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1. Introduction

Let R be an arbitrary associative ring with unit. A differential R-module is an 
R-module M equipped with a square-zero endomorphism ε, called the differentiation
of M . To be precise, differential modules are exactly modules over the ring of dual num-
bers over R, that is, the ring R[ε] := R[t]/(t2) (the factor ring of the polynomial ring R[t]
in one variable t modulo the ideal generated by t2). Differential modules introduced in 
the monograph of Cartan and Eilenberg [15] are ubiquitous in homological algebra, and 
were employed as a means to provide a convenient framework for a unified treatment 
of some problems from ring theory and topology in work by Avramov, Buchweitz and 
Iyengar [7]. There are a lot of recent work on differential modules, see [35,37–39,41,43]
and so on. In particular, Xu, Yang and Yao [43] introduced n-th differential modules 
with n � 2 such that 2-nd differential modules are exactly classical differential modules, 
and they proved that an n-differential module is Gorenstein projective (resp. injective) if 
and only if its underlying module is Gorenstein projective (resp. injective). It generalized 
a result about differential modules by Wei [41].

Given an additive category C. Stai [37] introduced a new additive category C[ε] in the 
following way: An object in C[ε] is a pair (A, εA) such that A ∈ C and εA ∈ EndC(A)
has the property εA2 = 0; and a morphism f ∈ HomC[ε](A, B) is what one might expect, 
namely a morphism f ∈ HomC(A, B) satisfying εBf = fεA. It is easily seen that objects 
in C[ε] generalize differential modules. Inspired by the above facts, as a higher analogue 
of C[ε], we will introduce and study an additive category C[ε]n with n � 2, such that 
objects in C[ε]n are a common generalization of n-th differential modules and objects in 
C[ε]. The paper is organized as follows.

In Section 2, we give some terminology and notations.
Let C be an additive category, and let F : C[ε]n → C be the forgetful functor and 

T : C → C[ε]n the augmenting functor. In Section 3, we first prove that both pairs (F, T )
and (T, F ) are adjoint pairs (Proposition 3.1). Let (C, E ) be an idempotent complete 
exact category, and let EF be the class of pairs of composable morphisms in C[ε]n that 
become short exact sequences in C via the forgetful functor F . Then, with the aid of 
Proposition 3.1, we have that Y is projective (resp. injective) in (C[ε]n, EF ) if and only 
if Y ∼= T (X) for some projective (resp. injective) object X of C (Proposition 3.6). These 
two results are higher analogue of [37, Propositions 2.1 and 2.7] respectively. In the latter 
part of this section, we give two applications of Proposition 3.6. One of them states that 
for a ring R, a left R[t]/(tn)-module M is Gorenstein flat if and only if it is Gorenstein 
flat as a left R-module (Theorem 3.10). The other states that an Artinian algebra R
satisfies any of the finitistic dimension conjecture, strong Nakayama conjecture, general-
ized Nakayama conjecture, Auslander-Gorenstein conjecture, Nakayama conjecture and 
Gorenstein symmetry conjecture if and only if R[t]/(tn) satisfies the same conjecture 
(Theorem 3.13).

Let C be an exact category with trivial exact structure E t, and let E t
F be the induced 

exact structure via the forgetful functor F in C[ε]n. In Section 4, we prove that if (C, E t)
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is an idempotent complete exact category, then (C[ε]n, E t
F ) is a Frobenius category and 

its stable category C[ε]n is a triangulated category (Proposition 4.2), which coincides 
with the homotopy category K(C[ε]n) (Theorem 4.7).

In Section 5 we introduce the derived category D(A[ε]n) of n-th differential 
objects for an abelian category A. With mild assumptions on A, we show that 
both (Kp(A[ε]n), Ka(A[ε]n)) and (Ka(A[ε]n), Ki(A[ε]n) are stable t-structures, where 
Kp(A[ε]n), Ki(A[ε]n) and Ka(A[ε]n) are the categories of K-projective, K-injective and 
acyclic objects respectively; moreover, these allow us to derive from the quotient functor 
Q : K(A[ε]n) → D(A[ε]n) a recollement of triangulated categories (Theorem 5.11). In 
particular, if A is an Ab4-category with a compact projective generator, then D(A[ε]n)
is a compactly generated triangulated category (Theorem 5.17).

2. Preliminaries

Let C be an additive category and n � 2 a fixed positive integer. An n-th differential 
object of C is a pair (X, εX), where X ∈ ob C and εX ∈ EndC(X) satisfying εXn = 0. 
Differential objects [37] are exactly 2-nd differential objects. We define the category C[ε]n
as follows: The objects of C[ε]n are n-th differential objects, and the set of morphisms 
from (X, εX) to (Y, εY ) consists of morphisms f : X → Y of C satisfying the equality 
fεX = εY f . The morphisms in C[ε]n are composed in the same way as the morphisms in 
C. It is easy to see that C[ε]n is also an additive category.

Let R be a ring, and let ModR be the category of left R-modules and modR the cat-
egory of finitely generated left R-modules. Then we have (ModR)[ε]n ∼= Mod(R[t]/(tn)). 
Indeed, to an object (X, εX) ∈ (ModR)[ε]n, associate the left R[t]/(tn)-module X with

(r0 + r1t + · · · + rn−1t
n−1)x := r0x + r1εX(x) + · · · + rn−1εX

n−1(x).

Conversely, given a left R[t]/(tn)-module X, we associate it with an n-th differential 
object (X, εX) in (ModR)[ε]n where εX(x) := tx.

The following definition is cited from [14], see also [29] and [34].

Definition 2.1. Let C be an additive category. A kernel-cokernel pair (i, p) in C is a pair 
of composable morphisms A i→ B

p→ C such that i is a kernel of p and p is a cokernel of 
i. We shall call i an admissible monic and p an admissible epic.

An exact category (C, E ) is an additive category C with a class E of kernel-cokernel 
pairs which is closed under isomorphisms and satisfies the following axioms:

[E0] For all objects C ∈ C, the identity morphism 1C is an admissible monic.
[E0op] For all objects C ∈ C, the identity morphism 1C is an admissible epic.

[E1] The class of admissible monics is closed under compositions.
[E1op] The class of admissible epics is closed under compositions.
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[E2] The push-out of an admissible monic along an arbitrary morphism exists and 
yields an admissible monic.

[E2op] The pull-back of an admissible epic along an arbitrary morphism exists and yields 
an admissible epic.

Elements of E are called short exact sequences.
Let (C, E ) and (C′, E ′) be exact categories. An (additive) functor F : C → C′ is called 

exact if F (E ) ⊆ E ′. Let Ab be the category of abelian groups with the canonical exact 
structure. An object P of an exact category C is called projective if the represented 
functor HomC(P, −) : C → Ab is exact. Dually an object I of an exact category C
is called injective if the corepresented functor HomC(−, I) : C → Ab is exact. An exact 
category (C, E ) has enough projectives if for any X ∈ ob C there exists an admissible epic 
P → X in C with P projective. Dually, (C, E ) has enough injectives if for any X ∈ ob C
there exists an admissible monic X → I in C with I injective. An exact category is 
Frobenius if it has enough projectives and injectives and moreover the projectives coincide 
with the injectives. For a Frobenius category C, the corresponding stable category C is 
the category whose objects are the objects of C and morphisms are given by, for any 
A, B ∈ ob C, HomC(A, B) = HomC(A, B)/P (A, B), where P (A, B) is the subgroup of 
morphisms A → B that factor through a projective object of C (see [22]). For basic 
notions and terminology on triangulated or derived categories we refer to [22] and [42].

3. From C to C[ε]n

Let C be an additive category and n � 2. We introduce two functors between C and 
C[ε]n, which will be used for a complete description of the projective and injective objects 
of C[ε]n.

(1) The forgetful functor F : C[ε]n → C is defined on the objects (X, εX) of C[ε]n by 
F (X, εX) = X and on the morphisms f in C[ε]n by F (f) = f .

(2) We define the augmenting functor T : C → C[ε]n, which takes an object X of C to 
the object T (X) = (X⊕n, εX⊕n) of C[ε]n with X⊕n = X ⊕X ⊕ · · · ⊕X︸ ︷︷ ︸

n

and

εX⊕n :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . . . . .

...
0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n,

and takes a morphism f in C to the morphism
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⎛
⎜⎜⎜⎜⎝

f 0 · · · 0
0 f · · · 0
...

...
. . .

...
0 0 · · · f

⎞
⎟⎟⎟⎟⎠

n×n

in C[ε]n.

3.1. Two-sided adjoints and the consistency of properties

In this subsection, we generalize the results about differential objects in [37, Chapter 2]
to the case for higher differential objects.

Proposition 3.1. Both pairs (F, T ) and (T, F ) are adjoint pairs.

Proof. Fix (X, εX) ∈ ob C[ε]n and Y ∈ ob C.
Firstly we show that (F, T ) is an adjoint pair. To this end, we need to find an isomor-

phism φ : HomC(FX, Y ) → HomC[ε]n(X, TY ) which is natural in both X and Y . Given 
f ∈ HomC(FX, Y ), we define

φ(f) =

⎛
⎜⎜⎜⎜⎝

fεX
n−1

fεX
n−2

...
f

⎞
⎟⎟⎟⎟⎠ .

