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Chapter 1

Quaternion Algebra over a
field

In this chapter K always denotes a commutative field of arbitrary characteristics
if no particular mention, and Ks is the separable closure of K.

1.1 Quaternion Algebra

Definition 1.1. A quaternion algebra H with center K is a central algebra over
K of dimension 4, such that there exists a separable algebra of dimension 2 over
K, and an invertible element θ in K with H = L + Lu, where u ∈ H satisfies

u2 = θ, um = mu (1.1)

for all m ∈ L, and where m 7→ m is the nontrivial K-automorphism of L.

We denote H sometimes by {L, θ}, but H does not determine this pair
{L, θ} uniquely. For example, it is clear that one could replace θ by θmm, if
m is an element of L such that mm 6= 0. the element u is not determined
by (1). If m ∈ L is an element with mm = 1, we could replace u by mu.
the definition can be used in the case of arbitrary character. .we can verify
easily that H�K is a central simple algebra, i.e. an algebra with center K
and without any nontrivial two-sided ideal.conversely, we can prove that every
cental simple algebra of dimension 4 over K is a quaternion algebra.The rule of
multiplication is deduced from (1). If m ∈ L, we have

(m1 + m2u)(m3 + m4u) = (m1m3 + m2m4θ) + (m1m4 + m2m3)u. (1.2)

Definition 1.2. The conjugation is the K-endomorphism of H: h → h, which
is the extension of the nontrivial K-automorphism of L defined by u = −u.

It is easy to verify it is an involutive anti-automorphism of H. It can be
expressed by the following relations: if h, k ∈ H and a, b ∈ K, we have

ah + bk = ah + bk, h = h, hk = kh.

Definition 1.3. Assume h ∈ H. The reduced trace of h is t(h) = h + h. The
reduced norm of h is n(h) = hh.

1



2 CHAPTER 1. QUATERNION ALGEBRA OVER A FIELD

If h /∈ K, its’ minimal polynomial on K is

(x− h)(x− h) = x2 − t(h)x + n(h)

The algebra K(h), generated by h over K, is a quadratic extension over K. The
reduced trace and the reduced norm of h are simply the images of h by the
operations trace and norm on K(h)/K. The conjugation and the identity are
the K-automorphism of K(h). Under the usual definition of the trace and the
norm of a K-algebra [cf.Bourbaki[1]], the trace of H/K is T = 2t, The norm of
H/K is N = 2n. We denote the group of the units in a ring X by X×.

Lemma 1.1.1. The invertible elements in H are that with their reduced norm
nontrivial. The reduced norm defines a multiplicative homomorphism from H×

into K×. The reduced trace is K-linear, and the mapping (h, k) 7→ t(hk) is a
bilinear form non-degenerated on H.

Proof. We leave the verification of the following very simple properties to reader
as an exercise:
n(hk) = n(h)n(k)
n(h) 6= 0 is equivalent to The invertibility of h , and in this case h−1 = hn(h)−1,
t(ah + bk) = at(h) + bt(k), t(hk) = t(kh), if a, b ∈ K, andh, k ∈ H.
The fact that the mapping (h, k) → t(hk) being non-degenerate comes from the
assumption that L/K has been separable. In fact, if t(hk) = 0 whatever k ∈ H
, we have t(m1m = 0 for every m ∈ L, if h = m1 + m2u,then m1 = 0. Similarly
t(m2m = 0 for every m ∈ L, whence m2 = 0 and h = 0.

we note that, one of the advantage of the reduced trace is that, in the case of
characteristic 2 the trace T = 2t is zero, but the reduced trace is non-degenerate.
In case characteristic not 2, we recover the classical definition of the quaternion
algebra. the couple {L, θ} is equivalent with a couple {a, b} formed by two
nontrivial elements a, b in K and the relations (1) are determine H as the the
K-algebra with basis 1, i, j, ij, where the elements i, j ∈ H satisfy

i2 = a, j2 = b, ij = −ji. (1.3)

The transition between(1)and(3) carries out for example by setting L = K(i), θ =
b, u = j. Setting k = ij one can write the table of multiplication of i, j, k , which
shows these three elements acting symmetrically . The entities in the table are
the products hh′:

h\ h’ t j k
i a k -j
j -k b i
k j -i -ab

The conjugation,the reduced trace, and the reduced norm have their expression
as follows: if h = x + yi + zj + tk, then

h = x− yi− zj − tk, t(h) = 2x, and n(h) = x2 − ay2 − bz2 + abt2,

the coefficient of k in h should not be confused with the reduced trace. We notice
the another important property: the reduced norm defines a quadratic form on
the K-vector space V of the subjacent H.
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We shall see that, the quaternion algebra H is defined by the relations(1)
or (3) to the forms {L, θ} or {a, b} when the case is permitted. we also shall
consider these notation u, i, j, t(h), h as the standard notation.
The fundamental example of a quaternion algebra over K is given by the algebra
M(2, k), the matrices of 2 with entities in K. The reduced trace and the reduced
norm are the trace and the determinant as the usual sense in M(2,K). It can be
identify K with its image in M(2,K) of the K-homomorphism which convert

the unit of K to the identity matrix. Explicitly if h =
(

a b
c d

)
∈ M(2,K),

h =
(

d −b
−c a

)
, t(h) = a + d, n(h) = ad − bc . We are going to show that

M(2, k) satisfies the definition of a quaternion algebra as follows. We choose
a matrix with a distinguish value, and set L = K(m). Since m has the same
distinguish value as m , it is similar to m.: there exists then an u ∈ GL(2, k)
such that umu−1 = m. We verify that t(u) = 0, since t(um) = t(u)m ∈ K for
each m ∈ L,from this we deduce u2 = θ ∈ K ′. In the following remark we are
likely going to explain why is M(2,K) the fundamental example:
Over a separably closed field, M(2,K) is the unique
quaternion algebra up to an isomorphism. In fact, every separable algebra of
dimension 2 over K can not be a field sent by the norm on K× surjectively, and
being included in M(2, k)(an inclusion is an injective K-homomorphism). From
this we derive that, it is isomorphic to {K + K, 1} ' M(2,K) thanks to the
realization of M(2,K) as a quaternion algebra done above. tensor product. Let
F be a commutative field containing K. We verify directly by the definition the
tensor product of a quaternion algebra with F over K is a quaternion algebra
over F , and that

F ⊗ {L, θ} = {F ⊗ L, θ}
. We write the obtained quaternion algebra by HF too. The algebra H is
included in HF in a natural way. Taking the separable closure Ks of K as F
we see that H is included in M(2,Ks).

Definition 1.4. The fields F/K such that HF to be isomorphic to M(2, F ) is
called the neutralized fields of H in M(2, k). The inclusions of H in M(2, F ) is
called the F -representations.

Examples.
(1) The quaternion algebra over K has no any K-representation if it is not
isomorphic to M(2,K).
(2)We define the following matrices:

I =
(

1 0
0 −1

)
, J =

(
0 1
1 0

)
, IJ =

(
0 1
−1 0

)
. These matrices satisfy the

relations (3) with a = b = 1. We derived from them in the case of characteristic
unequal to 2, a quaternion algebra {a, b} is isomorphic to

{
(

x +
√

ay
√

b(z +
√

at√
b(z −√at) x−√ay

)
|x, y, z, t ∈ K},

where
√

a and
√

b are two roots of a and b in Ks .
(3) The quaternion field of Hamilton. Historically, the first quaternion algebra
( different from a matrices algebra) was introduced by Hamilton. We denote
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it by H. It is the quaternion field defined over R with a = b = −1, called the
quaternion field of Hamilton. It has a complex representation:

H =
(

z z′

−z′ z

)
, z, z′ ∈ C.

The group consisting of the quaternion with reduced norm 1 is isomorphic to
SU(2,C) and will be introduced for the geometric reason ( cf. the §3 geometry).
Sometimes we call these quaternions the generalized quaternions ( compare
with that of Hamilton) ,or hypercomplex numbers (perhaps it comes from the
possible interpretation of the quaternions of Hamilton as a mixture of fields
each being isomorphic to C ), but the general tendency is simply to say as
quaternions.

Exercises

1. zero divisor. Assume H/K a quaternion algebra over a commutative field
K. An element x ∈ H is a zero divisor if and only if x 6= 0 and there exists
y ∈ H, y 6= 0 such that xy = 0. Prove x is a zero divisor if and only if
n(x) = 0. Prove if H contains at least one zero divisor, then H contains
a zero divisor which is separable over K.

2. Multiplication of the quadratic forms. Prove that the product of two sums
of 2 square integers is a sum of 2 squares integers. Prove the same re-
sult for the sums of 4 squares. Does the result still valid for the sums
of 8 squares? Concerning with the last question, one can define the
quasi-quaternions(Zelinsky [1]) or bi-quaternions(Benneton [3],[4]), or octonions of Cayley(Bourbaki,
Algebra, ch. 3,p.176) and study their arithmetic.

3. (Benneton [2]). Find the properties of the following matrix A, and from
these to show a method to construct the matrices having the same prop-
erties: 



17 7 4 0
6 −14 −1 11
5 −3 −16 8
2 −10 9 13


 .

4. prove an algebra of the matrices M(n,K) over a commutative field K is
a K-central simple algebra

5. The mapping (h, k) → (t(hk) is a bilinear non-degenerate form on H
(lemma 1.1).

6. underlinecharacteristic 2.If K is of char 2, then a quaternion algebra H/K
is a central algebra of dimension 4 over K, such that there exists a couple
(a, b) ∈ K× ×K× and the elements i, j ∈ H satisfying

i2 + i = a, j2 = b, ij = j(1 + i)

such that H = K + Ki + Kj + Kij .
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1.2 The theorem of automorphisms and the neu-
tralizing fields

In this section it includes the applications of the fundamental theorems in the
central simple algebra to the quaternion algebra. these theorems can be found in
Bourbaki[2], Reiner [1], Blanchard [1], Deuring [1]. As in the next two chapters,
in this section we prefer to follow the book of Weil[1]. Let H/K be a quaternion
algebra.

Theorem 1.2.1. (Automorphisms, theorem of Skolem-Noether). Assume L,L′

be two K-commutative algebra over K, contained in a quaternion algebra H/K.
Then every K-isomorphism of L to L′ can be extended to an inner automorphism
of H. In particular, the K-automorphisms of H are inner automorphism.

Recall that, the inner automorphism of H is an automorphism k 7→ hkh−1, k ∈
H, associated with the invertible elements h ∈ H. Before proving this important
theorem, we are going to give a number of its applications.

Corollary 1.2.2. For every separable quadratic algebra L/K contained in H,
there exists θ ∈ K× such that H = {L, θ}.

. There is an element u ∈ H× which induces on L the nontrivial K-
automorphism by the inner automorphism. We verify that t(u) = 0 (cf. §3),
then u2 = θ ∈ K. We have also realized H in the form {L, θ}.

Corollary 1.2.3. . The group Aut(H) of the K-automorphisms of H is isomor-
phic to the quotient group H×/K×. If L satisfy the corollary 2.2, the subgroup
Aut(H, L) consisting of the automorphisms fixing L globally is isomorphism to
(L× ∪ uL×)/K×, therefore the subgroup of the automorphisms fixing L is iso-
morphism to L×/K× exactly.

.

Corollary 1.2.4. (Characterization of matrix algebra) A quaternion algebra
is either a field or isomorphic to a matrix algebra M(2,K). The quaternion
algebra {L, θ} is isomorphic to M(2,K) if and only if L is not a field or if
θ ∈ n(L).

Proof. .If L is not a field, it is clear that L, θ is isomorphic to M(2,K) (cf.
the passage in §1 concerning with the quaternion algebras over the separably
closed fields). We then suppose L is a field.We shall prove that, if H is not a
field, then θ ∈ n(L). We choose an element h = m1 + m2u with reduced norm
zero. We then have that 0 = n(m1) + θn(m2) and n(m1) = 0 is equivalent to
n(m2). Since L is a field, the property h 6= 0 implies both m1,m2 are not zero,
therefore θ ∈ n(L). We shall show θ ∈ n(L) if and only if {L, θ} is isomorphic
to M(2,K). If θ ∈ n(L), it exists in H an element with its square being 1, but
different from ±1,and then a zero divisor. We choose in H a zero divisor which
is separable over K (see exercise 1.1), and denote it by x. Set L′ = K(x). The
corollary show us that H = {L′, θ′}. Since L′ is not a field, H is isomorphic
to M(2,K). If θ /∈ n(L), the non-zero elements of H have a non-zero reduced
norm and H is a field.
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Corollary 1.2.5. (Theorem of Frobenius) A non-commutative field containing
R in its center, of finite dimension over R, is isomorphic to the field of Hamilton
quaternion H.

. The proof of the theorem relays on the fact that the field of complex
numbers C is the unique commutative extension of finite dimension over the
real field R. The argument of the proof is similar essentially with that in the
following corollary (over a finite field there is no any quaternion field). Assume
d ∈ D−R, the field R(d) is commutative, hence it is true for R(i) with i2 = −1.
It is different from D since it is not commutative. Suppose d′ ∈ D, such that
R(d′) = R(u) is different from R(i) and u2 = −1. The new element u does not
commute with i, and we can replace it by an element of zero trace: j = iui + u,
such that ij = −ji. The field R(i, j) is isomorphic to the quaternion field of
Hamilton, H, and it is contained in D. If it is different from D again, by the
same reason we are allowed to construct d ∈ D but not belonging toR(i, j), such
that di = −id and d2 ∈ R. But then, dj commute with i, so belongs to R. It is
absurd.

Corollary 1.2.6. (Theorem of Wedderburn).There is no any finite quaternion
field.

There is a weak form of the theorem of Wedderburn : every finite field is
commutative. The proof for the special case gives well the idea of that in the
general case. It uses the fact that every finite field Fq (the index q indicates
the number of the elements of the field) has an extension of a given degree
uniquely determined up to an isomorphism. If H is a quaternion field, its
center is then a finite field Fq, and all of its commutative maximum subfield are
isomorphic to Fq′ , where q′ = q2. It allows us to write H as a finite union of the
conjugates of hFq′h

−1. Let us compute the number of H : q4 = n(q2 − q) + q,
where n is the number of the maximum commutative subfield of H. From (2),
n = (q4 − 1)/2(q2 − 1). It leads to a contradiction.

Now we show the theorem of automorphism. We begin to prove a preliminary
result. If V is the vector space over K of the subjacent space H. We are
going to determine the structure of the K-algebra End(V ) formed by the K-
endomorphisms of V . We remind here that the tensor product is always taken
over K if without a contrary mention.

Lemma 1.2.7. The mapping of H⊗H to End(V ) given by h⊗h′ 7→ f(h⊗h′),
where f(h⊗ h′)(x) = h× h′, for h, h′, x ∈ H, is an algebraic K-isomorphism.

Proof. It is obvious that f is a K-homomorphism of K-vector spaces . The fact
that the conjugation is an anti-isomorphism (i.e. hk = hk, h, k ∈ H ) implies
that f is a K-homomorphism as a K-algebra. Since the dimensions of H ⊗H
and Edn(V ) over K is equal, for showing f is a K-isomorphism it is sufficient
to verify that f is injective. We can take an extension HF of H such that HF

is isomorphic to M(2, F ). The extended mapping fF is injective since it is not
zero: its kernel ( a two-sided ideal of HF ⊗F HF ) is zero since HF ⊗F HF is
isomorphic to M(4, F ) which is simple (exercise 1.4).

The proof of the theorem of automorphism. Let L be a commutative K-
algebra contained in H but different from K, and let g is a non-trivial K-
isomorphism of L to H. We want to prove that g is the restriction of an inner
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K-automorphism of H. We can consider H as a left L-module by two ways:
putting m.h = mh or m.h = g(m)h for m ∈ L and h ∈ H. From this it follows
there exists a K-endomorphism of V ,denoted by z, such that z(mh) = g(m)z(h).
apply the Lemma 2.7,and writez = f(x), where x ∈ H ⊗H. Fixing a base (b)
of H/K so that there exist elements (a) of K ,uniquely determined, such that
x =

∑
a⊗ b. We obtain a relation

∑
ambb− g(m)

∑
ahb which is equivalent to

the relation
∑

(am− g(m)a)hb = 0, which is valid for all m ∈ L and all h ∈ H.
There is at least an element a non-zero. For this element, we have am = g(m)a,
then the theorem would been proved if a is invertible. Now we prove that a is
invertible. since a ∈ L,we have H = L + aL. It follows that Ha is a Two-sided
ideal, since HaH = HaL+HaaL ⊂ [Hg(L)+Hag(L)]a ⊂ Ha. But H is simple,
or the same it is sufficient to use that HF ' M(2, F ) is simple( exercise 1.4) if
F is a neutralized field. Therefore the non-zero ideal HF a equals to HF . Hence
a is invertible. Now we give the following important result but without proof.
We shall prove it in the next two chapters, where K is a local field or a global
field.

Theorem 1.2.8. (neutralized field) Suppose L is a quadratic extension of K.
Then L is a neutralized field of a quaternion algebra if and only if L is isomor-
phic to a maximal commutative sub-field of H.

We recall that a extension of K is a commutative field containing K. The
different inclusion of L in H will study in details when K is a local field or a
global field ( see the definition in the §4 too). We are going now to consider the
tensor product over K of a quaternion algebra H/K with another quaternion
algebra H ′.

Theorem 1.2.9. (tensor product) Let H/K and H ′/K be two quaternion al-
gebra. If H and H ′ have an isomorphic maximal commutative sub-field, then
H ⊗H is isomorphic to H”⊗M(2,K), where H” is a quaternion algebra over
K uniquely determined up to isomorphisms.

The above theorem allows one to define a group structure on the classes of
isomorphisms of the quaternion algebras over K, if K possess the property: Two
quaternion algebra over K always have an isomorphic commutative maximal
sub-field. We shall see this property is valid for the local and global field. the
group (if been defined) will be denoted by Quat(K). It is a subgroup of index
2 in the Brauer group of H formed by the classes of the central algebra over K
and equipped with the product induced by the tensor product. We shall verify
in exercise the relation: {L.θ} ⊗ {L, θ′} ' {L, |thetaθ′} ⊗ M(2,K). For the
case of characteristic different from 2, one can read the book of Lam [1]. As for
general case, see Blanchard [1], and the exercise III. 5,6.

Exercise

1. (Co-restriction) Let L/K be a separable extension of K of degree 2, and
H/L be a quaternion algebra. To every K-inclusion σi, 1 ≤ i ≤ n, of L
in Ks is associated with the algebra Hi = H ⊗L (Ks, σi) obtained by the
scalar extension to Ks. Verify the followings :
a) D = ⊗i=1

nHi is a central simple algebra of dimension 4n over K.
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b)Every element τ in the group Gal(Ks/K) of the K-automorphism of
Ks induces a permutation r of 1, ..., n:

τ.σi = σr(i),

it is a K-isomorphism of Hi on Hr(i) , by the restriction of the mapping :

τ(h⊗ k) = h⊗ τ(k), h ∈ H, k ∈ Ks,

and a K-isomorphism of D.
c) The elements of D being invariant by Gal(Ks/K) constitute a central
simple algebra of dimension 4n over K. The construction below proceeds
naturally when H is a central simple L-algebra. The algebra constructed
over K is denoted by CorL/K(H). It corresponds to the co-restriction
mapping under the cohomology interpretation of the Brauer groups.

2. Let L/K be a separable extension of K of degree 2, and m → m be the
nontrivial K-automorphism of L. Prove

a) The set {g =
(

m n
n m

)
} forms a K-algebra which is isomorphic to

M(2,K).
b) If g is invertible, prove that g−1 is conjugate to g by an element of the

form
(

r 0
0 r

)
with r ∈ L?.

1.3 Geometry

In this section we assume the characteristic of the field is different from 2. For
every quaternion algebra H/K we use H0 to denote the set of the quaternions
with zero reduced trace. The reduced norm provides the K-vector space V, V0,
the subjacent spaces of H, H0 respectively, a non-degenerate quadratic form.
We denote the associated bilinear form by < h, k > for h, k ∈ V or v0. It is
defined by < h, k >= t(hk, from it we deduce < h, h >= 2n(h). If the elements
h, k belong to V0 we have a simple formula < h, k >= −(hk + kh). We see
also that the product of two elements of H0 is an element of H0 if and only if
these elements anti-commute (hk = −kh), It is also equivalent to that, these
two elements are orthogonal in H0. We now study the quaternion algebra with
the point of view of their quadratic spaces.

Lemma 1.3.1. Let H, H ′ be two quaternion algebras over K, and V, V0, V
′V ′

0

be the correspondent quadratic spaces respectively. The following properties are
equivalent:
(1) H and H ′ are isomorphic,
(2) V and V ′ are isomorphic.
(3) V0 and V ′

0 are isomorphism.

Proof. (1) implies (2), because an automorphism preserving the norm induces
an isomorphism. (2) implies (3) by the theorem of Witt, and the the orthogonal
decomposition V = K + V0, which is deduced from (3) in §1. (3) implies (1),
because an isometry preserves the orthogonality, hence if i, j ∈ H satisfy (3) in
§3, then f(i) and f(j) satisfy the same relations and H = H ′.
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Corollary 1.3.2. The following properties are equivalent: (1) H is isomorphic
to M(2,K), (2) V is an isotropic quadratic space, (3) V0 is an isotropic space,
(4) the quadratic form ax2 + by2 represents 1.

Proof. (1) is equivalent to (2) comes from the characterization of matrix algebra
considered in §1. (1) is equivalent to (3), it is clear too. (4) implies (1), since
the element ix + jy is of square 1 if ax2 + by2 = 1, and it is different from ∓1 ,
then His not a field.(3) implies (4) since if ax2 + by2 − abz2 = 0 with z 6= 0,it
is clear that ax2 + by2 represent 1, and otherwise b ∈ −aK2, and the quadratic
form ax2 + by2 is equivalent to a(x2 − by2) which represents 1.

According to the theorem of Cartan (Dieudonné[1]), every isometries of a K
vector space of finite dimension m equipped with a quadratic form is the product
of at most m symmetries. The theorem shows that the proper isometries(i.e. of
determinant 1) of V0 are the products of two symmetries of V0. The symmetry
of V of a non isotropic vector q can be written as

h → sq(h) = h− qt(hq)/n(q) = −qhq−1, h ∈ H

. If q, h are in V0, this symmetry is simply defined by sq(h) = −qhq−1. The
product of two symmetries sq, sr of V0 is defined by sqsr(h) = qrh(qr)−1. Con-
versely, we shall prove every inner automorphism of H induces on V0 a proper
isometry. If the isometry induces on V0 by an inner automorphism is not proper,
then there would exist r ∈ H× such that for x ∈ V0 the image of x equals
−rxr−1. We then deduce from this that h → rhr−1 is an inner automorphism,
it is absurd. We have proved the following theorem too.

Theorem 1.3.3. The proper isometries of V0 are obtained by the restriction of
the inner automorphism of H to the quaternions with zero trace. The group of
proper isometries of V0 is isomorphic to H×/K×.

The last assertion comes from corollary 2.3. By the same token we demon-
strated a quaternion can be written as the product of two quaternions exactly by
an element of K. The theorem allows us to rediscover some classical isomorphisms
between the orthogonal groups and some quaternion groups. We denote the
group GL(2,K)/K× by PGL(2,K); the proper isometric group of the quadratic
form x2 − y2 − z2 over K by SO(1, 2,K) ; the rotation group SO(3,R) of R3
has a non-trivial covering of degree 2, denoted by Spin(3,R). If H/K is a
quaternion algebra, H1 denotes the kernel of the reduced norm.

Theorem 1.3.4. We have the isomorphisms:
1) PGL(2,K) ' SO(1, 2,K);

2) SU(2,C)/∓1 ' SO(3,R);

3) H1 ' Spin(3,R).

The proof of the isomorphisms 1) and 2) come immediately from the prece-
dent theorem, the C-representation of the the Hamilton quaternion field given
in §1, and the isomorphism 3),which we are going to describe in detail(Coxeter
[2]). We consider the Hamilton quaternions with reduced norm 1. In which
those having zero traces can be identified with the vectors of length 1 of R3.
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We now show the rotation (r, 2α) of the space R (identifying with the Hamilton
quaternion of zero reduced trace) of angle 2α, and of the axis being carried out
by a vector of r units, is induced by the inner automorphism associated with
q = cos α + r sinα. In fact, we have r2 = −1, and by the theorem 2.1 of auto-
morphisms we can choose a quaternion s ∈ H such that s2 = −1 and rs = −sr.
The pure quaternions form the R-vector space with basis r, s, rs. Under this
basis we shall verify the restriction of the inner automorphism induced by q to
the quaternions with zero trace is the rotation defined above. We have:

(cos α + r sinα)r(cos α− rsinα) = r,

(cos α + r sinα)s(cos α− r sinα) = cos 2α.s + sin 2α.rs,

(cos α + r sinα)s(cos α− r sinα) = cos 2α.rs− sin 2α.s.

