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1 Introduction

Let R be a ring and M be a right R-module. We use

0 →M → I0(M) → I1(M) → · · · → Ii(M) → · · ·

to denote a minimal injective resolution of MR. For a positive integer n, recall from [8] that a left and

right Noetherian ring R is called an n-Gorenstein ring if the right flat dimension of Ii(R) is at most i

for any 0 � i � n − 1, and R is said to satisfy the Auslander condition if R is n-Gorenstein for all n.

The notion of the Auslander condition may be regarded as a non-commutative version of commutative

Gorenstein rings. A remarkable property of n-Gorenstein rings (and hence rings satisfying the Auslander

condition) is the left-right symmetry, which was proved by Auslander (see [8, Theorem 3.7]). Motivated

by the philosophy of Auslander, Huang and Iyama introduced in [15] the notion of the Auslander-type

condition as follows. For any n, k � 0, a left and right Noetherian ring R is said to be Gn(k) if the right

flat dimension of Ii(R) is at most i+ k for any 0 � i � n− 1. It is trivial that R is an n-Gorenstein ring

if and only if R is Gn(0). In general, the Auslander-type condition Gn(k) does not possess the left-right

symmetry [15]. Note that the Auslander-type condition plays a crucial role in the representation theory

of algebras and homological algebra (e.g., [2, 3, 5, 7, 9, 12–18,20–25]).

It was proved by Iwanaga and Wakamatsu in [19, Theorem 8] that a left and right Artinian ring R is

an n-Gorenstein ring if and only if so is a lower triangular matrix ring of any degree t over R. Observe
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that this is a generalization of [8, Theorem 3.10] where the case k = 2 was established. In this paper, we

will generalize the Iwanaga and Wakamatsu’s result mentioned above, and prove the following result.

Theorem. Let R be a left and right Noetherian ring and n, k � 0. Then R is Gn(k) if and only if so

is a lower triangular matrix ring Tt(R) of any degree t over R.

In Section 2, we recall some notions and notations and give some preliminary results about triangular

matrix rings. Then in Section 3, we give the proof of the above theorem by establishing the relation

between the flat dimensions of the corresponding terms in the minimal injective resolutions of RR and

Tt(R)Tt(R). In [20], Iyama introduced the notions of the (l, n)op-condition (which has a close relation

with the Auslander-type condtion) and the dominant number. In Section 3, we also prove the following

results. Let R be a left and right Noetherian ring and l, n � 0, t � 1. If R satisfies the (l, n)op-condition,

then Tt(R) satisfies the (l+1, n)op-condition. Conversely, if Tt(R) satisfies the (l, n)op-condition, then so

does R. In addition, if n is a dominant number of R, then n+ 1 is a dominant number of Tt(R).

2 Preliminaries

In this section, we give some notions and notations and collect some elementary facts which are useful

for the rest of this paper.

Throughout this paper, R and S are rings and SMR is a left S right R-bimodule. We denote by

Λ=( RM
0
S ) the triangular matrix ring, and denote by ∗(−) the functor HomR(M,−). For the ring R, we

use ModR to denote the category of right R-modules.

By [11], ModΛ is equivalent to a category T of triples (X,Y )f , where X ∈ ModR and Y ∈ ModS and

f : Y ⊗S MR → XR is a homomorphism in ModR (which is called the associated homomorphism). The

right Λ-module corresponding to the triple (X,Y )f is the additive group X ⊕ Y with the right Λ-action

given by

(x, y)

(
r 0

m s

)
= (xr + f(y ⊗m), ys)

for any x ∈ X, y ∈ Y, r ∈ R, s ∈ S and m ∈M .

Another description of a right Λ-module X⊕Y is a triple ϕ(X,Y ), where ϕ : YS → HomR(SMR, XR)S
is a homomorphism in ModS (which is also called the associated homomorphism). The right Λ-module

corresponding to the triple ϕ(X,Y ) is the additive group X ⊕ Y with the right Λ-action given by

(x, y)

(
r 0

m a

)
= (xr + ϕ(y)(m), ys)

for any x ∈ X, y ∈ Y, r ∈ R, s ∈ S and m ∈M .

