ′′ 7→ X̃ := (X ′, X ′′[−1])) ∈ sτ - tiltΛ,

where X ′′ is a maximal direct summand of X belonging to addT [1].

Theorem 2.7 [2, Theorem 4.7] There exists a bijection

c- tiltC ↔ 2- siltΛ

given by

c- tiltC ∋ X 7→ (T1
g→ T0) ∈ 2- siltΛ,

where g is the morphism in (∗).
2.5 Skew group algebras

In this subsection, we recall the definition of skew group algebras and some
useful results from [18].

Let Λ be an algebra, and let G be a group with identity 1. Consider an
action of G on Λ, that is, a map G× Λ → Λ via (σ, λ) 7→ σ(λ) such that

(1) for any σ ∈ G, the map σ : Λ → Λ is an algebra automorphism;

(2) (σσ′)(λ) = σ(σ′(λ)) for any σ, σ′ ∈ G and λ ∈ Λ;

(3) 1(λ) = λ for any λ ∈ Λ.

Let G be a finite group. For any X ∈ modΛ and σ ∈ G, let σX be a
Λ-module as follows: as a k-vector space σX = X, the action on σX is given
by λ · x = σ−1(λ)x for any λ ∈ Λ and x ∈ X. Given a morphism of Λ-modules
f : X → Y, define σf : σX → σY by σf(x) = f(x) for any x ∈ σX. Then σf is
also a Λ-homomorphism. Indeed, for any x ∈ X and λ ∈ Λ, we have

σf(λ · x) = f(σ−1(λ)x) = σ−1(λ)f(x) = λ · σf(x).

For any X,Y ∈ modΛ and f ∈ HomΛ(X,Y ), we define a functor σ(−) by

σ(−)(X) = σX, σ(−)(f) = σf.

One can check that σ(−) : modΛ → modΛ is an automorphism and the inverse

is σ−1
(−). So we have X ∈ modΛ is indecomposable (resp., projective, injective,

simple) if and only if so is σX in modΛ.
The skew group algebra ΛG of G over Λ is given by the following data:

(1) as an abelian group ΛG is a free left Λ-module with the elements of G
as a basis;

(2) the multiplication in ΛG is defined by the rule

(λσσ)(λττ) = (λσσ(λτ ))στ, ∀λσ, λτ ∈ Λ, ∀σ, τ ∈ G.



G-stable support τ -tilting modules 1063

WhenG is a finite group such that |G| is invertible in Λ, the natural inclusion
Λ ↪→ ΛG induces the induction functor

F = ΛG⊗Λ − : modΛ → modΛG

and the restriction functor H : modΛG → modΛ.

Lemma 2.8 [18, pp. 227, 235] Let G be a finite group such that |G| is invertible
in Λ.

(1) (F,H) and (H,F ) are adjoint pairs of functors. Consequently, F and
H are both exact, and hence, both preserve projective modules and injective
modules.

(2) Let M ∈ modΛ and σ ∈ G. Then the subset

σ ⊗Λ M = {σ ⊗Λ m | m ∈ M}

of FM has a structure of Λ-module given by

λ(σ ⊗Λ m) = σσ−1(λ)⊗Λ m = σ ⊗Λ (λ ·m), ∀λ ∈ Λ,

so that σ⊗ΛM and σM are isomorphic as Λ-modules. Therefore, as Λ-modules,
we have

FM ∼=
⊕
σ∈G

(σ ⊗Λ M) ∼=
⊕
σ∈G

σM,

and then
HFM ∼=

⊕
σ∈G

(σ ⊗Λ M) ∼=
⊕
σ∈G

σM.

3 G-stable support τ -tilting modules

3.1 Definitions

From now on, Λ is an algebra with action by a finite group G.
In this subsection, we introduce the notions of G-stable support τ -tilting

modules, G-stable torsion classes, and G-stable two-term silting complexes.
Recall from [10] that a tilting Λ-module T is called G-stable if σT ∼= T for

any σ ∈ G. Motivated by this, we introduce the following definition.

Definition 3.1 (1) We say that a support τ -tilting module X in modΛ is
G-stable if σX ∼= X for any σ ∈ G.

(2) We say that a support τ -tilting pair (or a τ -rigid pair) (X,P ) for Λ is
G-stable if σX ∼= X and σP ∼= P for any σ ∈ G.