We derive from this that H1/∓1 is isomorphic to SO(3,R). We now show H1

is a non-trivial covering of SO(3,R). Otherwise, H1 would contain a subgroup
of index 2, hence distinguished. There would exist a surjective homomorphism
c of H1 to ∓1. We shall see it is impossible. Since −1 is a square in H1, we
have c(−1) = 1. All of the elements of square −1 being conjugated by an inner
automorphism of H1 , we have c(i) − c(j) = c(ij) or i, j are defined as that in
§1. From it we obtain c(i) = 1, and c(x) = 1 for every quaternion of square −1.

Because every quaternion of H1 is the product of two quaternions of square
−1 and of a sign, we then deduce c equals 1 on H1 identically. We note that
H1/∓1 being isomorphic to SO(3,R) is a simple group. It is well-known that
PSL(2,K) = SL(2K)/∓1 is a simple group if the field K is not a finite field
consisting of 2 or 3 elements (Dieudonné,[1]). the property can not be general-
ized. The group H1/∓1 is not always simple. It can be found in Dieudonné an
infinite number of examples where the groups are not simple. Put the following
question: if K is a global field, and H/K a quaternion algebra such that for the
completion of Kv of K, the group Hv/∓1 is simple( where Hv = H ⊗Kv), is
Hv/∓1 a simple group? The group of commutator of a group G is the group
generated by the elements of G of the form uvu−1v−1, u, v ∈ G. The group of
commutator of H× is then contained in H1

Proposition 1.3.5. The group of the commutators of H× equals H1.

Proof. Let h be a quaternion of reduced norm 1. If the algebra K(h) is a
separable quadratic algebra over K, the theorem 90 of Hilbert indicates there
exists an element x ∈ K(h)× such that h = xx−1. We can moreover verify this
property directly: if K(h) is a field, we choose x = h+1 if h 6= −1, and x ∈ H×

0 ;
if K(h) is not a field, it is isomorphic to K + K, and if h = (a, b) ∈ K + K is of
norm ab = 1, we then choose x = (c, d) with cd−1 = a. Since x, x are conjugate
by an inner automorphism (they satisfy the same minimal polynomial), we
deduce from this that h is a commutator.
If K(h)/K is not separable quadratic extension, we then have h = h,hence (h−
1)2 = 0. If H is a field, then h = 1, otherwise H is isomorphic to M(2,K), and
we would have the assertion: SL(2K) is the group of commutator of GL(2,K),
cf. Dieudonneé[1].

The explanation of the group H1/∓1 as the group of rotations of R3 permits
us to determine the structure of the finite groups of real quaternions as that of
finite rotation groups(Coxeter,[1]).We start from recalling this well-known result
about the structure of finite rotation groups.
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Theorem 1.3.6. The finite rotation group in R3 are (Coxeter,[1],ch.4):
the cyclic group of order n,denoted by Cn,
the dihedral group of order 2n, denoted by Dn,
three exceptional groups: the tetrahedral group of order 12 being isomorphic to
the alternating group A4; the octahedral group of order 24 being isomorphic to
the symmetry group S4; and the icosahedral group of order 60 being isomorphic

to alternating group A5.

A finite group of real quaternions contains only the elements of reduced
norm 1. If it does not contain -1, it is isomorphic to a finite rotation group
not containing any rotation of angle π, cf. the proof of theorem 3.4. It is then
is a cyclic group of order odd. If it contains -1, it is then the preimage of the
mapping (cosα + r sinα) → r, 2α) of a finite group of real quaternions. It is
useful to have an explicit description for these groups: we get it by putting
these regular polygons in a convenient mark, and using the geometric descrip-
tion of the groups.The elements i, j, k,∈ H1 satisfying the classical relations
i2 = −1, j2 = −1, k = ij = −ji, identify with an orthogonal basis of R3 and
we put these polygons as indicating in the pictures. The origin is always the
barycenter.

Here are two pictures!!!
fig.1 . . . fig.2 the regular tetrahedrons.

The dihedral group of order 2n(Fig 1): the rotation group of a regular polygon
with n vertices, generated by the rotations (i, 2π/n) and (j, π). The group A4:
the rotation group of a regular tetrahedron, formed by the identity, the rota-
tions of angle ∓2π/3) , around the line joining the vertex to the center of its
opposite face as axis, and of angle π, around the line joining the centers of a
pair of opposite edges as axis. The group of symmetry of tetrahedron is the
symmetric group S4 acting on its four vertices. The rotation group is isomor-
phic to alternating group A4

The group S4(Fig.3,4): the rotation group of a cube or of a regular dodecahe-
dron. The group of cube is generated by the the group of its circumscribed
tetrahedron and by the rotation of angle π/4 around the the line joining the
centers of the opposite faces.
The rotation group of cube permuting the four diagonals is isomorphic to the
symmetric group S4.
The group A5 (Fig. 5,6): The rotation group of a regular icosahedron or of a
regular dodecahedron. the group of dodecahedron is generated by the group
of the circumscribed tetrahedron and by the rotations of angle2π/5 around the
lines joining the centers of the opposite faces.
The five vertices of the dodecahedron are the vertices of its inscribed tetrahe-
dron. Each rotation is a even permutation of the 5 tetrahedron and the group
of icosahedron is isomorphic to the alternating group A5.

(there are four figures: fig.3, the cube; fig.4, the octahedron; fig.5,the icosa-
hedral, and fig.6, the dodecahedral.)!!!
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Theorem 1.3.7. (The finite Group of real quaternion) The finite subgroup of
H× are conjugate to the following groups:

(1) the cyclic groups of order n generated by sn = cos(2π/n) + i sin(2π/n).
(2)the group of order 4n generated by s2n and j called dicyclic.
(3)the group of order 24, called the bilinear tetrahedral group,

E24 = {±1,±i,±j,±ij,
±1± i± j ± ij

2
}

.
(4)the group of order 48, called the bilinear octahedral group,

E24 ∪ 2−
1
2 x,

where x = all the sums or differences of the possible two distinct elements among
1, i, j, ij.

(5) the group of order 120, called the bilinear icosahedral group, E120 =
E24 ∪ 2−1x,,x = all the product of an element of E24 and +i,+τj, +τ−1ij,

where τ = (
√

5 + 1)/2.

We obtain by the same reason the description of all the possible finite groups
of quaternion algebra embedded in H, i.e. such that the center K is embedded
in R, and HR = H.
Generators and relations(Coxeter [2],pp.67-68). Let (p, q, r) be the group de-
fined By

xp = yq = zr = xyz = 1.

the group is finite for (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5) and isomorphic to the
rotation groups Dn, A4, S4, A5. Using the correspondence 1 ↔ 2 given by the
mapping (cosα + r sinα) → (r, 2α) which was defined in the proof of theorem
3.4, we see that the group < p, q, r > defined by

xp = yq = zr = xyz = u, u2 = 1

has the following special cases: the dicyclic group < 2, 2, n > of order 4n , the
bilinear tetrahedral group < 2, 3, 3 > of order 24, the bilinear octahedral group
< 2, 3, 4 > of order 48, the bilinear icosahedral group < 2, 3, 5 > of order 120.

Proposition 1.3.8. (Classical isomorphisms). The bilinear tetrahedral group is
isomorphic to the group SL(2,F3). The bilinear icosahedral group is isomorphic
to the group SL(2,F5)

We shall prove this isomorphism in Ch.V,§3.

Exercises

1. The isotropic group of the finite quaternion group)(Vigneras[3]). Let K
is a finite extension of Q and H/K is a quaternion algebra having an
inclusion in H. The group H×acts on H1 by inner automorphism. Prove



1.4. ORDERS AND IDEALS 13

the isotropic groups in H× of the finite subgroup of H1 are given in the
following table:

group isotropic group
cyclic < sn >,n > 2 < K(sn)×, tn > where tnsn = s−1

n tn, tn ∈ H×

dicyclic < s2n, j?, n ≤ 2 < s2n, j, 1 + s2n,K× >
binary tetrahedral E24, or < i, j > < K×E24, 1 + i >
binary octahedral E48 K×E48

binary icosahedral E120 K×E120

2. The order of the elements of the finite quaternion group. 1)Prove the el-
ements in quaternion group of order 4n which are generated by s2n and j
has the form st

2nj, where 0 ≤ t ≤ 2n−1 is always of order 4. 2)Find in the
bilinear groups E24, E48, E120 the number of elements with a given order(
it suffices to notice that the elements with reduced trace 0, respectively
,−1, 1,±√2.τor − τ−1, τ−1or − τ , are of order 4, respectively, 3, 6, 8, 5,
10). 3)Deduce from 2) that the bilinear octahedral group E48 is not an
isomorphic to the group GL(2,F3) of order 48. 1

3. a characterization of the quaternion fields (Van Praag[1]). prove, if H is
a quaternion field with its center a commutative field K, then the set
consisting of 0 and the elements x ∈ H, x2 ∈ K, butx /∈ K is an additive
group. Conversely, if H is a field of characteristic different from 2, such
that the set mentioned above is a nonzero additive group, then H is a
quaternion field.

4. The rotations of H (Dieudonné [2] or Bourbaki [3]). A rotation of H is
a proper isometry of the subjacent quaternion space of H. prove every
rotation of H is the mapping of the form:

ua,b : x → axb

, where a, b ar two quaternions such that n(a)n(b) 6= 0. Show that two
notations ua,b and uc,d are equal if and only if a = kc, b = k−1d, where k
is a nonzero element of the center of H (suppose the characteristic is not
2).

1.4 Orders and ideals

The aim of this section is to give some definitions based on the orders, the ideals,
and the reduced discriminants, which will be used in the subsequent chapters,
where K is a local or global field. Our purpose is not to reestablish a frame of
a theory on a Dedekind ring, but only make some definitions more precise, and
these definitions will be adopted in sequel. For a more complete exposition one
can consult the book of Reiner [1] or Deuring [1]. The notations used here are
standard in the following chapters.
Let R be a Dedkind ring, i.e. a noetherian, integrally closed (hence integral)
ring such that all of its nonzero prime ideals are maximal.
Examples: Z,Z[ 1p ] for prime p, Z[i] and generally the integer ring of a local or

1This remark is made by Daniel Perrin friendly.
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global field (ch.II and ch.III).
Let K be the fractional field of R and H/K be a quaternion algebra over K.
In sequel of this section , we fix R, K, H.

Definition 1.5. A R-lattice of a K-vector space V is a finitely generated R-
module contained in V . A complete R-lattice of V is a R-lattice L of V such
that K ⊗R L ' V .

Definition 1.6. An element x ∈ H is an integer (over R) if R[x] is a R-lattice
of H.

Lemma 1.4.1. (Bourbaki [1]) An element x ∈ H is an integer if and only if
its reduced trace and reduced norm belong to R.

If an element is integer this lemma is valid. contrary to the commutative
case, the sum and the product of two integers are not always integer: it is the
source of several rings if we want to do some very explicit computation. It is
not a surprise ,for example, in the case of M(2,Q) the following matrices are
integers: (

1
2 −3
1
4

1
2

)
,

(
0 1

5
5 0

)

, but either their sum, nor their product are integer. The set of integers does not constitute a ring,
and it leads us to consider some subrings of integers, called orders.

Definition 1.7. An ideal of H is a complete R-lattice. An order O of H is :
(1) an ideal which is a ring, or equivalently,
(2) a ring O consisting of integers and containing R, such that KO = H.
A maximal order is an order which is not contained in any other order. An Eichler order
is the intersection of two maximal orders.

There certainly exist some ideals, for example, the free R-module L = R(ai)
generated by a basis {ai} of H/K. Let I be an ideal, it is associated canonically
with two orders:

Ol = Ol(I) = {h ∈ H|hI ⊂ I},
Or = (O)d(I) = {h ∈ H|Ih ⊂ I}.

are called its left order and right order respectively. It is clear that such an
order is a ring, an R-module, and a complete lattice because of that, if a ∈
R ∩ I,Ol ⊂ a−1I and if h is an element of H, it exists b ∈ R,such that bhI ⊂ I
,so H = KOl.

Proposition 1.4.2. (the properties of orders). The definitions (1) and (2) for
order are equivalent.It does exist orders. Every order is contained in a maximal
order.

Proof. The definition (2) shows that every order is contained in a maximal order.
It is clear that (1) implies (2). inversely, Let ai be a basis of H/K contained
in O. An element h of O can be written as h =

∑
xiai, xi ∈ K. Since O is a

ring, so hai ∈ O and t(hai) =
∑

xjt(aiaj) ∈ R. The Cramer rule implies that
L ⊂ O ⊂ dL where d−1 = det(t(aiaj)) 6= 0. From this we obtain that O is an
ideal, hence (1) implies (2).
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Definition 1.8. . We say that the ideal I is to the left of Ol, to the right of Or ,
two-sided if Ol = Or, normal if Ol and Or are maximal, integral if it is contained
in Ol and in Or, principal if I = Olh = hOr Its inverse is I−1 = h ∈ H|IhI ⊂ I.

The product IJ of two ideals I and J is the set of the finite sum of the
elements hk, where h ∈ I, k ∈ J . It is evident that the product IJ of two ideals
is an ideal too.

Lemma 1.4.3. (1)The product of ideals is associative.
(2) The ideal I is integral if and only if it is contained in one of its orders.
(3) The inverse of an ideal I is an ideal I−1 satisfying

Ol(I−1) ⊃ Or(I),Or(I−1) ⊃ Ol(I)

,
II−1 ⊂ Ol(I), I−1I ⊂ Or(I)

.

Proof. (1) is clear,since the product in H is associative.
(2)I ⊂ Ol implies II ⊂ I hence I ⊂ Or.
(3) Let m ∈ R× such that mI ⊂ Ol ⊂ m−1I. We have on one side I.mOl.I ⊂
OlI = I hence mOl ⊂ I−1 and on other side m−1II−1m−1I ⊂ m−2I hence
I−1 ⊂ m−2I. From this we obtain I−1 is an ideal. Therefore IOrI

−1OlI ⊂ I
hence Ol(I−1) ⊃ Or and Or(I−1 ⊃ Ol. We have II−1I ⊂ I then II−1 ⊂ Ol,
and I−1I ⊂ Or.

properties of the principal ideals
Let O be an order, and I = Oh is a principal ideal. The left order of I equals
the order O , and its right order O′ is the order h−1Oh. We have then I = hO
too. We consider a principal ideal I ′ = Oh′ of the left order O′. We have

I−1 = h−1O = O′h−1

,

II−1 = O, I−1I = O′,
I ′ = Ohh′ = hh′O′′

where O′′ = h′−1O′h′ is the right order of I ′.
We then have the multiplicative rule as follows.

Ol(I) = Or(I−1),Or(I) = Ol(I−1) = I−1I

,
Ol(IJ) = Ol(I),Or(IJ) = Or(J), (IJ)−1 = J−1I−1

. We assume afterwards that the multiplicative rule above are satisfied for
the orders and the ideals in consideration. It is always the case which we are
interested in.

Definition 1.9. The product IJ of two ideals I and J is a coherent product, if
Ol(J) = Or(I).
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Assume I, J, C, D to be four ideals such that the products CJ, JD to be
coherent. Therefore the equality I = CJ = JD is equivalent to C = IJ−1 and
D = J−1I.

Lemma 1.4.4. The relation I ⊂ J is equivalent to I = Cj and to I = JD,
where C and D are the integral ideals and the products are coherent.

We suppose afterwards that every product of ideals is coherent. two-sided ideals

Definition 1.10. Let O be an order. We call a two-sided, integral, ideal P
being different from O a prime if it is non-zero, and if the inclusion IJ ⊂ P
implies I ⊂ P or J ⊂ P , for any two integral two-sided ideals I, J of O.

Theorem 1.4.5. The two-sided ideals of O constitute a group which is freely
generated by the prime ideals.

Proof. The multiplicative rule shows that if I, J are two two-sided ideal of O
such that I ⊂ J , then IJ−1 and J−1I are integral and two-sided. If I is a two-
sided ideal, and if it is contained in an ideal J 6= I, we shall have consequently
I = JI ′ where I ′ is integral, two-sided, and contains I strictly. Since O is a
R-module of finite type, each strictly decreasing chain of ideals is finite. We
shall have proved the factorization of the two-sided integral ideal of O, if we
prove that an ideal which is not strictly contained in any ideal different from O
is a prime. Let I is such an ideal and J, J ′ be two integral two-sided ideals of O
such that JJ ′ ⊂ I. If J * I, the ideal I +J contains strictly I, and hence equals
O. We have IJ ′+JJ ′ = J ′, then J ′ ⊂ I. We from this deduce that I is a prime
ideal. Inversely, a prime ideal is not contained strictly in any integral two-sided
ideal which is different from O . Because, if P is a prime ideal, and I is an
integral two-sided ideal of O , such that P ⊂ I, we have then P = I(I−1P ),
where J = I−1P is an integral two-sided ideal. ¿From this it follows J ⊂ P ,
It is absurd. Therefore we obtain that, if Q is another prime ideal, QP = PQ′

(applying the process of factorization), where Q ⊂ Q′ and hence Q′ = Q. The
product of two two-sided ideals is then commutative. We see immediately, the
factorization is unique ( the fact that if a product of two-sided ideals is contained
in a prime idealP , then at least one of the factors of the product equals P ).
The theorem has been proved.

Let I be the ideal to the left of O , and P is a prime ideal of O. the product
I−1PI is a two-sided ideal of the order to the right of I. We denote the order
by O′. If I is a two-sided ideal, then I−1PI = P . Otherwise, O′ 6= O, and the
ideal P ′ = I−1PI is a prime ideal of O′. The verification is immediate. In order
to prove P ′ is prime, it suffices to utilize the two-sided ideals with form I−1JI,
where J is a two-sided ideal of O, and to apply the definition of the prime ideal.
As for showing that P ′ is independent of I, it suffices to use the fact that the
ideal to the left of O and to the right of O′ can be write as IJ ′ or JI, where J ′

is a two-sided ideal of O′ and J is a two-sided ideal of O.

Definition 1.11. An order O′ is said to be tied to O if it is the right order of
an ideal which is to the left of O. The model of the two-sided ideal J of O is
the set of ideals of form I−1JI, where I runs through all the ideals to the left of
O.
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Under the notations of the precedent definitions, we have PI = IP ′, the
orders O′, O are tied, and the prime two-sided ideals P, P ′ belong to the same
model. We denote the model of P by (P ), and define the product (P )I by setting
(P ) = PI = IP ′. We see at once the product is commutative: (P )I = I(P ).

Proposition 1.4.6. The product of a two-sided ideal J by an ideal I equals the
product JI = IJ ′, where J ′ is a two-sided ideal belonging to the model of J .

. For example, the maximal orders are tied each other, and the normal ideal
commute with the models of the normal two-sided ideals.
Properties of the non two-sided ideal.
LetO be an order. An integral ideal P to the left orderO is said to be irreducible
if it is nonzero, different from O, and maximal for the inclusion in the set of the
integral ideals to the left of the order O.
We leave the verification of the following properties (they had been proved in
Deuring [1], or Reiner [1])as an exercise :
1) P is a maximal ideal in the set of the integral ideal to the right of Or(P ).
2) If O is a maximal order, P contains a unique two-sided ideal of O.
3) If M = O/P , the ideal I = x ∈ O, xM = 0 , the annihilator of M in O, is a
two-sided ideal contained in P ( assuming O to be maximal).
4) an integral ideal is a product of irreducible ideals.

Definition 1.12. The reduced norm n(I) of an ideal I is the fractional ideal of
R generated by the reduced norms of its elements.

If I = Oh is a principal ideal, n(I) = Rn(h). If J = O′h′ is a princi-
pal ideal, to the left of the order O′ = h−1Oh, then we have IJ = Ohh′ and
n(IJ) = n(I)n(J). the last relation remains valid for the non-principal ide-
als. For proof it can be utilized that an ideal is finitely generated over R.
One can find the proof in Reiner’s or just to do as an exercise.For the ideals
we shall consider in the following chapters (principal or locally principal), the
the multiplicative of the norm of ideal can be derived from the multiplicative of
the norm over the principal ideals.
Different and discriminant

Definition 1.13. The different O?−1 of an order O is the inverse of the dual of
O by the bilinear form induced by the reduced trace: O? = {x ∈ H, t(xO) ⊂ R}.
Its reduced norm n(O?−1) is called the reduced discriminant of O, denoted by
D(O).

We have the following lemma.

Lemma 1.4.7. (1) Let I be an ideal. The set I? = {x ∈ H, |t(xy) ∈ R, ∀y ∈ I}
is a two-sided ideal.
(2) Let O be an order. The ideal O?−1 is an integral two-sided ideal.
(3) If O is a free R-module with basis (ui) and a principal ring, then n(O?−1)2 =
R(det(t(uiuj)).

Proof. (1) It is clear, I? is a R-module . By the analogy with what we used
in the proof of the equivalence of that two definition of orders ( prop. 4.1), we
can prove there exists d ∈ R such that dO ⊂ I? ⊂ d−1O , thus I? is an ideal.
Its left order {x ∈ H|t(xIstarI) ⊂ R} equals its right order {x ∈ H|t(I?xI)},
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because of t(xy) = t(yx).
(2) Since 1 ∈ O?, we have O?O?−1 ⊃ O?−1.
(3) O? is an ideal generated over R by the dual basis u?

i defined by t(uiuj) = 1 if
i = j, and 0 if i 6= j. If u?

i =
∑

aijuj , then t(uiu
?
j =

∑
ajkt(uiuk). From this we

have det(t(uiu
?
j )) = det(aij)det(t(uiuj)). On the other side, O? = Ox, x ∈ H×,

because O is principal, and then (uix) is the another basis of the R-module O?.
Since n(x)2 is the determinant of the endomorphism x → hx, cf.,§1, we then have
det(aij) = n(x)2u, u ∈ R×. it follows R(det(t(uiuj))) = n(O?)−2 = n(O?−1)2.
The property (3) is even true if O is not principal. We leave the proof of it as
an exercise.

Corollary 1.4.8. Let O and O′ be two orders. If O′ ⊂ O, then d(O′) ⊂ d(O),
and d(O′) = d(O) implies O′ = O.

Proof. If vi =
∑

aijuj , we have det(t(vivj)) = (det(aij))2det(t(uiuj)).

The corollary is very useful for understanding the case when an order is
maximal.
Examples:
(1) The order M(2, R) in M(2,K) is maximal because its reduced discriminant
equals R.
(2) In the quaternion algebra H = {−1,−1} defined over Q (cf. §1), the order
Z(1, i, j, ij) with reduced discriminant 4Z is not maximal. It is contained in the
order Z(1, i, j, (1 + i + j + ij)/2) with discriminant 2Z, which is maximal as we
shall see in chapter III, or as one can verifies it easily.
Ideal class

Definition 1.14. Two ideals are equivalent by right if and only if I = Jh, h ∈
H×. The class of the ideals to the left of an order O is called the class to the left of
O. We define by the evident way the class to the right of O.

The following properties can be verified easily:

Lemma 1.4.9. (1) The mapping I → I−1 induces a bijection between the class
to the left and the class to the right of O.
(2)Let J be an ideal. The mapping I → JI induces a bijection between the class
to the left of Ol(I) = Or(J) and the class to the left of Ol(J).

Definition 1.15. The number of class, (the class number), of the ideals related
to a given order O is the number of classes (finite or not) of the ideals to the
left (or to the right) of an arbitrary one of these orders .The class number of H
is the number of classes of maximal orders.

Definition 1.16. Two orders being conjugate by an inner automorphism of H
are said to have a same type.

Lemma 1.4.10. Let O and O′ be two orders. The following properties are
equivalent.
(1 O and O′ are of the sane type.
(2) O and O′ are tied by a principal ideal.
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(3)O and O′ are tied, and if I, J are the ideals having the left order O and the
right order O′ respectively, we have I = J(A)h, where h ∈ H and (A) is a model
of two-sided ideal of O.

Proof. If O′ = h−1Oh, the principal ideal Oh ties O to O′ and reciprocally. If
O′ = h−1Oh, then J−1Ih is a two-sided ideal of O′. Inversely, if O and O′ are
tied, and if I and J satisfy the conditions of (3), then O′ = J−1J = hOh−1.

Corollary 1.4.11. The number of the orders of type t which are related to a
given order is less than or equal to the class number h of this order, if h is finite.

The number of order type of H is the number of the maximal order type.

