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Abstract

Let R and S be rings and RCS a semidualizing bimodule. We investigate the behavior of the
C-flat dimension of injective left R-modules, and establish the relation among the supremum of these
C-flat dimensions and the supremum of C-injective dimensions of projective left S-modules and the
supremum of C-projective dimensions of injective left R-modules.

1 Introduction

Semidualizing bimodules arise naturally in the investigation of various duality theories in commutative

ring theory. The study of such modules was initiated by Foxby [9] and by Golod [10]. Then Holm

and White [12] extended it to arbitrary associative rings. Many authors have studied the properties

of semidualizing modules and related modules, see for example, [1, 5, 9, 10], [12]–[14], [17]–[25] and

the references therein. Among various research areas on semidualizing modules, one basic theme is to

extend the “absolute” classical results in homological algebra to the “relative” setting with respect to

semidualizing modules. The motivation of this paper comes from Emmanouil and Talelli’s work [8], in

which the relations among the supremum of the projective dimensions of injective left R-modules, that

of the injective dimensions of projective left R-modules, the finitistic dimension and the left self-injective

dimension of a ring R were established. Our aim is to give the relative counterparts with respect to

semidualizing modules of these results.

The paper is organized as follows. In Section 2, we give some terminology and some preliminary

results.

Let R and S be arbitrary rings and RCS a semidualizing bimodule. In Section 3, we first investigate

the relationship between the supremum spcliR of the C-projective dimensions of injective left R-modules

and the supremum sfcliR of the C-flat dimensions of injective left R-modules. We give some upper

bounds of spcliR in terms of sfcliR together with other relative homological invariants (Proposition 3.2).

Moreover, we prove the following result.

Theorem 1.1. (Theorem 3.5) For any left R-module M and n ≥ 1, if the C-projective dimension of M

is at most n and ExtnR(M,C) = 0, then the C-flat dimension of M is at most n− 1.
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As a consequence, we get that for any n ≥ 1, if spcliR ≤ n and the injective dimension of RC is at

most n− 1, then sfcliR ≤ n− 1 (Corollary 3.8).

The finitistic C-flat dimension FC(R)-FPD is defined as the supremum of the C-flat dimensions

of left R-modules with finite C-flat dimension. We establish the relation among spcliR, spcliSop and

FC(R)-FPD as follows: it holds that FC(R)-FPD ≤ sfcliSop and that sfcliR ≤ FC(R)-FPD if sfcliR <∞
(Proposition 3.10).

In Section 4, we establish the relation among spcliR, spcliSop, sfcliR, sfcliSop and other related

relative homological invariants over ℵ0-Noetherian rings.

Theorem 1.2. (Theorem 4.3) If R is a right ℵ0-Noetherian ring and S is a left ℵ0-Noetherian ring, then

spcliR <∞ and spcliSop <∞ if and only if sfcliR <∞ and sfcliSop <∞. In this case, we have

| spcliR− spcliSop| ≤ 1.

For a left R-module M , we use idRM to denote the injective dimension of M . The invariant siclpS

is defined as the supremum of the C-injective dimensions of projective left S-modules.

Theorem 1.3. (Theorems 4.6 and 4.9)

(1) If R is a left ℵ0-Noetherian ring, then

sfcliSop ≤ idR C
(N) = siclpS,

where N is the set of natural numbers.

(2) If R is a left Noetherian ring, then

sfcliSop = idR C = siclpS ≥ max{FflicS,FplicS},

where FflicS (respectively, FplicS) is the supremum of the flat (respectively, projective) dimensions

of C-injective left S-modules with finite flat (respectively, projective) dimension.

By using Theorem 1.3(1), we prove that for any left ℵ0-Noetherian ring R and n ≥ 1, if idR C ≤ n and

sfcliSop ≤ n−1, then siclpS ≤ n; furthermore, if idR C < siclpS, then siclpS = sfcliSop+1 (Proposition

4.7).

2 Preliminaries

Throughout this paper, all rings are associative rings with unit. Let R be a ring. We use ModR

(respectively, ModRop) to denote the class of left (respectively, right) R-modules. We use F(R), P(R) and

I(R) to denote the subclasses of ModR consisting of flat, projective and injective modules respectively.

For a module M ∈ ModR, we use fdRM , pdRM and idRM to denote the flat, projective and injective

dimensions of M respectively.

Let X be a subclass of ModR and M ∈ ModR. The X -projective dimension X -pdM of M is

defined as inf{n | there exists an exact sequence

0→ Xn → · · · → X1 → X0 →M → 0
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in ModR with all Xi in X }, and set X -pdM = ∞ if no such integer exists, and set X -pd 0 = −1.

Dually, the notion of the X -injective dimension X -idM of M is defined. We write

X - FPD := sup{X - pdM |M ∈ ModR with X - pdM <∞},

X - FID := sup{X - idM |M ∈ ModR with X - idM <∞}.

Definition 2.1. ([1, 12]) Let R and S be rings. An (R,S)-bimodule RCS is called semidualizing if the

following conditions are satisfied.