In particular, we have the following isomorphism:

HomS(YS ,HomR(SMR, XR)S) ∼= HomR(Y ⊗S MR, XR).

So it is convenient for us to adopt either of these two descriptions of X ⊕ Y in the following argument.

If (U, V )g and (X,Y )f are in T , then the homomorphisms from (U, V )g to (X,Y )f are pairs (h1, h2),

where h1 : U → X is a homomorphism in ModR and h2 : V → Y is a homomorphism in ModS

satisfying the condition h1g = f(h2 ⊗ 1M ). It is not difficult to verify that (h1, h2) is monic (resp. epic)

if and only if so are both of h1 and h2.

Lemma 2.1 (See [8, Proposition 1.14]). Let X, Y and f be as above. Then (X,Y )f ∈ ModΛ is flat

if and only if the following conditions are satisfied :

(1) Y ∈ ModS is flat ;

(2) Coker f ∈ ModR is flat ;

(3) f is a monomorphism.
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Lemma 2.2 (See [26, Corollary 6]). Λ is a left (resp. right) Noetherian ring if and only if both R and

S are left (resp. right) Noetherian rings and SM (resp. MR) is finitely generated.

For the ring R and any positive integer t, we use Tt(R) to denote the triangular matrix ring⎛
⎜⎜⎜⎜⎜⎝

R

R R
...

...
. . .

R R · · · R

⎞
⎟⎟⎟⎟⎟⎠

of degree t.

Lemma 2.3. For any t � 2, Tt(R) is a triangular matrix ring of the form

Tt(R) =

(
Tt−1(R) 0

RR
(t−1)
Tt−1(R) R

)
.

In particular, R
(t−1)
Tt−1(R) is faithful and finitely generated projective and EndTt−1(R)(R

(t−1)) ∼= R.

Proof. We can regard R(t−1) as a right Tt−1(R)-module in a natural way. Let

e =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

be the matrix in Tt−1(R) such that the (t − 1, t − 1)-component is 1 and 0 elsewhere. Then e is an

idempotent and R
(t−1)
Tt−1(R)

∼= eTt−1(R)Tt−1(R), which implies that R
(t−1)
Tt−1(R) is faithful and finitely generated

projective and EndTt−1(R)(R
(t−1)) ∼= eTt−1(R)e ∼= R.

Proposition 2.4. If R is a left (resp. right) Noetherian ring, then so is Tt(R) for any t � 1.

Proof. We proceed by induction on t. The case for t = 1 is trivial, and the case for t = 2 follows from

Lemma 2.2. Now assume t � 3. By Lemma 2.3,

Tt(R) =

(
Tt−1(R) 0

RR
(t−1)
Tt−1(R) R

)

with both RR
(t−1) and R

(t−1)
Tt−1(R) finitely generated. Then by the induction hypothesis and Lemma 2.2,

we get the assertion.

Definition 2.5 (See [6]). Assume that F is a subclass of ModR, X ∈ F and Y ∈ ModR. The

homomorphism f : X → Y is said to be an F -precover of Y if HomR(X
′, X) → HomΛ(X

′, Y ) → 0 is

exact for any X ′ ∈ F . An F -precover f : X → Y is said to be an F -cover of Y if an endomorphism

g : X → X is an automorphism whenever f = fg. If F is the subclass of ModR consisting of all flat

right R-modules, then an F -cover is called a flat cover.

Bican, Bashir and Enochs proved in [4, Theorem 3] that every module in ModR has a flat cover. For

a module N ∈ ModR, we call the following exact sequence

· · · → Fi(N)
πi(N)→ · · · → F1(N)

π1(N)→ F0(N)
π0(N)→ N → 0

a minimal flat resolution of NR, where π0(N) : F0(N) → N is a flat cover of N and πi(N) : Fi(N) →
Kerπi−1(N) is a flat cover of Kerπi−1(N) for any i � 1. We denote the right flat dimension of N by

r.fdR(N). It is easy to verify that r.fdR(N) � n if and only if Fn+1(N) = 0.
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3 Main results

In this section, we give the proof of the main results mentioned in Section 1, by establishing the relation

between the flat dimensions of the corresponding terms in the minimal injective resolutions of RR and

Tt(R)Tt(R).