Definition 1.17. Let L/K be a separable algebra of dimension 2 over K. let
B be a R-order of L and Obe a R-order of H. An inclusion f : L → H is a
maximal inclusion respect to O/B if f(L)∩O = B.Since the restriction of f to
B determines f , we also say that f is a maximal inclusion of B in O.

Suppose L = K(h) to be contained in H. By theorem 2.1 the conjugate class
of h in H×

C(h) = {xhx−1|x ∈ H×}
corresponds bijectively to the set of the inclusions of L to H. We also have

C(h) = {x ∈ H|t(x) = t(h), n(x) = n(h)}

. The set of maximal inclusions of B to O corresponds bijectively to a subset
of the conjugate class of h ∈ H× which equals

C(h,B) = {xhx−1|x ∈ H×,K(xhx−1) ∩ O = xBx−1}

and we have the disjoint union

C(h) =
⋃

B

C(h,B).

where B runs through the orders of L. Consider a subgroup G of the normal-
ization of O in H× :

N(O) = {x ∈ H×|xOx−1 = O.

For x ∈ H×, we denote x̃ : y → xyx−1 the inner automorphism of H associated
with x, and G̃ = {x̃|x ∈ G}. The set C(h,B) is stable under the right operation
of G̃.

Definition 1.18. . A maximal inclusion class of B in O mod G is the class
of maximal inclusion of B in O under the equivalent relation f = x̃f ′′ x̃ ∈ G̃.
The conjugate class mod G of h ∈ H⊗ is CG(h) = {xhx−1|x ∈ G}.

We see also that the set of conjugate class modG of the elements x ∈ H such
that t(h) = t(x), n(x) = n(h) is equal to

G̃\C(h) =
⋃

B

G̃\C(h,B)
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. In particular if Card(G̃\C(h,B) is finite and is zero for almost every order
B ⊂ L, then we have

Card(G̃\C(h)) =
∑

B

Card(G̃\C(h,B)).

The relation is useful for every explicit computation of the conjugate classes:
the trace of Heck operators(Shimizu [2]), class number of ideal or of the type
number of order(ch.V), the number of conjugate class of a quaternion group of
reduced norm 1 and of a given reduced trace (ch.IV).
The group of units of an order.

The unit of an order is the invertible element which and its inverse both are
contained in the order. They constitutes naturally a group denoted by O×. The
units of reduced norm 1 form a group too denoted by O1.

Lemma 1.4.12. An element of O is a unit if and only if its reduced norm is a
unit of R.

Proof. If x, x−1 belong to O, then n(x), n(x−1 = n(x)−1 are in R. Inversely, if
x ∈ O, and n(x)−1 ∈ R, we then have x−1 = n(x)−1x ∈ O, because x ∈ O

Exercises

1. Prove, if the right order of an ideal is maximal, then its left order is
maximal too. From this deduce that a maximal order is such an order
which ties to one of the other orders.

2. Prove, if R is principal, the order M(2, R) is principal. Deduce from it
that the maximal orders of M(2,K) are all conjugate each other, i.e. of
the same type.

3. Let H be a quaternion algebra {−1,−1} over Q (cf. §1). Prove there exists
in an integral ideal an element of minimal reduced norm. Prove, if h ∈ H,
there exists x ∈ Z(1, i, j, ij) such that n(x−h) ≤ 1, and even in some case
x(n− h) < 1. Deduce from it that Z(1, i, j, (1 + i + j + (1 + i + j + ij)/2)
is principal.

4. Theorem of four squares(Lagrange). Every integer is a sum of 4 squares.
Using 4.3 prove it. You can firstly verify the set of the sums of 4 squares
in Z is stable under multiplication, then every prime number is the sum
of 4 squares.

5. Abelian variety(Shimura [1]). Let H be a quaternion algebra over Q pos-

sessing a R-representation f . If z ∈ C, and x =
(

a b
c d

)
∈ M(2,R), we

use e(z) to denote the column vector
(

z
1

)
and x(z) = (az + b)(cz + d)−1.

Let O be an order of H over Z. For every z ∈ C with its imaginary part
being positive strictly , set

D(z) = f(O)z = {f(x)z|x ∈ O}.
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Prove D(z) is a lattice of C2, i.e. a discrete sub group of C2 of rank 4.
If a ∈ H is an element with its square a2 being a strictly negative rational
number, we set x̂ = a−1xa for x ∈ H. Prove that x 7→ x̂ is an involution
of H, and that t(xx̂)is strictly positive if x 6= 0.
Show it is possible to define a bilinear R-form < x, y > over C such
that< f(x)z, f(y)z >= t(axȳ) for all x, y ∈ H.
Verify there exists an integer c ∈ N such that E(x, y) = c < x, y > is a
riemannian form over the complex torus C2/D(z), i.e.
– E(x, y) is an integer for every (x, y) ∈ D(z)×D(z),
– E(x, y) = −E(y, x),
– the R-bilinear form E(x,

√−1y) is bilinear and positively definite in
(x, y).
It is known that the existence of a riemannian form on a complex torus is
equivalent to the existence of a structure of an abelian variety.

6. Normalization. Let H/K be a quaternion algebra, and h ∈ H. Demon-
strate

(1) Oh is an ideal if and only if h is invertible.

(2) Oh is a two-sided ideal if and only if (1) is valid and Oh = hO.

(3) the normalization of O is the group consisting of the elements h ∈ H
such that Oh is a two-sided ideal.

7. The equation of polynomials over quaternion(Beck [1]). Let H/K be a
quaternion field, and H[x] be the set of polynomials P (x) =

∑
aix

i, where
the coefficients aibelong to H. H[x] is equipped with a ring structure such
that the indeterminate x commute with the coefficients.

(a) Prove that every polynomial P (x) can be factored in a unique way as
the product of a monic polynomial with coefficients in K, a constant
in H×, and a monic polynomial of H[x] which can not be divided by
a non-unit polynomial in K[x].

(b) Prove that the equation P (x) = 0 has a solution of element x = a
belonging to K if and only if x− a divides P (x).

(c) Show the coefficients of the polynomial n(P ) =
∑

aiājx
i+j is in K.

We call it thereduced norm of P .
We want to find the solutions of the equation P (x) = 0 in H, then
we study the associate solution in H of the equation n(P )(x) = 0.
We can suppose P to be monic, and has no any solution in K, ac-
cording what said above. If h is a Quaternion, we denote its minimal
polynomial by Ph.

(d) Prove that if Ph divides P , then every conjugation of h in H is the
root of P . Particularly, the equation P (x) = 0 has an infinitely many
solutions in H.

(e) Prove that if Ph does not divide P , then the equation P (x) = 0 has
at most a conjugation of h as a solution. This happens if and only if
Ph divides n(P ).
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(f) From it deduce that if P (x) has only a finite number of roots, the
number is less than or equal to the degree of P .

(g) Suppose H to be the field H of Hamilton quaternion. Prove that if
P (x) is not the polynomial 1, then P (x) = 0 always has a root in H,
and has an infinite number of roots if and only if P (x) is divided by
an irreducible polynomial with real coefficients of degree 2.

(h) Let h1, h2, ..., hr be the elements in H, but not belonging toK and not
conjugate pairwise, and m1,m2, ..., mr be the integers being greater
than or equal to 1. We say that h is a root of P (x) of multiplicity m
if Pm

h divides n(P ), and Pm+1
h does not divide n(P ). Show if every

mi equals 1, there exists a unique monic polynomial P (x) , its roots
are only these quaternions hi (1 ≤ i ≤ r) with multiplicity mi, and
the degree of P (x) equals m =

∑
mi. If not the case, Prove there

exists an infinitely many monic polynomials of degree m with this
property.



Chapter 2

Quaternion algebra over a
local field

In the chapter, K is a local field, in other words, a finite extension K/K ′ of a
field K ′ called its prime subfield1 are equal to one of the following fields:
– R ,the field of real numbers,
– Qp, the field of p-adic numbers,
– Fp[[T ]], the field of formal series of one indeterminate over the finite field
Fp. The fields R,C are called archimedean, the field K 6= R,C are called
non-archimedean.
If K ′ 6= R . Let R be the integral ring of K and π, k = R/πR be the
uniform parameter and residue field respectively. We use Lnr to denote the
unique quadratic extension of K in the separable closure Ks of K which is
non ramified, i.e. satisfies one of the following equivalent properties:
(1) π is a uniform parameter of Lnr,
(2) R× = n(R×L ) where RL is the integral ring of Lnr,
(3) [kL : k] = 2, where kL is the residue field of Lnr.
Let H/K be a quaternion algebra. All of the notions about the orders and the
ideals in H are relative to R.

2.1 Classification

The following theorem provides a very simple classification of the quaternion
algebra over a field.

Theorem 2.1.1. (Classification). Over a local field K 6= C there exists a
quaternion field uniquely determined up to an isomorphism.

We have seen in ch.1,§1 that M(2,K) is the unique quaternion algebra over
C up to isomorphism. The theorem of Frobenius implies this theorem in the case
of K = R. Before giving the proof of the theorem we give some application of it.

Definition 2.1. We shall define an isomorphism ε of Quat(K) to {∓1} by
setting for a quaternion algebra H/K, ε(H) = −1 if H is a field, ε(H) = 1

1This notation for the prime subfield is not the usual one, but it will be used in the sequel.

23
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otherwise. We call ε(H) the Hasse invariant of H.
A variant of the above theorem is :

Quat(K) ' {∓1}, if K 6= C, Quat(C) ' {1}.

Definition 2.2. If the characteristic of K is different from 2, and if a, b ∈ K×,
the Hasse invariant of a, b is defined by

ε(a, b) = ε({a, b}),

where H = {a, b} is the quaternion algebra described in Ch.I.(3). The Hilbert symbol
of a, b is defined by

(a.b) =

{
1, if ax2 + by2 − z2 = 0 has a non-trivial solution in K3

,−1, otherwise
,

where the ”non-trivial solution” means a solution (x, y, z) 6= (0, 0, 0).

A variant of the above theorem in characteristic different from 2 is expressed
as an equality between the Hilbert symbol and the Hasse invariant, and a variety
of properties of Hilbert symbol deduced from it.

Corollary 2.1.2. (Properties of Hilbert symbol). Let K is a local field of char.
different from 2.Let a, b, c, x, y ∈ K×. The Hilbert symbol {a, b} equals the Hasse
invariant ε(a, b). It satisfies the following properties:
(1) (ax2, by2) = (a, b) (modulo the square),
(2) (a, b)(a, c) = (a, bc) (bilinearity),
(3) (a, b) = (b, a)(symmetry),
(4)(a,1-a) = 1 (symbol),
(5) (a, b) = 1 for all b ∈ K× implies a ∈ K×2 (non degenerate),
(6)(a, b) = 1 is equivalent to one of the following properties:
−a ∈ n(K(

√
b))

or b ∈ n(K(
√

a)),
or −ax2 + by2 represents 1

Proof. The equation ax2 + by2 − z2 = 0 has a non trivial solution in H3 if
and only if the quadratic vector space V0 associated with pure quaternion of
{a, b} is isotropic. From ch.I, corollary 3.2, the space V0 is isotropic if and only
if {a, b}is isomorphic to a matrix algebra. Therefore (a, b) = 1 if and only if
ε(a, b) = 1. it follows (a, b) = ε(a, b). The properties (1),(2),(3),(4),(5),(6) are
the consequence of the earlier results.
(1),(3): Define the elements i, j by the formula I.1.(3) and replace i, j by xi, yj,
then by j, i.
(2). Use the tensor product(I,Thm 2.9).
(4),(6). Use the characterization of the matrix algebra (I,Corollary 2.4) and the
geometric consideration (I,Corollary 3.2)
(5).Obtain from that, all the quadratic extension of K can be included in the
quaternion field over K, if K 6= C. This property will be proved more precisely
later(II,Corollary 1.9).

We suppose afterwards that K 6= R,C. The theorem of classification has the
following very precise statement.
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Theorem 2.1.3. Let K be a non archimedean local field. then H = {Lnr, π} is
the unique quaternion field over K up to isomorphism. A finite extension F/K
neutralize H if and only if its degree [F : K] is even.

The second part of the theorem is an easy consequence of the first part. It
has two variants:
(1) H possess a F -representation if and only if [F : K] is even.
(2) ε(HF ) = ε(H)[F :K].
The proof of the theorem is divided into several steps. Consider a quaternion
field H/K. We extend a valuation v of K to a valuation w of H. it shows Lnr

can be embedded in H. Using I.Corollary 2.2 and 2.4 we obtain H ' {Lnr, π}.
The existence of the valuation w in addition gives the uniqueness of the maximal
order and the group structure of the normal ideals. We are going now to proceed
along this line. Reference: Serre [1].

Definition 2.3. A discrete valuation on a field X 2 is a mapping v : X× → Z
satisfying
(1) v(xy) = v(x) + v(y),
(2) v(x + y) ≥ inf(v(x), v(y)), with the equality if v(x) 6= v(y) for every
x, y ∈ X×. An element u which has a positive minimal valuation is called a
uniform parameter of X. v can be extended to a mapping of X to Z ∪ ∞ by
setting v(0) = ∞. The set A = {x ∈ X|v(x) ≥ 0}is the discrete valuation ring
associated with v. Its unique prime ideal is M = Au = {x ∈ X|v(x) > 0}. The
field A/M is the residue field and the group A× = {x ∈ X|v(x) = 0} is the
unit group of A.

We choose a discrete valuation v of K; it can be suppose that v(K×) = Z.
We define a mapping w : H× → Z by setting

w(h) = v ◦ n(h), (2.1)

where h ∈ H× and n : H× → K× is the reduced norm. The multiplicative
of the reduced norm (I,Lemma 1.1) implies w satisfies (1). We utilize a well
known fact that the local commutative field being the restriction of w to L
is a valuation if L/K is an extension of K contained in H. It follows then
w(h + k) − w(k) = w(hk−1 + 1) ≥ inf(w(hk−1), w(1) with the equality if
w(hk−1) 6= w(1). From this we deduce that w satisfies (2). We have proved :

Lemma 2.1.4. The mapping w is a discrete valuation of H.

We denote the ring of the valuation W by O. For every finite extension
L/K contained in H, the intersection O ∩ L is the ring of the valuation of the
restriction of w to L. Therefore , O ∩ L is the integral ring RL of L. It follows
that O is an order consisting of all the integers of of H. We then have

Lemma 2.1.5. The ring O of valuation w is the unique maximal order of H.

Therefore, we deduce that every normal ideal of H is Two-sided.If u ∈ O is
a uniform parameter, P = Ou is the unique prime ideal of O. Thus the normal
ideals are of the form Pn, n ∈ Z.

Lemma 2.1.6. The quadratic unramified extension Lnr/K of K is isometric
to a commutative subfield of H.

2not necessary to be a commutative field
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Proof. We shall lead an absurdity. If Lnr was not contained in H, then for every
x ∈ O, x /∈ R, the extension K(x)/K would be ramified. There exists then
a ∈ R such that x− a ∈ P ∩K(x). We could then write x = a+uy with y ∈ O.
Iterating this procedure, the element x could be written as

∑
n≥0 anun, an ∈ R.

The field K(u) being complete would be closed. We thus had O ⊂ K(u). It is
absurd.

Corollary 2.1.7. The quaternion field H is isomorphic to {Lnr, π}.Its prime
ideal P +Ou satisfies P 2 = Oπ. Its integer ring O is isomorphic to RL + RLu.
The reduced discriminant d(O) of O equals n(P ) = Rπ.

Proof. According to I, Corollary 2.2 and 2.4, we have H ' {Lnr, x} where
x ∈ K× but x /∈ n(L×nr). From (1), (2) of the beginning of this chapter it
follows x = πy2 where y ∈ K×. We can suppose x = π , then the first part of
the corollary follows. Now suppose H = {Lnr, π}. The element u ∈ H satisfying
I.(1) is the non zero minimal valuation, thus P = Ousatisfies P 2 = Oπ. The
prime ideal Rπ is then ramified in O. according to Lemma 1.4, we have O =
{h ∈ H, n(h) ∈ R}. similarly, RL = {m ∈ Lnr, n(m) ∈ R}. We can verify easily
that, if h = m1 + m2u with mi ∈ Lnr, the property n(h) ∈ R is equivalent
to n(mi) ∈ R, i = 1, 2. We can show too that O = RL + RLu. Using the
formula involving the determinant in I, Lemma 4.7, we compute the reduced
discriminant d(O). Since d(RL) = R, we see easily that d(O) = Rπ. Hence it
follows d(O) = n(P ) or the different of O is O?−1 = P .

Definition 2.4. Let Y/X be a finite extension of field equipped with a valuation,
and ring of it is AY , AX = X ∩AY . Let PY , PX = PY ∩AX be the prime ideals
and kX , kY be the corresponding residue field. The residue degree f of Y/X is
the degree [kY : kX ] of the residue extension kY /kX . The ramification index of
Y/X is the integer e such that AY PX = P e

Y .

We then deduce that the unramified quadratic extension Lnr/K has the
ramification index 1, and the residue degree 2. The quaternion field H/K has
the ramification index 2, and the residue degree 2.
Let F/K be a finite extension of commutative field with ramification index e
and residue degree f . We have ef = [F : K] because the cardinal of k is finite
and RF /πRF ' RF /πF

eRF , if πF is a uniform parameter of F .

Lemma 2.1.8. The following properties are equivalent:
(1) f is even,
(2) F ⊃ Lnr,
(3) F ⊗ Lnr in not a field.

Proof. For the equivalence (1) ←→ (2) see Serre [1],Ch. 1. For the equivalence
(2) ←→ (3), it is convenient to write Lnr as the K[X]/(P (X)) where (P (X)) is
a polynomial of degree 2. Thus F ⊗Lnr equals F [X]/(P (X))F where (P (X))F

is the ideal generated by (P (X)) in the polynomial ring F [X]. Since P (X) is a
polynomial of degree 2, it is reducible if and only if it admits a root in F , i.e. if
F ⊃ Lnr.
Consider now HF ' {F ⊗ Lnr, π}. If πF is a uniform parameter of F , it may
as well suppose that π = πF

e. According to I. Corollary 2.4, and Lemma 1, we
find that, if e or f are even then we have HF ' M(2, F ), hence F neutralizes
H. Otherwise, that is to say if [F : K] is odd, HF ' {F ⊗ Lnr, πF } ,where
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F ⊗ Lnr is the unramified quadratic extension of F in Ks. Therefore HF is a
quaternion field over F . The Theorem 1.2 is proved completely.

For the use latter we make a remark here.

Corollary 2.1.9. Every quadratic extension of K is isomorphic to a subfield
of H. For an order of a maximal commutative subfield of H can be embedded
maximally in H, if and only if it is maximal.

The computation of Hilbert symbol

Lemma 2.1.10. If the characteristic of k is different from 2, and if e is a unit of
R which is not a square, then the set {1, e, π, πe} form a group of representations
in K× of K×/K×2. Moreover Lnr is isomorphic to K(

√
e).

Proof. Consider the diagram

1 → R×1 → R× → K× → 1
↓ 2 ↓ 2 ↓ 2

R×1 → R× → K×

The vertical arrows represent the homomorphism h → h2, and R×1 = {h =
1 + πa, a ∈ R}. We have [k× : k×2] = 2, and R×1 = R×2

1 because of

(1 + πa)
1
2 = 1 + πa/2 + ... + C

1
2
n + ...

converges in K. Thus [R× : R×2 = 2, and [K× : K×2] = 4. If e ∈ R× − R×2 ,
R× ⊂ n(K(

√
e)), and this characterize Lnr = K(

√
e).

Set ε = 1 if −1 is a square in K, and ε = −1 otherwise.
Table of Hilbert symbol:

a\b 1 e π πe
1 1 1 1 1
e 1 1 −1 −1
π 1 −1 ε −ε
πe 1 −1 −ε ε

Definition 2.5. Let p be an odd prime number, and a be an integer prime to
p. The Legendre symbol (a

p ) is defined by

(
a

p
) =

{
1, if a is a square mod p

−1, otherwise
.

We see immediately that the Hilbert symbol (a, p)p of a, p in Qp equals
Legendre symbol (a

p ). It is easy to compute Hilbert symbol (a, b)p of two integers
a, b in Qp if p 6= 2. We use the the computation rule of Hilbert symbol (Corollary
2.2) and

(a, b)p =

{
1, if p - a, p - b
(a

p ), if p - a, p‖b
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2.2 Study of M(2, K)

Let V be a vector space of dimension 2 over K. Suppose a basis (e1, e2) of V/K
to be fixed such that V = e1K +e2K. This basis allowed us to identify M(2,K)

with the ring of endomorphisms End(V ) of V . If h =
(

a b
c d

)
∈ M(2,K), it

associates an endomorphism :v 7→ v.h, which is defined by the product of the
row matrix (x, y) by h, if v = e1x+ e2y. Recall that a complete lattice in V is a
R-module containing a basis of V/K. If L,M are two complete lattices in V , we
denote the ring of R-endomorphisms from L to M by End(L,M), or End(L) if
L = M .

Lemma 2.2.1. (1) The maximal orders of End(V ) are the rings End(L), where
L runs through the complete lattices of V .
(2) The normal ideals of End(v) are the ideals End(L,M), where L,M runs
through the complete lattices of V .

Proof. (1) Let O be an order of End(V ) and M a complete lattice of V . Set L =
{m ∈ M |m ∈ O}. It is a R-module contained in V . There exists a ∈ R such that
aEnd(M) ⊂ M}. It follows aM ⊂ L ⊂ M , hence L is a complete lattice. It is
clear that O ⊂ End(L). (2) Let I be an ideal to the left of End(L). We identify
I to a R-module f(I) of V 2 by the mapping h 7→ f(h) = (e1h, e2h). Let xi,jbe
the endomorphism permuting e1 and e2 if i 6= j, but fixing ei if i = j, and taking
the other element of the basis to zero. Choosing all the possibility for (i, j), and
computing f(xi,j , we see that f(I) contains (e1.h, 0), (0, e2.h) (e2h, e1.h).
Therefore f(I) = M + M by putting M = L.I. We then see easily that M is a
complete lattice. It follows finally I = End(L,M).

We recall here some classical results about the elementary theory of divisors.

Lemma 2.2.2. Let L ⊂ M be two complete lattices of V .
(1) There exists a R-basis (f1, f2) of M and a R-basis (f1π

a, f2π
b) of L whee

a, b are integers uniquely determined.
(2) If (f1, f2) is a R-basis of L, there exists a unique basis of M/R of the form
(f1π

n, f1r + f2π
m), where n,m are integers, and r belongs to a given set Um of

the representation of R/(πmR) in R.

Proof. (1) is classical. We prove (2). The basisf1a + f2b, f1c + f2d) of M are

such that the matrix A =
(

a b
c d

)
satisfies L.A = M . We can replace A by XA

if X ∈ M(2, R)×. We verify without difficulty that it can be modified again to

A =
(

πn r
0 πm

)
where n,m are integers and r ∈ Um

We are going to express these results in terms of matrix.

Theorem 2.2.3. (1) The maximal orders of M(2,K) are conjugate to M(2, R).
(2) The two-sided ideal of M(2, R) forms a cyclic group generated by the prime
ideal P = M(2, R)π.
(3)The integral ideals to the left of M(2, R) are the distinct ideals

M(2, R)
(

πn r
0 πm

)
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where n,m ∈ N and r ∈ Um, here Um is a set of representation of R/(πmR) in
R.
(4) The number of the integral ideals to the left of M(2, R) with reduced norm
Rπd equals 1+ q + ...+ qd, if q is the number of the elements of the residue field
k = R/(πR).

Definition 2.6. Let O = End(L) and O′ = End(M) be two maximal orders of
End(V ), where L,M are two complete lattices of V . If x, y belong to K×, we
have also End(Lx) = O and End(My) = O′. It can then assume that L ⊂ M .
There exists the bases (f1, f2) and (f1π

a, f2π
b) of L/R and M/R, where a, b ∈ N.

The integer |b − a| does not change if we replace L,M by Lx,My. We call it
the distance of two maximal orders O and O′, denoted by d(O,O′).

Example.

The distance of the maximal order M(2, R) and
(

R π−nR
πnR R

)
equals n.

Eichler order

Definition 2.7. A Eichler order of level Rπn is the intersection of two maximal
orders between them the distance is n. We write On for the following Eichler
order of level Rπn:

On = M(2, R) ∩
(

R π−nR
πnR R

)
=

(
R R

πnR R

)

An Eichler order of V is the form O = End(L) ∩ End(M), where L,M are
two complete lattice of V which can be assumed the forms L = f1R + f2R and
M = f1R + f2π

nR. It is also the set of endomorphisms h ∈ End(L) such that
f1.h ∈ f1R + Lπn. The properties in the next lemma explain the justification
of the definition of the level of an Eichler order.

