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We survey some recent results on Noetherian rings satisfying the Auslander-type
conditions, with emphasis on the homological behavior of such rings.

1. Introduction

Throughout this article, Λ is a left and right Noetherian ring (unless stated
otherwise), modΛ is the category of finitely generated left Λ-modules and

0 → Λ → I0(Λ) → I1(Λ) → · · · → Ii(Λ) → · · ·
is the minimal injective resolution of Λ as a left Λ-module.

For a module M ∈ mod Λ and a non-negative integer n, recall that the
grade of M , denoted by gradeM , is said to be at least n if Exti

Λ(M, Λ) = 0
for any 0 ≤ i < n; and the strong grade of M , denoted by s.gradeM , is said
to be at least n if gradeX ≥ n for any submodule X of M (see [3] and [7]).
Bass in [8] proved the following result.

Theorem 1.1. For a commutative Noetherian ring Λ, the following state-
ments are equivalent:

(1) The self-injective dimension of Λ is finite.
(2) The flat dimension of Ii(Λ) is at most i for any i ≥ 0.
(3) gradeExti

Λ(M, Λ) ≥ i for any M ∈ mod Λ and i ≥ 1.

A commutative Noetherian ring Λ is called Gorenstein if it satisfies one
of the above equivalent conditions. For the non-commutative case, Λ is
also called Gorenstein if the left and right self-injective dimensions of Λ are
finite. It was proved by [44, Lemma A] that the left and right self-injective
dimensions of a Gorenstein ring are identical.

Theorem 1.2. [15, Auslander’s Theorem 3.7] The following statements
are equivalent:
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(1) The flat dimension of Ii(Λ) is at most i for any 0 ≤ i ≤ n− 1.
(2) s.gradeExti

Λ(M, Λ) ≥ i for any M ∈ mod Λ and 1 ≤ i ≤ n.
(3) The flat dimension of Ii(Λop) is at most i for any 0 ≤ i ≤ n− 1.
(4) s.gradeExti

Λ(N, Λ) ≥ i for any N ∈ mod Λop and 1 ≤ i ≤ n.

Λ is called n-Gorenstein if it satisfies one of the above equivalent condi-
tions, and Λ is said to satisfy the Auslander condition if it is n-Gorenstein
for all n. Theorem 1.2 means that the notion of n-Gorenstein rings (and
hence that of the Auslander condition) is left-right symmetric. Motivated
by Theorem 1.2, the notion of the Auslander-type conditions was intro-
duced in [24] as follows.

Definition 1.1. [24] Let n, k ≥ 0. We say that Λ is Gn(k) if
s.gradeExti+k

Λ (M, Λ) ≥ i for any M ∈ mod Λ and 1 ≤ i ≤ n. Similarly,
we say that Λ is gn(k) if grade Exti+k

Λ (M, Λ) ≥ i for any M ∈ mod Λ and
1 ≤ i ≤ n. We say that Λ is Gn(k)op (resp. gn(k)op) if Λop is Gn(k) (resp.
gn(k)). We call both Gn(k) and gn(k) the Auslander-type conditions.

The following relations are obvious for any n ≥ n′ and k ≤ k′:

Gn(k) +3

®¶

Gn′(k′)

®¶
gn(k) +3 gn′(k′)

The Auslander-type conditions can be regarded as certain non-
commutative analogs of commutative Gorenstein rings. Such conditions,
especially dominant dimension and the n-Gorenstein ring, play a crucial
role in representation theory and non-commutative algebraic geometry (e.g.
[2, 6, 7, 10, 12, 13, 15, 16, 18, 24, 28, 31, 32, 33, 34, 35, 36, 38, 40, 41,
42]). They are also interesting from the viewpoint of some unsolved ho-
mological conjectures, e.g. the finitistic dimension conjecture, Nakayama
conjecture, Gorenstein symmetry conjecture, and so on. In this article, we
survey some recent results on Noetherian rings satisfying the Auslander-
type conditions, with emphasis on the homological behavior of such rings.
In Section 2, we give some equivalent characterizations of the conditions
Gn(k) and gn(k), respectively. In Section 3, we investigate the properties
of rings being Gn(k) or gn(k), especially for the case k = 0, 1. In Section
4, we give the definition of the (weak) (m,n)-condition, which is closely re-
lated to the conditions Gn(k) and gn(k). Then we investigate the properties
of rings satisfying certain (m,n)-condition.
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2. Characterizations of the Auslander-type conditions

In this section, we give some equivalent characterizations of the Auslander-
type conditions Gn(k) and gn(k), respectively.