From now on, assume that MR is finitely generated, faithful and projective with S = EndR(M) and

SM is finitely generated projective. We set I−1(∗R) = 0 and r.fdS 0 = −1.

Lemma 3.1. Let X, Y and f be as in Section 2. Then (F0(Y ) ⊗S M,F0(Y ))1 ⊕ (F0(X), 0)0
ψ0−→

(X,Y )f → 0 is an exact sequence in ModΛ with (F0(Y ) ⊗S M,F0(Y ))1 ⊕ (F0(X), 0)0 flat and ψ0 =

((f(π0(Y ) ⊗S 1M ), π0(X)), π0(Y )). Moreover, if f1 is the associated homomorphism of Kerψ0, then

0 → Ker f → Coker f1 → F0(X) → Coker f → 0 is an exact sequence in ModR.

Proof. Since M is left S-flat, we have the following commutative diagram with exact rows:

0 �� Kerπ0(Y )⊗S M
f1

��

�� F0(Y )⊗S M
(
1F0(Y )⊗SM

0
)

��

π0(Y )⊗S1M �� Y ⊗S M
f

��

�� 0

0 �� Kerh �� (F0(Y )⊗S M)⊕ F0(X)
h �� X �� 0,

where h = (f(π0(Y ) ⊗S 1M ), π0(X)) and f1 is established by diagram-chasing. Then by Lemma 2.1,

we have that ((F0(Y )⊗S M), F0(Y ))1 ⊕ (F0(X), 0)0 ∈ ModΛ is flat. The last assertion follows from the

snake lemma.

By [19, Corollary 3],

I0(Λ) = 1(I
0(R), ∗(I0(R)))⊕ 1(I

0(M), ∗(I0(M)))

and

Ii(Λ) = 1(I
i(R), ∗(Ii(R)))⊕ 1(I

i(M), ∗(Ii(M)))⊕ 0(0, I
i−1(∗R)) (i � 1)

give a minimal injective resolution of ΛΛ. In the following, we will construct a flat resolution of Ii(ΛΛ)

for any i � 0, and then consider the Auslander-type condition of the triangular matrix ring Tt(R).

Proposition 3.2. (1) Let IR be injective and ξI : ∗I ⊗S M → I be defined by ξI(α ⊗ x) = α(x) for

any α ∈ ∗I and x ∈M be the natural homomorphism. Then

F0 = (F0(
∗I)⊗S M,F0(

∗I))1,

Kerψ0 = (Ker ξI(π0(
∗I)⊗S 1M ),Kerπ0(

∗I))f1 ,

Fi = (Fi(
∗I)⊗S M,Fi(

∗I))1 ⊕ (F0(Ker hi−1), 0)0,

Kerψi = (Kerhi,Kerπi(
∗I))fi+1

(i � 1)

give a flat resolution of the injective right Λ-module 1(IR,
∗IR) :

· · · → Fn
ψn−→ Fn−1

ψn−1−→ · · · → F1
ψ1−→ F0

ψ0−→ 1(IR,
∗IR) → 0,

where h0 = ξI(π0(
∗I)⊗S 1M ) and hi = (fi(πi(

∗I)⊗S 1M ), π0(Kerhi−1)) and fi is established by diagram-

chasing as in Lemma 3.1 for i � 1. In particular, r.fdΛ 1(IR,
∗IR) � k if and only if r.fdRKer ξI � k − 1

and r.fdS
∗IR � k.

(2) If HomR(SMR, R) is finitely generated right S-projective, then F0 = (F0(E)⊗S M,F0(E))1 and

Fi = (Fi(E)⊗S M,Fi(E))1 ⊕ (Fi−1(E) ⊗S M, 0)0 (i � 1) give a flat resolution of 0(0, ES) in ModΛ. In

particular, r.fdΛ 0(0, ES) � k if and only if r.fdS E � k − 1.