Lemma 2.2.4. (Hijikata,[1]).Let O be an order of M(2,K). The following
properties are equivalent:
(1) There exists uniquely a couple of maximal orders (O1,O2) such that O =
O1 ∩ O2

(2)O is an Eichler order .
(3) There exists a unique integer n ∈ N such that O is conjugate to On =(

R R
πnR R

)
.

(4)O contains a subring which is conjugate to
(

R 0
0 R

)
.

Proof. The implications of (1)→ (2)→ (3)→ (4) are evident. We now prove

(4)→ (1). Let O be an order containing
(

R R
πnR R

)
. We verify easily that it

has the form
(

R πaR
πbR R

)
, with a + b = m ≥ 0. A maximal order containing

O has the form
(

R πcR
π−cR R

)
with a−m ≤ c ≤ a. One can convince himself

easily that it exists at most two maximal orders containing O and corresponding
to c = a and c = a−m.
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Use N(O) to denote the normalizer of an Eichler order O of M(2,K) in
GL(2,K). By definition N(O) = {x ∈ GL(2,K)|xOx−1 = O}. Let O1,O2

be the maximal orders containing O. The inner automorphism associating to
an element of N(O) fixes the couple (O1,O2). The study of two-sided ideal
of maximal order has showed that the two-sided ideal of a maximal order is
generated by the nonzero elements of K. Hence it follows O = On with n ≥ 1.

therefore we see that N(On) is generated by K×On
× and

(
0 1
πn 0

)
. We can

verify without difficulty that the reduced discriminant of an Eichler order equals
its level.
The tree of maximal order

Definition 2.8. (Serre [3], Kurihara [1]). A graph is given by
– a set S(X) whose element is called a vertex of X,
– a set Ar(X) whose element is called an edge of X,
– a mapping: Ar(X) → S(X) × S(X) defined by y 7→ (s, s′) where s is called
the origin of y and s′ the extremity of y,
– an involution of Ar(X) denoted by y 7→ ȳ such that the origin of y to be the
extremity of ȳ and such that

(1) y 6= ȳ

.
A chain of a graph X is a sequence of edges (y1, ..., yi+1...) such that the ex-
tremity of yi to be the origin of yi+1 for all i. To give a chain is equivalent to
give a sequence of vertices such that two consecutive vertices to be always the
origin and the extremity of an edge. A finite chain (y1, ..., yn) is called to have
the length n, and we say it joins the origin of y1 and the extremity of yn. A pair
(yi, ȳi) in a chain is called a loop. A finite chain without any loop such that the
origin of y1 to be the extremity of yn is called a circuit. A graph is connect if
it always exists a chain joining two distinct vertices. A tree is a connect graph
and without circuit.

We see the set X of maximal orders of M(2,K) is provided with a structure
of graph denoted still by X , such that these maximal orders are the vertices of
X and the pair (O,O′) of maximal orders of distance 1 are the edges of X.

Lemma 2.2.5. Let O be a maximal order. The maximal orders at distance n
to O are the extremities of some chains which have no loops, their origins are
O and the length are n.

Proof. Let O′ be a maximal order such that d(O,O′) = n. Therefore, O =
End(e1R + e2R) and O′ = End(e1R + e2π

nR), for an appropriate basis (e1, e2)
of V . The sequence of vertices (O,O1, ...,Oi, ...,O′), where Oi = End(e1R +
e2π

iR), 1 ≤ i ≤ n− 1, is a chain without loops, joining O and O′, of length n.
Inversely, provided there is a chain of length n > 2 given by a sequence of
vertices (O0, ...,On). There exist the R-lattices Li ⊃ Li+1 ⊃ Liπ such that
Oi = End(Li) for 0 ≤ i ≤ n. the chain has no loops if Liπ 6= Li+2 for
0 ≤ i ≤ n− 2. WE have

Li+1 ⊃ Liπ ⊃ Li+1π

Li+1 ⊃ Li+2 ⊃ Li+1π
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and Li+1/(Li+1π) is a k-vector space of dimension 2. Thus Liπ + Li+2 = Li+1

whence Liπ +Li+j+2 = Li+1 for every i, j ≥ 0, i+ j +2 ≤ n. Consequently L0π
does not contain Li for every i ≥ 1 hence then d(O,Oi) = i for 1 ≤ i ≤ n.

Drawing the tree when the number of elements of k is q = 2

∨

∧

Here is a picture of tree.
!!!

We notice that the tree not depends on the value of q. The number of ver-
tices of the tree which has the distance n to one of these vertices is qn−1(1+ q).
It is also the number of the Eichler orders of level Rπn contained in M(2, R).

Exercise

1. Let Z[X] is a free group generated by the vertices of the tree. Define the
homomorphism of Z[X] by putting (Serre [3] p.102)

fn(O) =
∑

d(O,O′)=n

O′

for every integer n ≥ 0. Verify by means of the description of tree the
following relations:

f1f1 = f2 + (q + 1)f0, f1fn = fn+1 + qfn−1if n ≥ 2.

We set T0 = f0, T1 = f1, Tn = fn + T − 2 if n ≥ 2. Prove the new
homomorphism Tn satisfies for all integer n ≥ 1 a unique relation

T1Tn = Tn+1 + qTn−1.

Deduce the identity
∑

n≥0

Tnxn = (1− T1x + qx2)2,

where x is an indeterminant.

2. The group PGL(2,K) acts naturally on the tree X of maximal orders. A
g ∈ GL(2,K),O ∈ S(X), by associating the maximal order with gOg−1.
Prove the action of PGL(2,K) is transitive and S(X) is identified with
PGL(2,K)/PGL(2, R). Show the orbit of a maximal order O by the
action of PSL(2,K) consists of the maximal orders at a even distance to
O.

3. We say that a group G acts on a graph with inversion if it exists g ∈ G,
y ∈ Ar(X) such that gy = ȳ. Prove that, PGL(2,K) acts on the tree X
of maximal orders with inversion, but PSL(2,K) acts without inversion.
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2.3 Orders embedded maximally

Let H/K be a quaternion algebra, and L/K be a quadratic algebra separably
over K contained in H. It can be given an order B of L over the integer ring
R of K. Let O be an Eichler order of H. Recall that we say B is embedded
maximally in O if O∩L = B. A maximal inclusion of B in O is an isomorphism
f of L in H such that O ∩ f(L) = f(B). We are trying to determine all the
maximal inclusion of B in O. It is clear that, it can be replaced O by an order
being conjugate to it: if H is a field, the maximal order is the only Eichler
order, if H = M(2,K) it can suppose that O = On for n ≥ 0. If h̃ is an inner
automorphism defined by an element h of the normalizer N(O) of O in H×, it is
clear that h̃f is a maximal inclusion of B in O too. We shall prove the number of
maximal inclusion of B in O modulo the inner automorphism defined by a group
with O× ⊂ G ⊂ N(O), is finite. It can be calculated explicitly. The results of
that calculation are very complicate if O has a level Rπn with n ≥ 2. It will
not be used here, but we only give the complete results if n ≤ 1. Sometimes the
proof are given in the general case. One can carry out it as an exercise to the
end, or refer to Hijikata [1].

Definition 2.9. Let L/K be a quadratic separable extension . Let π be a uni-
form parameter of K. We define the Artin symbol (L

π ) by

(
L

π
) =

{
−1 if L/K is unramified
0 if L/K is ramified

Definition 2.10. Let B be order of a separable quadratic extension L/K. We
define that the Eichler symbol (B

π ) equals Artin symbol (L
π ) if B is a maximal

order, and equals 1 otherwise.

Now we suppose that H is a quaternion field. We have

Theorem 2.3.1. Let L/K be a separable quadratic extension of K and B be
an order of L. Let O be a maximal order of H. If B is a maximal, the number
of maximal inclusion of B in O modulo the inner automorphisms defined by a
group G equals {

1, if G = N(O)
1− (L

π ), if G = O′ .

If B is not maximal, it is not embedded maximally in O
Proof. Let fz;L → H be an inclusion of L in H, The Lemma 1.4 implies that
f is a maximal inclusion of the integer ring RL of L in the maximal order
O. Therefore, if B is not maximal, it is then not embedded maximally in O.
According to I.§4, paragraph [class of ideals], the number of maximal inclusions
denoted by m(L,G) of RL in O modulo G equals the number of the conjugation
classes in H of the element m ∈ L, m /∈ K, modulo G̃. Since N(O) = H×,
it follows m(L,N(O)) = 1. Since Õ× ∪ Õũ = H̃× if u ∈ H is an element of
reduced norm π, we then have m(L,O×) = 1 if it can choose u ∈ L, i.e. if L/K
is ramified, and m(L,O×) = 2 otherwise, i.e. if L/K is unramified .

We suppose now that H = M(2,K). Then there is a similar result:
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Theorem 2.3.2. Let L/K be a separable quadratic extension and B be an order
of L. Let O be a maximal order of M(2,K). We can embed maximallyB in O
and the numberof maximal inclusion of B in O modulo the inner automorphisms
defined by O× equals 1. Let O′ be an Eichler order of M(2,K) with level Rπ.
The number of maximal inclusions of B in O′ modulo inner automorphism
associating with G equals

{
0 or 1, if G = N(O)
1 + (B

π ), if G = O×′ .

The theorem shows that B can not be embedded in O
if and only if B is maximal and L/K is unramified. The proof of the theorem

will be proved following Hijikata [1]. We are going to study in general the
maximal inclusion of B in an Eichler order On.

Definition 2.11. If B is an order of L, it exists s ∈ N such that B = R+Rbπs,
where R + Rbis the maximal order of L. Integer s characterize B, and then we
write B = Bs. The ideal Rπs is called the conductor of B. If u ≤ s, we have
Bs ⊂ Bu, and the ideal Rπs−u is called the relative conductor of Bs in Bu.

Let f be an inclusion of L in M(2,K) and let g ∈ B, g /∈ R. We write the
minimal polynomial of g over K as p(X) = X2− tX +m, the relative conductor

of R[g] in B as Rπr, and f(g) =
(

a b
c d

)
.

Lemma 2.3.3. (Hijikata [1]). Let On, n ≥ 0 be an Eichler order of M(2,K).
The following properties are equivalent:
(1) f is a maximal inclusion of B in On.
(2) r is the greatest integer i such that (R + f(g)) ∩ πiOnis non-empty.
(3) The elements π−ib, π−i(a− d), π−r−nc are prime integers.
(4) The congruence p(x) ≡ 0mod(Rπn+2r) admits a solution x in R satis-
fying: t ≡ 2xmod(Rπr) and there exists u ∈ N(On) such that uf(g)u−1 =(

x πr

−p(x) t− x

)
.

Proof. We denote the matrix uf(g)u−1 defined above by fx(g). The equivalence
of (1),(2),(3) is easy and leave as an exercise. Since (4) implies (3) by an evident

way, we shall prove (3)→ (4) only. If π−rb is a unit, put u =
(

1 0
0 π−rb

)
.

Then uf(g)u−1 = fx(g), where x is a solution in R of the congruence p(x) =
0mod(Rπn+2r). The problem then leads to the case where π−rb is a unit. If

π−r−nc is a unit, we conjugate f(g) by
(

0 1
πn 0

)
. Otherwise, conjugating f(g)

by
(

1 1
0 1

)
, then b is replaced by −(a+ c)+ b+d which is the product of a unit

by πr.

We have therefore a criterion of the existence of the maximal inclusion of
B in On. Now we intend to consider the inclusion. Set E = {x ∈ R|t ≡
2xmod(Rπ), p(x) ≡ 0mod(Rπn+2r)}. The set is introduced by (4) of the
above lemma.
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Lemma 2.3.4. (Hijikata [1]). Let f, f ′ be two maximal inclusions of B in On.

Let nf = h̃nf , where h̃n is the inner automorphism induced by
(

0 1
πn 0

)
.

(1) f is equivalent to f ′ modulo N(On) if and only if f is equivalent to f ′ or
nf ′ modulo O×n . If n = 0, the equivalence modulo N(On) coincides with the
equivalence modulo O×0 .
(2) Let x, x′ ∈ E and fx, fx′ defined as that in the above lemma. Then fx is
equivalent to fx′ modulo O×n if and only if x ≡ x′mod(πr+n).
(3) If π−2n(t2−4n) is a unit in R (rep. not a unit in R), Then fx is equivalent
to nfx′ if and only if x = t − x′mod(πr+n) ( rep. x ≡ t − x′mod(πr+n and
p(x′) � 0mod(πn+2r+1))

Proof. (1) is obvious. (2): if x ≡ x′mod(πr+n, we put a = π−r(x − x′) and

u =
(

1 0
a 1

)
. Hence u ∈ O×n and ufx(g)u−1 =

(
x′ πr

? ?

)
. Inversely, suppose

that fx is equivalent to fx′ modulo O×n . Since every element of O×n is upper
triangular modulo πn, if u ∈ O×n , π−r(ufx(g)u−1 − x) has the same diagonal
modulo πn with π − r(fx(g) − x), then x ≡ x′mod(πn+r). (3): If π−n−2rf(x′)
is a unit, and nfx′(g) satisfies the condition (3) of the above lemma, then it

is equivalent to
(

t− x′ πr

−π−rf(x′) x′

)
. Besides, from (2) fx is equivalent to nfx′

modulo O×n if and only if x = t − x′mod(πr+n). If π−n−2rf(x′) is not a unit,

we set u =
(

1 b
0 1

)
for b ∈ R, and unfx(g)u−1 = (xij). Modulo πn+r, then

xij = t−x′, x12 = b(2x′− t)−π−n+rf(x′). Therefore if π−r(2x′− t) is a unit, or
in an equivalent way if π−2r(t2 − 4n) is a unit, we can choose b so that π−rx12

is a unit, and the new (xij) is equivalent to
(

t− x′ πr

−π−rf(x′) x′

)
modulo O×n .

Finally, suppose that π−n−2rf(x′) and π−2r(t − 4n) are not units, then if we
note that O×n is generated modulo πn by the diagonal matrices and the matrices

of form
(

1 b
0 b

)
, we see that for all the u ∈ O×n , if unfx′(g)u−1 = (xij), x12π

−r

is never a unit hence nfx′ can not be equivalent to fx modulo O×n .

From these two lemmas we deduce the following proposition which allow us
to compute the number of maximal inclusion of Bs in On modulo the group
of inner automorphism induced by G = N(On) or O×n . The theorem 3.2 is a
consequence of it.

Proposition 2.3.5. (1) B can be embedded maximally in On if and only if E
is non-empty.
(2) The number of maximal inclusion of B in On modulo the inner automor-
phisms induced by O×n equals the cardinal of the image of E in R/(πn+2rR) if
On = O0 is maximal, or if π−r(t2− 4m) is a unit. otherwise, the number is the
sum of the last cardinal and the cardinal of the image of F = {x ∈ E|p(x) ≡
0mod(Rπn+2r+1)} in R/(πn+2rR).

Proof. The proof of theorem 3.2. Suppose O = O0 is a maximal order. Since
N(O) = K×O×, the number of the maximal inclusion modulo the inner au-
tomorphism induced by a group G with O× ⊂ G ⊂ N(O) depends not on G.
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This number is not zero since E is not empty. From (2) we obtain that the
number equals 1. Suppose O = O1. We recall B = R+Rbπs, where R+Rb is a
maximal order of L. If B is not maximal, s ≥ 1, then x = 0 is a solution of the
congruence p(x) = x2− t(b)πsx+π2sn(b) = 0 mod Rπ2. Since the discriminant
of the above polynomial is not a unit, the mapping in the above proposition
(with r = 0) shows that there exists two maximal inclusions of B in O modulo
the inner automorphisms induced by O×. If B is a maximal order , and if L/K
is unramified, then E = ∅ because the residue field of L and of K are distinct.
If K/L is ramified, n(b) ∈ R×π and the discriminant of p(x) belongs to Rπ.
Modulo πR, The set E is reduced to a single element 0, and F = ∅.
The theorem is proved if G = O×. In order to obtain the proof is case of
G = N(O), we shall use the fact that N(O) is the group generated by O× and(

0 1
π 0

)
. Let matrices

(
0 1
−n 0

)
and

(
t −π−1n
π 0

)
conjugate modulo N(O).

this implies the number of maximal inclusions of Bin O modulo the inner au-
tomorphisms of N(O) equals 0 or 1.

We note that if the level of the Eichler order On is enough small, that is
to say if the integer n is enough large, On does not contain the root of the
polynomial p(x).
One can find the computation of the explicit formulae of trace by the method
similar to what we made here in the following references: Eichler [13] to [20],
Hashimoto [1], Oesterie [1], Pizer [1] to [5], Prestel [1],Schneider [1], shimizu [1]
to [3], Vigneras [1], and Yamada [1].

Exercise

Use the proof of the above proposition to prove if B is a maximal order of a
separable quadratic extension L/K, then B can not be embedded maximally in
an Eichler order of M(2,K) of level Rπm with m ≥ 2.

2.4 Zeta function

This section is a preliminary for Chapter III: it contains no theorems but the
definitions and the preparatory computations for facilitating the statement in
sequels and the proof of the results in the forthcoming chapters when using the
adele technique. We shall find here the definition of local zeta function in the
sense of Weil [1], the normalization of measures, some computations of volumes
or of integrals which will be needed very later.

Definition 2.12. Let X be a local field K or a quaternion algebra H/K not
containing R. Let B be an order of X containing the valuation ring R of K.
The norm of an integral ideal I of B equals NX(I) = Card(B/I)

We can verify easily the relation NH = NKn2. By means of multiplication
we define the norm of fractional ideal. Then by the definition we have

NK(Rπ) = Card(R/Rπ) = Card(k) = q,

NH(P ) =

{
Card(O/Ou) = q2 if H is a field
Card(O/Oπ) = q4 if H ' M(2,K)

.
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where P is the two-sided integral maximal ideal of a maximal order O of H.
The norm of a principal ideal Oh is naturally equal to the norm of the ideal
hO. By the Corollary 1.7 and the Theorem 2.3, we have

Lemma 2.4.1. The number of the integral ideals to the left ( to the right) of a
maximal order of H with norm qn, n ≥ 0, is equal to

{
1, if n is even
0, if n is odd,

if H is a field;
1 + q + ... + qn,

if H ' M(2,K).

Definition 2.13. The zeta function of X = H or K is a complex function of
a complex variable

ζX(s) =
∑

I⊂B
N(I)−s

where the sum is taken over the the integral ideal to the left (right) of a maximal
order B of H.

The above lemma allow to compute explicitly ζH(s) as the function of ζK(s).
We have

ζK =
∑

n≥0

q−ns = (1− q−s)−1,

ζH =
∑

n≥0

q−2nsζ(2s), if H is a field,

ζH =
∑

n≥
0

∑

0≤d≤n

qd−2ns =
∑

d≥0

∑

d′≥0

qd−2(d+d′)s = ζK(2s)ζK(2s− 1),

if H ' M(2,K). We then have

Proposition 2.4.2. The zeta function of X = K or H equals

ζK(s) = (1− q−s)−1

or

ζH =

{
ζK(2s), if H is a field
ζ(2s)ζK(2s− 1), if H = M(2,K)

.

There is a more general definition of zeta function available for X ⊃ R.
The idea of such function comes from Tate [1] in the case of local field. Their
generation to the cental simple algebra is due to Godement [1], and to Jacquet-
Godemant [1]. The crucial point is to observe that the classical zeta function
can also be defined as the integral over the locally compact group X× of the
character function of a maximal order multiplied by χ(x) = N(x)−s for a certain
Haar measure. This definition can be generalized then to the zeta function of a
so called Schwartz-Bruhat function, of a quasi-character , and extends naturally
to the archimedean case. This is what we shall do. We proceed along Weil’s
book [1], for more details one can refer to it.
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Definition 2.14. Let G be a locally compact group and dg be a Haar measure
on G. For every automorphism a of G , let d(ag) be the Haar measure on
G defined by

∫
G

f(g)dg =
∫

f(ag)d(ag) for every measurable function on G.
the proportional factor of these two measures ||a|| = d(ag)/d(g) is called the
modulus of the isomorphism a

The followings can be verified easily :
(1) vol(aZ) = ||a||vol(Z), for every measurable set Z ⊂ G
(2) ||a||.||b|| = ||ab||, if a, b are two isomorphism of G,
and they show that the modulus is independent of the modulus used in the
original definition.

Definition 2.15. The modulus of an element x ∈ X×, denoted by ||x||X is the
common modulus of two left (or right) multiplicative isomorphisms in X = H
or K. The norm NX(x) of x is the inverse of the modulus.

Note in R or C , ||x|| of an element x is the modulus in the usual sense. We
can verify immediately the following properties: if x ∈ X×

||x||R = |x|, ||x||C = |x|2, ||x||X = NX(x)−1 = NX(Bx)−1, if X + R.

Now we are going to normalize the measures on X, X×

Definition 2.16. If X * R, we denote by dx or dxX the additive Haar measure
such that the volume of a maximal order B is equal to 1. We denote by dx· or
dx·X the multiplicative Haar measure (1− q−1)−1||x||−1

X dx.

Lemma 2.4.3. For the multiplicative measure dx·, the volume of the unit group
B× of an maximal order B of X is given by

vol(R×) = 1,

vol(O×) = (1− q−1)−1(1− q−2)

where O is the the integer ring of the quaternion field H/K,

vol(GL(2,K)) = 1− q−2

.

Proof. Suppose that X is a field. Let M be the maximal ideal of B. For the
additive measure dx we have the equalities

vol(B× = vol(B)−vol(M) = 1−N(x)−1 = 1−Card(B/M) =

{
1− q−1 if X = K

1− q−2 if X = H
.

for the multiplicative measure dx·, The volume of B× for the multiplicative
measure dx·, equals the volume of of B× for the additive measure (1−q−1)−1dx.
We obtain the lemma if X is a field. Suppose now X = M(2,K). The canonical
mapping R → k induces a surjection from GL(2, R) to GL(2, k), its kernel Z
consists of the matrices congruent to the identity modulo the ideal Rπ. The
number of the elements of GL(2, k) equals the number of the basis of a k-vector
space of dimension 2, being (q2 − 1)(q2 − q). The volume of Z for the measure
dx is vol(Rπ)4 = q−4. The volume of GL(2, R) for dx· is then equal to the
product q−4(q2 − 1)(q2 − q)(1− q−1)−1 = 1− q−2.
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Lemma 2.4.4. We have

ZX(s) =
∫

B
N(x)−sdx· =





ζK(s), if X = K

ζH(s)

ζK(2) ·
{

(1− q−1)−1, if X = H is a field,
1, if X = M(2,K)

.

Proof. The number of the elements of B modulo B× with norm qn, n ≥ 0 is the
number of the integral ideals of B with norm qn. The integral is then equal to

ζX(s)vol(B×).

The function ζX(s) is hence given by Proposition 4.2.

Definition 2.17. Let dx be the Lebesque measure on R. Let X ⊂ R, and (ei)
be a R-basis of X. For x =

∑
xiei ∈ X, we denote by TX(x) the common trace

of the R-endomorphisms of X given by the multiplication by x to the left and to
the right. We denote by dxX the additive Haar measure on X such that

dxX = |det(TX(eiej))| 12 Πdxi.

We denote by dx·X the multiplicative Haar measure ||x||−1
X dxX .

We can verify that the above definition is given explicitly by
(1) dxC = 2dx1dx2, if x = x + ix, xi ∈ R,
(2) dxH = 4dx1...dx4, if x = x1 + ix2 + jx3 + ijx4, xi ∈ R,

(3) dxM(2,K) = Π(dxi)K , if x =
(

x x
x x

)
∈ M(2,K), K = R or C.

We denote by tx the transpose of x in a matrix algebra. By an explicit manner
the real number TX(txx̄) equals to
(0)’ x2, if X = R,
(1)’ 2xx̄, if X = C,
(2)’ 2n(x), if X = H,
(3)’

∑
x2

i , if X = M(2,R),
(3)” 2

∑
xix̄, if X = M(2,C).

We put

ZX(s) =
∫

X×
exp(−πTX(txx̄))Nx−sdx

Lemma 2.4.5. We have

ZR = ∗π−s/2Γ(s/2),

ZC(s) = ∗(2π)−sΓ(s),

ZH + ∗ZK(s)ZK(s− 1) ·
{

(s− 1) if H is a field
1, if H = M(2,K)

where ∗ represents a constant independent of s.

Leave the proof of the lemma as an exercise. If X = M(2,K) we shall utilize
the Iwasawa’s decomposition of GL(2,K). Every element x ∈ GL(2,K) can be
written by unique way as

x =
(

y t
0 z

)
u, y, z ∈ R+, t ∈ K, u ∈ U
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, where U is the group consisting of the matrices satisfying tȳy = 1. If n = [K :
R], then the integrand function is (yz)2nsexp(−nπ(y2 + z2 + tt̄))

Definition 2.18. The Schwartz-Bruhat space S of X is

S =

{
the infinitely differentiable functions with fast decreasing if X ⊃ R
the locally constant functions with compact support, if X + R.