Put ( )∗ = HomΛ( ,Λ) and En = Extn
Λ( ,Λ) for any n ≥ 0. Let

M ∈ mod Λ and P1 → P0 → M → 0 be a projective resolution of M in
mod Λ. Then Coker(P ∗0 → P ∗1 ) is called the transpose of M , and denoted
by TrM (see [3]).

Definition 2.1. [3] Let k ≥ 1 and M be a module in mod Λ. M is called
k-torsionfree if Ei(TrM) = 0 for any 1 ≤ i ≤ k; and M is called k-syzygy if
there exists an exact sequence 0 → M → Pk−1 → · · · → P1 → P0 in modΛ
with all Pi projective.

We use Fk to denote the subcategory of mod Λ consisting of k-torsionfree
modules, and Ωk(mod Λ) to denote the subcategory of mod Λ consisting of
k-syzygy modules. It is well known that that Fk ⊆ Ωk(mod Λ) for any
k ≥ 1 (see [3, Theorem 2.17]).

For subcategories Ci (i = 1, 2) of mod Λ, we use E(C1, C2) to denote the
subcategory of mod Λ consisting of C ∈ mod Λ such that there exists an
exact sequence 0 → C2 → C → C1 → 0 with Ci ∈ Ci (i = 1, 2). For a
left Λ-module M , we use pd M , fdM and idM to denote the projective
dimension, flat dimension and injective dimension of M , respectively.

The following result gives some equivalent characterizations of Gn(k).

Theorem 2.1. [24, 2.4(7) and Theorem 3.5] The conditions (1)–(3) are
equivalent for any n, k ≥ 0. If k ≥ 1, then (1)–(4) are equivalent:

(1) Λ is Gn(k).
(2) fd Ii(Λop) ≤ i + k for any 0 ≤ i ≤ n− 1.

(3) For any exact sequence 0 → A
f→ B → C → 0 with C ∈ Ωk(mod Λ),

EiEi(f) is a monomorphism for any 0 ≤ i ≤ n− 1.
(4) E(Ωi+k(mod Λ),Ωi+k(mod Λ)) ⊆ Fi+1 for any 0 ≤ i ≤ n− 1.

Remark 2.1. Gn(0) (resp. G∞(0)) is just the n-Gorenstein ring (resp.
the Auslander condition).

Let k ≥ 1. We denote by

Wk = {M ∈ mod Λ | Ei(M) = 0 for any 1 ≤ i ≤ k}
and

Pk = {M ∈ mod Λ | pd M < k}.
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For a module M ∈ mod Λ, Ωk(M) denotes a k-syzygy module of M .
The following result gives some equivalent characterizations of gn(k),

where (1) ⇔ (3) for the case k = 1 is [3, Proposition 2.26].

Theorem 2.2. [24, Theorem 3.4] The conditions (1) and (2) are equivalent
for any n, k ≥ 0. If k ≥ 1, then (1)–(5) are equivalent:

(1) Λ is gn(k).

(2) For any monomorphism A
f→ B with A,B ∈ Ωk+1(mod Λ), EiEi(f)

is a monomorphism for any 0 ≤ i ≤ n− 1.
(3) Ωi+k(mod Λ) ⊆ Fi+1 for any 1 ≤ i ≤ n.
(4) For any C ∈ mod Λ and 0 ≤ i ≤ n, there exists an exact sequence

0 → Y → X → Ωk−1(C) → 0 with X ∈ Wi+1 and Y ∈ Pi+1.
(5) For any C ∈ mod R and 0 ≤ i ≤ n, there exists an exact sequence

0 → Ωk(C) → Y ′ → X ′ → 0 with X ′ ∈ Wi+1 and Y ′ ∈ Pi+1.

Now we concentrate on the conditions Gn(k) and gn(k) for the case
k = 0, 1.

In [24, Theorem 4.1], we gave a quick proof of the following remarkable
left-right symmetry of Gn(k) and gn(k) for the case k = 0, 1, where (1) is
in Theorem 1.2, (2) is in [18, Theorem 4.7] and [23, Theorem 2.4], and (3)
is in [7, Theorem 0.1] and [18, Theorem 4.1].

Theorem 2.3. (Symmetry)

(1) Gn(0) ⇔ Gn(0)op.
(2) gn(1) ⇔ gn(1)op.
(3) Gn(1) ⇔ gn(0)op.

