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Abstract

Let R,S be arbitrary associative rings and C a semidualizing (R,S)-bimodule. For a subcat-
egory H (resp. T ) of the category of left R-modules (resp. left S-modules), we introduce
HC-Gorenstein projective and flat modules (resp. TC-Gorenstein injective modules). Under
certain conditions, we prove that the HC-Gorenstein projective dimension of any left R-module
is at most n if and only if the projective dimension of any C-injective left S-module and the
injective dimension of any module in H are at most n. The dual result about the TC-Gorenstein
injective dimension of modules also holds true. As a consequence, we get that the supremum
of the C-Gorenstein projective dimensions of all left R-modules and that of the C-Gorenstein
injective dimensions of all left S-modules are identical; and the maximum of the common value
of the quantities and its symmetric common value is at least the supremum of the C-Gorenstein
flat dimensions of all left R-modules. Moreover, we obtain some equivalent characterizations
for the finiteness of the left and right injective dimensions of RCS in terms of the properties of
the projective and injective dimensions of modules relative to various classes of C-Gorenstein
modules. As an application, we provide some support for the Wakamatsu tilting conjecture.
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1 Introduction

Semidualizing modules and related Auslander and Bass classes in commutative rings were intro-
duced by Foxby [12] and by Golod [16]. Then Holm and White [19] extended them to arbitrary
associative rings. Many authors have studied the properties of semidualizing modules and re-
lated modules, see [12, 14, 16, 18, 19, 22, 23, 26], [29]–[31], [34]–[42] and the references therein.
Let R and S be arbitrary rings and RCS a semidualizing bimodule, and let AC(S) and BC(R)
be the Auslander and Bass classes with respect to C respectively. It was shown in [19, Theorem
1] that there exists the following Foxby equivalence:

AC(S) ∼
C⊗S− // BC(R).

HomR(C,−)
oo

For other Foxby equivalences between some subclasses of AC(S) and that of BC(R), the reader
is referred to [19, Theorem 1] and [30, Theorem 4.6]. Among various research areas on semid-
ualizing modules, one basic theme is to extend the “absolute” classical results in homological
algebra to the “relative” setting with respect to semidualizing modules.

One of our motivations comes from the following Gorenstein versions of two classical results:
for any ring R, the left Gorenstein weak global dimension of R is at most the maximum of
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its left and right Gorenstein global dimensions ([5, Corollary 1.2(1)]), and the Gorenstein weak
global dimension of R is left and right symmetric ([7, Corollary 2.5]). On the other hand, as
an extension of [2, Theorem 4.20], [20, Theorem] and [21, Theorem 1.4], the first-named author
proved that a left and right Noetherian ring R is n-Gorenstein if and only if the Gorenstein
projective (resp. injective, flat) dimension of any left R-module is at most n ([27, Theorem
1.2]). Another motivation for us comes from this work. We are interested in whether these
results have relative counterparts with respect to semidualizing modules.

The paper is organized as follows. In Section 2, we give some terminology and some prelim-
inary results. In Section 3, assume that R is an arbitrary ring and ModR is the category of left
R-modules. Let D ⊆ E be subcategories of ModR with D additive, and let

· · · → Xi → · · · → X1 → X0 → Y 0 → Y 1 → · · · → Y j → · · ·

be an exact sequence in ModR. By using the E -coproper D-coresolutions of all Xi and the E -
proper D-resolutions of all Y j , we construct a grid-type commutative diagram (Theorem 3.3).
This construction is crucial in studying the behavior of the projective and injective dimensions
of modules relative to various classes of relative Gorenstein modules. As mentioned above, the
symmetry of the Gorenstein weak global dimension of any ring was proved in [7, Corollary 2.5],
which is a consequence of [9, Theorem 5.3]. Note that the latter one depends on the construction
of projective resolutions of certain modules by using the horseshoe lemma (see the proof of [9,
Lemma 5.2] for details). However, the horseshoe lemma is inapplicable in the relative case. The
above construction of ours does not only overcome this difficulty, but also gives some wider
applications in the sequel.

Let R,S be arbitrary rings and RCS a semidualizing bimodule, and let H (resp. T ) be
a subcategory of ModR (resp. ModS-modules). In Section 4, we introduce HC-Gorenstein
projective and flat modules (resp. TC-Gorenstein injective modules). In fact, our research
will be conducted under this unified framework. Assume that T is a resolving subcategory of
the Auslander class AC(S) and H := {C ⊗S T | T ∈ T } is precovering in ModR which is
closed under finite direct sums and direct summands. Under certain conditions, we obtain some
equivalent characterizations for the H -Gorenstein flat dimension of any module being at most
n (Proposition 4.5). Moreover, we prove the following result.

Theorem 1.1. (Theorem 4.6) For any n ≥ 0, the following statements are equivalent.
(1) The HC-Gorenstein projective dimension of any left R-module is at most n.
(2) The projective dimension of any C-injective left S-module and the injective dimension of

any module in H are at most n.
(3) The C-projective dimension of any injective left R-module and the C-injective dimension

of any module in T are at most n.

Assume that H is a coresolving subcategory of the Bass class BC(R) and T := {HomR(C,H) |
H ∈ H } is preenveloping in ModR which is closed under finite direct sums and direct sum-
mands. Then the dual of Theorem 1.1 about the TC-Gorenstein injective dimension of modules
also holds true (Theorem 4.11). Note that under the assumption in either Theorem 4.6 or
Theorem 4.11, there exists the following Foxby equivalence:

T ∼
C⊗S− //

H .
HomR(C,−)

oo

In Section 5, we give some applications of the above results. Under certain conditions, we
establish the left and right symmetry of the C-Gorenstein flat dimension of any module being
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at most n (Theorem 5.2). In addition, we prove the following theorem, which is the C-version
of [9, Theorem 4.1].

Theorem 1.2. (Theorem 5.4) For any n ≥ 0, the following statements are equivalent.
(1) The C-Gorenstein projective dimension of any left R-module is at most n.
(2) The C-Gorenstein injective dimension of any left S-module is at most n.
(3) The projective dimension of any C-injective left S-module and the injective dimension of

any C-projective left R-module are at most n.
(4) The C-projective dimension of any injective left R-module and the C-injective dimension

of any projective left S-module are at most n.

As an immediate consequence of Theorem 1.2, we get that the supremum of the C-Gorenstein
projective dimensions of all left R-modules and that of the C-Gorenstein injective dimensions
of all left S-modules are identical, and call the common value of these two quantities the left
C-Gorenstein global dimension GC -gldim of R and S. Symmetrically, the right C-Gorenstein
global dimension GC -gldimop of R and S is defined. We prove that if either the flat dimension
of any C-injective right R-module or GC -gldimop is finite, then any C-projective left R-module
is C-flat (Theorem 5.14).

For a module M ∈ ModR, we use GC -fdRM to denote the C-Gorenstein flat dimension of
M . Set spclfcR := sup{the C-projective dimensions of all C-flat left R-modules}. By using
Theorem 5.14 and the relationship between spclfcR and the C-Gorenstein projective dimension
of any C-Gorenstein flat module (Lemma 5.17), we obtain the following result, which is the
C-version of [5, Corollary 1.2(1)] and part of [7, Theorem 3.3].

Theorem 1.3. (Theorem 5.18) It holds that
(1) sup{GC -fdRM |M ∈ ModR} ≤ max{GC -gldim, GC -gldimop}.
(2) If S is a right Noetherian ring, then

GC -gldim ≤ sup{GC -fdRM |M ∈ ModR}+ spclfcR.

We give some equivalent characterizations for the finiteness of the left and right injective
dimensions of RCS in terms of the properties of the projective and injective dimensions of
modules relative to some classes of C-Gorenstein modules as follows. It is the C-version of [27,
Theorem 1.2], but the proof here is essentially not parallel to that of [27].

Theorem 1.4. (Theorem 5.20) Let R be a left and right Noetherian ring and n ≥ 0. Then the
following statements are equivalent.

(1) The left and right injective dimensions of RCS are at most n.
(2) The C-Gorenstein projective dimension of any left R-module is at most n.
(3) The C-Gorenstein injective dimension of any left R-module is at most n.
(4) The C-Gorenstein flat dimension of any left R-module is at most n.
(5) The C-strongly Gorenstein flat dimension of any left R-module is at most n.
(6) The C-projectively coresolved Gorenstein flat dimension of any left R-module is at most

n.
(i)op Opposite side version of (i) (2 ≤ i ≤ 6).

The Wakamatsu tilting conjecture states that if R and S are artin algebras, then the left
and right injective dimensions of RCS are identical ([5]). It still remains open. Recall that a left
and right Noetherian ring R is called Gorenstein if its left and right self-injective dimensions are
finite. As an application of Theorem 1.4, we prove that if R and S are Gorenstein rings, then
the left and right injective dimensions of RCS are identical (Theorem 5.22(3)).
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2 Preliminaries

Throughout this paper, all rings are arbitrary associative rings. Let R be a ring. We use ModR
to denote the category of left R-modules, and all subcategories of ModR involved are full and
closed under isomorphisms. We use P(R), F(R) and I(R) to denote the subcategories of ModR
consisting of projective, flat and injective modules respectively. For a module M ∈ ModR, we
use AddRM to denote the subcategory of ModR consisting of direct summands of direct sums
of copies of M , and use pdRM , fdRM and idRM to denote the projective, flat and injective
dimensions of M respectively.

Definition 2.1. ([10, 11]) Let X be a subcategory of ModR.

(1) A homomorphism f : X → Y in ModR with X ∈ X is called an X -precover of Y if
HomR(X ′, f) is epic for any X ′ ∈ X ; and an X -precover f : X → Y is called an X -
cover of Y if any endomorphism h : X → X is an automorphism whenever f = fh. The
subcategory X is called (pre)covering in ModR if any module in ModR admits an X -
(pre)cover. Dually, the notions of an X -(pre)envelope and a (pre)enveloping subcategory
are defined.

(2) The subcategory X is called resolving if P(R) ⊆ X and X is closed under extensions
and kernels of epimorphisms. Dually, the notion of coresolving subcategories is defined.

Let X be a subcategory of ModR. We write

⊥X := {A ∈ ModR | Ext≥1R (A,X) = 0 for any X ∈X },

X ⊥ := {A ∈ ModR | Ext≥1R (X,A) = 0 for any X ∈X }.

Let B be a subcategory of ModRop. We write

B> := {M ∈ ModR | TorR≥1(B,M) = 0 for any B ∈ B}.

Let M ∈ ModR. The X -projective dimension X -pdM of M is defined as

inf{n | there exists an exact sequence 0→ Xn → · · · → X1 → X0 →M → 0

in ModR with all Xi ∈X },

and set X -pdM =∞ if no such integer exists. Dually, the X -injective dimension X -idM of
M is defined as

inf{n | there exists an exact sequence 0→M → X0 → X1 → · · · → Xn → 0

in ModR with all Xi ∈X },

and set X -idM =∞ if no such integer exists. For any n ≥ 0, we use X -pd≤n (resp. X -id≤n) to
denote the subcategory of ModR consisting of modules with X -projective (resp. X -injective)
dimension at most n.

2.1 Relative preresolving and precoresolving subcategories

Let E be a subcategory of ModR. Recall from [11] that a sequence

· · · → S1 → S2 → S3 → · · ·
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in ModR is called HomR(E ,−)-exact (resp. HomR(−,E )-exact) if it is exact after applying the
functor HomR(E,−) (resp. HomR(−, E)) for any E ∈ E .

Let D ⊆X be subcategories of ModR. We recall some notions from [25]. The subcategory
D is called an E -proper generator (resp. E -coproper cogenerator) for X if for any X ∈X , there
exists a HomR(E ,−) (resp. HomR(−,E ))-exact exact sequence

0→ X ′ → D → X → 0 (resp. 0→ X → D → X ′ → 0)

in ModR with D ∈ D and X ′ ∈ X . The subcategory X is called E -preresolving (resp. E -
precoresolving) in ModR if the following conditions are satisfied.