It is easy to verify that φ is well defined. Moreover, let φ−1 : HomC[ε]n(X, TY ) →
HomC(FX, Y ) be given by

φ−1(g) = gn for g =

⎛
⎜⎜⎜⎜⎝

g1
g2
...
gn

⎞
⎟⎟⎟⎟⎠ ∈ HomC[ε]n(X,TY ).

It is obvious that φ−1φ = 1. On the other hand, since g ∈ HomC[ε]n(X, TY ), the equality 
εY ⊕ng = gεX implies g1εX = 0 and giεX = gi−1 for any 2 � i � n. Thus we have

gnεX
i = gn−1εX

i−1 = · · · = gn−i+1εX = gn−i

for any 1 � i � n −1, which implies φφ−1 = 1. Now we will check the naturality of φ, let 
α : (X, εX) → (X ′, εX′) be a morphism in C[ε]n. Then εX′α = αεX . For any morphism 
f ∈ HomC(FX ′, Y ), we have
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HomC[ε]n(α, TY )φ(f) = HomC[ε]n(α, TY )(

⎛
⎜⎜⎜⎜⎝

fεn−1
X′

fεn−2
X′

...
f

⎞
⎟⎟⎟⎟⎠)

=

⎛
⎜⎜⎜⎜⎝

fεn−1
X′ α

fεn−2
X′ α
...
fα

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

fαεn−1
X

fαεn−2
X
...
fα

⎞
⎟⎟⎟⎟⎠ = φHomC(Fα, Y )(f).

On the other hand, let β : Y → Y ′ be a morphism in C. For any morphism f ∈
HomC(FX, Y ), we have

HomC[ε]n(X,Tβ)φ(f) = HomC[ε]n(X,Tβ)(

⎛
⎜⎜⎜⎜⎝

fεn−1
X

fεn−2
X
...
f

⎞
⎟⎟⎟⎟⎠)

=

⎛
⎜⎜⎜⎜⎝

βfεn−1
X

βfεn−2
X
...
βf

⎞
⎟⎟⎟⎟⎠ = φHomC(FX, β)(f).

The arguments above induce the following commutative diagram

HomC(FX ′, Y )
HomC(Fα,Y )

φ

HomC(FX, Y )
HomC(FX,β)

φ

HomC(FX, Y ′)

φ

HomC[ε]n(X ′, TY )
HomC[ε]n (α,TY )

HomC[ε]n(X,TY )
HomC[ε]n (X,Tβ)

HomC[ε]n(X,TY ′).

For any f = (f1, f2, · · · , fn) ∈ HomC[ε]n(TY, X), let ψ : HomC[ε]n(TY, X) →
HomC(Y, FX) be given by ψ(f) := f1 ∈ HomC(Y, FX). Similarly, we have that ψ is 
an isomorphism which is natural in X and Y . So (T, F ) is also an adjoint pair. �

These two functors F and T defined above are useful in transferring an exact structure 
in the initial category C to C[ε]n. Let (C, E ) be an exact category, and let EF be the class 
of pairs of composable morphisms in C[ε]n that become short exact sequences in C via 
the forgetful functor F .

Lemma 3.2. Let (C, E ) be an exact category. Then the following statements hold.

(1) (C[ε]n, EF ) is an exact category.
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(2) F : C[ε]n → C is exact.
(3) T : C → C[ε]n is exact.

Proof. (1) Let us first show that EF is a class of kernel-cokernel pairs. Suppose that 
A i→ B

p→ C is a pair of morphisms in C[ε]n such that (i, p) ∈ EF . Then pi = 0 in C[ε]n. 
Let i′ : A′ → B be a morphism in C[ε]n such that pi′ = 0. Since i is the kernel of p in C, 
there exists a unique morphism φ ∈ HomC(A′, A) such that iφ = i′. Thus

iεAφ = εBiφ = εBi
′ = i′εA′ = iφεA′ .

As i is the kernel of p in C, i is left cancelable. So εAφ = φεA′ . It means that φ is a 
morphism in C[ε]n. Consequently, i is the kernel of p in C[ε]n. By a dual argument, we 
have that p is the cokernel of i in C[ε]n. Furthermore, it is easy to observe that EF is 
closed under isomorphisms. Now we turn to show that (C[ε]n, EF ) satisfies all the axioms 
of Definition 2.1.

It is easy to verify directly that [E0] and [E0op] hold.
[E1] Let i1 : A → M and i2 : M → B be admissible monics in C[ε]n. Then they are 

also admissible monics in C. Set i := i2i1. Since C is an exact category, we have a short 
exact sequence

A
i→ B

p→ C

in C. Since pεBi = piεA = 0 and p is a cokernel of i in C, there exists a morphism 
εC : C → C such that εCp = pεB. Thus

εC
np = εC

n−1pεB = · · · = pεB
n = 0.

The fact that p is right cancelable implies εCn = 0. So (C, εC) is an n-th differential 
object and i is an admissible monic in C[ε]n.

Dually, we get [E1op].
[E2] Given any f ∈ HomC[ε]n(A, A′) and an admissible monic i ∈ HomC[ε]n(A, B). 

There exists a push-out diagram

A
i

f

B

f ′

A′ i′

B′

(3.1)

in C such that i′ is an admissible monic. Since

i′εA′f = i′fεA = f ′iεA = f ′εBi,
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by the universal property of push-outs in C there exists a unique morphism εB′ : B′ → B′

in C such that εB′i′ = i′εA′ and f ′εB = εB′f ′. Note that

εB′ni′ = εB′n−1i′εA′ = · · · = i′εA′n = 0 and

εB′nf ′ = εB′n−1f ′εB = · · · = i′εB
n = 0.

By the universal property of push-outs in C again, εB′n = 0 and thus the diagram (3.1) is 
a commutative diagram in C[ε]n. Next, we shall prove that the diagram (3.1) enjoys the 
appropriate universal property also in C[ε]n. Given (X, εX) ∈ ob C[ε]n and two morphisms 
u : A′ → X, v : B → X of C[ε]n such that uf = vi. Then there exists a unique morphism 
w : B′ → X in C such that wi′ = u and wf ′ = v. Then

(εXw − wεB′)i′ = εXwi′ − wεB′i′ = εXu− wi′εA′ = εXu− uεA′ = 0 and

(εXw − wεB′)f ′ = εXwf ′ − wεB′f ′ = εXv − wf ′εB = εXv − vεB = 0.

It follows that εXw − wεB′ = 0 by the universal property of push-outs, proving the 
existence of the push-out of an admissible monic i along f . The reasoning in [E1] will 
ensure that i′ is also an admissible monic.

Dually, we get [E2op].
(2) It follows directly from the definition of the exact structure in C[ε]n.
(3) Let

A
i→ B

p→ C

be a short exact sequence in C. Applying the functor T to it yields a sequence

A⊕n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i 0 · · · 0
0 i · · · 0
...

...
. . .

...
0 0 · · · i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

B⊕n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p 0 · · · 0
0 p · · · 0
...

...
. . .

...
0 0 · · · p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

C⊕n

(3.2)

in C[ε]n. We deduce from [14, Proposition 2.9] that (3.2) is also a short exact sequence 
in C[ε]n. Therefore T is an exact functor. �

According to [14,28], an additive category C is called idempotent complete if every 
idempotent endomorphism e = e2 of an object X ∈ ob C splits, that is, there exists a 
factorization

X
π−→ Y

ι−→ X
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of e with πι = 1Y ; and C is called weakly idempotent complete if every retraction has 
a kernel or equivalently every coretraction has a cokernel. In particular, any abelian 
category is idempotent complete.

Lemma 3.3. The following statements hold.

(1) If C is weakly idempotent complete, then C[ε]n is weakly idempotent complete.
(2) If C is idempotent complete, then C[ε]n is idempotent complete.

Proof. (1) Let C be weakly idempotent complete and r : B → C a retraction in C[ε]n. 
Indeed, r is a retraction in C, then it has a kernel i : A → B in C. Since rεBi = εCri = 0, 
there exists a morphism εA : A → A in C such that εBi = iεA. Because

iεA
n = εBiεA

n−1 = · · · = εB
ni = 0,

we have εAn = 0 and (A, εA) ∈ ob C[ε]n. Now let i′ : A′ → B be a morphism in C[ε]n

such that ri′ = 0. Since i is a kernel of r in C, there exists a unique morphism u : A′ → A

in C such that iu = i′. Since

i(εAu− uεA′) = iεAu− iuεA′ = εBiu− i′εA′ = εBi
′ − εBi

′ = 0,

we have that εAu − uεA′ = 0 and u is a morphism in C[ε]n. So i is also a kernel of r in 
C[ε]n.

(2) Assume that C is idempotent complete. Let e be an idempotent endomorphism of 
(X, εX). Restricting to C, there exists an object Y ∈ ob C and morphisms

X
π−→ Y

ι−→ X

in C such that ιπ = e and πι = 1Y . Take εY = πεXι. Using εXe = eεX and εXn = 0, we 
have εY n = 0. It is straightforward to check that π and ι become morphisms in C[ε]n. �

Next, we turn to study whether C[ε]n is closed under direct summands whenever C
enjoys the same property. This is established in the following proposition.

Proposition 3.4. Let C be idempotent complete. Then for any X ∈ ob C, the direct sum-
mands of X are in 1-1 correspondence with the direct summands of TX up to conjugation.

