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Abstract

Let R and S be rings and RCS a semidualizing bimodule, and let T be a sub-

category of the Auslander class ACðSÞ and H ¼ fCnS T jT A Tg. Then for any left

R-module M, the T-projective dimension of HomRðC;MÞ is at most the H-projective

dimension of M, and they are identical when M is in the Bass class BCðRÞ. If RCS

is faithful and T is resolving, then in a short exact sequence of left R-modules, the

H-projective dimensions of any two terms can determine an upper bound of that of

the third term. Furthermore, we apply these results to the cases of T being the sub-

categories of (weak) flat modules, projective modules and ACðSÞ respectively. Some

known results are obtained as corollaries.

1. Introduction

In order to study various duality theories over commutative rings, Foxby
[9] and Golod [12] introduced the so-called semidualizing modules and related
Auslander and Bass classes. Then Holm and White [13] extended them to
arbitrary associative rings. Let R and S be arbitrary rings and RCS a semi-
dualizing bimodule, and let ACðSÞ and BCðRÞ be the Auslander and Bass classes
with respect to C respectively. It was shown in [13, Theorem 1] that there exists
the following Foxby equivalence:

ACðSÞ �������!
CnS�

 �������
HomRðC;�Þ

BCðRÞ:@

For other Foxby equivalences between some subclasses of ACðSÞ and that of
BCðRÞ, the reader is referred to [13, Theorem 1] and [19, Theorem 4.6]. Homo-
logical properties of modules under Foxby equivalences have been studied by
many authors; see [1, 11, 13], [17]–[19], [23]–[27] and references therein. Let T
be a subcategory of ACðSÞ and H a subcategory of BCðRÞ such that there exists
a Foxby equivalence between T and H. One of the aims in this paper is to
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establish the relation between the T-projective dimension of HomRðC;MÞ and
the H-projective dimension of M for any left R-module M.

As fundamental invariants in homological theory, homological dimensions
play a crucial role in studying the structures of modules and rings. Let R be an
arbitrary ring and let T be a category of left R-modules. For a left R-module
A, we use T-pd A to denote the T-projective dimension of A. Let

0! A1 ! A2 ! A3 ! 0

be an exact sequence of left R-modules. In many cases, the following assertions
hold (see [17, Introduction] for details):

(1) T-pd A2 amaxfT-pd A1;T-pd A3g with equality if T-pd A1 þ 10
T-pd A3.

(2) T-pd A3 amaxfT-pd A1 þ 1;T-pd A2g with equality if T-pd A1 0
T-pd A2.

(3) T-pd A1 amaxfT-pd A2;T-pd A3 � 1g with equality if T-pd A2 0
T-pd A3.

In particular, it was shown in [17, Theorem 3.2] that if T contains all projective
left R-modules, then the above assertions hold if and only if T is resolving in the
sense that T contains all projective left R-modules, and T is closed under
extensions and kernels of epimorphisms. Observe that if the assertions (1) and
(3) hold, then T is closed under extensions and kernels of epimorphisms. Thus,
it is natural to ask the following question: whether do the assertions (1)–(3) hold
for some categories of left R-modules that do not contain all projective left
R-modules? Our other aim is to give some positive answers to this question.

The paper is organized as follows. In Section 2, we give some notions
and notations which will be used in the sequel. Let R and S be arbitrary rings
and RCS a semidualizing bimodule, and let T be a subcategory of ACðSÞ and set
H :¼ fCnS T jT A Tg. In Section 3, we prove the following results.

Theorem 1.1 (Theorem 3.2). For any left R-module M, we have

T-pd HomRðC;MÞaH-pd M

with equality if M A BCðRÞ.

Theorem 1.2 (Theorem 3.3). Let T be resolving, and let

0! A1 ! A2 ! A3 ! 0

be an exact sequence in Mod R. If either H-pd A1 < y or RCS is faithful, then
we have

(1) H-pd A2 amaxfH-pd A1;H-pd A3g with equality if H-pd A1 þ 10
H-pd A3.

(2) H-pd A3 amaxfH-pd A1 þ 1;H-pd A2g with equality if H-pd A1 0
H-pd A2.

(3) H-pd A1 amaxfH-pd A2;H-pd A3 � 1g with equality if H-pd A2 0
H-pd A3.
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As a consequence, we obtain some properties of left R-modules with finite
H-projective dimension (Propositions 3.6 and 3.7). In Section 4, we apply these
results to the cases of T being the categories of (weak) flat left S-modules,
projective left S-modules and ACðSÞ respectively, in this case H corresponds to
the categories of (weak) C-flat left R-modules, C-projective left R-modules and
BCðRÞ respectively (Proposition 4.1 and Theorem 4.5). Note that none of the
categories of (weak) C-flat left R-modules and C-projective left R-modules
contain all projective left R-modules and that the former one is not self-
orthogonal in general. This means that the main results obtained in Section
3 are non-trivial complements to [17, Theorem 3.2], [2, Lemma 3.12] and [15,
Theorem 3.8(2)] respectively.

2. Preliminaries

Throughout this paper, all rings are associative rings with unit. Let R
be a ring. We use Mod R (respectively, Mod Rop) to denote the category of
left (respectively, right) R-modules. We use FðRÞ, PðRÞ and IðRÞ to denote
the subcategories of Mod R consisting of flat, projective and injective modules
respectively.

Let X be a subcategory of Mod R and M A Mod R. Recall from [7] that
a homomorphism f : X !M in Mod R with X in X is called an X-precover of
M if HomRðX 0; f Þ is epic for any X 0 A X; and f is called an X-cover of M if
it is an X-precover of M and any endomorphism h : X ! X is an automor-
phism whenever f ¼ fh. The subcategory X is called a ( pre)covering in Mod R
if each module in Mod R admits an X-(pre)cover. Dually, the notions of
X-( pre)envelopes and ( pre)enveloping classes are defined.

The X-projective dimension X-pd M of a module M A Mod R is defined as
inffn j there exists an exact sequence

0! Xn ! � � � ! X1 ! X0 !M ! 0

in Mod R with all Xi in Xg, and set X-pd M ¼y if no such integer exists, and
set X-pd 0 ¼ �1. Dually, the notion of the X-injective dimension X-id M of M
is defined. In particular, we use fdR M, pdR M and idR M to denote the flat,
projective, and injective dimensions of M respectively.