Proof. (1) We proceed by induction on i. Since MR is finitely generated, faithful and projective with

S = EndR(M), by [1, Proposition 20.11], it is not difficult to verify that ξI is epic. Thus we have the

following exact sequence:

0 → Ker ξI → ∗I ⊗S M ξI→ I → 0.
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Then F0 and Kerψ0 are given by the following commutative diagram with exact rows:

0 �� Kerπ0(
∗I)⊗S M
f1

��

�� F0(
∗I)⊗S M

π0(
∗I)⊗S1M�� ∗I ⊗S M

ξI

��

�� 0

0 �� Ker ξI(π0(
∗I)⊗S 1M ) �� F0(

∗I)⊗S M ξI(π0(
∗I)⊗S1M )�� I �� 0,

where f1 is established by diagram-chasing. By the snake lemma, we have an exact sequence 0 →
Kerπ0(

∗I)⊗S M f1−→ Ker ξI(π0(
∗I)⊗S M) → Ker ξI → 0. Then by using Lemma 3.1 iteratively and the

induction hypothesis, we get the following commutative diagram with exact rows:

0 �� Kerπi(
∗I)⊗S M
fi+1

��

�� Fi(∗I)⊗S M
(
1Fi(

∗I)⊗SM
0

)
��

πi(
∗I)⊗S1M�� Kerπi−1(

∗I)⊗S M
fi

��

�� 0

0 �� Kerhi �� (Fi(∗I)⊗S M)⊕ F0(Kerhi−1)
hi �� Kerhi−1

�� 0,

where h0 = ξI(π0(
∗I) ⊗S 1M ), hi = (fi(πi(

∗I) ⊗S 1M ), π0(Ker hi−1)) for any i � 1, and the induced

homomorphism fi+1 is monic. By Lemma 3.1, for any i � 1 we have

Fi = (Fi(
∗I)⊗S M,Fi(

∗I))1 ⊕ (F0(Kerhi−1), 0)0 and Kerψi = (Kerhi,Kerπi(
∗I))fi+1

.

Moreover, by the snake lemma we get an exact sequence: 0 → Coker fi+1 → F0(Kerhi−1) → Coker fi → 0

for any i � 1. So Coker fi is right R-flat if and only if r.fdRKer ξI � i − 1. In addition, by Lemma 2.1,

1(IR,
∗IR) is right Λ-flat if and only if ∗IR is right S-flat and Ker ξI = 0. So for any k � 0, we have

that r.fdΛ 1(IR,
∗IR) � k if and only if Kerψk−1 is right Λ-flat, if and only if Coker fk is right R-flat and

Kerπk−1(
∗IR) is right S-flat, if and only if r.fdRKer ξI � k − 1 and r.fdS

∗IR � k.

(2) By Lemma 3.1, we have that F0 = (F0(E)⊗S M,F0(E))1 and there exists an exact sequence:

0 → Kerπ0(E)⊗S M f1−→ F0(E) ⊗S M → E ⊗S M → 0.

By using an argument similar to that in (1), we have that Fi = (Fi(E)⊗S M,Fi(E))1⊕(Fi−1(E)⊗SM, 0)0
for any i � 1, and that Coker fi is right R-flat if and only if r.fdR E ⊗S M � i− 1. Thus for any k � 1,

r.fdΛ 0(0, ES) � k if and only if r.fdS E � k and Coker fk is right R-flat, if and only if r.fdS E � k and

r.fdRE ⊗S M � k − 1. So, it suffices to prove that r.fdRE ⊗S M � k − 1 if and only if r.fdS E � k − 1.

Let · · · → Fi
fi−→ Fi−1 → · · · → F1

f1−→ F0
f0−→ E → 0 be a flat resolution of ES in ModS. Since SM

is projective, · · · → Fi⊗SM fi⊗S1M−→ Fi−1 ⊗SM → · · · → F1 ⊗SM f1⊗S1M−→ F0 ⊗SM f0⊗S1M−→ E⊗SM → 0

is a flat resolution of E ⊗S M in ModR. So, if r.fdS E � k − 1, then r.fdRE ⊗S M � k − 1.