(3) We say that a torsion class T is G-stable if σT = T for any σ ∈ G.

We denote by G-sτ - tiltΛ the set of isomorphism classes of basic G-stable
support τ -tilting Λ-modules and G-f - torsΛ the set of G-stable functorially
finite torsion classes in modΛ.
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The following result shows that in a support τ -tilting pair (T, P ), the G-
stability of T implies the G-stability of the pair.

Proposition 3.2 Let T be a Λ-module, and let P be a projective Λ-module.
Then (T, P ) ∈ sτ - tiltΛ if and only if (σT, σP ) ∈ sτ - tiltΛ. Moreover, if (T, P ) ∈
sτ - tiltΛ and T is a G-stable support τ -tilting module, then P is G-stable.

Proof Since σ(−) is an automorphism commuting with τ (see the proof of
[18, Lemma 4.1]), we have |T | + |P | = |Λ| if and only if |σT | + |σP | = |Λ|,
and that HomΛ(T, τT ) = 0 if and only if HomΛ(

σT, στT ) = 0, if and only if
HomΛ(

σT, τσT ) = 0. So T is τ -rigid if and only if σT is τ -rigid. Thus, the
former assertion follows. If T is a G-stable support τ -tilting module, then by
Proposition 2.1 we have P is also G-stable. �

For any complex M•=(M i, diM•)i∈Z over modΛ and σ ∈ G, let σM• be
the complex (σM i, σdiM•)i∈Z, where Z is the ring of integers. Moreover, given
another complex N• = (N i, diN•)i∈Z over modΛ and a morphism of complexes
f = (f i : M i → N i)i∈Z, let

σf = (σf i : σM i → σN i)i∈Z.

Clearly, σf is a morphism of complexes.
Since σ(−) : modΛ → modΛ is an automorphism, this construction is

compatible with the homotopy relation and preserves projective modules. This
allows defining an automorphism

σ(−) : Kb(projΛ) → Kb(projΛ), ∀σ ∈ G.

In this way, we obtain an action by G on Kb(projΛ).

Definition 3.3 We call a basic two-term silting complex P • ∈ Kb(projΛ)
G-stable if σP • ∼= P • for any σ ∈ G.

We denote by G-2- siltΛ the set of isomorphism classes of basic G-stable
two-term silting complexes for Λ.

3.2 Connection of G-sτ - tiltΛ with G-f - torsΛ and G-2- siltΛ

In this subsection, we show that G-stable support τ -tilting modules correspond
bijectively to G-stable functorially finite torsion classes as well as G-stable two-
term silting complexes.

The following result establishes a one-to-one correspondence between G-
stable support τ -tilting Λ-modules andG-stable functorially finite torsion classes
in modΛ.

Theorem 3.4 The bijection of Theorem 2.3 restricts to a bijection

G-sτ - tiltΛ ↔ G-f - torsΛ.

Proof Assume that T is G-stable. For any M ∈ modΛ and σ ∈ G, we have
for any n > 1, Tn → M is surjective if and only if so is (σT )n → σM. So we
have

FacT = Fac σT = σ FacT
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for any σ ∈ G, that is, FacT is G-stable.
Conversely, if T ∈ f - torsΛ is G-stable, then σT = T for any σ ∈ G. Since

σ(−) : modΛ → modΛ is an automorphism, we have

Ext1Λ(−, σT ) ∼= Ext1Λ(
σ−1

(−),T ).

So
P (T ) = P (σT ) ∼= σP (T )

for any σ ∈ G, that is, P (T ) is G-stable. �
Recall that M ∈ modΛ is sincere if every simple Λ-module appears as a

composition factor inM. This is equivalent to the condition that HomΛ(P,M) ̸=
0 for any indecomposable projective module P. Also, recall that M ∈ modΛ is
faithful if its left annihilator

AnnM := {λ ∈ Λ | λM = 0} = 0.

A class of left Λ-modules T is sincere if for any indecomposable projective
module P, we have

HomΛ(P,T ) := {HomΛ(P, T ) | T ∈ T } ̸= 0.

A class of left Λ-modules T is faithful if

AnnT =
∩
T∈T

AnnT = 0.

The following result shows that support τ -tilting modules can be regarded
as a common generalization of τ -tilting modules and tilting modules.

