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Applications of exact structures in abelian categories

By JUNFU WANG (Nanjing), HUANHUAN LI (Xi’an)
and ZHAOYONG HUANG (Nanjing)

Abstract. In an abelian category A with small Ext groups, we show that there

exists a one-to-one correspondence between any two of the following: balanced pairs,

subfunctors F of Ext1A (−,−) such that A has enough F-projectives and enough F-
injectives and Quillen exact structures E with enough E-projectives and enough E-
injectives. In this case, we get a strengthened version of the translation of the Waka-

matsu lemma to the exact context, and also prove that subcategories which are E-
resolving and epimorphic precovering with kernels in their right E-orthogonal class and
subcategories which are E-coresolving and monomorphic preenveloping with cokernels in

their left E-orthogonal class are determined by each other. Then we apply these results

to construct some (pre)enveloping and (pre)covering classes and complete hereditary

E-cotorsion pairs in the module category.

1. Introduction

Throughout this paper, A is an abelian category and a subcategory of A

means a full and additive subcategory closed under isomorphisms and direct sum-

mands.

The notion of exact categories was originally due to Quillen [17]. The

theory of exact categories was developed by Bühler, Fu, Gillespie, Hovey,

Keller, Krause, Neeman, Šťov́ıček and possibly others, see [4], [8], [10],

[13], [14], [15], [16], [20], [21], and so on. In addition, Auslander and Solberg
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developed in [1], [2] the theory of relative homological algebra with respect to

a subfunctor F of Ext1A (−,−) : A op × A → Ab, where Ab is the category of

abelian groups and A = mod Λ is the category of finitely generated modules

over an artin algebra Λ. Then, as a special case, Chen introduced and studied

in [5] relative homology with respect to balanced pairs in an abelian category.

On the other hand, the notion of cotorsion pairs was introduced by Salce in

[19], which is based on the functor Ext1A (−,−). The theory of cotorsion pairs,

studied by many authors, has played an important role in homological algebra

and representation theory of algebras, see [7], [8], [9], [11], [13], [15], [20], [21] and

references therein. Motivated by these, in this paper, for an abelian category A

with small Ext groups, we first investigate the relations among exact structures,

subfunctors of Ext1A (−,−) and balanced pairs in A , then we study cotorsion

pairs with respect to exact structures in A . The paper is organized as follows.

In Section 2, we recall the definitions of exact categories, balanced pairs and

some notions in relative homological algebra. We prove that there exists a one-to-

one correspondence between any two of the following: (1) Balanced pairs (C ,D)

in A ; (2) Subfunctors F ⊆ Ext1A (−,−) such that A has enough F-projectives

and enough F-injectives; (3) Quillen exact structures E in A with enough E-

projectives and enough E-injectives.

Let E be an exact structure on A such that A has enough E-projectives and

enough E-injectives. In Section 3, we get a strengthened version of the Waka-

matsu lemma in the exact context, and also prove that subcategories which are

E-resolving and epimorphic precovering with kernels in their right E-orthogonal

class and subcategories which are E-coresolving and monomorphic preenveloping

with cokernels in their left E-orthogonal class are determined by each other. As

applications, we get some complete hereditary E-cotorsion pairs.

Let R be an associative ring with identity, and let A = ModR be the

category of right R-modules and E contain all pure short exact sequences. As

applications of results obtained in Section 3, we prove in Section 4 that for any

subcategory X of ModR in which all modules are pure projective (resp. pure

injective), the right (resp. left) orthogonal class with respect to the exact structure

E of X is preenveloping (resp. covering). Moreover, we construct some complete

hereditary E-cotorsion pairs induced by the category of pure injective modules.

Some results of Göbel and Trlifaj in [11] are obtained as corollaries.
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2. Exact categories, balanced pairs and relative homology

The following two definitions are cited from [4], see also [17] and [14].

Definition 2.1. Let B be an additive category. A kernel-cokernel pair (i, p)

in B is a pair of composable morphisms

L
i−→M

p−→ N

such that i is a kernel of p and p is a cokernel of i. If a class E of kernel-

cokernel pairs on B is fixed, an admissible monic (sometimes called inflation) is

a morphism i for which there exists a morphism p such that (i, p) ∈ E . Admissible

epics (sometimes called deflations) are defined dually.

