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For any ring R and any positive integer n, we prove that a left
R-module is a Gorenstein n-syzygy if and only if it is an n-syzygy.
Over a left and right Noetherian ring, we introduce the notion of
the Gorenstein transpose of finitely generated modules. We prove
that a module M ∈ mod Rop is a Gorenstein transpose of a module
A ∈ mod R if and only if M can be embedded into a transpose of A
with the cokernel Gorenstein projective. Some applications of this
result are given.
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1. Introduction

Throughout this paper, R is an associative ring with identity and Mod R is the category of left
R-modules.

In classical homological algebra, the notion of finitely generated projective modules is an important
and fundamental research object. As a generalization of this notion, Auslander and Bridger introduced
in [AB] the notion of finitely generated modules of Gorenstein dimension zero over a left and right
Noetherian ring. Over a general ring, Enochs and Jenda introduced in [EJ1] the notion of Gorenstein
projective modules (not necessarily finitely generated). It is well known that these two notions co-
incide for finitely generated modules over a left and right Noetherian ring. In particular, Gorenstein
projective modules share many nice properties of projective modules (e.g. [AB,C,CFH,CI,EJ1,EJ2,H]).
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The notion of a syzygy module was defined via the projective resolution of modules as follows. For
a positive integer n, a module A ∈ Mod R is called an n-syzygy module (of M) if there exists an exact
sequence 0 → A → Pn−1 → ·· · → P1 → P0 → M → 0 in Mod R with all Pi projective. Analogously,
we call A a Gorenstein n-syzygy module (of M) if there exists an exact sequence 0 → A → Gn−1 →
·· · → G1 → G0 → M → 0 in Mod R with all Gi Gorenstein projective. It is trivial that an n-syzygy
module is Gorenstein n-syzygy. In Section 2, our main result is that for every n � 1, a Gorenstein
n-syzygy module is n-syzygy. The following auxiliary proposition plays a crucial role in proving this

main result. Let 0 → A → G1
f−→ G0 → M → 0 be an exact sequence in Mod R with G0 and G1

Gorenstein projective. Then we have the following exact sequences 0 → A → P → G → M → 0 and
0 → A → H → Q → M → 0 in Mod R with P , Q projective and G , H Gorenstein projective.

In Section 3, for a left and right Noetherian ring R and a finitely generated left R-module A, we
introduce the notion of the Gorenstein transpose of A, which is a Gorenstein version of that of the
transpose of A. We establish a relation between a Gorenstein transpose of a module and a transpose
of the same module. We prove that a finitely generated right R-module M is a Gorenstein transpose
of a finitely generated left R-module A if and only if M can be embedded into a transpose of A with
the cokernel Gorenstein projective. Then we give some applications of this result: (1) The direct sum
of a finitely generated Gorenstein projective right R-module and a transpose of a finitely generated
left R-module A is a Gorenstein transpose of A. (2) For any Gorenstein transpose and any transpose
of a finitely generated left R-module, one of them is n-torsionfree if and only if so is the other.
(3) A finitely generated left R-module with Gorenstein projective dimension n is a double Gorenstein
transpose of a finitely generated left R-module with projective dimension n.

2. Gorenstein syzygy modules

Recall from [EJ1] a module G ∈ Mod R is called Gorenstein projective if there exists an exact se-
quence in Mod R:

· · · → P1 → P0 → P 0 → P 1 → ·· · ,

such that: (1) All Pi and P i are projective; (2) After applying the functor HomR( , P ) the sequence
is still exact for any projective module P ∈ Mod R; and (3) G ∼= Im(P0 → P 0). Let M be a module
in Mod R . The Gorenstein projective dimension of M , denoted by GpdR(M), is defined as inf{n | for any
exact sequence 0 → Gn → ·· · → G1 → G0 → M → 0 in Mod R with all Gi Gorenstein projective}. We
have GpdR(M) � 0 and we set GpdR(M) infinity if no such integer exists (see [EJ1] or [H]).

Lemma 2.1. Let 0 → M3 → M2 → M1 → 0 be an exact sequence in Mod R with M3 �= 0. If M1 is Gorenstein
projective, then GpdR(M3) = GpdR(M2).

Proof. By [H, Theorems 2.24 and 2.20], it is easy to get the assertion. �
The following result plays a crucial role in this paper.