Question 2.1. [24, Question 4.1.1] It is natural to ask for the existence
of a common generalization of the conditions Gn(k) and gn(k) satisfying
certain “left-right symmetry”. For example, does there exist some natural
condition Gn(k, l) for each triple (n, k, l) of non-negative integers with the
following properties?

(i) Gn(k, 0) = Gn(k), and Gn(k, 1) = gn(k).
(ii) Gn(k, l) ⇔ Gn(l, k)op.
(iii) Gn(k, l) ⇒ Gn′ (k

′, l
′
) if n ≥ n

′
, k ≤ k

′
and l ≤ l

′
.

Combining [6, Proposition 3.4] with Theorems 1.2 and 2.1, we have the
following equivalent characterizations of Gn(0).

Theorem 2.4. The conditions (1)–(3) and their opposite versions are
equivalent. If Λ is an Artinian algebra, then all conditions are equivalent:
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(1) Λ is Gn(0).
(2) fd Ii(Λ) ≤ i for any 0 ≤ i ≤ n− 1
(3) EiEi preserves monomorphisms in mod Λ for any 0 ≤ i ≤ n− 1.
(4) All simple composition factors of Ei(S) have grade at least i for any

simple Λ-module S and 1 ≤ i ≤ n.
(5) Opposite side version of (i) (1 ≤ i ≤ 4).

Remark 2.2. It was proved in [29, Theorem 8] that if Λ is a left and right
Artinian ring and k is a positive integer, then Λ is Gn(0) if and only if a
(lower) triangular matrix ring of degree k over Λ is also Gn(0). Note that
this is a generalization of [15, Theorem 3.10] where the case k = 2 was
established.

By Theorems 2.2 and 2.3, we have the following equivalent characteri-
zations of gn(1).

Theorem 2.5. The following statements are equivalent:

(1) Λ is gn(1).

(2) For any monomorphism A
f→ B with A,B ∈ Ω2(mod Λ), EiEi(f)

is a monomorphism for any 0 ≤ i ≤ n− 1.
(3) Ωi(mod Λ) = Fi holds for any 1 ≤ i ≤ n + 1.
(4) For any C ∈ mod Λ and 0 ≤ i ≤ n, there exists an exact sequence

0 → Y → X → C → 0 with X ∈ Wi+1 and Y ∈ Pi+1.
(5) For any C ∈ mod Λ and 0 ≤ i ≤ n, there exists an exact sequence

0 → Ω1(C) → Y → X → 0 with X ∈ Wi+1 and Y ∈ Pi+1.
(6) Opposite side version of (i) (1 ≤ i ≤ 5).

Let D be a full subcategory of mod Λ. Recall that D is said to be closed
under extensions if the middle term B of any short sequence 0 → A →
B → C → 0 is in D provided that the end terms A and C are in D. We
use addD to denote the subcategory of modΛ consisting of all Λ-modules
isomorphic to direct summands of finite direct sums of modules in D. For
any k ≥ 1, we denote by Ik = {M ∈ mod Λ | idM < k}.

The following result gives some equivalent characterizations of Gn(1),
where (1) ⇔ (2) ⇔ (3) ⇔ (4) are in Theorem 2.1, (1) ⇔ (8) ⇔ (9) follow
from Theorems 2.3 and 2.2, (1) ⇔ (5) ⇔ (6) ⇔ (7) are in [7, Theorem 0.1]
and [19, Theorem 3.3], and (2)+(5) ⇒ (10) ⇒ (6) are in [24, Theorem 4.4].

Theorem 2.6. The following conditions (1)–(9) are equivalent. If Λ is an
Artinian algebra, then (10) is also equivalent:
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(1) Λ is Gn(1).
(2) fd Ii(Λop) ≤ i + 1 holds for any 0 ≤ i ≤ n− 1.

(3) For any exact sequence 0 → A
f→ B → C → 0 with C ∈ Ω1(mod Λ),

EiEi(f) is a monomorphism for any 0 ≤ i ≤ n− 1.
(4) E(Ωi(mod Λ),Ωi(mod Λ)) ⊆ Fi holds for any 1 ≤ i ≤ n.
(5) Ωi(mod Λ) is closed under extensions for any 1 ≤ i ≤ n.
(6) addΩi(mod Λ) is closed under extensions for any 1 ≤ i ≤ n.
(7) Fi is closed under extensions for any 1 ≤ i ≤ n.
(8) Λ is gn(0)op.