Proposition 3.5 [2, Proposition 2.2] (1) τ -tilting modules are precisely
sincere support τ -tilting modules.

(2) Tilting modules are precisely faithful support τ -tilting modules.

We denote by G-sf - torsΛ (resp., G-ff - torsΛ) the set of G-stable sincere
(resp., faithful) functorially finite torsion classes in modΛ. Using Proposition
3.5, we get the following theorem.

Theorem 3.6 The bijection in Theorem 3.4 restricts to bijections

G-τ - tiltΛ ↔ G-sf - torsΛ, G- tiltΛ ↔ G-ff - torsΛ.

Proof Let T be a G-stable support τ -tilting Λ-module. It follows Proposition
3.5 that T is a τ -tilting Λ-module (resp., tilting Λ-module) if and only if T is
sincere (resp., faithful).

Claim 1 T is sincere if and only if FacT is sincere.
If T is sincere, it is obvious that FacT is sincere by definition.
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Conversely, if FacT is sincere, then, for any indecomposable projective
module P, we have HomΛ(P,FacT ) ̸= 0, that is, there exists MP ∈ FacT
such that HomΛ(P,MP ) ̸= 0. Since MP ∈ FacT, there exist exact sequences

Tn → MP → 0,

HomΛ(P, T
n) → HomΛ(P,MP ) → 0,

where n > 1. So we have HomΛ(P, T ) ̸= 0 for any indecomposable projective
module P. Therefore, T is sincere.

Claim 2 T is faithful if and only if FacT is faithful.
It suffices to show that AnnT = AnnFacT. It is obvious that AnnFacT ⊆

AnnT by definition. Conversely, for any λ ∈ AnnT and M ∈ FacT, there exists

an exact sequence Tn f→ M → 0 with n > 1 and λT = 0. Then we have

λM = λf(Tn) = f(λTn) = 0,

that is, AnnT ⊆ AnnFacT. �
We end this subsection with the following result.

Theorem 3.7 The bijection of Theorem 2.4 restricts to a bijection

G-2- siltΛ ↔ G-sτ - tiltΛ.

Proof If (T, P ) ∈ G-sτ - tiltΛ, then σT ∼= T and σP ∼= P for any σ ∈ G. Let
P • → T → 0 be a minimal projective presentation of T. Then σP • → σT → 0
is a minimal projective presentation of σT since σ(−) : modΛ → modΛ is an
automorphism. Since σT ∼= T for any σ ∈ G, it follows that

σP • ∼= P •, σ(P • ⊕ P [1]) ∼= P • ⊕ P [1].

Conversely, if P • ∈ G-2- siltΛ, then

H0(P •) ∼= H0(σP •) = σH0(P •)

because σ commutes with taking cokernel. It follows that H0(P •) is G-stable.
�

3.3 Connection of G-sτ - tiltΛ with G-c- tiltC

Let C be a k-linear Hom-finite Krull-Schimidt 2-Calabi-Yau triangulated
category. An action of G on C is a group homomorphism θ : G → AutC
from G to the group of triangulated automorphisms of C , that is,

σ(−) = θ(σ) : C → C

is a triangle automorphism. For any X ∈ C and σ ∈ G, σX denotes the image
of X under σ(−). An object X in C is called G-stable if σX ∼= X for any
σ ∈ G. We denote by G-c- tiltC the set of isomorphism classes of basic G-stable
cluster-tilting objects.
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Throughout this subsection, let T be a G-stable cluster-tilting object in C
with a fixed isomorphism φσ :

σT → T such that φση = φσφη and φ1 = idT .
Then Λ := EndC (T )

op admits a G-action via σ(λ) = φσ ◦σλ◦φ−1
σ for any σ ∈ G

and λ ∈ Λ. The following proposition plays an important role in this subsection.

Proposition 3.8 The action of G on C induces that on C /[T [1]].

Proof It suffices to show that addT [1] is closed under the G-action. By the
definition of triangle functors, we have the shift functor [1] and the functor σ(−)
commute on objects. So

σ(addT [1]) = addσ(T [1]) = add(σT )[1] = addT [1],

and the assertion follows. �
By Theorem 2.5, there exists an equivalence of categories between C /[T [1]]

and modΛ. So the action of G on C /[T [1]] induces an action of G on modΛ. On
the other hand, the action of G on Λ also induces that on modΛ. The following
result shows that these two actions coincide.

