Publ. Math. Debrecen 88/3-4 (2016), 269–286 DOI: 10.5486/PMD.2016.7220

Applications of exact structures in abelian categories

By JUNFU WANG (Nanjing), HUANHUAN LI (Xi'an) and ZHAOYONG HUANG (Nanjing)

Abstract. In an abelian category \mathscr{A} with small Ext groups, we show that there exists a one-to-one correspondence between any two of the following: balanced pairs, subfunctors \mathcal{F} of $\operatorname{Ext}^1_{\mathscr{A}}(-,-)$ such that \mathscr{A} has enough \mathcal{F} -projectives and enough \mathcal{F} -injectives and Quillen exact structures \mathcal{E} with enough \mathcal{E} -projectives and enough \mathcal{E} -injectives. In this case, we get a strengthened version of the translation of the Waka-matsu lemma to the exact context, and also prove that subcategories which are \mathcal{E} -resolving and epimorphic precovering with kernels in their right \mathcal{E} -orthogonal class and subcategories which are \mathcal{E} -coresolving and monomorphic preenveloping with cokernels in their left \mathcal{E} -orthogonal class are determined by each other. Then we apply these results to construct some (pre)enveloping and (pre)covering classes and complete hereditary \mathcal{E} -cotorsion pairs in the module category.

1. Introduction

Throughout this paper, \mathscr{A} is an abelian category and a subcategory of \mathscr{A} means a full and additive subcategory closed under isomorphisms and direct summands.

The notion of exact categories was originally due to QUILLEN [17]. The theory of exact categories was developed by BÜHLER, FU, GILLESPIE, HOVEY, KELLER, KRAUSE, NEEMAN, ŠŤOVÍČEK and possibly others, see [4], [8], [10], [13], [14], [15], [16], [20], [21], and so on. In addition, AUSLANDER and SOLBERG

Mathematics Subject Classification: 18E10, 18G25.

Key words and phrases: abelian categories, exact categories, cotorsion pairs, balanced pairs, (pre)covering, (pre)enveloping, pure injective modules, pure projective modules.

This paper is supported by NSFC (Grant Nos. 11171142 and 11571164) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

developed in [1], [2] the theory of relative homological algebra with respect to a subfunctor \mathcal{F} of $\operatorname{Ext}^{1}_{\mathscr{A}}(-,-): \mathscr{A}^{op} \times \mathscr{A} \to \operatorname{Ab}$, where Ab is the category of abelian groups and $\mathscr{A} = \operatorname{mod} \Lambda$ is the category of finitely generated modules over an artin algebra Λ . Then, as a special case, CHEN introduced and studied in [5] relative homology with respect to balanced pairs in an abelian category. On the other hand, the notion of cotorsion pairs was introduced by SALCE in [19], which is based on the functor $\operatorname{Ext}^{1}_{\mathscr{A}}(-,-)$. The theory of cotorsion pairs, studied by many authors, has played an important role in homological algebra and representation theory of algebras, see [7], [8], [9], [11], [13], [15], [20], [21] and references therein. Motivated by these, in this paper, for an abelian category \mathscr{A} with small Ext groups, we first investigate the relations among exact structures, subfunctors of $\operatorname{Ext}^{1}_{\mathscr{A}}(-,-)$ and balanced pairs in \mathscr{A} , then we study cotorsion pairs with respect to exact structures in \mathscr{A} . The paper is organized as follows.

In Section 2, we recall the definitions of exact categories, balanced pairs and some notions in relative homological algebra. We prove that there exists a one-toone correspondence between any two of the following: (1) Balanced pairs $(\mathscr{C}, \mathscr{D})$ in \mathscr{A} ; (2) Subfunctors $\mathcal{F} \subseteq \operatorname{Ext}^{1}_{\mathscr{A}}(-,-)$ such that \mathscr{A} has enough \mathcal{F} -projectives and enough \mathcal{F} -injectives; (3) Quillen exact structures \mathcal{E} in \mathscr{A} with enough \mathcal{E} projectives and enough \mathcal{E} -injectives.

Let \mathcal{E} be an exact structure on \mathscr{A} such that \mathscr{A} has enough \mathcal{E} -projectives and enough \mathcal{E} -injectives. In Section 3, we get a strengthened version of the Wakamatsu lemma in the exact context, and also prove that subcategories which are \mathcal{E} -resolving and epimorphic precovering with kernels in their right \mathcal{E} -orthogonal class and subcategories which are \mathcal{E} -coresolving and monomorphic preenveloping with cokernels in their left \mathcal{E} -orthogonal class are determined by each other. As applications, we get some complete hereditary \mathcal{E} -cotorsion pairs.

Let R be an associative ring with identity, and let $\mathscr{A} = \operatorname{Mod} R$ be the category of right R-modules and \mathcal{E} contain all pure short exact sequences. As applications of results obtained in Section 3, we prove in Section 4 that for any subcategory \mathcal{X} of $\operatorname{Mod} R$ in which all modules are pure projective (resp. pure injective), the right (resp. left) orthogonal class with respect to the exact structure \mathcal{E} of \mathcal{X} is preenveloping (resp. covering). Moreover, we construct some complete hereditary \mathcal{E} -cotorsion pairs induced by the category of pure injective modules. Some results of GÖBEL and TRLIFAJ in [11] are obtained as corollaries.

2. Exact categories, balanced pairs and relative homology

The following two definitions are cited from [4], see also [17] and [14].

Definition 2.1. Let \mathscr{B} be an additive category. A kernel-cokernel pair (i, p) in \mathscr{B} is a pair of composable morphisms

$$L \xrightarrow{i} M \xrightarrow{p} N$$

such that *i* is a kernel of *p* and *p* is a cokernel of *i*. If a class \mathcal{E} of kernelcokernel pairs on \mathscr{B} is fixed, an *admissible monic* (sometimes called *inflation*) is a morphism *i* for which there exists a morphism *p* such that $(i, p) \in \mathcal{E}$. Admissible epics (sometimes called *deflations*) are defined dually.