Proof. By Lemma 3.3 and [14, Definition 6.1], it is enough to prove that the idempotents 
of EndC(X) are in 1-1 correspondence (up to conjugation) with the idempotents of 
EndC[ε]n(TX). We define a map θ : EndC(X) → EndC[ε]n(TX) by
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f �→

⎛
⎜⎜⎜⎜⎝

f 0 · · · 0
0 f · · · 0
...

...
. . .

...
0 0 · · · f

⎞
⎟⎟⎟⎟⎠ .

It is an injective map sending idempotents to idempotents. Now given f = (aij) ∈
EndC[ε]n(TX), the requirement fεTX = εTXf translates to

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n

...
...

...
. . .

...
an1 an2 an3 · · · ann

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

a12 a13 · · · a1n 0
a22 a23 · · · a2n 0
a32 a33 · · · a3n 0
...

...
. . .

. . .
...

an2 an3 · · · ann 0

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n

...
...

...
. . .

...
an−1 1 an−1 2 an−1 3 · · · an−1 n

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n

...
...

...
. . .

...
an1 an2 an3 · · · ann

⎞
⎟⎟⎟⎟⎟⎠

.

It follows that aij = 0 for i < j and

a11 = a22 = · · · = ann, a21 = a32 = · · · = an n−1,

a31 = a42 = · · · = an n−2, · · · , an−1 1 = an2.

Furthermore suppose that f is an idempotent of EndC[ε]n(TX). Then the equality f2 = f

implies that f = (aij) may has the following form

f =

⎛
⎜⎜⎜⎜⎜⎜⎝

e 0 0 · · · 0
a e 0 · · · 0
a31 a e · · · 0
...

...
...

. . .
...

an1 an2 an3 · · · e

⎞
⎟⎟⎟⎟⎟⎟⎠

with e2 = e and ae + ea = a. Then eae = 0. Let

g1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
ea− ae 1 0 · · · 0

0 ea− ae 1 · · · 0
...

...
...

. . .
...

0 0 · · · ea− ae 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then g1 is obviously invertible with
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g−1
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
ae− ea 1 0 · · · 0

(ae− ea)2 ae− ea 1 · · · 0
...

...
...

. . .
...

(ae− ea)n−1 (ae− ea)n−2 · · · ae− ea 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Hence we get

g1fg
−1
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

e 0 0 · · · 0
0 e 0 · · · 0
a′31 0 e · · · 0
...

...
...

. . .
...

a′n1 a′n2 · · · 0 e

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Continuing in this way, we may find an automorphism g of EndC[ε]n(TX) such that

gfg−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

e 0 0 · · · 0
0 e 0 · · · 0
0 0 e · · · 0
...

...
...

. . .
...

0 0 · · · 0 e

⎞
⎟⎟⎟⎟⎟⎟⎠

. �

The following observation is useful in the sequel.

Lemma 3.5. Let (C, E ) be an exact category and (X, εX) ∈ ob C[ε]n. Then there exists 
two short exact sequences in C[ε]n as follows:

X ′ i′X−→ TX
p′
X−→ X, (3.3)

where X ′ = X⊕n−1,

i′X =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · −εX
0 0 · · · 1
... . .

.
. .
. ...

−εX 1 · · · 0
1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

n×(n−1)

, p′X = (1, εX , εX
2, · · · , εXn−1),

εX′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−εX 1 0 · · · 0
−εX

2 0 1 · · · 0
...

...
...

. . .
...

−εX
n−2 0 0 · · · 1

−εX
n−1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, and
(n−1)×(n−1)
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X
i′′X−→ TX

p′′
X−→ X ′′, (3.4)

where X ′′ = X⊕n−1,

i′′X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

εX
n−1

εX
n−2

...
εX

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, p′′X =

⎛
⎜⎜⎜⎜⎝

0 0 · · · 1 −εX
...

... . .
. ...

...
0 1 · · · 0 0
1 −εX · · · 0 0

⎞
⎟⎟⎟⎟⎠

(n−1)×n

,

εX′′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−εX

n−1 −εX
n−2 −εX

n−3 · · · −εX

⎞
⎟⎟⎟⎟⎟⎟⎠

(n−1)×(n−1)

.

Proof. We just prove the existence of (3.3). Clearly (C, EF ) is an exact category by 
Lemma 3.2(1). It is routine to check that (X ′, εX′) is an n-th differential object and 
(3.3) is a sequence in C[ε]n. We also have the following diagram

X ′ i′X

1X′

TX

h

p′
X

X

1X

X ′ i
TX

p=(0,0,···0,1)
X

in C with

i =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

n×(n−1)

, h =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
0 0 · · · 1 εX
...

... . .
.

. .
. ...

0 1 · · · εX
n−3 εX

n−2

1 εX · · · εX
n−2 εX

n−1

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

.

Since h is an isomorphism and

X ′ i−→ TX
p−→ X

is a short exact sequence in C, we obtain that

X ′ i′X−→ TX
p′
X−→ X

is a short exact sequence in C[ε]n. �
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Now, we are able to describe completely the projective and injective objects of C[ε]n.

Proposition 3.6. Let (C, E ) be an idempotent complete exact category. Then we have

(1) P is a projective object of (C[ε]n, EF ) if and only if P ∼= T (Q) for some projective 
object Q of C.

(2) I is an injective object of (C[ε]n, EF ) if and only if I ∼= T (E) for some injective object 
E of C.

Proof. It follows from Lemmas 3.2 and 3.3 that (C[ε]n, EF ) is an idempotent complete 
exact category.

(1) Let Q be a projective object of C and P ∼= T (Q). Since

HomC[ε]n(P,−) ∼= HomC[ε]n(T (Q),−) ∼= HomC(Q,F (−))

by Proposition 3.1 and since F is an exact functor by Lemma 3.2(2), P is a projective 
object of (C[ε]n, EF ). Conversely, let P be a projective object of (C[ε]n, EF ). Since

HomC(F (P ),−) ∼= HomC[ε]n(P, T (−))

by Proposition 3.1 and since T is an exact functor by Lemma 3.2(3), F (P ) is a projective 
object of C. By Lemma 3.5, there exists a short exact sequence

P ′ i′P−→ TF (P ) p′
P−→ P

in C[ε]n. It splits and P is isomorphic to a direct summand of TF (P ). It follows from 
Proposition 3.4 that there exists a projective object Q of C such that P ∼= T (Q).

(2) It is dual to (1). �
3.2. Flat and Gorenstein flat modules

We now use Proposition 3.6 to prove the following corollary.

Corollary 3.7. Let R be a ring and M ∈ Mod(R[t]/(tn)). Then M is flat in Mod(R[t]/(tn))
if and only if M ∼= T (N) for some flat module N in ModR.

Proof. If M is flat in Mod(R[t]/(tn)), then M ∼= lim
−→

Pi with {Pi} a family of projective 

modules in Mod(R[t]/(tn)). By Proposition 3.6(1), there exists a projective left R-module 
Qi such that Pi = T (Qi) for any i. Since the functor T preserves direct limits, we have

M ∼= lim
−→

Pi
∼= lim

−→
T (Qi) ∼= T (lim

−→
Qi).

As limQi is flat in ModR, the sufficiency follows.

−→
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Conversely, if M ∼= T (N) for some flat object N in ModR, then N ∼= lim
−→

Qi with 

{Qi} a family of projective modules in ModR. Thus

M ∼= T (N) ∼= T (lim
−→

Qi) ∼= lim
−→

T (Qi).

By Proposition 3.6(1), T (Qi) is projective in Mod(R[t]/(tn)). So M is flat in Mod(R[t]/
(tn)). �

For any m � 0, recall that a left and right Noetherian ring R is called m-Gorenstein if 
the left and right self-injective dimensions of R are at most m, and R is called Gorenstein
if it is m-Gorenstein for some m. For a ring R, we use Cen(R) to denote the center of R. 
Recall that a ring R is called an Artin algebra if it is a finitely generated Cen(R)-module 
with Cen(R) a commutative Artin ring. Clearly a ring R is an Artin algebra if and only 
if it is a finitely generated C-module for some commutative Artin ring C ([3]).

Corollary 3.8. For any ring R, we have

(1) R is left (resp. right) Noetherian if and only if R[t]/(tn) is left (resp. right) Noethe-
rian.

(2) For any m � 0, R is m-Gorenstein if and only if R[t]/(tn) is m-Gorenstein.
(3) R is left (resp. right) perfect if and only if R[t]/(tn) is left (resp. right) perfect.
(4) R is left (resp. right) Artinian if and only if R[t]/(tn) is left (resp. right) Artinian.
(5) R is an Artin algebra if and only if R[t]/(tn) is an Artin algebra.
(6) R is left (resp. right) coherent if and only if R[t]/(tn) is left (resp. right) coherent.

Proof. (1) By [9, Theorem 1.1], it suffices to show that any direct sum of injective 
modules in ModR is injective if and only if any direct sum of injective modules in 
Mod(R[t]/(tn)) is injective.