Conversely, assume that r.fdRE⊗SM � k−1. Then Coker fk⊗SM is right R-flat. So Coker fk⊗SM
is a direct limit of a direct system of finitely generated projective right R-modules {Qi}i∈I , i.e.,

Coker fk ⊗S M = lim→
i∈I

Qi,

where I is a direct index set. Because MR is finitely generated projective and S = EndR(M), by [1,

Proposition 20.10] and [10, Lemma 1.2.5], we have

Coker fk ∼= HomR(SMR,Coker fk ⊗S M) ∼= HomR

(
SMR, lim→

i∈I
Qi

)
∼= lim→

i∈I
HomR(SMR, Qi).

By the assumption, HomR(SMR, R) is finitely generated right S-projective, so Coker fk is right S-flat

and r.fdS E � k − 1.

In addition, by Lemma 2.1, 0(0, ES) is right Λ-flat if and only if ES is right S-flat and E ⊗S M = 0.

Using essentially the same argument as that in proving the case for k � 1, we have that E ⊗S M = 0 if

and only if E = 0. Consequently, we conclude that r.fdΛ 0(0, ES) � k if and only if r.fdS E � k − 1 for

any k � 0.
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Proposition 3.3. If HomR(SMR, R) is finitely generated right S-projective, then for any k, i � 0,

r.fdΛ I
i(Λ) � k if and only if the following conditions are satisfied :

(1) r.fdRKer ξIi(R) � k − 1;

(2) r.fdS
∗(Ii(R)) � k;

(3) r.fdS I
i−1(∗R) � k − 1.

Proof. Since MR is finitely generated projective, r.fdΛ 1(I
i(R), ∗(Ii(R))) � k yields that r.fdΛ 1(I

i(M),
∗(Ii(M))) � k. Note that r.fdΛ I

0(Λ) � k if and only if r.fdΛ 1(I
0(R), ∗(I0(R))) � k. So, by Proposi-

tion 3.2(1), r.fdΛ I
0(Λ) � k if and only if r.fdRKer ξI0(R) � k − 1 and r.fdS

∗(I0(R)) � k. The case for

i = 0 follows. Now suppose i � 1. Note that r.fdΛ I
i(Λ) � k if and only if r.fdΛ 1(I

i(R), ∗(Ii(R))) � k

and r.fdΛ 0(0, I
i−1(∗R)) � k. So, by Proposition 3.2, we have that r.fdΛ I

i(Λ) � k if and only if

r.fdRKer ξIi(R) � k − 1, r.fdS
∗(Ii(R)) � k and r.fdS I

i−1(∗R) � k − 1.

Proposition 3.4. If HomR(SMR, R) is finitely generated right S-projective, then for any i � 0,

r.fdΛ I
i(Λ) � k yields that r.fdR I

i(R) � k and r.fdS I
i−1(S) � k − 1.

Proof. For any i � 0, by (1) and (2) of Proposition 3.3, we have r.fdRKer ξIi(R) � k − 1 and

r.fdR
∗(Ii(R))⊗S M � k. In addition, we have the following exact sequence:

0 → Ker ξIi(R) → ∗(Ii(R))⊗S M
ξIi(R)−→ Ii(R) → 0,

which implies r.fdR I
i(R) � k.

On the other hand, since MR is finitely generated projective, the condition (3) in Proposition 3.3 is

also satisfied when ∗R is replaced by ∗M . It follows that r.fdS I
i−1(S) � k − 1.

Proposition 3.5. For any i � 0, r.fdΛ I
i(Λ) � k if and only if r.fdΓ I

i(Γ) � k, where

Γ =

⎛
⎜⎜⎝

R 0 0

M S 0

M S S

⎞
⎟⎟⎠ .