An exact structure on B is a class E of kernel-cokernel pairs which is closed

under isomorphisms and satisfies the following axioms:

[E0] For any object B in B, the identity morphism idB is both an admissible

monic and an admissible epic.

[E1] The class of admissible monics is closed under compositions.

[E1op] The class of admissible epics is closed under compositions.

[E2] The push-out of an admissible monic along an arbitrary morphism exists

and yields an admissible monic, that is, for any admissible monic i : L→M

and any morphism f : L→M ′, there is a push-out diagram

L
i //

f

��

M

f ′

��M ′
i′ //

with i′ an admissible monic.

[E2op] The pull-back of an admissible epic along an arbitrary morphism exists

and yields an admissible epic, that is, for any admissible epic p : M → N

and any morphism g : M ′ → N , there is a pull-back diagram

X
p′ //

G′

��

M ′

g

��
M

p // N

with p′ an admissible epic.
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An exact category is a pair (B, E) consisting of an additive category B and an

exact structure E on B. Elements of E are called admissible short exact sequences

(or conflations).

Definition 2.2. Let (B, E) be an exact category.

(1) An object P ∈ B is an (E-)projective object if for any admissible epic p :

M → N and any morphism f : P → N there exists f ′ : P → M such that

f = pf ′; an object I ∈ B is an (E-)injective object if for any admissible

monic i : L→M and any morphism g : L→ I there exists g′ : M → I such

that g = g′i.

(2) (B, E) is said to have enough projective objects if for any object M ∈ B there

exists an admissible epic p : P →M with P a projective object of B; (B, E)

is said to have enough injective objects if for any object M ∈ B there exists

an admissible monic i : M → I with I an injective object of B.

We have the following standard observation.

Lemma 2.1. Let (B, E) be an exact category with enough projective objects

and enough injective objects, and let

0→ X → Y → Z → 0 (2.1)

be a sequence of morphisms in B. Then the following statements are equivalent.

(1) (2.1) is a conflation.

(2) For any projective object P of B, the induced sequence of abelian groups

0→ HomB(P,X)→ HomB(P, Y )→ HomB(P,Z)→ 0

is exact.

(3) For any injective object I of B, the induced sequence of abelian groups

0→ HomB(Z, I)→ HomB(Y, I)→ HomB(X, I)→ 0

is exact.

Proof. The implications (1) =⇒ (2) and (1) =⇒ (3) are trivial. We just

need to prove the implication (2) =⇒ (1) since the implication (3) =⇒ (1) is its

dual.

Let

0→ X
f2−→ Y

f1−→ Z → 0

be a sequence in B. One easily proves that f2 is a monomorphism and that

f1f2 = 0. We claim that f2 is a kernel of f1. In fact, for any K ∈ B, there exists

an exact sequence

P1 → P0 → K → 0
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with P0, P1 projective in B. By (2) and the snake lemma, we obtain the following

commutative diagram with exact columns and rows:

0

��

0

��

0

��
0 // HomB(K,X)

HomB(K,f2)//

��

HomB(K,Y )
HomB(K,f1)//

��

HomB(K,Z)

��
0 // HomB(P0,X)

HomB(P0,f2)//

��

HomB(P0,Y )
HomB(P0,f1)//

��

HomB(P0,Z)

��

// 0

0 // HomB(P1,X)
HomB(P1,f2)// HomB(P1,Y )

HomB(P1,f1)// HomB(P1,Z) // 0.

For any u : K → Y , if f1u = 0, then

HomB(K, f1)(u) = HomB(K, f1u) = 0

and u ∈ Ker HomB(K, f1) = Im HomB(K, f2). So there exists a unique morphism

v : K → X such that u = HomB(K, f2)(v) = f2v. Thus f2 is a kernel of f1.

Again by (2), there exists a deflation ϕ : P2 → Z with P2 projective in B such

that ϕ = f1s for some s : P2 → Y . Then f1 is a deflation by [4, Proposition 2.16].