(a) X admits an E -proper generator (resp. E -coproper cogenerator).
(b) X is closed under E -proper (resp. E -coproper) extensions, that is, for any HomR(E ,−)-

exact (resp. HomR(−,E )-exact) exact sequence

0→ A1 → A2 → A3 → 0

in ModR, if A1, A3 ∈X , then A2 ∈X .
An E -preresolving (resp. E -precoresolving) subcategory X is called E -resolving (resp. E -
coresolving) if the following condition is satisfied.

(c) For any HomR(E ,−)-exact (resp. HomR(−,E )-exact) exact sequence

0→ A1 → A2 → A3 → 0

in ModR, if both A2, A3 ∈X (resp. A1, A2 ∈X ), then A1 ∈X (resp. A3 ∈X ).
If E = P(R) (resp. I(R))), then E -resolving (resp. E -coresolving) subcategories are exactly
resolving (resp. coresolving) subcategories.

Let E and D be subcategories of ModR. We define

r̃esE D := {M ∈ ModR | there exists a HomR(E ,−)-exact exact sequence

· · · → Di → · · · → D1 → D0 →M → 0 in ModR with all Di in D}.

Dually, we define

˜coresE D := {M ∈ ModR | there exists a HomR(−,E )-exact exact sequence

0→M → D0 → D1 → · · · → Di → · · · in ModR with all Di in D}.

For later use, we need the following two lemmas.

Lemma 2.2. Let X and E be subcategories of ModR.
(1) Assume that X is E -precoresolving in ModR admitting an E -coproper cogenerator D . If

D-pd≤n is closed under direct summands for any n ≥ 0, then we have

X - pdA = D- pdA

for any A ∈X ⊥.
(2) Assume that X is E -preresolving in ModR admitting an E -proper generator D . If D-id≤n

is closed under direct summands for any n ≥ 0, then we have

X - idA = D- idA

for any A ∈ ⊥X .
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Proof. (1) It is clear that X - pdA ≤ D- pdA for any A ∈ ModR. Now suppose A ∈ X ⊥ and
X - pdA = n <∞. By [25, Theorem 4.7], there exists an exact sequence

0→ Y → X → A→ 0 (2.1)

in ModR with X ∈X and D- pdY ≤ n−1. In view that the proof of [25, Theorem 4.7] was not
presented there, we prove the existence of the exact sequence (2.1) for the reader’s convenience.
We proceed by induction on n. The case for n = 0 is trivial. If n = 1, then there exists an exact
sequence

0→ X1 → X0 → A→ 0

in ModR with X0, X1 ∈ X . Since D is an E -coproper cogenerator for X , there exists a
HomR(−,E )-exact exact sequence

0→ X1 → Y → X ′1 → 0

in ModR with X ′1 ∈X and Y ∈ D . Consider the following push-out diagram:

0

��

0

��
0 // X1

//

��

X0
//

��

A // 0

0 // Y

��

// X //

��

A // 0

X ′1

��

X ′1

��
0 0.

By [24, Lemma 2.4(2)], the middle column in this diagram is HomR(−,E )-exact. Since X is
E -precoresolving, we have X ∈X , and thus the middle row in the above diagram is as desired.
Now suppose n ≥ 2. Then there exists an exact sequence

0→ Y0 → X0 → A→ 0 (2.2)

in ModR with X0 ∈ X and X - pdY0 ≤ n − 1. By the induction hypothesis, there exists an
exact sequence

0→ Y1 → X ′0 → Y0 → 0

in ModR with X ′0 ∈ X and D- pdY1 ≤ n − 2. Since there exists a HomR(−,E )-exact exact
sequence

0→ X ′0 → D → X ′′0 → 0
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in ModR with X ′′0 ∈X and D ∈ D , we obtain the following push-out diagram:

0

��

0

��
0 // Y1 // X ′0

//

��

Y0 //

��

0

0 // Y1 // D //

��

Y //

��

0

X ′′0

��

X ′′0

��
0 0.

Diagram (2.1)

The middle row in this diagram implies D- pdY ≤ n − 1. From the exact sequence (2.2) and
the rightmost column in the above diagram we obtain the following push-out diagram:

0

��

0

��
0 // Y0 //

��

X0
//

��

A // 0

0 // Y

��

// X //

��

A // 0

X ′′0

��

X ′′0

��
0 0.

Diagram (2.2)

By [24, Lemma 2.4(2)], the rightmost column in Diagram (2.1), and hence the middle column in
Diagram (2.2), is HomR(−,E )-exact. Since X is E -precoresolving, we have X ∈ X , and thus
the middle row in Diagram (2.2) is the desired exact sequence.

Since there exists an exact sequence

0→ X → D → X ′ → 0
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in ModR with D ∈ D and X ′ ∈X , we obtain the following push-out diagram:

0

��

0

��
0 // Y // X //

��

A //

��

0

0 // Y // D //

��

Y ′ //

��

0

X ′

��

X ′

��
0 0.

By the middle row in this diagram, we have D-pdY ′ ≤ n. Since A ∈X ⊥, the rightmost column
in the above diagram splits and A is a direct summand of Y ′. Furthermore, since D-pd≤n is
closed under direct summands, we have D- pdA ≤ n.

(2) It is dual to (1).

Lemma 2.3. Let D and E be subcategories of ModR.

(1) If D ⊆ ⊥E , then D is an E -coproper cogenerator for ⊥E ∩ ˜coresE D . Furthermore, if D is

additive and D ⊆ ⊥E ∩ E , then ⊥E ∩ ˜coresE D is E -precoresolving in ModR.

(2) If D ⊆ E ⊥, then D is an E -proper generator for E ⊥∩r̃esE D . Furthermore, if D is additive

and D ⊆ E ⊥ ∩ E , then E ⊥ ∩ r̃esE D is E -preresolving in ModR.

Proof. (1) Set X =: ⊥E ∩ ˜coresE D . Let X ∈X . Then there exists a HomR(−,E )-exact exact
sequence

0→ X → D → X ′ → 0

in ModR with D ∈ D and X ′ ∈ ˜coresE D . Since D ⊆ ⊥E , we have D ⊆X and X ′ ∈ ⊥E . Thus

X ′ ∈ ⊥E ∩ ˜coresE D and D is an E -coproper cogenerator for X .

If D ⊆ E , then it is easy to see that ˜coresE D is closed under E -coproper extensions by [24,

Lemma 3.1(2)]. Thus, if D ⊆ ⊥E ∩ E , then ⊥E ∩ ˜coresE D is E -precoresolving in ModR.

(2) It is dual to (1).

2.2 Semidualizing bimodules and related module classes

We say that a module M ∈ ModR admits a degreewise finite R-projective resolution if there
exists an exact sequence

· · · → Pi → · · · → P1 → P0 →M → 0

in ModR with all Pi finitely generated projective.

Definition 2.4. ([1, 19]). Let R and S be arbitrary rings. An (R-S)-bimodule RCS is called
semidualizing if the following conditions are satisfied.

(a1) RC admits a degreewise finite R-projective resolution.
(a2) CS admits a degreewise finite Sop-projective resolution.

(b1) The homothety map RRR
Rγ→ HomSop(C,C) is an isomorphism.
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(b2) The homothety map SSS
γS→ HomR(C,C) is an isomorphism.

(c1) Ext≥1R (C,C) = 0.

(c2) Ext≥1Sop(C,C) = 0.

Recall from [40] that a module T ∈ ModR is called generalized tilting if the following condi-
tions are satisfied: (1) RT admits a degreewise finite R-projective resolution; (2) Ext≥1R (T, T ) =

0; and (3) RR ∈ ˜coresaddR T addR T , where addR T is the subcategory of ModR consisting of
direct summands of finite direct sums of RT . Generalized tilting modules are usually called
Wakamatsu tilting modules, see [4, 31]. Note that a bimodule RCS is semidualizing if and only
if RC is Wakamatsu tilting with S = End(RC), and if and only if CS is Wakamatsu tilting with
R = End(CS) ([42, Corollary 3.2]). Typical examples of semidualizing bimodules include the
free module of rank one and the dualizing module over a Cohen-Macaulay local ring. For more
examples of semidualizing bimodules, the reader is referred to [19, 36, 41].

In the following, R and S are arbitrary rings and we fix a semidualizing bimodule RCS . We
write

(−)∗ := Hom(C,−),

and write

PC(R) := {C ⊗S P | P ∈ P(S)}, PC(Sop) := {P ′ ⊗R C | P ′ ∈ P(Rop)},

FC(R) := {C ⊗S P | F ∈ F(S)}, FC(Sop) := {F ′ ⊗R C | F ′ ∈ F(Rop)},

IC(S) := {I∗ | I ∈ I(R)}, IC(Rop) := {I ′∗ | I ′ ∈ I(Sop)}.

The modules in PC(R) (resp. PC(Sop)), FC(R) (resp. FC(Sop)) and IC(S) (resp. IC(Rop)) are
called C-projective, C-flat and C-injective respectively. When RCS = RRR, C-projective, C-flat
and C-injective modules are exactly projective, flat and injective modules respectively.

Let M ∈ ModR. Then we have a canonical evaluation homomorphism

θM : C ⊗S M∗ →M

defined by θM (x⊗f) = f(x) for any x ∈ C and f ∈M∗. The module M is called C-coreflexive if
θM is an isomorphism (see [36]). We use CorC(R) to denote the subcategory of ModR consisting
of C-coreflexive modules.

Let N ∈ ModS. Then we have a canonical evaluation homomorphism

µN : N → (C ⊗S N)∗

defined by µN (y)(x) = x ⊗ y for any y ∈ N and x ∈ C. The module N is called adjoint
C-coreflexive if µN is an isomorphism. We use AcotC(S) to denote the subcategory of ModS
consisting of adjoint C-coreflexive modules.

Definition 2.5. ([19])
(1) The Auslander class AC(S) with respect to C consists of all left S-modules N satisfying

(A1) N ∈ CS>;
(A2) Ext≥1R (C,C ⊗S N) = 0;
(A3) N ∈ AcotC(S).

(2) The Bass class BC(R) with respect to C consists of all left R-modules M satisfying
(B1) M ∈ RC

⊥;
(B2) TorS≥1(C,M∗) = 0;
(B3) M ∈ CorC(R).
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Symmetrically, the Auslander class AC(Rop) in ModRop and the Bass class BC(Sop) in ModSop

are defined.

Lemma 2.6. It holds that
(1) fdS I∗ = FC(R)-pd I and pdS I∗ = PC(R)-pd I for any I ∈ I(R).
(2) fdRop I ′∗ = FC(Sop)-pd I ′ and pdRop I ′∗ = PC(Sop)-pd I ′ for any I ′ ∈ I(Sop).

Proof. (1) Let I be an injective left R-module. Since I ∈ BC(R) by [19, Lemma 4.1], we have
FC(R)-pd I = fdS I∗ and and pdS I∗ = PC(R)-pd I by [38, Lemma 2.6(1)(2)].

(2) It is the symmetric version of (1).

Recall from [13] that a module N ∈ ModS is called weak flat if TorS1 (X,N) = 0 for any right
S-module X admitting a degreewise finite Sop-projective resolution; and a module M ∈ ModR
is called weak injective if Ext1R(X,M) = 0 for any left R-module X admitting a degreewise finite
R-projective resolution. Symmetrically, the notions of weak flat modules in ModRop and weak
injective modules in ModSop are defined. In [6], weak flat modules and weak injective modules
are called level modules and absolutely clean modules respectively.