An *exact structure* on \mathscr{B} is a class \mathcal{E} of kernel-cokernel pairs which is closed under isomorphisms and satisfies the following axioms:

- [E0] For any object B in \mathscr{B} , the identity morphism id_B is both an admissible monic and an admissible epic.
- [E1] The class of admissible monics is closed under compositions.
- [E1^{op}] The class of admissible epics is closed under compositions.
- [E2] The push-out of an admissible monic along an arbitrary morphism exists and yields an admissible monic, that is, for any admissible monic $i: L \to M$ and any morphism $f: L \to M'$, there is a push-out diagram

$$\begin{array}{ccc} L & \stackrel{i}{\longrightarrow} & M \\ f & & & \\ M' & \stackrel{i'}{\longrightarrow} \end{array} \end{array}$$

with i' an admissible monic.

 $[E2^{op}]$ The pull-back of an admissible epic along an arbitrary morphism exists and yields an admissible epic, that is, for any admissible epic $p: M \to N$ and any morphism $g: M' \to N$, there is a pull-back diagram

$$\begin{array}{c|c} X & \xrightarrow{p'} & M' \\ G' & & & \downarrow^g \\ M & \xrightarrow{p} & N \end{array}$$

with p' an admissible epic.

An exact category is a pair $(\mathcal{B}, \mathcal{E})$ consisting of an additive category \mathcal{B} and an exact structure \mathcal{E} on \mathcal{B} . Elements of \mathcal{E} are called *admissible short exact sequences* (or *conflations*).

Definition 2.2. Let $(\mathscr{B}, \mathcal{E})$ be an exact category.

- (1) An object $P \in \mathscr{B}$ is an $(\mathcal{E}$ -)projective object if for any admissible epic $p : M \to N$ and any morphism $f : P \to N$ there exists $f' : P \to M$ such that f = pf'; an object $I \in \mathscr{B}$ is an $(\mathcal{E}$ -)injective object if for any admissible monic $i : L \to M$ and any morphism $g : L \to I$ there exists $g' : M \to I$ such that g = g'i.
- (2) $(\mathscr{B}, \mathcal{E})$ is said to have enough projective objects if for any object $M \in \mathscr{B}$ there exists an admissible epic $p : P \to M$ with P a projective object of \mathscr{B} ; $(\mathscr{B}, \mathcal{E})$ is said to have enough injective objects if for any object $M \in \mathscr{B}$ there exists an admissible monic $i : M \to I$ with I an injective object of \mathscr{B} .

We have the following standard observation.

Lemma 2.1. Let $(\mathcal{B}, \mathcal{E})$ be an exact category with enough projective objects and enough injective objects, and let

$$0 \to X \to Y \to Z \to 0 \tag{2.1}$$

be a sequence of morphisms in \mathcal{B} . Then the following statements are equivalent.

- (1) (2.1) is a conflation.
- (2) For any projective object P of \mathscr{B} , the induced sequence of abelian groups

 $0\to \operatorname{Hom}_{\mathscr{B}}(P,X)\to \operatorname{Hom}_{\mathscr{B}}(P,Y)\to \operatorname{Hom}_{\mathscr{B}}(P,Z)\to 0$ is exact.

(3) For any injective object I of \mathscr{B} , the induced sequence of abelian groups

$$0 \to \operatorname{Hom}_{\mathscr{B}}(Z, I) \to \operatorname{Hom}_{\mathscr{B}}(Y, I) \to \operatorname{Hom}_{\mathscr{B}}(X, I) \to 0$$

 $is \ exact.$

PROOF. The implications $(1) \Longrightarrow (2)$ and $(1) \Longrightarrow (3)$ are trivial. We just need to prove the implication $(2) \Longrightarrow (1)$ since the implication $(3) \Longrightarrow (1)$ is its dual.

Let

$$0 \to X \xrightarrow{f_2} Y \xrightarrow{f_1} Z \to 0$$

be a sequence in \mathscr{B} . One easily proves that f_2 is a monomorphism and that $f_1f_2 = 0$. We claim that f_2 is a kernel of f_1 . In fact, for any $K \in \mathscr{B}$, there exists an exact sequence

$$P_1 \to P_0 \to K \to 0$$

with P_0, P_1 projective in \mathscr{B} . By (2) and the snake lemma, we obtain the following commutative diagram with exact columns and rows:

For any $u: K \to Y$, if $f_1 u = 0$, then

$$\operatorname{Hom}_{\mathscr{B}}(K, f_1)(u) = \operatorname{Hom}_{\mathscr{B}}(K, f_1u) = 0$$

and $u \in \text{Ker Hom}_{\mathscr{B}}(K, f_1) = \text{Im Hom}_{\mathscr{B}}(K, f_2)$. So there exists a unique morphism $v: K \to X$ such that $u = \text{Hom}_{\mathscr{B}}(K, f_2)(v) = f_2 v$. Thus f_2 is a kernel of f_1 .

Again by (2), there exists a deflation $\varphi : P_2 \to Z$ with P_2 projective in \mathscr{B} such that $\varphi = f_1 s$ for some $s : P_2 \to Y$. Then f_1 is a deflation by [4, Proposition 2.16]. So

$$0 \to X \to Y \to Z \to 0$$

is a conflation, as required.