So

0→ X → Y → Z → 0

is a conflation, as required. �

Definition 2.3 ([1]). Let A be an abelian category with small Ext groups

(that is, Ext1A (X,Y ) is a set for anyX,Y ∈A ). For a subfunctor F ⊆Ext1A (−,−),

an object C (resp. D) in A is called F-projective (resp. F-injective) if F(C,−)= 0

(resp. F(−, D) = 0). An exact sequence

0→ A′ → A→ A′′ → 0

in A is called an F-sequence if it is an element of F(A′′, A′). The category A

is said to have enough F-projective objects if for any A ∈ A , there exists an

F-sequence

0→ X → C → A→ 0

such that C is F-projective; and A is said to have enough F-injective objects if

for any A ∈ A , there exists an F-sequence

0→ A→ D → Y → 0

such that D is F-injective.
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Definition 2.4 ([6]). Let C be a subcategory of A . A morphism f : C → D

in A with C ∈ C is called a C -precover of D if for any morphism g : C ′ → D

in A with C ′ ∈ C , there exists a morphism h : C ′ → C such that g = fh. The

morphism f : C → D is called right minimal if an endomorphism h : C → C

is an automorphism whenever f = fh. A C -precover is called a C -cover if it is

right minimal; C is called a (pre)covering subcategory of A if every object in A

has a C -(pre)cover; C is called an epimorphic (pre)covering subcategory of A if

every object in A has an epimorphic C -(pre)cover. Dually, the notions of a C -

(pre)envelope, a (pre)enveloping subcategory and a monomorphic (pre)enveloping

subcategory are defined.

Let C be a subcategory of A . Recall that a sequence in A is called

HomA (C ,−)-exact if it is exact after applying the functor HomA (C,−) for any

object C ∈ C . Let M ∈ A . An exact sequence (of finite or infinite length)

· · · fn+1−−−→ Cn
fn−→ · · · f2−→ C1

f1−→ C0
f0−→M → 0

in A with all Ci ∈ C is called a C -resolution of M if it is HomA (C ,−)-exact,

that is, each fi is an epimorphic C -precover of Im fi. We denote sometimes the

C -resolution of M by C • →M , where

C • := · · · → C2
f2−→ C1

f1−→ C0 → 0

is the deleted C -resolution of M . Note that by a version of the comparison

theorem, the C -resolution is unique up to homotopy ([7, p. 169]). Dually, the

notions of a HomA (−,C )-exact sequence and a C -coresolution are defined.

Definition 2.5 ([5]). A pair (C ,D) of additive subcategories in A is called a

balanced pair if the following conditions are satisfied.

(1) C is epimorphic precovering and D is monomorphic preenveloping.

(2) For any M ∈ A , there is a C -resolution C • →M such that it is

HomA (−,D)-exact.

(3) For any N ∈ A , there is a D-coresolution N → D• such that it is

HomA (C ,−)-exact.

Remark 2.1. By [5, Proposition 2.2], in Definition 2.5, keeping condition (1)

unaltered, the conditions (2) and (3) can be replaced by a common condition

(2′ + 3′): A short exact sequence

0→ Y → Z → X → 0

in A is HomA (C ,−)-exact if and only if it is HomA (−,D)-exact.
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Some examples of balanced pairs are as follows.

Example 2.1. Let R be an associative ring with identity and ModR the

category of right R-modules.

(1) (P0, I0) is the standard balanced pair in ModR, where P0 and I0 are the sub-

categories of ModR consisting of projective modules and injective modules

respectively.

(2) (PP,PI) is a balanced pair in ModR ([7, Example 8.3.2]), where PP and

PI are the subcategories of ModR consisting of pure projective modules and

pure injective modules respectively.

(3) If R is a Gorenstein ring, then (GP,GI) is a balanced pair in ModR ([7,

Theorem 12.1.4]), where GP and GI are the subcategories of ModR con-

sisting of Gorenstein projective modules and Gorenstein injective modules

respectively.

(4) Let A be an abelian category with enough projective and injective objects.

If both (B, C) and (C,D) are complete hereditary classical cotorsion pairs

in A , then (B,D) is a balanced pair in A ([5, Proposition 2.6]).

The main result in this section is the following

Theorem 2.2. Let A be an abelian category with small Ext groups. Then

there exists a one-to-one correspondence between any two of the following.

(1) Balanced pairs (C ,D) in A .

(2) Subfunctors F ⊆ Ext1A (−,−) such that A has enough F-projectives and

enough F-injectives.