We useWF(S) (resp. WI(R)) to denote the subcategory of ModS (resp. ModR) consisting
of weak flat (resp. weak injective) modules, and use WF(Rop) (resp. WI(Sop)) to denote the
subcategory of ModRop (resp. ModSop) consisting of weak flat (resp. weak injective) modules.
We write

WFC(R) := {C ⊗S F | F ∈ WF(S)} and WFC(Sop) := {F ′ ⊗R C | F ′ ∈ WF(Rop)},

WIC(S) := {I∗ | I ∈ WI(R)} and WIC(Rop) := {I ′∗ | I ′ ∈ WI(Sop)}.

Lemma 2.7. ([38, Lemma 2.5(1)], [37, Corollary 3.5(2)] and [14, Corollary 2.3])
(1) P(S) ∪ IC(S) ⊆ F(S) ∪ IC(S) ⊆ WF(S) ∪ IC(S) ⊆ AC(S) ⊆ ⊥IC(S) ∩AcotC(S).
(2) I(R) ∪ PC(R) ⊆ I(R) ∪ FC(R) ⊆ I(R) ∪WFC(R) ⊆ BC(R) ⊆ PC(R)⊥ ∩ CorC(R).

Let B be a subcategory of ModRop. Recall that a sequence in ModR is called (B ⊗R −)-
exact if it is exact after applying the functor B ⊗R − for any B ∈ B. The following notions
were introduced by Holm and Jørgensen [18] over commutative rings. The following are their
non-commutative versions.

Definition 2.8. ([30, 34])
(1) A module M ∈ ModR is called C-Gorenstein projective if

M ∈ ⊥PC(R) ∩ ˜coresPC(R) PC(R).

Symmetrically, the notion of C-Gorenstein projective modules in ModSop is defined.
(2) A module M ∈ ModR is called C-Gorenstein flat if M ∈ IC(Rop)> and there exists an

(IC(Rop)⊗R −)-exact exact sequence

0→M → Q0 → Q1 → · · · → Qi → · · ·

in ModR with all Qi in FC(R). Symmetrically, the notion of C-Gorenstein flat modules
in ModSop is defined.

(3) A module N ∈ ModS is called C-Gorenstein injective if

N ∈ IC(S)⊥ ∩ ˜resIC(S) IC(S).

Symmetrically, the notion of C-Gorenstein injective modules in ModRop is defined.
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We use GPC(R) (resp. GFC(R)) to denote the subcategory of ModR consisting of C-
Gorenstein projective (resp. flat) modules, and use GIC(S) to denote the subcategory of
ModS consisting of C-Gorenstein injective modules. Symmetrically, we use GPC(Sop) (re-
sp. GFC(Sop)) to denote the subcategory of ModSop consisting of C-Gorenstein projective
(resp. flat) modules, and use GIC(Rop) to denote the subcategory of ModRop consisting of
C-Gorenstein injective modules. When RCS = RRR, C-Gorenstein projective, flat and injective
modules are exactly Gorenstein projective, flat and injective modules respectively ([11, 17]).

For a subcategory X of ModR (or ModRop), we write

X + := {X+ | X ∈X },

where (−)+ = HomZ(−,Q/Z) with Z the additive group of integers and Q the additive group
of rational numbers.

Lemma 2.9. It holds that
(1) FC(R) ⊆ ⊥[IC(Rop)+] = IC(Rop)>.
(2) P(R) ∪ PC(R) ⊆ GPC(R) and PC(R) ⊆ FC(R) ⊆ GFC(R).

Proof. (1) The former inclusion follows from [34, Lemma 4.13], and the latter equality follows
from [15, Lemma 2.16(b)].

(2) Note that the former assertion has been proved in [43, Proposition 2.6] in the commutative
case and the argument there is also valid in the non-commutative case. For the latter assertion,
it is easy to that PC(R) ⊆ FC(R) and that the inclusion FC(R) ⊆ GFC(R) follows from (1) and
the definition of C-Gorenstein flat modules.

By Lemma 2.9(1) and [15, Lemma 2.16(a)], we have

GFC(R) = ⊥[IC(Rop)+] ∩ ˜coresIC(Rop)+ FC(R),

GFC(Sop) = ⊥[IC(S)+] ∩ ˜coresIC(S)+ FC(Sop).

3 A construction of a grid-type commutative diagram

In this section, R is an arbitrary ring. Let

· · · → Xi → · · · → X1 → X0 → Y 0 → Y 1 → · · · → Y j → · · ·

be an exact sequence in ModR. By using special coresolutions of all Xi and special resolutions
of all Y j , we will construct a grid-type commutative diagram, which plays a crucial role in the
sequel. We begin with the following observation.

Lemma 3.1. Let D be a subcategory of ModR, and let

0→ X1 → D
f−→ X2 → 0 (3.1)

be an exact sequence in ModR with D ∈ D .
(1) Assume that (3.1) is HomR(D ,−)-exact and

0→W 0 g0−→ D0 g1−→ D1 g2−→ · · · gi−→ Di g
i+1

−→ · · · (3.2)

is an exact sequence in ModR with all Di ∈ D . If (3.2) is both HomR(−, D)-exact and
HomR(−, X2)-exact, then it also HomR(−, X1)-exact.
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(2) Assume that (3.1) is HomR(−,D)-exact and

· · · → Di → · · · → D1 → D0 →W0 → 0 (3.3)

is an exact sequence in ModR with all Di ∈ D . If (3.3) is both HomR(D,−)-exact and
HomR(X1,−)-exact, then it also HomR(X2,−)-exact.

Proof. (1) For any i ≥ 1, let W i = Im gi and let gi = λiπi be the epic-monic decomposition of
gi with πi : Di−1 � W i and λi : W i � Di. Note that (3.1) is HomR(D ,−)-exact and (3.2) is
both HomR(−, D)-exact and HomR(−, X2)-exact by assumption. So for any i ≥ 0, we get the
following commutative diagram with exact columns and rows:

0

��

0

��

0

��
0 // HomR(W i+1, X1)

��

// HomR(Di, X1)

��

HomR(λi,X1)// HomR(W i, X1)

��
0 // HomR(W i+1, D)

HomR(W i+1,f)
��

// HomR(Di, D)

��

// HomR(W i, D)

HomR(W i,f)
��

// 0

0 // HomR(W i+1, X2) // HomR(Di, X2)

��

// HomR(W i, X2) // 0

0,

where λ0 = g0. Then each HomR(W i, f) is epic. Thus by the snake lemma, each HomR(λi, X1)
is epic and the assertion follows.

(2) It is dual to (1).

For the sake of simplicity, we introduce the following notions.

Definition 3.2. Let D and E be subcategories of ModR. Let X ∈ ModR. A module B ∈
ModR is said to satisfy the (X, ˜coresE D)-coproper property if any HomR(−,E )-exact exact
sequence

0→ X → D0 → D1 → · · · → Di → · · ·

in ModR with all Di in D is HomR(−, B)-exact; dually, the module B is said to satisfy the

(r̃esE D , X)-proper property if any HomR(E ,−)-exact exact sequence

· · · → Di → · · · → D1 → D0 → X → 0

in ModR with all Di in D is HomR(B,−)-exact.

In the following result, we construct certain (co)resolutions of modules, which form a grid-
type commutative diagram. It is crucial in studying the behavior of the projective and injective
dimensions of modules relative to various classes of C-Gorenstein modules.

Theorem 3.3. Let D ,E ,E ′ be subcategories of ModR such that D ⊆ E ∩E ′ and D is additive,
and let

· · · fi+1−→ Xi
fi−→ · · · f2−→ X1

f1−→ X0
δ−→ Y 0 α1

−→ Y 1 α2

−→ · · · αi

−→ Y j α
i+1

−→ · · · (3.4)
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be an exact sequence in ModR with Xi ∈ ˜coresE D and Y j ∈ ˜resE ′ D for any i, j ≥ 0. Set
M := Im δ and let δ = α0f0 be the epic-monic decomposition of δ with f0 : X0 � M and
α0 : M � Y 0. If one of the following two conditions is satisfied:

(1) Y j satisfies the (Xi, ˜coresE D)-coproper property for any i, j ≥ 0,

(2) Xi satisfies the ( ˜resE ′ D , Y
j)-proper property for any i, j ≥ 0,

then there exists the following commutative diagram with exact columns and rows:

...

fi+1

��

...

��

...

��

...

��

0 // Xi

fi ��

// D0
i

��

// D1
i

��

// · · · // Dj
i

��

// · · ·

...

f2

��

...

��

...

��

...

��

0 // X1

f1

��

// D0
1

��

// D1
1

��

// · · · // Dj
1

��

// · · ·

0 // X0

f0
��

// D0
0

��

// D1
0

��

// · · · // Dj
0

��

// · · ·

0 //M

��

α0
// Y 0

��

α1
// Y 1

��

α2
// · · · αj

// Y j

��

αj+1
// · · ·

0 0 0 0

in ModR with all Di
j in D , such that all rows but the bottom one are HomR(−,E )-exact and all

columns but the leftmost one are HomR(E ′,−)-exact.

Proof. (1) Set Ki := Im fi and M i := Imαi for any i ≥ 0. Since X0 ∈ ˜coresE D and Y j satisfies

the (X0, ˜coresE D)-coproper property for any j ≥ 0, there exists a HomR(−,E )-exact exact
sequence

0→ X0
e0−→ D0 → X ′0 → 0 (3.5)

in ModR with D0 ∈ D and X ′0 ∈ ˜coresE D , which is also HomR(−, Y j)-exact for any j ≥ 0. So
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there exists a homomorphism h0 ∈ HomR(D0, Y 0) such that the following diagram

0

��
K1

��
0 // X0

f0
��

e0 // D0

h0

��

// X ′0

��

// 0

0 //M
α0
//

��

Y 0 //M1 // 0

0

commutes. Since Y 0 ∈ ˜resE ′ D , there exists a HomR(E ′,−)-exact exact sequence

0→ Y 0
0 → D0

g0−→ Y 0 → 0 (3.6)

in ModR with D0 ∈ D and Y 0
0 ∈ ˜resE ′ D . Then we get the following commutative diagram with

exact columns and rows:

0

��

0

��

0

��

0 // K1

��

// K0
1

��

// K
(1)
1

//

��

0

0 // X0

f0

��

(e
0

0 )
// D0

0

(h0,g0)
��

// X
(1)
0

��

// 0

0 //M
α0

//

��

Y 0 //

��

M1 //

��

0

0 0 0,

Diagram (3.1(1))

where D0
0 = D0 ⊕ D0(∈ D) and X

(1)
0 = X ′0 ⊕ D0. By the exact sequence (3.5), we have

X ′0 ∈ ˜coresE D , and hence X
(1)
0 ∈ ˜coresE D . It is easy to see that the middle row in Diagram

(3.1(1)) is HomR(−,E )-exact and HomR(−, Y j)-exact for any j ≥ 0 and that the middle column
is HomR(E ′,−)-exact. Moreover, the middle column yields the following pullback diagram:

0 // Y 0
0

// K0
1

��

// D0

h0

��

// 0

0 // Y 0
0

// D0
g0 // Y 0 // 0.
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Since the lower row is HomR(E ′,−)-exact, it follows from [24, Lemma 2.4(1)] that the upper
row is also HomR(E ′,−)-exact, and hence HomR(D ,−)-exact as D ⊆ E ′. It implies that the

upper row splits and K0
1
∼= Y 0

0 ⊕D0, which yields K0
1 ∈ ˜resE ′ D . Since D ⊆ E and Y 0 satisfies

the (Xi, ˜coresE D)-coproper property for any i ≥ 0, it follows from Lemma 3.1(1) and the exact

sequence (3.6) that Y 0
0 , and hence K0

1 , satisfies the (Xi, ˜coresE D)-coproper property for any
i ≥ 0.