Let R be left Noetherian and {Ii}i∈I a family of injective modules in Mod(R[t]/(tn)). 
By Proposition 3.6(2), we have Ii ∼= T (Ei) for some injective module Ei in ModR for 
any i ∈ I. By [9, Theorem 1.1], ⊕i∈IEi is injective in ModR. Note that the functor T
preserves direct sums by Proposition 3.1. So

⊕i∈IIi ∼= ⊕i∈IT (Ei) ∼= T (⊕i∈IEi)

is injective by Proposition 3.6(2) again.
Conversely, let R[t]/(tn) be left Noetherian and {Ei}i∈I a family of injective modules 

in ModR. Then T (⊕i∈IEi) ∼= ⊕i∈IT (Ei) is injective in Mod(R[t]/(tn)). By Proposi-
tion 3.1 we have

HomR(−, FT (⊕i∈IEi)) ∼= HomR[ε]n(T (−), T (⊕i∈IEi)).
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So FT (⊕i∈IEi) is injective in ModR. Furthermore, since F is the forgetful functor, 
⊕i∈IEi is injective in ModR.

(2) By (1), we have that R is left and right Noetherian if and only if R[t]/(tn) is left 
and right Noetherian. Now using [18, Theorem 12.3.1] and [43, Theorem 3.11(iii)], we 
get that R is m-Gorenstein if and only if R[t]/(tn) is m-Gorenstein.

(3) We know from [1, Theorem 28.4] that R is left perfect if and only if every flat 
left R-module is projective. Assume that R[t]/(tn) is left perfect and M ∈ ModR is flat. 
Then T (M) is a flat module in Mod(R[t]/(tn)) by Corollary 3.7. So T (M) is projective 
and there exists a projective left R-module Q such that T (M) ∼= T (Q). Thus FT (M) is 
projective in ModR, and therefore M is a projective left R-module. The converse may 
be proved similarly.

(4) Note that a ring R is left (resp. right) Artinian if and only if it is left (resp. right) 
Noetherian and right (resp. left) perfect (cf. [8, Theorem P] and [13, Theorem 6]). Thus 
the assertion follows from (1) and (3).

(5) It is easy to verify that Cen(R[t]/(tn)) = Cen(R)[t]/(tn). Thus by (4), we have that 
Cen(R) is a commutative Artinian ring if and only if Cen(R[t]/(tn)) is a commutative 
Artinian ring. In addition, we have that R is a finitely generated Cen(R)-module if and 
only if R[t]/(tn) is a finitely generated Cen(R[t]/(tn))-module. The assertion follows.

(6) By [16, Theorem 2.1], R is right coherent if and only if the direct product of 
any family of flat left R-modules is flat. Assume that R[t]/(tn) is right coherent and 
{Mi}i∈I is a family of flat left R-modules. Since the functor T preserves direct products, 
T (

∏
i∈I Mi) ∼=

∏
i∈I T (Mi) is flat. By Corollary 3.7, there exists a flat left R-modules 

S such that T (
∏

i∈I Mi) ∼= T (S). Thus 
∏

i∈I Mi is also flat as a left R-module. The 
converse may be proved similarly. �
Remark 3.9. When we take R in Corollary 3.8(2) to be KQ, that is, the path algebra over 
a field K, then KQ is 1-Gorenstein, and so KQ[t]/(t2) is also 1-Gorenstein. It recovers 
part of [35, Theorem 2].

We recall from [18,19] that a left R-module M is called Gorenstein flat if there exists 
an exact sequence

F : · · · → F1 → F0 → F 0 → F 1 → · · ·

in ModR with all Fi, F i flat such that M ∼= Im(F0 → F 0) and E ⊗R F is exact for any 
injective right R-module E. Furthermore, the Gorenstein flat dimension GfdR M of a 
left R-module M is defined to be inf{n � 0 | there exists an exact sequence

0 → Gn → Gn−1 → · · · → G0 → M → 0

in ModR with all Gi Gorenstein flat}. If no such an integer exists, then set GfdR M = ∞. 
We write (−)+ := HomZ(−, Q/Z), where Z is the additive group of integers and Q is 
the additive group of rational numbers.
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Theorem 3.10. Let R be a ring and M ∈ Mod(R[t]/(tn)). Then M is Gorenstein flat in 
Mod(R[t]/(tn)) if and only if M is Gorenstein flat in ModR.

Proof. Assume that M is Gorenstein flat in Mod(R[t]/(tn)). Then there exists an exact 
sequence

F : · · · → F1 → F0 → F 0 → F 1 → · · · (3.5)

in Mod(R[t]/(tn)) with all Fi, F i flat such that M ∼= Im(F0 → F 0) and I⊗R[t]/(tn)F is ex-
act for any injective right R[t]/(tn)-module I. Indeed, (3.5) is an exact sequence of flat left 
R-modules by Corollary 3.7. Let E be an injective right R-module. Then T (E) is injective 
right R[t]/(tn)-module by Proposition 3.6(2). So T (E) ⊗R[t]/(tn) F and (T (E) ⊗R[t]/(tn)
F)+ are exact. By the adjoint isomorphism theorem, HomR[t]/(tn)(F, T (E)+), and hence 
HomR[t]/(tn)(F, T (E+)), is exact. It follows from [43, Proposition 3.3] that HomR(F, E+)
is exact. By the adjoint isomorphism theorem again, (E ⊗R F)+ and E ⊗R F are exact. 
Consequently, we conclude that M is Gorenstein flat as a left R-module.

Conversely, assume that M is Gorensten flat in ModR and E is any injective right 
R-module. Then there exists an exact sequence

F : 0 → M
f0

−→ F 0 f1

−→ F 1 → · · ·

in ModR with all F i is flat such that TorR�1(E, M) = 0 and E ⊗R F is exact. Since all 
modules have flat covers by [12, Theorem 3], there exists an exact sequence

F′ : · · · → F ′
1 → F ′

0 → M → 0

in ModR with all F ′
i flat such that HomR(Q, F′) is exact for any flat left R-module Q. 

Notice that E ⊗R F′, and hence (E ⊗R F′)+, is exact, so HomR(F′, E+) is also exact by 
the adjoint isomorphism theorem. Then we deduce from [43, Lemma 3.7(ii)] that there 
exists an exact sequence

S : · · · → S1 → S0 → M → 0

in Mod(R[t]/(tn)) with all Si flat such that HomR[t]/(tn)(S, T (E)+) is exact. By Propo-
sition 3.6(2), HomR[t]/(tn)(S, I+) is exact for any injective right R[t]/(tn)-module I. By 
the adjoint isomorphism theorem, we have that (I⊗R[t]/(tn)S)+, and hence I⊗R[t]/(tn)S, 
is also exact. It yields TorR[t]/(tn)

�1 (I, M) = 0 for any injective right R[t]/(tn)-module I.
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On the other hand, there exists an exact sequence

0 M

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f0εM
n−1

...
f0εM
f0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

TF0 X 0

(3.6)

in Mod(R[t]/(tn)). Since E⊗RF is exact, any morphism in ModR from M to E+ can be 
extended to F0. Also it is easy to verify that any morphism in ModR from M to E+ can 
be extended to TF0. Hence we have TorR�1(E, X) = 0 and HomR[t]/(tn)((3.6), T (E)+) is 
exact by [43, Lemma 3.2]. Since M is Gorenstein flat in ModR, X has finite Gorenstein 
flat dimension. Because the subcategory of ModR consisting of Gorenstein flat modules 
is closed under extensions by [36, Theorem 3.11], it follows from [11, Theorem 2.8] that X
is Gorenstein flat in ModR. Repeating this process, we may construct an exact sequence

F′′ : 0 → X → F ′′
0 → F ′′

1 → · · ·

in Mod(R[t]/(tn)) with all F ′′
i flat such that HomR[t]/(tn)(F′′, T (E)+) is exact for any 

injective right R-module E. Consequently, M is Gorenstein flat in Mod(R[t]/(tn)). �
If R is a commutative Noetherian ring, it is derived from [23, Corollary 2.17] that 

GfdR[t]/(t2) M = GfdR M for any R-module M . Now, we will generalize this result to a 
more general setting by applying Theorem 3.10.

Corollary 3.11. Let R be a ring. Then for any M ∈ Mod(R[t]/(tn)), we have

GfdR[t]/(tn) M = GfdR M.

3.3. Homological conjectures

Lemma 3.12. Let R be a ring and M ∈ ModR. If f : M → E0(M) is the injective 
envelope of M in ModR, then T (f) : T (M) → T (E0(M)) is the injective envelope of 
T (M) in Mod(R[t]/(tn)).

Proof. Let f : M → E0(M) be the injective envelope of M in ModR. It fol-
lows from Proposition 3.6 that T (E0(M)) is injective in Mod(R[t]/(tn)). Now let 
g ∈ HomMod R[ε]n(T (E0(M)), T (E0(M)) such that gT (f) = T (f). Since gεT (E0(M)) =
εT (E0(M))g, by the proof of Proposition 3.4, we may assume that g has the following 
form
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g =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 0 0 · · · 0
a2 a1 0 · · · 0
a3 a2 a1 · · · 0
...

...
...

. . .
...

an an−1 an−2 · · · a1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The equation gT (f) = T (f) gives that a1f = f . As f is the injective envelope of M , a1 is 
an isomorphism. So g is also an isomorphism. It implies that T (f) : T (M) → T (E0(M))
is the injective envelope of T (M) in Mod(R[t]/(tn)). �

In the rest of this subsection, R is an Artinian algebra and

0 → RR → E0(R) → E1(R) → · · · → Ei(R) → · · · (3.7)

is a minimal injective resolution of R in modR. By Lemma 3.12, we immediately get a 
minimal injective resolution

0 → T (R) → T (E0(R)) → T (E1(R)) → · · · → T (Ei(R)) → · · · (3.8)

of T (R) in mod(R[t]/(tn)). For a module M ∈ modR, we use pdR M and idR M to 
denote the projective and injective dimensions of M respectively. The following are some 
long-standing homological conjectures.