(a1) RC admits a degreewise finite R-projective resolution.

(a2) CS admits a degreewise finite Sop-projective resolution.

(b1) The homothety map RRR
Rγ→ HomSop(C,C) is an isomorphism.

(b2) The homothety map SSS
γS→ HomR(C,C) is an isomorphism.

(c1) Ext≥1
R (C,C) = 0.

(c2) Ext≥1
Sop(C,C) = 0.

Wakamatsu [23] introduced and studied the so-called generalized tilting modules, which are usually

called Wakamatsu tilting modules, see [5, 18]. Note that a bimodule RCS is semidualizing if and only if it

is Wakamatsu tilting ([25, Corollary 3.2]). Typical examples of semidualizing bimodules include the free

module of rank one and the dualizing module over a Cohen-Macaulay local ring. For more examples of

semidualizing bimodules, the reader is referred to [12, 21, 24].

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule RCS. For

convenience, we write

(−)∗ := Hom(C,−).

A sequence in ModR is called HomR(C,−)-exact if it is exact after applying the functor (−)∗. Following

[12], set

FC(R) := {C ⊗S F | F is flat in ModS},

PC(R) := {C ⊗S P | P is projective in ModS},

IC(S) := {I∗ | I is injective in ModR}.

The modules in FC(R), PC(R) and IC(S) are called C-flat, C-projective and C-injective respectively.

When RCS = RRR, C-flat, C-projective and C-injective modules are exactly flat, projective and injective

modules respectively. Symmetrically, the classes of FC(Sop), PC(Sop) and IC(Rop) are defined.

We define

spclfcR := sup{PC(R)- pdM |M ∈ FC(R)},

siclf S := sup{IC(S)- idN | N ∈ F(S)}, siclpS := sup{IC(S)- idN | N ∈ P(S)},

sfcliR := sup{FC(R)- pdM |M ∈ I(R)}, spcliR := sup{PC(R)- pdM |M ∈ I(R)},

silfcR := sup{idRM |M ∈ FC(R)}, silpcR := sup{idRM |M ∈ PC(R)},

sflicS := sup{fdS N | N ∈ IC(S)}, splicS := sup{pdS N |N ∈ IC(S)}.

It is trivial that siclpS ≤ siclf S and sfcliR ≤ spcliR. In addition, by [22, Lemma 2.6], we have

siclf S = silfcR, siclpS = silpcR, sfcliR = sflicS, spcliR = splicS.
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Let N ∈ ModS and M ∈ ModR. Then there exist the following two canonical evaluation homomor-

phisms:

µN : N −→ (C ⊗S N)∗

defined by µN (x)(c) = c⊗ x for any c ∈ C and x ∈ N , and

θM : C ⊗S M∗ −→M

defined by θM (c⊗ f) = f(c) for any c ∈ C and f ∈M∗.

Definition 2.2. ([12])

(1) The Auslander classAC(S) with respect to C consists of all left S-modulesN satisfying the following

conditions.

(A1) TorS≥1(C,N) = 0.

(A2) Ext≥1
R (C,C ⊗S N) = 0.

(A3) µN is an isomorphism.

(2) The Bass class BC(R) with respect to C consists of all left R-modules M satisfying the following

conditions.

(B1) Ext≥1
R (C,M) = 0.

(B2) TorS≥1(C,M∗) = 0.

(B3) θM is an isomorphism.

The Auslander class AC(Rop) in ModRop and the Bass class BC(Sop) in ModSop are defined sym-

metrically.

3 sfcliR and related invariants

3.1 The relation between sfcliR and spcliR

We begin with the following observation.

Lemma 3.1. ([22, Theorem 3.3]) spclfcR ≤ PC(R)-FPD ≤ siclpS = siclf S.

Proof. We only give the proof of the equality PC(R)-FPD ≤ siclpS, which is different from that in [22].

Let M ∈ ModR with PC(R)-pdM = n <∞ and

0→ C ⊗S Pn → · · · → C ⊗S P1 → C ⊗S P0 →M → 0

be an exact sequence in ModR with all Pi projective in ModS. By [22, Lemma 2.5(1)], applying the

functor (−)∗ to the above exact sequence yields the following exact sequence

0→ (C ⊗S Pn)∗ → · · · → (C ⊗S P1)∗ → (C ⊗S P0)∗ →M∗ → 0

in ModS. By [12, Lemma 4.1], we have (C ⊗S Pi)∗ ∼= Pi for any 0 ≤ i ≤ n. Since M ∈ BC(R) by

[12, Corollary 6.1], it follows from [22, Lemma 2.6(1)] that pdSM∗ = PC(R)-pdM = n, and hence

ExtnS(M∗, (C ⊗S Pn)∗) 6= 0. Then by [12, Theorem 6.4(b)], we have

ExtnR(M,C ⊗S Pn) ∼= ExtnS(M∗, (C ⊗S Pn)∗) 6= 0,

which implies idR C ⊗S Pn ≥ n, and hence IC(S)-idPn ≥ n by [12, Lemma 4.1] and [22, Lemma 2.6(3)].