A quasi-character of a locally compact group G is a continuous homomorphism
of G in C. If the modulus of its value is always 1, we call it a character

An example of quasi-character on X is x 7→ N(x)s. It is a character if
and only if s is a pure imaginary. The quasi-characters of H× are trivial on
the commutator group of it. According to I,3.5, the commutator group of H×

equals the group of the quaternions of reduced norm 1. Every quasi-character
of H× has the form

χH = χK ◦ n,

where χK is a quasi-character of K.

Definition 2.19. The zeta function of a function f of the Schwartz-Bruhat and
a quasi-character χ is the integral

ZX(f, χ) =
∫

X×
f(x)χ(x)dx·.

The canonical function Φ of X is

Φ =

{
the characteristic function of a maximal order if X + R,

exp(−πTX(tx̄x)), if X ⊃ R

Therefore the function ZX(s) of Lemma 4.4 and 4.5 are equal to ZX(Ψ, Nx−s).
We include this section with the definition of Tamagawa measure, a notion more
or less equivalent to that of discriminant. We choose on X a character ψX ,called
a canonical character, defined by the conditions:
– ψR(x) = exp(−2iπx),
– ψK′ is trivial on the integer ring RK′ = R′ and R′is self-dual with respect to
ψK′ , if K ′ is a non-archimedean prime field.
– ψK(x) = ψK′ ◦ TX(x), if K ′ is the sub prime field of K.
We shall see in exercise 4.1 the explicit construction of ψK′ .
The isomorphism x 7→ (y 7→ ψX(xy)) between X and its topological dual can
be written as the Fourier transformation on X too:

f∗ =
∫

X

f(y)ψX(xy)dy,

where dy = dyX is the the additive measure normalized as above. The dual measure
is the measure d∗y such that the following inversion formula is valid:

f(x) =
∫

X

f∗(y)ψX(−yx)dy∗.
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Definition 2.20. The Tamagawa measure on is the Haar measure on X, which
is self-dual for the Fourier transformation associated with the canonical charac-
ter ψX .

Lemma 2.4.6. The Tamagawa measure of X is the measure dx if K ′ = R.
If K ′ 6= R, the Tamagawa measure is the measure D

−1/2
X dx, where DX is the

discriminant of X, that is to say,

DX = ||det(TX(eiej)||−1
K′ ,

where (ei) is a R′-basis of a maximal order of X.

Proof. If K ′ = R, the global definition of dx shows it is self-dual (i.e. equals
its dual measure) for ψX . Suppose then K ′ 6= R and to choose a R′-maximal
order which we denote by B. Let Φ denote its characteristic function. The
Fourier transform of Φ is the the characteristic function of the dual B∗ of B
with respect to trace. By the same way, the bidual of B equals B itself, we see
that Φ∗∗ = vol(B∗Φ. The self-dual measure of X is thus vol(B∗−1/2dx. If (ei)
is a R′-basis of B, we denote by e∗i ) its dual basis defined by TX(ei, ej) = 0 if
i 6= j and TX(ei, ei) = 1. The dual basis is a R′-basis of B∗. If e∗j =

∑
aijei,

let A be the matrix (aij). We have vol(B∗) = ||det(A)||K′ · vol(B) = det(A)−1

for the measure dx. On the other hand, it is clear, det(TX(eiej)) = det(A)−1.
We then have vol(B) = ||det(TX(eiej))||−1

K′ . By the same reason we prove the
dual measure of measure dx is D−1

X dx.

Lemma 2.4.7. The discriminant of H and of K are connected by the relation

DH = D4
KNK(d(O))2,

where d(O) is the reduced discriminant of a R′-maximal order O in H.

Proof. With the notations in §1, we have O = {h ∈ H|t(hO) ⊂ R∗}, it follows
easily that

O∗ =

{
R∗, if H = M(2,K)
R∗u− 1, if H is a field

.

We have then DH = vol(O∗) = NH(O∗−1) = NKn2(R∗−1)NK(d(O))2 =
D4

KN(d(O))2.

Remark 2.4.8. If K ′ 6= R, the modulus group ||X×|| is a discrete group. We
endow it a measure which assigns every element its proper value. In all of
the other cases, the discrete group considered in the following chapters will be
endowed with the discrete measure which assigns every element with the value
1.

compatible measure. Let Y, Z, T be the topological groups equipped with
Haar measure dy, dz, dt and there be an exact sequence of continuous mappings

1 −−−−→ Y
i−−−−→ Z

j−−−−→ T −−−−→ 1.

We say the measure dy, dz, dt are compatible with this exact sequence, or either
say that dz = dydt, or dy = dz/dt or dt = dz/dy, if for each function f such
that the integral below exists and the equality is valid:

∫

Z

f(z)dz =
∫

T

dt

∫

Y

f(i(y)z)dy, with t = j(z).
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From this , while knowing two of these measures and the exact sequence we can
define a third measure by compatibility. Such a construction will be applied
very frequently. but it must be careful: the third measure depends on the
exact sequence. Take for example, let X1 be the kernel of modulus, X1 be
the kernel of the reduced norm. We give them the natural measures which
deduced the normalized measures above , and the exact sequence suggested by
their definitions. We denote their measure by dx1 and dx1 respectively. These
measures are different, though the sets X1 and X1 may equal. We shall compute
explicitly the volume in the exercises of this chapter. If K ′ 6= R, we notice that
dx1 is the restriction of the measure dx· to X1 because of its naturalness.

Excercise

1. Prove the following characters ψK are the canonical characters.
If K = Qp, ψK(x) = exp(2iπ < x >), where < x > is the unique number
ap−m, m ≥ 0, which is a rational locating between 0 and 1 such that
x− < x >∈ Zp, where Zp is the integer ring of Qp.
If K = Fp[[T ]], ψK(x) = exp(2iπ, < x >) where < x >= a−1p

−1 if x =∑
aiT

i, 0 ≤ ai ≤ p.
If x ∈ Q, we denote ψp(x) = ψQp(x), and ψinfty = ψR(x), where psiR(x) =
exp(−2iπx) is the canonical character of R. Prove ψ = ψinftyπpψp defines
on Q a character which equals trivial character.

2. Computing volumes. With the measure defined by compatibility coming
from the canonical measures (Remark 4.8) prove the formula

vol(R1) = 2, vol(C1) = 2π, vol(H1) = 2π2′ vol(H1) = 4π2.

we notice that 2vol(H1) = vol(H1) for the chosen measures (Remark 4.8)
though the setsH1,H1 are the same. Calculate the integral

∫
H e−n(h)n(h)24dh/n(h)2.

3. The volume of groups in Eichler orders. Let Om =
(

R R
pmR R

)
be the

order of The canonical Eichler order of level Rpm with m 6= 0 in M(2,K),
with K non archimedean and p be a uniform parameter of K. Set

Γ0(p) = O1
m = SL2(R) ∩ Om,

Γ1(pm) = {x ∈ Γ0(pm)|x ≡
(

1 ∗
0 1

)
mod(O0p

m)},

Γ(pm) = {x ∈ Γ1(pm)|x ≡
(

1 0
0 1

)
mod(O0p

m)}.

On X = K, H, M(2,K) we choose the Tamagawa measure D
−1/2
X dx, and

on X× choose the measure ||x||−1D
−1/2
X dx, cf. Lemma 4.6 and Remark

4.8. Verify the following formulae:
formulae.

vol(Γ0(pm)) = D
−3/2
K (1−Np−2)(Np + 1)Np1−m,

vol(Γ1(pm)) = D
−3/2
K Np−2m,
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vol(Γ(pm) = D
−3/2
K Np−3m.

where Np is the number of elements of residue field k of K. If O = O0 is
a maximal order of a quaternion algebra H/K, we have

vol(O1
0) = D

−3/2
K (1−Np=2) ·

{
(Np− 1)−1, if H is a field
1, if H = M(2,K)

.

4. (Pitzer [3]).Let {Lnr, p} be the quaternion field over K, uniquely up to
isomorphism. It has the following representation

H = {Lnr, p} = {
(

a b
pb a

)
|a, b ∈ Lnr}

where 4p is a uniform parameter of K and Lnr/K is a ramified quadratic
extension. We denote simply the above matrix by [a, b]. The order
O2r+1 = {[a, prb]|a, b ∈ RL} is called the canonical order of level Rp2r+1,
where RL is the integer ring of Lnr. Verify O2r+1 is actually an order,
and either directly or on the discriminant that O1 is the maximal order.
Verify that an order O is isomorphic to O2r+1 for a r ≥ 0 if and only if it
contains a sub-ring being isomorphic to RL. Prove, if [a, b] ∈ O×1 , it can
be written as [a, b] = [a′, prb′][1, c], where c = b/amod(pr) and a′, b′ ∈ RL.
Deduce [O×1 : O×2r+1] = Np2r.
Deduce the volume of O1

m for the Tamagawa measure is equal to

vol(O1
m) = D

−3/2
K (1−Np−2)(Np− 1)−1Np1−m, m ≥ 1.

The formula is a natural generation of that in the above formulae.

5. Maximal compact subgroup. Let K be a non-archimedean local field, and
H/K be a quaternion algebra. Set X = H or K. Prove the maximal
compact subgroups of X× are the unit group B× of the maximal order B
of X.



Chapter 3

Quaternion algebra over a
global field

We wish in this chapter to give the fundamental results of the quaternion algebra
over a global field. They are: the classification theorem, the strong approxima-
tion theorem for the quaternions with reduced norm 1, the computation of the
Tamagawa numbers, and the trace formula. We shall obtain these results by
the analytic method. The key point is the functional equation of adele zeta
function.

3.1 Adeles

We suggest the reader who is familiar the notion of adele to read §2 directly;
and only consult this section when further reading needs.

Definition 3.1. A global field K is a commutative field which is a finite ex-
tension K/K ′ of a field called its prime subfield K ′, which equals one of the
following field:
– Q, the field of rational numbers;
– Fp(T ), the field of rational fractions in one variable T , with coefficients in
the finite field Fp, where p is a prime number. If K ⊃ Q, we say that K is a
number field. If K ⊃ Fp(T ), we say that K is a function field.

Definition 3.2. Consider the set of inclusions i : K → L i the local field L
such that the image i(K) of K is dense in L. Two inclusions i, i′ are said to
be equivalent if it exists an isomorphism f : L → L′ of local fields which appear
in their definition such that i′ = fi. An equivalent class is called a place of
K. We denote it usually by v, and by iv : K → Kv denote a dense inclusion of
K in a local field Kv representing the place v. We distinguish the archimedean
places or infinite places so that Kv contains a field isomorphic to R from other
places, which is called the finite places.

Notations
We fix the representation iv : K → Kv of the place v of K. Then K may be
considered as being contained in each Kv. V denotes the set of all places, ∞
the set of infinite places, and P the set of finite places. We use again the local

43



44 CHAPTER 3. QUATERNION ALGEBRA OVER A GLOBAL FIELD

field Kv in the sense of the definition in chapter II, but with an index v. If S is
a finite set of places of K, such that S ⊃ ∞, we denote by

R(S) =
⋂

v/∈S

(Rv ∩K)

the ring of elements in K, which are integers for that places which do not belong
to S. It is a Dedekind ring. If K is a number field we write R∞ = R. It is the
integer ring of K. If v ∈ P , the cardinal of the residue field kv is denoted by
Nv., and call it the norm of v.
EXAMPLE. Places of Q: One infinite place, represented by the natural in-
clusion of Q in the field of real numbers; the finite places, represented by the
natural inclusion of Q in the p-adic field Qp for every prime numbers p.
Places of Fp(T ) : Every finite places uniquely associate to a irreducible poly-
nomial, and to T−1, cf. Weil [1]. The set of the elements of K with its image
belonging to Rv for every v ∈ V is Fp. The set of the elements of K with its
images belonging to Rv for every v ∈ V but T−1 is Fp[T ]. The monic irreducible
polynomials correspond bijectively to the primer ideals of Fp[T ].

Definition 3.3. Let H/K be a quaternion algebra. A place v of K is ramified
in H if the tensor product (over K) Hv = H ⊗Kv is a field.

EXAMPLE. If the characteristic of K is different from 2, and if H = {a, b}
defined in I,1 (3), a place v of K is ramified in {a, b} if and only if the Hilbert
symbol (a, b)v of a, b in Kv is equal to −1 by II.1.1, This afford a rapid way to
obtain the ramified places in {a, b}.
We notice that the definition of ramification is quite natural. According to II,1,
the ramified places of K in H are the places v of K such that Hv/Kv is ramified.

Lemma 3.1.1. The number of ramified places of K in H is finite.

Proof. Let (e) be a basis of H/K. For almost every finite place v, the lattice
generated by (e) over Rv is an order (cf. I,§5) of the reduced discriminant
dv = Rv. We deduce from II, that Hv = M(2,Kv) and Rv[e] is a maximal order
almost everywhere.

Definition 3.4. The product of the ramified finite places of K in H is called
the reduced discriminant of H/K. If K is a number field, it identifies with an
integral ideal of the integer ring of K. We denote it by d or dH . It is an element
of the free group generated by P .

The set of ramified places of K in H plays a fundamental role in the classi-
fication, we denote the set by Ram(H). Sometimes we use Ram∞H, RamfH
to denote the set of infinite places, and of finite places respectively.
Consider the case where for every place v ∈ V a locally compact group Gv and
for every place not belonging to a finite set S ⊂ V a compact open subgroup
Cv of Gv are defined.

Definition 3.5. The restricted product GA of locally compact groups Gv with
respect to compact subgroup Cv is

GA = {x = (xv) ∈
∏

v∈V

Gv|xv ∈ Cvp.p.}
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where p.p. means ”for almost each place v /∈ S”. We provide GA with a topology
such that the fundamental neighborhood system of the unit is given by the set

∏

v∈V

Uv, Uv = Cv, p.p.Uv is an open neighborhood of the unit of Gv

One can find the discussion of these groups in Bourbaki [3]. It can be showed
that GA is a locally compact topological group, and not depends on S.
This case appears when G is an algebraic group defined over K. In such a case
Gv is the set of points of G with values in Kv, and Cv is the set of points of G
with values in Rv defined for v not belonging to a finite set of places S ⊃ ∞.
The group GA is called the adele group of G. Here are some examples.
1)The adele ring of K. We choose

Gv = Kv, S = ∞, Cv = R×v .

The correspondent adele group is called the adele ring of K. It is also an
algebraic group induced by the additive group of K. Denote it by A or KA.
2) The adele group of K. We choose

Gv = K×
v , S = ∞, Cv = R×v .

The correspondent adele group is called the adele group of K. It is the group
of units in A with the topology induced by the inclusion x → (x, x−1) in A×A.
The adele group is also a algebraic group induced by the multiplicative group
of K. Denote it by A× or K×

A .
3)The adele group defined by H. We choose a)

Gv = Hv, S ⊃ ∞, S 6= varnothing, Cv = Ov,

where O is an order of H over the ring R(S), and Ov = O ⊗ Rv, where the
tensorial product is taken over R(S).
We can define the adele ring of H too, and denote it by HA. It equals A⊗H,
where the tensorial product is taken over K.
b)

Gv = H×
v , S ⊃ ∞ S 6= ∅ Cv = O×v .

It defines the unit group of HA and denoted by H×
A

c)
Gv = H1

v (orHv,1), S ⊃ ∞, S 6= ∅, Cv = O1
v = Ov,1,

where X1 ( or X1) presents the kernel of the reduced norm (or of the modulus)
in X. It defines the adele group H1

A (or HA,1). All of these adele groups are
also the examples of the adele groups of algebraic groups.
Morphisms. Suppose there is an other restricted product G′A of locally compact
groups G′v with respect to the compact subgroups C ′v. We may suppose that
the set S′ ⊂ V to be such that for v /∈ S′ where C ′v being defined it coincides
with S. Suppose that for every place v ∈ V we have defined a homomorphism
fv : Gv → G′v such that if v /∈ S, fv(Cv) ⊃ C ′v. Therefore the restriction of

∏
fv

to GA defines a morphism from GA to G′A ,denoted by fA. If the mapping fv,
v ∈ V , are continuous then fA is continuous.
EXAMPLE. We can define the reduced trace by tA : HA → A, and the reduced
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norm na : H×
A → A× too.

Suppose that G′ is a group with unit 1, and for every place v ∈ V we have
defined the homomorphism fv Gv

→ G′ such that fv(Cv) = 1 p.p.. We can then
define in G′ the product

fA(x) =
∏

v∈V

fv(xv), if x = (xv) ∈ GA.

EXAMPLE. We can define the norm NA, the modulus || · ||A in H×
A , and A×

too.
NOTATIONS. It is convenient to consider Gv as that which has been embedded
in GA and identifies canonically with

∏
w 6=v 1w × Gv, where 1w is the unit of

Gw, w ∈ V . When GA is the adele group of an algebraic group defined over K,
the group GK then is the group of points in G with its value in K. For every
place v ∈ V we choose an inclusion of GK in Gv denoted by iv. For almost
every place iv(GK) ⊃ Cv, then the mapping

∏
v∈V iv defines an inclusion of GK

in GA. We put X = XK = H or K, and Yv = Ov or Rv,p.p..
Quasi-characters. Recall that a quasi-character of a locally compact group is
a continuous homomorphism of the group in C×. Let ψA be a quasi-character
of GA. By restricting to Gv it defines a quasi-character ψv of Gv. We have
naturally the relation

ψA =
∏

v∈V

ψv(xv)if x = (xv) ∈ GA.

For the convergence of the product in C× if and only if ψv(Cv) = 1, p.p.. In
fact, if this property is not satisfied, we then could find cv ∈ Cv such that
|ψv(cv)−1| > 1/2, p.p. and the product would not be convergent for the elements
x such that xv = cvp.p.. Thus we have proved the following theorem.

Lemma 3.1.2. The mapping ψA 7→ (ψv) is an isomorphism of the group of
quasi-characters of GA and the group {(ψv)} such that ψv is the quasi-character
of Gv, and ψv(Cv) = 1, p.p.

We can apply the local results of last chapter to the quasi-characters of XA.
Let ψA =

∏
v∈V ψv be the product of the canonical local character (exercise

II.4.1); the product is well-defined because of ψv(Yv) = 1, p.p.. The above
lemma shows that every character of XA is of the form x 7→ ψa(ax), where
a = (av) ∈ Xv, and av ∈ Ker(ψv), p.p.. Since Ker(ψv) = Yv, p.p., it follows
that a ∈ A. Therefore, XA is self-dual. Let us turn firstly to the case where
X = Q or Fp(T ) is a prime field, we shall verify that ψA is trivial on XK , and
the dual of XA/XK is XK , cf. Weil [1].

Proposition 3.1.3. XA is self-dual, and XK is the dual of XA/XK .

We are going now to give the principal theorems of adeles XA and X×
A .

These theorems are still valid if X is a central simple algebra over K. The proof
in the special case treated by us gives a good idea of the proof in the general
case (Weil [1]).

Theorem 3.1.4. (Fundamental Theorem) Adeles.
1) XK is discrete in XA and XA/XK is compact.
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2)(theorem of approximation). For every place v, XK + Xv is dense in XA.
Ideals.
1)X×

K is discrete in X×
A .

2)(product formula) The modulus equals 1 on X×
K

3) (Fujisaki’s theorem [1]). If X is a field, the image in X×
A /X×

K of the set

Y = {x ∈ X×
A |0 < m ≤ ||x||A ≤ M, n, m is real}

is compact.
4) For every place v or infinity if K is a number field, there exists a compact
set C of XA such that X×

A = X×
KX×

v C.

Proof. Adeles.1) We prove that XK is discrete in XA. It suffices to verify that
0 is not an accumulative point of XK . In a sufficiently small neighborhood of 0,
the only possible elements of XK are the integers for every finite places: hence
a finite number of it if K is a function field, and belonging to Z if X = Q. In
these two cases, it is clear, 0 is impossible to be an accumulative point. We have
the same result for every X, since X is a vector space of finite dimension over
Q or a function field. The dual group of a discrete group is compact, and hence
XA/XK , dual to XK , is compact.
2)Theorem of approximation. We show that a character of XA being trivial on
XK is determined by its restriction to Xv. In fact, a character being trivial on
XK and on Xv has the form x 7→ ψA(ax) where ψA is the canonical character
with a in XK and ψv(axv) = 1 for every xv ∈ Xv. It implies a = 0, and the
character ψA(ax) is trivial.
Ideals. 1) Prove X×

K is discrete in X×
A it is sufficient to prove that 1 is not an

accumulative point. A series of elements (xn) of X×
K converges to 1 if and only if

(xn) and x−1
n ) converge to 1. It suffices that (xn) converges to 1, hence that 1 is

an accumulative point of XK in XA. It is impossible according to the theorem
of adeles.
Product formula. Let x be an element of XK ; For proving the modulus of x
equals equals 1, it is necessary and sufficient to verify the volume of an mea-
surable set Y ⊂ XA equals the volume xY for an arbitrary Haar measure. We
have

vol(xY ) =
∫

XA

ϕ(x−1y)dy =
∫

XK\XA

∑

z∈XK

ϕ(zx−1y)dy·

=
∫

XK\XA

∑

z∈XK

ϕ(zy)dy· = vol(Y ),

where ϕ is the characteristic function of Y , and dy· is the measure on XK\XA

induced by the compatibility with dy and the discrete measure on XK .
Fusijaki’s theorem. A compact set of X×

A has the form

{x ∈ X×
A |(x, x−1) ∈ C × C ′}

for two compact sets C and C ′ of XA. For element x of Y , i.e.

0 < m ≤ ||x|| ≤ M,

we look for an element of X×
K such that xa ∈ C and a−1x−1 ∈ C ′. We choose

in XA a compact set C ′′ of volume sufficiently large, greater than

vol(XA/XK)Sup(m−1,M)
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so that the volumes of x−1C ′′ and C ′′x are strictly greater than the volume of
XA/XK . We set then C = C ′′ − C ′′ = {x − y|x, y ∈ C ′′}. It is a compact set
of XA since the mapping (x, y) 7→ x − y is continuous. There exist a, b ∈ XK

such that xa ∈ C, bx−1 ∈ C. Now we suppose that X is a field, then we can
choose a, b in X×

K . We have ba ∈ C2 which is compact in XA. The number of
possible value for ba = c is then finite, and hence we choose C ′ =

⋃
c−1C.

4)In view of Fusijaki’s theorem, it is evident for a field X. In fact, with the
choice of v, the group of modulus of X×

v is of finite index in that of X×
A , and if

X×
A,1 denotes the elements of XA with modulus 1, we then prove immediately

that XA,1/XK is compact. It remains to the case of M(2,K) to prove. It is
well known that we can use the existence of the ”Siegel sets”. But in the very
simple case which we are interested in, the proof is quite easy. Let P be the
group of upper triangular matrices, D the group of diagonal matrices, and N
the unipotent group of P .By triangulation (II,lemma 2.2 for v ∈ P ), we have

GL(2, A) = PA · C = DANAC

where C equals a maximal compact subgroup of GL(2, A). According to the
theorem of approximation in the adeles A ' NA, and the property 4) having
been proved for K, we have

PA = DKDvC ′ ·NKNvC ′′.

The elementary relation of permutation
(

a 0
0 b

)(
1 x
0 1

)
=

(
1 ax/b
0 1

)(
a 0
0 b

)

implies PA = PKPvC ′′ where C ′′ ⊂ PA is compact. 4) is proved.

Exercise

1. Let X be a global field K, or a quaternion field H/K. Prove that X×
A /X×

K is
the direct product of the compact group XA,1/X×

K and a group being isomorphic
to R+ = {x ∈ R|x > 0} or to Z, depending on the characteristic of K is zero or
not. It follows that the group of quasi-characters (continuous homomorphisms to
C×) of X×

A being trivial on X×
K is isomorphic to the direct product of the group

of characters (homomorphism with value in {z ∈ C| |z| = 1} ) of XA,1/X×
K by

the group of quasi-characters of R+ or Z. Prove then that every quasi-character
of X×

A being trivial on X×
K has the form

χ(x) = c(x)||x||s

where s ∈ C, and c is a character of X×
A being trivial on X×

K .

3.2 Zeta function, Tamagawa number

Definition 3.6. The Classic zeta function of X, where X is a global field K or
a quaternion field H/K, is the product of the zeta functions of Xv, here v ∈ P .