Proposition 2.2. Let 0 → A → G1
f−→ G0 → M → 0 be an exact sequence in Mod R with G0 and G1 Goren-

stein projective. Then we have the following exact sequences:

0 → A → P → G → M → 0,

and

0 → A → H → Q → M → 0,

in Mod R with P , Q projective and G, H Gorenstein projective.
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Proof. Because G1 is Gorenstein projective, there exists an exact sequence 0 → G1 → P → G2 → 0
in Mod R with P projective and G2 Gorenstein projective. Then we have the following push-out
diagram:

0 0

0 A G1 Im f 0

0 A P B 0

G2 G2

0 0

Consider the following push-out diagram:

0 0

0 Im f G0 M 0

0 B G M 0

G2 G2

0 0

Because both G0 and G2 are Gorenstein projective, G is also Gorenstein projective by Lemma 2.1.
Connecting the middle rows in the above two diagrams, then we get the first desired exact sequence.
Since G0 is Gorenstein projective, there exists an exact sequence 0 → G3 → Q → G0 → 0 in Mod R
with Q projective and G3 Gorenstein projective. Dually, taking pull-back, one gets the second desired
exact sequence. �

For a positive integer n, recall that a module A ∈ Mod R is called an n-syzygy module (of M) if
there exists an exact sequence 0 → A → Pn−1 → ·· · → P1 → P0 → M → 0 in Mod R with all Pi
projective. Analogously, we give the following

Definition 2.3. For a positive integer n, a module A ∈ Mod R is called a Gorenstein n-syzygy module
(of M) if there exists an exact sequence 0 → A → Gn−1 → ·· · → G1 → G0 → M → 0 in Mod R with
all Gi Gorenstein projective.
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The following theorem is the main result in this section.

Theorem 2.4. Let n be a positive integer and 0 → A → Gn−1 → Gn−2 → ·· · → G0 → M → 0 an exact
sequence in Mod R with all Gi Gorenstein projective. Then we have the following:

(1) There exist exact sequences 0 → A → Pn−1 → Pn−2 → ·· · → P0 → N → 0 and 0 → M → N →
G → 0 in Mod R with all P i projective and G Gorenstein projective. In particular, a module in Mod R
is an n-syzygy if and only if it is a Gorenstein n-syzygy.

(2) There exist exact sequences 0 → B → Q n−1 → Q n−2 → ·· · → Q 0 → M → 0 and 0 → H → B →
A → 0 in Mod R with all Q i projective and H Gorenstein projective.

Proof. (1) We proceed by induction on n. When n = 1, it has been proved in the proof of Proposi-
tion 2.2. Now suppose that n � 2 and we have an exact sequence:

0 → A → Gn−1 → Gn−2 → ·· · → G0 → M → 0

in Mod R with all Gi Gorenstein projective. Put K = Coker(Gn−1 → Gn−2). By Proposition 2.2, we get
an exact sequence:

0 → A → Pn−1 → G ′
n−2 → K → 0

in Mod R with Pn−1 projective and G ′
n−2 Gorenstein projective. Put A′ = Im(Pn−1 → G ′

n−2). Then we
get an exact sequence:

0 → A′ → G ′
n−2 → Gn−3 → ·· · → G0 → M → 0

in Mod R . So, by the induction hypothesis, we get the assertion.
(2) The proof is dual to that of (1), so we omit it. �
For a module M ∈ Mod R , we use pdR(M) to denote the projective dimension of M .

Corollary 2.5. (See [CFH, Lemma 2.17].) Let M ∈ Mod R and n be a non-negative integer. If GpdR(M) = n,
then there exists an exact sequence 0 → M → N → G → 0 in Mod R with pdR(N) = n and G Gorenstein
projective.

Proof. Let M ∈ Mod R with GpdR(M) = n. Then one uses Theorem 2.4(1) with A = 0 to get an ex-
act sequence 0 → M → N → G → 0 in Mod R with pdR(N) � n and G Gorenstein projective. By
Lemma 2.1, GpdR(N) = n, and thus pdR(N) = n. �

By [H, Theorem 2.20], we have that GpdR(M) � n if and only if there exists an exact sequence
0 → Gn → Pn−1 → ·· · → P1 → P0 → M → 0 in Mod R with all Pi projective and Gn Gorenstein
projective. The following theorem generalizes this result. In particular, the following theorem was
proved by Christensen and Iyengar in [CI, Theorem 3.1] when R is a commutative Noetherian ring.

Theorem 2.6. Let M ∈ Mod R and n be a non-negative integer. Then the following statements are equivalent.