(3) Quillen exact structures E in A with enough E-projectives and enough E-

injectives (that is, such that the resulting exact category (A , E) has enough

projective and enough injective objects).

Proof. We first show that there exists a one-to-one correspondence between

(1) and (2). Let (C ,D) be a balanced pair in A . If we define F(X,Y ) as the

subset of Ext1A (X,Y ) consisting of the equivalence classes of short exact sequences

of condition (2′ + 3′) in Remark 2.1, then the assignment (X,Y ) 7−→ F(X,Y ) is

the definition on objects of a subfunctor of Ext1A (−,−), and {F-projectives} = C ,

{F-injectives} = D . The converse is easy if we put (C ,D) = ({F-projectives},
{F-injectives}).

Next we show that there exists a one-to-one correspondence between (2)

and (3). Let F be a subfunctor of Ext1A (−,−) such that A has enough F-

projectives and enough F-injectives. Put E = {F-sequences}, and
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{E-projectives} = {F-projectives}, {E-injectives} = {F-injectives}. We claim

that (A , E) is an exact category with enough projective and enough injective

objects.

Clearly, E contains {0 → A
1A−−→ A → 0 → 0} and {0 → 0 → A

1A−−→ A → 0}
for any A ∈ A .

For [E1], let

0→ A1
f−→ A2 → L→ 0 and 0→ A2

g−→ A3 → K → 0

be F-sequences in A . We will prove

0→ A1
gf−→ A3 → Coker gf → 0

is an F-sequence. In fact, for any F-injective object I of A and α : A1 → I,

by [1, Proposition 1.5] there exists β : A2 → I such that α = βf . Consider the

following commutative diagram:

0

��
0 // A1

f // A2
//

g

��

L //

��

0

0 // A1
gf //

α

��

A3
//

��θ
}}

Coker gf // 0

I K

��
0.

Then there exists θ : A3 → I such that β = θg, that is, α = βf = θ(gf). So

0→ A1
gf−→ A3 → Coker gf → 0

is an F-sequence by [1, Proposition 1.5].

For [E2], take an F-sequence

0→ L
i−→M → N → 0.
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For any morphism f : L→M ′, consider the following pushout diagram:

0 // L

f

��

i // M

��

// N // 0

0 // M ′
i′ // X // N // 0.

By [1, Proposition 1.5], for any F-injective object I of A and s : M ′ → I, there

exists t : M → I such that sf = ti. It follows from the universal property of

pushouts, there exists h : X → I such that s = hi′. So

0→M ′
i′−→ X → N → 0

is an F-sequence by [1, Proposition 1.5]. Dually [E1op] and [E2op] follow.

Conversely, for any X,Y ∈ A , we define F(X,Y ) as the subset of

Ext1A (X,Y ) consisting of the equivalence classes of admissible short exact se-

quences. Let X ′, Y ′ ∈ A , f : Y → Y ′ and g : X ′ → X. Then by [E2] and [E2op],

we get the following two commutative diagrams:

F(X,Y )
inc. //

F(X,f)

��

Ext1A (X,Y )

Ext1A (X,f)

��
F(X,Y ′)

inc. // Ext1A (X,Y ′)

, and F(X,Y )
inc. //

F(g,Y )

��

Ext1A (X,Y )

Ext1A (g,Y )

��
F(X ′, Y )

inc. // Ext1A (X ′, Y ).

So F is a subfunctor of Ext1A (−,−) such that A has enough F-projectives and

enough F-injectives. �

3. E-cotorsion pairs

In this section, a pair (A , E) means that A is an abelian category with small

Ext groups and E is an exact structure on A such that A has enough E-projectives

and enough E-injectives. We first give a strengthened version of the Wakamatsu

lemma in the exact context, and then apply it to obtain complete hereditary E-

cotorsion pairs in (A , E). For any M,N ∈ A and i ≥ 1, we use ExtiA (M,N)

to denote the i-th cohomology group by taking E-projective resolution of M or

taking E-injective coresolution of N .

Inspired by [20], we give the following

Definition 3.1. Let (A , E) be a pair as above.
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(1) A pair (X ,Y ) of full subcategories of A is called an E-cotorsion pair pro-

vided that X = ⊥∗Y and Y = X ⊥∗ , where

X ⊥∗ = {N ∈ A | Ext1A (M,N) = 0 for any M ∈X }, and

⊥∗Y = {M ∈ A | Ext1A (M,N) = 0 for any N ∈ Y }.