(1) Finitistic Dimension Conjecture (FDC) [8]: fin.dimR := {pdR M | M ∈ modR with 
pdR M < ∞} < ∞.

(2) Strong Nakayama Conjecture (SNC) [17]: For any 0 
= M ∈ modR, there exists 
n � 0 such that ExtnR(M, R) 
= 0.

(3) Generalied Nakayama Conjecture (GNC) [4]: Any indecomposable injective module 
in modR occurs as a direct summand of some Ei(R).

(4) Auslander-Gorenstein Conjecture (AGC) [6]: If R satisfies the Auslander condition 
(that is, pdR Ei(R) � i for any i � 0), then R is Gorenstein.

(5) Nakayama Conjecture (NC) [32]: If Ei(R) is projective for any i � 0, then R is 
self-injective.

(6) Gorenstein Symmetric Conjecture (GSC) [5]: idR R < ∞ if and only if idRop R < ∞
(equivalently, idR R = idRop R by [45, Lemma A]).

Auslander and Reiten posed many conjectures, but they did not name the fourth 
conjecture above. For the sake of avoiding confusion and convenience, we name it as 
Auslander-Gorenstein Conjecture. In general, we have the following implications:

FDC SNC GNC AGC NC

GSC.
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By [5, Proposition 6.10] and [44, Theorem 3.4.3], we have FDC ⇒ GSC and 
FDC ⇒ SNC ⇒ GNC respectively. It is easy to see that NC is a special case of
AGC. Assume that R satisfies the Auslander condition. Let {Q1, · · · , Qs} be a complete 
set of non-isomorphic indecomposable injective modules in modR. If R satisfies GNC, 
then each Qi occurs as a direct summand of some Eti(R). Set m := max{t1, · · · , ts}. 
Then pdR Qi ≤ m for any 1 � i � s. Thus the projective dimension of any injective 
module in modR is at most m. It follows that the injective dimension of any projective 
module in modRop is also at most m, in particular, idRop R � m. So R is m-Gorenstein 
by [6, Corollary 5.5(b)]. This proves GNC ⇒ AGC.

Theorem 3.13.

(1) R satisfies FDC if and only if R[t]/(tn) satisfies FDC.
(2) R satisfies SNC if and only if R[t]/(tn) satisfies SNC.
(3) R satisfies GNC if and only if R[t]/(tn) satisfies GNC.
(4) R satisfies AGC if and only if R[t]/(tn) satisfies AGC.
(5) R satisfies NC if and only if R[t]/(tn) satisfies NC.
(6) R satisfies GSC if and only if R[t]/(tn) satisfies GSC.

Proof. Note that R[t]/(tn) as a left R[t]/(tn)-module is isomorphic to the projective 
object T (R) in Mod(R[t]/(tn)). By Corollary 3.8(5), we have that R is an Artinian 
algebra if and only if so is R[t]/(tn). In addition, we always treat a left R[t]/(tn)-module 
A as an n-th differential object (A, εA).

(1) Suppose that R satisfies FDC and fin.dimR = n(< ∞). Let A ∈ mod(R[t]/(tn))
with pdR[t]/(tn) A < ∞. By Proposition 3.6, we have the following projective resolution

0 → T (Pm) → · · · → T (P1) → T (P0) → (A, εA) → 0

of (A, εA) in mod(R[t]/(tn)) such that each Pi is projective left R-module. Indeed, the 
above resolution is also a projective resolution of A as a left R-module. Thus we have 
m � n and fin.dimR[t]/(tn) � n.

Conversely, suppose that R[t]/(tn) satisfies FDC and fin.dimR[t]/(tn) = n(< ∞). Let 
A ∈ modR with pdR A < ∞. Thus there exists a projective resolution

0 → Pm → · · · → P1 → P0 → A → 0

of A in modR. Applying the exact functor T to it yields a projective resolution

0 → T (Pm) → · · · → T (P1) → T (P0) → T (A) → 0

of T (A) in mod(R[t]/(tn)). Thus we have m � n and fin.dimR � n.
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(2) Suppose that R satisfies SNC. Let 0 
= A ∈ mod(R[t]/(tn)). Then there ex-
ists n � 0 such that ExtnR(A, R) 
= 0. If n � 1, then by [43, Theorem 3.9], we have 
ExtnR[t]/(tn)(A, R[t]/(tn)) 
= 0. If n = 0, then there exists 0 
= f ∈ HomR(A, R). Thus

0 
=

⎛
⎜⎜⎜⎜⎝

fεn−1
A
...

fεA
f

⎞
⎟⎟⎟⎟⎠ ∈ HomMod R[ε]n(A, TR)

and HomR[t]/(tn)(A, R[t]/(tn)) 
= 0.
Conversely, suppose that R[t]/(tn) satisfies SNC. Let 0 
= A ∈ modR. Then 0 
=

T (A) ∈ mod(R[t]/(tn)) and there exists n � 0 such that ExtnR[t]/(tn)(T (A), R[t]/(tn))

= 0. If n � 1, then by [43, Theorem 3.9], we have ExtnR(A, R) 
= 0. For the case n = 0, 
it is trivial that HomR(A, R) 
= 0.

(3) Suppose that R satisfies GNC. Let I be an indecomposable injective left 
R[t]/(tn)-module. Then I ∼= T (E) for some indecomposable injective left R-module 
E by Proposition 3.6. Since E is isomorphic to a direct summand of some Ei(R) by 
assumption, we have that T (E) is isomorphic to a direct summand of T (Ei(R)).

Conversely, suppose that R[t]/(tn) satisfies GNC. Let E be an indecomposable in-
jective left R-module. Then T (E) is an indecomposable injective left R[t]/(tn)-module. 
Since T (E) is isomorphic to a direct summand of some T (Ei(R)) by assumption, we 
have that E is isomorphic to a direct summand of Ei(R).

(4) Suppose that R satisfies AGC. If pdR[t]/(tn) T (Ei(R)) � i for any i � 0, it follows 
from Proposition 3.6 that pdR T (Ei(R)) � i for any i � 0. Hence pdR Ei(R) � i for any 
i � 0. Since R is Gorenstein by assumption, we have that R[t]/(tn) is Gorenstein as well 
by Corollary 3.8(2).

Conversely, suppose that R[t]/(tn) satisfies AGC. If pdR Ei(R) � i for any i � 0, then 
pdR[t]/(tn) T (Ei(R)) � i for any i � 0. Since R[t]/(tn) is Gorenstein by assumption, we 
have that R is Gorenstein by Corollary 3.8(2) again.

(5) Suppose that R satisfies NC. If T (Ei(R)) is a projective left R[t]/(tn)-module 
for any i � 0, then in light of Proposition 3.6(1), we have that Ei(R) is a projective 
left R-module for any i � 0. By assumption, R is self-injective. Then R[t]/(tn) is also 
self-injective by Corollary 3.8(2).

Conversely, suppose that R[t]/(tn) satisfies NC. If Ei(R) is a projective left R-module 
for any i � 0, then T (Ei(R)) is a projective left R[t]/(tn)-module for any i � 0. By 
assumption, R[t]/(tn) is self-injective. Then R is also self-injective by Corollary 3.8(2) 
again.

(6) It follows directly from Corollary 3.8(2). �
The results from Corollary 3.8 to Theorem 3.13 show that R and R[t]/(tn) have many 

homological properties in common. However, it is not always true. For example, let K
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be a field. Then the global dimension of K is zero, but K[t]/(tn) (where n � 2) is a 
self-injective Nakayama algebra with infinite global dimension ([2, Chapter V]).

4. Triangulated categories

In this section, we will introduce the homotopy category of C[ε]n and study how this 
homotopy category is equivalent to the stable category of a Frobenius category.

Lemma 4.1. Let (C, E ) be an idempotent complete exact category. Then (C, E ) is a Frobe-
nius category if and only if (C[ε]n, EF ) is a Frobenius category.

Proof. Let (C, E ) be a Frobenius category and (X, εX) ∈ ob C[ε]n. By Lemmas 3.2(1) 
and 3.5, (C[ε]n, EF ) is an exact category and there exists an admissible epic TX

p′
X→ X in 

C[ε]n. Since (C, E ) is a Frobenius category, there exists an admissible epic P π→ X in C
with P projective. Thus we get an admissible epic T (P ) p

′
XT (π)−→ X in C[ε]n. It implies that 

(C[ε]n, EF ) has enough projectives. Dually, (C[ε]n, EF ) has enough injectives. Finally, an 
application of Proposition 3.6 gives that the projectives and injectives in C[ε]n coincide. 
So (C[ε]n, EF ) is a Frobenius category.

Conversely, let (C[ε]n, EF ) be a Frobenius category and M ∈ ob C. Then there exists an 
admissible epic P

p→ TM in C[ε]n with P projective. It follows from [14, Lemma 2.7] that 
there exists an admissible epic TM π→ M in C. Thus we get an admissible epic P

πp→ M

in C. It implies that C has enough projectives. Dually, C has enough injectives. With 
the aid of Proposition 3.6, we obtain that the projectives and injectives in C coincide. 
Therefore C is a Frobenius category. �

When C is a Frobenius category, Happel showed that the stable category C becomes 
a triangulated category ([22, Chapter I, Section 2]). In the following, we always assume 
that C is an exact category with trivial exact structure E t (that is, the short exact 
sequences are split exact sequences) and the induced exact structure via the forgetful 
functor F in C[ε]n is denoted by E t

F , that is, a sequence

0 → A → B → C → 0

belongs to E t
F when it splits in C.