(9) For any monomorphism A
f→ B with A,B ∈ Ω1(mod Λop), EiEi(f)

is a monomorphism for any 0 ≤ i ≤ n− 1.
(10) For any C ∈ mod Λ and 1 ≤ i ≤ n, there exist exact sequences

0 → Y → X → C → 0 and 0 → C → Y ′ → X ′ → 0 with
X, X ′ ∈ Ωi(mod Λ) and Y, Y ′ ∈ Ii+1.

Example 2.1. Contrary to the condition Gn(0), the condition Gn(1) is
not left-right symmetric. Consider the following example. Let K be a field
and ∆ the quiver:

1
α // 2
β

oo
γ // 3.

(1) If Λ = K∆/(αβα), then fd I0(Λ) = 1 and fd I0(Λop) ≥ 2. (2) If Λ =
K∆/(γα, βα), then fd I0(Λ) = 2 and fd I0(Λop) = 1.

By Theorems 1.1, 2.4 and 2.6, we have the following result about com-
mutative Gorenstein rings.

Corollary 2.1. If Λ is commutative, then the following statements are
equivalent:

(1) Λ is Gorenstein.
(2) Λ is G∞(0).
(3) Λ is G∞(1).

3. Properties of rings satisfying the Auslander-type
conditions

In this section, we investigate the properties of rings satisfying the
Auslander-type conditions. These properties involve duality theory, the
socle of modules, homological dimensions, homological finiteness of certain
subcategories, cotorsion pairs, Evans-Griffith presentations, and so on.
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For a non-negative integer l, put Cl(Λ) = {X ∈ mod Λ | X = El(Y )
for some Y ∈ mod Λop and gradeY ≥ l}. The following result is a duality
between Cl(Λ) and Cl(Λop), which generalizes results in [32, 6.2] and [26,
Theorem 4].

Theorem 3.1. [30, Theorem 1.2] Let Λ be Gn(0) and 0 ≤ l ≤ n−1. Then
El gives a duality between Cl(Λ) and Cl(Λop), and ElEl is isomorphic to the
identity functor.

The following result is a duality between simple Λ-modules and simple
Λop-modules.

Theorem 3.2. [30, Theorem 1.3] Let Λ be a Noetherian algebra which is
Gn(0) and 0 ≤ l ≤ n− 1. Then Fl := SocEl gives a duality between simple
Λ-modules X with gradeX = l and that of Λop, and FlFl is isomorphic to
the identity functor. Moreover, gradeEl(X)/Fl(X) > l.

Let Λ be an Artinian algebra. Recall that the Nakayama conjecture
states that Λ is self-injective if Ii(Λ) is projective for any i ≥ 0 (see [37] or
[43]), and the generalized Nakayama conjecture states that each indecom-
posable injective Λ-module occurs as the direct summand of some Ii(Λ) (see
[4]). In view of Theorems 1.1 and 1.2, Auslander and Reiten conjectured in
[6] that Λ is Gorenstein if it is G∞(0). This conjecture is situated between
the Nakayama conjecture and the generalized Nakayama conjecture. The
following result is related to this conjecture. It means that the Gorenstein
symmetry conjecture holds true for a left and right Artinian ring which is
G∞(1). Recall from [9] that the Gorenstein symmetry conjecture states
that the left and right self-injective dimensions of any Artinian algebra are
identical.

Proposition 3.1. [21, Proposition 4.6] If a left and right Artinian ring Λ
is G∞(1), then idΛ = idΛop.

Observe that Auslander and Reiten proved in [6, Corollary 5.5(b)] that
if an Artinian algebra Λ is G∞(0), then id Λ = idΛop. Proposition 3.1 is a
generalization of this result.

Theorem 3.3. (1) [16, Proposition 1.1] If Λ is Gn(0) with idΛ = idΛop =
n, then pd In(Λ) = fd In(Λ) = n and so Λ is G∞(0).

(2) [27, Theorem 2] If Λ is G∞(0) with idΛ = id Λop = n, then any
injective indecomposable Λ-module E with fdE = n is isomorphic to a direct
summand of In(Λ) and is isomorphic to the injective envelope of a simple



March 16, 2008 14:51 Proceedings Trim Size: 9in x 6in huangcjk

8

Λ-module. Thus if M is a Λ-module with idM = n, then In(M) has an
essential socle, where In(M) is the (n + 1)-st term in a minimal injective
resolution of M .