(2) An E-cotorsion pair (X ,Y ) is called complete if for any M ∈ A , there exist

two conflations of the form:

0→ Y → X →M → 0, and 0→M → Y ′ → X ′ → 0

with X,X ′ ∈X and Y, Y ′ ∈ Y .

(3) A subcategory T of A is called closed under E-extensions if the end terms

in a conflation are in T implies that the middle term is also in T . The

subcategory T is called E-resolving if it contains all E-projectives of A ,

closed under E-extensions, and for any conflation

0→ X → Y → Z → 0

with Y,Z ∈ T , we have X ∈ T . Dually, the notion of E-coresolving subcat-

egories is defined.

(4) An E-cotorsion pair (X ,Y ) is called hereditary if X is E-resolving.

Remark 3.1. (1) By [11, Lemma 2.2.10], an E-cotorsion pair (X ,Y ) is

hereditary if and only if Y is E-coresolving.

(2) If E is the abelian structure, then all the notions in Definition 3.1 coincide

with the classical ones in [5, p. 6].

(3) {E-projectives} = ⊥∗A and {E-injectives} = A ⊥∗ .

The following result is a strengthened version of the translation of the Waka-

matsu lemma to the exact context.

Theorem 3.1. Let (A , E) be a pair as above, X a full subcategory of A

closed under E-extensions and A ∈ A .

(1) If f : X → A is an epimorphic X -cover, then Ker f ∈X ⊥∗ .

(2) If f : A→ X is a monomorphic X -envelope, then Coker f ∈ ⊥∗X .

Proof. We only prove (2), and (1) is dual to (2).

By assumption, there exists an exact sequence

0→ A
f−→ X

g−→ Coker f → 0
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in A with f : A→ X a monomorphic X -envelope. To prove Coker f ∈ ⊥∗X , it

suffices to prove that for any X ′ ∈X , any conflation

0→ X ′ →M
h−→ Coker f → 0

in A splits. Consider the pullback of g and h:

0

��

0

��
X ′

��

X ′

��
0 // A // Y //

��

M //

h

��

0

0 // A
f // X

g //

��

Coker f //

��

0

0 0.

Then the middle column is a conflation. Since X ′, X ∈X and X is closed under

E-extensions, we have Y ∈ X . Because f : A → X is an X -envelope of A, we

obtain the following commutative diagram with exact rows:

0 // A
f // X

��

// Coker f

��

// 0

0 // A // Y

��

// M

h

��

// 0

0 // A
f // X // Coker f // 0.

Since f is left minimal, we have that the composition

X → Y → X

is an isomorphism. This implies that the composition

Coker f →M
h−→ Coker f

is also an isomorphism. Therefore the conflation

0→ X ′ →M
h−→ Coker f → 0

splits and the assertion follows. �
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Theorem 3.2. Let (A , E) be a pair as above and (X ,Y ) a pair of full

subcategories of A . Then the following statements are equivalent.

(1) X is E-resolving, Y = X ⊥∗ and each A ∈ A admits an epimorphic X -

precover p: X → A such that Ker p ∈ Y .

(2) Y is E-coresolving, X = ⊥∗Y and each A ∈ A admits a monomorphic

Y -preenvelope j: A→ Y such that Coker j ∈X .

(3) (X ,Y ) is a complete hereditary E-cotorsion pair.

Proof. (2) =⇒ (1) First observe that X (= ⊥∗Y ) is closed under direct

summands, E-extensions and contains all E-projective objects of A . For any

conflation

0→ A→ B → C → 0

in A with B,C ∈X , we have an exact sequence

0 = Ext1A (B, Y )→ Ext1A (A, Y )→ Ext2A (C, Y )

for any Y ∈ Y . Take a conflation

0→ Y → E → L→ 0

in A with E E-injective. We have L ∈ Y since Y is E-coresolving. Then we have

an exact sequence:

0 = Ext1A (C,E)→ Ext1A (C,L)→ Ext2A (C, Y )→ Ext2A (C,E) = 0.