Proposition 4.2. Let (C, E t) be an idempotent complete exact category. Then (C[ε]n, E t
F )

is a Frobenius category and C[ε]n is a triangulated category.

Proof. By the definition of E t
F , every object in C is both projective and injective. Thus C

is a Frobenius category, and therefore (C[ε]n, E t
F ) is a Frobenius category by Lemma 4.1. 

Moreover we have that C[ε]n is a triangulated category by [22, Chapter I, Section 2]. �
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Recall that a model structure on a category C is three subcategories of C called weak 
equivalences, cofibrations and fibrations that must satisfy some axioms, see [24, Definition 
1.1.3] for details. Next we recall some notions from [20]. Given an exact category (C, E ), 
by a thick subcategory of C we mean a class of objects W which is closed under direct 
summands and such that if two out of three of the terms in a short exact sequence are 
in W, then so is the third. Suppose that (C, E ) has a model structure. For an object 
X ∈ C, we say that X is trivial if 0 → X is a weak equivalence, X is cofibrant if 0 → X

is a cofibration, and X is fibrant if X → 0 is a fibration. Moreover, we say X is trivially 
cofibrant if it is both trivial and cofibrant, and X is trivially fibrant if it is both trivial 
and fibrant.

Definition 4.3. ([20]) Let (C, E ) be an exact category. An exact model structure on (C, E )
is a model structure in which each of the following holds.

(1) A map is a (trivial) cofibration if and only if it is an admissible monic with a 
(trivially) cofibrant cokernel.

(2) A map is a (trivial) fibration if and only if it is an admissible epic with a (trivially) 
fibrant kernel.

The following corollary points out that the Frobenius category (C[ε]n, E t
F ) has an exact 

model structure.

Corollary 4.4. Let (C, E t) be an idempotent complete exact category. Then there exists 
an exact model structure on (C[ε]n, E t

F ) given as follows.

(1) A cofibration (resp. trivial cofibration) is an admissible monomorphism (resp. with 
a cokernel projective).

(2) A fibration (resp. trivial fibration) is an admissible epimorphism (resp. with a kernel 
injective).

(3) The weak equivalences are then the maps g which factor as g = pi where i is a trivial 
cofibration and p is a trivial fibration.

Proof. First of all, it follows from Lemma 3.3 that (C[ε]n, E t
F ) is an idempotent complete 

exact category. Since (C[ε]n, E t
F ) is a Frobenius category by Proposition 4.2, the class W

of all projective (=injective) objects forms a thick subcategory of C[ε]n. It is trivial that 
(W, C[ε]n) and (C[ε]n, W) are complete cotorsion pairs. Then the assertions hold by [20, 
Theorem 3.3 and Corollary 3.4]. �

Now we are able to give an explicit description of the translation functor Σ in C[ε]n.

Corollary 4.5. Let (C, E t) be an idempotent complete exact category, and let X = (X, εX)
and Y = (Y, εY ) be objects in C[ε]n. Then we have
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(1) ΣX = (X ′′, εX′′), where X ′′ = X⊕n−1 and

εX′′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−εX

n−1 −εX
n−2 −εX

n−3 · · · −εX

⎞
⎟⎟⎟⎟⎟⎟⎠

(n−1)×(n−1)

.

(2) If f : X → Y , then Σf = g, where

g =

⎛
⎜⎜⎜⎜⎝

f 0 · · · 0
0 f · · · 0
...

...
. . .

...
0 0 · · · f

⎞
⎟⎟⎟⎟⎠

(n−1)×(n−1)

and the standard triangle associated to f is

X
f

−→ Y
u−→ Cone(f) v−→ ΣX

with

Cone(f) = Y ⊕X⊕n−1, εCone(f) =

⎛
⎜⎜⎜⎜⎜⎜⎝

εY f 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 −εX

n−1 −εX
n−2 · · · −εX

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

,

u =

⎛
⎜⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎟⎠ , v =

⎛
⎜⎜⎜⎜⎝

0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎠

(n−1)×n

.

Proof. (1) In view of Proposition 4.2, C[ε]n is a triangulated category. We also know 
from Lemma 3.5 that there exists a short exact sequence

X
i′′X−→ TX

p′′
X−→ X ′′

in C[ε]n. Since C is an exact category with trivial exact structure, every object in C
is injective. By Proposition 3.6(2), we have that TX injective. Then one easily has 
ΣX = (X ′′, εX′′) by [22, Chapter I, Section 2.2].
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(2) For f : X → Y , we have fεX = εY f . Then there exists a commutative diagram

X
i′′X

f

TX

h

p′′
X

X ′′

g

Y
i′′Y

TY
p′′
Y

Y ′′

in C[ε]n with

h =

⎛
⎜⎜⎜⎜⎝

f 0 · · · 0
0 f · · · 0
...

...
. . .

...
0 0 · · · f

⎞
⎟⎟⎟⎟⎠

n×n

, g =

⎛
⎜⎜⎜⎜⎝

f 0 · · · 0
0 f · · · 0
...

...
. . .

...
0 0 · · · f

⎞
⎟⎟⎟⎟⎠

(n−1)×(n−1)

.

So Σf = g. By [22, Chapter I, Section 2.5], the standard triangle is constructed by the 
following push-out diagram

X
i′′X

f

TX

h′

p′′
X ΣX

Y
u Cone(f) v ΣX.

By the proof of Lemma 3.2, it suffices to construct a push-out along with f and i′′X in 
C. Take

h′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 f

0 0 · · · 1 −εX
...

... . .
. ...

...
0 1 · · · 0 0
1 −εX · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

: TX → Y ⊕X⊕n−1(= Cone(f))

in C[ε]n. It is easy to see that h′i′′X = uf . Now let M ∈ ob C, α = (α1, α2, · · · , αn) :
TX → M and β : Y → M such that βf = αi′′X . We have to show that there exists a 
unique morphism γ = (γ1, γ2, · · · , γn) : Cone(f) → M such that γu = β and γh = α. 
Let

γ1 = β, γn = α1, γi = αn−i+1 + αn−iεX + · · · + α1εX
n−i

for 2 � i � n − 1. It is the morphism, as desired. �
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Definition 4.6. A morphism f : (X, εX) → (Y, εY ) in C[ε]n is called null-homotopic if 
there exists a morphism s : X → Y in C such that

f = εY
n−1s + εY

n−2sεX + · · · + sεX
n−1.

For morphisms f, g : X → Y in C[ε]n, we denote f ∼ g if f − g is null-homotopic. 
We denote by K(C[ε]n) the homotopy category, that is, the category consisting of n-th 
differential objects such that the morphism set between X, Y ∈ K(C[ε]n) is given by 
HomK(C[ε]n)(X, Y ) = HomC[ε]n(X, Y )/ ∼.

We close this section with the following theorem.

Theorem 4.7. Let (C, E t) be an idempotent complete exact category. Then the stable cat-
egory C[ε]n of the Frobenius category (C[ε]n, E t

F ) is the homotopy category K(C[ε]n).

Proof. It suffices to show that a morphism f : X → Y in C[ε]n is null-homotopic if 
and only if it factors through a projective object in C[ε]n. Assume that f : X → Y is 
null-homotopic. By definition, there exists a morphism s : X → Y in C such that

f = εY
n−1s + εY

n−2sεX + · · · + sεX
n−1.

Take

g =

⎛
⎜⎜⎜⎜⎝

sεX
n−1

...
sεX
s

⎞
⎟⎟⎟⎟⎠ : X → TY.

Then g is morphism in C[ε]n and f = p′Y g. Thus f factors through a projective object 
since TY is a projective object of C[ε]n. Now suppose that f factors through a projective 
object. Then f must factor through TY and thus there exists a morphism

g =

⎛
⎜⎜⎜⎜⎝

g1
g2
...
gn

⎞
⎟⎟⎟⎟⎠ : X → TY

in C[ε]n such that

f = p′Y g = g1 + εY g2 + · · · + εY
n−1gn.

Since εY ⊕ng = gεX , we have g1εX = 0 and gi+1εX = gi for any 1 � i � n − 1. Set 
s := gn. It follows that
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f = εY
n−1s + εY

n−2sεX + · · · + sεX
n−1

and f is null-homotopic. �
5. The derived category

In this section, A is an abelian category. We will introduce the derived category 
of A[ε]n as the Verdier quotient of the homotopy category K(A[ε]n) with respect to 
quasi-isomorphisms.

A sequence

0 → X → Y → Z → 0

in A[ε]n is exact if and only if

0 → FX → FY → FZ → 0

is exact in A. A[ε]n also forms an abelian category. The next definition essentially gen-
eralizes the notion of homology used in [37].

Definition 5.1. We call (X, εX) ∈ A[ε]n acyclic if

H(r)(X) := Ker εXr/ Im εX
n−r = 0

for any 1 � r � n − 1.

By the definition above, one easily see that any object (X⊕n, εX⊕n) is acyclic.

Proposition 5.2. Let (X, εX), (Y, εY ) ∈ A[ε]n and f, g ∈ HomA[ε]n(X, Y ). If f ∼ g, then 
H(r)(f) = H(r)(g) for any 1 � r � n − 1.