As an immediate consequence of Theorem 3.3, we have the following
result.

Corollary 3.1. [28, Theorem 6] If Λ is G∞(0) with idΛ = id Λop = n,
then In(Λ) has an essential socle.

Recall that the finitistic dimension of Λ, denoted by fin.dimΛ, is defined
as sup{pd X | X ∈ mod Λ and pdX < ∞}. By using Theorem 2.2, it is
not difficult to get the following result.

Lemma 3.1. [24, Lemma 5.1] Assume that Λ is gn+1(k) with n ≥ 0 and
k ≥ 1. If fin.dimΛ = n, then n ≤ idΛ ≤ n + k.

In the following result, the case for k ≥ 1 follows from Lemma 3.1, and
the case for k = 0 is in [23, Corollary 2.15].

Theorem 3.4. [24, Theorem 5.2] If Λ is g∞(k) with k ≥ 0, then
fin.dimΛ ≤ idΛ ≤ fin.dimΛ + k.

As an application of Theorem 3.4, we have the following result, where
(1) and (2) follow from the symmetry of G∞(0) and the fact that G∞(1) ⇔
g∞(0)op (see Theorem 2.3), respectively.

Corollary 3.2. (1) If Λ is G∞(0), then fin.dimΛ = idΛ and fin.dimΛop =
idΛop.

(2) If Λ is G∞(1), then fin.dimΛ ≤ idΛ ≤ fin.dimΛ + 1 and
fin.dimΛop = id Λop.

Definition 3.1. [5] Assume that D is a full subcategory of mod Λ and
C ∈ mod Λ, D ∈ D. A morphism f : D → C is said to be a right D-
approximation of C if HomΛ(X, f) : HomΛ(X, D) → HomΛ(X, C) → 0 is
exact for any X ∈ D. A right D-approximation f : D → C is called minimal
if an endomorphism g : D → D is an automorphism whenever f = fg. The
subcategory D is said to be contravariantly finite in modΛ if any module
in modΛ has a right D-approximation. Dually, we define the notions of
(minimal) left D-approximations and covariantly finite subcategories. The
subcategory of mod Λ is said to be functorially finite in modΛ if it is both
contravariantly finite and covariantly finite in mod Λ.
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As applications of Theorems 2.5 and 2.6, we have the following result
about homological finiteness of Pk.

Corollary 3.3. [24, Corollary 4.7]

(1) If Λ is gn(1), then Pi+1 is covariantly finite in mod Λ for any 0 ≤
i ≤ n.

(2) [22, Theorem 3.6] If an Artinian algebra Λ is gn(0), then Pi+1 is
functorially finite in mod Λ for any 0 ≤ i ≤ n.

Definition 3.2. (1) [39] A pair (C,D) of full subcategories of mod Λ is
called a cotorsion pair if

C = {C ∈ mod Λ | Ext1Λ(C,D) = 0} and D = {D ∈ mod Λ | Ext1Λ(C, D) = 0}.
(2) [24] For an Artinian algebra Λ, a cotorsion pair (C,D) is called

functorially finite if the following equivalent conditions are satisfied:
(i) C is contravariantly finite in modΛ.
(ii) D is covariantly finite in mod Λ.

(iii) For any C ∈ mod Λ, there exists an exact sequence 0 → Y → X
f→

C → 0 with X ∈ C and Y ∈ D.
(iv) For any C ∈ mod Λ, there exists an exact sequence 0 → C

g→ Y ′ →
X ′ → 0 with X ′ ∈ C and Y ′ ∈ D.

For any m,n ≥ 0, put Xn,m = Wn ∩Fm and Yn,m = add E(Im,Pn).
When Λ is an Artinian algebra over R, we denote by D : mod Λ → mod Λop

the duality induced by the Matlis duality of R.

Theorem 3.5. [24, Corollary 4.9 and Theorem 1.3] Let Λ be an Ar-
tinian algebra which is G∞(1) and G∞(1)op (In particular, let Λ be an
Artinian algebra which is G∞(0)). Then (Xi,j−1,Yi,j) (i ≥ 0, j ≥ 1) and
(Yi,j ,DX op

j,i−1) (i ≥ 1, j ≥ 0) form functorially finite cotorsion pairs.

By Theorem 3.5, (Wi,Yi,1) (j := 1) and (Fj−1, Ij) (i := 0) form func-
torially finite cotorsion pairs. In addition, as an immediate consequence of
Theorem 3.5, we have the following result.