Definition 2.3 ([1]). Let \mathscr{A} be an abelian category with small Ext groups (that is, $\operatorname{Ext}^{1}_{\mathscr{A}}(X, Y)$ is a set for any $X, Y \in \mathscr{A}$). For a subfunctor $\mathcal{F} \subseteq \operatorname{Ext}^{1}_{\mathscr{A}}(-, -)$, an object C (resp. D) in \mathscr{A} is called \mathcal{F} -projective (resp. \mathcal{F} -injective) if $\mathcal{F}(C, -) = 0$ (resp. $\mathcal{F}(-, D) = 0$). An exact sequence

$$0 \to A' \to A \to A'' \to 0$$

in \mathscr{A} is called an \mathcal{F} -sequence if it is an element of $\mathcal{F}(A'', A')$. The category \mathscr{A} is said to have enough \mathcal{F} -projective objects if for any $A \in \mathscr{A}$, there exists an \mathcal{F} -sequence

$$0 \to X \to C \to A \to 0$$

such that C is \mathcal{F} -projective; and \mathscr{A} is said to have enough \mathcal{F} -injective objects if for any $A \in \mathscr{A}$, there exists an \mathcal{F} -sequence

$$0 \to A \to D \to Y \to 0$$

such that D is \mathcal{F} -injective.

273

Definition 2.4 ([6]). Let \mathscr{C} be a subcategory of \mathscr{A} . A morphism $f: C \to D$ in \mathscr{A} with $C \in \mathscr{C}$ is called a \mathscr{C} -precover of D if for any morphism $g: C' \to D$ in \mathscr{A} with $C' \in \mathscr{C}$, there exists a morphism $h: C' \to C$ such that g = fh. The morphism $f: C \to D$ is called right minimal if an endomorphism $h: C \to C$ is an automorphism whenever f = fh. A \mathscr{C} -precover is called a \mathscr{C} -cover if it is right minimal; \mathscr{C} is called a *(pre)covering subcategory* of \mathscr{A} if every object in \mathscr{A} has a \mathscr{C} -(pre)cover; \mathscr{C} is called an *epimorphic (pre)covering subcategory* of \mathscr{A} if every object in \mathscr{A} has an epimorphic \mathscr{C} -(pre)cover. Dually, the notions of a \mathscr{C} -*(pre)envelope*, a *(pre)enveloping subcategory* and a monomorphic *(pre)enveloping subcategory* are defined.

Let \mathscr{C} be a subcategory of \mathscr{A} . Recall that a sequence in \mathscr{A} is called Hom_{\mathscr{A}}(\mathscr{C} , -)-*exact* if it is exact after applying the functor Hom_{\mathscr{A}}(C, -) for any object $C \in \mathscr{C}$. Let $M \in \mathscr{A}$. An exact sequence (of finite or infinite length)

$$\cdots \xrightarrow{f_{n+1}} C_n \xrightarrow{f_n} \cdots \xrightarrow{f_2} C_1 \xrightarrow{f_1} C_0 \xrightarrow{f_0} M \to 0$$

in \mathscr{A} with all $C_i \in \mathscr{C}$ is called a \mathscr{C} -resolution of M if it is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact, that is, each f_i is an epimorphic \mathscr{C} -precover of $\operatorname{Im} f_i$. We denote sometimes the \mathscr{C} -resolution of M by $\mathscr{C}^{\bullet} \to M$, where

$$\mathscr{C}^{\bullet} := \cdots \to C_2 \xrightarrow{f_2} C_1 \xrightarrow{f_1} C_0 \to 0$$

is the *deleted* \mathscr{C} -resolution of M. Note that by a version of the comparison theorem, the \mathscr{C} -resolution is unique up to homotopy ([7, p. 169]). Dually, the notions of a Hom_{\mathscr{A}}($-, \mathscr{C}$)-exact sequence and a \mathscr{C} -coresolution are defined.

Definition 2.5 ([5]). A pair $(\mathscr{C}, \mathscr{D})$ of additive subcategories in \mathscr{A} is called a balanced pair if the following conditions are satisfied.

- (1) ${\mathscr C}$ is epimorphic precovering and ${\mathscr D}$ is monomorphic preenveloping.
- (2) For any $M \in \mathscr{A}$, there is a \mathscr{C} -resolution $\mathscr{C}^{\bullet} \to M$ such that it is $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{D})$ -exact.
- (3) For any $N \in \mathscr{A}$, there is a \mathscr{D} -coresolution $N \to \mathscr{D}^{\bullet}$ such that it is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact.

Remark 2.1. By [5, Proposition 2.2], in Definition 2.5, keeping condition (1) unaltered, the conditions (2) and (3) can be replaced by a common condition (2' + 3'): A short exact sequence

$$0 \to Y \to Z \to X \to 0$$

in \mathscr{A} is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact if and only if it is $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{D})$ -exact.

Some examples of balanced pairs are as follows.

Example 2.1. Let R be an associative ring with identity and Mod R the category of right R-modules.

- (1) $(\mathcal{P}_0, \mathcal{I}_0)$ is the standard balanced pair in Mod R, where \mathcal{P}_0 and \mathcal{I}_0 are the subcategories of Mod R consisting of projective modules and injective modules respectively.
- (2) (PP, PI) is a balanced pair in Mod R ([7, Example 8.3.2]), where PP and PI are the subcategories of Mod R consisting of pure projective modules and pure injective modules respectively.
- (3) If R is a Gorenstein ring, then (GP, GI) is a balanced pair in Mod R ([7, Theorem 12.1.4]), where GP and GI are the subcategories of Mod R consisting of Gorenstein projective modules and Gorenstein injective modules respectively.
- (4) Let \$\alphi\$ be an abelian category with enough projective and injective objects. If both \$(\mathcal{B}, \mathcal{C})\$ and \$(\mathcal{C}, \mathcal{D})\$ are complete hereditary classical cotorsion pairs in \$\alphi\$, then \$(\mathcal{B}, \mathcal{D})\$ is a balanced pair in \$\alphi\$ ([5, Proposition 2.6]).

The main result in this section is the following

Theorem 2.2. Let \mathscr{A} be an abelian category with small Ext groups. Then there exists a one-to-one correspondence between any two of the following.