Since Y 1 satisfies the (X0, ˜coresE D)-coproper property, it follows from the middle row in

Diagram (3.1(1)) that Y 1 also satisfies the (X
(1)
0 , ˜coresE D)-coproper property. Similar to the

above argument, we get the following commutative diagram with exact columns and rows:

0

��

0

��

0

��

0 // K
(1)
1

��

// K1
1

��

// K
(2)
1

//

��

0

0 // X
(1)
0

��

// D1
0

��

// X
(2)
0

��

// 0

0 //M1 //

��

Y 1 //

��

M2 //

��

0

0 0 0,

Diagram (3.1(2))

such that the middle row is HomR(−,E )-exact and the middle column is HomR(E ′,−)-exact,

and such that K1
1 ∈ ˜resE ′ D satisfies the (Xi, ˜coresE D)-coproper property for any i ≥ 0.

Continuing this process and splicing Diagrams (3.1(1)), (3.1(2)), · · · from left to right, we
get the following commutative diagram with exact columns and rows:

0

��

0

��

0

��

0

��

0 // K1

��

// K0
1

��

// K1
1

��

// · · · // Kj
1

��

// · · ·

0 // X0

f0
��

// D0
0

��

// D1
0

��

// · · · // Dj
0

��

// · · ·

0 //M

��

α0
// Y 0

��

α1
// Y 1

��

α2
// · · · αj

// Y j

��

αj+1
// · · ·

0 0 0 0

Diagram (3.2(1))
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in ModR with all Dj
0 in D , such that the middle row is HomR(−,E )-exact and all columns but

the leftmost one are HomR(E ′,−)-exact, and such that Kj
1 ∈ ˜resE ′ D satisfies the (Xi, ˜coresE D)-

coproper property for any i, j ≥ 0.
Similar to the above argument, we get the following commutative diagram with exact columns

and rows:

0

��

0

��

0

��

0

��

0 // K2

��

// K0
2

��

// K1
2

��

// · · · // Kj
2

��

// · · ·

0 // X1

��

// D0
1

��

// D1
1

��

// · · · // Dj
1

��

// · · ·

0 // K1

��

// K0
1

��

// K1
1

��

// · · · // Kj
1

��

// · · ·

0 0 0 0

Diagram (3.2(2))

in ModR with all Dj
1 in D , such that the middle row is HomR(−,E )-exact and all columns but

the leftmost one are HomR(E ′,−)-exact, and such that Kj
2 ∈ ˜resE ′ D satisfies the (Xi, ˜coresE D)-

coproper property for any i, j ≥ 0.
Continuing this process and splicing Diagrams (3.2(1)), (3.2(2)), · · · from bottom to top, we

get the desired commutative diagram.
(2) It is similar to (1).

It is trivial that in the exact sequence (3.4), if

0→M → Y 0 → Y 1 → · · · → Y j → · · ·

is an injective coresolution of M , then the condition (1) in Theorem 3.3 is satisfied; and if

· · · → Xi → · · · → X1 → X0 →M → 0

is a projective resolution of M , then the condition (2) in Theorem 3.3 is satisfied.

4 C-Gorenstein modules

From now on, assume that R and S are arbitrary rings and RCS is semidualizing bimodule. We
introduce the following notions, which are useful in providing unified proofs of related results.

Definition 4.1.
(1) Let H be a subcategory of ModR. A module M ∈ ModR is called HC-Gorenstein

projective if M ∈ ⊥H and there exists a HomR(−,H )-exact exact sequence

0→M → G0 → G1 → · · · → Gi → · · ·
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in ModR with all Gi in PC(R). Symmetrically, the notion of HC-Gorenstein projective
modules in ModSop is defined.

(2) Let H be a subcategory of ModR. A module M ∈ ModR is called HC-Gorenstein flat if
M ∈ IC(Rop)> and there exists an (IC(Rop)⊗R −)-exact exact sequence

0→M → H0 → H1 → · · · → H i → · · ·

in ModR with all H i in H . Symmetrically, the notion of HC-Gorenstein flat modules in
ModSop is defined.

(3) Let T be a subcategory of ModS. A module N ∈ ModS is called TC-Gorenstein injective
if N ∈ T ⊥ and there exists a HomR(T ,−)-exact exact sequence

· · · → Ei → · · · → E1 → E0 → N → 0

in ModS with all Ei in IC(S). Symmetrically, the notion of TC-Gorenstein injective
modules in ModRop is defined.

Let H be a subcategory of ModR. We use GPC(H ) and GFC(H ) to denote the sub-
categories of ModR consisting of HC-Gorenstein projective modules and HC-Gorenstein flat
modules respectively. We have

GPC(H ) = ⊥H ∩ ˜coresH PC(R).

By Lemma 2.9(1) and [15, Lemma 2.16(a)], we have

GFC(H ) = ⊥[IC(Rop)+] ∩ ˜coresIC(Rop)+ H .

Let T be a subcategory of ModS. We use GIC(T ) to denote the subcategory of ModS
consisting of TC-Gorenstein injective modules. We have

GIC(T ) = T ⊥ ∩ ˜resT IC(S).

4.1 HC-Gorenstein flat and projective dimensions

In this subsection, assume that T is a resolving subcategory of AC(S) and

H := {C ⊗S T | T ∈ T }

which is closed under finite direct sums and direct summands. By [39, Lemma 2.4(3)], there
exists the following Foxby equivalence:

AcotC(S) ∼
C⊗S− //

CorC(R),
(−)∗

oo

which induces the following Foxby equivalence:

T ∼
C⊗S− //

H .
(−)∗

oo

Lemma 4.2. It holds that
(1) PC(R) ⊆H ⊆ BC(R) ⊆ PC(R)⊥.
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(2) H is a PC(R)-resolving subcategory of ModR with a PC(R)-proper generator PC(R).
(3) The subcategory H -pd≤n is closed under direct summands for any n ≥ 0.

Proof. (1) By Lemma 2.7(2), we have BC(R) ⊆ PC(R)⊥. Since P(S) ⊆ T ⊆ AC(S), the
assertion follows easily.

(2) It follows from [35, Proposition 3.7 and Theorem 3.9] and [29, Lemma 3.5(1)].

(3) Since H is closed under finite direct sums and direct summands, the assertion follows
from the former two assertions and [25, Corollary 3.9].

A module M ∈ ModR is said to admit an infinite D-coproper coresolution if there exists a
HomR(−,D)-exact exact sequence

0→M → D0 → D1 → · · · → Di → · · ·

in ModR with all Di ∈ D ; dually, the module M is said to admit an infinite D-proper resolution
if there exists a HomR(D ,−)-exact exact sequence

· · · → Di → · · · → D1 → D0 →M → 0

in ModR with all Di ∈ D .

Lemma 4.3. If M ∈ ModR with H -pdM ≤ n with n ≥ 0, then M admits an infinite PC(R)-
proper resolution

· · · → Gi → · · · → G1 → G0 →M → 0

in ModR, such that Im(Gn → Gn−1) ∈H .

Proof. It follows from Lemma 4.2(2) and [25, Theorem 3.6].

The following lemma is a consequence of Theorem 3.3, which plays a crucial role in the
sequel.

Lemma 4.4. Let M ∈ ModR, and let

· · · fi+1−→ Pi
fi−→ · · · f2−→ P1

f1−→ P0 →M → 0

be a projective resolution of M in ModR. If H -pd I ≤ n for any I ∈ I(R), then there exists
an exact sequence

· · · fn+2−→ Pn+1
fn+1−→ Pn

f0−→ K0
n

f1−→ K1
n

f2−→ · · · f i−→ Ki
n
f i+1

−→ · · · (4.1)

in ModR with all Ki
n in H .

Proof. Let M ∈ ModR and let

· · · fi+1−→ Pi
fi−→ · · · f2−→ P1

f1−→ P0
δ−→ I0

α1

−→ I1
α2

−→ · · · αi

−→ Ii
αi+1

−→ · · · (4.2)

be an exact sequence in ModR with all Pi in P(R) and all Ii in I(R), such that M = Im δ. By

Lemma 2.9(2), all Pi are in GPC(R) ⊆ ˜coresPC(R) PC(R).

By assumption, we have H -pd Ii ≤ n for any i ≥ 0. The assertion for the case n = 0 is

trivial. Now suppose n ≥ 1. It follows from Lemma 4.3 that all Ii are in ˜resPC(R) PC(R). Then
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by Theorem 3.3(1), there exists the following commutative diagram with exact columns and
rows

0

��

0

��

0

��

0

��
0 // Kn

��

// K0
n

��

// K1
n

��

// · · · // Ki
n

��

// · · ·

0 // Pn−1

fn−1 ��

// Q0
n−1

��

// Q1
n−1

��

// · · · // Qin−1

��

// · · ·

...

f2

��

...

��

...

��

...

��
0 // P1

f1

��

// Q0
1

��

// Q1
1

��

// · · · // Qi1

��

// · · ·

0 // P0

��

// Q0
0

��

// Q1
0

��

// · · · // Qi0

��

// · · ·

0 //M

��

// I0

��

α1
// I1

��

α2
// · · · αi

// Ii

��

αi+1
// · · ·

0 0 0 0

in ModR with all Qij in PC(R) and Kn = Im fn, such that all columns but the leftmost one
are HomR(PC(R),−)-exact. It follows from Lemma 4.2(1)(2) and [25, Theorem 3.8(1)] that all
Ki
n are in H . From the exact sequence (4.2) and the top row in the above diagram, we get the

desired exact sequence (4.1) such that Kn = Im fn.

Under certain conditions, we obtain some equivalent characterizations for the HC-Gorenstein
flat dimension of any module being at most n.

Proposition 4.5. For any n ≥ 0, consider the following conditions.
(1) GFC(H )-pdM ≤ n for any M ∈ ModR.
(2) H -pd I ≤ n for any I ∈ I(R), and fdRop E′ ≤ n for any E′ ∈ IC(Rop).
(3) T -pdE ≤ n for any E ∈ IC(S), and FC(Sop)-pd I ′ ≤ n for any I ′ ∈ I(Sop).

We have (2)⇐⇒ (3).
If H ⊆ IC(Rop)> (equivalently H ⊆ [IC(Rop)]+), then (2) =⇒ (1); and if further GFC(H ) is
closed under [IC(Rop)]+-coproper extensions, then the above three conditions are equivalent.

Proof. Because I(R) ⊆ BC(R) and I(Sop) ⊆ BC(Sop), we get (2)⇐⇒ (3) by [29, Theorem 3.2].
In the case where H ⊆ IC(Rop)>, we will prove (2) =⇒ (1). Let M ∈ ModR and let

· · · fi+1−→ Pi
fi−→ · · · f2−→ P1

f1−→ P0 →M → 0

be a projective resolution of M in ModR. By (2), we have H -pd I ≤ n for any I ∈ I(R). Then
from Lemma 4.4 we get an exact sequence

· · · fn+2−→ Pn+1
fn+1−→ Pn

f0−→ K0
n

f1−→ K1
n

f2−→ · · · f i−→ Ki
n
f i+1

−→ · · · (4.3)
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in ModR with all Ki
n in H , such that Im f0 ∼= Im fn.

Let E′ ∈ IC(Rop). By (2), we have fdRop E′ ≤ n. Since H ⊆ IC(Rop)>, applying the functor
E′⊗R − to the exact sequence (4.3), it is easy to see that each Im fi and each Im f i are in E′>.
It follows that the exact sequence (4.3) is (IC(Rop)⊗R −)-exact. So Im f0, and hence Im fn, is
in GFC(H ). This yields GFC(H )-pdM ≤ n.

Finally, suppose that H ⊆ IC(Rop)> (equivalently H ⊆ [IC(Rop)]+) and GFC(H ) is
closed under [IC(Rop)]+-coproper extensions, then GFC(H ) is [IC(Rop)]+-precoresolving in
ModR admitting an [IC(Rop)]+-coproper cogenerator H . We will prove (1) =⇒ (2).