Lemma 3.9 The functor HomC (T,−) : C → modΛ commutes with G-action.

Proof It suffices to prove that for any M ∈ C , there exists a Λ-module
isomorphism

σ HomC (T,M) ∼= HomC (T,
σM).

Take
Φ: σ HomC (T,M) → HomC (T,

σM),

g 7→ σ(g ◦ σ−1
(φ−1

σ )) = σg ◦ φ−1
σ ,

for any g ∈ σ HomC (T,M). Then Φ is clearly an isomorphism as k-vector spaces.
Because

Φ(λ · g) = Φ(σ−1(λ) · g)

= Φ(g ◦ σ−1
(φ−1

σ ) ◦ σ−1
λ ◦ σ−1

φσ)

= σg ◦ φ−1
σ ◦ λ ◦ φσ ◦ φ−1

σ

= σg ◦ φ−1
σ ◦ λ

= λ · (σg ◦ φ−1
σ )

= λ · Φ(g),
we have Φ is a Λ-module isomorphism. �
Lemma 3.10 If both X1 = X ⊕ Y ′ and X2 = X ⊕ Y ′′ are basic cluster-tilting
objects with Y ′ (resp., Y ′′) a maximal direct summand of X1 (resp., X2), which
belongs to addT [1], then Y ′ ∼= Y ′′.

Proof Let X1, X2, and T be cluster-tilting and Y ′, Y ′′ ∈ addT [1]. Then we
have

HomC (X2, Y
′[1]) = HomC (X,Y ′[1])⊕ HomC (Y

′′, Y ′[1]) = 0,

HomC (X1, Y
′′[1]) = HomC (X,Y ′′[1])⊕ HomC (Y

′, Y ′′[1]) = 0.
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It is easy to get that Y ′ ∈ addX2 and Y ′′ ∈ addX1 from the definition of
cluster-tilting objects. Since Y ′ (resp., Y ′′) is a maximal direct summand of X1

(resp., X2), which belongs to addT [1] by assumption, we have Y ′ ∼= Y ′′. �
Lemma 3.11 For any σ ∈ G, we have X ∈ c- tiltC if and only if σX ∈
c- tiltC .

Proof Let X ∈ c- tiltC . Then

addX = {C ∈ C | HomC (X,C[1]) = 0}.

So we have
add σX = σ addX

= {σC ∈ C | HomC (X,C[1]) = 0}
= {σC ∈ C | HomC (

σX, σC[1]) = 0}
= {C ∈ C | HomC (

σX,C[1]) = 0},

and hence, σX ∈ c- tiltC . Dually, we get that σX ∈ c- tiltC impliesX ∈ c- tiltC .
�

The following observation is useful.

Proposition 3.12 If X=X ′ ⊕ X ′′ ∈ c- tiltC with X ′′ a maximal direct
summand of X, which belongs to addT [1], then X is G-stable if and only if
X ′ is G-stable.

Proof By Proposition 3.8, we have

σ addT [1] = add σ(T [1]) = add(σT )[1] = addT [1].

So Y ∈ addT [1] if and only if σY ∈ addT [1]. Since X ′′ is a maximal direct
summand ofX, which belongs to addT [1] by assumption, σX ′′ is also a maximal
direct summand of σX ∈ addT [1].

If X is G-stable, then σX ∼= X for any σ ∈ G. Since σX ′′ (resp., X ′′) is a
maximal direct summand of σX (resp., X), which belongs to addT [1], we have
σX ′′ ∼= X ′′ and σX ′ ∼= X ′ for any σ ∈ G.

By Lemma 3.11, we have σX ′⊕ σX ′′ ∈ c-tiltC . If X ′ is G-stable, then X ′⊕
σX ′′ and X ′ ⊕ X ′′ are basic cluster-tilting objects. By Lemma 3.10, we have
σX ′′ ∼= X ′′. Thus, X is G-stable. �

Now, we are in a position to prove the following theorem.

Theorem 3.13 The bijection of Theorem 2.6 restricts to a bijection

G-c- tiltC ↔ G-sτ - tiltΛ.