- (1) Balanced pairs $(\mathscr{C}, \mathscr{D})$ in \mathscr{A} .
- (2) Subfunctors $\mathcal{F} \subseteq \operatorname{Ext}^{1}_{\mathscr{A}}(-,-)$ such that \mathscr{A} has enough \mathcal{F} -projectives and enough \mathcal{F} -injectives.
- (3) Quillen exact structures E in A with enough E-projectives and enough E-injectives (that is, such that the resulting exact category (A, E) has enough projective and enough injective objects).

PROOF. We first show that there exists a one-to-one correspondence between (1) and (2). Let $(\mathscr{C}, \mathscr{D})$ be a balanced pair in \mathscr{A} . If we define $\mathcal{F}(X, Y)$ as the subset of $\operatorname{Ext}^{1}_{\mathscr{A}}(X, Y)$ consisting of the equivalence classes of short exact sequences of condition (2' + 3') in Remark 2.1, then the assignment $(X, Y) \mapsto \mathcal{F}(X, Y)$ is the definition on objects of a subfunctor of $\operatorname{Ext}^{1}_{\mathscr{A}}(-, -)$, and $\{\mathcal{F}$ -projectives} = \mathscr{C} , $\{\mathcal{F}$ -injectives} = \mathscr{D} . The converse is easy if we put $(\mathscr{C}, \mathscr{D}) = (\{\mathcal{F}\text{-projectives}\}, \{\mathcal{F}\text{-injectives}\}).$

Next we show that there exists a one-to-one correspondence between (2) and (3). Let \mathcal{F} be a subfunctor of $\operatorname{Ext}^{1}_{\mathscr{A}}(-,-)$ such that \mathscr{A} has enough \mathcal{F} -projectives and enough \mathcal{F} -injectives. Put $\mathcal{E} = \{\mathcal{F}\text{-sequences}\}$, and

 $\{\mathcal{E}\text{-projectives}\} = \{\mathcal{F}\text{-projectives}\}, \{\mathcal{E}\text{-injectives}\} = \{\mathcal{F}\text{-injectives}\}.$ We claim that $(\mathscr{A}, \mathcal{E})$ is an exact category with enough projective and enough injective objects.

Clearly, \mathcal{E} contains $\{0 \to A \xrightarrow{1_A} A \to 0 \to 0\}$ and $\{0 \to 0 \to A \xrightarrow{1_A} A \to 0\}$ for any $A \in \mathscr{A}$.

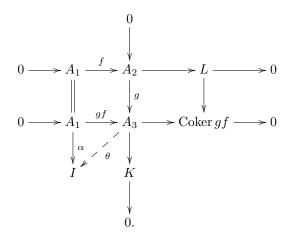
For [E1], let

$$0 \to A_1 \xrightarrow{f} A_2 \to L \to 0$$
 and $0 \to A_2 \xrightarrow{g} A_3 \to K \to 0$

be \mathcal{F} -sequences in \mathscr{A} . We will prove

$$0 \to A_1 \xrightarrow{gf} A_3 \to \operatorname{Coker} gf \to 0$$

is an \mathcal{F} -sequence. In fact, for any \mathcal{F} -injective object I of \mathscr{A} and $\alpha : A_1 \to I$, by [1, Proposition 1.5] there exists $\beta : A_2 \to I$ such that $\alpha = \beta f$. Consider the following commutative diagram:



Then there exists $\theta: A_3 \to I$ such that $\beta = \theta g$, that is, $\alpha = \beta f = \theta(gf)$. So

$$0 \to A_1 \xrightarrow{g_f} A_3 \to \operatorname{Coker} gf \to 0$$

is an \mathcal{F} -sequence by [1, Proposition 1.5]. For [E2], take an \mathcal{F} -sequence

$$0 \to L \xrightarrow{i} M \to N \to 0.$$

For any morphism $f: L \to M'$, consider the following pushout diagram:

By [1, Proposition 1.5], for any \mathcal{F} -injective object I of \mathscr{A} and $s: M' \to I$, there exists $t: M \to I$ such that sf = ti. It follows from the universal property of pushouts, there exists $h: X \to I$ such that s = hi'. So

$$0 \to M' \xrightarrow{i'} X \to N \to 0$$

is an \mathcal{F} -sequence by [1, Proposition 1.5]. Dually [E1^{op}] and [E2^{op}] follow.

Conversely, for any $X, Y \in \mathscr{A}$, we define $\mathcal{F}(X, Y)$ as the subset of $\operatorname{Ext}^{1}_{\mathscr{A}}(X, Y)$ consisting of the equivalence classes of admissible short exact sequences. Let $X', Y' \in \mathscr{A}, f: Y \to Y'$ and $g: X' \to X$. Then by [E2] and [E2^{op}], we get the following two commutative diagrams:

So \mathcal{F} is a subfunctor of $\operatorname{Ext}^{1}_{\mathscr{A}}(-,-)$ such that \mathscr{A} has enough \mathcal{F} -projectives and enough \mathcal{F} -injectives.

3. \mathcal{E} -cotorsion pairs

In this section, a pair $(\mathscr{A}, \mathcal{E})$ means that \mathscr{A} is an abelian category with small Ext groups and \mathcal{E} is an exact structure on \mathscr{A} such that \mathscr{A} has enough \mathcal{E} -projectives and enough \mathcal{E} -injectives. We first give a strengthened version of the Wakamatsu lemma in the exact context, and then apply it to obtain complete hereditary \mathcal{E} cotorsion pairs in $(\mathscr{A}, \mathcal{E})$. For any $M, N \in \mathscr{A}$ and $i \geq 1$, we use $\mathcal{E}xt^{i}_{\mathscr{A}}(M, N)$ to denote the *i*-th cohomology group by taking \mathcal{E} -projective resolution of M or taking \mathcal{E} -injective coresolution of N.

Inspired by [20], we give the following

Definition 3.1. Let $(\mathscr{A}, \mathcal{E})$ be a pair as above.