Let E′ ∈ IC(Rop). Since GFC(H ) ⊆ IC(Rop)>, it follows from (1) and dimension shifting
that TorR≥n+1(E

′,M) = 0 for any M ∈ ModR, and so fdRop E′ ≤ n. On the other hand, let

I ∈ I(R). Then GFC(H )-pd I ≤ n by (1). Since the class H -pd≤m is closed under direct
summands for any m ≥ 0 by Lemma 4.2(3), it follows from Lemma 2.2(1) that H - pd I =
GFC(H )- pd I ≤ n.

In the following result, we give some equivalent characterizations for the HC-Gorenstein
projective dimension of any module being at most n.

Theorem 4.6. For any n ≥ 0, the following statements are equivalent.
(1) GPC(H )-pdM ≤ n for any M ∈ ModR.
(2) PC(R)-pd I ≤ n for any I ∈ I(R), and idRH ≤ n for any H ∈H .
(3) pdS E ≤ n for any E ∈ IC(S), and IC(S)-idT ≤ n for any T ∈ T .

Proof. Because I(R) ⊆ BC(R) and H ⊆ BC(R), we get (2)⇐⇒ (3) by [29, Proposition 4.1 and
Corollary 4.4].

(2) =⇒ (1) Let M ∈ ModR and let

· · · fi+1−→ Pi
fi−→ · · · f2−→ P1

f1−→ P0 →M → 0

be a projective resolution of M in ModR. By (2), we have PC(R)-pd I ≤ n for any I ∈ I(R).
Then from Lemma 4.4(1) we get an exact sequence

· · · fn+2−→ Pn+1
fn+1−→ Pn

f0−→ K0
n

f1−→ K1
n

f2−→ · · · f i−→ Ki
n
f i+1

−→ · · · (4.4)

in ModR with all Ki
n in PC(R), such that Im f0 ∼= Im fn.

Let H ∈H . By (2), we have idRH ≤ n. Since

H ⊆ BC(R) ⊆ PC(R)⊥

by Lemma 2.7(2), applying the functor HomR(−, H) to the exact sequence (4.4), it is easy
to see that each Im fi and each Im f i are in ⊥H. It follows that the exact sequence (4.4) is
HomR(−,H )-exact. So Im f0, and hence Im fn, is in GPC(H ). This yields GPC(H )-pdM ≤ n.

(1) =⇒ (2) Let H ∈ H . Since GPC(H ) ⊆ ⊥H , it follows from (1) and dimension shifting
that Ext≥n+1

R (M,H) = 0 for any M ∈ ModR, and so idRH ≤ n.
It is trivial that PC(R) ⊆ H . Since PC(R) ⊆ ⊥H by [38, Lemma 2.5(1)], we have that

GPC(H ) is H -precoresolving in ModR admitting a H -coproper cogenerator PC(R) by Lemma
2.3(1). Since the class PC(R)-pd≤m is closed under direct summands for any m ≥ 0 by Lemma
4.2(3), it follows from (1) and Lemma 2.2(1) that PC(R)-pd I = GPC(H )-pd I ≤ n for any
I ∈ I(R).

We give a sufficient condition for a module in ⊥H to be also in GPC(H ).

20



Proposition 4.7. If M ∈ ⊥H with GPC(H )-pdM <∞, then M ∈ GPC(H ).

Proof. Let M ∈ ⊥H with GPC(H )-pdM = n <∞. Then there exists an exact sequence

0→ Gn → · · · → G1 → G0 →M → 0

in ModR with all Gi in GPC(H )(⊆ ⊥H ). Since M ∈ ⊥H , this exact sequence is HomR(−,H )-
exact. For any 0 ≤ i ≤ n, there exists a HomR(−,H )-exact exact sequence

0→ Gi → Q0
i → Q1

i → · · · → Qji → · · ·

in ModR with all Qji in PC(R)(⊆ H ). By [24, Theorem 3.4], we get the following two
HomR(−,H )-exact exact sequences

0→M → Q→ ⊕ni=0Q
i+1
i → ⊕ni=0Q

i+2
i → ⊕ni=0Q

i+3
i → · · · , (4.5)

0→ Q0
n → Q0

n−1 ⊕Q1
n → · · · → ⊕ni=2Q

i−2
i → ⊕ni=1Q

i−1
i → ⊕ni=0Q

i
i → Q→ 0. (4.6)

Since PC(R) ⊆ H , the exact sequence (4.6) splits, and hence Q ∈ PC(R). It follows from the

exact sequence (4.5) that M ∈ ˜coresH PC(R), and thus M ∈ GPC(H ).

4.2 TC-Gorenstein injective dimension

In this subsection, assume that H is a coresolving subcategory of BC(R) and

T := {H∗ | H ∈H }

which is closed under finite direct sums and direct summands. As in the beginning of Subsection
4.1, there exists the following Foxby equivalence:

T ∼
C⊗S− //

H .
(−)∗

oo

The proofs of the following three results are completely dual to those of Lemmas 4.2–4.4
respectively, so we omit them.

Lemma 4.8. It holds that

(1) IC(S) ⊆ T ⊆ AC(S) ⊆ ⊥IC(S).
(2) T is an IC(S)-coresolving subcategory of ModS with an IC(S)-coproper cogenerator
IC(S).

(3) The subcategory T -id≤n is closed under direct summands for any n ≥ 0.

The proof of Lemma 4.10 needs to use the following lemma.

Lemma 4.9. If N ∈ ModS with T -idN ≤ n with n ≥ 0, then N admits an infinite IC(S)-
coproper coresolution

0→ N → E0 → E1 → · · · → Ei → · · ·

in ModS, such that Im(En−1 → En) ∈ T .

The following result is a consequence of Theorem 3.3.
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Lemma 4.10. Let N ∈ ModS, and let

0→ N → I0
g1−→ I1

g2−→ · · · gi−→ Ii
gi+1

−→ · · ·

be an injective coresolution of N in ModS. If T -idP ≤ n for any P ∈ P(S), then there exists
an exact sequence

· · · gi+1−→ Tni
gi−→ · · · g2−→ Tn1

g1−→ Tn0
g0−→ In

gn+1

−→ In+1 g
n+1

−→ · · ·

in ModS with all Tni in T .

In the following result, we give some equivalent characterizations for the TC-Gorenstein
injective dimension of any module being at most n. It is dual to Theorem 4.6, but we still give
the proof for the reader’s convenience.

Theorem 4.11. For any n ≥ 0, the following statements are equivalent.

(1) GIC(T )-idN ≤ n for any N ∈ ModS.
(2) idRQ ≤ n for any Q ∈ PC(R), and PC(R)-pdH ≤ n for any H ∈H .
(3) IC(S)-idP ≤ n for any P ∈ P(S), and pdS T ≤ n for any T ∈ T .

Proof. Because P(S) ⊆ AC(S) and H ⊆ BC(R), we get (2) ⇐⇒ (3) by [29, Propositions 4.1
and 4.3].

(3) =⇒ (1) Let N ∈ ModS and let

0→ N → I0
g1−→ I1

g2−→ · · · gi−→ Ii
gi+1

−→ · · ·

be an injective coresolution of N in ModS. By (3), we have IC(S)-idP ≤ n for any P ∈ P(S).
Then from Lemma 4.10 we get an exact sequence

· · · gi+1−→ Tni
gi−→ · · · g2−→ Tn1

g1−→ Tn0
g0−→ In

gn+1

−→ In+1 g
n+1

−→ · · · (4.7)

in ModS with all Tni in IC(S), such that Im g0 ∼= Im gn.

Let T ∈ T . By (3), we have pdS T ≤ n. Since

T ⊆ AC(S) ⊆ ⊥IC(S)

by Lemma 2.7(1), applying the functor HomS(T,−) to the exact sequence (4.7), it is easy to
see that each image in this exact sequence is in T⊥. It follows that the exact sequence (4.7) is
HomR(T ,−)-exact. So Im g0, and hence Im gn, is in GIC(T ). This yields GIC(T )-idN ≤ n.

(1) =⇒ (3) Let T ∈ T . Since GIC(T ) ⊆ T ⊥, it follows from (1) and dimension shifting
that Ext≥n+1

S (T,N) = 0 for any N ∈ ModS, and so pdS T ≤ n.

It is trivial that IC(S) ⊆ T . Since IC(S) ⊆ T ⊥ by Lemma 2.7(1), we have that GIC(T ) is
T -preresolving in ModS admitting a T -proper generator IC(S) by Lemma 2.3(2). Since the
class IC(S)-id≤m is closed under direct summands for any m ≥ 0 by Lemma 4.8(3), it follows
from (1) and Lemma 2.2(2) that IC(S)-idP = GIC(T )-idP ≤ n for any P ∈ P(S).

We give a sufficient condition for a module in T ⊥ to be also in GIC(T ) as follows. It is
dual to Proposition 4.7.

Proposition 4.12. If N ∈ T ⊥ with GIC(T )-idN <∞, then N ∈ GIC(T ).
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5 Applications

5.1 Usual C-Gorenstein modules

Following the usual customary notation, we write

GC -pdRM := GPC(R)- pdM, GC -fdRM := GFC(R)- pdM, GC -idRop M := GIC(Rop)- idM.

GC -pdSop N := GPC(Sop)- pdN, GC -fdSop N := GFC(Sop)- pdN, GC -idS N := GIC(S)- idN.

Following the notations below Definition 4.1, we have

GFC(R) = GFC(FC(R)) and GFC(Sop) = GFC(FC(Sop)).

Lemma 5.1. It holds that
(1) If S is a right coherent ring, then GFC(R) is closed under extensions.
(2) If R is a left coherent ring, then GFC(Sop) is closed under extensions.

Proof. (1) Let S be a right coherent ring, and let

0→M1 →M2 →M3 → 0

be an exact sequence in ModR with M1,M3 ∈ GFC(R). Then

0→M+
3 →M+

2 →M+
1 → 0

is an exact sequence in ModRop. By [27, Theorem 4.17(2)], we have M+
1 ,M

+
3 ∈ GIC(Rop).

Then M+
2 ∈ GIC(Rop) by [27, Remark 4.4(3)(b)], which implies M2 ∈ GFC(R) by [27, Theorem

4.17(2)] again.
(2) It is the symmetric version of (1).

Under certain conditions, we establish the left and right symmetry of the C-Gorenstein flat
dimension of any module being at most n.

Theorem 5.2. For any n ≥ 0, consider the following conditions.
(1) GC-fdRM ≤ n for any M ∈ ModR.
(2) GC-fdSop N ≤ n for any N ∈ ModSop.
(3) FC(R)-pd I ≤ n for any I ∈ I(R), and fdRop E′ ≤ n for any E′ ∈ IC(Rop).
(4) fdS E ≤ n for any E ∈ IC(S), and FC(Sop)-pd I ′ ≤ n for any I ′ ∈ I(Sop).

We have (1)⇐= (3)⇐⇒ (4) =⇒ (2). Furthermore, it holds that
(a) If GFC(R) is closed under IC(Rop)+-coproper extensions, then (1)⇐⇒ (3)⇐⇒ (4).
(b) If GFC(Sop) is closed under IC(S)+-coproper extensions, then (2)⇐⇒ (3)⇐⇒ (4).
(c) If R is a left coherent ring and S is a right coherent ring, then the conditions (1)–(4) are

equivalent.

Proof. By Lemma 2.9(1), we have FC(R) ⊆ ⊥[IC(Rop)+] = IC(Rop)>. It is trivial that F(S) is
resolving, and note that FC(R) is closed under finite direct sums and direct summands by [19,
Proposition 5.1(a)]. Then the assertions (1)⇐= (3)⇐⇒ (4) and (a) follow from Proposition 4.5
by setting T = F(S) and H = FC(R). Symmetrically, we get the assertions (3)⇐⇒ (4) =⇒ (2)
and (b). The assertion (c) follows from the assertions (a), (b) and Lemma 5.1.