Notice that Ext1A (C,L) = 0, so Ext2A (C, Y ) = 0, and hence Ext1A (A, Y ) = 0,

that is, A ∈X . Consequently we conclude that X is E-resolving.

Next for each A ∈ A , there exists a conflation

0→ K → P → A→ 0

in A with P E-projective. By (2) and Lemma 2.1, we have a conflation

0→ K
j−→ Y →M → 0
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with Y ∈ Y and M ∈X . Consider the following pushout diagram:

0

��

0

��
0 // K //

j

��

P //

��

A // 0

0 // Y //

��

X
p //

��

A // 0

M

��

M

��
0 0.

Since X is E-resolving and P ∈ X , it follows from the middle column in the

above diagram that X ∈X . Obviously, the middle row

0→ Y → X
p−→ A→ 0

is a conflation and Y ∈ Y . Therefore we deduce that p: X → A is an epimorphic

X -precover, as required.

It remains to prove that Y = X ⊥∗ . Observe that Y ⊆ (⊥∗Y )⊥∗ = X ⊥∗ .

By (2) and Lemma 2.1, for any A′ ∈X ⊥∗ = (⊥∗Y )⊥∗ , there exists a conflation

0→ A′ → Y ′ → X ′ → 0 (3.1)

with Y ′ ∈ Y and X ′ ∈ X = ⊥∗Y . So (3.1) splits. Thus A′ ∈ Y since Y is

closed under direct summands.

Dually, we get (1) =⇒ (2).

The implications (1)+(2) =⇒ (3) and (1)⇐= (3) =⇒ (2) are clear. �

As direct consequences of Theorems 3.1 and 3.2, we have the following

Corollary 3.1. (1) If X is an epi-covering E-resolving subcategory of A ,

then each A ∈ A admits a monomorphic Y -preenvelope j: A → Y with

Coker j ∈X , where Y = X ⊥∗ .

(2) If Y is a mono-enveloping E-coresolving subcategory of A , then each A ∈ A

admits an epimorphic X -precover p: X → A with Ker p ∈ Y , where X =
⊥∗Y .
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Corollary 3.2. Let (X ,Y ) be a complete hereditary (classical) cotorsion

pair in A . Then we have

(1) If X contains the E-projective objects of A , then (X ,X ⊥∗) is a complete

hereditary E-cotorsion pair and each A ∈ A admits a monomorphic X ⊥∗ -

preenvelope j: A→ Y such that Coker j ∈X .

(2) If Y contains the E-injective objects of A , then (⊥∗Y ,Y ) is a complete

hereditary E-cotorsion pair and each A ∈ A admits an epimorphic ⊥∗Y -

precover p: X → A such that Ker p ∈ Y .

4. Applications

In this section, we will apply the results obtained in Section 3 to the module

category.

Let R be an associative ring with identity and modR the category of finitely

presented right R-modules. Recall that a short exact sequence

ξ : 0→ A→ B → C → 0

in ModR is called pure exact if the induced sequence HomR(F, ξ) is exact for any

F ∈ modR. In this case A is called a pure submodule of B and C is called a pure

quotient module of B. In addition, modules that are projective (resp. injective)

relative to pure exact sequences are called pure projective (resp. pure injective).

The subcategory of ModR consisting of pure projective (resp. pure injective)

modules is denoted by PP (resp. PI).

Lemma 4.1 ([18, Corollary 3.5(c)]). Let F be a subcategory of ModR

closed under pure submodules. Then F is preenveloping if and only if F is

closed under direct products.

Lemma 4.2 ([12, Theorem 2.5]). Let F be a subcategory of ModR closed

under pure quotient modules. Then the following statements are equivalent.

(1) F is closed under direct sums.

(2) F is precovering.

(3) F is covering.

Lemma 4.3. Let (A , E) be a pair as in Section 3 and A ∈ A . Then the

following statements are equivalent.

(1) Ext1A (−, A) vanishes on all E-projective objects of A .
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(2) Any short exact sequence

0→ A→ Z → V → 0

is a conflation.

Proof. (2) =⇒ (1) is trivial.

(1) =⇒ (2) For any E-projective object P of A and f : P → V , consider the

pullback diagram:

0 // A // N

α

��

i // P

f

��

// 0

0 // A // Z
g // V // 0.