(1) A pair $(\mathscr{X}, \mathscr{Y})$ of full subcategories of \mathscr{A} is called an \mathscr{E} -cotorsion pair provided that $\mathscr{X} = {}^{\perp_*}\mathscr{Y}$ and $\mathscr{Y} = \mathscr{X}{}^{\perp_*}$, where

$$\mathscr{X}^{\perp_*} = \{ N \in \mathscr{A} \mid \mathcal{E}\mathrm{xt}^1_{\mathscr{A}}(M, N) = 0 \text{ for any } M \in \mathscr{X} \}, \text{ and}$$
$${}^{\perp_*}\mathscr{Y} = \{ M \in \mathscr{A} \mid \mathcal{E}\mathrm{xt}^1_{\mathscr{A}}(M, N) = 0 \text{ for any } N \in \mathscr{Y} \}.$$

(2) An \mathcal{E} -cotorsion pair $(\mathscr{X}, \mathscr{Y})$ is called *complete* if for any $M \in \mathscr{A}$, there exist two conflations of the form:

$$0 \to Y \to X \to M \to 0$$
, and $0 \to M \to Y' \to X' \to 0$

with $X, X' \in \mathscr{X}$ and $Y, Y' \in \mathscr{Y}$.

(3) A subcategory \mathscr{T} of \mathscr{A} is called *closed under* \mathcal{E} *-extensions* if the end terms in a conflation are in \mathscr{T} implies that the middle term is also in \mathscr{T} . The subcategory \mathscr{T} is called \mathcal{E} *-resolving* if it contains all \mathcal{E} -projectives of \mathscr{A} , closed under \mathcal{E} -extensions, and for any conflation

$$0 \to X \to Y \to Z \to 0$$

with $Y, Z \in \mathcal{T}$, we have $X \in \mathcal{T}$. Dually, the notion of \mathcal{E} -coresolving subcategories is defined.

(4) An \mathcal{E} -cotorsion pair $(\mathscr{X}, \mathscr{Y})$ is called *hereditary* if \mathscr{X} is \mathcal{E} -resolving.

Remark 3.1. (1) By [11, Lemma 2.2.10], an \mathcal{E} -cotorsion pair $(\mathscr{X}, \mathscr{Y})$ is hereditary if and only if \mathscr{Y} is \mathcal{E} -coresolving.

- (2) If *E* is the abelian structure, then all the notions in Definition 3.1 coincide with the classical ones in [5, p. 6].
- (3) $\{\mathcal{E}\text{-projectives}\} = {}^{\perp_*}\mathscr{A} \text{ and } \{\mathcal{E}\text{-injectives}\} = \mathscr{A}^{\perp_*}.$

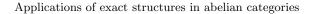
The following result is a strengthened version of the translation of the Wakamatsu lemma to the exact context.

Theorem 3.1. Let $(\mathscr{A}, \mathcal{E})$ be a pair as above, \mathscr{X} a full subcategory of \mathscr{A} closed under \mathcal{E} -extensions and $A \in \mathscr{A}$.

- (1) If $f: X \to A$ is an epimorphic \mathscr{X} -cover, then Ker $f \in \mathscr{X}^{\perp_*}$.
- (2) If $f: A \to X$ is a monomorphic \mathscr{X} -envelope, then $\operatorname{Coker} f \in {}^{\perp_*} \mathscr{X}$.

PROOF. We only prove (2), and (1) is dual to (2). By assumption, there exists an exact sequence

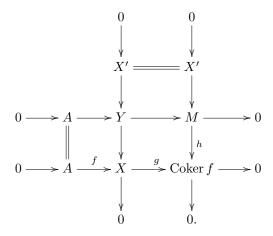
$$0 \to A \xrightarrow{f} X \xrightarrow{g} \operatorname{Coker} f \to 0$$



in \mathscr{A} with $f: A \to X$ a monomorphic \mathscr{X} -envelope. To prove Coker $f \in {}^{\perp_*}\mathscr{X}$, it suffices to prove that for any $X' \in \mathscr{X}$, any conflation

$$0 \to X' \to M \xrightarrow{h} \operatorname{Coker} f \to 0$$

in \mathscr{A} splits. Consider the pullback of g and h:



Then the middle column is a conflation. Since $X', X \in \mathscr{X}$ and \mathscr{X} is closed under \mathscr{E} -extensions, we have $Y \in \mathscr{X}$. Because $f : A \to X$ is an \mathscr{X} -envelope of A, we obtain the following commutative diagram with exact rows:

Since f is left minimal, we have that the composition

$$X \to Y \to X$$

is an isomorphism. This implies that the composition

$$\operatorname{Coker} f \to M \xrightarrow{n} \operatorname{Coker} f$$

is also an isomorphism. Therefore the conflation

$$0 \to X' \to M \xrightarrow{h} \operatorname{Coker} f \to 0$$

splits and the assertion follows.

Theorem 3.2. Let $(\mathscr{A}, \mathcal{E})$ be a pair as above and $(\mathscr{X}, \mathscr{Y})$ a pair of full subcategories of \mathscr{A} . Then the following statements are equivalent.

- (1) \mathscr{X} is \mathcal{E} -resolving, $\mathscr{Y} = \mathscr{X}^{\perp_*}$ and each $A \in \mathscr{A}$ admits an epimorphic \mathscr{X} -precover $p: X \to A$ such that Ker $p \in \mathscr{Y}$.
- (2) \mathscr{Y} is \mathcal{E} -coresolving, $\mathscr{X} = {}^{\perp_*}\mathscr{Y}$ and each $A \in \mathscr{A}$ admits a monomorphic \mathscr{Y} -preenvelope $j: A \to Y$ such that Coker $j \in \mathscr{X}$.
- (3) $(\mathscr{X}, \mathscr{Y})$ is a complete hereditary \mathcal{E} -cotorsion pair.