3.2. ZETA FUNCTION, TAMAGAWA NUMBER 49

The product is absolutely convergent when the complex variable s has a real part
Res > 1. We therefore have

ζA(s) =
∏

v∈P

ζv(s), Res > 1.

It follows from II,4.2 the following formula, called the multiplicative formula:

ζH(s/2) = ζK(s)ζK(s− 1)
∏

v∈Ramf H

(1−Nv1−s)

where Nv is the number of the prime ideal associated with the finite place v ∈ P .

This formula plays a basic role in the classification of the quaternion algebra
over a global field. The definition of general zeta function is intuitive: not only
restrict to the finite places.

Definition 3.7. The zeta function of X is the product ZX(s) =
∏

v∈V ZXv
(s)

of the local zeta functions of Xv for v ∈ V .

By abuse of terms we call by zeta function of X the product of ZX by a
non-zero constant too, The functional equation is not modified.

Proposition 3.2.1. (Multiplicative formula). The zeta function of global field
K equals

ZK(s) = ZR(s)r1Zr2
C ζK(s),

where r1, r2 denote the numbers of real places, complex places of K respectively,
and the the archimedean local factors are the gamma functions:

ZR(s) = π−s/2Γ(s/2), ZC(s) = (2π)−sΓ(s).

The zeta function of quaternion algebra H/K equals

ZH(s) = ZK(2s)ZK(2s− 1)JH(2s),

whereJH(2s) depends on the ramification of H/K, and JH(s) =
∏

v∈RamH Jv(s),

with Jv(s) =

{
1−Nv1−s, if v ∈ P

s− 1, if s ∈ ∞ .

Now we shall use the following adele measures:

textoverXA, dx′a =
∏
v

dx′vwith dx′v =

{
dxv, x ∈ ∞
D
−1/2
v dxv, v ∈ P.

over X×
A , dx∗A =

∏
v

dx∗vwithdx∗v =

{
dx·v, v ∈ ∞
D
−1/2
v dx×v , v ∈ P

For the local definition see II,4.
From this we obtain by the compatibility the adele measures on the groups
XA,1,H

1
A,H1

A/K ′
A, denoted by dxA,1, dx1

A, dxA,P respectively. We denote by
the same way the adele measure on GA, and that on GA/GK obtained by
compatibility with the discrete measure assigning every element of GK with
value 1 if GK is a discrete subgroup of GA.
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Definition 3.8. The discriminant of X is the product of the local discriminants
Dv. We denote it by DX =

∏
v∈P Dv.

The number DX is well-defined, because of Dv = 1, p.p.. We also have

DH = D4
KN(dH)2or N(dH) =

∏

v∈Ramf H

Nv

is the norm of reduced discriminant of H/K.
Fourier transformation. It is defined with the canonical character ψA =

∏
v ψv

and the self-dual dx′A on XA:

f∗(x) =
∫

XA

f(y)ψA(xy)dy′A.

The group XK is discrete, cocompact, of covolume

vol(XA/XK) = 1

in XA for the measure dx′A, then according to theorem 1.4, we have the
POISSON FORMULA ∑

a∈XK

f(a) =
∑

a∈XK

f∗(a)

for every admissible function f , i.e. f, f∗ are continuous and integrable, and for
every x ∈ XA,

∑
a∈XK

f(x + a) and
∑

a∈XK
f∗(x + a) converge absolutely and

uniformly with respect to parameter x.

Definition 3.9. The Schwartz-Bruhat functions on XA are the linear combi-
nation of the functions of the form

f =
∏

v∈V

f ′v

where fv is a Schwartz-Bruhat function on Xv. We denote by S(Xa) the space
of these functions.

EXAMPLE. The canonical function of XA equals the product of the local
canonical functions : Φ =

∏
v∈V Φv.

The general definition of zeta functions brings in the quasi-characters χ of XA×

being trivial on X×
K If X is a field, Fusijiki’s theorem (theorem 1.4 and exercise

1.1) proves that
χ(x) = c(x)||x||s, x ∈ C,

where c is a character of X×
A being trivial on X×

K .

Definition 3.10. The zeta function of a Schwartz-Bruhat function f ∈ S(XA,
and of a quasi-character χ(x) = c(x)||x||s of X×

A being trivial on X×
K is defined

by the integral

ZX(f, χ) =
∫

X×
A

f(x)χ(x)dx∗A,

denoted also by

ZX(f, c, s) =
∫

X×
A

f(x)c(x)||x||sdx∗A,

when the integral converges absolutely.
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We notice that the zeta function of X , up to a multiplicative constant being
independent of s, equals to

ZX(Φ, 1, s).

The functional equation of zeta functions is a key-point of the theory of quater-
nion algebra.

Theorem 3.2.2. (Functional equation.)
1) The zeta function ZX(f, c, s) is defined by a integral which converges abso-
lutely for Res > 1.
2)If X is afield, it can be extended to a meromorphic function on C satisfying
the functional equation:

ZX(f, c, s) = ZX(f∗, c−1, 1− s).

a) The only possible poles are
– s = 0, 1 with residue −mX(c)f(0), mX(c)f∗(0) respectively if K is a number
field.
– s ∈ 2πiZ

Logq , 1+2πiZ
Logq , with residue −mX(c)f(0)/Logq and mX(c)f∗(0)/Logq

respectively, if K is a function field, and ||XA|| = qZ. Here we have put

mX(c) =
∫

XA,1\X×
K

c−1(x)dxA,1.

In particular, if c is a nontrivial character, the zeta function ZX(f, c, s) is entire.
b) The volume vol(XA,1/X×

K) is equal to mX(1) = lims→1 ζK(s) , denoted by
mK .

Corollary 3.2.3. The zeta function of X defined in 2.1 satisfies the functional
equation:

ZX(s) = D
1
2−s

X ZX(1− s),

if X is a field.

Definition 3.11. The dual quasi-character χ∗ of a quasi-character χ of X×
A

being trivial on X×
K equals

χ∗(x) = χ(x)−1||x||.
If X is a field , by this definition the functional equation of ZX(f, χ) can be
written as

ZX(f, χ) = ZX(f∗, χ∗).

Proof of the functional equation.
1) For obtaining the functional equation of the Riemann zeta function

ζ(s) =
∑

n≥1

n−s =
∏
p

(1− p−s)−1, s ∈ C, Res > 1

we consider
Z(s) =

∫ ∞

0

e−πx2
x−sΓ(s/2)ζ(s),

We divide R+ into two parts : R+ = [0, 1] ∪ [1,∞]. The integral restricted on
[0, 1] defines a entire function. For the integral restricted on [1,∞] we apply
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a change of variables x 7→ x−1. The Poisson formula allow us to find again
an entire function , plus a rational fraction with simple poles 0 and 1. Sine it
is already allowed a constant, ZX(f, c, s) is a generalization of Riemann zeta
function. The method for proving the functional equation is the same.
2) Applying to ZX(f, c, s). We shall treat the problem of convergence far behind.
Temporarily we admit that ZX(f, c, s) converges for Res sufficiently large, and
that X is a field. We choose a function ϕ which separates R+ into two parts
[0, 1] and [1,∞] by putting

ϕ =





0, if 0 ≤ x < 1
1/2, if x = 1
1, if x > 1

.

We consider firstly the integral taking for ||x||−1 ∈ [0, 1],

Z1
X(f, c, s) =

∫

X×
A

f(x)c(x)ϕ(||x||)||x||sdx∗A,

which defines an entire function on C. In fact if Z1
X(f, c, s) converges absolutely

for Res ≥ Res0, it converges also absolutely for Res ≤ Res0 because of ||x||s ≤
||x||s0 if ||x|| ≥ 1. The remaining integral is taken for ||x||−1 ∈ [1,∞], after the
change of variables x 7→ x−1 , it can be written as

I =
∫

X×
A

f(x−1)c(x−1)ϕ(x||)||x||−sdx∗A.

After seeing that every term in the symbol of the integral except for f(x−1

only depend on the class of x in X×
A /X×

K we can apply Poisson formula to it.
Utilizing that X is a field, writing it as XK = X×

K ∪ {0}.

I =
∫

X×
A \X×

K

c(x−1)ϕ(||x||)||x||−s{
∑

a∈XK

f(ax−1 − f(0))}dx∗A,

where the terms in the embrace, transformed by Poisson formula, is

||x||[f∗(0) +
∑

a∈X×
K

f∗(xa)]− f(0).

Regrouping the terms, I can be written as the sum of one entire function and
the other two terms:

I = Z1(f∗, c−1, 1− s) + J(f∗, c, 1− s)− J(f, c,−s)

with
J(f, c,−s) = f(0)

∫

X×
A /X×

K

c(x−1)||x||−sϕ(||x||)dx∗A.

applying the exact sequence

1 → XA,1/X×
K → X×

A /X×
K → ||X×

A || → 1

we obtain

J(f, c,−s) = f(0)
∫

||X×
A ||

t−sϕ(t)dt·
∫

XA,1/X×
K

c−1(y)dy.
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The function J is the product of three terms. The first integral only depends
on s, the second one on c. Because there exists s0 such that the first integral
converges, it follows the second one converges for every c. We regain this way
without appealing to Fujisaki’s formula the formula

mX(c) =
∫

XA,1/X×
K

c−1(y)dy < ∞

Compute the integral of s: according to K is a number field, or a function field,
we have ∫ ∞

1

t−sdt/t or
1
2

+
∑

m≥1

q−ms, if ||X||A = qZ

that is to say,

s−1, or
1
2
(1− q−s)−1(1 + q−s

. Combining these results together we obtain the following expression for zeta
function:

ZX(f, c, s) = Z1
X = Z1

X(f, c, s) + Z1
X(f∗, c−1, 1− s)

−mX(c)·
{

f∗(0)(1− s)−1 + f(0)s−1, if K is a number field
f∗(0)

2
qs−1

−1+qs−1 + f∗(0)
2

1+q−s

1−q−s, , if K is a function field,and ||X||A = qZ

. From this the functional equation and the poles of ZX(f, c, s) are deduced if
X is a field.
3) computing mX(1). The residue of the particular zeta function ZX(Φ, 1, s) at
point s = 1 by definition is

lim
s→1

(s− 1)
∫

X×
A

Φ(x)||x||sdx∗A

where dx∗A = ||x||−1
∏

v∈P (1−Nv=1)dx′v
∏

v∈∞ dx′v.
we show that the residue equals

∫

XA

Φ(x)dx′A · lim
s→1

(s− 1)ζK(s) = Ψ∗(0) · lim
s→1

(s− 1)ζK(s).

On the other hand, we have seen in 2) that the residue is equal to mX(1)Φ∗(0).
Comparing them we obtain the value of mX(1):

mX(1) = vol(XA,1/XK) = lim
s→1

(s− 1)ζK(s) = mK .

We then obtain the value of Tamagawa number of X1:

τ(X1) =
∫

Xa,1/XK

m−1
K dxA,1 = 1.

This computation is an example of the very rich similitude between ZH(s) and
ZK(s). We on one side have a functional equation for ZH(s) obtained from 2)
if H is afield, and on other side we have a multiplicative formula relating ZH(s)
to ZK(s) according to 2.1.We can then deduce from the functional equation of
ZK(s)the properties and the functional equation of ZH(s) for every H. Compare
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the results obtained by the two methods: we shall have a chance to obtain some
apparently different results but which essentially should be the same. It will
deduce from it in §3 a large part of the theorem of classification.
4)Convergence. The Riemann zeta function converges absolutely for Res = σ >
1 since ζ(σ) = n−σ satisfies

1 < ζ(σ) < 1 +
∫ ∞

1

t−σdt.

If K is a finite extension of Q of degree d, there are in K at most d prime ideals
over a ideal of Z, and

1 < ζK(σ) <
∏

P

(1−NP−σ)−1 ≤ ζ(σ)d,

where P runs through the prime ideals of K. Therefore the zeta function con-
verges for Res > 1.
If K is a function field Fq(T ) , the zeta function is a rational fraction in q−s

and the problem of convergence do not arise.
Convergence of the quadratic zeta functions.Let f be a function of Schwartz-

Bruhat space, and c be a character of XA,1. There are positive real numbers
M.N such that NΦ < r < MΦ, and |c| = 1, hence the integral ZX(f, c, s) con-
verges absolutely because of that the the zeta function of X which we denote by
ZX(s) converges absolutely. We have seen that it can be expressed as a product
of zeta functions of the center: ZK(2s)ZK(1−s), by use of this the convergence
is no problem. We see that ZX(s) is defined by an absolutely convergent integral
for Res > 1.

Definition 3.12. The Tamagawa measure on XA, where X = H or K , is the
Haar measure dx′A . the Tamagawa measure on X×

A is the Haar measure m∗
K .

the measures dx′A, dx∗A have been defined already in §2, this chapter, and mK

is the residue at the point s = 1 of the classical zeta function ζK of K. We
introduce the Tamagawa measures on XA,1, H1

A, H×
A /K×

A respectively in a
standard way as the kernels of the modulus || · ||X on X, of the reduced norm,
projective group.

Definition 3.13. The Tamagawa number of X = H, or K, X1,H
1, G = H×/Ktimes

are the volumes computed for the canonical measures obtained from the Tama-
gawa measures

τ(X) = vol(XA/XK) τ(X1) = vol(X×
A,1/X×

K)
τ(H1) = vol(H1

A/H1
K) τ(G) = vol(H×

A /K×
A H×

K).

In these definition it is assumed these volumes are finite. It is true actually in
our cases.

We have

Theorem 3.2.4. The Tamagawa numbers of X, X1,H
1, G have the following

values:
τ(X) = τ(X1) = τ(H1) = 1, τ(G) = 2.
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Proof. When X is a field, the computation of Tamagawa number is implicitly
contained in the theorem 2.2 of the functional equation. If X = M(2,K) , it
can compute directly. The theorem 2.3 can be extended to the central simple
algebra X. In this case we have τ(X) = τ(X1) = τ(H1) = 1 and τ(G) = n,
if [X : K] = n2. Reference: Weil [2]. By the definition of Tamagawa measure,
τ(X) = 1. We shall prove τ(G) = 2τ(H1) and τ(H1) = τ(H1), after that then
τ(H1) = 1. The proof is analytic, and the Poisson formula is involved. The
exact sequence which is compatible with thee Tamagawa measures

1 −−−−→ H1
A/H×

K −−−−→ HA,1/H×
K

n−−−−→ KA,1/K× −−−−→ 1

proves that τ(H1) = τ(H1)τ(K−1
1 ). The theorem 2.2 shows τ(H1) = τ(K1) = 1

if H is a field because of the definition of Tamagawa measure itself. Therefore
τ(H1 = τ(H1) for every quaternion algebra H/K. It follows from the proof of
Theorem 2.2 that

2
∫

K×
A /K×

f(||k||K)dk∗A =
∫

K×
A /K×

f(||k||K2)dk∗A

for every function f such that the integrals converge absolutely. Applying
||h||H = ||n(h)||K2 if h ∈ H times

A , we see that
∫

H×
A /H×

K

f(||h||H)dhA·τ(H1)
∫

K×
A /K×

f(||k||K)dk∗A = τ(G)
∫

K×
A /K×

f(||k||K)dkA∗ ,

it follows τ(G) = 2τ(H1). The Theorem has been proved when X = H or K is
a field.
It remains to prove τ(SL(2,K)) = 1. The starting point is the formula

(2)
∫

A2
f(x)dx =

∫

SL(2,A)/SL(2,K)

[
∑

a∈K2−

0

0




f(ua)]τ(u),

where f is an admissible function on A2, cf. II,§2, and τ(u) is a Tamagawa
measure on SL(2, A)/SL(2,K), and where A2 is identified with the column
vectors of two elements in A on which SL(2, A) operates by

(
a b
c d

)(
x
y

)
=

(
ax + by
cx + dy

)
.

The orbit of
(

0
1

)
is A2−

(
0
0

)
and its isotropic group is NA = {

(
1 x
0 1

)
|x ∈ A}.

We apply Poisson formula,
∑

a∈K2

f(ua) =
∑

a∈K2

f∗(tu−1a)

because of det(u) = 1. Here we give an other expression for the integral (2) in
function of f∗. In fact, it prefers to write the integral in f∗ into the function on
f∗∗ = f(−x). Since τ(tu−1) = τ(u), we obtain

(3)
∫

A2
f∗(x)dx =

∫

SL(2,A)/SL(2,K)

[
∑

a∈K2

f(ux)− f∗(0)]τ(u).
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The difference (2) - (3) is
∫

A2
[f(x)− f∗(x)] =

∫

SL(2,A)/SL(2,K)

[f∗(0)− f(0)τ(u).

It follows that the volume of SL(2, A)/SL(2,K) for the measure τ equals 1.

Historic note

The zeta function of a central simple algebra over a number field was introduced
by K. Hey in 1929, who showed his functional equation in the case where the
algebra is a field. M. Zorn noticed in 1933 the application of the functional
equation to the classification of quaternion algebra(§3). The results of K.Hey
were generalized by H.Laptin [1], M.Eichler [4], and H.Maass [2] to the notion
of L-functions with characters. Applying the adele technique to their study is
made by Fusijaki 1, and the formulation of the most generality of zeta functions
is due to R. Godement [1], [2]. One can find the development of their theories
in T.Tamagawa [3], H. shimizu [3]. The application of the functional equation
to the computationof Tamagawa numbers can be found in A.Weil [2].

Exercise

Riemann zeta function. Deduce from the functional equation (Theorem 2.2)
that of the Riemann zeta function ζ(s) =

∑
n≥n n−s, Res > 1, with the

known formula
ζ(s) = π−s/2Γ(s/2)ζ(s)

is invariant by s 7→ 1− s, or again :

ζ(1− s) =
2

(2π)s
cos(πs/2)Γ(s)ζ(s).

Prove then for every integer k ≥ 1, the numbers ζ(−2k) are zero, the numbers
ζ(1− 2k) are nonzero and given by

ζ(1− 2k) =
2(−1)k(2k − 1))!

(2π)2k
ζ(2k)

and
ζ(0) = −1

2
.

We know Bernoulli numbers B2k are defined by the expansion

x

ex − 1
= 1− x/2 +

∑

k≥1

(−1)k+1B2k
x2k

(2k)!
.

Demonstrate

ζ(2k) =
22k−1

(2k)!
B2kπ2k.

Deduce the number ζ(1− 2k) are rational and are given by the formula

ζ(1− 2k) = (−1)k B2k

2k
.
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Verify the following numerative table:

ζ(−1) = − 1
22·3 , ζ(−3) = 1

23·3·5 , ζ(−5) = − 1
22·32·7

ζ(−7) = 1
24·3·5 , ζ(−9) = 1

3·22·11 , ζ(−11) = 691
23·32·5·7·13

.

3.3 Cassification

We intend to explain how the classification theorem can be proved by zeta
functions, and how one can deduce from it the reciprocal formula for Hilbert
symbol and the Hasse-Minkowski principle for quadratic forms.

Theorem 3.3.1. (Classification). The number |Ram(H)| of ramified places in
a quaternion algebra H over K is even. For every finite set S of the places of
K with even number S, it exists one and only one quaternion algebra H over
K, up to isomorphism, such that S = Ram(H).

Another equivalent statement of the theorem is formulated by an exact se-
quence :

1 −−−−→ Quat(K) i−−−−→ ⊕Quat(Kv) ε−−−−→ {∓1} −−−−→ 1,

where i is the mapping which assigns an algebra H the set of its localization
modulo isomorphism, and ε is the Hasse invariant: it associates (Hv) with the
product of the Hasse invariants Hv, i.e. −1 if the number of Hv which are fields
is odd, 1 otherwise.
Proof of part of the classification thanks to the zeta functions.
If H is a field, we saw in Theorem 2.2 that ZH(s) has the simple poles at 0 and
1, and is holomorphic elsewhere. The expression ZH in function of ZK which
we recall in (2.1) that

ZH(s/2) = ZK(s)ZK(s− 1)JH(s)

where JH(s) has a zero of order −2 + Ram(H) at point s = 1, shows the order
of ZH at point s = 1/2 equals the order −2 + Ram(H). Then the fundamental
result follows:
Property I.
Characterization of matrix algebra : for H = M(2,K) if and only if Hv = M(2,Kv for every place v.
It follows then (Lam [1], O’Meara [1]):

Corollary 3.3.2. (Hasse-Minkowski principle for quadratic forms). Let q be a
quadratic form over a global field of characteristic unequal 2. Then q is isotropic
over K if and only if q is isotropic over Kv for every place v.

We notice that in the two theorems, one can replaces ”for every place” by ”
for every place possibly excluding someone”
We now explain how the Hasse-Minkowski principle can be derived from the
theorem of the characterization of matrix algebra. Let n be the number of
variables of the quadratic form q.
n = 1, there is nothing to prove.
n = 2, q(x, y) = ax2+by2, up equivalence on K, and the principle is equivalent
to the square theorem: a ∈ K×2 ↔ a ∈ K×

v
2
, ∀v. We shall give it a proof by

in advantage of the zeta functions. If L = K(
√

a) is isomorphic locally to K⊕K
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everywhere, hence ZL(s) = ZK(s)2 has a double pole at s = 1, this implies that
L is not a field and then a ∈ K×2.
n = 3, q(x, y, z) = ax2 + by2 + z2, up to equivalence on K. Choosing H to be
the quaternion algebra associating to {a, b}, the principle is equivalent to the
characterization of matrix algebra.
n ≥ 4, It turns back by induction to the precedent cases, cf. Lam [1],p.170.
Since JH and ZK satisfy the functional equations:

JH(s) = (−1)|Ram(H)| ∏

p∈Ramf (H)

Np1−s · ZH(2− s),

ZK(s) = D
s−1/2
K ZK(s).

We obtain a functional equation for ZH :

ZH(s) = (D4
HN(dH)2)

1
2−s(−1)|Ram(H)|ZH(1− s)

which, if comparing it with the functional equation (thm.2.2)ZH = D
1
2−s

H ZH(1−
s) obtained directly when H is a field, shows that DH = D4

KN(dH)2, but
immediately:
Property II.
The number of places ramified in a quaternion algebra is even.
In the case of characteristic different from 2, this statement is equivalent to the
reciprocal formula of Hilbert symbol.

Corollary 3.3.3. (Reciprocal formula of Hilbert symbol). Let K be a global
field of characteristic different from 2. For two elements a, b of K×, let (a, b)v

be their Hilbert symbol on Kv. We have the product formula
∏
v

(a, b)v = 1

where the product takes on every place v of K.

Application:
1) Choosing K = Q and for a, b two odd prime numbers, one can verifies the
process for obtaining the quadratic reciprocal formula
2)Computation of symbol (a, b)2. The Hilbert symbol of two rational numbers
a, b on Qp can be computed easily with the rule described in II,§1. We shall
calculate (a, b)2 by using the product formula:(a, b)2 =

∏
v 6=2(a, b)v.

Before proving the property of existence of a quaternion algebra of the given
local Hasse invariants, we extract some consequences of property I and property
II above. The extension L/K are always assumed to be separable.

Corollary 3.3.4. (Norm theorem in quadratic extension). Let L/K be a sep-
arable quadratic extension, and θ ∈ K×. For θ to be a norm of an element in
L if and only if θ is a norm of an element in Lv = Kv ⊗ L for every place v
excluding possibly one.

Proof. The quaternion algebra H = {L, θ} is isomorphic to M(2,K) if and only
if θ ∈ n(L) by I,2.4., and for that if and only if Hv ' M(2,K) for every place v
excluding possibly one byu property I and II. Since Hv ' {Lv, θ}, the corollary
is proved.
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Corollary 3.3.5. (characterization of neutralized field). an extension of fi-
nite degree L/K neutralize a quaternion algebra H over K if and only if Lw

neutralize Hv for every place W |v of L.

Proof. For L neutralizing H if and only if L ⊗ H ' M(2,K), According to
Property I, if and only if that for every place w of L we have (L⊗H)w'M(2,Lw

.
Using then the equality (L⊗H)w=Lw

⊗Hv if v = w|K ; the second tensor product
is taken on Kv.

Lemma 3.3.6. Let K be a local field, and L = K(x) be a separable quadratic
extension of K. Let f(x) be the minimal polynomial of x over K:

f(x) = (X − x)(X − x̄) = X2 − t(x)X + n(x).

If a, b ∈ K are enough near to t(x), n(x) respectively , then the polynomial

g(X) = X2 − aX + b

is irreducible over K and has a root in L.

Proof. If K = R, the discriminant t(x)2 − 4n(x) is strictly negative, hence
a2 − 4b is so if a and b are enough near to t(x) and n(x). If K 6= R, let
y ∈ Ks such that y2 = ay + b. If ||a|| < A and ||b|| < A, where A is a
strictly positive constant, the inequalities finally prove that ||y|| < A. We have
(y − x)(y − x̄) = (t(x)− a)y = (n(x)− b), and hence can take ||(y − x)(y − x̄)||
also small as we like if choosing a and b sufficiently near to t(x) and n(x). But
x 6= x̄ since the extension is separable, and it is possible to choose a and b such
that

||y − x|| < ε, ||y − x̄|| > varepsilon.