The assertion follows.
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The second inequality in the following result was obtained in [22, Theorem 4.3(2)] when the semidu-

alizing bimodule RCS is faithful.

Proposition 3.2. It holds that

sfcliR ≤ spcliR ≤ sfcliR+ spclfcR ≤ sfcliR+ PC(R)-FPD ≤ sfcliR+ siclpS.

Proof. By Lemma 3.1, it suffices to prove the second inequality.

Suppose sfcliR = n <∞ and spclfcR = m <∞, and let I ∈ ModR be injective. It follows from [12,

Lemma 4.1 and Theorem 6.1] that I ∈ BC(R) and there exists a HomR(C,−)-exact exact sequence

· · · → C ⊗S Pn → C ⊗S Pn−1
dn−1−→ · · · → C ⊗S P0 → I → 0

in ModR with all Pi projective in ModS. Applying the functor (−)∗ to the above exact sequence yields

the following exact sequence

· · · → (C ⊗S Pn)∗ → (C ⊗S Pn−1)∗
(dn−1)∗−→ · · · → (C ⊗S P0)∗ → I∗ → 0.

By [12, Lemma 4.1], we have (C ⊗S Pi)∗ ∼= Pi for any i ≥ 0. So the above exact sequence is a projective

resolution of I∗ in ModS. By [22, Lemma 2.6(1)], we have

fdS I∗ = FC(R)- pd I ≤ sfcliR = n,

and hence Kn := Ker(dn−1)∗ is flat, which is in Kn ∈ AC(S) by [12, Lemma 4.1] again. Then by [12,

Theorem 1] and [22, Lemma 2.6(1)], we have C ⊗S Kn ∈ BC(R) and

pdS Kn = pdS(C ⊗S Kn)∗ = PC(R)- pd(C ⊗S Kn) ≤ spclfcR = m,

and hence pdS I∗ ≤ n+m. Then by [22, Lemma 2.6(1)], we have

PC(R)- pd I = pdS I∗ ≤ n+m,

and spcliR ≤ n+m.

The following result was proved in [22, Corollary 4.4] when the semidualizing bimodule RCS is faithful.

Corollary 3.3. The following statements are equivalent.

(1) spcliR = siclpS <∞.

(2) spcliR <∞ and siclpS <∞.

(3) sfcliR <∞ and siclpS <∞.

Proof. If siclpS <∞, then spclfcR <∞ by Lemma 3.1. It follows from Proposition 3.2 that spcliR <∞
if and only if sfcliR <∞, and the assertion (2)⇐⇒ (3) follows.

The implication (1) =⇒ (2) is trivial.

(2) =⇒ (1) Let spcliR = n < ∞ and let I ∈ ModR be injective with PC(R)-pd I = n. Then there

exists an exact sequence

0→ C ⊗S Pn → C ⊗S Pn−1
dn−1−→ · · · → C ⊗S P0 → I → 0
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in ModR with all Pi projective in ModS. By [22, Lemma 2.5(1)], we have Ext≥1
R (C ⊗S Pi, C ⊗S Pn) = 0

for any 0 ≤ i ≤ n, and so

ExtnR(I, C ⊗S Pn) ∼= Ext1
R(Im dn−1, C ⊗S Pn) 6= 0.

Since Pn ∈ AC(S) by [12, Lemma 4.1], we have

siclpS ≥ IC(S)- idPn = idR C ⊗S Pn ≥ n = spcliR

by [22, Lemma 2.6(3)].

Conversely, let siclpS = m <∞ and let P ∈ ModS be projective with IC(S)-pdP = m. Then there

exists an exact sequence

0→ P → I0
∗ → · · ·

dm−1

−→ Im−1
∗ → Im∗ → 0

in ModS with all Ii injective in ModR. By [22, Lemma 2.5(2)], we have Ext≥1
R (Im∗, I

i
∗) = 0 for any

0 ≤ i ≤ m, and so

ExtmR (Im∗, P ) ∼= Ext1
R(Im∗, Im dm−1

∗) 6= 0.

Since Im ∈ BC(R) by [12, Lemma 4.1], we have

spcliR ≥ PC(R)- pd Im = pdS I
m
∗ ≥ m = siclpS

by [22, Lemma 2.6(1)]. The proof is finished.

As a consequence, we obtain the following corollary.

Corollary 3.4. If spcliR <∞ and siclpS <∞, then

spcliR = PC(R)-FPD = siclpS.

Proof. By assumption and Lemma 3.1, we have

spcliR ≤ PC(R)-FPD ≤ siclpS.

Now the assertion follows from Corollary 3.3.

We shall examine the extent to which the inequality FC(R)-pdM ≤ PC(R)-pdM is strict.

Theorem 3.5. Let M ∈ ModR and n ≥ 1. If PC(R)-pdM ≤ n and ExtnR(M,C) = 0, then FC(R)-

pdM ≤ n− 1.