Recall that X is called self-orthogonal if Extb1
R ðX1;X2Þ ¼ 0 for any

X1;X2 A X. Also recall that X is called resolving if PðRÞ � X and X is closed
under extensions and kernels of epimorphisms; dually, X is called coresolving if
IðRÞ � X and X is closed under extensions and cokernels of monomorphisms.
A sequence

M :¼ � � � !M1 !M2 !M3 ! � � �

in Mod R is called HomRðX;�Þ-exact (respectively, HomRð�;XÞ-exact) if
HomRðX ;MÞ (respectively, HomRðM;X Þ) is exact for any X A X.
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Definition 2.1 ([1, 13]). Let R and S be rings.
(1) An ðR;SÞ-bimodule RCS is called semidualizing if the following condi-

tions are satisfied.
(a1) RC admits a degreewise finite R-projective resolution.
(a2) CS admits a degreewise finite Sop-projective resolution.
(b1) The homothety map RRR !

Rg
HomS opðC;CÞ is an isomorphism.

(b2) The homothety map SSS !
gS

HomRðC;CÞ is an isomorphism.
(c1) Extb1

R ðC;CÞ ¼ 0.
(c2) Extb1

S opðC;CÞ ¼ 0.
(2) A semidualizing bimodule RCS is called faithful if the following condi-

tions are satisfied.
(f1) For any M A Mod R, if HomRðC;MÞ ¼ 0, then M ¼ 0.
(f2) For any N A Mod Sop, if HomS opðC;NÞ ¼ 0, then N ¼ 0.

Wakamatsu [28] introduced and studied the so-called generalized tilting
modules, which are usually called Wakamatsu tilting modules, see [4, 21].
Note that a bimodule RCS is semidualizing if and only if it is Wakamatsu
tilting ([30, Corollary 3.2]). Typical examples of semidualizing bimodules
include the free module of rank one and the dualizing module over a Cohen-
Macaulay local ring. Over any commutative ring, all semidualizing bimodules
are faithful ([13, Proposition 3.1]). For more examples of semidualizing bimod-
ules, the reader is referred to [13, 24, 29].

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule

RCS. For convenience, we write

ð�Þ� :¼ HomRðC;�Þ:
Thus, if M is a left R-module, then M� has a left S-module structure via
ðs � f ÞðcÞ ¼ f ðcsÞ for any s A S, f A M� and c A C. We also write

RC
? :¼ fM A Mod R jExtb1

R ðC;MÞ ¼ 0g;
CS
> :¼ fN A Mod S jTorSb1ðC;NÞ ¼ 0g:

Following [13], set

FCðRÞ :¼ fCnS F jF is flat in Mod Sg;
PCðRÞ :¼ fCnS P jP is projective in Mod Sg;
ICðSÞ :¼ fI� j I is injective in Mod Rg:

The modules in FCðRÞ, PCðRÞ and ICðSÞ are called C-flat, C-projective and
C-injective respectively. When RCS ¼ RRR, C-flat, C-projective and C-injective
modules are exactly flat, projective and injective modules respectively. Sym-
metrically, the categories FCðSopÞ, PCðSopÞ and ICðRopÞ are defined.

Let N A Mod S. Then there exists the following canonical evaluation homo-
morphism:

mN : N ! ðCnS NÞ�
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defined by mNðxÞðcÞ ¼ cn x for any c A C and x A N. The module N is called
adjoint C-coreflexive if mN is an isomorphism. Symmetrically, the adjoint
C-coreflexive module is defined in Mod Rop.

Let M A Mod R. Then there exists the following canonical evaluation
homomorphism:

yM : CnS M� !M

defined by yMðcn f Þ ¼ f ðcÞ for any c A C and f A M�. Recall from [24] that M
is called C-coreflexive if yM is an isomorphism. Symmetrically, the C-coreflexive
module is defined in Mod Sop.

Definition 2.2 ([13]).
(1) The Auslander class ACðSÞ with respect to C consists of all left

S-modules N satisfying the following conditions.
(A1) N A CS

>.
(A2) CnS N A RC

?.
(A3) N is adjoint C-coreflexive.

(2) The Bass class BCðRÞ with respect to C consists of all left R-modules M
satisfying the following conditions.
(B1) M A RC

?.
(B2) M� A CS

>.
(B3) M is C-coreflexive.

The Auslander class ACðRopÞ in Mod Rop and the Bass class BCðSopÞ in
Mod Sop are defined symmetrically.

For a module M A Mod R, we use

0!M ! I 0ðMÞ !f
0

I 1ðMÞ
to denote a minimal injective copresentation of M.

Definition 2.3 ([24]). Let M A Mod R. Then the left S-module cTrC M :¼
Coker f 0

� is called the cotranspose of M with respect to RCS, and M is called
y-C-cotorsionfree if cTrC M A CS

>:

We use cT ðRÞ to denote the subcategory of Mod R consisting of y-C-
cotorsionfree modules.

Lemma 2.4 ([24, Corollary 3.4 and Theorem 3.9]). A module M A cT ðRÞ if
and only if M satisfies the conditions (B2) and (B3) in Definition 2.2(2), and hence

BCðRÞ ¼ RC
? \ cT ðRÞ:

Let N be a module in Mod S. Bican, El Bashir and Enochs proved in [5]
that N has a flat cover. We use

F1ðNÞ !
f0

F0ðNÞ ! N ! 0
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to denote a minimal flat presentation of N in Mod S, where F0ðNÞ ! N and
F1ðNÞ ! Im f0 are the flat covers of N and Im f0 respectively.

Definition 2.5 ([26]). Let N A Mod S. Then the left R-module acTrC N
:¼ Kerð1C n f0Þ is called the adjoint cotranspose of N with respect to RCS, and
N is called adjoint y-C-cotorsionfree if acTrC N A RC

?.

We use acT ðSÞ to denote the subcategory of Mod S consisting of adjoint
y-C-cotorsionfree modules.