PROOF. (2) \implies (1) First observe that $\mathscr{X}(={}^{\perp_*}\mathscr{Y})$ is closed under direct summands, \mathscr{E} -extensions and contains all \mathscr{E} -projective objects of \mathscr{A} . For any conflation

$$0 \to A \to B \to C \to 0$$

in \mathscr{A} with $B, C \in \mathscr{X}$, we have an exact sequence

$$0 = \mathcal{E}\mathrm{xt}^1_{\mathscr{A}}(B, Y) \to \mathcal{E}\mathrm{xt}^1_{\mathscr{A}}(A, Y) \to \mathcal{E}\mathrm{xt}^2_{\mathscr{A}}(C, Y)$$

for any $Y \in \mathscr{Y}$. Take a conflation

$$0 \to Y \to E \to L \to 0$$

in \mathscr{A} with $E \mathcal{E}$ -injective. We have $L \in \mathscr{Y}$ since \mathscr{Y} is \mathcal{E} -coresolving. Then we have an exact sequence:

$$0 = \mathcal{E}\mathrm{xt}^1_{\mathscr{A}}(C, E) \to \mathcal{E}\mathrm{xt}^1_{\mathscr{A}}(C, L) \to \mathcal{E}\mathrm{xt}^2_{\mathscr{A}}(C, Y) \to \mathcal{E}\mathrm{xt}^2_{\mathscr{A}}(C, E) = 0.$$

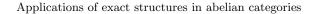
Notice that $\mathcal{E}xt^{1}_{\mathscr{A}}(C,L) = 0$, so $\mathcal{E}xt^{2}_{\mathscr{A}}(C,Y) = 0$, and hence $\mathcal{E}xt^{1}_{\mathscr{A}}(A,Y) = 0$, that is, $A \in \mathscr{X}$. Consequently we conclude that \mathscr{X} is \mathcal{E} -resolving.

Next for each $A \in \mathscr{A}$, there exists a conflation

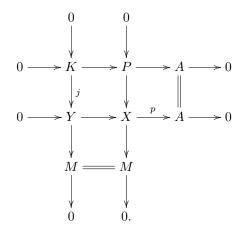
$$0 \to K \to P \to A \to 0$$

in \mathscr{A} with P \mathcal{E} -projective. By (2) and Lemma 2.1, we have a conflation

$$0 \to K \xrightarrow{\jmath} Y \to M \to 0$$



with $Y \in \mathscr{Y}$ and $M \in \mathscr{X}$. Consider the following pushout diagram:



Since \mathscr{X} is \mathcal{E} -resolving and $P \in \mathscr{X}$, it follows from the middle column in the above diagram that $X \in \mathscr{X}$. Obviously, the middle row

$$0 \to Y \to X \xrightarrow{p} A \to 0$$

is a conflation and $Y \in \mathscr{Y}$. Therefore we deduce that $p: X \to A$ is an epimorphic \mathscr{X} -precover, as required.

It remains to prove that $\mathscr{Y} = \mathscr{X}^{\perp_*}$. Observe that $\mathscr{Y} \subseteq ({}^{\perp_*}\mathscr{Y})^{\perp_*} = \mathscr{X}^{\perp_*}$. By (2) and Lemma 2.1, for any $A' \in \mathscr{X}^{\perp_*} = ({}^{\perp_*}\mathscr{Y})^{\perp_*}$, there exists a conflation

$$0 \to A' \to Y' \to X' \to 0 \tag{3.1}$$

with $Y' \in \mathscr{Y}$ and $X' \in \mathscr{X} = {}^{\perp_*}\mathscr{Y}$. So (3.1) splits. Thus $A' \in \mathscr{Y}$ since \mathscr{Y} is closed under direct summands.

Dually, we get $(1) \Longrightarrow (2)$.

The implications $(1)+(2) \Longrightarrow (3)$ and $(1) \Longleftarrow (3) \Longrightarrow (2)$ are clear. \Box

As direct consequences of Theorems 3.1 and 3.2, we have the following

Corollary 3.1. (1) If \mathscr{X} is an epi-covering \mathcal{E} -resolving subcategory of \mathscr{A} , then each $A \in \mathscr{A}$ admits a monomorphic \mathscr{Y} -preenvelope $j: A \to Y$ with Coker $j \in \mathscr{X}$, where $\mathscr{Y} = \mathscr{X}^{\perp_*}$.

(2) If \mathscr{Y} is a mono-enveloping \mathcal{E} -coresolving subcategory of \mathscr{A} , then each $A \in \mathscr{A}$ admits an epimorphic \mathscr{X} -precover $p: X \to A$ with Ker $p \in \mathscr{Y}$, where $\mathscr{X} = {}^{\perp_*} \mathscr{Y}$.

Corollary 3.2. Let $(\mathscr{X}, \mathscr{Y})$ be a complete hereditary (classical) cotorsion pair in \mathscr{A} . Then we have

- If X contains the E-projective objects of A, then (X, X[⊥]*) is a complete hereditary E-cotorsion pair and each A ∈ A admits a monomorphic X[⊥]*preenvelope j: A → Y such that Coker j ∈ X.
- (2) If 𝒴 contains the 𝔅-injective objects of 𝒜, then ([⊥]*𝒴,𝒴) is a complete hereditary 𝔅-cotorsion pair and each A ∈ 𝒜 admits an epimorphic [⊥]*𝒴precover p: X → A such that Ker p ∈ 𝒴.

4. Applications

In this section, we will apply the results obtained in Section 3 to the module category.

Let R be an associative ring with identity and mod R the category of finitely presented right R-modules. Recall that a short exact sequence

$$\xi: 0 \to A \to B \to C \to 0$$

in Mod R is called *pure exact* if the induced sequence $\operatorname{Hom}_R(F,\xi)$ is exact for any $F \in \operatorname{mod} R$. In this case A is called a *pure submodule* of B and C is called a *pure quotient module* of B. In addition, modules that are projective (resp. injective) relative to pure exact sequences are called *pure projective* (resp. *pure injective*). The subcategory of Mod R consisting of pure projective (resp. pure injective) modules is denoted by \mathcal{PP} (resp. \mathcal{PI}).