Proof. Suppose PC(R)-pdM ≤ n. Then M ∈ BC(R) by [12, Corollary 6.1]. It follows from [22, Lemma

2.6(1)(2)] that

PC(R)- pdM ≤ n⇐⇒ pdSM∗ ≤ n, (3.1)

FC(R)- pdM ≤ n− 1⇐⇒ fdSM∗ ≤ n− 1. (3.2)

By [12, Theorem 6.4(b)], we have

ExtnR(M,C) ∼= ExtnS(M∗, C∗) ∼= ExtnS(M∗, S). (3.3)
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It follows that

PC(R)- pdM ≤ n and ExtnR(M,C) = 0

⇐⇒ pdSM∗ ≤ n and ExtnS(M∗, S) = 0 (by (3.1) and (3.3))

=⇒ fdSM∗ ≤ n− 1 (by [8, Theorem 2.11])

⇐⇒ FC(R)- pdM ≤ n− 1 (by (3.2)).

The following corollary is an immediate consequence of Theorem 3.5.

Corollary 3.6. Let M ∈ ModR and n ≥ 1. If PC(R)-pdM ≤ n and idR C ≤ n− 1, then FC(R)-

pdM ≤ n− 1. In particular, if PC(R)-pdM ≤ 1 and RC is injective, then M ∈ FC(R).

Let R be an artin algebra and let RC be the direct sum of all representatives of indecomposable

injective left R-modules which appear in the minimal injective coresolution of RR as direct summands of

some term. Then RCS is a semidualizing bimodule with S = End(RC). In this case, it is clear that RC

is injective.

The rest of the results in this subsection are consequences of Corollary 3.6.

Corollary 3.7. The following assertions hold.

(1) Let M ∈ ModR. If FC(R)-pdM = PC(R)-pdM <∞, then

FC(R)- pdM = PC(R)- pdM ≤ idR C.

(2) If S is a left perfect ring (in particular, if S is a left or right artinian ring), then

FC(R)-FPD = PC(R)-FPD ≤ idR C.

Proof. (1) Let FC(R)-pdM = PC(R)-pdM = n < ∞. If idR C < n, then FC(R)-pdM ≤ n − 1 by

Corollary 3.6, which is a contradiction.

(2) If S is a left perfect ring, then a left S-module is flat if and only if it is projective. So FC(R) =

PC(R), and hence FC(R)-pdM = PC(R)-pdM for any M ∈ ModR. Now the assertion follows from

(1).

Corollary 3.8. For any n ≥ 1, if spcliR ≤ n and idR C ≤ n− 1, then sfcliR ≤ n− 1.

Proof. Let I ∈ ModR be injective. Then PC(R)-pd I ≤ spcliR ≤ n by assumption. It follows from

Corollary 3.6 that FC(R)-pd I ≤ n− 1 and sfcliR ≤ n− 1.

Corollary 3.9. The following assertions hold.

(1) If sfcliR = spcliR <∞, then sfcliR = spcliR ≤ idR C.

(2) If idR C < spcliR <∞, then sfcliR < spcliR.

Proof. (1) Let sfcliR = spcliR = n <∞. If idR C < n, then sfcliR ≤ n− 1 by Corollary 3.8, which is a

contradiction.

(2) It follows from (1).
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3.2 The relation between sfcliR and FC(R)-FPD

Proposition 3.10. The following assertions hold.

(1) FC(R)-FPD ≤ sfcliSop.

(2) If sfcliR <∞, then sfcliR ≤ FC(R)-FPD.

Proof. (1) Let M ∈ ModR with FC(R)-pdM = n <∞. By [12, Corollary 6.1] and [22, Lemma 2.6(1)],

we have M ∈ BC(R) and fdSM∗ = FC(R)-pdM = n. Then there exists some module A ∈ ModSop such

that TorSn(A,M∗) 6= 0. Let

0→ A→ I → I/A→ 0

be an exact sequence in ModSop with I injective. It induces the following exact sequence

0 = TorSn+1(I/A,M∗)→ TorSn(A,M∗)→ TorSn(I,M∗),

which implies TorSn(I,M∗) 6= 0.

Since M ∈ BC(R), we have M∗ ∈ AC(S) by [12, Theorem 1]. Note that I ∈ BC(Sop) by [12, Lemma

4.1]. It follows from [12, Theorem 6.4(c)] that

TorRn (I∗, C ⊗S M∗) ∼= TorSn(I,M∗) 6= 0

and fdRop I∗ ≥ n. Then by [22, Lemma 2.6(3)], we have FC(Sop)-pd I = fdRop I∗ ≥ n. The assertion

follows.

(2) If sfcliR = n <∞, then there exists an injective left R-module I such that FC(R)-pd I = n, and

hence

FC(R)-FPD ≥ FC(R)- pd I = n = sfcliR.

Corollary 3.11. If sfcliR <∞ and sfcliSop <∞, then

sfcliR = FC(R)-FPD = sfcliSop = FC(Sop)-FPD .