Proof. If f ∼ g, then there exists a morphism s : X → Y such that

f − g = εY
n−1s + εY

n−2sεX + · · · + sεX
n−1.

So for any 1 � r � n − 1, we have

(f − g)(Ker εXr) = εY
n−1s(Ker εXr) + εY

n−2sεX(Ker(εXr)) + · · ·

+εY
n−r+1sεX

r−1(Ker εXr).

Thus (f − g)(Ker εXr) ⊆ Im εY
n−r, and therefore H(r)(f) = H(r)(g). �
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Lemma 5.3. Let

0 → X
f−→ Y

g−→ Z → 0

be an exact sequence in A[ε]n. Then we have the following exact sequence

· · · ∂−→ H(r)(X) −→ H(r)(Y ) −→ H(r)(Z) ∂−→ H(n−r)(X) −→ H(n−r)(Y ) −→ · · · .

Proof. For any n-th differential object (X, εX), we may construct a complex

· · · εX
n−r

−→ X
εX

r

−→ X
εX

n−r

−→ · · · .

Consider the following diagram

...

εX
r

...

εY
r

...

εZ
r

0 X
f

εX
n−r

Y

εY
n−r

g
Z

εZ
n−r

0

0 X
f

εX
r

Y

εY
r

g
Z

εZ
r

0

0 X
f

εX
n−r

Y

εY
n−r

g
Z

εZ
n−r

0

...
...

...

in A. Then the desired exact sequence follows from [42, Theorem 1.3.1]. �
We use Ka(A[ε]n) to denote the full subcategory of K(A[ε]n) consisting of all acyclic 

objects.

Proposition 5.4. Ka(A[ε]n) is a thick triangulated subcategory of K(A[ε]n).

Proof. By Corollary 4.5, there exists an exact sequence

0 → X → TX → ΣX → 0

in A[ε]n. Note that TX is always acyclic. If X is acyclic, then ΣX is also acyclic by 
Lemma 5.3. It implies that Ka(A[ε]n) is closed under Σ. Dually, Ka(A[ε]n) is closed 
under Σ−1. Let
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X
f

−→ Y
g

−→ Z
h−→ ΣX

be a triangle in K(A[ε]n) with X and Y acyclic. We have to prove that Z is acyclic as 
well. By Corollary 4.5, Z ∼= Cone(f) in K(A[ε]n). It suffices to show that Cone(f) is 
acyclic by Proposition 5.2. Indeed, we have the following commutative diagram of exact 
sequences

0 X
i′′X

f

TX

h

p′′
X ΣX 0

0 Y
g

Cone(f) h ΣX 0

in A[ε]n. Then we get an exact sequence

0 → X → Y ⊕ TX → Cone(f) → 0

in A[ε]n. Since TX is acyclic, we obtain that Cone(f) is also acyclic by Lemma 5.3. 
Obviously Ka(A[ε]n) is closed under direct summands. The proof is finished. �
Definition 5.5.

(1) A morphism f : X → Y of K(A[ε]n) is called a quasi-isomorphism if H(r)(f) :
H(r)(X) → H(r)(Y ) is an isomorphism for any 1 � r � n − 1, or equivalently by 
Lemma 5.3, Cone(f) is acyclic.

(2) The derived category of n-differential objects is defined as the quotient category

D(A[ε]n) := K(A[ε]n)/Ka(A[ε]n).

Actually, in view of Definition 4.6, the homotopy category and derived category of 
n-differential objects in A[ε]n differ from that of complexes in A.

By definition, a morphism in K(A[ε]n) is a quasi-isomorphism if and only if it is an 
isomorphism in D(A[ε]n). Let us present the following definitions in order to simplify 
some statements and notations.

Definition 5.6.

(1) We say that X ∈ ob K(A[ε]n) is K-projective if HomK(A[ε]n)(X, Y ) = 0 for 
any Y ∈ ob Ka(A[ε]n). Dually we say that X ∈ ob K(A[ε]n) is K-injective if 
HomK(A[ε]n)(Y, X) = 0 for any Y ∈ ob Ka(A[ε]n). We denote by Kp(A[ε]n)
(resp. Ki(A[ε]n)) the full subcategory of K(A[ε]n) consisting of K-projective (resp. 
K-injective) n-th differential objects.
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(2) Assume that A has enough projective and injective objects. A projective resolution
(resp. injective resolution) of X ∈ ob K(A[ε]n) is a quasi-isomorphism PX → X (resp. 
X → IX) with PX ∈ ob Kp(A[ε]n) and F (PX) projective (resp. IX ∈ ob Ki(A[ε]n)
and F (IX) injective).

We have the following

Proposition 5.7.

(1) If X is projective (resp. injective) in A, then (X, 0) (resp. (0, X)) is K-projective 
(resp. K-injective).

(2) Kp(A[ε]n) and Ki(A[ε]n) are triangulated subcategories of K(A[ε]n).

Proof. (1) Assume that X is projective and (Y, εY ) is acyclic. Take f to be a morphism 
from (X, 0) to (Y, εY ) in A[ε]n. Then we have εY f = 0. Since X is projective and the 
sequence

Y
εY

n−1

−→ Y
εY−→ Y

is exact in A, there exists a morphism s : X → Y such that f = εY
n−1s. Since εX = 0, 

we have

f = εY
n−1s = εY

n−1s + εY
n−2sεX + · · · + sεX

n−1

and (X, 0) is K-projective. Dually, we get the other assertion.
(2) It is clear that Kp(A[ε]n) is closed under isomorphisms and translation. Now 

assume that

X → Y → Z → ΣX

is a triangle in K(A[ε]n)) with X, Y ∈ ob Kp(A[ε]n). For any M ∈ ob Ka(A[ε]n), applying 
the functor HomK(A[ε]n))(−, M) yields the following exact sequence

HomK(A[ε]n))(ΣX,M) → HomK(A[ε]n))(Z,M) → HomK(A[ε]n))(Y,M).

The end terms vanish by assumption, hence the middle term also vanishes, which implies 
that Z is K-projective. We conclude that Kp(A[ε]n) is a triangulated subcategory of 
K(A[ε]n). Dually, Ki(A[ε]n) is also a triangulated subcategory of K(A[ε]n). �

Recall from [33] that an abelian category A is an Ab4-category (resp. Ab4∗-category) 
provided that it has an arbitrary coproduct (resp. product) of objects and the coprod-
uct (resp. product) of monomorphisms (resp., epimorphisms) is monic (resp. epic). The 
following lemma is crucial in proving Theorem 5.11.
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Lemma 5.8.

(1) If A is an Ab4-category with enough projectives, then any X ∈ ob K(A[ε]n) has a 
projective resolution.

(2) If A is an Ab4∗-category with enough injectives, then any X ∈ ob K(A[ε]n) has an 
injective resolution.

Proof. (1) Let X ∈ obK(A[ε]n). Then there exists a sequence

X : · · · εX−→ X
εX−→ X

εX−→ · · ·

with εXn = 0. It is a special N -complex in the language of [26]. Then by the proof of 
[26, Theorem 3.17], there exists an N -quasi-isomorphism s : P → X as follows:

P :

s

· · · d
P

d

s

P
d

s

P
d

s

· · ·

X : · · ·
εX

X
εX

X
εX

X
εX · · ·

with P ∈ Kp
N (A) and P i projective in A. Thus (P, d) is an n-th differential object and 

s : P → X is a projective resolution of X.
(2) It is dual to (1). �
In order to demonstrate the key result in this section, we also need the following two 

definitions.

Definition 5.9. ([31]) Let T be a triangulated category. A pair (U , V) of full triangulated 
subcategories of T is called a stable t-structure in T provided that HomT (U , V) = 0 and 
T = U ∗ V := {t ∈ T | there exists a triangle

u → t → v → Σu

with u ∈ U and v ∈ V}.

Definition 5.10. ([10]) We call a diagram

D′ i∗ D
i!

i∗

j∗

D′′
j∗

j!

of triangulated categories and functors a recollement if the following conditions are sat-
isfied.
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(1) i∗, j! and j∗ are fully faithful.
(2) (i∗, i∗), (i∗, i!), (j!, j∗) and (j∗, j∗) are adjoint pairs.
(3) There exist canonical embeddings Im j! ↪→ Ker i∗, Im i∗ ↪→ Ker j∗ and Im j∗ ↪→

Ker i!, which are equivalences.

Let R be a ring and K(R) and D(R) its homotopy and derived categories respectively. 
The kernel of the quotient functor Q : K(R) → D(R) is precisely the full subcategory 
Ka(R) of all exact complexes (modulo the chain homotopy relation). The localization

Ka(R) i−→ K(R) Q−→ D(R)

forms the center arrows in the following recollement diagram (see [30, Example 4.14]).

Ka(R) i K(R)
Q

D(R).

Inspired by this result, we will give the main theorem in this section.

Theorem 5.11.

(1) Assume that A is an Ab4-category with enough projectives. Then we have a 
stable t-structure (Kp(A[ε]n), Ka(A[ε]n)) in K(A[ε]n) and a triangle equivalence 
Kp(A[ε]n) � D(A[ε]n).

(2) Assume that A is an Ab4∗-category with enough injectives. Then we have a stable 
t-structure (Ka(A[ε]n), Ki(A[ε]n) in K(A[ε]n) and a triangle equivalence Ki(A[ε]n) �
D(A[ε]n).