Proof By Lemma 3.9, we have

σ HomC (T,M) ∼= HomC (T,
σM), ∀M ∈ C /[T [1]].
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If X ∈ G-c-tiltC , then X ′ is G-stable by Proposition 3.12. For any σ ∈ G,
we have

σX ′ = σ HomC (T,X
′) ∼= HomC (T,

σX ′) ∼= HomC (T,X
′) = X ′.

Thus X ′ is G-stable. Moreover, X̃ ∈ G-sτ - tiltΛ is G-stable.
Conversely, if X ′ is G-stable, then we have HomC (T,

σX ′) ∼= HomC (T,X
′)

as before. Then by Theorem 2.5, we have σX ′ ∼= X ′ for any σ ∈ G, that is, X ′

is G-stable. Thus, X ∈ G-c- tiltC by Proposition 3.12. �
In the following, we establish a bijection between G-stable cluster-tilting

objects in C and G-stable two-term silting complexes in Kb(projΛ).

Lemma 3.14 Let X be a basic object of C and take a triangle

T1
g→ T0

f→ X → T1[1]

with T1, T0 ∈ addT and f a minimal right addT -approximation. Then the
following statements are equivalent:

(1) X is G-stable in C ;

(2) T1
g→ T0 is G-stable in Kb(projΛ).

Proof Since σ(−) : C → C is a triangulated equivalence, we have the following
diagram:

T1
g //

��

T0
f //

��

X //

��

T1[1]

��
σT1

σg // σT0

σf // σX // (σT1)[1].

By the proof of Theorem 3.13, we have T1
g→ T0 is G-stable if and only if

T1
g→ T0 is G-stable.

(2) ⇒ (1) We already have T1
g→ T0 is G-stable, it follows that X is

G-stable.

(1) ⇒ (2) If X is G-stable, then σX ∼= X. Since f is a minimal right addT -
approximation by assumption, σf is a minimal right σ addT -approximation,
and hence a minimal right addT -approximation. Thus, σT0

∼= T0 and
σT1

∼= T1.

Therefore, T1
g→ T0 is G-stable and the assertion follows. �

Immediately, we get the following theorem.

Theorem 3.15 The bijection of Theorem 2.7 restricts to a bijection

G-c- tiltC ↔ G-2- siltΛ.

Proof It follows from Theorem 2.7 and Lemma 3.14. �
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4 Relationship between stable support τ -tilting modules over Λ and ΛG

Throughout this section, Λ is an algebra and G is a finite group acting on Λ
such that |G| is invertible in Λ. We denote by X the group of characters on G,
that is, the group homomorphisms

χ : G → k∗ = k\{0}.

Then X acts on ΛG via
χ(λg) = χ(g)λg.

We prove that there exists an injection from G-stable support τ -tilting Λ-
modules to X-stable support τ -tilting ΛG-modules. In the case when G is
a solvable group, the injection turns out to be a bijection.

We begin with the following easy observation.

Lemma 4.1 If T ∈ modΛ is G-stable, then FT is X-stable.

Proof We only need to prove χFT ∼= FT for any χ ∈ X. Note that χFT is a
ΛG-module whose underlying set and the additive structure is the same as FT,
in which (λ′, g′) ◦ ((λ, g)⊗ t) is defined to be χ(g′)(λ′, g′)(λ, g)⊗ t. Define

θ : χFT → FT,

(λ, g)⊗ t 7→ χ−1(g)(λ, g)⊗ t.

Clearly, it is a bijection. Because

θ((λ′, g′) ◦ (λ, g)⊗ t) = θ(χ(g′)(λ′, g′)(λ, g)⊗ t)

= χ(g′)θ((λ′, g′)(λ, g)⊗ t)

= χ(g′)θ((λ′g′(λ), g′g ⊗ t)

= χ(g′)χ−1(g′g)(λ′, g′)(λ, g)⊗ t

= χ−1(g)(λ′, g′)(λ, g)⊗ t

= (λ′, g′)θ((λ, g)⊗ t),

we have θ is a ΛG-homomorphism, and hence an isomorphism. �
The first main result in this section is the following theorem.