Proof. By Proposition 3.10, we have

sfcliR ≤ FC(R)-FPD ≤ sfcliSop ≤ FC(Sop)-FPD ≤ sfcliR.

Corollary 3.12. If R ∼= Sop and sfcliR <∞, then sfcliR = FC(R)-FPD.

4 ℵ0-Noetherian rings

Lemma 4.1. It holds that

(1) FC(R)-FPD = F(S)-FPD.

(2) PC(R)-FPD = P(S)-FPD.

(3) IC(S)-FID = I(R)-FID.
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Proof. (1) Suppose FC(R)-FPD = n < ∞. Let N ∈ ModS with fdS N < ∞. Then N ∈ AC(S) and

C ⊗S N ∈ BC(R) by [12, Lemma 4.1 and Theorem 1]. It follows from [22, Lemma 2.6(1)] that

FC(R)- pdC ⊗S N = fdS(C ⊗S N)∗ = fdS N <∞,

and hence fdS N = FC(R)- pdC ⊗S N ≤ n. This yields F(S)-FPD ≤ FC(R)-FPD.

Conversely, suppose F(S)-FPD = n < ∞. Let M ∈ ModR with FC(R)- pdM < ∞. Then M ∈
BC(R) by [12, Corollary 6.1]. It follows from [22, Lemma 2.6(1)] that

fdSM∗ = FC(R)- pdM <∞,

and hence FC(R)- pdM = fdSM∗ ≤ n. This yields FC(R)-FPD ≤ F(S)-FPD

Similarly, we get the assertions (2) and (3).

Recall that a ring R is called left (respectively, right) ℵ0-Noetherian if any left (respectively, right)

ideal of R is countably generated. The class of left (respectively, right) ℵ0-Noetherian rings includes

countable rings and left (respectively, right) Noetherian rings.

Proposition 4.2. If S is a left ℵ0-Noetherian ring, then

PC(R)-FPD ≤ FC(R)-FPD +1.

Proof. By [8, Propossition 2.8], we have P(S)-FPD ≤ F(S)-FPD +1. Now the assertion follows from

Lemma 4.1(1)(2).

We give a sufficient condition that the finiteness of spcliR and spcliSop is equivalent to the finiteness

of sfcliR and sfcliSop.

Theorem 4.3. If R is a right ℵ0-Noetherian ring and S is a left ℵ0-Noetherian ring, then the following

statements are equivalent.

(1) spcliR <∞ and spcliSop <∞.

(2) sfcliR <∞ and sfcliSop <∞.

If one of these two conditions is satisfied, then

| spcliR− spcliSop| ≤ 1.

Proof. (1) =⇒ (2) It is trivial.

(2) =⇒ (1) By (2) and Corollary 3.11, we have

FC(R)-FPD = FC(Sop)-FPD = sfcliR = sfcliSop <∞.

Then PC(R)-FPD ≤ FC(R)-FPD +1 < ∞ by Proposition 4.2, and hence spcliR < ∞ by Proposition

3.2. Symmetrically, we get spcliSop <∞.

If one of the conditions (1) and (2) is satisfied, then spcliR ≤ PC(R)-FPD and spcliSop ≤ PC(Sop)-FPD.

Moreover, we may suppose

FC(R)-FPD = FC(Sop)-FPD = sfcliR = sfcliSop = n <∞.
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Then by Proposition 4.2, we have

n = sfcliR ≤ spcliR ≤ PC(R)-FPD ≤ FC(R)-FPD +1 = n+ 1,

n = sfcliSop ≤ spcliSop ≤ PC(Sop)-FPD ≤ FC(Sop)-FPD +1 = n+ 1.

The proof is finished.

Let M ∈ ModR, and let D ∈ ModSop be injective and RNS a bimodule. Then we have an additive

map

ΦM : HomSop(N,D)⊗RM −→ HomSop(HomR(M,N), D)

defined by ΦM (f ⊗m)(g) = f(g(m)) for any m ∈M,f ∈ HomSop(N,D) and g ∈ HomR(M,N). Consid-

ering a projective resolution of M and applying homology, we obtain an additive map

Φ
(n)
M : TorRn (HomSop(N,D),M) −→ HomSop(ExtnR(M,N), D)

for any n ≥ 0, which does not depend on the choice of the projective resolution of M .

Lemma 4.4. Let M ∈ ModR and let K be an n-syzygy of M with n ≥ 0. Then for any injective right

S-module I, the additive map

Φ
(n)
M : TorRn (I∗,M) −→ HomSop(ExtnR(M,C), I)

is monic if and only if the additive map

ΦK : I∗ ⊗R K −→ HomSop(HomR(K,C), I)

is monic.

Proof. The case for Sop = Z (the ring of integers) was proved in [8, Proposition 1.5]. The argument there

is also valid in our setting.

We also need the following lemma.

Lemma 4.5. For an integer n ≥ 0, if TorRn+1(I∗,M) = 0 for any finitely presented left R-module M and

any injective right S-module I, then sfcliSop ≤ n.

