The Auslander-type condition of triangular matrix rings

HUANG ChongHui ${ }^{1,2}$ \& HUANG ZhaoYong ${ }^{2, *}$
${ }^{1}$ School of Mathematics and Physics, University of South China, Hengyang 421001, China;
${ }^{2}$ Department of Mathematics, Nanjing University, Nanjing 210093, China
Email: huangzy@nju.edu.cn, huangch78@163.com

Received July 19, 2011; accepted February 1, 2012; published online May 22, 2012

Abstract

Let R be a left and right Noetherian ring and n, k be any non-negative integers. R is said to satisfy the Auslander-type condition $G_{n}(k)$ if the right flat dimension of the $(i+1)$-th term in a minimal injective resolution of R_{R} is at most $i+k$ for any $0 \leqslant i \leqslant n-1$. In this paper, we prove that R is $G_{n}(k)$ if and only if so is a lower triangular matrix ring of any degree t over R.

Keywords Auslander-type condition, triangular matrix rings, flat dimension, minimal injective resolutions, minimal flat resolutions

MSC(2010) 16E10, 16E30

> Citation: Huang C H, Huang Z Y. The Auslander-type condition of triangular matrix rings. Sci China Math, 2012, $55(8): 1647-1654$, doi: $10.1007 /$ s11425-012-4419-6

1 Introduction

Let R be a ring and M be a right R-module. We use

$$
0 \rightarrow M \rightarrow I^{0}(M) \rightarrow I^{1}(M) \rightarrow \cdots \rightarrow I^{i}(M) \rightarrow \cdots
$$

to denote a minimal injective resolution of M_{R}. For a positive integer n, recall from [8] that a left and right Noetherian ring R is called an n-Gorenstein ring if the right flat dimension of $I^{i}(R)$ is at most i for any $0 \leqslant i \leqslant n-1$, and R is said to satisfy the Auslander condition if R is n-Gorenstein for all n. The notion of the Auslander condition may be regarded as a non-commutative version of commutative Gorenstein rings. A remarkable property of n-Gorenstein rings (and hence rings satisfying the Auslander condition) is the left-right symmetry, which was proved by Auslander (see [8, Theorem 3.7]). Motivated by the philosophy of Auslander, Huang and Iyama introduced in [15] the notion of the Auslander-type condition as follows. For any $n, k \geqslant 0$, a left and right Noetherian ring R is said to be $G_{n}(k)$ if the right flat dimension of $I^{i}(R)$ is at most $i+k$ for any $0 \leqslant i \leqslant n-1$. It is trivial that R is an n-Gorenstein ring if and only if R is $G_{n}(0)$. In general, the Auslander-type condition $G_{n}(k)$ does not possess the left-right symmetry [15]. Note that the Auslander-type condition plays a crucial role in the representation theory of algebras and homological algebra (e.g., $[2,3,5,7,9,12-18,20-25])$.

It was proved by Iwanaga and Wakamatsu in [19, Theorem 8] that a left and right Artinian ring R is an n-Gorenstein ring if and only if so is a lower triangular matrix ring of any degree t over R. Observe

[^0]that this is a generalization of [8, Theorem 3.10] where the case $k=2$ was established. In this paper, we will generalize the Iwanaga and Wakamatsu's result mentioned above, and prove the following result.
Theorem. Let R be a left and right Noetherian ring and $n, k \geqslant 0$. Then R is $G_{n}(k)$ if and only if so is a lower triangular matrix ring $T_{t}(R)$ of any degree t over R.

In Section 2, we recall some notions and notations and give some preliminary results about triangular matrix rings. Then in Section 3, we give the proof of the above theorem by establishing the relation between the flat dimensions of the corresponding terms in the minimal injective resolutions of R_{R} and $T_{t}(R)_{T_{t}(R)}$. In [20], Iyama introduced the notions of the $(l, n)^{\mathrm{op}}$-condition (which has a close relation with the Auslander-type condtion) and the dominant number. In Section 3, we also prove the following results. Let R be a left and right Noetherian ring and $l, n \geqslant 0, t \geqslant 1$. If R satisfies the $(l, n)^{\mathrm{op}}$-condition, then $T_{t}(R)$ satisfies the $(l+1, n)^{\mathrm{op}}$-condition. Conversely, if $T_{t}(R)$ satisfies the $(l, n)^{\mathrm{op}}$-condition, then so does R. In addition, if n is a dominant number of R, then $n+1$ is a dominant number of $T_{t}(R)$.

2 Preliminaries

In this section, we give some notions and notations and collect some elementary facts which are useful for the rest of this paper.

Throughout this paper, R and S are rings and ${ }_{S} M_{R}$ is a left S right R-bimodule. We denote by $\Lambda=\left(\begin{array}{cc}R & 0 \\ M & S\end{array}\right)$ the triangular matrix ring, and denote by ${ }^{*}(-)$ the functor $\operatorname{Hom}_{R}(M,-)$. For the ring R, we use $\operatorname{Mod} R$ to denote the category of right R-modules.

By [11], $\operatorname{Mod} \Lambda$ is equivalent to a category \mathscr{T} of triples $(X, Y)_{f}$, where $X \in \operatorname{Mod} R$ and $Y \in \operatorname{Mod} S$ and $f: Y \otimes_{S} M_{R} \rightarrow X_{R}$ is a homomorphism in $\operatorname{Mod} R$ (which is called the associated homomorphism). The right Λ-module corresponding to the triple $(X, Y)_{f}$ is the additive group $X \oplus Y$ with the right Λ-action given by

$$
(x, y)\left(\begin{array}{cc}
r & 0 \\
m & s
\end{array}\right)=(x r+f(y \otimes m), y s)
$$

for any $x \in X, y \in Y, r \in R, s \in S$ and $m \in M$.
Another description of a right Λ-module $X \oplus Y$ is a triple $\varphi(X, Y)$, where $\varphi: Y_{S} \rightarrow \operatorname{Hom}_{R}\left({ }_{S} M_{R}, X_{R}\right)_{S}$ is a homomorphism in $\operatorname{Mod} S$ (which is also called the associated homomorphism). The right Λ-module corresponding to the triple $\varphi(X, Y)$ is the additive group $X \oplus Y$ with the right Λ-action given by

$$
(x, y)\left(\begin{array}{cc}
r & 0 \\
m & a
\end{array}\right)=(x r+\varphi(y)(m), y s)
$$

for any $x \in X, y \in Y, r \in R, s \in S$ and $m \in M$.
In particular, we have the following isomorphism:

$$
\operatorname{Hom}_{S}\left(Y_{S}, \operatorname{Hom}_{R}\left({ }_{S} M_{R}, X_{R}\right)_{S}\right) \cong \operatorname{Hom}_{R}\left(Y \otimes_{S} M_{R}, X_{R}\right)
$$