(1) GpdR(M) � n.
(2) For every non-negative integer t such that 0 � t � n, there exists an exact sequence 0 → Xn → ·· · →

X1 → X0 → M → 0 in Mod R such that Xt is Gorenstein projective and Xi is projective for i �= t.

Proof. (2) ⇒ (1) It is trivial.
(1) ⇒ (2) We proceed by induction on n. Suppose GpdR(M) � 1. Then there exists an exact se-

quence 0 → G1 → G0 → M → 0 in Mod R with G0 and G1 Gorenstein projective. By Proposition 2.2
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with A = 0, we get the exact sequences 0 → P1 → G ′
0 → M → 0 and 0 → G ′

1 → P0 → M → 0 in
Mod R with P0, P1 projective and G ′

0 and G ′
1 Gorenstein projective.

Now suppose n � 2. Then there exists an exact sequence 0 → Gn → ·· · → G1 → G0 → M → 0
in Mod R with Gi Gorenstein projective for any 1 � i � n. Set A = Coker(G3 → G2). By applying
Proposition 2.2 to the exact sequence 0 → A → G1 → G0 → M → 0, we get an exact sequence 0 →
Gn → ·· · → G2 → G ′

1 → P0 → M → 0 in Mod R with G ′
1 Gorenstein projective and P0 projective. Set

N = Coker(G2 → G ′
1). Then we have GpdR(N) � n − 1. By the induction hypothesis, there exists an

exact sequence 0 → Xn → ·· · → Xt → ·· · → X1 → P0 → M → 0 in Mod R such that P0 is projective
and Xt is Gorenstein projective and Xi is projective for i �= t and 1 � t � n.

Now we need only to prove (2) for t = 0. Set B = Coker(G2 → G1). By the induction hypothesis,
we get an exact sequence 0 → Pn → ·· · → P3 → P2 → G ′

1 → B → 0 in Mod R with G ′
1 Goren-

stein projective and Pi projective for any 2 � i � n. Set C = Coker(P3 → P2). Then by applying
Proposition 2.2 to the exact sequence 0 → C → G ′

1 → G0 → M → 0, we get an exact sequence
0 → C → P1 → G ′

0 → M → 0 in Mod R with P0 projective and G ′
0 Gorenstein projective. Thus we

obtain the desired exact sequence 0 → Pn → ·· · → P2 → P1 → G ′
0 → M → 0. �

Let X be a full subcategory of Mod R . Recall from [EJ2] that a morphism f : X → M in Mod R

with X ∈ X is called an X -precover of M if HomR(X ′, X)
HomR (X ′, f )−−−−−−−−→ HomR(X ′, M) → 0 is exact

for any X ′ ∈ X . We use G P(R) to denote the full subcategory of Mod R consisting of Gorenstein
projective modules. Let M ∈ Mod R with GpdR(M) = n < ∞. Taking t = 0 in Theorem 2.6, one gets an
exact sequence 0 → N → G → M → 0 in Mod R with G Gorenstein projective and pdR(N) � n − 1. It
is easy to see that this exact sequence is a surjective G P(R)-precover of M (see [H, Theorem 2.10]).

Remark 2.7. It is known that a module A ∈ Mod R is called an n-cosyzygy module (of M) if there exists
an exact sequence 0 → M → I0 → I1 → ·· · → In−1 → A → 0 in Mod R with all I i injective. Recall
from [EJ1] that a module E ∈ Mod R is called Gorenstein injective if there exists an exact sequence in
Mod R:

· · · → I1 → I0 → I0 → I1 → ·· · ,

such that: (1) All Ii and I i are injective; (2) After applying the functor HomR(I, ) the sequence is
still exact for any injective module I ∈ Mod R; and (3) E ∼= Im(I0 → I0). We call A a Gorenstein
n-cosyzygy module (of M) if there exists an exact sequence 0 → M → E0 → E1 → ·· · → En−1 → A → 0
in Mod R with all Ei Gorenstein injective. We point out the dual versions on Gorenstein injectivity and
(Gorenstein) n-cosyzygy of all of the above results also hold true by using completely dual arguments.

3. Gorenstein transpose

In this section, R is a left and right Noetherian ring and mod R is the category of finitely generated
left R-modules. For any A ∈ mod R , there exists a projective presentation in mod R:

P1
f−→ P0 → A → 0.