Proof. Let M ∈ ModR. Then there exists a direct system {Mi}i consisting of finitely presented left

R-modules such that M = lim−→Mi. It follows from [19, Proposition 7.8] and assumption that

TorRn+1(I∗,M) ∼= TorRn+1(I∗, lim−→Mi) ∼= lim−→TorRn+1(I∗,Mi) = 0

for any injective right S-module I. Thus by [22, Lemma 2.6(1)], we have FC(Sop)-pd I = fdRop I∗ ≤ n

and sfcliSop ≤ n.

For a countable inverse system {Hn, λn}n∈N, recall that lim←−
1, the first derived functor of the inverse

limit lim←−, is defined by the exact sequence

0→ lim←−Hn →
∏
n∈N

Hn
∆−→

∏
n∈N

Hn → lim←−
1Hn → 0,
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where ∆(xn)n∈N = (xn − λn(xn+1))n∈N for any (xn)n∈N ∈
∏
n∈NHn (see [26, Section 3.5]).

Let R be a left ℵ0-Noetherian ring, and let M ∈ ModR be cyclic and let

· · · → Fi → · · · → F1 → F0 →M → 0

be a free resolution of M in ModR with all Fi countably generated and set K := Im(Fn → Fn−1). Then

K is countably presented, and hence there exists a countable direct system {Ki}i of finitely presented

submodules of K such that K = lim−→Ki. It is known that there exists a short exact sequence of Ext-groups

0→ lim←−
1 Extj−1

R (Ki,−)→ ExtjR(K,−)→ lim←−ExtjR(Ki,−)→ 0 (4.1)

for any j ≥ 1 (see [26, Application 3.5.10]). In particular, for any set J , we have the following exact

sequence

0→ lim←−
1 HomR(Ki, C

(J))→ Ext1
R(K,C(J))→ lim←−Ext1

R(Ki, C
(J))→ 0 (4.2)

Since Ki is finitely presented, we have that Ext1
R(Ki, C

(J)) ∼= Ext1
R(Ki, C)(J) and the inverse system

{Ext1
R(Ki, C

(J))}i is naturally identified with the direct sum ({Ext1
R(Ki, C)}i)(J) of copies of the inverse

system {Ext1
R(Ki, C)}i. Then

lim←−Ext1
R(Ki, C

(J)) ∼= lim←−(Ext1
R(Ki, C))(J) ⊆ lim←−(Ext1

R(Ki, C))J ∼= (lim←−(Ext1
R(Ki, C)))J .

Suppose idR C ≤ n and lim←−
1 HomR(Ki, C

(J)) = 0. Then Ext1
R(K,C) ∼= Extn+1

R (M,C) = 0, and hence

the exact sequence

0→ lim←−
1 HomR(Ki, C)→ Ext1

R(K,C)→ lim←−Ext1
R(Ki, C)→ 0. (4.3)

implies lim←−Ext1
R(Ki, C) = 0 and (lim←−(Ext1

R(Ki, C)))J = 0. Thus lim←−Ext1
R(Ki, C

(J)) = 0, and therefore

Extn+1
R (M,C(J)) ∼= Ext1

R(K,C(J)) = 0

by dimension shifting and the the exact sequence (4.2).

We are now in a position to prove the following result.

Theorem 4.6. It holds that

idR C
(N) ≤ siclpS.

Furthermore, if R is a left ℵ0-Noetherian ring, then

sfcliSop ≤ idR C
(N) = siclpS.

Proof. By [12, Lemma 4.1 and Proposition 4.2(a)], we have that S and S(N) are in AC(S). It follows

from [22, Lemma 2.6(c)] that

idR C
(N) = idR(C ⊗S S(N)) = IC(S)- idS(N) ≤ siclpS.

Suppose that R is a left ℵ0-Noetherian ring and idR C
(N) = n <∞. Let M ∈ ModR be cyclic and keep

the notations as above. Since Ki is finitely presented, we have that HomR(Ki, C
(J)) ∼= HomR(Ki, C)(J)

and the inverse system {HomR(Ki, C
(J))}i is naturally identified with the direct sum {HomR(Ki, C)(J)}i



12 Y. N. Li and Z. Y. Huang

of copies of the inverse system {HomR(Ki, C)}i. Since Ext1
R(Ki, C

(N)) ∼= Extn+1
R (M,C(N)) = 0, it follows

from [7, Proposition 2.3] that the additive map

ΦK : HomZ(C,D)⊗R K → HomZ(HomR(K,C), D)

is monic for any divisible abelian group D, and hence the induced additive map

HomZ(C(J), D)⊗R K → HomZ(HomR(K,C(J)), D)

is also monic by [2, Lemma 1.1 and Proposition 1.2] and [8, Theorem 1.3]. It follows from [6, Corollary

6] and [8, Theorem 1.3] that lim←−
1 HomR(Ki, C

(J)) = 0.