Corollary 3.4. Under the assumption of Theorem 3.5, W1 ⊇ W2 ⊇ · · · ⊇
Wi ⊇ · · · is a chain of contravariantly finite subcategories of mod Λ.

Let Λ be a commutative Noetherian ring and let n be a non-negative
integer and M ∈ Ωn(mod Λ). Recall from [14] that an Evans-Griffith pre-
sentation of M is an exact sequence in mod Λ:

0 → S → B → M → 0,
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where B is an n-syzygy module of En+1(TrM) and S ∈ Ωn+2(mod Λ).
In the case Λ is not necessarily commutative, we also call such an exact
sequence an Evans-Griffith presentation of M .

Theorem 3.6. [20, Proposition 4.4] Let Λ be Gn(1). Then, for any 0 ≤
d ≤ n− 1, each module in Ωd(mod Λ) has an Evans-Griffith presentation.

By Theorem 3.6, we have the following result.

Corollary 3.5. [20, Corollary 4.5] If Λ is G∞(1), then for any non-
negative integer d, each module in Ωd(mod Λ) has an Evans-Griffith pre-
sentation.

Combining Corollaries 3.5 and 2.1, we immediately have the following
result.

Corollary 3.6. [20, Corollary 4.6] If Λ is a commutative Gorenstein ring,
then for any non-negative integer d, each module in Ωd(mod Λ) has an
Evans-Griffith presentation.

Observe that a special instance of Corollary 3.6 was already considered
by Evans and Griffith in [14, Theorem 2.1]. They showed that if Λ is a
commutative Noetherian local ring with finite global dimension and con-
tains a field then each non-free d-syzygy of rank d has an Evans-Griffith
presentation. Corollary 3.6 generalizes this result to much more general
setting.

4. (m, n)-conditions

In this section, we give the definition of the (weak) (m,n)-condition, and
then investigate the properties of rings satisfying certain (m,n)-condition.

Definition 4.1. [30] Let m,n ≥ 1. Λ is said to satisfy the (m,n)-condition
(or Λop satisfies the (m,n)op-condition) if s.gradeEm(N) ≥ n for any N ∈
mod Λop. Similarly, Λ is said to satisfy the weak (m,n)-condition (or Λop

satisfies the weak (m,n)op-condition) if gradeEm(N) ≥ n for any N ∈
mod Λop.

Remark 4.1. (1) By [32, 6.1], Λ satisfies the (m,n)-condition if and only
if fd Ii(Λ) ≤ m− 1 for any 0 ≤ i ≤ n− 1.

(2) It is easy to see that Λ is Gn(k) if and only if Λ satisfies the (k+i, i)op-
condition for any 1 ≤ i ≤ n, and Λ is gn(k) if and only if Λ satisfies the
weak (k + i, i)op-condition for any 1 ≤ i ≤ n.
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(3) For a module M ∈ mod Λ and n ≥ 1, recall that the dominant
dimension of M , denoted by dom.dimM , is said to be at least n if the first
n terms in a minimal injective resolution of M are flat. So, dom.dimΛ ≥ n

if and only if Λ satisfies the (1, n)-condition. It was proved in [17, Theorem]
that dom.dimΛ = dom.dimΛop.

The following result gives some relations between different (weak)
(m,n)-conditions.

Proposition 4.1. [24, Lemma 5.4] and [30, Lemma 2.3]

(1) (m, l) + weak (l, n) ⇒ (m,n).
(2) weak (m, l) + weak (l, n) ⇒ weak (m,n).
(3) (m, l) + weak (l, n)op ⇒ (m,n).
(4) weak (m, l) + weak (l, n)op ⇒ weak (m,n).

It is known that Λ is Gn(0) if and only if so is Λop (see Theorem 2.3).
However, the (i, i)-condition does not possess such a symmetric property
in general. For example, the finite dimensional algebra given by the quiver
1 α→ 2

β→ 3 ← 4 modulo the ideal βα satisfies exactly one of the (2, 2) and
(2, 2)op-conditions.

The following result gives a sufficient condition that the (i, i)-condition
implies the (i, i)op-condition.

Proposition 4.2. [24, Corollary 5.7] Gn−1(1) + (n, n) ⇒ (n, n)op.

In particular, putting n = 3 in Proposition 4.2, we get the following
result.