So it is convenient for us to adopt either of these two descriptions of $X \oplus Y$ in the following argument.
If $(U, V)_{g}$ and $(X, Y)_{f}$ are in \mathscr{T}, then the homomorphisms from $(U, V)_{g}$ to $(X, Y)_{f}$ are pairs $\left(h_{1}, h_{2}\right)$, where $h_{1}: U \rightarrow X$ is a homomorphism in $\operatorname{Mod} R$ and $h_{2}: V \rightarrow Y$ is a homomorphism in Mod S satisfying the condition $h_{1} g=f\left(h_{2} \otimes 1_{M}\right)$. It is not difficult to verify that (h_{1}, h_{2}) is monic (resp. epic) if and only if so are both of h_{1} and h_{2}.
Lemma 2.1 (See [8, Proposition 1.14]). Let X, Y and f be as above. Then $(X, Y)_{f} \in \operatorname{Mod} \Lambda$ is flat if and only if the following conditions are satisfied:
(1) $Y \in \operatorname{Mod} S$ is flat;
(2) Coker $f \in \operatorname{Mod} R$ is flat;
(3) f is a monomorphism.

Lemma 2.2 (See [26, Corollary 6]). $\quad \Lambda$ is a left (resp. right) Noetherian ring if and only if both R and S are left (resp. right) Noetherian rings and ${ }_{S} M\left(\right.$ resp. $\left.M_{R}\right)$ is finitely generated.

For the ring R and any positive integer t, we use $T_{t}(R)$ to denote the triangular matrix ring

$$
\left(\begin{array}{cccc}
R & & & \\
R & R & & \\
\vdots & \vdots & \ddots & \\
R & R & \cdots & R
\end{array}\right)
$$

of degree t.
Lemma 2.3. For any $t \geqslant 2, T_{t}(R)$ is a triangular matrix ring of the form

$$
T_{t}(R)=\left(\begin{array}{cc}
T_{t-1}(R) & 0 \\
{ }_{R} R_{T_{t-1}(R)}^{(t-1)} & R
\end{array}\right)
$$

In particular, $R_{T_{t-1}(R)}^{(t-1)}$ is faithful and finitely generated projective and $\operatorname{End}_{T_{t-1}(R)}\left(R^{(t-1)}\right) \cong R$.
Proof. We can regard $R^{(t-1)}$ as a right $T_{t-1}(R)$-module in a natural way. Let

$$
e=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

be the matrix in $T_{t-1}(R)$ such that the $(t-1, t-1)$-component is 1 and 0 elsewhere. Then e is an idempotent and $R_{T_{t-1}(R)}^{(t-1)} \cong e T_{t-1}(R)_{T_{t-1}(R)}$, which implies that $R_{T_{t-1}(R)}^{(t-1)}$ is faithful and finitely generated projective and $\operatorname{End}_{T_{t-1}(R)}\left(R^{(t-1)}\right) \cong e T_{t-1}(R) e \cong R$.
Proposition 2.4. If R is a left (resp. right) Noetherian ring, then so is $T_{t}(R)$ for any $t \geqslant 1$.
Proof. We proceed by induction on t. The case for $t=1$ is trivial, and the case for $t=2$ follows from Lemma 2.2. Now assume $t \geqslant 3$. By Lemma 2.3,

$$
T_{t}(R)=\left(\begin{array}{cc}
T_{t-1}(R) & 0 \\
R R_{T_{t-1}(R)}^{(t-1)} & R
\end{array}\right)
$$

with both ${ }_{R} R^{(t-1)}$ and $R_{T_{t-1}(R)}^{(t-1)}$ finitely generated. Then by the induction hypothesis and Lemma 2.2, we get the assertion.

Definition 2.5 (See [6]). Assume that \mathscr{F} is a subclass of $\operatorname{Mod} R, X \in \mathscr{F}$ and $Y \in \operatorname{Mod} R$. The homomorphism $f: X \rightarrow Y$ is said to be an \mathscr{F}-precover of Y if $\operatorname{Hom}_{R}\left(X^{\prime}, X\right) \rightarrow \operatorname{Hom}_{\Lambda}\left(X^{\prime}, Y\right) \rightarrow 0$ is exact for any $X^{\prime} \in \mathscr{F}$. An \mathscr{F}-precover $f: X \rightarrow Y$ is said to be an \mathscr{F}-cover of Y if an endomorphism $g: X \rightarrow X$ is an automorphism whenever $f=f g$. If \mathscr{F} is the subclass of $\operatorname{Mod} R$ consisting of all flat right R-modules, then an \mathscr{F}-cover is called a flat cover.

Bican, Bashir and Enochs proved in [4, Theorem 3] that every module in $\operatorname{Mod} R$ has a flat cover. For a module $N \in \operatorname{Mod} R$, we call the following exact sequence

$$
\cdots \rightarrow F_{i}(N) \xrightarrow{\pi_{i}(N)} \cdots \rightarrow F_{1}(N) \xrightarrow{\pi_{1}(N)} F_{0}(N) \xrightarrow{\pi_{0}(N)} N \rightarrow 0
$$

a minimal flat resolution of N_{R}, where $\pi_{0}(N): F_{0}(N) \rightarrow N$ is a flat cover of N and $\pi_{i}(N): F_{i}(N) \rightarrow$ $\operatorname{Ker} \pi_{i-1}(N)$ is a flat cover of $\operatorname{Ker} \pi_{i-1}(N)$ for any $i \geqslant 1$. We denote the right flat dimension of N by $\operatorname{r.fd}_{R}(N)$. It is easy to verify that $\operatorname{r} . \mathrm{fd}_{R}(N) \leqslant n$ if and only if $F_{n+1}(N)=0$.