There does not exist a K-automorphism f such that f(x) = x̄, f(y) = y !
Thus K(y) ⊃ K(x), and because of [K(y) : K] ≤ 2, so K(x) = K(y).

This lemma and the theorem of approximation (thm. 2.2) allow us to obtain

Lemma 3.3.7. It exists a separable quadratic extension L/K such that Lv/Kv

is equal to a given separable extension for v belonging to a finite set of places.

Theorem 3.3.8. Let L/K be a quadratic extension and n the norm of L/K
which is extended to ideals. We have [K×

A : K×n(L×A)] = 2.

Proof. Let χ be a character of K×
A being trivial on K×n(L×A). Locally χ2

v = 1,
and Zv = K×

A ∩ {K×n(L×v )
∏

w 6=v K×
v } is closed in K×

A , because of

χ =
∏

v∈V

xv, and K×n(L×A =
⋂

v∈V

Zv.

We shall also prove the inequality [K×
A : K×n(L×A] ≤ 2. We construct an

element iv of K×
A not belongs to K×n(L×A):

iv = (xw), withxw =

{
1, if w 6= v

uv, where uv /∈ n(L×v ) if w = v
,

for every place v of K such that Lv is a field. This element does not belong to
K×n(L×A). If it belongs to K×n(L×a ), it would exist an element x ∈ K× such
that x /∈ n(L×v ) but x ∈ n(L×w), ∀w 6= v. it contradicts with 3.4.
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Theorem 3.3.9. (Maximal commutative subfield). For a quadratic extension
L/K can be embedded in a quaternion field H if and only if that Lv is a field
for v ∈ Ram(H). Two quaternion algebras have always some common maximal
commutative subfields (up to isomorphism) and the group Quat(K) is defined.

Proof. For a quadratic extension L/K to be contained in a quaternion field H/K
it is obviously necessary that for every v of K the algebra Lv to be contained
in Hv. therefore, Lv should be a field if Hv is a field. If v ∈ Ram(H), v then
can not be decomposed in L. Conversely, if this condition is satisfied, we then
choose an element θ of the set

K× ∩
∏

v∈Ram(H)

ivn(L×a )

which is non-empty since |Ram(H)| is even by 3.7. Because that θ ∈ n(L×u if
u /∈ Ram(H), and θ /∈ n(L×v ) if v ∈ Ram(H), the quaternion algebra {L, θ}
is isomorphic to H. If H and H ′ are two quaternion algebras over K, Lemma
3.6 allows to construct an extension L, such that Lv is a field if v ∈ Ram(H) ∪
Ram(H ′). The precedent results give then the inclusion in H and H ′. The
group Quat(K) is hence defined, see I, the end of §2.

The structure of group Quat(K) is given by the following rules: if H < H ′

are two quaternion algebras over K, we define HH ′ up to isomorphism by

H ⊗H ′ ' M(2,K)⊕HH ′.

It satisfies
(HH ′)v ' HvH ′

v, ε(HH ′)v = ε(Hv)ε(H ′
v).

It follows that the ramification of HH ′ can be deduce from that of H and that
of H ′ by

Ram(HH ′) = {Ram(H) ∪Ram(H ′)} − {Ram(H) ∩Ram(H ′)}.

The classification theorem results then from the property of existence:
Property III.
For two places v 6= w of K there exists a quaternion algebra H/K such that Ram(H) = {v, w}.
Proof. If L/K is a separable quadratic extension such that Lv, Lw are the fields
(3.6), and θ ∈ iviwn(L×A ∩ k× (see their definition in the proof of 3.7), thus
Ram({L, θ}) = {v, w}.

Example: The quaternion algebra over Q .
The quaternion algebras over Q denoted by {a, b} generated by i, j satisfying

i2 = a, j2 = b, ij = −ji

is ramified at the infinity if and only if a and b are both negative. Its reduced
discriminant d is the product of a odd number of prime factors if a, b < 0 and
of an even number otherwise. For example,

{−1,−1}, d = 2; {−1,−3}, d = 3; {−2,−5}, d = 5; {−1,−7}, d = 7;

{−1,−11}, d = 11; {−2,−13}, d = 13; {−3,−119}, d = 17; {−3,−10}, d = 30.
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A rapid method for obtaining the examples is to use the likeness in order to
avoid the study of {a, b}2, with remarking that if p is a prime number with p ≡
−1(mod4), then {−1,−p} has the discriminant p, finally for p ≡ 5mod(8), then
{−2,−p} has discriminant p. A little attempt allows to find easily a quaternion
algebra with a given discriminant, that is to say, two integer numbers , of which
the local Hilbert symbols are given in advance. For example,

{−1, 3}, d = 6; {3, 5}, d = 15; {−1, 7}, d = 14.

If p is a prime, p ≡ −1(mod4), then {2, p} has the discriminant 2p; if p ≡
5(mod8) , then {−2, p} has the discriminant 2p.

3.4 Norm theorem and strong approximation the-
orem

. The norm theorem was proved in 1936-1937. Hasse and Schilling [1], Schilling
[1],Maass [1], Eichler [3], [4] made contribution to its proof.
Its application to the euclidean order, and to the functional equation of L func-
tion was made by Eichler [5]. The strong approximation theorem for for the
unit group with reduced norm 1 of the central simple algebra over number fields
is due to Kneser [1], [2], [3]. A recent article have proved this theorem in the
case of function field(Prasad [1]).

Theorem 3.4.1. (Norm theorem) Let KH be the set of the elements of K which
are positive for the infinite real place of K and ramified in H. Then KH = n(H).

Proof. The condition is natural since n(H) = R+. Conversely let x ∈ K×
H ; we

construct a separable quadratic extension L/K such that :
– x ∈ n(L),
– for every place v ∈ Ram(H), Lv/Kv is a quadratic extension. Therefore, L
is isomorphic to a commutative subgroup of H by 3.8, and x ∈ n(H). This is
an exercise of using the approximation theorem and the lemma on polynomials.
Let S be a finite set of places of K. For the finite v we see that Hvcontains an
element of reduced norm πv. Since H is dense in Hv, we see that H contains
an element of reduced norm a uniform parameter of Kv, and by multiplying x
with n(h) for a suitable element h ∈ H, we can assume that for a finite set S of
places of K:
x is a unit for p ∈ S ∩ P .
We choose for every v ∈ S an extension Lv such that : – Lv − C if v is real,
– Lv is the unramified quadratic extension of Kv if v ∈ P ∩ S.
for every v ∈ S,it exists yv ∈ Lv of norm x. The minimal polynomial of yv over
Kv can be written as

pv(X) = X2 − avX + x.

We choose a ∈ K very near to av if v ∈ S (and the same if one needs an integer
for every place of K excluding possibly one place v /∈ S), so that the polynomial

p(X) = X2 + aX + x

is irreducible and defines an extension K  K(y) ' K[X]/(p(X)) ⊂ Xs, such
that K(y)v = Lv, if v ∈ S.
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We apply this construction to S = Ram(H) and hence obtain this norm theo-
rem.

We can even obtain a little bit stronger form of it.

Corollary 3.4.2. Every element of KH which is integral for every place ex-
cludin possibly one w /∈ Ram(H) is the reduced norm of ann element of H
which is integral excluding possibly for w.

The strong approximation theorem.
Let S be a nonempty set of places of K containing at least an infinite place if
K is a number field. Let H1 be the algebraic group induced by the quaternions
which belongs to a quaternion field H over K and is of reduced norm 1. For a
finite set S′ ⊂ V put

H1
S′ =

∏

v∈S′
H1

v .

Recall that H1
v is compact if and only if v ∈ Ram(H). Otherwise, H1

v =
SL(2,Kv).

Theorem 3.4.3. (Strong approximation). If HS1 is not compact, then H1
KH1

S

is dense in H1
A.

The theorem was proved by Kneser [1], [2], [3] as an application of Eichler’s
norm theorem if K is a number field and S ⊃ ∞. The condition is natural. If
H1

S is compact, since H1
K is discrete in H1

A H1
SH1

K is closed, and hence different
from H1

A definitely.
The condition introduced in the statement of this theorem play a basic role in
the quaternion arithmetics.

Definition 3.14. A nonempty finite set of the places of K satisfies the Eichler condition for Hdenoted
by C.E., if it contains at least a place of K which is unramified in H.

Proof. of the theorem 4.3. Let H1
KH1

S be the closure of H1
KH1

S in H1
A. It is

stable under multiplication. It then suffices prove the theorem for every place
v /∈ S, for every element

(1) a = (aw), with aw =

{
av, integral over Rv,if w = v

1, if w 6= v

for every neighborhood U of a, we have H1
KH1

S∩U 6= ∅. For that, it is necessary
t(H1

KH1
S) ∩ t(U) 6= ∅, where t is the reduced trace which has been extended to

adeles (see III, §3, the Example above Lemma 3.2). We have

(2) t(a) = tw with tw =

{
t(av), if w = v

2, if w 6= v
.

Since t is an open mapping, it suffices to prove that for every neighborhood
W ⊂ KA of t(a), we have t(H1

KH1
S) ∩W 6= ∅. It suffices to prove there exists

t ∈ K satisfying the following conditions: ∗ the polynomial p(X, t) = X2−tX+1
is irreducible over Kv if v ∈ Ram(H),
(3) ∗ t is near to t(a) in KA, that is to say, t is near to t(av) in Kv for a finite
number of places w 6= v, w /∈ S.
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We can prove these conditions in virtue of 3.6 and 1.4. Two elements of the
same reduced trace and the same reduced norm are conjugate (I,2.1), and H×

A =
H×

KH×
S D−1 where D is compact in HA by (3.4) hence H1

KH1
S ∩ D̃(U) 6= ∅.

Recall that if x ∈ H×, we denoted earlier x̃(y) = xyx−1, y ∈ H×, and if
Z ⊂ H×, we denote Z̃ = {z̃|z ∈ Z}, see I,§4, Exercise. There exists then d ∈ D

such that d̃(a) ∈ H1
KH1

S . Let (b) be an sequence of elements of H×
K which

converges in Hv to the v-adic part of d−1. Therefore, bd(a) ∈ H1
KH1

S converges
to a: it is true for v-adic by constructions, and if w 6= v, aw=1. Finally it
concludes that a ∈ H1

KH1
S .

It will be found in 5.8 and 5.9 the applications of the theorem.

3.5 Orders and ideals

Fix a nonempty set S of the places of K, which contains the infinite places if K
is a number field. Thus the ring

R = RS = {x ∈ K|x ∈ Rv,∀v /∈ S}

is a Dedekind ring (Weil [1]).
Example. Let S = ∞, and K ⊃ Q, then R is the integer ring of K. If S is
reduce to one place, and K is a function field, then R ' Fp[T ].
Let H/K be a quaternion algebra over K; the lattices, orders, and ideals in H
are relative to R (see definition I,4).We study the orders and the ideals in virtue
of their local properties. The present section is consists of three parts:
A: General properties of orders and ideals.
B: class Numbers and order types.
C: Trace formulae for the maximal inclusion.
We suppose frequently that S satisfying the Eichler condition defined above and
denoted by C.E., in order to obtain the results more simply. The case where
C.E. not satisfied will be treated in chapter V.
A:General properties.
Let Y be a lattice of H. We write Yv = Rv⊗R Y if v ∈ V . When v ∈ S we have
Rv = Kv, and Yv = Hv.

Definition 3.15. For every complete R-lattice Y of H, and for every place
v /∈ S of K, the Rv-lattice Yv = Rv ⊗R Y is called the localization of lattice Y
at v.

Since S ⊃ ∞, the places which not belong to S are finite. If (e) is a basis
of H/K, the lattice X generated over R by (e) is a global lattice in H which
can be obtained from the local lattices in Hv, v /∈ S in the way described in the
following proposition.

Proposition 3.5.1. Let X be a lattice of H. There exists a bijection between the
lattices Y of H and the set of lattices {(Yp)|Yp is the lattice of Hp, Yp = Xp, p.p.}
given by the inverse mapping of one to another:

Y 7→ (Yp)p/∈S and (Yp)p/∈S 7→ Y = {x ∈ H|x ∈ Yp,∀p /∈ S}.
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Proof. According to the definition of lattice (I.4), for a given lattice Y , there
exists a, b ∈ K× such that aY ⊂ X ⊂ bY . For almost every v /∈ ∞, av, bv are
units. Thus Xp = Yp, p.p. We shall prove V 7→ (Vp)p/∈S is surjective. If (Zp)p/∈S

is a set of local lattices which are almost everywhere equal to Xp, we then set
Y =

⋂
p/∈S(H ∩Zp). We want to prove Y is a lattice, and Yp = Zp. There exists

a ∈ R such that aXp ⊃ Zp ⊃ a−1
p for every p /∈ S. It follows aX ⊃ Y ⊃ a−1X,

hence Y is a lattice. Since S 6= ∅, according to 1.4, H is dense in
∏

p/∈S Hp.
From this we have H ∩ (πZp) = Y is dense in πZp. in particular, Y is dense
in Zp, thus Yp = Zp if p /∈ S. We now prove Y 7→ (Yp)p/∈S is injective. let
Z

∏
p/∈S(Yp ∩H). We claim that Y = Z. It is true that Y ⊂ Z, and there exists

a ∈ R such that aZ ⊃ Y ⊃ Z. Let z ∈ Z. There exists y ∈ Y very near to z by
p-adic for every place p /∈ S, such that a is not a unit in Rp. In fact, we have
Yp = Zp if p /∈ S, and we utilize the approximation theorem 1.4. There exists
then y ∈ Y such that y − z ∈ aZ. We conclude that z ∈ Y . The proposition is
proved.

Definition 3.16. A property ? of lattice is called a local property when a lattice
Y has the property ? if and only if Yp has the property ? for every p /∈ S.

Examples of local property: The properties for a lattice to be

1. an order,

2. a maximal order,

3. an Eichler order, i.e. the intersection of two maximal orders,

4. an ideal,

5. an integral ideal,

6. a two-sided ideal,

are the local properties. This can be deduced easily by the proposition 5.1. We
utilize that if I is an ideal, then its left order Ol(I) (cf. I.4, above Prop.4.2)
satisfies Ol(I)p = Ol(Ip) for all p /∈ S.

Definition 3.17. The level of Eichler order O is an integral ideal of R, denoted
by N such that Np is the level of Op ∀p /∈ S.

Corollary 3.5.2. Let I be an ideal of H,and O be an order of H. n(I) denotes
the reduced norm of I, and d(O) the reduced discriminant of O. Then we have

n(Ip) = n(I)p and d(Op) = d(O)p.

Proof. If (f) is a finite system of generators of I/R, by the definition (I. above
the lemma 4.7) n(I) is the R-ideal generated by n(f). Moreover (f) is also a
finite system of generators of Ip/Rp. It follows that n(Ip) = n(I)p. By the
definition in I,§4, above the lemma 4.9,

I∗ = {x ∈ H|t(xf) ∈ R, ∀f}.
By the proposition 5.1 we obtain (Ip)∗ = (I∗)p. Replacing I by O, and taking
the reduced norm, we see that

d(O)p = n(O∗−1)p = [n(O∗)−1]p = n(O∗)−1
p = n(O∗−1

p = d(Op).
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From II.1.7 and II.2.3 we obtain a characterization of maximal orders by
their reduced discriminant. This permit us to use it for the construction of a
maximal order, or to distinguish whether a given order is maximal.

Corollary 3.5.3. For an order O to be a maximal order if and only if its
reduced discriminant to be equal to

d(O) =
∏

p∈Ram(H),p/∈S

p.

Set d(O) = D; the reduced discriminant of an Eichler order of level N is
equal to DN . However, the Eichler orders are not characterized by their reduced
discriminant unless it is square-free. Since (D, N) = 1, it is equivalent to say
that N is square-free. See exercise 5.3.
Example: let H be the quaternion field over Q of reduced discriminant 26, i.e.
the field generated over Q by i, j satisfying

i2 = 2, j2 = 13, ij = −ji.

In fact, The Hilbert symbol (2, 13)v for the valuations v of Q are

(2, 13)∞ = 1, (2, 13)13 = (
2
13

) = −1, (2, 13)p = 1, if p 6= 2, 13

and the product formula
∏

(2, 13)v = 1 gives (2, 13)2 = 1. We can show that
O = Z[1, i, (1+j)/2, (i+ij)/2] is a maximal order if and only if it makes sure that

1. O is a ring,

2. the elements of O are integers; the reduced trace and the reduced norm
are integers,

3. O is a Z-lattice, Q(O) = H (the last property is obvious for it),

4. The reduced discriminant of O equals 26.

Addition table: The trace of the sum of two integers is an integer , we verify
that the norm remains integer in the following table.

i (1 + j)/2 (i + ij)/2

i 2i i + (1 + j)/2 i + (i + ij)/2
(n = −8) (n = −5) (n = 4)

(1 + j)/2 ∗ 1 + j (1 + i + j + ij)/2
(n = −12) (n = 3)

(1 + ij)/2 ∗ ∗ 1 + ij
(n = 24)

Multiplication table : The norm of the product of two integers is integer, we
verify in the following table that the reduced trace remains integer too, and the
product is stable in O.

left\right i (1 + j)/2 (i + ij)/2

i 2 (i + ij)/ 1 + j
(1 + j)/2 (i− ij)/2 = i− (i + ij)/2 (7 + j)/2 = 3 + (1 + j)/2 −3i
(i + ij)/2 1− j = 2− 2(1 + j)/2 (7i + ij)/2 = 3i + (i + ij)/2 7
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Therefore, O is an order.It is maximal because the reduced discriminant |det(eiej)| 12
of the order Z[e1, ..., e4] = Z[1, i, j, i] is 13 · 8hence the reduced discriminant of
O which is deduced from the above order by a base change of determinant 1/4
equals 13 · 8/4 = 26. We shall see other examples in exercise 5.1,5.2,5.6.
The properties of normal ideals.
These are such ideals whose left and right orders are maximal. The local-global
correspondence in Lattices, and the the properties mentioned in chapter II show
that these ideals are locally principal. We leave as an exercise the following
properties ( utilize the definitions of chapter I,8.5 and the properties of normal
ideals of a quaternion algebra over a local field as we saw in chapter II,§1,2):
(a) A ideal to the left of a maximal order has a maximal right order.
(b) If the right order of ideal I is equal to the left order of ideal J , then the
product IJ is an ideal and n(IJ) = n(I)n(J). Its left order equals that of I,
and its right order equals that of J .
(c) The two-sided ideals ”commute” with the ideals in a sense of CI = IC ′,
where C is a two-sided ideal of the left order of I and C ′ is the unique two-sided
ideal of the right order of I such that n(C) = n(C ′).
(d)If I is an integral ideal of reduced norm AB, where A and B are integral
ideals of R, then I can be factorized
into a product of two integral ideals of reduced norm A and B.
(e) The two-sided ideals of a maximal order O constitute a commutative group
generated by the ideals of R and the ideals of reduced norm P , where P runs
through the prime ideals of R which are ramified in H. We shall utilize the fact
that the single two-sided ideal of a maximal order Op of Hp of norm Rp is Op.
These properties are true too for the the locally principal ideals of Eichler orders
of a square-free level N .

B:The class number of ideals and the type number of orders .
Unfortunately, the property for an ideal being principal is not a local property.
It is just one of the reasons that we work very often on adeles instead of working
globally. It means that we often like to replace a lattice Y by the set (Yp) of its
localizations (5.1). We denote

YA =
∏

v∈V

Yv, with Yv = Hv if v ∈ S.

From now on the orders in consideration will always be Eichler orders, and the
ideals will be principal locally. Fix an Eichler order O of level N . The adele
object associated with it is denoted by OA, the units of OA by O×A , the normal-
izer of OA in HA by N(OA).
The global-adele dictionary.
Ideals: The left ideals of O correspond bijectively with the set O×A/H×

A ; the
ideal I is associated with (xv) ∈ H×

A such that Ip = Opxp if p /∈ S.
Two-sided ideals: correspond bijectively with O×A\N(OA).
Eichler orders of level N : correspond bijectively with N(OA)\H×

A ; the order O′
is associated with (xv) ∈ H×

A such that O′p = x−1
p Opxp.

Classes of ideals: The classes of left ideals of O correspond bijectively with
O×A\H×

A /H×
K . The classes of two-sided ideals correspond bijectively withO×A\N(OA)/(H×

K∩
N(OA)), the types of Eichler order of level N correspond bijectively with H×

K\H×
A /N(OA).

Theorem 3.5.4. The class number of the ideals to the left of O is finite.
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Proof. According to the fundamental theorem 1.4, we have H×
A = H×

A H×
v C for

every place v,and infinity if K is a number field, and where C is a compact set
(dependent of v). Since O×A is open in H×

A by the definition of the topology on
it, and O×A ⊃ H×

v , where v satisfies the above conditions, then it follows that
the class number of ideals is finite by using the global-local dictionary.

Corollary 3.5.5. The class number of two-sided ideals is finite. the type number
of Eichler orders of level N is finite.

In fact, these numbers are less than or equal to the number of the classes
of left ideals of O. Two Eichler orders of the same level being always tied by
an ideal (of which the left order is one of these order, and the right order is
the other one) since two Eichler orders of the same level are locally conjugate
(ch.II), the number of classes of two-sided ideals of O not depends on the choice
of O, but more precisely on its level N . By contrast, the number of classes of
two-sided ideals of O possibly depends on the choice of O, or more precisely on
the type of O.
NOTATION. we denote by h(D, N) = h(Ram(H), N)
the class number of the ideals to the left of O, by t(D, n) = t(Ram(H), N)
the type number of Eichler order of level N , and for 1 ≤ i ≤ t, by h′i(D, N)

the class number of two-sided ideals of an order of the type ofOi, whereOi runs
through a system of representative of Eichler orders of level N .

Lemma 3.5.6. We have h(D, N) =
∑t

i=1 h′i(D, N).

Proof. The types of orders correspond to the decomposition H×
A =

⋃t
i=1 N(OA)xiH

×
K .

Let Oi be the right order of ideal Oxi. We have N(Oi,A) = x−1
i N(OA)xi and

O×i,A = x−1
i O×i,Axi. It follows N(OA)xiH

×
K = xiN(Oi,A)Hi

K andO×A\N(OA)xiH
×
K/H×

K =
O×i,A\N(Oi,A)/(HK ∩N(Oi,A)) = h′i(D, N).

In particular, if the class number of two-sided ideals does not depend on the
chosen type, and is denoted by h′(D, N), we then have the relation

h(D, N)− t(D, N)h′(D, N).

This is the case when S satisfies the Eichler’s condition (see the beginning of
this section): it is an application of the strong approximation theorem(Thm 4.1
and Thm. 4.3)

Definition 3.18. Let KH = n(H) and let PH be the group of the ideals of R
generated by the elements of KH . Two ideals I and J in R are
equivalent in the restrict sense induced by H if IJ−1 ∈ PH . Since H/K is fixed,
we simply say ”in the restrict sense”.

We denote by h the class number of ideals of K in the restrict sense. Recall
KH = {x ∈ K|x is positive for the real places being ramified in H. There-
fore h only depends on K and the real places of Ram(H)∞.

Theorem 3.5.7. (Eichler,[3],[4]). If S satisfies C.E., an ideal to the left of an
Eichler order is principal if and only if its reduced norm belongs to PH

Corollary 5.7 (bis.) If S satisfies C.E., then
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1. The class number h(D, N) of the ideals to the left of an Eichler order of
level N in a quaternion algebra H/K of reduced discriminant D is equal
to h.

2. The type number of the Eichler order of level N in H is equal to t(D, N) =
h/h′(D, N), where h′(D, N) is the class number of the two-sided ideals of
an Eichler order of level N .

3. h′(D, N) is equal to the class number in the restrict sense of the ideals
belonging to the group generated by the square of the ideals of R, The
prime ideal dividing D and the prime ideals I such that Im||N with a odd
power.

Proof. The reduced norm induces a mapping:

O×A\H×
A /HK '→n RA×\K×

A /KH ,

which is surjective , since n(H×
v ) = K×

v if /∈ Ram∞(H) , and injective if v ∈
R∞(H), R×A ⊃ K×

v , since H×
A ⊂ O×AH×

K by the approximation theorem 4.3 for
H1 and n(Op×) = R×p if p /∈ S. It follows the theorem and the part (1) of the
corollary.
We have

n(N(Op)) =

{
K×

p , if p|D or if pm||N with m odd
K×2

p R×p , otherwise
.