When RCS = RRR, we write

G-fdRM := GC -fdRM and G-fdRop N := GC -fdSop N.
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Corollary 5.3. ([7, Theorem 2.4]) For any n ≥ 0, the following statements are equivalent.
(1) G-fdRM ≤ n for any M ∈ ModR.
(2) G-fdRop N ≤ n for any N ∈ ModRop.
(3) fdRE ≤ n for any E ∈ I(R), and fdRop E′ ≤ n for any E′ ∈ I(Rop).

Proof. Since the class of Gorenstein flat left (resp. right) R-modules is closed under extensions
by [33, Theorem 4.11], the assertion follows from Theorem 5.2 by putting RCS = RRR.

It is clear that

GPC(R) = GPC(PC(R)) and GPC(Sop) = GPC(PC(Sop)),

GIC(S) = GIC(IC(S)) and GIC(Rop) = GIC(IC(Rop)).

In the following result, we show that the C-Gorenstein projective dimension of any left R-
module is at most n if and only if the C-Gorenstein injective dimension of any left S-module is
at most n.

Theorem 5.4. For any n ≥ 0, it holds that
(1) The following statements are equivalent.

(1.1) GC-pdRM ≤ n for any M ∈ ModR.
(1.2) GC-idS N ≤ n for any N ∈ ModS.
(1.3) PC(R)-pd I ≤ n for any I ∈ I(R), and idRH ≤ n for any H ∈ PC(R).
(1.4) pdS E ≤ n for any E ∈ IC(S), and IC(S)-idT ≤ n for any T ∈ P(S).

(2) The following statements are equivalent.
(2.1) GC-pdSop N ′ ≤ n for any N ′ ∈ ModSop.
(2.2) GC-idRop M ′ ≤ n for any M ′ ∈ ModRop.
(2.3) PC(Sop)-pd I ′ ≤ n for any I ′ ∈ I(Sop), and idSop H ′ ≤ n for any H ′ ∈ PC(Sop).
(2.4) pdRop E′ ≤ n for any E′ ∈ IC(Rop), and IC(Rop)-idT ′ ≤ n for any T ′ ∈ P(Rop).

Proof. (1) It is trivial that P(S) is resolving, and note that PC(R) is closed under finite direct
sums and direct summands by [19, Proposition 5.1(b)]. Then the assertion (1.1)⇐⇒ (1.3)⇐⇒
(1.4) follows from Theorem 4.6 by setting T = P(S) and H = PC(R). On the other hand,
it is trivial that I(R) is coresolving, and note that IC(S) is closed under finite direct sums
and direct summands by [19, Proposition 5.1(c)]. Then the assertion (1.2)⇐⇒ (1.3)⇐⇒ (1.4)
follows from Theorem 4.11 by setting H = I(R) and T = IC(S).

(2) It is the symmetric version of (1).

We introduce the C-versions of strongly Gorenstein flat modules and projectively coresolved
Gorenstein flat modules as follows.

Definition 5.5.
(1) A module M ∈ ModR is called C-strongly Gorenstein flat if

M ∈ ⊥FC(R) ∩ ˜coresFC(R) PC(R).

Symmetrically, the notion of C-strongly Gorenstein flat modules in ModSop is defined.
(2) A module M ∈ ModR is called C-projectively coresolved Gorenstein flat if M ∈ IC(Rop)>

and there exists an (IC(Rop)⊗R −)-exact exact sequence

0→M → Q0 → Q1 → · · · → Qi → · · ·

in ModR with all Qi in PC(R). Symmetrically, the notion of C-projectively coresolved
Gorenstein flat modules in ModSop is defined.
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We use SGFC(R) (resp. PGFC(R)) to denote the subcategory of ModR consisting of C-
strongly Gorenstein flat modules (resp. C-projectively coresolved Gorenstein flat modules).
Symmetrically, we use SGFC(Sop) (resp. PGFC(Sop)) to denote the subcategory of ModSop

consisting of C-strongly Gorenstein flat modules (resp. C-projectively coresolved Gorenstein
flat modules). When RCS = RRR, C-strongly Gorenstein flat modules and C-projectively core-
solved Gorenstein flat modules are exactly strongly Gorenstein flat modules [8] and projectively
coresolved Gorenstein flat modules [33] respectively. Following the notations below Definition
4.1, we have

SGFC(R) = GPC(FC(R)) and SGFC(Sop) = GPC(FC(Sop)),

PGFC(R) = GFC(PC(R)) and PGFC(Sop) = GFC(PC(Sop)).

Proposition 5.6.
(1) For any n ≥ 0, consider the following conditions.

(1.1) PGFC(R)-pdM ≤ n for any M ∈ ModR.
(1.2) PC(R)-pd I ≤ n for any I ∈ I(R), and fdRop E′ ≤ n for any E′ ∈ IC(Rop).
(1.3) pdS E ≤ n for any E ∈ IC(S), and FC(Sop)-pd I ′ ≤ n for any I ′ ∈ I(Sop).
We have (1.1)⇐= (1.2)⇐⇒ (1.3). Furthermore, if PGFC(R) is closed under IC(Rop)+-
coproper extensions, then all these three conditions are equivalent.

(2) For any n ≥ 0, consider the following conditions.
(1.1) PGFC(Sop)-pdN ≤ n for any N ∈ ModSop.
(1.2) PC(Sop)-pd I ′ ≤ n for any I ′ ∈ I(Sop), and fdS E ≤ n for any E ∈ IC(S).
(1.3) pdRop E′ ≤ n for any E′ ∈ IC(Rop), and FC(R)-pd I ≤ n for any I ∈ I(R).
We have (2.1) ⇐= (2.2) ⇐⇒ (2.3). Furthermore, if PGFC(Sop) is closed under IC(S)+-
coproper extensions, then all these three conditions are equivalent.

Proof. (1) By Lemma 2.9, we have

PC(R) ⊆ FC(R) ⊆ ⊥[IC(Rop)+] = IC(Rop)>.

Then the assertion follows from Proposition 4.5 by setting T = P(S) and H = PC(R).
(2) It is the symmetric version of (1).

Proposition 5.7. For any n ≥ 0, it holds that
(1) The following statements are equivalent.

(1.1) SGFC(R)-pdM ≤ n for any M ∈ ModR.
(1.2) PC(R)-pd I ≤ n for any I ∈ I(R), and idRH ≤ n for any H ∈ FC(R).
(1.3) pdS E ≤ n for any E ∈ IC(S), and IC(S)-idT ≤ n for any T ∈ F(S).

(2) The following statements are equivalent.
(2.1) SGFC(Sop)-pdN ≤ n for any N ∈ ModSop.
(2.2) PC(Sop)-pd I ′ ≤ n for any I ′ ∈ I(Sop), and idSop H ′ ≤ n for any H ′ ∈ FC(Sop).
(2.3) pdRop E′ ≤ n for any E′ ∈ IC(Rop), and IC(Rop)-idT ′ ≤ n for any T ′ ∈ F(Rop).

Proof. It follows from Theorem 4.6 by setting T = F(S) and H = FC(R).
(2) It is the symmetric version of (1).

5.2 Other C-Gorenstein modules

In the following result, we show that the GPC(BC(R))-projective dimension of any left R-module
is at most n if and only if the GIC(AC(S))-injective dimension of any left S-module is at most
n.
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Theorem 5.8. For any n ≥ 0, it holds that

(1) The following statements are equivalent.
(1.1) GPC(BC(R))-pdM ≤ n for any M ∈ ModR.
(1.2) GIC(AC(S))-idN ≤ n for any N ∈ ModS.
(1.3) PC(R)-pd I ≤ n for any I ∈ I(R), and idRB ≤ n for any B ∈ BC(R).
(1.4) pdS E ≤ n for any E ∈ IC(S), and IC(S)-idA ≤ n for any A ∈ AC(S).
(1.5) PC(R)-pdB ≤ n for any B ∈ BC(R), and idRQ ≤ n for any Q ∈ PC(R).
(1.6) pdS A ≤ n for any A ∈ AC(S), and IC(S)-idP ≤ n for any P ∈ P(S).

(2) The following statements are equivalent.
(2.1) GPC(BC(Sop))-pdM ′ ≤ n for any M ′ ∈ ModSop.
(2.2) GIC(AC(Rop))-idN ′ ≤ n for any N ′ ∈ ModRop.
(2.3) PC(Sop)-pd I ′ ≤ n for any I ′ ∈ I(Sop), and idSop B′ ≤ n for any B′ ∈ BC(Sop).
(2.4) pdRop E′ ≤ n for any E′ ∈ IC(Rop), and IC(Rop)-idA′ ≤ n for any A′ ∈ AC(Rop).
(2.5) PC(Sop)-pdB′ ≤ n for any B′ ∈ BC(Sop), and idSop Q′ ≤ n for any Q′ ∈ PC(Sop).
(2.6) pdRop A′ ≤ n for any A′ ∈ AC(Rop), and IC(Rop)-idP ′ ≤ n for any P ′ ∈ P(Rop).

Proof. By [19, Theorem 6.2], we have that AC(S) is resolving. By [26, Theorem 3.3(2)] and
[19, Proposition 4.2(a)], we have that BC(R) is covering in ModR and closed under finite direct
sums and direct summands. Now the assertion (1.1)⇐⇒ (1.3)⇐⇒ (1.4) follows from Theorem
4.6 by setting T = AC(S) and H = BC(R).

By [19, Theorem 6.2], we have that BC(R) is coresolving. By [26, Theorem 3.5(1)] and [19,
Proposition 4.2(a)], we have that AC(S) is preenveloping in ModS and closed under finite direct
sums and direct summands. Now the assertion (1.2)⇐⇒ (1.5)⇐⇒ (1.6) follows from Theorem
4.11 by setting H = BC(R) and T = AC(S).

(1.3) =⇒ (1.5) Since PC(R) ⊆ BC(R) by Lemma 2.7(2), we have idRQ ≤ n for any Q ∈
PC(R) by (1.3). Now let B ∈ BC(R). Then idRB ≤ n by (1.3), and thus there exists an exact
sequence

0→ B → I0 → I1 → · · · → In → 0

in ModR with all Ii in I(R). Since B ∈ PC(R)⊥ by Lemma 2.7(2), applying the functor (−)∗
to the above exact sequence yields the following exact sequence

0→ B∗ → I0∗ → I1∗ → · · · → In∗ → 0 (5.1)

in ModS. By (1.3), we have PC(R)-pd Ii ≤ n for any 0 ≤ i ≤ n. Since all Ii are in BC(R)
by Lemma 2.7(2), it follows from [29, Proposition 4.1] that pdS I

i
∗ ≤ n for any 0 ≤ i ≤ n. By

the exact sequence (5.1), we have pdS B∗ ≤ n. Thus PC(R)-pdB ≤ n by [29, Proposition 4.1]
again.

(1.5) =⇒ (1.3) Since I(R) ⊆ BC(R) by Lemma 2.7(2), we have PC(R)-pd I ≤ n for any
I ∈ I(R) by (1.5). Now let B ∈ BC(R). Then PC(R)-pdB ≤ n by (1.5), and hence there exists
an exact sequence

0→ Qn → · · · → Q1 → Q0 → B → 0

in ModR with all Qi in PC(R). By (1.5), we have idRQ
i ≤ n for any 0 ≤ i ≤ n, and hence

idRB ≤ n.

(2) It is the symmetric version of (1).