Lemma 2.6 ([26, Corollary 3.3 and Proposition 3.4]). A module N A acT ðSÞ
if and only if N satisfies the conditions (A2) and (A3) in Definition 2.2(1), and
hence

ACðSÞ ¼ CS
> \ acT ðSÞ:

3. General results

3.1. Relative projective dimensions
We begin with the following result.

Lemma 3.1. Let T be a subcategory of Mod S and M A Mod R, and set
H :¼ fCnS T jT A Tg.

(1) If T � acT ðSÞ, then

T-pd M�aH-pd M:

(2) If T � CS
> and M A cT ðRÞ, then

H-pd MaT-pd M�:

Proof. (1) Let M A Mod R with H-pd M ¼ n < y. Then there exists an
exact sequence

0! Hn ! � � � ! H1 ! H0 !M ! 0ð3:1Þ

in Mod R with all Hi in H. By assumption, there exists some module Ti A T
such that Hi ¼ CnS Ti for any 0a ia n. Since T � acT ðSÞ, we have CnS T
A RC

? and ðCnS TÞ�GT for any T A T by Lemma 2.6. Then applying the
functor ð�Þ� to the exact sequence (3.1) yields the following exact sequence

0! ðCnS TnÞ� ! � � � ! ðCnS T1Þ� ! ðCnS T0Þ� !M� ! 0

in Mod R with ðCnS TiÞ�GTi for any 0a ia n, and thus T-pd M�a n.
(2) Let T � CS

> and M A cT ðRÞ with T-pd M� ¼ n < y. Then there
exists an exact sequence

0! Tn ! � � � ! T1 ! T0 !M� ! 0ð3:2Þ
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in Mod S with all Ti in T. Since M A cT ðRÞ, we have M� A CS
> and CnS M�

GM by Lemma 2.4. Then applying the functor CnS � to the exact sequence
(3.2) yields the following exact sequence

0! CnS Tn ! � � � ! CnS T1 ! CnS T0 ! CnS M�|fflfflfflfflffl{zfflfflfflfflffl}
GM

! 0

in Mod R with all CnS Ti in H, and thus H-pd Ma n. r

According to Lemmas 2.4 and 2.6, we get the following result from Lemma
3.1.

Theorem 3.2. Let T be a subcategory of ACðSÞ and set H :¼ fCnS T j
T A Tg. Then for any M A Mod R, we have

T-pd M�aH-pd M

with equality if M A cT ðRÞ (in particular, if M A BCðRÞ).

Compare the following result with [17, Theorem 3.2].

Theorem 3.3. Let T be a resolving subcategory of ACðSÞ and set H :¼
fCnS T jT A Tg. Let

0! A1 ! A2 ! A3 ! 0ð3:3Þ

be an exact sequence in Mod R. If either H-pd A1 < y or RCS is faithful, then
we have

(1) H-pd A2 amaxfH-pd A1;H-pd A3g with equality if H-pd A1 þ 10
H-pd A3.

(2) H-pd A3 amaxfH-pd A1 þ 1;H-pd A2g with equality if H-pd A1 0
H-pd A2.

(3) H-pd A1 amaxfH-pd A2;H-pd A3 � 1g with equality if H-pd A2 0
H-pd A3.

Proof. We first prove those three inequalities hold true.
If H-pd A1 ¼y, then those two inequalities in (1) and (2) hold true. Now

suppose H-pd A1 < y. Since T � ACðSÞ, we have H � BCðRÞ by [13, The-
orem 1], and hence A1 A BCðRÞð� RC

?Þ by [13, Theorem 6.2]. Thus

T-pd A1� ¼H-pd A1 < y

by Theorem 3.2. Applying the functor ð�Þ� to the exact sequence (3.3) yields
the following exact sequence

0! A1� ! A2� ! A3� ! 0ð3:4Þ

in Mod S. Since T is resolving, it follows from [17, Theorem 3.2] that
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(i) T-pd A2�amaxfT-pd A1�;T-pd A3�g with equality if T-pd A1� þ 10
T-pd A3�.

(ii) T-pd A3�amaxfT-pd A1� þ 1;T-pd A2�g with equality if T-pd A1�0
T-pd A2�.

If H-pd A3 ¼y, then the inequality in (1) holds true. Now suppose
H-pd A3 < y. Then in a similar way as above, we have A3 A BCðRÞ and

T-pd A3� ¼H-pd A3 < y:

By [13, Theorem 6.2], we have A2 A BCðRÞ, and hence similarly we have

T-pd A2� ¼H-pd A2:

Thus the inequality in (1) follows from (i).
If H-pd A2 ¼y, then the inequality in (2) holds true. Now suppose

H-pd A2 < y. Then we also have A2 A BCðRÞ and

T-pd A2� ¼H-pd A2 < y:

By [13, Theorem 6.2], we have A3 A BCðRÞ, and hence similarly we have

T-pd A3� ¼H-pd A3:

Thus the inequality in (2) follows from (ii).
If either H-pd A2 ¼y or H-pd A3 ¼y, then the inequality in (3) holds

true. Now suppose H-pd A2 < y and H-pd A3 < y. Then in a similar way
as above, we have A2;A3 A BCðRÞ. If H-pd A1 < y, then we also have A1 A
BCðRÞ. If RCS is faithful, then A1 A BCðRÞ by [13, Theorem 6.3]. In both
cases, we can get the exact sequence (3.4). Since T is resolving, it follows from
[17, Theorem 3.2] that

(iii) T-pd A1�amaxfT-pd A2�;T-pd A3� � 1g with equality if T-pd A2�0
T-pd A3�.

Since T-pd Ai� ¼H-pd Ai for 1a ia 3 by Theorem 3.2, the inequality in (3)
follows from (iii).

The latter assertions in (1)–(3) follow from (i)–(iii). r

As an immediate consequence of Theorem 3.3, we get the following
corollary.

Corollary 3.4. Let T be a resolving subcategory of ACðSÞ, and set H :¼
fCnS T jT A Tg. Then the following assertions hold true.

(1) The subcategory of Mod R consisting of modules with finite H-projective
dimension is closed under extensions and cokernels of monomorphisms.
Moreover, if RCS is faithful, then this subcategory is closed under kernels
of epimorphisms.