Then we get an exact sequence

0 → A∗ → P∗
0

f ∗−→ P∗
1 → Coker f ∗ → 0

in mod Rop , where ( )∗ = Hom( , R). Recall from [AB] that Coker f ∗ is called a transpose of A, and
denoted by Tr A. We remark that the transpose of A depends on the choice of the projective presen-
tation of A, but it is unique up to projective equivalence (see [AB]).
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Analogously, we introduce the notion of Gorenstein transpose of modules as follows. Let A ∈
mod R . Then there exists a Gorenstein projective presentation in mod R:

π : X1
g−→ X0 → A → 0,

and we get an exact sequence:

0 → A∗ → X∗
0

g∗−−→ X∗
1 → Coker g∗ → 0

in mod Rop . We call Coker g∗ a Gorenstein transpose of A, and denote it by TrπG A. It is trivial that a
transpose of A is a Gorenstein transpose of A, but the converse does not hold true in general. For
example, for a module A in mod R , if A is Gorenstein projective but not projective, then some Goren-
stein transpose of A is zero, and any transpose of A is Gorenstein projective (see Proposition 3.4(3)
below) but non-zero (otherwise, if a transpose of A is zero, then A is projective, which is a contra-
diction).

Let A ∈ mod R . Recall from [AB] that A is said to have Gorenstein dimension zero if Exti
R(A, R) =

0 = Exti
Rop (Tr A, R) for any i � 1. It is easy to see that if A has Gorenstein dimension zero, then

so does A∗ . In addition, it is well known that A has Gorenstein dimension zero if and only if it is
Gorenstein projective. Let σA : A → A∗∗ defined via σA(x)( f ) = f (x) for any x ∈ A and f ∈ A∗ be
the canonical evaluation homomorphism. Recall that a module A ∈ mod R is called torsionless (resp.
reflexive) if σA is a monomorphism (resp. an isomorphism)

The following result establishes a relation between a Gorenstein transpose of a module with a
transpose of the same module.

Theorem 3.1. Let M ∈ mod Rop and A ∈ mod R. Then M is a Gorenstein transpose of A if and only if M can
be embedded into a transpose Tr A of A with the cokernel Gorenstein projective, that is, there exists an exact
sequence 0 → M → Tr A → H → 0 in mod Rop with H Gorenstein projective.

Proof. We first prove the necessity. Assume that M(∼= TrπG A) is a Gorentein transpose of A. Then

there exists an exact sequence π : X1
g−−→ X0 → A → 0 in mod R with X0 and X1 Gorenstein projec-

tive such that TrπG A = Coker g∗ . So there exists an exact sequence 0 → H ′
1 → P ′

0 → X0 → 0 in mod R
with P ′

0 projective and H ′
1 Gorenstein projective. Let K1 = Im g and g = iα be the natural epic-monic

decomposition of g . Then we have the following pull-back diagram:

0 0

H ′
1 H ′

1

0 K ′
1 P ′

0 A 0

0 K1
i

X0 A 0

0 0
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Now consider the following pull-back diagram:

0 0

H ′
1 H ′

1

0 K2 G K ′
1 0

0 K2 X1
α

K1 0

0 0

where K2 = Ker g . Because both X1 and H ′
1 are Gorenstein projective, G is Gorenstein projective by

Lemma 2.1. So there exists an exact sequence 0 → G1 → P0 → G → 0 in mod R with P0 projective
and G1 Gorenstein projective. Consider the following pull-back diagram:

0 0

G1 G1

0 K ′
2

β

P0 K ′
1 0

0 K2 G K ′
1 0

0 0

So we get the following commutative diagram with exact rows:

0 K ′
2

β

P0 K ′
1 0

0 K2 G K ′
1 0

0 K2 X1
α

K1 0
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It yields the following commutative diagram with exact columns and rows:

0 0 0

Kerβ H1 H ′
1

0 K ′
2

β

P0 K ′
1 0

0 K2 X1
α

K1 0

0 0 0

where H1 = Ker(P0 → X1). By the snake lemma, we get the exact sequence 0 → Kerβ → H1
h−→

H ′
1 → 0. By Lemma 2.1, H1 is Gorenstein projective and hence Kerβ is also Gorenstein projective.