3 Main results

In this section, we give the proof of the main results mentioned in Section 1, by establishing the relation between the flat dimensions of the corresponding terms in the minimal injective resolutions of R_{R} and $T_{t}(R)_{T_{t}(R)}$.

From now on, assume that M_{R} is finitely generated, faithful and projective with $S=\operatorname{End}_{R}(M)$ and ${ }_{S} M$ is finitely generated projective. We set $I^{-1}\left({ }^{*} R\right)=0$ and r.fd ${ }_{S} 0=-1$.
Lemma 3.1. Let X, Y and f be as in Section 2. Then $\left(F_{0}(Y) \otimes_{S} M, F_{0}(Y)\right)_{1} \oplus\left(F_{0}(X), 0\right)_{0} \xrightarrow{\psi_{0}}$ $(X, Y)_{f} \rightarrow 0$ is an exact sequence in $\operatorname{Mod} \Lambda$ with $\left(F_{0}(Y) \otimes_{S} M, F_{0}(Y)\right)_{1} \oplus\left(F_{0}(X), 0\right)_{0}$ flat and $\psi_{0}=$ $\left(\left(f\left(\pi_{0}(Y) \otimes_{S} 1_{M}\right), \pi_{0}(X)\right), \pi_{0}(Y)\right)$. Moreover, if f_{1} is the associated homomorphism of Ker ψ_{0}, then $0 \rightarrow \operatorname{Ker} f \rightarrow$ Coker $f_{1} \rightarrow F_{0}(X) \rightarrow$ Coker $f \rightarrow 0$ is an exact sequence in $\operatorname{Mod} R$.
Proof. Since M is left S-flat, we have the following commutative diagram with exact rows:

where $h=\left(f\left(\pi_{0}(Y) \otimes_{S} 1_{M}\right), \pi_{0}(X)\right)$ and f_{1} is established by diagram-chasing. Then by Lemma 2.1, we have that $\left(\left(F_{0}(Y) \otimes_{S} M\right), F_{0}(Y)\right)_{1} \oplus\left(F_{0}(X), 0\right)_{0} \in \operatorname{Mod} \Lambda$ is flat. The last assertion follows from the snake lemma.

By [19, Corollary 3],

$$
I^{0}(\Lambda)={ }_{1}\left(I^{0}(R),{ }^{*}\left(I^{0}(R)\right)\right) \oplus_{1}\left(I^{0}(M),{ }^{*}\left(I^{0}(M)\right)\right)
$$

and

$$
I^{i}(\Lambda)={ }_{1}\left(I^{i}(R),{ }^{*}\left(I^{i}(R)\right)\right) \oplus_{1}\left(I^{i}(M),{ }^{*}\left(I^{i}(M)\right)\right) \oplus_{0}\left(0, I^{i-1}\left({ }^{*} R\right)\right) \quad(i \geqslant 1)
$$

give a minimal injective resolution of Λ_{Λ}. In the following, we will construct a flat resolution of $I^{i}\left(\Lambda_{\Lambda}\right)$ for any $i \geqslant 0$, and then consider the Auslander-type condition of the triangular matrix ring $T_{t}(R)$.
Proposition 3.2. (1) Let I_{R} be injective and $\xi_{I}:{ }^{*} I \otimes_{S} M \rightarrow I$ be defined by $\xi_{I}(\alpha \otimes x)=\alpha(x)$ for any $\alpha \in{ }^{*} I$ and $x \in M$ be the natural homomorphism. Then

$$
\begin{aligned}
& F_{0}=\left(F_{0}\left({ }^{*} I\right) \otimes_{S} M, F_{0}\left({ }^{*} I\right)\right)_{1}, \\
& \operatorname{Ker} \psi_{0}=\left(\operatorname{Ker} \xi_{I}\left(\pi_{0}\left({ }^{*} I\right) \otimes_{S} 1_{M}\right), \operatorname{Ker} \pi_{0}\left({ }^{*} I\right)\right)_{f_{1}} \\
& F_{i}=\left(F_{i}\left({ }^{*} I\right) \otimes_{S} M, F_{i}\left({ }^{*} I\right)\right)_{1} \oplus\left(F_{0}\left(\operatorname{Ker} h_{i-1}\right), 0\right)_{0}, \\
& \operatorname{Ker} \psi_{i}=\left(\operatorname{Ker} h_{i}, \operatorname{Ker} \pi_{i}\left({ }^{*} I\right)\right)_{f_{i+1}} \quad(i \geqslant 1)
\end{aligned}
$$

give a flat resolution of the injective right Λ-module ${ }_{1}\left(I_{R},{ }^{*} I_{R}\right)$:

$$
\cdots \rightarrow F_{n} \xrightarrow{\psi_{n}} F_{n-1} \xrightarrow{\psi_{n-1}} \cdots \rightarrow F_{1} \xrightarrow{\psi_{1}} F_{0} \xrightarrow{\psi_{0}}{ }_{1}\left(I_{R},{ }^{*} I_{R}\right) \rightarrow 0,
$$