Lemma 4.1 ([18, Corollary 3.5(c)]). Let \mathscr{F} be a subcategory of Mod R closed under pure submodules. Then \mathscr{F} is preenveloping if and only if \mathscr{F} is closed under direct products.

Lemma 4.2 ([12, Theorem 2.5]). Let \mathscr{F} be a subcategory of Mod R closed under pure quotient modules. Then the following statements are equivalent.

(1) ${\mathscr F}$ is closed under direct sums.

- (2) \mathscr{F} is precovering.
- (3) \mathscr{F} is covering.

Lemma 4.3. Let $(\mathscr{A}, \mathcal{E})$ be a pair as in Section 3 and $A \in \mathscr{A}$. Then the following statements are equivalent.

(1) $\operatorname{Ext}^{1}_{\mathscr{A}}(-, A)$ vanishes on all \mathcal{E} -projective objects of \mathscr{A} .

(2) Any short exact sequence

$$0 \to A \to Z \to V \to 0$$

is a conflation.

PROOF. $(2) \Longrightarrow (1)$ is trivial.

(1) \Longrightarrow (2) For any \mathcal{E} -projective object P of \mathscr{A} and $f: P \to V$, consider the pullback diagram:

By (1), there exists $j: P \to N$ such that $ij = 1_P$. Then we have $f = fij = g\alpha j$. So by Lemma 2.1, the short exact sequence

$$0 \to A \to Z \to V \to 0$$

is a conflation.

Recall from [3] that a subcategory of Mod R is called *definable* if it is closed under arbitrary direct products, direct limits, and pure submodules.

Theorem 4.4. Let \mathcal{E} be an exact structure on Mod R with enough \mathcal{E} -projectives and enough \mathcal{E} -injectives such that \mathcal{E} contains all pure short exact sequences. If $\mathscr{X} \subseteq \mathcal{PP}$ and $\mathscr{Y} \subseteq \mathcal{PI}$ are two subcategories, then we have the following

(1) \mathscr{X}^{\perp_*} is preenveloping. If moreover, each $X \in \mathscr{X}$ admits an \mathcal{E} -presention

$$C_2 \to C_1 \to C_0 \to X \to 0,$$

where the C_i are \mathcal{E} -projective in Mod R and finitely presented, then \mathscr{X}^{\perp_*} is also covering.

- (2) ${}^{\perp_*}\mathscr{Y}$ is covering and closed under pure quotients.
- (3) If \mathscr{Y} is closed under taking \mathcal{E} -cosyzygies, then we have
 - (i) $({}^{\perp_*}\mathscr{Y}, ({}^{\perp_*}\mathscr{Y}){}^{\perp_*})$ is a complete hereditary \mathcal{E} -cotorsion pair.
 - (ii) If $\operatorname{Ext}^1_R(-,Y)$ vanishes on \mathcal{E} -projective objects of Mod R for any $Y \in \mathscr{Y}$, then $({}^{\perp_1}\mathscr{Y}, ({}^{\perp_1}\mathscr{Y}){}^{\perp_*})$ is a complete hereditary \mathcal{E} -cotorsion pair.

283

PROOF. (1) First observe that \mathscr{X}^{\perp_*} is closed under direct products. Let

$$0 \to A \to B \to C \to 0$$

be a pure exact sequence in Mod R with $B \in \mathscr{X}^{\perp_*}$. Then it is a conflation by assumption. For any $X \in \mathscr{X}$, we have the following exact sequence:

$$\operatorname{Hom}_{R}(X,B) \xrightarrow{f} \operatorname{Hom}_{R}(X,C) \to \mathcal{E}\operatorname{xt}^{1}_{\mathscr{A}}(X,A) \to \mathcal{E}\operatorname{xt}^{1}_{\mathscr{A}}(X,B) = 0.$$

Notice that f is epic, so $\mathcal{E}xt^{1}_{\mathscr{A}}(X, A) = 0$ and $A \in \mathscr{X}^{\perp_{*}}$. Thus $\mathscr{X}^{\perp_{*}}$ is closed under pure submodules. It follows from Lemma 4.1 that $\mathscr{X}^{\perp_{*}}$ is preenveloping.

It is easy to see that \mathscr{X}^{\perp_*} is closed under direct limits by assumption; in particular \mathscr{X}^{\perp_*} is closed under direct sums. Then \mathscr{X}^{\perp_*} is definable. So \mathscr{X}^{\perp_*} is closed under pure quotient modules by [3, Proposition 4.3(3)], and hence \mathscr{X}^{\perp_*} is covering by Lemma 4.2.

(2) Obviously, ${}^{\perp_*}\mathscr{Y}$ is closed under direct sums. By Lemma 4.2, it suffices to show that ${}^{\perp_*}\mathscr{Y}$ is closed under pure quotient modules. Let

$$0 \to A \to B \to C \to 0$$

be a pure exact sequence in Mod R with $B \in {}^{\perp_*}\mathscr{Y}$. Then it is a conflation by assumption. By using an argument similar to that in the proof of (1), we get $C \in {}^{\perp_*}\mathscr{Y}$.

(3) (i) Because ${}^{\perp_*}\mathscr{Y}$ contains all projective modules, we have that ${}^{\perp_*}\mathscr{Y}$ is epimorphic covering by (2). We claim that ${}^{\perp_*}\mathscr{Y}$ is \mathcal{E} -resolving. This will complete the proof of (i) by Theorems 3.1 and 3.2.

Clearly, ${}^{\perp_*}\mathscr{Y}$ contains all \mathcal{E} -projective objects of Mod R and ${}^{\perp_*}\mathscr{Y}$ is closed under direct summands and \mathcal{E} -extensions. Now take a conflation

$$0 \to M \to N \to L \to 0$$

in Mod R with $N, L \in {}^{\perp_*}\mathscr{Y}$. By assumption, we have Ker $\mathcal{E}xt^1_{\mathscr{A}}(-, Y) \subseteq$ Ker $\mathcal{E}xt^2_{\mathscr{A}}(-, Y)$ for any $Y \in \mathscr{Y}$. Now by the dimension shifting it yields that $M \in {}^{\perp_*}\mathscr{Y}$. So ${}^{\perp_*}\mathscr{Y}$ is \mathcal{E} -resolving. The claim follows.