Proof. Let e = (00
0
1 ) ∈ Λ. Then we have

Γ =

(
Λ 0

eΛ eΛe

)
, Λe = eΛe ∼= S.

Since Λ can be embedded in

EndS(eΛ) ∼=
(

EndS(M) HomS(M,S)

M S

)
,

eΛ is a faithful right Λ-module. It is trivial that eΛ is finitely generated projective as a right Λ-module

and a left S-module. Notice that S ∼= EndΛ(eΛ) and HomΛ(eΛ,Λ)S ∼= ΛeS ∼= SS , so by Proposition 3.3,

we get that r.fdΓ I
i(Γ) � k if and only if the following conditions are satisfied.

(1) r.fdΛ Ker ηIi(Λ) � k − 1, where ηE : HomΛ(eΛ, E) ⊗eΛe eΛ → E defined by ηE(α ⊗ x) = α(x) for

any α ∈ HomΛ(eΛ, E) and x ∈ eΛ is the natural homomorphism for an injective right R-module E.

(2) r.fdS HomΛ(eΛ, I
i(Λ))S � k.

(3) r.fdS I
i−1(HomΛ(eΛ,Λ)S) � k − 1.

Assume that r.fdΓ I
i(Γ) � k. By Proposition 3.4, r.fdΛ I

i(Λ) � k. It remains to show that r.fdΛ I
i(Λ) �

k implies r.fdΓ I
i(Γ) � k for any i � 0. To do this, it suffices to show that the conditions (1)–(3) above

are satisfied.

Note that HomΛ(eΛ,Λ)S ∼= SS . If L ∈ ModΛ is flat, then L is a direct limit of a direct system of

finitely generated projective right Λ-modules {Pi}i∈I , i.e., L = lim→
i∈I
Pi, where I is a directed set. So

HomΛ(eΛ, L) ∼= HomΛ

(
eΛ, lim→

i∈I
Pi

)
∼= lim→

i∈I
HomΛ(eΛ, Pi)
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is right S-flat. Then it is not difficult to verify that r.fdΛ I
i(Λ) � k yields r.fdS HomΛ(eΛ, I

i(Λ))S � k.

Thus Condition (2) is satisfied.

Using HomΛ(eΛ,Λ)S ∼= SS again, then Condition (3) is satisfied by Proposition 3.4.

By [19, Corollary 3],

I0(Λ) = 1(I
0(R), ∗(I0(R)))⊕ 1(I

0(M), ∗(I0(M))),

and

Ii(Λ) = 1(I
i(R), ∗(Ii(R)))⊕ 1(I

i(M), ∗(Ii(M)))⊕ 0(0, I
i−1(∗R))

give a minimal injective resolution of ΛΛ. So, to verify Condition (1), it suffices to show that r.fdΛ Ker ηE �
k − 1 for any injective right Λ-module E, where E is of the form:

(a) 0(0, IS) with IS injective, or

(b) 1(IR,
∗(IR)) with IR injective.

If E is of the form (a), then it is not difficult to verify that eΛ ∼= (M,S)ψ (see [8, p. 2]) and Ee =

0(0, IS)e = 0(0, IS) = E. So HomΛ(eΛ, E)⊗SeΛ ∼= Ee⊗SeΛ ∼= E⊗S(M,S)ψ ∼= E, where ψ : S⊗SM →M

is the natural isomorphism. Moreover, S ∼= EndΛ(eΛ) and eΛ is finitely generated projective as a right

Λ-module and a left S-module. By [1, Proposition 20.11], it is easy to see that ηE is epic. Because

eΛe ∼= S and HomΛ(eΛ, E)⊗S eΛ ∼= E, Ker ηE = 0.

If E is of the form (b), then E = 1(IR,
∗(IR)) and Ker ηE ∼= 0(Ker ξIR , 0). On the other hand, by

Lemma 3.1, we have r.fdΛ 0(XR, 0) = r.fdRX . So r.fdΛ Ker ηIi(Λ) � k− 1 if and only if r.fdRKer ξIi(R) �
k − 1. Because r.fdΛ I

i(Λ) � k, r.fdΛKer ηE � k − 1.