Theorem 4.2 The functor

F = ΛG⊗Λ − : modΛ → modΛG

via T 7→ FT induces the following injections:

(1) from the set of isomorphism classes of G-stable τ -rigid Λ-modules to
the set of isomorphism classes of X-stable τ -rigid ΛG-modules;

(2) from the set of isomorphism classes of G-stable τ -rigid pair in modΛ
to the set of isomorphism classes of X-stable τ -rigid pair in modΛG;
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(3) G-sτ - tiltΛ → X-sτ - tiltΛG.

Proof We claim that the functor F restricting to the set of isomorphism classes
of basic G-stable Λ-modules is an injection. If both T1 and T2 are G-stable Λ-
modules and FT1

∼= FT2, then HFT1
∼= HFT2, that is,⊕

σ∈G

σT1
∼=

⊕
σ∈G

σT2.

Since T1 and T2 are G-stable, we have Tn
1
∼= Tn

2 with n = |G|. Thus, T1
∼= T2,

and the claim follows.

(1) By definition, T is τ -rigid if and only if HomΛ(T, τT ) = 0. By the proof
of [18, Lemma 4.2], we have F commutes with τ. So we have

HomΛG(FT, τFT ) ∼= HomΛG(FT, FτT )
∼= HomΛ(T,HFτT )

∼= HomΛ

(
T,

⊕
σ∈G

σ(τT )

)
∼=

⊕
σ∈G

HomΛ(T,
σ(τT ))

∼=
⊕
σ∈G

HomΛ(
σ−1

T, τT )

∼=
⊕
σ∈G

HomΛ(T, τT ).

Since T is G-stable τ -rigid in modΛ, we have FT is τ -rigid in modΛG. Now,
the assertion follows from Lemma 4.1.

(2) Note that (T, P ) is a G-stable τ -rigid pair if and only if T is G-stable
τ -rigid, P is G-stable projective, and HomΛ(P, T ) = 0. It follows from the
injection in (1) that FT is τ -rigid in modΛG. By Lemma 2.8, F preserves
projective modules and FP is a projective module in modΛG. We have

HomΛG(FP, FT ) ∼= HomΛ(P,HFT )

∼= HomΛ

(
P,

⊕
σ∈G

σT

)
∼=

⊕
σ∈G

HomΛ(P,
σT )

∼=
⊕
σ∈G

HomΛ(P, T ).

Thus,
HomΛG(FP, FT ) = 0,

and therefore, (FT, FP ) is an X-stable τ -rigid pair in modΛG by Lemma 4.1.
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(3) By Propositions 2.1 and 2.2, T ∈ sτ - tiltΛ if and only if T is τ -rigid
and there exists an exact sequence

Λ
f→ T ′ g→ T ′′ → 0

in modΛ with T ′, T ′′ ∈ addT and f a left addT -approximation of Λ. It follows
from the injection in (1) that FT is a τ -rigid ΛG-module and there exists an
exact sequence

FΛ (∼= ΛG)
Ff→ FT ′ Fg→ FT ′′ → 0

in modΛG with FT ′, FT ′′ ∈ addFT. Then by Proposition 2.2, we only need to
prove that Ff is a left addFT -approximation of ΛG, that is, HomΛG(Ff,M)
is surjective for any M ∈ addFT. First, we prove that HomΛG(Ff, FT ) is
surjective. Consider the following commutative diagram:

HomΛG(FT ′, FT )
HomΛG(Ff,FT ) //

∼=
��

HomΛG(ΛG,FT )

∼=
��

HomΛ(T
′,HFT )

HomΛ(f,HFT ) //

∼=
��

HomΛ(Λ,HFT )

∼=
��

HomΛ(T
′,⊕σ∈G

σT )
HomΛ(f,⊕σ∈G

σT ) //

∼=
��

HomΛ(Λ,⊕σ∈G
σT )

∼=
��

HomΛ(T
′, Tn)

HomΛ(f,T
n) // HomΛ(Λ, T

n)

where n = |G|. The last row is surjective since f is left addT -approximation of
Λ. So the first row is also surjective.

Now, let M ∈ addFT and g ∈ HomΛG(ΛG,M). Then there exist m > 1
and N ∈ modΛG such that

M ⊕N ∼= (FT )m.