Corollary 4.1. (2, 2)op + (3, 3) ⇒ (3, 3)op.

In [24], we gave an example satisfying the conditions in Corollary 4.1 as
follows.

Example 4.1. Let Λ be a finite dimensional algebra given by the quiver:

1

²²
2

α // 3 //

β

²²

4

5
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modulo the ideal βα. Then fd I0(Λ) = fd I1(Λ) = fd I0(Λop) = fd I1(Λop) =
1, and fd I2(Λ) = fd I2(Λop) = 2.

Recall from [10] that a module M ∈ mod Λ is called pure if gradeX =
gradeM for any non-zero submodule X of M . Björk in [10, p.144] raised a
question: If Λ is G∞(0) with finite left and right self-injective dimensions,
is Egrade M (M) pure for any M ∈ mod Λ? Björk and Ekström in [11,
Proposition 2.11] gave a positive answer to this question, and then Iyama
proved in [30] that the answer to it is positive in more general case.

Proposition 4.3. [30, Proposition 2.9] If Λ satisfies the (n, n)op-condition,
then for any M ∈ mod Λ with gradeM = n, En(M) is pure with
gradeEn(M) = n.

For a positive integer n, we denote En(ΛΛ) = {M ∈ mod Λ |M = En(N)
for some N ∈ mod Λop}. Auslander showed in [1, Proposition 3.3] that any
direct summand of a module in E1(ΛΛ) is still in E1(ΛΛ). He then asked
whether any submodule of a module in E1(ΛΛ) is still in E1(ΛΛ). Recall
that a full subcategory X of modΛ is said to be submodule closed if any
non-zero submodule of a module in X is also in X . Then the above Auslan-
der’s question is equivalent to the following question: Is E1(ΛΛ) submodule
closed?

Proposition 4.4. [21, Corollaries 3.9 and 3.14]

(1) If Λ is G∞(0) with idΛ = idΛop = n, then En(ΛΛ) is submodule
closed.

(2) If idΛ = idΛop = 1, then E1(ΛΛ) is submodule closed if and only if
Λ satisfies the (1, 1)-condition.

(3) If idΛ = idΛop = 2, then E2(ΛΛ) is submodule closed if and only if
Λ satisfies the (2, 2)-condition.

As an application of Proposition 4.4, the following examples were con-
structed in [21] to illustrate that neither E1(ΛΛ) nor E2(ΛΛ) are submodule
closed in general, by which the above Auslander’s question is answered
negatively.

Example 4.2. (1) Let Λ be a finite dimensional algebra given by the
quiver:

2 ←− 1 −→ 3.

Then id Λ = idΛop = 1 and fd I0(Λ) = 1. By Proposition 4.4(2), E1(ΛΛ) is
not submodule closed.
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(2) Let Λ be a finite dimensional algebra given by the quiver:

1
γ //

α

²²

3

δ

²²
2

β // 4

modulo the ideal βα. Then id Λ = id Λop = 2 and fd I0(Λ) = 2. By
Proposition 4.4(3), E2(ΛΛ) is not submodule closed.

It is clear that modΛ ⊇ E1(ΛΛ) ⊇ E2(ΛΛ) ⊇ · · · ⊇ Ei(ΛΛ) ⊇ · · · . For
any positive integer n, En(ΛΛ) is submodule closed for Λ being G∞(0) with
idΛ = idΛop = n by Proposition 4.4(1), and neither E1(ΛΛ) nor E2(ΛΛ)
are submodule closed in general by Example 4.2. It is interesting to know
whether En(ΛΛ) (where n ≥ 3) is submodule closed in general.
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representation dimension. Adv. Math. 2004, 185: 159–177.

14. E. G. Evans and P. Griffith, Syzygies of critical rank. Quart. J. Math. Oxford
1984, 35: 393–402.

15. R. M. Fossum, P. Griffith and I. Reiten, Trivial Extensions of Abelian Cate-
gories, Homological Algebra of Trivial Extensions of Abelian Categories with
Applications to Ring Theory, Lecture Notes in Math. 456; Springer-Verlag:
Berlin, 1975.

16. K. R. Fuller and Y. Iwanaga, On n-Gorenstein rings and Auslander rings of
low injective dimension, In: Representations of algebras (Ottawa, ON, 1992),
CMS Conf. Proc. 14; Amer. Math. Soc.: Providence, RI, 1993, 175–183.