When RCS = RRR, it is easy to see that BC(R) = ModR = AC(S), and hence

GPC(BC(R)) = P(R) and GIC(AC(S)) = I(R).
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It yields

GPC(BC(R))- pdM = pdRM and GIC(AC(S))- idM = idRM

for any M ∈ ModR. Thus, putting RCS = RRR in Theorem 5.8, from the equivalence (1.1)⇐⇒
(1.2) we get the following well-known classical result (cf. [32, Theorem 8.14]).

Corollary 5.9. For any ring R, we have

sup{pdRM |M ∈ ModR} = sup{idRM |M ∈ ModR}.

The common value of the quantities is known as the left global dimension of R.

Proposition 5.10. For any n ≥ 0, it holds that

(1) The following statements are equivalent.
(1.1) GPC(WFC(R))-pdM ≤ n for any M ∈ ModR.
(1.2) PC(R)-pd I ≤ n for any I ∈ I(R), and idRH ≤ n for any H ∈ WFC(R).
(1.3) pdS E ≤ n for any E ∈ IC(S), and IC(S)-idT ≤ n for any T ∈ WF(S).

(2) The following statements are equivalent.
(2.1) GPC(WFC(Sop))-pdN ≤ n for any N ∈ ModSop.
(2.2) PC(Sop)-pd I ′ ≤ n for any I ′ ∈ I(Sop), and idSop H ′ ≤ n for any H ′ ∈ WFC(Sop).
(2.3) pdRop E′ ≤ n for any E′ ∈ IC(Rop), and IC(Rop)-idT ′ ≤ n for any T ′ ∈ WF(Rop).

Proof. It follows from [13, Proposition 2.6(2)] that WF(S) is resolving, and note that WFC(R)
is closed under finite direct sums and direct summands by [14, Proposition 2.8]. Then the
assertion follows from Theorem 4.6 by setting T =WF(S) and H =WFC(R).

(2) It is the symmetric version of (1).

Proposition 5.11. For any n ≥ 0, it holds that

(1) The following statements are equivalent.
(1.1) GIC(WIC(S))-idN ≤ n for any N ∈ ModS.
(1.2) idRQ ≤ n for any Q ∈ PC(R), and PC(R)-pdH ≤ n for any H ∈ WI(R).
(1.3) IC(S)-idP ≤ n for any P ∈ P(S), and pdS T ≤ n for any T ∈ WIC(S).

(2) The following statements are equivalent.
(2.1) GIC(WIC(Rop))-idM ′ ≤ n for any M ′ ∈ ModRop.
(2.2) idSop Q′ ≤ n for any Q′ ∈ PC(Sop), and PC(Sop)-pdH ′ ≤ n for any H ′ ∈ WI(Sop).
(2.3) IC(Rop)-idP ′ ≤ n for any P ′ ∈ P(Rop), and pdRop T ′ ≤ n for any T ′ ∈ WIC(Rop).

Proof. (1) It follows from [13, Proposition 2.6(1)] that WI(R) is coresolving, and note that
WIC(S) is closed under finite direct sums and direct summands by [14, Proposition 2.8]. Then
the assertion follows from Theorem 4.11 by setting H =WI(R) and T =WIC(S).

(2) It is the symmetric version of (1).

5.3 C-Gorenstein global dimension

In the following result, the assertion (1) follows from Theorem 5.2, and the assertion (2) follows
from Corollary 5.3.

Corollary 5.12. It holds that

(1) If R is a left coherent ring and S is a right coherent ring, then

sup{GC -fdRM |M ∈ ModR} = sup{GC -fdSop N | N ∈ ModSop}.
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(2) ([7, Corollary 2.5]) We have

sup{G-fdRM |M ∈ ModR} = sup{G-fdRop N | N ∈ ModRop}.

As an immediate consequence of Theorem 5.4, we get the following corollary, which is the
C-version of [5, Theorem 1.1].

Corollary 5.13. It holds that
(1) sup{GC -pdRM |M ∈ ModR} = sup{GC -idS N | N ∈ ModS}.
(2) sup{GC -pdRM |M ∈ ModSop} = sup{GC -idS N | N ∈ ModRop}.

We call the common value of the quantities in Corollary 5.13 (1) and (2) the left C-Gorenstein
global dimension and right C-Gorenstein global dimension of R and S respectively, and denote
them by GC -gldim and GC -gldimop respectively.

A well-known open question is: whether or when is a Gorenstein projective module Goren-
stein flat? It also makes sense for the C-version of this question. As an application of Theorem
5.4, we get the following result.

Theorem 5.14. If one of the following conditions is satisfied, then GPC(R) ⊆ GFC(R).
(1) fdRop E′ <∞ for any E′ ∈ IC(Rop).
(2) GC -gldimop <∞.

Proof. (1) Let G ∈ GPC(R) and let

· · · → Pi → · · · → P1 → P0 → G0 → G1 → · · · → Gi → · · · (5.2)

be a HomR(−,PC(R))-exact exact sequence in ModR with all Pi projective and all Gi in PC(R),
such that G ∼= Im(P0 → G0). Let E′ ∈ IC(Rop). By Lemma 2.9, we have that each Gi is in
E′>. Since fdRop E′ < ∞ by assumption, using dimension shifting it is easy to see that the
image of each homomorphism in the exact sequence (5.2) is also in E′>. It follows that (5.2) is
(E′ ⊗R −)-exact, and thus G ∈ GFC(R).

(2) If GC -gldimop <∞, then by Theorem 5.4(2), we have fdRop E′ ≤ pdRop E′ <∞ for any
E′ ∈ IC(Rop), and thus the assertion follows from (1).

We need the following easy observation.

Lemma 5.15. It holds that
(1) A module M ∈ FC(R) if and only if M+ ∈ IC(Rop).
(2) If S is a right Noetherian ring, then a module N ∈ IC(Rop) if and only if N+ ∈ FC(R).

Proof. (1) It follows from [27, Theorem 4.17(1)].
(2) Let N ∈ ModRop. If N ∈ IC(Rop), then N+ ∈ FC(R) by [38, Lemma 2.3(2)]. Conversely,

if N+ ∈ FC(R), then N++ ∈ IC(Rop) by (1). Since N is a pure submodule of N++ by [15,
Corollary 2.21(b)], it follows from [19, Lemma 5.2(b)] that N ∈ IC(Rop).

In the following result, we establish the relationship among some kinds of C-Gorenstein
modules, in which the first assertion is the C-version of [28, Theorem 2].

Lemma 5.16. It holds that
(1) If S is a right Noetherian ring, then SGFC(R) = PGFC(R).
(2) SGFC(R) ⊆ GPC(R), with equality when PC(R)-pdX <∞ for any X ∈ FC(R).
(3) Assume that one of the following conditions is satisfied:
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(3.1) S is a right Noetherian ring and PC(R)-pdX <∞ for any X ∈ FC(R);
(3.2) R is a left Noetherian ring and S is a right Noetherian ring with idR C <∞.
Then

SGFC(R) = PGFC(R) = GPC(R) ⊆ GFC(R).

Proof. Let M ∈ ModR, and let

· · · → Pi → · · · → P1 → P0 → Q0 → Q1 → · · · → Qi → · · · (5.3)

be an exact sequence in ModR with all Pi projective and all Qi in PC(R), such that M ∼=
Im(P0 → Q0). Set M i := Im(Qi → Qi+1) for any i ≥ 0.

(1) Suppose M ∈ SGFC(R). In this case, the exact sequence (5.3) may be assumed to be
HomR(−,FC(R))-exact. Since IC(Rop)+ ⊆ FC(R) by Lemma 5.15(2), the exact sequence (5.3)
is HomR(−, IC(Rop)+)-exact, and hence (IC(Rop)⊗−)-exact. This yields M ∈ PGFC(R).

Conversely, suppose M ∈ PGFC(R). In this case, the exact sequence (5.3) may be assumed
to be (IC(Rop)⊗−)-exact. By Lemma 5.15 and [6, Theorem A.6], as part of (5.3), the complex

· · · → Pi → · · · → P1 → P0

is HomR(−,FC(R))-exact, which implies that the exact sequence

· · · → Pi → · · · → P1 → P0 →M → 0

is also HomR(−,FC(R))-exact. Thus M ∈ ⊥FC(R).

Consider the (IC(Rop)⊗−)-exact (equivalently HomR(−, IC(Rop)+)-exact) exact sequence

0→M → Q0 →M0 → 0.

Let

· · · → P 0
i → · · · → P 0

1 → P 0
0 → Q0 → 0

be a projective resolution of Q0 in ModR. It is HomR(−, IC(Rop)+)-exact by [34, Lemma
4.13]. Then, according to [24, Theorem 3.6], we get the following HomR(−, IC(Rop)+)-exact
(equivalently (IC(Rop)⊗−)-exact) exact sequence

· · · → Pi ⊕ P 0
i+1 → · · · → P0 ⊕ P 0

1 → P 0
0 →M0 → 0,

which is HomR(−,FC(R))-exact by Lemma 5.15 and [6, Theorem A.6] again. This yields M0 ∈
⊥FC(R). Similarly, we get M i ∈ ⊥FC(R) for any i ≥ 1. It follows that the exact sequence (5.3)
is HomR(−,FC(R))-exact, and thus M ∈ SGFC(R).

(2) It is trivial that SGFC(R) ⊆ GPC(R). Conversely, let M ∈ GPC(R). In this case,
the exact sequence (5.3) may be assumed to be HomR(−,PC(R))-exact. Then M ∈ ⊥PC(R).
Suppose PC(R)-pdX < ∞ for any X ∈ FC(R). Then M ∈ ⊥FC(R) by dimension shifting.
Note that all M i are in GPC(R) by [30, Corollary 2.10]. Then, similarly, we get M i ∈ ⊥FC(R)
for any i ≥ 0. It follows that the exact sequence (5.3) is HomR(−,FC(R))-exact, and thus
M ∈ SGFC(R).

(3) It is trivial that PGFC(R) ⊆ GFC(R). So, the case for (3.1) follows immediately from
(1) and (2). On the other hand, when R is a left Noetherian ring with idR C < ∞, it follows
from [38, Corollary 3.2] and [3, Theorem 1.1] that PC(R)-pdX < ∞ for any X ∈ FC(R), and
thus the case for (3.2) follows from the former assertion.
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We write
spclfcR := sup{PC(R)- pdM |M ∈ FC(R)}.

Lemma 5.17. If S is a right Noetherian ring, then

GC -pdRM ≤ spclfcR

for any M ∈ GFC(R).

Proof. Let M ∈ GFC(R). Then there exists an (IC(Rop)⊗R −)-exact exact sequence

· · · → Pi → · · · → P1 → P0 → F 0 → F 1 → · · · → F j → · · · (5.4)

in ModR with all Pi projective and all F j in FC(R), such that M ∼= Im(P0 → F 0).
Suppose spclfcR = t < ∞. Then for any j ≥ 0, we have PC(R)-pdF j ≤ t, and hence

F j ∈ ˜resPC(R) PC(R) by Lemma 4.3. On the other hand, by Lemma 5.16(3.1), we have

Pi ∈ GPC(R) = SGFC(R) ⊆ ˜coresFC(R) PC(R)

for any i ≥ 0. Then by Theorem 3.3(2), we get the following commutative diagram with exact
columns and rows:

0

��

0

��

0

��

0

��

0 // Kt

��

// K0
t

��

// K1
t

��

// · · · // Kj
t

��

// · · ·

0 // Pt−1

��

// G0
t−1

��

// G1
t−1

��

// · · · // Gjt−1

��

// · · ·

...

��

...

��

...

��

...