where $h_{0}=\xi_{I}\left(\pi_{0}\left({ }^{*} I\right) \otimes_{S} 1_{M}\right)$ and $h_{i}=\left(f_{i}\left(\pi_{i}\left({ }^{*} I\right) \otimes_{S} 1_{M}\right), \pi_{0}\left(\operatorname{Ker} h_{i-1}\right)\right)$ and f_{i} is established by diagramchasing as in Lemma 3.1 for $i \geqslant 1$. In particular, $\operatorname{r.fd}_{\Lambda_{1}}\left(I_{R},{ }^{*} I_{R}\right) \leqslant k$ if and only if r.fd ${ }_{R} \operatorname{Ker} \xi_{I} \leqslant k-1$ and $\mathrm{r} . \mathrm{fd}_{S} * I_{R} \leqslant k$.
(2) If $\operatorname{Hom}_{R}\left({ }_{S} M_{R}, R\right)$ is finitely generated right S-projective, then $F_{0}=\left(F_{0}(E) \otimes_{S} M, F_{0}(E)\right)_{1}$ and $F_{i}=\left(F_{i}(E) \otimes_{S} M, F_{i}(E)\right)_{1} \oplus\left(F_{i-1}(E) \otimes_{S} M, 0\right)_{0}(i \geqslant 1)$ give a flat resolution of $0\left(0, E_{S}\right)$ in $\operatorname{Mod} \Lambda$. In particular, $\operatorname{r.fd}_{\Lambda}\left(0, E_{S}\right) \leqslant k$ if and only if r.fd ${ }_{S} E \leqslant k-1$.
Proof. (1) We proceed by induction on i. Since M_{R} is finitely generated, faithful and projective with $S=\operatorname{End}_{R}(M)$, by [1, Proposition 20.11], it is not difficult to verify that ξ_{I} is epic. Thus we have the following exact sequence:

$$
0 \rightarrow \operatorname{Ker} \xi_{I} \rightarrow^{*} I \otimes_{S} M \stackrel{\xi_{1}}{\rightarrow} I \rightarrow 0
$$

Then F_{0} and Ker ψ_{0} are given by the following commutative diagram with exact rows:

where f_{1} is established by diagram-chasing. By the snake lemma, we have an exact sequence $0 \rightarrow$ $\operatorname{Ker} \pi_{0}\left({ }^{*} I\right) \otimes_{S} M \xrightarrow{f_{1}} \operatorname{Ker} \xi_{I}\left(\pi_{0}\left({ }^{*} I\right) \otimes_{S} M\right) \rightarrow \operatorname{Ker} \xi_{I} \rightarrow 0$. Then by using Lemma 3.1 iteratively and the induction hypothesis, we get the following commutative diagram with exact rows:

where $h_{0}=\xi_{I}\left(\pi_{0}\left({ }^{*} I\right) \otimes_{S} 1_{M}\right), h_{i}=\left(f_{i}\left(\pi_{i}\left({ }^{*} I\right) \otimes_{S} 1_{M}\right), \pi_{0}\left(\operatorname{Ker} h_{i-1}\right)\right)$ for any $i \geqslant 1$, and the induced homomorphism f_{i+1} is monic. By Lemma 3.1, for any $i \geqslant 1$ we have

$$
F_{i}=\left(F_{i}\left({ }^{*} I\right) \otimes_{S} M, F_{i}\left({ }^{*} I\right)\right)_{1} \oplus\left(F_{0}\left(\operatorname{Ker} h_{i-1}\right), 0\right)_{0} \quad \text { and } \quad \operatorname{Ker} \psi_{i}=\left(\operatorname{Ker} h_{i}, \operatorname{Ker} \pi_{i}\left({ }^{*} I\right)\right)_{f_{i+1}}
$$

Moreover, by the snake lemma we get an exact sequence: $0 \rightarrow \operatorname{Coker} f_{i+1} \rightarrow F_{0}\left(\operatorname{Ker} h_{i-1}\right) \rightarrow \operatorname{Coker} f_{i} \rightarrow 0$ for any $i \geqslant 1$. So Coker f_{i} is right R-flat if and only if $\operatorname{r} . \mathrm{fd}_{R} \operatorname{Ker} \xi_{I} \leqslant i-1$. In addition, by Lemma 2.1, ${ }_{1}\left(I_{R},{ }^{*} I_{R}\right)$ is right Λ-flat if and only if ${ }^{*} I_{R}$ is right S-flat and $\operatorname{Ker} \xi_{I}=0$. So for any $k \geqslant 0$, we have that $\operatorname{r.fd} \Lambda_{1}\left(I_{R},{ }^{*} I_{R}\right) \leqslant k$ if and only if $\operatorname{Ker} \psi_{k-1}$ is right Λ-flat, if and only if Coker f_{k} is right R-flat and $\operatorname{Ker} \pi_{k-1}\left({ }^{*} I_{R}\right)$ is right S-flat, if and only if r.fd ${ }_{R} \operatorname{Ker} \xi_{I} \leqslant k-1$ and r.fd ${ }_{S}{ }^{*} I_{R} \leqslant k$.
(2) By Lemma 3.1, we have that $F_{0}=\left(F_{0}(E) \otimes_{S} M, F_{0}(E)\right)_{1}$ and there exists an exact sequence:

$$
0 \rightarrow \operatorname{Ker} \pi_{0}(E) \otimes_{S} M \xrightarrow{f_{1}} F_{0}(E) \otimes_{S} M \rightarrow E \otimes_{S} M \rightarrow 0
$$

By using an argument similar to that in (1), we have that $F_{i}=\left(F_{i}(E) \otimes_{S} M, F_{i}(E)\right)_{1} \oplus\left(F_{i-1}(E) \otimes_{S} M, 0\right)_{0}$ for any $i \geqslant 1$, and that Coker f_{i} is right R-flat if and only if $\mathrm{r} . \mathrm{fd}_{R} E \otimes_{S} M \leqslant i-1$. Thus for any $k \geqslant 1$, $\operatorname{r.fd}_{\Lambda}\left(0, E_{S}\right) \leqslant k$ if and only if r.fd $S_{S} E \leqslant k$ and Coker f_{k} is right R-flat, if and only if r.fd ${ }_{S} E \leqslant k$ and $\operatorname{r.fd}_{R} E \otimes_{S} M \leqslant k-1$. So, it suffices to prove that r.fd ${ }_{R} E \otimes_{S} M \leqslant k-1$ if and only if r.fd ${ }_{S} E \leqslant k-1$.