We are now in a position to state the main result in this section.

Theorem 3.6. If R is a left and right Noetherian ring and t is a positive integer, then Tt(R) is a left

and right Noetherian ring, and r.fdTt(R) I
i(Tt(R)) = max{r.fdR Ii(R), r.fdR Ii−1(R) + 1} for any i � 0.

Proof. The first assertion follows from Proposition 2.4. We will prove the second assertion by induction

on t. The case for t = 1 is trivial, and the case for t = 2 follows from [8, Theorem 3.10].

Now assume t � 3. By Lemma 2.3,

Tt(R) =

(
Tt−1(R) 0

RR
(t−1)
Tt−1(R) R

)

with R
(t−1)
Tt−1(R) faithful and finitely generated projective and EndTt−1(R)(R

(t−1)) ∼= R. By Proposition 3.5,

r.fdTt(R) I
i(Tt(R)) � k if and only if r.fdTt−1(R) I

i(Tt−1(R)) � k. So we have that r.fdTt(R) I
i(Tt(R)) =

r.fdT2(R) I
i(T2(R)) = max{r.fdR Ii(R), r.fdR Ii−1(R) + 1} by the induction hypothesis.

As an immediate consequence of Theorem 3.6, we get the main theorem mentioned in Section 1.

Theorem 3.7. If R is a left and right Noetherian ring and n, k � 0, t � 1, then R is Gn(k) if and

only if so is Tt(R).

Proof. By Theorem 3.6, we have that r.fdR I
i(R) � r.fdTt(R) I

i(Tt(R)) for any i � 0, so the suffi-

ciency is trivial. Conversely, if R is Gn(k), then by Theorem 3.6, r.fdTt(R) I
i(Tt(R)) = max{r.fdR Ii(R),

r.fdR I
i−1(R) + 1} � i+ k for any 0 � i � n− 1 and Tt(R) is Gn(k).

We recall some notions introduced by Iyama in [20]. Let R be a left and right Noetherian ring and

l, n � 0. R is said to satisfy the (l, n)op-condition if r.fd Ii(R) � l− 1 for any 0 � i � n− 1. It is easy to

see that R is Gn(k) if and only if R satisfies the (k + i, i)op-condition for any 1 � i � n. In addition, if

r.fdR I
i(R) < r.fdR I

n(R) for any 0 � i � n− 1, then n is called a dominant number of RR. As another

application of Theorem 3.6, we get the following.

Corollary 3.8. If R is a left and right Noetherian ring, then for any l, n � 0, t � 1, we have the

following :

(1) If R satisfies the (l, n)op-condition, then Tt(R) satisfies the (l + 1, n)op-condition. Conversely, if

Tt(R) satisfies the (l, n)op-condition, then so does R;

(2) If n is a dominant number of R, then n+ 1 is a dominant number of Tt(R).
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Proof. (1) If R satisfies the (l, n)op-condition, then by Theorem 3.6, we have r.fdTt(R) I
i(Tt(R)) =

max{r.fdR Ii(R), r.fdR Ii−1(R) + 1} � l for any 0 � i � n − 1, which implies that Tt(R) satisfies the

(l+1, n)op-condition. Conversely, by Theorem 3.6, we have that r.fdR I
i(R) � r.fdTt(R) I

i(Tt(R)) for any

i � 0, so it is trivial that Tt(R) satisfies the (l, n)op-condition implies so does R.

(2) If n is a dominant number of R, then r.fdR I
i(R) < r.fdR I

n(R) for any 0 � i � n − 1. So by

Theorem 3.6, for any 0 � i � n, we have that r.fdTt(R) I
n+1(Tt(R)) = max{r.fdR In+1(R), r.fdR I

n(R) +

1} � r.fdR I
n(R)+1 > max{r.fdR Ii(R), r.fdR Ii−1(R)+1} = r.fdTt(R) I

i(Tt(R)), which implies that n+1

is a dominant number of Tt(R).
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