Since idR C ≤ idR C
(N) = n, it follows from the argument before this theorem that Extn+1

R (M,C(J)) =

0. Then by [22, Lemma 2.6(3)] and the Baer’s criterion, we have

IC(S)- idS(J) = idR C ⊗ S(J) = idR C
(J) ≤ n.

So IC(S)- idP ≤ n for any projective left S-module P , and hence siclpS ≤ n.

It remains to prove sfcliSop ≤ n. Let M ′ ∈ ModR be countably generated (in particular, M ′ can be

finitely presented) and let

· · · → Fi → · · · → F1 → F0 →M ′ → 0

be a free resolution of M ′ in ModR with all Fi countably generated and set K ′ := Im(Fn+1 → Fn). Then

Ext1
R(K ′, C(N)) ∼= Extn+2

R (M ′, C(N)) = 0. Since K ′ is countably presented, there exists a countable direct

system of finitely presented submodules of K ′ such that K ′ is the direct limit of of this direct system. It

follows from [2, Lemma 1.1 and Example 2.4(4)] and [3, Theorem 8.10] that the additive map

ΦK′ : I∗ ⊗R K ′ −→ HomSop(HomR(K ′, C), I)

is monic for any injective right S-module I. Then by Lemma 4.4, the additive map

Φ
(n+1)
M : TorRn+1(I∗,M

′) −→ HomSop(Extn+1
R (M ′, C), I)

is also monic. Since idR C ≤ idR C
(N) = n, we have Extn+1

R (M ′, C) = 0, and hence TorRn+1(I∗,M
′) = 0.

It follows from Lemma 4.5 that sfcliSop ≤ n.

Proposition 4.7. Let R be a left ℵ0-Noetherian ring. Then the following assertions hold.

(1) For any n ≥ 1, if idR C ≤ n and sfcliSop ≤ n− 1, then siclpS ≤ n.

(2) If idR C < siclpS, then siclpS = sfcliSop + 1.

Proof. (1) Since sfcliSop ≤ n−1, it follows from [22, Lemma 2.6(1)] that fdRop I∗ = FC(Sop)-pd I ≤ n−1

for any injective right S-module I, and hence TorRn (I∗,M) = 0 for any M ∈ ModR.

Let M be a cyclic left R-module and keep the notations as before Theorem 4.6. Then by (4.1), we

have the following exact sequence

0→ lim←−
1 HomR(Ki, C

(N))→ Ext1
R(K,C(N))→ lim←−Ext1

R(Ki, C
(N))→ 0.

Notice that the additive map

Φ
(n)
M : TorRn (I∗,M)→ HomSop(ExtnR(M,C), I)
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is monic, it follows from Lemma 4.4 that the additive map

ΦK : I∗ ⊗R K −→ HomSop(HomR(K,C), I)

is monic, and hence the induced additive map

HomSop(C(N), I)⊗R K → HomSop(HomR(K,C(N)), I)

is also monic by [2, Lemma 1.1 and Proposition 1.2] and [3, Theorem 8.10]. Thus lim←−
1 HomR(Ki, C

(N)) = 0

by [6, Corollary 6] and [3, Theorem 8.10].

Since idR C ≤ n, it follows from the argument before Theorem 4.6 that Extn+1
R (M,C(N)) = 0. Then

by Theorem 4.6 and the Baer’s criterion, we have

siclpS = idR C
(N) ≤ n.

(2) The assumption that idR C < siclpS implies idR C <∞. If siclpS is infinite, then sfcliSop is also

infinite and the assertion follows.

Now suppose siclpS = n < ∞. Then idR C ≤ n − 1 and ExtnR(M,C) = 0 for any M ∈ ModR. By

Theorem 4.6, we have sfcliSop ≤ siclpS = n. If sfcliSop ≤ n− 2, then siclpS ≤ n− 1 by (1), which is a

contradiction. Thus sfcliSop ≥ n− 1.

Now it suffices to prove sfcliSop ≤ n − 1. Let M ∈ ModR be countably generated (in particular,

finitely presented) and let

· · · → Fi → · · · → F1 → F0 →M → 0

be a free resolution of M in ModR with all Fi countably generated and set K := Im(Fn → Fn−1). By

Theorem 4.6, we have idR C
(N) = siclpS = n, so

Ext1
R(K,C(N)) ∼= Extn+1

R (M,C(N)) = 0.

It follows from [2, Lemma 1.1 and Example 2.4(4)] and [3, Theorem 8.10] that the additive map

ΦK : I∗ ⊗R K −→ HomSop(HomR(K,C), I)

is monic for any injective right S-module I. Then by Lemma 4.4, the additive map

Φ
(n)
M : TorRn (I∗,M) −→ HomSop(ExtnR(M,C), I)

is also monic. Since idR C ≤ n − 1, we have ExtnR(M,C) = 0, and so TorRn (I∗,M) = 0. It follows from

Lemma 4.5 that sfcliSop ≤ n− 1.

Corollary 4.8. Let R be a left ℵ0-Noetherian ring. Then the following statements are equivalent.

(1) siclpS <∞.

(2) sfcliSop <∞ and idR C <∞.