(ii) By Lemma 4.3, we have ${}^{\perp_1}\mathscr{Y} = {}^{\perp_*}\mathscr{Y}$. So, as a particular case of (i), the assertion follows.

Recall that a classical cotorsion pair $(\mathscr{X}, \mathscr{Y})$ in Mod *R* is *perfect* if \mathscr{X} is covering and \mathscr{Y} is enveloping. As a consequence of Theorem 4.4, we have the following

Corollary 4.1. If $\mathscr{X} \subseteq \mathcal{PP}$ and $\mathscr{Y} \subseteq \mathcal{PI}$ are two subcategories in Mod R, then we have

- *X*^{⊥1} is preenveloping. If moreover, R is a right coherent ring and X is a subcategory of mod R, then X^{⊥1} is also covering.
- (2) $\perp_1 \mathscr{Y}$ is covering and closed under pure quotients.
- (3) ([11, Theorem 3.2.9]) $({}^{\perp_1}\mathscr{Y}, ({}^{\perp_1}\mathscr{Y}){}^{\perp_1})$ is a perfect hereditary cotorsion pair.

PROOF. The assertions (1) and (2) follow directly from Theorem 4.4, and the assertion (3) follows from Theorem 4.4 and [7, Theorem 7.2.6]. \Box

ACKNOWLEDGEMENTS. The authors would like to express their sincere thanks to the referees for many considerable suggestions, which have greatly improved this paper.

References

- M. AUSLANDER and O. SOLBERG, Relative homology and representation theory I: Relative homology and homologically finite subcategories, *Comm. Algebra* 21 (1993), 2995–3031.
- [2] M. AUSLANDER and O. SOLBERG, Relative homology and representation theory II: Relative cotilting theory, Comm. Algebra 21 (1993), 3033–3079.
- [3] S. BAZZONI, When are definable classes tilting and cotilting classes, J. Algebra 320 (2008), 4281–4299.
- [4] T. BÜHLER, Exact categories, Expo. Math. 28 (2010), 1–69.
- [5] X. W. CHEN, Homotopy equivalences induced by balanced pairs, J. Algebra 324 (2010), 2718–2731.
- [6] E. E. ENOCHS, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 33–38.
- [7] E. E. ENOCHS and O. M. G. JENDA, Relative Homological Algebra, De Gruyter Exp. Math., Vol. 30, Walter de Gruyter, Berlin, 2000.
- [8] X. H. FU, P. A. GUIL ASENSIO, I. HERZOG and B. TORRECILLAS, Ideal approximation theory, Adv. Math. 244 (2013), 750–790.
- J. GILLESPIE, Cotorsion pairs and degreewise homological model structures, Homology, Homotopy Appl. 10 (2008), 283–304.
- [10] J. GILLESPIE, Model structures on exact categories, J. Pure Appl. Algebra 215 (2011), 2892–2902.
- [11] R. GÖBEL and J. TRLIFAJ, Approximations and Endomorphism Algebras of Module, De Gruyter Exp. Math., Vol. 41, Walter de Gruyter, Berlin, 2006.
- [12] H. HOLM and P. JØRGENSEN, Covers, preenvelopes, and purity, Illinois J. Math. 52 (2008), 691–703.
- [13] M. HOVEY, Cotorsion pairs, model category structures, and representation theory, Math. Z. 241 (2002), 553–592.
- [14] B. KELLER, Chain complexes and stable categories, Manuscripta Math. 67 (1990), 379-417.

J. Wang *et al.* : Applications of exact structures in abelian...

- [15] H. KRAUSE and O. SOLBERG, Applications of cotorsion pairs, J. London Math. Soc. 68 (2003), 631–650.
- [16] A. NEEMAN, The derived category of an exact category, J. Algebra 135 (1990), 388–394.
- [17] D. QUILLEN, Higher Algebraic K-Theory I, Lect. Notes Math., Vol. 341, Springer-Verlag, Berlin, 1973, 85–147.
- [18] J. RADA and M. SAORÍN, Rings characterized by (pre)envelopes and (pre)covers of their modules, *Comm. Algebra* 26 (1998), 899–912.
- [19] L. SALCE, Cotorsion Theories for Abelian Groups, In: Symposia Mathematica, Vol. XXIII, (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977), Academic Press, London – New York, 1979, 11–32.
- [20] M. SAORÍN and J. ŠŤOVÍČEK, On exact categories and applications to triangulated adjoints and model structures, Adv. Math. 228 (2011), 968–1007.
- [21] J. ŠŤOVÍČEK, Exact Model Categories, Approximation Theory, and Cohomology of Quasi– Coherent Sheaves, In: Advances in Representation Theory of Algebras, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2013, 297–367.

JUNFU WANG DEPARTMENT OF MATHEMATICS NANJING UNIVERSITY NANJING 210093 JIANGSU PROVINCE CHINA *E-mail:* wangjunfu050126.com HUANHUAN LI SCHOOL OF MATHEMATICS AND STASTICS XIDIAN UNIVERSITY XI'AN 710071, SHANXI PROVINCE CHINA AND DEPARTMENT OF MATHEMATICS NANJING UNIVERSITY NANJING 210093, JIANGSU PROVINCE CHINA *E-mail:* lihuanhuan04160163.com

ZHAOYONG HUANG DEPARTMENT OF MATHEMATICS NANJING UNIVERSITY NANJING 210093 JIANGSU PROVINCE CHINA *E-mail:* huangzy@nju.edu.cn

(Received November 11, 2014; revised October 14, 2015)