(3) Under the assumptions of (1) and (2), there exists a recollement

Ka(A[ε]n)
i∗ K(A[ε]n)
i!

i∗

j∗

D(A[ε]n)
j∗

j!

.

Proof. (1) It follows from Propositions 5.4 and 5.7 that both Kp(A[ε]n) and Ka(A[ε]n)
are triangulated subcategories of K(A[ε]n). On the other hand, by Lemma 5.8(1), we 
have

K(A[ε]n) = Kp(A[ε]n) ∗ Ka(A[ε]n).

Hence (Kp(A[ε]n), Ka(A[ε]n)) is a stable t-structure in K(A[ε]n). Furthermore, it is de-
rived from [27] or [26, Lemma 1.6] that there exists a triangle equivalence Kp(A[ε]n) �
D(A[ε]n).

(2) It is dual to (1).
(3) By (1) and (2), both (Kp(A[ε]n), Ka(A[ε]n)) and (Ka(A[ε]n), Ki(A[ε]n) are stable 

t-structures. Now the assertion follows from [25, Proposition 1.8] (also cf. [31]). �
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Remark 5.12. In general D(A[ε]n) is not at all easy to understand. Even it is difficult 
to calculate the morphisms in the derived category D(A[ε]n). However, in particular 
cases, since Kp(A[ε]n) � D(A[ε]n) by Theorem 5.11 and Kp(A[ε]n) is a full subcategory 
of K(A[ε]n), the class of maps between two objects in D(A[ε]n) actually forms a set, 
and those two triangle equivalences in Theorem 5.11 provide easier ways to represent 
morphisms in D(A[ε]n).

Corollary 5.13. Assume that A is an Ab4-category with enough projectives. Then both 
K(A[ε]n) and D(A[ε]n) have arbitrary coproducts.

Proof. We first show that K(A[ε]n) has arbitrary coproducts. Let {Xi}i∈I be a family 
of objects in K(A[ε]n) and Y an object in K(A[ε]n). By the proof of Theorem 4.7, we 
get that a morphism f : X → Y is null-homotopic if and only if it factors through TY . 
Then we have the following commutative diagram with exact rows

HomA[ε]n (
∐

i∈I Xi, TY )

∼=

HomA[ε]n (
∐

i∈I Xi, Y )

∼=

HomK(A[ε]n)(
∐

i∈I Xi, Y ) 0

∏
i∈I HomA[ε]n (Xi, TY )

∏
i∈I HomA[ε]n (Xi, Y )

∏
i∈I HomA[ε]n (Xi, Y ) 0.

It implies that

HomK(A[ε]n)(
∐
i∈I

Xi, Y ) ∼=
∏
i∈I

HomA[ε]n(Xi, Y )

and arbitrary direct sums exist in K(A[ε]n).
Next, since Kp(A[ε]n) � D(A[ε]n) by Theorem 5.11, it suffice to show that Kp(A[ε]n)

has arbitrary coproducts. Let {Xi}i∈I ∈ Kp(A[ε]n) and Y ∈ Ka(A[ε]n). Since

HomK(A[ε]n)(
∐
i∈I

Xi, Y ) ∼=
∏
i∈I

HomK(A[ε]n)(Xi, Y ) = 0,

we have 
∐

i∈I Xi ∈ Kp(A[ε]n). �
Given the fact that for any ring R, the derived category D(ModR) is always compactly 

generated. It is natural to ask whether it is possible to get a similar result for D(A[ε]n). 
To answer this question, firstly let us recall the following definition.

Definition 5.14. ([40]) Let T be a triangulated category with arbitrary coproducts. An 
object C ∈ T is called compact if for any family {Yi}i∈I of objects of T , the natural 
morphism

∐
HomT (C, Yi) → HomT (C,

∐
Yi)
i∈I i∈I
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is an isomorphism. The category T is said to be compactly generated if there exists a set C
of compact objects satisfying the following property: if X ∈ T such that HomT (C, X) = 0
for any C ∈ C, then X = 0.

To state the last theorem of this section, we need the following two results.

Lemma 5.15. Let Y ∈ Kp(A[ε]n) and f : X → Y be a quasi-isomorphism in K(A[ε]n). 
Then there exists a morphism g : Y → X in A[ε]n such that fg ∼ 1Y .

Proof. Consider the triangle

X
f−→ Y → Cone(f) → ΣX

in Kp(A[ε]n). Since f is a quasi-isomorphism, Cone(f) is acyclic. By applying the functor 
HomK(A[ε]n)(Y, −) to this triangle, we get an exact sequence

HomK(A[ε]n)(Y,X)
HomK(A[ε]n)(Y,f)

−→ HomK(A[ε]n)(Y, Y ) −→ HomK(A[ε]n)(Y,Cone(f)).

As Y ∈ Kp(A[ε]n), we have HomK(A[ε]n)(Y, Cone(f)) = 0. Thus there exists a morphism 
g : Y → X in A[ε]n such that fg ∼ 1Y . �
Proposition 5.16. Assume that A is an Ab4-category with enough projectives. Then for 
any X ∈ Kp(A[ε]n) and Y ∈ K(A[ε]n), there exists an isomorphism of abelian groups

HomK(A[ε]n)(X,Y ) ∼= HomD(A[ε]n)(X,Y ).

Proof. Consider the canonical map

G : HomK(A[ε]n)(X,Y ) → HomD(A[ε]n)(X,Y )

defined by G(f) = f/1X . If G(f) = f/1X = 0, then by Lemma 5.8(1), there exists a 
roof

X
s⇐ X ′ 0−→ Y

such that s is a quasi-isomorphism, which is equivalent to the roof

X
1X⇐ X

f−→ Y.

Hence we have fs ∼ 0. It follows from Lemma 5.15 that there exists a morphism g : X →
X ′ such that sg ∼ 1X . Thus f ∼ 0. On the other hand, let f/s ∈ HomD(A[ε]n)(X, Y ), 
that is, it has the form

X
s⇐ Z

f−→ Y.
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By Lemma 5.15 again, there exists a morphism g : X → Z such that sg ∼ 1X . Then we 
obtain that f/s = fg/1X = G(fg) and G is an isomorphism. �

We end this section with the following result.

Theorem 5.17. Assume that A is an Ab4-category with a compact projective generator. 
Then D(A[ε]n) is a compactly generated triangulated category.

Proof. Let G be a compact projective generator in A. Firstly, D(A[ε]n) has arbitrary 
coproducts by Corollary 5.13. For any 1 � i � n − 1, we use T i(G) to denote the n-th 
differential module (Gi, εGi), where

εGi :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . . . . .

...
0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

i×i.

Claim. For any X ∈ K(A[ε]n) and 1 � i � n − 1, we have

HomK(A[ε]n)(T i(G), X) ∼= H(i)(HomA(G,X)).

Given f = (f1, f2, · · · , fi) ∈ HomA[ε]n(T i(G), X), we define

θ : HomA[ε]n(T i(G), X) → H(i)(HomA(G,X))

via θ(f) = f1 +Im HomA(G, εn−i
X ). Since the equality εXf = fεGi holds, we immediately 

get εXfi = 0 and εXfj = fj+1 for any 1 � j � i − 1. Thus

εiXf1 = εi−1
X f2 = · · · = εXfi = 0.

It means that θ is well defined. Let f + Im HomA(G, εn−i
X ) ∈ H(i)(HomA(G, X)). Then 

εiXf = 0. Set f1 := f and fj := εj−1
X f1 for any 2 � j � i. Then θ(f1, f2, · · · , fi) = f +

Im HomA(G, εn−i
X ), which implies that θ is surjective. If θ(f) = f1+Im HomA(G, εn−i

X ) =
0, then there exists h ∈ HomA(G, X) such that εn−i

X h = f1. Set gi := h and s :=
(0, 0, · · · , gi) : T i(G) → X. It is easily seen that

f = εn−1
X s + εn−2

X sεGi + · · · + sεn−1
Gi

and f is null-homotopic. The claim is proved.
By the above claim, we know that T i(G) is K-projective for any 1 � i � n −1 since G

is projective. If X ∈ D(A[ε]n) such that HomD(A[ε]n)(T i(G), X) = 0 for any 1 � i � n −1. 
Then it is deduced from Proposition 5.16 that
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HomD(A[ε]n)(T i(G), X) ∼= HomK(A[ε]n)(T i(G), X) ∼= H(i)(HomA(G,X)) = 0.

Since G is a generator, it implies X = 0 in D(A[ε]n) by [21, Lemma 3.1]. Let {Xj}j∈J

be a family of objects of D(A[ε]n). Using Proposition 5.16 and the above claim again, 
we have

HomD(A[ε]n)(T i(G),
∐
j∈J

Xj) ∼= HomK(A[ε]n)(T i(G),
∐
j∈J

Xj)

∼= H(i)((HomA(G,
∐
j∈J

Xj))

∼=
∐
j∈J

H(i)((HomA(G,Xj) (since G is compact)

∼=
∐
j∈J

HomK(A[ε]n)(T i(G), Xj)

∼=
∐
j∈J

HomD(A[ε]n)(T i(G), Xj).

So T i(R) is a compact object in D(A[ε]n), proving the assertion. �
As an immediate consequence of Theorem 5.17, we get the following

Corollary 5.18. D((ModR)[ε]n) is a compactly generated triangulated category.
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