Let $\cdots \rightarrow F_{i} \xrightarrow{f_{i}} F_{i-1} \rightarrow \cdots \rightarrow F_{1} \xrightarrow{f_{1}} F_{0} \xrightarrow{f_{0}} E \rightarrow 0$ be a flat resolution of E_{S} in $\operatorname{Mod} S$. Since ${ }_{S} M$ is projective, $\cdots \rightarrow F_{i} \otimes_{S} M \xrightarrow{f_{i} \otimes_{s} 1_{M}} F_{i-1} \otimes_{S} M \rightarrow \cdots \rightarrow F_{1} \otimes_{S} M \xrightarrow{f_{1} \otimes_{s} 1_{M}} F_{0} \otimes_{S} M \xrightarrow{f_{0} \otimes_{s} 1_{M}} E \otimes_{S} M \rightarrow 0$ is a flat resolution of $E \otimes_{S} M$ in $\operatorname{Mod} R$. So, if r.fd ${ }_{S} E \leqslant k-1$, then r.fd ${ }_{R} E \otimes_{S} M \leqslant k-1$.

Conversely, assume that r.fd $R E \otimes_{S} M \leqslant k-1$. Then Coker $f_{k} \otimes_{S} M$ is right R-flat. So Coker $f_{k} \otimes_{S} M$ is a direct limit of a direct system of finitely generated projective right R-modules $\left\{Q_{i}\right\}_{i \in I}$, i.e.,

$$
\text { Coker } f_{k} \otimes_{S} M=\underset{\substack{\vec{i} \in I}}{\lim } Q_{i}
$$

where I is a direct index set. Because M_{R} is finitely generated projective and $S=\operatorname{End}_{R}(M)$, by $[1$, Proposition 20.10] and [10, Lemma 1.2.5], we have

$$
\text { Coker } f_{k} \cong \operatorname{Hom}_{R}\left({ }_{S} M_{R}, \text { Coker } f_{k} \otimes_{S} M\right) \cong \operatorname{Hom}_{R}\left({ }_{S} M_{R}, \underset{\substack{\vec{i} \in}}{\lim _{i}} Q_{i}\right) \cong \underset{\overrightarrow{i \in I}}{\lim _{\vec{i}}} \operatorname{Hom}_{R}\left({ }_{S} M_{R}, Q_{i}\right)
$$

By the assumption, $\operatorname{Hom}_{R}\left({ }_{S} M_{R}, R\right)$ is finitely generated right S-projective, so Coker f_{k} is right S-flat and $\operatorname{r.fd}_{S} E \leqslant k-1$.

In addition, by Lemma $2.1,{ }_{0}\left(0, E_{S}\right)$ is right Λ-flat if and only if E_{S} is right S-flat and $E \otimes_{S} M=0$. Using essentially the same argument as that in proving the case for $k \geqslant 1$, we have that $E \otimes_{S} M=0$ if and only if $E=0$. Consequently, we conclude that $r . f d_{\Lambda}\left(0, E_{S}\right) \leqslant k$ if and only if r.fd ${ }_{S} E \leqslant k-1$ for any $k \geqslant 0$.

Proposition 3.3. If $\operatorname{Hom}_{R}\left({ }_{S} M_{R}, R\right)$ is finitely generated right S-projective, then for any $k, i \geqslant 0$, $\operatorname{r.fd}_{\Lambda} I^{i}(\Lambda) \leqslant k$ if and only if the following conditions are satisfied:
(1) r.fd ${ }_{R} \operatorname{Ker} \xi_{I^{i}(R)} \leqslant k-1$;
(2) r.fd $_{S}{ }^{*}\left(I^{i}(R)\right) \leqslant k$;
(3) $\operatorname{r.fd}_{S} I^{i-1}\left({ }^{*} R\right) \leqslant k-1$.

Proof. Since M_{R} is finitely generated projective, r.fd ${ }_{\Lambda}\left(I^{i}(R),{ }^{*}\left(I^{i}(R)\right)\right) \leqslant k$ yields that $\operatorname{r.fd}{ }_{\Lambda}\left(I^{i}(M)\right.$, $\left.{ }^{*}\left(I^{i}(M)\right)\right) \leqslant k$. Note that r.fd $I_{\Lambda}^{0}(\Lambda) \leqslant k$ if and only if $\operatorname{r.fd}_{\Lambda}\left(I^{0}(R),{ }^{*}\left(I^{0}(R)\right)\right) \leqslant k$. So, by Proposition $3.2(1)$, $\operatorname{r.fd}_{\Lambda} I^{0}(\Lambda) \leqslant k$ if and only if r.fd ${ }_{R} \operatorname{Ker} \xi_{I^{0}(R)} \leqslant k-1$ and $\operatorname{r.fd}_{S} *\left(I^{0}(R)\right) \leqslant k$. The case for $i=0$ follows. Now suppose $i \geqslant 1$. Note that r.fd $\Lambda_{\Lambda} I^{i}(\Lambda) \leqslant k$ if and only if r.fd ${ }_{\Lambda}\left(I^{i}(R),{ }^{*}\left(I^{i}(R)\right)\right) \leqslant k$ and $\operatorname{r.fd} \Lambda_{0}\left(0, I^{i-1}\left({ }^{*} R\right)\right) \leqslant k$. So, by Proposition 3.2, we have that $\operatorname{rfd}_{\Lambda} I^{i}(\Lambda) \leqslant k$ if and only if $\operatorname{r.fd}_{R} \operatorname{Ker} \xi_{I^{i}(R)} \leqslant k-1, \operatorname{r.fd}_{S} *\left(I^{i}(R)\right) \leqslant k$ and r.fd $I_{S} I^{i-1}\left({ }^{*} R\right) \leqslant k-1$.
Proposition 3.4. If $\operatorname{Hom}_{R}\left({ }_{S} M_{R}, R\right)$ is finitely generated right S-projective, then for any $i \geqslant 0$, r.fd $I_{\Lambda} I^{i}(\Lambda) \leqslant k$ yields that $\mathrm{r} . \mathrm{fd}_{R} I^{i}(R) \leqslant k$ and $\operatorname{r.fd}_{S} I^{i-1}(S) \leqslant k-1$.