(2) For any nb 0, the subcategory of Mod R consisting of modules with
H-projective dimension at most n is closed under extensions.

We need the following observation.
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Lemma 3.5. Let T be a resolving subcategory of ACðSÞ, and set H :¼
fCnS T jT A Tg.

(1) For any HomRðC;�Þ-exact exact sequence

0! A! B! H ! 0

in Mod R with H A H, we have A A H if and only if B A H.
(2) If T is closed under direct summands, then so is H.

Proof. (1) Let H A Hð� BCðRÞÞ. Then by Theorem 3.2, we have H� A T.
By assumption, we have an exact sequence

0! A� ! B� ! H� ! 0

in Mod S. Since T is resolving, we have that A� A T if and only if B� A T. If
A A Hð� BCðRÞÞ, then A� A T, and so B� A T; moreover, we have B A BCðRÞ by
[13, Theorem 6.2], and thus BGCnS B� A H. Similarly, we get that if B A H,
then A A H.

(2) Let H A Hð� BCðRÞÞ with HGH1 lH2. Then H�GH1�lH2�. By
Theorem 3.2, we have H� A T. Since T is closed under direct summands, we
have H1�;H2� A T, and hence Hi GCnS Hi� A H for i ¼ 1; 2. r

As a consequence, we get the following result.

Proposition 3.6. Let T be a resolving subcategory of ACðSÞ closed under
direct summands, and set H :¼ fCnS T jT A Tg, and let M A Mod R and nb 0.
If H is precovering in Mod R, then the following statements are equivalent.

(1) H-pd Ma n.
(2) There exists a HomRðH;�Þ-exact exact sequence

0! Hn ! � � � ! H1 ! H0 !M ! 0

in Mod R with all Hi in H.

Proof. ð2Þ ) ð1Þ It is trivial.
ð1Þ ) ð2Þ We proceed by induction on n. The case for n ¼ 0 is trivial.

Now suppose nb 1. Then there exists an exact sequence

0! K 0 ! H 00 !M ! 0

in Mod R with H 00 A H and H-pd K 0a n� 1. It yields that any H-precover of
M is epic. Since H is precovering in Mod R, there exists a HomRðH;�Þ-exact
exact sequence

0! K ! H0 !M ! 0

in Mod R with H0 A H. Consider the following pull-back diagram:
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0 0?
?
?
y

K K?
?
?
y

0 K 0 X H0 0?
?
?
y

0 ���! K 0 ���! H 00 M ���! 0
?
?
?
y

0 0:

�
�
!

¼ ¼ ¼�
�
!

��! ��! ��! ��!
¼
¼
¼

�
�
!

�
�
!

���!

By [14, Lemma 2.4(1)], the middle column in the above diagram is HomRðH;�Þ-
exact, and thus it splits and X GKlH 00. Applying Corollary 3.4(2) to the
middle row in the above diagram yields H-pd X a n� 1.

By [24, Proposition 3.7 and Theorem 3.9] and Lemma 3.5(1), we have that
H is a PCðRÞ-resolving subcategory of Mod R with a PCðRÞ-proper generator
PCðRÞ in the sense of [15]. Since T is closed under direct summands by as-
sumption, so is H by Lemma 3.5(2). Notice that H � BCðRÞ � PCðRÞ?, thus
H-pd Ka n� 1 by [15, Corollory 3.9], and the assertion follows by induction.

r

Compare the following result with [2, Lemma 3.12] and [15, Theorem 3.8(2)].

Proposition 3.7. Let T be a resolving subcategory of ACðSÞ, and set H :¼
fCnS T jT A Tg, and let M A Mod R and nb 0. Assume that H-pd Ma n
and

0! K ! H0 !M ! 0ð3:5Þ

is an exact sequence in Mod R with H0 A H. Then H-pd K a n� 1 if any of the
following conditions is satisfied.

(1) RCS is faithful.
(2) H is closed under direct summands and the exact sequence (3.5) is

HomRðH;�Þ-exact.

Proof. Under the condition (1), the case for n ¼ 0 follows from Theorem
3.3(3). Under the condition (2), when n ¼ 0, the exact sequence (3.5) splits and
K is a direct summand of H0. Since H is closed under direct summands, we
have K A H.

Now suppose nb 1. By assumption, there exists an exact sequence

0! K 0 ! H 00 !M ! 0
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in Mod R with H 00 A H and H-pd K 0a n� 1. Consider the following pull-back
diagram:

0 0?
?
?
y

K K?
?
?
y

0 K 0 X H0 0?
?
?
y

0 ���! K 0 ���! H 00 M ���! 0
?
?
?
y

0 0:

�
�
!

¼ ¼ ¼�
�
!

��! ��! ��! ��!
¼
¼
¼

�
�
!

�
�
!

���!

Applying Corollary 3.4(2) to the middle row in the above diagram, we have
H-pd X a n� 1. Under the condition (1), applying Theorem 3.3(3) to the
middle column in the above diagram yields H-pd Ka n� 1. Under the condi-
tion (2), by the same argument as that in the proof of Proposition 3.6, we also
have H-pd K a n� 1. r

3.2. Relative injective dimensions
In this subsection, we list the counterparts of all results in Subsection

3.1, and omit those proofs which are completely dual to that in Subsection
3.1.

Lemma 3.8. Let H be a subcategory of Mod R and N A Mod S, and set
T :¼ fH� jH A Hg.

(1) If H � cT ðRÞ, then

H-id CnS NaT-id N:

(2) If H � RC
? and N A acT ðSÞ, then

T-id NaH-id CnS N:

Proof. (1) Let N A Mod S with T-id N ¼ n < y. Then there exists an
exact sequence

0! N ! T 0 ! T 1 ! � � � ! T n ! 0ð3:6Þ

in Mod S with all T i in T. By assumption, there exists some module Hi A H
such that T i ¼ Hi

� for any 0a ia n. Since H � cT ðRÞ, we have H� A CS
>

and CnS H�GH for any H A H by Lemma 2.4. Then applying the functor
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CnS � to the exact sequence (3.6) yields the following exact sequence

0! CnS N ! CnS H
0
� ! CnS H

1
� ! � � � ! CnS H

n
� ! 0

in Mod S with CnS H
i
�GHi for any 0a ia n, and thus H-id CnS Na n.