Proof. It follows from Theorem 4.6 and Proposition 4.7(2).

We write

FflicS := sup{fdS E | fdS E <∞ with E ∈ IC(S)},

FplicS := sup{pdS E | pdS E <∞ with E ∈ IC(S)}.
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Theorem 4.9. Let R be a left Noetherian ring. Then

sflicRop = sfcliSop = idR C = siclpS ≥ max{FflicS,FplicS}.

Proof. Since R is a left Noetherian ring, idR C
(N) = idR C by [4, Theorem 1.1]. Then by [13, Lemma

17.2.4(2)] and Theorem 4.6, we have

sflicRop = idR C = siclpS.

Since fdRop I∗ = FC(Sop)-pd I for any injective right S-module I by [22, Lemma 2.6(1)], we have

sflicRop = sfcliSop.

Suppose that idR C = n <∞ and E ∈ ModS is C-injective with fdS E = m <∞. Then E = I ′∗ for

some injective left R-module I ′ and there exists an exact sequence

0→ Fm → S(Jm−1) → · · · → S(J1) → S(J0) → E(= I ′∗)→ 0 (4.4)

in Mod S with Fm flat and Ji an index set for any 0 ≤ i ≤ m − 1. By [12, Corollary 6.1], we have

I ′ ∈ BC(R) and E ∈ AC(S), so applying the functor C ⊗S − to the exact sequence (4.4) yields the

following exact sequence

0→ Km
dm−→ C(Jm−1) → · · · → C(J1) → C(J0) → C ⊗S I ′∗(∼= I ′)→ 0 (4.5)

in ModR with Km = C ⊗S Fm(∈ FC(R)). By [22, Lemma 2.5(1)], we have Ext≥1
R (C(Ji),Km) = 0 for

any 0 ≤ i ≤ m− 1.

Since R is a left Noetherian ring and idR C = n, it follows from [4, Theorem 1.1] that idRKm ≤ n. If

m > n, then ExtmR (I ′,Km) = 0. It follows from the exact sequence (4.5) that Ext1
R(Coker dm,Km) = 0.

Thus the exact sequence

0→ Km
dm−→ C(Jm−1) → Coker dm → 0

splits and Coker dm is a direct summand of C(Jm−1). By [12, Proposition 5.1(b)], we have Coker dm ∈
PC(R), and hence PC(R)-pd I ′ ≤ m− 1. Then applying [22, Lemma 2.6(2)] yields

fdS E ≤ pdS E = PC(R)- pd I ′ ≤ m− 1,

which is a contradiction. Thus we conclude that m ≤ n and

idR C ≥ FflicS.

Similarly, we have

idR C ≥ FplicS.

Finally, we turn to countable rings.

Theorem 4.10. Let S be a countable ring and let M ∈ ModR be countable and n ≥ 0. Then the

following statements are equivalent.
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(1) PC(R)-pdM ≤ n.

(2) PC(R)-pdM ≤ n+ 1 and Extn+1
R (M,C) = 0.

Proof. By [22, Lemma 2.5(1)], it is easy to get (1) =⇒ (2).

(2) =⇒ (1) Since PC(R)-pdM is finite by (2), we have M ∈ BC(R) by [12, Corollary 6.1]. Since RC

is finitely generated, there exists a positive integer t such that

Rt → C → 0

is exact in ModR, and hence

0→M∗ → HomR(Rt,M)(∼= M t)

is exact. Since M is countable left R-module, we have that M t is a countable left R-module. So the set

M∗ is countable, and hence M∗ is a countable left S-module. It follows that

PC(R)- pdM ≤ n+ 1 and Extn+1
R (M,C) = 0 (by (2))

⇐⇒ pdSM∗ ≤ n+ 1 and Extn+1
S (M∗, S) = 0 (by (3.1) and (3.3))

⇐⇒ pdSM∗ ≤ n (by [8, Corollary 2.23])

⇐⇒ PC(R)- pdM ≤ n (by (3.1)).

Putting n = 0 in Theorem 4.10, we get the following result.

Corollary 4.11. Let S be a countable ring and let M ∈ ModR be countable. Then the following

statements are equivalent.

(1) M is C-projective.

(2) PC(R)-pdM ≤ 1 and Ext1
R(M,C) = 0.

Corollary 4.12. Let S be a countable ring and let 0 6= M ∈ ModR be countable with PC(R)-pdM =

n <∞. Then ExtnR(M,C) 6= 0 and hence idR C ≥ n.

Proof. If ExtnR(M,C) = 0, then PC(R)-pdM ≤ n − 1 by assumption and Theorem 4.10, which is a

contradiction.

Acknowledgements. This research was partially supported by National Natural Science Foundation

of China (Grant Nos. 12371038, 12171207). The authors thank the referee for useful suggestions.

References

[1] T. Araya, R. Takahashi and Y. Yoshino, Homological invariants associated to semi-dualizing bimod-

ules, J. Math. Kyoto Univ. 45 (2005), 287–306.
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