Proof. For any $i \geqslant 0$, by (1) and (2) of Proposition 3.3, we have r.fd ${ }_{R} \operatorname{Ker}_{\xi_{I^{i}(R)} \leqslant k-1 \text { and }}$ r.fd $R^{*}\left(I^{i}(R)\right) \otimes_{S} M \leqslant k$. In addition, we have the following exact sequence:

$$
0 \rightarrow \operatorname{Ker} \xi_{I^{i}(R)} \rightarrow^{*}\left(I^{i}(R)\right) \otimes_{S} M \xrightarrow{\xi_{I^{i}(R)}} I^{i}(R) \rightarrow 0,
$$

which implies r.fd ${ }_{R} I^{i}(R) \leqslant k$.
On the other hand, since M_{R} is finitely generated projective, the condition (3) in Proposition 3.3 is also satisfied when ${ }^{*} R$ is replaced by ${ }^{*} M$. It follows that $r . f_{S} I^{i-1}(S) \leqslant k-1$.

Proposition 3.5. For any $i \geqslant 0, \operatorname{r.fd}_{\Lambda} I^{i}(\Lambda) \leqslant k$ if and only if $\operatorname{r.fd}{ }_{\Gamma} I^{i}(\Gamma) \leqslant k$, where

$$
\Gamma=\left(\begin{array}{ccc}
R & 0 & 0 \\
M & S & 0 \\
M & S & S
\end{array}\right)
$$

Proof. Let $e=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \in \Lambda$. Then we have

$$
\Gamma=\left(\begin{array}{cc}
\Lambda & 0 \\
e \Lambda & e \Lambda e
\end{array}\right), \quad \Lambda e=e \Lambda e \cong S
$$

Since Λ can be embedded in

$$
\operatorname{End}_{S}(e \Lambda) \cong\left(\begin{array}{cc}
\operatorname{End}_{S}(M) & \operatorname{Hom}_{S}(M, S) \\
M & S
\end{array}\right)
$$

$e \Lambda$ is a faithful right Λ-module. It is trivial that $e \Lambda$ is finitely generated projective as a right Λ-module and a left S-module. Notice that $S \cong \operatorname{End}_{\Lambda}(e \Lambda)$ and $\operatorname{Hom}_{\Lambda}(e \Lambda, \Lambda)_{S} \cong \Lambda e_{S} \cong S_{S}$, so by Proposition 3.3, we get that r.fd ${ }_{\Gamma} I^{i}(\Gamma) \leqslant k$ if and only if the following conditions are satisfied.
(1) $\operatorname{r.fd} \Lambda_{\Lambda} \operatorname{Ker} \eta_{I^{i}(\Lambda)} \leqslant k-1$, where $\eta_{E}: \operatorname{Hom}_{\Lambda}(e \Lambda, E) \otimes_{e \Lambda e} e \Lambda \rightarrow E$ defined by $\eta_{E}(\alpha \otimes x)=\alpha(x)$ for any $\alpha \in \operatorname{Hom}_{\Lambda}(e \Lambda, E)$ and $x \in e \Lambda$ is the natural homomorphism for an injective right R-module E.
(2) r.fd ${ }_{S} \operatorname{Hom}_{\Lambda}\left(e \Lambda, I^{i}(\Lambda)\right)_{S} \leqslant k$.
(3) $\operatorname{r.fd}_{S} I^{i-1}\left(\operatorname{Hom}_{\Lambda}(e \Lambda, \Lambda)_{S}\right) \leqslant k-1$.

Assume that r.fd $I_{\Gamma} I^{i}(\Gamma) \leqslant k$. By Proposition 3.4, r.fd $I_{\Lambda} I^{i}(\Lambda) \leqslant k$. It remains to show that r.fd $I_{\Lambda} I^{i}(\Lambda) \leqslant$ k implies $\operatorname{r.fd}_{\Gamma} I^{i}(\Gamma) \leqslant k$ for any $i \geqslant 0$. To do this, it suffices to show that the conditions (1)-(3) above are satisfied.

Note that $\operatorname{Hom}_{\Lambda}(e \Lambda, \Lambda)_{S} \cong S_{S}$. If $L \in \operatorname{Mod} \Lambda$ is flat, then L is a direct limit of a direct system of finitely generated projective right Λ-modules $\left\{P_{i}\right\}_{i \in I}$, i.e., $L=\lim _{\overrightarrow{i \in I}} P_{i}$, where I is a directed set. So

$$
\operatorname{Hom}_{\Lambda}(e \Lambda, L) \cong \operatorname{Hom}_{\Lambda}\left(e \Lambda, \underset{\overrightarrow{i \in I}}{\lim _{\vec{\rightarrow}} P_{i}}\right) \cong \underset{\substack{\vec{i} I}}{\lim _{\Lambda}} \operatorname{Hom}_{\Lambda}\left(e \Lambda, P_{i}\right)
$$

is right S-flat. Then it is not difficult to verify that r.fd $\Lambda_{\Lambda} I^{i}(\Lambda) \leqslant k$ yields $r . f d_{S} \operatorname{Hom}_{\Lambda}\left(e \Lambda, I^{i}(\Lambda)\right)_{S} \leqslant k$. Thus Condition (2) is satisfied.

Using $\operatorname{Hom}_{\Lambda}(e \Lambda, \Lambda)_{S} \cong S_{S}$ again, then Condition (3) is satisfied by Proposition 3.4.
By [19, Corollary 3],

$$
I^{0}(\Lambda)={ }_{1}\left(I^{0}(R),{ }^{*}\left(I^{0}(R)\right)\right) \oplus_{1}\left(I^{0}(M),{ }^{*}\left(I^{0}(M)\right)\right),
$$

and

$$
I^{i}(\Lambda)={ }_{1}\left(I^{i}(R),{ }^{*}\left(I^{i}(R)\right)\right) \oplus_{1}\left(I^{i}(M),{ }^{*}\left(I^{i}(M)\right)\right) \oplus_{0}\left(0, I^{i-1}\left({ }^{*} R\right)\right)
$$

give a minimal injective resolution of Λ_{Λ}. So, to verify Condition (1), it suffices to show that r.fd ${ }_{\Lambda} \operatorname{Ker} \eta_{E} \leqslant$ $k-1$ for any injective right Λ-module E, where E is of the form:
(a) ${ }_{0}\left(0, I_{S}\right)$ with I_{S} injective, or
(b) ${ }_{1}\left(I_{R},{ }^{*}\left(I_{R}\right)\right)$ with I_{R} injective.