(2) Let H � RC
? and N A acT ðSÞ with H-id CnS N ¼ n < y. Then

there exists an exact sequence

0! CnS N ! H 0 ! H 1 ! � � � ! Hn ! 0ð3:7Þ
in Mod R with all Hi in H. Since N A acT ðSÞ, we have CnS N A RC

? and
ðCnS NÞ�GN by Lemma 2.6. Then applying the functor ð�Þ� to the exact
sequence (3.7) yields the following exact sequence

0! ðCnS NÞ�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
GN

! H 0
� ! H 1

� ! � � � ! Hn
� ! 0

in Mod S with all Hi
� in T, and thus T-id Na n. r

According to Lemmas 2.4 and 2.6, we get the following result from Lemma
3.8.

Theorem 3.9. Let H be a subcategory of BCðRÞ and set T :¼
fH� jH A Hg. Then for any N A Mod S, we have

H-id CnS NaT-id N

with equality if N A acT ðSÞ (in particular, if N A ACðSÞ).

Compare the following result with [17, Theorem 3.9].

Theorem 3.10. Let H be a coresolving subcategory of BCðRÞ, and set T :¼
fH� jH A Hg. Let

0! A1 ! A2 ! A3 ! 0

be an exact sequence in Mod S. If either T-id A3 < y or RCS is faithful, then
we have

(1) T-id A2 amaxfT-id A1;T-id A3g with equality if T-id A1 0T-id A3

þ 1.
(2) T-id A1 amaxfT-id A2;T-id A3 þ 1g with equality if T-id A2 0

T-id A3.
(3) T-id A3 amaxfT-id A1 � 1;T-id A2g with equality if T-id A1 0

T-id A2.

As an immediate consequence of Theorem 3.10, we get the following
corollary.

Corollary 3.11. Let H be a coresolving subcategory of BCðRÞ, and set
T :¼ fH� jH A Hg. Then the following assertions hold true.
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(1) The subcategory of Mod S consisting of modules with finite T-injective
dimension is closed under extensions and kernels of epimorphisms. More-
over, if RCS is faithful, then this subcategory is closed under cokernels of
monomorphisms.

(2) For any nb 0, the subcategory of Mod S consisting of modules with
T-injective dimension at most n is closed under extensions.

Recall that a sequence in Mod S is called ðCnS �Þ-exact if it is exact after
applying the functor CnS �. It follows from [26, p. 298, Observation] that a
sequence in Mod S is ðCnS �Þ-exact if and only if it is HomSð�; ICðSÞÞ-exact.

Lemma 3.12. Let H be a coresolving subcategory of BCðRÞ, and set T :¼
fH� jH A Hg.

(1) For any HomSð�; ICðSÞÞ-exact (equivalently, ðCnS �Þ-exact) exact
sequence

0! T ! A! B! 0ð3:8Þ

in Mod S with T A T, we have A A T if and only if B A T.
(2) If H is closed under direct summands, then so is T.

As a consequence, we get the following result.

Proposition 3.13. Let H be a coresolving subcategory of BCðRÞ closed
under direct summands, and set T :¼ fH� jH A Hg, and let N A Mod S and
nb 0. If T is preenveloping in Mod S, then the following statements are
equivalent.

(1) T-id Na n.
(2) There exists a HomSð�;TÞ-exact exact sequence

0! N ! T 0 ! T 1 ! � � � ! T n ! 0

in Mod S with all T i in T.

Compare the following result with the dual of [2, Lemma 3.12] and [15,
Theorem 4.8(2)].

Proposition 3.14. Let H be a coresolving subcategory of BCðRÞ, and set
T :¼ fH� jH A Hg, and let N A Mod S and nb 0. Assume that T-id Na n and

0! N ! T 0 ! L! 0ð3:9Þ

is an exact sequence in Mod S with T 0 A T. Then T-id La n� 1 if any of the
following conditions is satisfied.

(1) RCS is faithful.
(2) T is closed under direct summands and the exact sequence (3.9) is

HomSð�;TÞ-exact.
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For the reader’s convenience, we provide some ideas for the proofs of the
last two propositions. Proposition 3.13 will be proved by induction on n. The
case for n ¼ 0 is trivial. When nb 1, there exists an exact sequence

0! N ! T 0 0 ! L 0 ! 0

in Mod S with T 0 0 A T and T-id L 0a n� 1. It yields that any T-preenvelope
of N is monic. Since T is preenveloping in Mod S, there exists a HomSð�;TÞ-
exact exact sequence

0! N ! T 0 ! L! 0

in Mod S with T 0 A T. Consider the following push-out diagram:

0 0?
?
?
y

0 N T 0 0 ���! L 0 ���! 0?
?
?
y

0 T 0 Y L 0 0?
?
?
y

L L?
?
?
y

0 0:

�
�
!

�
�
!

¼
¼
¼

��! � �! ��! ��!�
�
!

¼ ¼ ¼ �
�
!

����! ����!

By [14, Lemma 2.4(2)], the middle column in the above diagram is HomSð�;TÞ-
exact, and thus it splits and Y GT 0 0lL. The rest of the proof is left to the
reader. In addition, the same diagram as above will be used in the proof of
Proposition 3.14.

4. Applications to special categories of modules

Recall from [10] that a module N A Mod S is called weak flat if TorS1 ðX ;NÞ
¼ 0 for any right S-module X admitting a degreewise finite Sop-projective resolu-
tion. A weak flat module is called level in [6]. We use WFðSÞ to denote the
subclass of Mod S consisting of weak flat modules, and write

wfdS N :¼ WFðSÞ-pd N;

WFCðRÞ :¼ fCnS G jG AWFðSÞg:
By [13, Lemma 4.1], [11, Theorem 2.2] and Lemma 2.6, we have

PðSÞ � FðSÞ � WFðSÞ � ACðSÞ � acT ðSÞ:
The assertions (1) and (2) in the following result are [25, Theorem 3.5(1)(2)].
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Proposition 4.1. For any M A Mod R, we have
(1) fdS M�aFCðRÞ-pd M.
(2) pdS M�aPCðRÞ-pd M.
(3) wfdS M�aWFCðRÞ-pd M.
(4) ACðSÞ-pd M�aBCðRÞ-pd M.