By (1), there exists j : P → N such that ij = 1P . Then we have f = fij = gαj.

So by Lemma 2.1, the short exact sequence

0→ A→ Z → V → 0

is a conflation. �

Recall from [3] that a subcategory of ModR is called definable if it is closed

under arbitrary direct products, direct limits, and pure submodules.

Theorem 4.4. Let E be an exact structure on ModR with enough E-

projectives and enough E-injectives such that E contains all pure short exact

sequences. If X ⊆ PP and Y ⊆ PI are two subcategories, then we have the

following

(1) X ⊥∗ is preenveloping. If moreover, each X ∈X admits an E-presention

C2 → C1 → C0 → X → 0,

where the Ci are E-projective in ModR and finitely presented, then X ⊥∗ is

also covering.

(2) ⊥∗Y is covering and closed under pure quotients.

(3) If Y is closed under taking E-cosyzygies, then we have

(i) (⊥∗Y , (⊥∗Y )⊥∗) is a complete hereditary E-cotorsion pair.

(ii) If Ext1R(−, Y ) vanishes on E-projective objects of ModR for any Y ∈Y ,

then (⊥1Y , (⊥1Y )⊥∗) is a complete hereditary E-cotorsion pair.
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Proof. (1) First observe that X ⊥∗ is closed under direct products. Let

0→ A→ B → C → 0

be a pure exact sequence in ModR with B ∈ X ⊥∗ . Then it is a conflation by

assumption. For any X ∈X , we have the following exact sequence:

HomR(X,B)
f−→ HomR(X,C)→ Ext1A (X,A)→ Ext1A (X,B) = 0.

Notice that f is epic, so Ext1A (X,A) = 0 and A ∈ X ⊥∗ . Thus X ⊥∗ is closed

under pure submodules. It follows from Lemma 4.1 that X ⊥∗ is preenveloping.

It is easy to see that X ⊥∗ is closed under direct limits by assumption; in

particular X ⊥∗ is closed under direct sums. Then X ⊥∗ is definable. So X ⊥∗ is

closed under pure quotient modules by [3, Proposition 4.3(3)], and hence X ⊥∗ is

covering by Lemma 4.2.

(2) Obviously, ⊥∗Y is closed under direct sums. By Lemma 4.2, it suffices

to show that ⊥∗Y is closed under pure quotient modules. Let

0→ A→ B → C → 0

be a pure exact sequence in ModR with B ∈ ⊥∗Y . Then it is a conflation by

assumption. By using an argument similar to that in the proof of (1), we get

C ∈ ⊥∗Y .

(3) (i) Because ⊥∗Y contains all projective modules, we have that ⊥∗Y is

epimorphic covering by (2). We claim that ⊥∗Y is E-resolving. This will complete

the proof of (i) by Theorems 3.1 and 3.2.

Clearly, ⊥∗Y contains all E-projective objects of ModR and ⊥∗Y is closed

under direct summands and E-extensions. Now take a conflation

0→M → N → L→ 0

in ModR with N,L ∈ ⊥∗Y . By assumption, we have Ker Ext1A (−, Y ) ⊆
Ker Ext2A (−, Y ) for any Y ∈ Y . Now by the dimension shifting it yields that

M ∈ ⊥∗Y . So ⊥∗Y is E-resolving. The claim follows.

(ii) By Lemma 4.3, we have ⊥1Y = ⊥∗Y . So, as a particular case of (i), the

assertion follows. �

Recall that a classical cotorsion pair (X ,Y ) in ModR is perfect if X is

covering and Y is enveloping. As a consequence of Theorem 4.4, we have the

following
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Corollary 4.1. If X ⊆ PP and Y ⊆ PI are two subcategories in ModR,

then we have

(1) X ⊥1 is preenveloping. If moreover, R is a right coherent ring and X is a

subcategory of modR, then X ⊥1 is also covering.

(2) ⊥1Y is covering and closed under pure quotients.

(3) ([11, Theorem 3.2.9]) (⊥1Y , (⊥1Y )⊥1) is a perfect hereditary cotorsion pair.

Proof. The assertions (1) and (2) follow directly from Theorem 4.4, and

the assertion (3) follows from Theorem 4.4 and [7, Theorem 7.2.6]. �
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