17. M. Hoshino, On dominant dimension of Noetherian rings. Osaka J. Math.
1989, 26: 275–280.

18. M. Hoshino and K. Nishida, A generalization of the Auslander formula, In:
Representations of Algebras and Related Topics, Fields Institute Communi-
cations 45; Amer. Math. Soc.: Providence, RI, 2005, 175–186.

19. Z. Y. Huang, Extension closure of k-torsionfree modules. Comm. Algebra
1999, 27: 1457–1464.

20. Z. Y. Huang, Syzygy modules for quasi k-Gorenstein rings. J. Algebra 2006,
299: 21–32.

21. Z. Y. Huang, Generalized tilting modules with finite injective dimension. J.
Algebra 2007, 311: 619–634.

22. Z. Y. Huang, Approximation presentations of modules and homological con-
jectures. Comm. Algebra 2008, 36: 546–563.

23. Z. Y. Huang, On the grade of modules over noetherian rings. Comm. Algebra
(to appear).

24. Z. Y. Huang and O. Iyama, Auslander-type conditions and cotorsion pairs.
J. Algebra 2007, 318: 93–110.

25. K. Igusa, S. O. Smalφ and G. Todorov, Finite projectivity and contravariant
finiteness. Proc. Amer. Math. Soc. 1990, 109: 937–941.

26. Y. Iwanaga, Duality over Auslander-Gorenstein rings. Math. Scand. 1997,
81: 184–190.

27. Y. Iwanaga and J. I. Miyachi, Modules of the highest homological dimension
over a Gorenstein ring, In: Trends in the representation theory of finite-
dimensional algebras (Seattle, WA, 1997), Contemp. Math. 229; Amer. Math.



March 16, 2008 14:51 Proceedings Trim Size: 9in x 6in huangcjk

15

Soc.: Providence, RI, 1998, 193–199.
28. Y. Iwanaga and H. Sato, On Auslander’s n-Gorenstein rings. J. Pure Appl.

Algebra 1996, 106: 61–76.
29. Y. Iwanaga and T. Wakamatsu, Auslander-Gorenstein property of triangular

matrix rings. Comm. Algebra 1995, 23: 3601–3614.
30. O. Iyama, Symmetry and duality on n-Gorenstein rings. J. Algebra 2003,

269: 528–535.
31. O. Iyama, The relationship between homological properties and representa-

tion theoretic realization of Artin algebras. Trans. Amer. Math. Soc. 2005,
357: 709–734.

32. O. Iyama, τ -categories III, Auslander orders and Auslander-Reiten quivers.
Algebr. Represent. Theory 2005, 8: 601–619.

33. O. Iyama, Finiteness of Representation dimension. Proc. Amer. Math. Soc.
2003, 131: 1011–1014.

34. O. Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthog-
onal subcategories. Adv. Math. 2007, 210: 22–50.

35. O. Iyama, Auslander correspondence. Adv. Math. 2007, 210: 51–82.
36. J. I. Miyachi, Injective resolutions of Noetherian rings and cogenerators. Proc.

Amer. Math. Soc. 2000, 128: 2233–2242.
37. T. Nakayama, On algebras with complete homology. Abh. Math. Sem. Univ.

Hamburg 1958, 22: 300–307.
38. R. Rouquier, Representation dimension of exterior algebras. Invent. Math.

2006, 165: 357–367.
39. L. Salce, Cotorsion theories for abelian groups, In: Symposia Mathemat-

ica XXIII, (Conf. Abelian Groups and their Relationship to the Theory of
Modules, INDAM, Rome, 1977); Academic Press: London-New York, 1979,
11–32.

40. S. P. Smith, Some finite-dimensional algebras related to elliptic curves, In:
Representation theory of algebras and related topics (Mexico City, 1994),
CMS Conf. Proc. 19; Amer. Math. Soc.: Providence, RI, 1996, 315–348.

41. H. Tachikawa, Quasi-Frobenius Rings and Generalizations, QF-3 Rings and
QF-1 Rings, Lecture Notes in Math. 351; Springer-Verlag: Berlin, 1973.

42. T. Wakamatsu, Tilting modules and Auslander’s Gorenstein property. J. Al-
gebra 2004, 275: 3–39.

43. K. Yamagata, Frobenius algebras, In: Handbook of Algebra 1; North-Holland
Publishing Co.: Amsterdam, 1996, 841–887.

44. A. Zaks, Injective dimension of semiprimary rings. J. Algebra 1969, 13: 73–
86.