All equalities hold if M A cT ðRÞ (in particular, if M A BCðRÞ).

Proof. The assertions (1)–(3) follow from Theorem 3.2 by putting T ¼
FðSÞ, PðSÞ and WFðSÞ respectively. Since BCðRÞ ¼ fCnS T jT A ACðSÞg by
[13, Theorem 1], the assertion (4) follows from Theorem 3.2 by putting T ¼
ACðSÞ. r

Furthermore, we get the following result.

Corollary 4.2. For any adjoint C-coreflexive left S-module N, we have
(1) fdS NaFCðRÞ-pd CnS N.
(2) pdS NaPCðRÞ-pd CnS N.
(3) wfdS NaWFCðRÞ-pd CnS N.
(4) ACðSÞ-pd NaBCðRÞ-pd CnS N.

All equalities hold if N A ACðSÞ.

Proof. Let N be an adjoint C-coreflexive left S-module. Then NG
ðCnS NÞ� in Mod S and CnS N A Mod R. Putting M ¼ CnS N in Proposi-
tion 4.1, the assertions follow. r

Recall from [10] that a module M A Mod R is called weak injective
if Ext1RðX ;MÞ ¼ 0 for any left R-module X admitting a degreewise finite
R-projective resolution. A weak injective module is called absolutely clean in
[6]. We use WIðRÞ to denote the subclass of Mod R consisting of weak injective
modules, and write

widR M :¼ WIðRÞ-id M;

WICðSÞ :¼ fE� jE AWIðRÞg:

By [13, Lemma 4.1], [11, Theorem 2.2] and Lemma 2.4, we have

IðRÞ � WIðRÞ � BCðRÞ � cT ðRÞ:

Recall from [20, 22] that a module M A Mod R is called FP-injective (or abso-
lutely pure) if Ext1RðX ;MÞ ¼ 0 for any finitely presented left R-module X . We
use FIðRÞ to denote the subclass of Mod R consisting of FP-injective modules,
and write

FP-idR M :¼ FIðRÞ-id M;

FICðSÞ :¼ fE� jE A FIðRÞg:
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Recall that a ring R is called left coherent if any finitely generated left ideal of
R is finitely presented.

The assertions (1) and (3) in the following result extend [25, Theorem 3.5(3)]
and [18, Theorem 3.4] respectively.

Proposition 4.3. For any N A Mod S, we have
(1) idR CnS Na ICðSÞ-id N.
(2) widR CnS NaWICðSÞ-id N.
(3) If R is a left coherent ring, then FP-idR CnS NaFICðSÞ-id N.
(4) BCðRÞ-id CnS NaACðSÞ-id N.

All equalities hold if N A acT ðSÞ (in particular, if N A ACðSÞ).

Proof. The assertions (1) and (2) follow from Theorem 3.9 by putting H ¼
IðRÞ and WIðRÞ respectively. Since ACðSÞ ¼ fH� jH A BCðRÞg by [13, Theo-
rem 1], the assertion (4) follows from Theorem 3.9 by putting H ¼ BCðRÞ.

Assume that R is a left coherent ring. Then a left R-module admits a
degreewise finite R-projective resolution if and only if it is finitely presented. So
WIðRÞ ¼ FIðRÞ and hence WICðSÞ ¼ FICðSÞ. Thus the assertion (3) follows
from (2). r

Furthermore, we get the following result.

Corollary 4.4. For any C-coreflexive left R-module M, we have
(1) idR Ma ICðSÞ-id M�.
(2) widR MaWICðSÞ-id M�.
(3) If R is a left coherent ring, then FP-idR MaFICðSÞ-id M�.
(4) BCðRÞ-id MaACðSÞ-id M�.

All equalities hold if M A BCðRÞ.

Proof. Let M be a C-coreflexive left R-module. Then CnS M�GM in
Mod R and M� A Mod S. Putting N ¼M� in Proposition 4.3, the assertions
follow. r

Note that [27, Example 4.7(1)] shows that, in general, none of FCðRÞ, PCðRÞ
and WFCðRÞ contain PðRÞ, and hence none of them are resolving. Since the
assertion (1) in the following result is a consequence of Theorem 3.3, this means
that Theorem 3.3 is a non-trivial complement to [17, Theorem 3.2].

On the other hand, the class PCðRÞ is self-orthogonal by [27, Lemma 2.5], so
for any M A Mod R and nb 0, it is easy to see that PCðRÞ-pd Ma n if and only
if there exist a HomRðPCðRÞ;�Þ-exact exact sequence

0! Gn ! � � � ! G1 ! G0 !M ! 0

in Mod R with all Gi in PCðRÞ. However, neither FCðRÞ nor WFCðRÞ (even
when RCS ¼ RRR) are self-orthogonal. Since the assertion (2) in the following
result is a consequence of Propositions 3.6 and 3.7, this means that Propositions
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3.6 and 3.7 are non-trivial complements to [2, Lemma 3.12] and [15, Theorem
3.8(2)].

Theorem 4.5. Let H be any of the following subcategories of Mod R:

ðiÞ FCðRÞ; ðiiÞ PCðRÞ; ðiiiÞ WFCðRÞ; ðivÞ BCðRÞ:
Then the following assertions hold true.

(1) For any exact sequence

0! A1 ! A2 ! A3 ! 0

in Mod R, if either H-pd A1 < y or RCS is faithful, then we have
(1.1) H-pd A2 amaxfH-pd A1;H-pd A3g with equality if H-pd A1 þ 1

0H-pd A3.
(1.2) H-pd A3 amaxfH-pd A1 þ 1;H-pd A2g with equality if H-pd A1

0H-pd A2.
(1.3) H-pd A1 amaxfH-pd A2;H-pd A3 � 1g with equality if H-pd A2

0H-pd A3.
(2) For any M A Mod R and nb 0, the following assertions hold.