Combining the above diagram with the first one in this proof, we get the following commutative
diagram with exact columns and rows:

0 0 0

0 Kerβ H1
h

H ′
1 0

0 K ′
2

β

P0 P ′
0 A 0

0 K2 X1
g

X0 A 0

0 0 0

By applying the functor ( )∗ to the above diagram, we get the following commutative diagram with
exact columns and rows:

0 0

H∗
1 H ′

1
∗h∗

0

P∗
0 P ′

0
∗

A∗ 0

X∗
1 X∗

0

g∗
A∗ 0

0 0
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By the snake lemma, we get an exact sequence:

0 → TrπG A
(= Coker g∗) → Tr A → Coker h∗ → 0

in mod Rop with Coker h∗(∼= (Ker h)∗ ∼= (Kerβ)∗) Gorenstein projective.

We next prove the sufficiency. Let P1
f−→ P0 → A → 0 be a projective presentation of A in mod R .

Then we have the following pull-back diagram:

0 0

A∗ A∗

P∗
0

h

P∗
0

f ∗

0 K

g

P∗
1 H 0

0 M Tr A H 0

0 0

Because H is Gorenstein projective and P∗
1 is projective, K is Gorenstein projective by Lemma 2.1.

Again because H is Gorenstein projective, by applying the functor ( )∗ to the above commutative
diagram, we get the following commutative diagram with exact columns and rows:

0 0

0 H∗ (Tr A)∗ M∗

g∗

0

0 H∗ P∗∗
1

f ∗∗

K ∗

h∗

0

P∗∗
0 P∗∗

0

A

0

By the snake lemma, we have Im h∗ ∼= Im f ∗∗ . Thus we get Coker h∗ = P∗∗
0 / Im h∗ ∼= P∗∗

0 / Im f ∗∗ ∼= A,
and therefore we get a Gorenstein projective presentation of A in mod R:

K ∗ h∗−→ P∗∗
0 → A → 0.



C. Huang, Z. Huang / Journal of Algebra 324 (2010) 3408–3419 3417
Because both K and P∗
0 are reflexive, we get an exact sequence 0 → A∗ → P∗∗∗

0
h∗∗−−−→ K ∗∗ → M → 0

in mod Rop and M is a Gorenstein transpose of A. �
As a consequence of Theorem 3.1, we get the following

Corollary 3.2. Let A ∈ mod R. Then for any Gorenstein projective module H ∈ mod Rop and any transpose
Tr A of A, H ⊕ Tr A is a Gorenstein transpose of A.

Proof. Assume that H ∈ mod Rop is a Gorenstein projective module. Then there exists an exact se-
quence 0 → H → P → H ′ → 0 in mod Rop with P projective and H ′ Gorenstein projective, which
induces an exact sequence 0 → H ⊕ Tr A → P ⊕ Tr A → H ′ → 0. Because P ⊕ Tr A is again a transpose
of A, H ⊕ Tr A is a Gorenstein transpose of A by Theorem 3.1. �

It is clear that the Gorenstein transpose of a module A in mod R depends on the choice of the
Gorenstein projective presentation of A. Corollary 3.2 provides a method to construct a Gorenstein
transpose of a module from a transpose of the same module. It is interesting to ask the following

Question 3.3. Is any Gorenstein transpose obtained in this way?

If the answer to this question is positive, then we can conclude that the Gorenstein transpose of a
module is unique up to Gorenstein projective equivalence.

Let A ∈ mod R . By [A, Proposition 6.3] (or [AB, Proposition 2.6]), there exists an exact sequence:

0 → Ext1
Rop (Tr A, R) → A

σA−−→ A∗∗ → Ext2
Rop (Tr A, R) → 0 (∗)

in mod R . For a positive integer n, recall from [AB] that A is called n-torsionfree if Exti
Rop (Tr A, R) = 0

for any 1 � i � n. From the exact sequence (∗), it is easy to see that A is torsionless (resp. reflexive)
if and only if it is 1-torsionfree (resp. 2-torsionfree).

The following result shows that some homological properties of any Gorenstein transpose and any
transpose of a given module are identical.

Proposition 3.4. Let A ∈ mod R. Then for any Gorenstein transpose TrπG A and any transpose Tr A of A, we
have

(1) Exti
Rop (TrπG A, R) ∼= Exti

Rop (Tr A, R) for any i � 1.
(2) For any n � 1, TrπG A is n-torsionfree if and only if so is Tr A.
(3) Some Gorenstein transpose of A is zero if and only if A is Gorenstein projective, if and only if any (Goren-

stein) transpose of A is Gorenstein projective.
(4) GpdRop (TrπG A) = GpdRop (Tr A).