If E is of the form (a), then it is not difficult to verify that $e \Lambda \cong(M, S)_{\psi}$ (see [8, p.2]) and $E e=$ ${ }_{0}\left(0, I_{S}\right) e={ }_{0}\left(0, I_{S}\right)=E .{\operatorname{So~} \operatorname{Hom}_{\Lambda}(e \Lambda, E) \otimes_{S} e \Lambda \cong E e \otimes_{S} e \Lambda \cong E \otimes_{S}(M, S)_{\psi} \cong E \text {, where } \psi: S \otimes_{S} M \rightarrow M}$ is the natural isomorphism. Moreover, $S \cong \operatorname{End}_{\Lambda}(e \Lambda)$ and $e \Lambda$ is finitely generated projective as a right Λ-module and a left S-module. By [1, Proposition 20.11], it is easy to see that η_{E} is epic. Because $e \Lambda e \cong S$ and $\operatorname{Hom}_{\Lambda}(e \Lambda, E) \otimes_{S} e \Lambda \cong E, \operatorname{Ker} \eta_{E}=0$.

If E is of the form (b), then $E={ }_{1}\left(I_{R},{ }^{*}\left(I_{R}\right)\right)$ and $\operatorname{Ker} \eta_{E} \cong{ }_{0}\left(\operatorname{Ker} \xi_{I_{R}}, 0\right)$. On the other hand, by Lemma 3.1, we have r.fd $\Lambda_{0}\left(X_{R}, 0\right)=$ r.fd $R_{R} X$. So r.fd $\Lambda_{\Lambda} \operatorname{Ker} \eta_{I^{i}(\Lambda)} \leqslant k-1$ if and only if r.fd $\operatorname{Ker}_{I^{i}(R)} \leqslant$ $k-1$. Because r.fd ${ }_{\Lambda} I^{i}(\Lambda) \leqslant k, \operatorname{r.fd}_{\Lambda} \operatorname{Ker} \eta_{E} \leqslant k-1$.

We are now in a position to state the main result in this section.
Theorem 3.6. If R is a left and right Noetherian ring and t is a positive integer, then $T_{t}(R)$ is a left and right Noetherian ring, and $r . \mathrm{fd}_{T_{t}(R)} I^{i}\left(T_{t}(R)\right)=\max \left\{r . f d_{R} I^{i}(R)\right.$, r.fd $\left.I_{R}^{i-1}(R)+1\right\}$ for any $i \geqslant 0$.
Proof. The first assertion follows from Proposition 2.4. We will prove the second assertion by induction on t. The case for $t=1$ is trivial, and the case for $t=2$ follows from [8, Theorem 3.10].

Now assume $t \geqslant 3$. By Lemma 2.3,

$$
T_{t}(R)=\left(\begin{array}{cc}
T_{t-1}(R) & 0 \\
R R_{T_{t-1}(R)}^{(t-1)} & R
\end{array}\right)
$$

with $R_{T_{t-1}(R)}^{(t-1)}$ faithful and finitely generated projective and $\operatorname{End}_{T_{t-1}(R)}\left(R^{(t-1)}\right) \cong R$. By Proposition 3.5, $\operatorname{r.fd}_{T_{t}(R)} I^{i}\left(T_{t}(R)\right) \leqslant k$ if and only if r.fd $T_{T_{t-1}(R)} I^{i}\left(T_{t-1}(R)\right) \leqslant k$. So we have that r.fd ${ }_{T_{t}(R)} I^{i}\left(T_{t}(R)\right)=$ r.fd $T_{T_{2}(R)} I^{i}\left(T_{2}(R)\right)=\max \left\{r . f d ~ I_{R}(R), \operatorname{r.fd}_{R} I^{i-1}(R)+1\right\}$ by the induction hypothesis.

As an immediate consequence of Theorem 3.6, we get the main theorem mentioned in Section 1.
Theorem 3.7. If R is a left and right Noetherian ring and $n, k \geqslant 0, t \geqslant 1$, then R is $G_{n}(k)$ if and only if so is $T_{t}(R)$.
Proof. By Theorem 3.6, we have that r.fd ${ }_{R} I^{i}(R) \leqslant \operatorname{r.fd}_{T_{t}(R)} I^{i}\left(T_{t}(R)\right)$ for any $i \geqslant 0$, so the sufficiency is trivial. Conversely, if R is $G_{n}(k)$, then by Theorem 3.6, $\operatorname{r.fd}_{T_{t}(R)} I^{i}\left(T_{t}(R)\right)=\max \left\{\operatorname{r} . \mathrm{fd}_{R} I^{i}(R)\right.$, r.fd $\left.{ }_{R} I^{i-1}(R)+1\right\} \leqslant i+k$ for any $0 \leqslant i \leqslant n-1$ and $T_{t}(R)$ is $G_{n}(k)$.

We recall some notions introduced by Iyama in [20]. Let R be a left and right Noetherian ring and $l, n \geqslant 0 . R$ is said to satisfy the $(l, n)^{\mathrm{op}}$ - condition if r.fd $I_{i}(R) \leqslant l-1$ for any $0 \leqslant i \leqslant n-1$. It is easy to see that R is $G_{n}(k)$ if and only if R satisfies the $(k+i, i)^{\text {op }}$-condition for any $1 \leqslant i \leqslant n$. In addition, if $\operatorname{r.fd}_{R} I^{i}(R)<\operatorname{r.fd}_{R} I^{n}(R)$ for any $0 \leqslant i \leqslant n-1$, then n is called a dominant number of R_{R}. As another application of Theorem 3.6, we get the following.
Corollary 3.8. If R is a left and right Noetherian ring, then for any $l, n \geqslant 0, t \geqslant 1$, we have the following:
(1) If R satisfies the $(l, n)^{\mathrm{op}}$-condition, then $T_{t}(R)$ satisfies the $(l+1, n)^{\mathrm{op}}$-condition. Conversely, if $T_{t}(R)$ satisfies the $(l, n)^{\mathrm{op}}$-condition, then so does R;
(2) If n is a dominant number of R, then $n+1$ is a dominant number of $T_{t}(R)$.