(2.1) H-pd Ma n if and only if there exists a HomRðH;�Þ-exact exact
sequence

0! Hn ! � � � ! H1 ! H0 !M ! 0

in Mod R with all Hi in H.
(2.1) Assume that H-pd Ma n and

0! K ! H0 !M ! 0ð4:1Þ
is an exact sequence in Mod R with H0 A H. Then H-pd Ka

n� 1 if any of the following conditions is satisfied.
(i) RCS is faithful.
(ii) H is closed under direct summands and the exact sequence (4.1)

is HomRðH;�Þ-exact.

Proof. It is well known that the categories FðSÞ and PðSÞ are resolving.
The categories WFðSÞ and ACðSÞ are resolving by [11, Proposition 2.5(1)] and
[13, Theorem 6.2] respectively. On the other hand, the categories FCðRÞ, PCðRÞ,
WFCðRÞ and BCðRÞ are precovering in Mod R by [13, Proposition 5.3(1)(2)],
[11, Theorem 2.12(1)] and [16, Theorem 3.3(2)] respectively. Now the assertions
follow from Theorem 3.3, Propositions 3.6 and 3.7 by putting T ¼ FðSÞ, PðSÞ,
WFðSÞ and ACðSÞ respectively, and putting H ¼ fCnS T jT A Tg. r

The following result is the dual of Theorem 4.5, in which the assertion (1)
is a consequence of Theorem 3.10 and the assertion (2) is a consequence of
Propositions 3.13 and 3.14. It means that Theorem 3.10 is a non-trivial comple-
ment to [17, Theorem 3.9] and that Propositions 3.13 and 3.14 are non-trivial
complements to the dual of [2, Lemma 3.12] and [15, Theorem 4.8(2)].
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Theorem 4.6. Let T be any of the following subcategories of Mod S:

ðiÞ ICðSÞ; ðiiÞ WICðSÞ; ðiiiÞ FICðSÞ ðwhen R is a left coherent ringÞ;
ðivÞ ACðSÞ:

Then the following assertions hold true.
(1) For any exact sequence

0! A1 ! A2 ! A3 ! 0

in Mod R, if either T-id A3 < y or RCS is faithful, then we have
(1.1) T-id A2 amaxfT-id A1;T-id A3g with equality if T-id A1 0

T-id A3 þ1.
(1.2) T-id A1 amaxfT-id A2;T-id A3 þ 1g with equality if T-id A2 0

T-id A3.
(1.3) T-id A3 amaxfT-id A1 � 1;T-id A2g with equality if T-id A1 0

T-id A2.
(2) For any N A Mod S and nb 0, the following assertions hold.

(2.1) T-id Na n if and only if there exists a HomSð�;TÞ-exact exact
sequence

0! N ! T 0 ! T 1 ! � � � ! T n ! 0

in Mod S with all T i in T.
(2.2) Assume that T-id Na n and

0! N ! T 0 ! L! 0ð4:2Þ

is an exact sequence in Mod S with T 0 A T. Then T-id La n� 1
if any of the following conditions is satisfied.
(i) RCS is faithful.
(ii) T is closed under direct summands and the exact sequence (4.2)

is HomSð�;TÞ-exact.

Proof. It is well known that the class IðRÞ is coresolving. The categories
WIðRÞ and BCðRÞ are coresolving by [11, Proposition 2.5(2)] and [13, Theorem
6.2] respectively. On the other hand, the categories ICðSÞ, WICðSÞ and ACðSÞ
are preenveloping in Mod S by [13, Proposition 5.3(3)], [11, Theorem 2.12(2)] and
[16, Theorem 3.3(1)] respectively. Now the assertions follow from Theorem 3.10,
Propositions 3.13 and 3.14 by putting H ¼ IðRÞ, WIðRÞ, FIðRÞ (when R is a
left coherent ring) and BCðRÞ respectively, and putting T ¼ fH� jH A Hg. r

For a subcategory X of Mod R, we write

idR X :¼ supfidR X jX A Xg:

For a subcategory Y of Mod S, we write

pdS Y :¼ supfpdS Y jY A Yg:
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Proposition 4.7.
(1) Let T be a resolving subcategory of ACðSÞ, and set H :¼ fCnS T j

T A Tg. Then

supfH-pd M jM A cT ðRÞ with H-pd M < yga idR H:

(2) Let H be a coresolving subcategory of BCðRÞ, and set T :¼ fH� j
H A Hg. Then

supfT-id N jN A acT ðSÞ with T-id N < yga pdS T:

Proof. (1) Let idR H ¼ n < y and M A cT ðRÞ with H-pd M ¼ m < y.
By Theorem 3.2, T-pd M� ¼H-pd M ¼ m. By [17, Lemma 3.1(1)], there exists
an exact sequence

0! Tm ! Pm�1 ! � � � ! P1 ! P0 !M� ! 0ð4:3Þ

in Mod S with Tm A T and all Pi projective. Because CnS M�GM and
M� A CS

> by Lemma 2.4, applying the functor CnS � to the exact sequence
(4.3), we get the following exact sequence:

0! CnS Tm ! CnS Pm�1 ! � � � ! CnS P1 ! CnS P0 ! CnS M�|fflfflfflfflffl{zfflfflfflfflffl}
GM

! 0ð4:4Þ

in Mod R with CnS Tm and all CnS Pi being in H. By [13, Theorem 6.4(a)],
we have

Ext jRðCnS Pi;CnS TmÞGExt jSðPi;TmÞ ¼ 0

for any 0a iam� 1 and jb 1.
Suppose m > n. Since idR CnS Tm a n by assumption, applying the functor

HomRð�;CnS TmÞ to the exact sequence (4.4) yields

Ext1RðK;CnS TmÞGExtmR ðM;CnS TmÞ ¼ 0;

where K ¼ CokerðCnS Tm ! CnS Pm�1Þ. Thus the exact sequence

0! CnS Tm ! CnS Pm�1 ! K ! 0

splits, and hence K A PCðRÞ by [13, Proposition 5.1(b)]. Since PðSÞ �T, we
have PCðRÞ �H. Thus K A H and H-pd Mam� 1, which is a contradiction.
Consequently we conclude that ma n.

(2) It is dual to the proof of (1), so we omit it. r

The assertions (1) and (2) in the following corollary have been obtained in
[25, Proposition 3.6].