��

0 // P1

��

// G0
1

��

// G1
1

��

// · · · // Gj1

��

// · · ·

0 // P0

��

// G0
0

��

// G1
0

��

// · · · // Gj0

��

// · · ·

0 //M

��

// F 0

��

// F 1

��

// · · · // F j

��

// · · ·

0 0 0 0

in ModR with all Gji in PC(R), such that the middle t rows are HomR(−,FC(R))-exact and
all columns but the leftmost one are HomR(PC(R),−)-exact. By Lemma 5.15(2), the middle
t rows are HomR(−, IC(Rop)+)-exact, equivalently (IC(Rop) ⊗R −)-exact. The exact sequence
(5.4) implies that the leftmost column and the bottom row in this diagram are (IC(Rop)⊗R−)-
exact. Notice that all Gji and F j are in IC(Rop)> by Lemma 2.9, so all columns starting with
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the second column in the above diagram are (IC(Rop)⊗R−)-exact by dimension shifting. Thus
we conclude that all columns in this diagram are (IC(Rop)⊗R −)-exact, and hence the top row
is also (IC(Rop)⊗R −)-exact.

Since M ∈ GFC(R) ⊆ IC(Rop)>, we have Kt ∈ IC(Rop)>. Since PC(R)-pdF j ≤ t for any
j ≥ 0, it follows from Lemma 4.2(2) (with H = PC(R)) and [25, Theorem 3.8(1)] that all Kj

t

are in PC(R), and thus Kt ∈ PGFC(R). Thus by Lemma 5.16(3.1), we have Kt ∈ GPC(R) and
GC -pdRM ≤ t.

In the following result, assertions (1) and (2) are the C-versions of [5, Corollary 1.2(1)] and
part of [7, Theorem 3.3] respectively.

Theorem 5.18. It holds that
(1) sup{GC -fdRM |M ∈ ModR} ≤ max{GC -gldim, GC -gldimop}.
(2) If S is a right Noetherian ring, then

GC -gldim ≤ sup{GC -fdRM |M ∈ ModR}+ spclfcR.

Proof. (1) Suppose max{GC -gldim, GC -gldimop} = n <∞. LetM ∈ ModR. Then GC -pdRM ≤
n and there exists an exact sequence

0→ Gn → · · · → G1 → G0 →M → 0

in ModR with all Gi in GPC(R). By Theorem 5.14, we have that all Gi are in GFC(R), and
thus GC -fdRM ≤ n. The assertion follows.

(2) Suppose sup{GC -fdRM |M ∈ ModR} = s <∞ and spclfcR = t <∞. Let M ∈ ModR
and let

0→ Gs → · · · → G1 → G0 →M → 0

be an exact sequence in ModR with all Gi in GFC(R). By Lemma 5.17, we have GC -pdRGi ≤ t
for any 0 ≤ i ≤ s. By [27, Theorem 3.2 and Remark 4.4(3)(a)], it is easy to get GC -pdRM ≤ s+t,
and thus GC -gldim ≤ s+ t.

5.4 Finite injective dimension

Lemma 5.19. It holds that
(1) Let R be a left Noetherian ring. Then we have

(1.1) idR C = sup{fdRop E′ | E′ ∈ IC(Rop)} = sup{FC(Sop)- pd I ′ | I ′ ∈ I(Sop)}.
(1.2) If idR C = n <∞ and M ∈ ModR with FC(R)-pdM <∞, then PC(R)-pdM ≤ n.

(2) Let S be a right Noetherian ring. Then we have
(2.1) idSop C = sup{fdS E | E ∈ IC(S)} = sup{FC(R)- pd I | I ∈ I(R)}.
(2.2) If idSop C = n < ∞ and N ∈ ModSop with FC(Sop)-pdN < ∞, then PC(Sop)-

pdN ≤ n.

Proof. (1) In (1.1), the first equality follows from [22, Lemma 17.2.4(2)], and the second one
follows from Lemma 2.6(2).

(1.2) Let M ∈ ModR with FC(R)-pdM = m < ∞. By Lemma 4.3, there exists an exact
sequence

· · · fi+1−→ Gi
fi−→ · · · f2−→ G1

f1−→ G0
f0−→M → 0 (5.5)

in ModR with all Gi in PC(R), such that Im fm ∈ FC(R). By [36, Proposition 3.4(1)], we have
that Im fm is isomorphic to a direct summand of a direct limit of a family of modules in which
each is a finite direct sum of copies of RC. Then idR Im fm ≤ idR C = n by [3, Theorem 1.1].
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We claim that m ≤ n. Otherwise, if m > n, then ExtmR (M, Im fm) = 0. Notice that
Ext≥1R (Gi, Im fm) = 0 for any i ≥ 0 by Lemma 2.7(2), so applying the functor HomR(−, Im fm)
to the exact sequence (5.5) yields

Ext1R(Im fm−1, Im fm) ∼= Ext2R(Im fm−2, Im fm) ∼= · · ·

∼= Extm−1R (Im f1, Im fm) ∼= ExtmR (M, Im fm) = 0.

It implies that the exact sequence

0→ Im fm → Gm−1 → Im fm−1 → 0

splits and Gm−1 ∼= Im fm ⊕ Im fm−1. Then Im fm−1 ∈ PC(R) by [19, Proposition 5.1(b)], and
thus FC(R)-pdM ≤ m − 1, which is a contradiction. The claim is proved. Then Im fn+1 ∈
FC(R). By using an argument similar to above, we get Im fn ∈ PC(R) and PC(R)-pdM ≤ n.

(2) It is the symmetric version of (1).

Let R be a left Noetherian ring and S a right Noetherian ring. By [23, Theorem 2.7], we
have that idR C = idSop C if both of them are finite. In the following result, we give some
equivalent characterizations for the finiteness of idR C and idSop C in terms of the properties
of the projective and injective dimensions of modules relative to some classes of C-Gorenstein
modules. It is the C-version of [27, Theorem 1.2].

Theorem 5.20. Let R be a left Noetherian ring and S a right Noetherian ring. Then for any
n ≥ 0, the following statements are equivalent.

(1) idR C = idSop C ≤ n.
(2) GC -pdRM ≤ n for any M ∈ ModR.
(3) GC -idS N ≤ n for any N ∈ ModS.
(4) GC -fdRM ≤ n for any M ∈ ModR.
(5) PGFC(R)-pdM ≤ n for any M ∈ ModR.
(6) SGFC(R)-pdM ≤ n for any M ∈ ModR.
(i)op Symmetric version of (i) with 2 ≤ i ≤ 6.

Proof. By Theorem 5.2 and Lemma 5.19(1.1)(2.1), we have (1) ⇐⇒ (4). By Theorem 5.4(1),
we have (2)⇐⇒ (3). By Lemma 5.16(1)(2), we have (6)⇐⇒ (5) =⇒ (2).

(2) =⇒ (1) By (2) and Theorem 5.4(1), we have idR C ≤ n and fdS E ≤ pdS E ≤ n for any
E ∈ IC(S). By Lemma 5.19(2.1), we have idSop C ≤ n.

(1) + (4) =⇒ (5) By (4) and Theorem 5.2, we have that FC(R)-pd I ≤ n for any I ∈ I(R)
and that FC(Sop)-pd I ′ ≤ n for any I ′ ∈ I(Sop). It follows from (1) and Lemma 5.19(1.2) that
PC(R)-pd I ≤ n for any I ∈ I(R). Now the assertion follows from Proposition 5.6(1).

By symmetry, the proof is finished.

The following result is a consequence of Theorem 5.20.

Corollary 5.21. Let R be a left Noetherian ring and S a right Noetherian ring with idR C =
idSop C <∞. Then the following assertions hold.

(1) SGFC(R) = PGFC(R) = GPC(R) = ⊥PC(R) = ⊥FC(R).
(2) GIC(S) = IC(S)⊥.
(3) GFC(R) = IC(Rop)>.
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Proof. (1) By Lemma 5.16(3.2), we have SGFC(R) = PGFC(R) = GPC(R). By Theorem 5.20,
we have GC -pdRM < ∞ and SGFC(R)-pdM < ∞ for any M ∈ ModR. It follows from
Proposition 4.7 that GPC(R) = ⊥PC(R) and SGFC(R) = ⊥FC(R).

(2) By Theorem 5.20, we have GC -idS N <∞ for any N ∈ ModS. Now the assertion follows
from Proposition 4.12.

(3) Let idR C = idSop C = n < ∞ and let M ∈ IC(Rop)>. By Theorem 5.20, we have
GC -idRop M+ ≤ n. Let E ∈ IC(Rop). It follows from [15, Lemma 2.16(b)] that

ExtiRop(E,M+) ∼= [TorRi (E,M)]+ = 0

for any i ≥ 1, that is, M+ ∈ IC(Rop)⊥. Then M+ ∈ GIC(Rop) by the symmetric version of (2),
and thus M ∈ GFC(R) by [27, Theorem 4.17(2)].

Recall that a left and right Noetherian ring R is called n-Gorenstein with n ≥ 0 if idRR =
idRop R ≤ n. The Wakamatsu tilting conjecture states that if R and S are artin algebras, then
the left and right injective dimensions of RCS are identical ([5]). It still remains open. The
following result provides some support for this conjecture.

Theorem 5.22. It holds that
(1) If R is an n-Gorenstein ring, then idR C ≤ n if and only if GC -pdRM ≤ n for any

M ∈ ModR.
(2) If S is an n-Gorenstein ring, then idSop C ≤ n if and only if GC -pdSop N ≤ n for any

N ∈ ModSop.
(3) If R and S are Gorenstein rings, then idR C = idSop C.

Proof. (1) We first prove the sufficiency. Let M ∈ ModR. Then GC -pdRM ≤ n and there
exists an exact sequence

0→ Gn → · · · → G1 → G0 →M → 0

in ModR with all Gi in GPC(R). Applying the functor HomR(−, C) to it yields

Extn+iR (M,C) ∼= ExtiR(Gn, C) = 0

for any i ≥ 1, and thus idR C ≤ n.
In the following, we prove the necessity. Let M ∈ ModR and let

0→ Kn → Pn−1 → · · · → P1 → P0 →M → 0

be an exact sequence in ModR with all Pi projective. By dimension shifting, we have

ExtiR(Kn, X) ∼= Extn+iR (M,X) = 0

for any X ∈ ModR with idRX ≤ n and i ≥ 1. Since idR C ≤ n, we have idRQ ≤ n for any
Q ∈ PC(R) by [3, Theorem 1.1], and so Kn ∈ ⊥PC(R).

Since R is an n-Gorenstein ring, the Gorenstein projective dimension of M is at most n by
[27, Theorem 1.2], and hence Kn is Gorenstein projective. Thus there exists an exact sequence

0→ Kn → P 0 → P 1 → · · · → P i → · · ·

in ModR with all P i in P(R). Since P(R) ⊆ GPC(R), there exists a HomR(−,PC(R))-exact
exact sequence

0→ P i → Qi0 → Qi1 → · · · → Qij → · · ·
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in ModR with all Qij in PC(R) for any i, j ≥ 0. By [24, Theorem 3.8], we get the following
exact sequence

0→ Kn → Q0
0

f1−→ Q0
1 ⊕Q1

0
f2−→ · · · f

m

−→ ⊕mi=0Q
i
m−i

fm+1

−→ · · · (5.6)

in ModR. By [19, Proposition 5.1(b)], we have all ⊕mi=0Q
i
m−i are in PC(R). Then we have

Ext1R(Im fm, Q) ∼= Extn+1
R (Im fm+n, Q) = 0

for any Q ∈ PC(R) and m ≥ 1, which implies that the exact sequence (5.6) is HomR(−,PC(R))-
exact. Thus Kn ∈ GPC(R) and GC -pdRM ≤ n.

(2) It is the symmetric version of (1).
(3) Suppose idR C < ∞. In this case, we may suppose that R is an n-Gorenstein ring

and idR C ≤ n for some n ≥ 0. By (1) and Theorem 5.20, we have idSop C = idR C ≤ n.
Symmetrically, if idSop C <∞, then idR C = idSop C by (2) and Theorem 5.20.
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