Proof. (1) If R satisfies the $(l, n)^{\text {op }}$-condition, then by Theorem 3.6, we have $\operatorname{r.fd}_{T_{t}(R)} I^{i}\left(T_{t}(R)\right)=$ $\max \left\{r . \mathrm{fd}_{R} I^{i}(R), \operatorname{r.fd}_{R} I^{i-1}(R)+1\right\} \leqslant l$ for any $0 \leqslant i \leqslant n-1$, which implies that $T_{t}(R)$ satisfies the $(l+1, n)^{\mathrm{op}}$-condition. Conversely, by Theorem 3.6, we have that r.fd ${ }_{R} I^{i}(R) \leqslant \mathrm{r}^{\mathrm{r}} \mathrm{fd}_{T_{t}(R)} I^{i}\left(T_{t}(R)\right)$ for any $i \geqslant 0$, so it is trivial that $T_{t}(R)$ satisfies the $(l, n)^{\mathrm{op}}$-condition implies so does R.
(2) If n is a dominant number of R, then $\operatorname{r} \cdot \mathrm{fd}_{R} I^{i}(R)<\operatorname{r.fd}_{R} I^{n}(R)$ for any $0 \leqslant i \leqslant n-1$. So by Theorem 3.6, for any $0 \leqslant i \leqslant n$, we have that r.fd $T_{t}(R) I^{n+1}\left(T_{t}(R)\right)=\max \left\{\operatorname{rgd}_{R} I^{n+1}(R), \operatorname{r.fd}_{R} I^{n}(R)+\right.$ $1\} \geqslant \operatorname{r.fd} I_{R} I^{n}(R)+1>\max \left\{r . \mathrm{fd}_{R} I^{i}(R), \operatorname{r.fd}_{R} I^{i-1}(R)+1\right\}=\operatorname{r.fd}_{T_{t}(R)} I^{i}\left(T_{t}(R)\right)$, which implies that $n+1$ is a dominant number of $T_{t}(R)$.

Acknowledgements This research was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20100091110034), National Natural Science Foundation of China (Grant Nos. 11171142, 11126169, 11101217), Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK2010047, BK2010007), the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 10C1143) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors thank the referees for the useful suggestions.

References

1 Anderson F W, Fuller R. Rings and Categories of Modules, 2nd ed. Graduate Texts in Math, 13. Berlin: SpringerVerlag, 1992
2 Auslander M, Reiten I. k-Gorenstein algebras and syzygy modules. J Pure Appl Algebra, 1994, 92: 1-27
3 Auslander M, Reiten I. Syzygy modules for Noetherian rings. J Algebra, 1996, 183: 167-185
4 Bican L, Bashir R El, Enochs E E. All modules have flat covers. Bull London Math Soc, 2001, 33: 385-390
5 Björk J E. The Auslander condition on Noetherian rings. In: Seminaire d'Algebre Paul Dubreil et Marie-Paul Malliavin. Lect Notes in Math, 1404. Berlin: Springer-Verlag, 1989
6 Enochs E E, Jenda O M G. Relative Homological Algebra. In: De Gruyter Exp in Math, 30. Berlin-New York: Walter de Gruyter, 2000
7 Erdmann K, Holm T, Iyama O, et al. Radical embeddings and representation dimension. Adv Math, 2004, 185: 159-177
8 Fossum R M, Griffith P, Reiten I. Trivial Extensions of Abelian Categories, Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lect Notes in Math, 456. Berlin: Springer-Verlag, 1975
9 Fuller K R, Iwanaga Y. On n-Gorenstein rings and Auslander rings of low injective dimension. In: Representations of Algebras. CMS Conf Proc, 14. Providence, RI: Amer Math Soc, 1993, 175-183
10 Göbel R, Trlifaj J. Approximations and Endomorphism Algebras of Modules. De Gruyter Exp in Math, 41. Berlin-New York: Walter de Gruyter, 2006
11 Green E L. On the representation theory of rings in matrix form. Pacific J Math, 1982, 100: 123-138
12 Hoshino M, Nishida K. A generalization of the Auslander formula. In: Representations of Algebras and Related Topics. Fields Institute Communications, 45. Providence, RI: Amer Math Soc, 2005, 175-186
13 Huang Z Y. Extension closure of k-torsionfree modules. Comm Algebra, 1999, 27: 1457-1464
14 Huang Z Y. Syzygy modules for quasi k-Gorenstein rings. J Algebra, 2006, 299: 21-32
15 Huang Z Y, Iyama O. Auslander-type conditions and cotorsion pairs. J Algebra, 2007, 318: 93-110
16 Iwanaga Y. Duality over Auslander-Gorenstein rings. Math Scand, 1997, 81: 184-190
17 Iwanaga Y, Miyachi J-I. Modules of the highest homological dimension over a Gorenstein ring. In: Trends in the Representation Theory of Finite-dimensional Algebras. Contemp Math, 229. Providence, RI: Amer Math Soc, 1998, 193-199
18 Iwanaga Y, Sato H. On Auslander's n-Gorenstein rings. J Pure Appl Algebra, 1996, 106: 61-76
19 Iwanaga Y, Wakamatsu T. Auslander-Gorenstein property of triangular matrix rings. Comm Algebra, 1995, 23: 36013614
20 Iyama O. Symmetry and duality on n-Gorenstein rings. J Algebra, 2003, 269: 528-535
21 Iyama O. The relationship between homological properties and representation theoretic realization of Artin algebras. Trans Amer Math Soc, 2005, 357: 709-734
22 Iyama O. τ-categories III, Auslander orders and Auslander-Reiten quivers. Algebra Represent Theory, 2005, 8: 601-619
23 Iyama O. Auslander correspondence. Adv Math 2007, 210: 51-82
24 Miyachi J-I. Injective resolutions of Noetherian rings and cogenerators. Proc Amer Math Soc, 2000, 128: 2233-2242
25 Wakamatsu T. Tilting modules and Auslander's Gorenstein property. J Algebra, 2004, 275: 3-39
26 Ye F. Finitely presented modules over formal triangular matrix rings (in Chinese). College Math, 2006, 22: 80-82

[^0]: * Corresponding author