So we have a split exact sequence

0 // M
i // (FT )m //
p

oo N // 0

in modΛG with pi = 1M . By the above argument, there exists h ∈ HomΛG(FT ′,
(FT )m) such that hFf = ig. So we have

g = pig = phFf = HomΛG(Ff,M)(ph),

and hence, HomΛG(Ff,M) is surjective. �
As an application of Theorem 4.2, we get the following result which extends

[10, Proposition 3.1.1].
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Corollary 4.3 If T is a G-stable (basic) tilting Λ-module, then FT is an
X-stable tilting ΛG-module.

Proof Let T be a G-stable (basic) tilting Λ-module. Then by Proposition 3.5
(2), T is a G-stable faithful support τ -tilting module. So Λ is cogenerated by T
and there exists an injection 0 → Λ → Tn in modΛ. Since F is exact, we get an
injection 0 → ΛG → (FT )n in modΛG. So FT is an X-stable faithful support
τ -tilting ΛG-module by Theorem 4.2 (3), and hence, it is a tilting ΛG-module
by Proposition 3.5 (2) again. �

The following observation is standard.

Proposition 4.4 Any ΛG-module is a G-stable Λ-module.

Proof Let Y be a ΛG-module. For any g ∈ G and y ∈ Y, we define a map

fg :
gY → Y

by fg(y) = gy. Then for any a ∈ Λ, we have

fg(ay) = g(ay) = g(g−1(a)y) = ag(y) = afg(y).

So fg is a Λ-module homomorphism. We also have fg is an isomorphism with
the inverse fg−1 : Y → gY such that

fg−1(y) = g−1y, ∀ y ∈ Y. �

As an immediate consequence of Proposition 4.4, we have the following
result.

Corollary 4.5 For any basic G-stable Λ-module T, we have

(1) if T is τ -rigid in modΛ, then HFT is G-stable τ -rigid in modΛ;

(2) if T is support τ -tilting in modΛ, then HFT is G-stable support τ -tilting
in modΛ.

Proof Note that

HFT ∼=
⊕
σ∈G

σT ∼= Tn, n = |G|.

So both assertions follow from Proposition 4.4. �
We have proved in Theorem 4.2 (3) that F induces an injection from

G-sτ - tiltΛ to X-sτ - tiltΛG. It is natural to ask the following question.

Question When is this injection a bijection?

In the following, we give a partial answer to this question.
It follows from [18, Corollary 5.2] that (ΛG)X is Morita equivalent to ΛG(1),

where G(1) is the commutator subgroup of G. Let G be solvable, and let

G◃G(1) ◃G(2) ◃G(3) ◃ · · ·◃G(m) = {1}
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be its derived series, that is, every subgroup is the commutator subgroup of the
preceding one. Denote by X(i) the character group of G(i). By [18, Proposition
5.4], we can get from ΛG to Λ by using a finite number of skew group algebra
constructions, combined with Morita equivalences. To be more precise, there
exists a chain of skew group algebras

Λ
G→ ΛG

X→ ΛG(1) X(1)

→ ΛG(2) → · · · X
(m−1)

→ ΛG(m) Morita≃ Λ,

where each algebra ΛG(i) is the skew group algebra of the preceding algebra
ΛG(i−1) under the action of the group Xi−1. Then we have the induced functors

modΛ
F→ modΛG

F (1)

→ modΛG(1) → · · · F
(m)

→ modΛ.

Under the above assumption, we give the following theorem.

Theorem 4.6 If G is a solvable group, then the functor F : modΛ → modΛG
induces a bijection

G-sτ - tiltΛ → X-sτ - tiltΛG.

Proof By Theorem 4.2, the functor F induces an injection

G-sτ - tiltΛ → X-sτ - tiltΛG.

Applying Lemma 4.1 and Theorem 4.2, it is easy to see that the functors F (i)

induce injections

X(i−1)-sτ - tiltΛG(i−1) → X(i)-sτ - tiltΛG(i).

Then we have the following chain of injections:

G-sτ - tiltΛ
F→ X-sτ - tiltΛG F (1)

→ X(1)-sτ - tiltΛG(1)

F (2)

→ · · · F
(m)

→ G-sτ - tiltΛG(m) ∼= G-sτ - tiltΛ.

The composition F (m) · · ·F (1)F is a bijection. So F and all F (i) are bijections.
�

Let G be an abelian group. It is well known that X is isomorphic to G.
So ΛG admits an action by G; and moreover, by [18], the skew group algebra
(ΛG)G is Morita equivalent to Λ. Now, the following result is an immediate
consequence of Theorem 4.6.