Proof. (1) It is an immediate consequence of Theorem 3.1.
(2) Let TrπG A be any Gorenstein transpose of A. By Theorem 3.1, there exists a transpose Tr A of A

satisfying the exact sequence 0 → TrπG A → Tr A → H → 0 in mod Rop with H Gorenstein projective.
If Ext1

R(Tr(Tr A), R) = 0, then Tr A is torsionless. So TrπG A is also torsionless and
Ext1

R(Tr(TrπG A), R) = 0. Because H is Gorenstein projective, we get an exact sequence 0 →
Tr H → Tr(Tr A) → Tr(TrπG A) → 0 in mod R with Tr H Gorenstein projective. So we have that
Exti

R(Tr(TrπG A), R) ∼= Exti
R(Tr(Tr A), R) for any i � 2, and Ext1

R(Tr(TrπG A), R) → Ext1
R(Tr(Tr A), R) → 0

is exact. So for any i � 1, Exti
R(Tr(TrπG A), R) = 0 if and only if Exti

R(Tr(Tr A), R) = 0, and thus we
conclude that for any n � 1, TrπG A is n-torsionfree if and only if so is Tr A.

(3) Because A is a (Gorenstein) transpose of any (Gorenstein) transpose of A, it is not difficult to
verify the assertion by (1) and (2).
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(4) Let TrπG A be any Gorenstein transpose of A. If TrπG A = 0, then the assertion follows from (3).
Now suppose TrπG A �= 0. By Theorem 3.1, there exists a transpose Tr A of A satisfying the exact se-
quence 0 → TrπG A → Tr A → H → 0 in mod Rop with H Gorenstein projective. Then we have that
GpdRop (TrπG A) = GpdRop (Tr A) by Lemma 2.1. �

Let A ∈ mod R . By Proposition 3.4(1), we have that A is n-torsionfree if and only if
Exti

Rop (TrπG A, R) = 0 for any (or some) Gorenstein transpose TrπG A of A and 1 � i � n. On the other
hand, also by Proposition 3.4(1), we get a Gorenstein version of the formula (∗) as follows. For any
Gorenstein transpose TrπG A of A, we have the following exact sequence:

0 → Ext1
Rop

(
TrπG A, R

) → A
σA−−→ A∗∗ → Ext2

Rop

(
TrπG A, R

) → 0

in mod R . It is easy to see that A is a Gorenstein transpose of TrπG A. So we also get the following
exact sequence:

0 → Ext1
R(A, R) → TrπG A

σTrπG A−−−→ (
TrπG A

)∗∗ → Ext2
R(A, R) → 0

in mod Rop .
The following result shows that any double Gorenstein transpose of A shares some homological

properties of A.

Corollary 3.5. Let A ∈ mod R. Then for any Gorenstein transpose TrπG A of A and any Gorenstein transpose

Trπ
′

G (TrπG A) of TrπG A, we have

(1) Exti
R(Trπ

′
G (TrπG A), R) ∼= Exti

R(A, R) for any i � 1.

(2) For any n � 1, Trπ
′

G (TrπG A) is n-torsionfree if and only if so is A.

(3) GpdR(Trπ
′

G (TrπG A)) = GpdR(A).

Proof. Note that A is a Gorenstein transpose of any Gorenstein transpose TrπG A of A. So all of the
assertions follow from Proposition 3.4. �

Note that a transpose of a module is a special Gorenstein transpose of the same module. The
following result shows that a module with Gorenstein projective dimension n is a double Gorenstein
transpose of a module with projective dimension n.

Proposition 3.6. Let A ∈ mod R and n be a non-negative integer. Then GpdR(A) = n if and only if there exists
a module B ∈ mod R with pdR(B) = n such that A is a Gorenstein transpose of some transpose Tr B of B (that
is, A = TrπG (Tr B), where TrπG (Tr B) is a Gorenstein transpose of some transpose Tr B of B).

Proof. Assume that A ∈ mod R with GpdR(A) = n. By Corollary 2.5, there exists an exact sequence
0 → A → B → H → 0 in mod R with pdR(B) = n and H Gorenstein projective. Note that B is a
transpose of some transpose Tr B of B . By Theorem 3.1, A is a Gorenstein transpose of Tr B .

Conversely, if A is a Gorenstein transpose of some transpose Tr B of a module B ∈ mod R with
pdR(B) = n, then GpdR(A) = GpdR(B) = pdR(B) = n by Corollary 3.5. �
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