Corollary 4.8. The following assertions hold.
(1) supfFCðRÞ-pd M jM A cT ðRÞ with FCðRÞ-pd M < yga idR FCðRÞ.
(2) supfPCðRÞ-pd M jM A cT ðRÞ with PCðRÞ-pd M < yga idR PCðRÞ.
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(3) supfWFCðRÞ-pd M jM A cT ðRÞ with WFCðRÞ-pd M < yg
a idR WFCðRÞ.

(4) supfBCðRÞ-pd M jM A cT ðRÞ with BCðRÞ-pd M < yga idR BCðRÞ.
(5) supfICðSÞ-id N jN A acT ðSÞ with ICðSÞ-id N < yga pdS ICðSÞ.
(6) supfWICðSÞ-id N jN A acT ðSÞ with WICðSÞ-id N <ygapdS WICðSÞ.
(7) supfACðSÞ-id N jN A acT ðSÞ with ACðSÞ-id N < yga pdS ACðSÞ.

Proof. The assertions (1)–(4) follow from Proposition 4.7(1) by putting
T ¼ FðSÞ, PðSÞ, WFðSÞ and ACðSÞ respectively, and putting H ¼ fCnS T j
T A Tg.

The assertions (5)–(7) follow from Proposition 4.7(2) by putting H ¼ IðRÞ,
WIðRÞ and BCðRÞ respectively, and putting T ¼ fH� jH A Hg. r

For a module M A Mod R, we use AddR M (respectively, addR M) to denote
the subcategory of Mod R consisting of all direct summands of direct sums of
(finite) copies of M.

Corollary 4.9. For a left noetherian ring R, the following assertions hold.
(1) supfFCðRÞ-pd M jM A cT ðRÞ with FCðRÞ-pd M < yga idR C.
(2) supfPCðRÞ-pd M jM A cT ðRÞ with PCðRÞ-pd M < yga idR C.

Proof. By [25, Proposition 3.4(1)(2)], we have that FCðRÞ consists of mod-
ules M such that M is a direct summand of a direct limit of modules in addR C
and PCðRÞ ¼ AddR C. Then

idR C ¼ idR FCðRÞ ¼ idR PCðRÞ
by [3, Theorem 1.1]. Now the assertions follows from Corollary 4.8(1)(2). r

Let RCS ¼ RRR. Then cT ðRÞ ¼Mod R by Lemma 2.4. It is clear that
FCðRÞ ¼ FðRÞ and PCðRÞ ¼ PðRÞ, and hence FCðRÞ-pd M ¼ fdR M and PCðRÞ-
pd M ¼ pdR M for any M A Mod R. Then we obtain immediately the following
result by putting RCS ¼ RRR in Corollary 4.9.

Corollary 4.10 ([25, Corollary 3.7]). For a left noetherian ring R, the
following assertions hold.

(1) supffdR M jM A Mod R with fdR M < yga idR R.
(2) supfpdR M jM A Mod R with pdR M < yga idR R.

Set ð�Þþ :¼ HomZð�;Q=ZÞ, where Z is the additive group of integers and Q
is the additive group of rational numbers. According to Lemmas 2.4 and 2.6,
the following lemma is essentially contained in the proof of [16, Proposition 3.2].

Lemma 4.11. The following assertions hold.
(1) A module N 0 A cT ðSopÞ if and only if N 0þ A acT ðSÞ.
(2) A module N A acT ðSÞ if and only if Nþ A cT ðSopÞ.
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For further application, we need the following observation.

Proposition 4.12. The following assertions hold.
(1) If R is a left noetherian ring, then for any N A Mod S, we have

ICðSÞ-id N ¼ FCðSopÞ-pd Nþ:

(2) supfFCðSopÞ-pd N 0 jN 0 A cT ðSopÞ with FCðSopÞ-pd N 0 < yg
a supfICðSÞ-id N jN A acT ðSÞ with ICðSÞ-id N < yg with equality
if R is a left noetherian ring.

Proof. (1) Let R be a left noetherian ring. Then for any N A Mod S and
nb 0, we have

ICðSÞ-id N ¼ n

() N A ACðSÞ and idR CnS N ¼ n ðby ½13; Lemma 5:1ðcÞ�
and Proposition 4:3Þ

() Nþ A BCðSopÞ and fdRopðCnS NÞþ ¼ n ðby ½16; Proposition 3:2�
and ½8; Theorem 2:2�Þ

() FCðSopÞ-pd Nþ ¼ n: ðby Proposition 4:1ð1ÞÞ

(2) Suppose

supfICðSÞ-id N jN A acT ðSÞ with ICðSÞ-id N < yg ¼ n < y:

Let N 0 A cT ðSopÞ with FCðSopÞ-pd N 0 < y. Then N 0þ A acT ðSÞ and ICðSÞ-
id N 0þ ¼ FCðSopÞ-pd N 0 < y by Lemma 4.11(1) and [17, Theorem 4.17(1)] re-
spectively, and hence FCðSopÞ-pd N 0a n. The first assertion follows.

Suppose that R is a left noetherian ring and

supfFCðSopÞ-pd N 0 jN 0 A cT ðSopÞ with FCðSopÞ-pd N 0 < yg ¼ n < y:

Let N A acT ðSÞ with ICðSÞ-id N < y. Then Nþ A cT ðSopÞ and FCðSopÞ-
pd Nþ ¼ ICðSÞ-id N < y by Lemma 4.11(2) and the assertion (1) respectively,
and hence ICðSÞ-id Na n. The proof is finished. r

As a consequence, we obtain the following corollary.

Corollary 4.13. For a left noetherian ring R, the following assertions hold.
(1) supfICðSÞ-idR N jN A acT ðSÞ with ICðSÞ-idS N < yga idS op C.
(2) supfidR M jM A Mod R with idR M < yga idRop R.

Proof. (1) It follows from Proposition 4.12(2) and the symmetric version of
Corollary 4.9(1).

(2) Let RCS ¼ RRR. Then acT ðSÞ ¼Mod Sð¼Mod RÞ by Lemma 2.6. It
is clear that ICðSÞ ¼ IðSÞð¼ IðRÞÞ and ICðSÞ-id M ¼ idS Mð¼ idR MÞ for any
M A Mod Sð¼Mod RÞ. Thus the assertion follows from (1). r
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