Corollary 4.7 If G is an abelian group, then F induces a bijection

G-sτ - tiltΛ → G-sτ - tiltΛG.

Finally, we illustrate Theorem 4.6 with the following example.
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Example 4.8 Let Λ be the path algebra of the quiver Q (see below), and let
G = Z/2Z act on Λ by switching 2 and 2′, α and β, and fixing the vertex 1.
Then the following Q′ is the quiver of ΛG :

2 1
γ

��=
==

=

Q =1

α
@@����

β ��<
<<
< Q′ = 2

2′ 1′
δ

AA����

The Auslander-Reiten quivers of modΛ and modΛG are the following, where
each module is represented by its radical filtration:

2

��:
::

::
1
2′

��4
44
44

1
2

��9
99
99

1′

1
2 2′

BB����

��9
99
99

1 2

EE






��4
44
44

1 1′

2

BB�����

��:
::

:

2′

BB����
1
2

EE





1′

2

BB����
1

Γ(Λ) Γ(ΛG)

We denote by indΛ the set of isomorphism classes of indecomposable Λ-modules.
Then we describe the map induced by F between indΛ and modΛG. Observe
that the correspondences from the Auslander-Reiten quiver of Λ to that of ΛG :

F : indΛ → modΛG,

2, 2′ 7→ 2,

1
2 2′

7→ 1
2
⊕ 1

2′
,

1
2′
,
1
2
7→ 1 1′

2
,

1 7→ 1⊕ 1′.

Recall from [2] the definition of the support τ -tilting quiver Q(sτ -tiltΛ) of
Λ as follows:

(1) the set of vertices is sτ -tiltΛ;

(2) we draw an arrow from T to U if U is a left mutation of T ([2, Theorem
2.30]).

One can calculate the left mutation of support τ -tilting Λ-modules by
exchanging sequences that are constructed from left approximations. Therefore,
we can draw the support τ -tilting quiver of an algebra by its Auslander-Reiten
quiver. Now, we draw Q(sτ - tiltΛ) and Q(sτ - tiltΛG) as follows.
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Q(sτ -tiltΛ):

2

**VVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVV

2⊕ 2′

66mmmmmmmmmmmmmmm
// 2′ // 0

1
2 2′ ⊕ 2′ ⊕ 2

77oooooooooooo
//

&&MM
MMM

MMM
MMM

1
2 2′ ⊕

1
2′ ⊕ 2′ //

&&MM
MMM

MMM
MMM

1
2′ ⊕ 2′

OO

// 1⊕ 1
2′

!!C
CC

CC
CC

CC
C

1
2 2′ ⊕ 2⊕ 1

2
//

&&MM
MMM

MMM
MMM

M

1
2 2′ ⊕

1
2′ ⊕

1
2

// 1⊕ 1
2′ ⊕

1
2

OO

��

1

OO

2⊕ 1
2

//

CC

1⊕ 1
2

=={{{{{{{{{{

Q(sτ -tiltΛG) :

1′

2 ⊕ 2 //

''OO
OOO

OOO
OO

2

,,XXXXX
XXXXX

XXXXX
XXXXX

XXXXX
XXXXX

XXXXX

1
2 ⊕

1′

2 ⊕ 2

88qqqqqqqq
//

&&MM
MMM

MM

1
2 ⊕ 2

77ooooooooooooo

--

1′ ⊕ 1′

2
// 1′ // 0

1
2 ⊕

1′

2 ⊕ 1 1′

2
//

''OO
OOO

OO
1′ ⊕ 1′

2 ⊕ 1 1′

2

OO

// 1′ ⊕ 1⊕ 1 1′

2
// 1′ ⊕ 1

��

eeKKKKKKKKKK

1
2 ⊕ 1⊕ 1 1′

2

77ooooooo
// 1
2 ⊕ 1 // 1

GG���������������

The colored support τ -tilting modules in the graph are all the basic G-stable
support τ -tilting modules in modΛ and modΛG, respectively. Moreover, the
bijection in Theorem 4.6 takes a G-stable support τ -tilting module in Q(sτ -
tiltΛ) to that in Q(sτ -tiltΛG) in the same color. The G-stable support τ -tilting
modules in green, orange, and brown are G-stable tilting.
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