It follows that the group of reduced norms of two-sided ideals of an Eichler
order of level N is generated by the squares of ideals of R and the prime ideals
I which divide D, or such that Im||N with an odd power m. The class number
of two-sided ideals of O is equal to the class number in the restrict sense of the
norms of two-sided orders.It is then independent of the choice of O (among the
orders of the same level). The type number of orders of a given level is then
equal to the quotient of the class number of ideals ( this number is independent
of the level) by the class number of two-sided ideals of an order of the level.

Exercise

5.5-5.8.

We consider an Eichler order O, an element x ∈ O, a two-sided ideal I of
O , such that x is prime to I, that is to say, n(x) is prime to n(I). We shall
give a generalization of the theorem of Eichler on the arithmetic progressions:

Proposition 3.5.8. The reduced norm of the set x + I equals to the set KH ∩
{n(x) = J} where J = I ∩R if S satisfies C.E.

Proof. We verify easily that it is true locally. If x = 1, we utilize:

a) the trivial relation n(
(

1 + πnx 0
0 1

)
) = 1 + πnx,

b) if Hp/Kp is a field, then Hp ' {Lnr, u} by II,1.7, and we have a well-known
result (Serre [1]) that the units of Lnr being congruent to 1 modulo pn is sent
surjectively to the units of Kp being congruent to 1 modulo pn.
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If x 6= 1 and x is is a unit in Op for every place p such that Ip 6= Op, and
then we turn back to the precedent case. If Ip = Op we use n(Op) = Ip. It
follows the global result from the local result by means of 4.1 and 4.3. Choose
y ∈ KH ∩ {n(x) + J} such that
– z ∈ H,n(z) = y, is integer except for possibly z ∈ S,
– hv ∈ Ov, n(hv) = y, ∀v ∈ V and hp ∈ x + Ip if p /∈ S.
There exists u ∈ H1

K very near to z−1hv ∈ H1
v excluding possibly a place

z ∈ S. The element zu of reduced norm y can be chosen such that zu ∈ O and
zu ∈ x + I.

Corollary 3.5.9. For every Eichler order O we have n(O) = KH ∩R.

The proposition allows to decide whether a maximal order is euclidean. The
non-commutativity is obliged to distinguish the notion of euclidean order by
right and left.

Definition 3.19. An order O is right euclidean if for every a, b ∈ O there exist
c, d ∈ O with

a = bc = d, d = 0 or Nn(d) < Nn(b)

where N is the norm defined by N(x) = Card(R/Rx) if x ∈ R. We define the
left euclidean in a natural way.

Definition 3.20. We say that R is euclidean modulo W , where W is a set of
real places of K, if for every a, b ∈ R there exist c, d ∈ R with a = bc + d, d = 0
or Nd < Nb and d is positive for the places w ∈ W .

Theorem 3.5.10. If R is euclidean modulo Ram∞(H), every maximal R-
orderof H is left and right euclidean when S satisfies C.E.

Proof. Let a, b belong to an order O of H. There exist x, y ∈ R such that

n(a) = n(b)x + y with y = 0 or N(y) < Nn(b) and y ∈ KH .

If n(a), n(b) are prime to each other, y 6= 0, and according to 5.9, it exists d ∈ O
such that

a ∈ I + dwith n(d) = y, I ∩R = Rn(b)

where I is a two-sided ideal of O. We can verify easily that I ⊃ bO from this it
follows that there exist c, d ∈ O with

a = bc + d,Nn(d) < Nn(b).

Coming along n(a), n(b) being prime to each other, we suppose that O is a
maximal order. We begin by observing that we can assume a, b have no common
left divisors, if one is interested in the right euclidean. The maximal R-orders
are principal if R is euclidean modulo Ram∞(H). We can suppose also that
the irreducible divisor P = Ox of the left ideal Oa are distinct from that of the
ideal Ob. We shall show that it exists an element x ∈ O such that n(b) and
n((a− bx) are prime to each other, then the theorem will be proved. Let P be
an irreducible divisor of On(b) in O. If b ∈ P then a /∈ P and for every x ∈ O ,
a − bx /∈ P . If b /∈ P , then a − bx ∈ P and a − bx′ ∈ O implies b(x − x′) ∈ P ,
Hence (x − x′) ∈ P . Therefore there exists an infinity of x ∈ O such that
a − bx /∈ P . The number of irreducible divisors of On(b) is finite, thus we can
find x with the property a− bx /∈ P, ∀P |On(b). Then n(b) and n(a− bx) are
prime to each other.
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Remark. (Beck)The non-maximal R-orders are never euclidean for the
norm, if K is a number field

Proof. If O′  O is non-maximal R-order, it exists x ∈ O but x /∈ O′, and for
every c ∈ O′, Nn(x− c) ≥ 1. If x = b−1a, where a, b ∈ O′, the division of a by
b in O′ is impossible. In the contra-example, n(b) and n(a) can not be rendered
as being prime to each other.

C:Trace formula for the maximal inclusions.
Let X be a nonempty finite set of places of K containing the infinite place if K
is a number field. Let L/K be a quadratic algebra and separable over K, and B
be a R-order of L. Let O be an Eichler order over R of level N in H, and DN
be the discriminant of O (D is the product of places, identifying to the ideals
of R and being ramified in H and not belonging to S).
For each p /∈ S, it can be given a group Gp such that O×p ⊂ Gp ⊂ N(Op. For
v ∈ S, set Gv = H×

v . The group Ga =
∏

v∈V Gv is a subgroup of H×
A . Denote

G = GA ∩H×

We intend to consider the inclusions of L in H which is maximal with respect
to O/B modulo the inner automorphisms induced by G. cf. I.5 and II.3. We
obtain by an adele argument a ”trace formula” which can be simplified if S
satisfying Eichler’s condition.

Theorem 3.5.11. (Trace formula). Let mp = mp(D, N, B,O×) be the number
of the maximal inclusions of Bp in Op modulo O×p for p /∈ S. Let (Ii), 1 ≤ ileqh

be a system of representatives of classes of ideals to the left of O, O(i) be the
right order of Ii, and m

(i)
O× be the number of maximal inclusions of B in O(i)

modulo O(i)×. we have

h∑

i=1

m
(i)
O× = h(B)

∏

p∈S

mp

where h(B) equals the class number of ideals in B.

Proof. If
∏

mp = 0, the formula is trivial, so suppose it is nonzero. We then can
embed L in H so that for every finite place p /∈ S of K we have Lp ∩ Op = Bp;
we identify L with its image by a given inclusion. Consider then the set of the
adeles TA = {x = (xv) ∈ H×

A }, such that for every finite place p /∈ S of K, we
have xpLpx

−1
p ∩ Op = xpBpx

−1
p which describes the set of the maximal local

inclusions of Lp in Hp with respect to Op/Bp. The trace formula is resulted
from the evaluation by two different methods of number Card(GA\TA/L×).

(1) Card(GA\TA/L×) = Card(B×
A\LA/L×)Card(GA\TA/L×A)

, where B×
A = BA∩GA. we notice firstly that Card(GA\TA/L×A) is equal to the

product of the numbers mp of maximal inclusions of Bp in Op modulo Gp, and
since the numbers are finite and almost always equal to 1 (cf ch.II,§3), then it
is a finite number. Let X be a system of representatives of these double classes.
The equivalent relation:

gAtAlAl = t′Al′A,tA′
t′A ∈ X, lA′ l

′
A ∈ LA, l ∈ L×, gA ∈ GA
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is equivalent to

tA = t′A, l′A = g′AlAl, g′A ∈ t−1
A GAtA ∩ LA = B′

A,

from (1). The second evaluation uses the disjoint union:

H×
A =

t⋃

i=1

N(OA)xiH
×
K

and the adele objectsO(i)
A = x−1

i OAxi, G
(i)
A = x−1

i GAxi correspond globally to a
system of representatives of the type of Eichler orders of level N ,O(〉) = H∩O(i)

A

and to the groups G(i) = H ∩G
(i)
A . We shall prove :

(2) Card(GA\TA/L×) =
t∑

i=1

Card(G(i)
A \N(O(i)

A /H(i))Card(G(i)\T (i)/L×)

where H(i) = N(O(i)
A ∩H×, T (i) = TA∩O(i). Remark that Card(G(i)\T (i)/L×)

is the number of the maximal inclusions of B in O(i) modulo G(i). we have the
disjoint union

TA =
t⋃

i=1

N(O)xiTi/L× disjoint union.

On other hand, Card(GA\N(OA)xiTi/L×) = Card(G(i)
A \N(O(i)

A /L×)
= Card(G(i)

A \N(O(i)
A /H(i)Card(G(i)\Ti/L×). We denote H ′(i)

G = Card(G(i)
A \N(O(i)

A /Hi)
and hG(B) = Card(B′

A\LA/L×). When G = O× the numbers are respec-
tively the class number of two-sided ideals of O(i) and the class number of
the ideals of B. The expressions (1) and (2) gives the Theorem(bis). Let
mp = mp(D, N, B, G) the number of the maximal inclusion of Bp in Op modulo
Gp, if p /∈ S. Let O(i), 1 ≤ i ≤ t be a system of the representatives of the type
of Eichler order of level N , and m

(i)
G be the number of the maximal inclusion of

B in O(i) modulo Gi. We have by the precedent definition:

t∑

i=1

H
′(i)m

(i)
G = hG(B)

∏

p/∈S

mp.

The theorem is proved.

Definition 3.21. Let L/K be a separable quadratic extension. If p is a prime
ideal of K, we define Artin symbol (L

p by

(
L

p
) =





1, if p can be decomposed in L (Lp is not a field)
−1, if p is inertia in L (Lp/Kp is an unramified extension)
0, if p is ramified in L (Lp/Kp is a ramified extension)

.

Definition 3.22. Let B be a R-order of a separable quadratic extension L/K.
We define Eichler symbol (B

p ) to be equal to Artin symbol if p ∈ S or Bp is
a maximal order, and equal to 1 otherwise. The conductor f(B) of B is the
integral ideal f(B) of R satisfying f(B)p = f(Bp),∀p /∈ S.
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With these definitions the theorem II.3.1 and II,3.2 show that if the level N
of the Eichler order O is square-free,

∏

p/∈S

mp(D, N, B,O×)
∏

p|D
(1− (

B

p
))

∏

p|N
(1 + (

B

p
))

and according to the number is zero or not, we have
∏

p/∈S

mp(D, N, B, N(O×)) = 0 or 1.

It follows

Corollary 3.5.12. If O is an Eichler order of a square-free level N ,

h∑

i=1

m
(i)
O× = h(B)

∏

p|D
(1− (

B

p
))

∏

p|N
(1 + (

B

p
))

and
h∑

i=1

m
(i)
N(O) = 0 or h′(B)

according to the precedent number is zero or not, where h′(B) is the quotient of
h(B) by the class number of group of ideals of B generated by:
– the ideals of R,
– the prime ideal of B which is over an ideal of R and ramified in H and in B.

We compute h(B) in practice by the Dedkind’s formula [1], if K is a number
field and S = {∞}:

h(B) = h(L)N [f(B)]
∏

p|f(B)

(1− (
L

p
)Np−1) · [B×

L : B×]−1

where h(L) is the class number of a maximal R-order BL of L, and N is the
norm of K over Q. By definition, if I is an integral ideal of R,

N(I) = Card(R/I).

It is useful to extend the trace formulae (theorem 5.11 and 5.11 bis.) to all of
the groups G which are contained in the normalizer of O, and containing the
kernel O1 of the reduced norm in O.

Corollary 3.5.13. With the notations of theorem 5.11 and 5.11 bis, if G is a
group such that O1 ⊂ G ⊂ N(O, the number of the maximal inclusion of B in
O modulo G satisfies

mG = mO[n(O×) : n(G)n(B×)].

The above index is finite by the Dirichlet’s theorem on the units, cf. chap-
ter V below. In fact, it suffices to write mG = Card(G\T/L×) and to notice
that the inclusion f of L in H is maximal with respect to O/B, Then we have
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Card(G\O×f(L×)/f(L×)) = Card(G\O×/f(B×)) = [n(O×) : n(G)n(B×)].
It follows that Card(G\O×tL×/Ltimes) = Card(G\O×/t̃(L×)), where t̃ is the
inner automorphism associated with t, is independent of t ∈ T .
The trace formula can be used for the computation of the the number of conjugate classes
modulo G (for the definition see I.4): It allows to give an explicit form to
Selberg’s trace formula,and in its special case (trace of the Hecke operators,
Selberg’s zeta function) when the groups are provided by quaternion algebras.

Definition 3.23. a conjugate class of H× is separable if its elements are the
roots in H× of a polynomial X2− tX +n which is irreducible and separable over
K. We call t, n
the reduced trace and reduced norm of the class respectively, and X2 − tX + n
its characteristic polynomial.

Recall (I.4) that the conjugate class modulo G of h ∈ H× is

CG(h) = {ghg−1|g ∈ G}.
Corollary 3.5.14. Let X2 − tX + n be a separable irreducible polynomial over
K which has a root h ∈ H×. Let G be a Group such that O1 ⊂ G ⊂ N(O).
The number of conjugate classes in O modulo G with characteristic polynomial
X2 − tX = n is equal to ∑

B

mG(B),

where B runs through the orders of K(h) containing h,and mG(B) is defined in
5.13 and 5.11.

EXAMPLE.
Computation of the number of conjugate classes of SL2(Z) of reduced trace
t 6= ∓2. We obtain

(2) =
∑

B

h(B).

If x ∈ QS is a root of X2 − tX + 1, then B runs through the orders of Q(x)
containing x, and we set

(2) =

{
1, if Q(x) contains a unit with norm −1
2, otherwise

.

If t = 0,∓1, we find two conjugate classes with reduced trace t.
When S satisfies the Eichler condition (definition §4.) C.E., the term of the left
side of the trace formula can be simplified. Thus we obtain

Theorem 3.5.15. If S satisfies C.E., with the notations of Theorem 5.11 and
5.11 bis, the number of maximal inclusion of B in O Modulo G is equal to dm
for 1/d the type of Eichler of level N and is equal to 0 for the others, with

m = hG(B)/h
∏

p/∈S

mp,

d = [K×
A : R×An(TA)]

where h is the class number of ideals of R in the restrict sense induced by H.
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Proof. The approximation theorem 4.3 of H1 and the fact that S satisfies E.C.
(thus GA ⊃ H×

v , v /∈ Ram(H)) lead to
1) H

′(i) is independent of O(〉), it equal the class number of two-sided ideals of
an Eichler order of level N .
2) If TA 6= ∅, the type number of Eichler orders of level N which B can be
embedded maximally in is equal to 1/[K×

A : R×An(TA)] times the total type
number. In fact, if B is embedded maximally in one of these orders O, the
other orders in which B is embedded maximally are the right order of ideals
I with Ip = Opxp if p /∈ S, where (xp) ∈ TA∩∏

p/∈S
H×

p . We utilize then the
theorem 5.7,5.8 of ideal class when E.D. is satisfied.
3) The number of maxima inclusions of B in O modulo G, if it is not zero, is
independent of the choice of the Eichler orderO of level N . Actually, the natural
mapping G\T/L× → GA\T ′A/L× is bijective if T ′A = {x ∈ Ta|n(x) ∈ K ′}. It is
obviously injective, and it is surjective because of T ′A ⊂ GA(H ∩ Ta) ⊂ GAT .
The properties 1), 2), 3) complete the proof of the theorem.

In order that the theorem 5.15 to be applicable it is useful to know when the
number d in consideration is equal to 1. In this case all of the Eichler orders of
a given level play the same role.

Proposition 3.5.16. Suppose S satisfies C.E.. With the notations of the prece-
dent theorem, the number of the maximal inclusions of B in an Eichler order of
level N modulo G is independent of the choice of the order, and is equal to m
if H 6= M(2,K) or if it exists a place such that:
1) v is ramified in L,
or
2) v ∈ S, v is not decomposed in L.

Proof. Since TA ⊃ L×AN(OA), we raise d to d′ = [K×
A : K×n(L×A)R×An(N(OA))]

and use the theorem 3.7. If there exists a place v such that K×
v 6= n(L×v ), or

turning back to the same thing that v is not decomposed in L, and such that K×
v

is contained in the group K×n(L×A)R×An(N(OA)), then the degree d′ is 1.Since
K×

A ⊂ R×A if v ∈ S, the condition 2) is valid immediately for whole H. It is
automatically satisfied if there exists an infinite place ramified in H. If p is a
finite place ramified in L, then K×

v = R×v = R×v n(L×v ) and d′ = 1. If p is a
finite place ramified in H, then K×

v = n(N(Ov)) and hence d′ = 1.

When the number of quadratic extension L/K unramified is finite, we can
say that in general the number of maximal inclusion of B in O only dependent
on O by intervening of its level. Therefore, in general, the number of conjugate
classes in O modulo G , with the given characteristic polynomial, only depends
on O by its its level, if S satisfies C.E.

Corollary 3.5.17. Suppose that S satisfies C.E. With the notations of 5.12 if
K(h)/K satisfies the condition of 5.16 and if N is square-free, then

∑

h∈B

h(B)
h

∏

b|D
(1− (

B
p))

∏

p|N
(1 + (

B

p
))

is equal to the number of conjugate classes in O modulo O×, of the characteristic
polynomial being equal to that of h.

We shall obtain easily with 5.12 and 5.13 the correspondent formula for the
conjugate classes modulo O1 or N(O).
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Exercise

1. Prove the quaternion field over Q of reduced discriminant 46 is generated
by i, j satisfying i2 = −1, j2 = 23, ij = −ji and O = Z[1, i, j, (1 + i + j +
ij)/2] is a maximal order.

2. Prove the quaternion field over Q is a maximal order if:

p = 2, {a, b} = {−1,−1},O = Z[1, i, j, (1 + i + j + ij)/2];

p ≡ −1mod4, {a, b} = {−1,−p},O = Z[1, i, (i + j)/2, (1 + ij)/2];

p ≡ 5mod8, {a, b} = {−2,−p},O = Z[i, (1 + i + j)/2, j, (2 + i + ij)/4];

p ≡ 1mod8, {a, b} = {−p,−q},O = Z[(1 + j)/2, (1 + aij)/2, ij]

where q is a positive integer which is congruent to −1 modulo 4p, and a is
an integer which is congruent to ∓1 modulo q. We can find in Pizer [6] a
method which allows to obtain the Eichler order of level N explicitly (one
is permitted p|N to the condition that the local order at p is isomorphic
to the canonical order of Exercise II,4.4.

3. Let p be a prime ideal of R, which is prime to the reduced discriminant
D of H/K, where R, K, H are defined as that in §5. Using II. 2.4, II. 2.6,
III. 5.1, prove
a) ∀n ≥ 2, there exist the orders in H of the reduced discriminant Dpn

which are not the Eichler orders.
b) every order in H of reduced discriminant Dp is an Eichler order.

4. Prove the normalizer N(O) of an order of H/K (with the notation in §5)
satisfies

N(O) = {x ∈ H|x ∈ N(Op),∀p /∈ S}.
Suppose that O is an Eichler order. Prove the group N(O)/K×O× is a
finite group which is isomorphic to (Z/2Z)m where m is less or equal to
the number of prime divisors of the reduced discriminant of O.

5. Let S = ∞, K a number field and h+ the class number of ideals of K
in the restrict sense induced by all of the classes real infinite places of K.
Prove
a) if h+ is odd, every quaternion algebra over K which is unramified at
least at one infinite place, and contains a single type of Eichler order (over
the integer ring of K) of a given level.
b) if h+ = 1, with the same hypothesis as in a) all of the Eichler orders
are principal.
In particular if K = Q, every quaternion algebra H/Q such that H ⊗
R ' M(2,R) contains a unique Eichler order O of a given level up to
conjugations. This Eichler order is principal. If DN is its level, then the
group N(O)/Q×O× is isomorphic to (Z/2Z)m, where m is the number of
prime divisors of DN (Exercise 5.4).

6. Tensor product. With the notations of this section, let Hi/K be the
quaternion algebras such that

D = H1 ⊗H2 = H0 ⊗H3
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with the R-orders Oi of Hi, and ti, ni, di be the reduced trace, the reduced
norm, the reduced discriminant of Oi in Hi respectively. Set

T (hi ⊗ hj) = ti(hi)tj(hj), N(hi ⊗ hj) = ni(hi)nj(hj)

if i + j = 3, hi ∈ Hi. Verify the reasonableness of the definitions of
T, N .Give their properties, in particular prove that T is K-bilinear, non-
degenerate. Let O be an R-order of D, and

O∗ = {x ∈ D|T (xO) ⊂ R}.
Verify that N(O∗)−2 is the ideal generated by

{det(T (xixj))|1leqi ≤ 16, xi ∈ O}.
We set d(O) = N(O∗)−1. Verify Oi ⊗ Oj , i + j = 3, is an order of D
satisfying

d(Oi ⊗Oj) = didj .

Choosing H0 = M(2,K), and O0,O3 the maximal orders, we obtain a
maximal order O0 ⊗ O3 of D of which the discriminant d = d3 is the
common discriminant of the maximal orders of D.

7. Prove that in M(2,K) a system of the representatives of types of Eichler
orders of level N over R (with notations in this section) consists of the
orders: (

R I−1

NI R

)
,

where I runs through a system of of ideals of R modulo the group gener-
ated by the principal ideals , the square of ideals, and the prime ideals J
such that Jm||N with an odd power.

8. Eichler-Brandt matrices (Brandt [1],[2], Eichler [8] p.138). The notations
are that in §5. let Ii be a system of representatives of the ideals to the
left of a given order O. We construct the matrices called Eichler-Brandt
as follows,

P (A) = (xi,j(A))

where A is an ideal of R and xi,j(A) is the number of integral ideals of
reduced norm A which is equivalent from right to I−1

i Ij . The ideal A
defines a permutation of the indices f : IiA is equivalent to If(i). It
defines the matrix of this permutation :

L(A) = (di,f(i)), di,j =

{
0 if i 6= j

1 if i = j
.

Prove the following properties: let O be an Eichler order,
a) The sum of the column of P (A) is the same for every column . Denote
it by c(A).
b) The formula for c(A):

c(A)c(B) = c(AB) if (A,B) = 1
c(pa) = 1 if p|D
c(pa) = (Npa+1 − 1)/(Np− 1) if p - DN
c(pa) = 2(Npa+1 − 1)/(Np− 1) if p||N

.
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c) The multiplication rule for P (A):

P (A)P (B) = P (AB) if (A,B) = 1
P (pa)P (pb) = P (pa+b) if p|D
P (pa)P (pb) =

∑b
n=0 N(p)nP (pa+b−2n)L(p−1)n, a ≥ b, if (p,DN) = 1

.

d) The Brandt’s matrices and the matrices of permutation generate a
commutative R-algebra.

9. We still keep the notations of §5. Let I be the model of two-sided ideal
of H, see the definition in I. the place above Theorem 4.5. We say an
element x ∈ H× is congruent multiplicatively to 1 modulo I,written as

x ≡ 1 mod◦I,

if there exists a maximal order O, and a, b ∈ O such that

x = ab−1, a, bare prime to I, a− b ∈ I.

a)Prove that x ≡ 1 mod◦I if and only if there exist two elements a, b ∈
H× such that

s = ab−1, a, b, a+b, ab are integer, n(a), n(b) are prime to I, and a−b ∈ I.

b) we extend naturally the definition of the multiplicatively congruence
over K to the quaternion algebra over the local field and to the ideals. An
element x ∈ HA is congruent multiplicatively to 1 modulo I, if its local
components xp for p /∈ S satisfy

xp ≡ 1 mod◦Ip.

When these notions are defined, we by X(I) denote the set of elements
of X which are congruent multiplicatively to 1 modulo I. Prove that if S
satisfies C.E., then H1

SH1
K is dense in H1

A(A)
c) Prove n(H(I)) = KH ∩K(J) if J = R ∩ I.
d) Prove that if S satisfies C.E., an ideal to the left of a maximal order
O is generated by an element of H(I) if and only if its reduced norm is
generated by an element of KH ∩K(J).

10. Corestriction. Let H/L be a quaternion algebra over a quadratic field L.
We intend to determine the corestriction D = corL/Q(H) of H to Q, see
I,exercise 2.1. Prove, if v is a place of Q, and Hv is the quaternion field
over Qv, we have:

Dv ' M(2,Hv)

if v is lifted in L to two distinct places, and if one and only one of the two
places is ramified in H.
we have:

Dv ' M(4,Qv)

in the other cases.

11. Symbols. Let K/Q be a quadratic extension of discriminant d ≡ 0 or1 mod(4).
Prove the Artin symbol (L

p ) is equal to the Legendre symbol (d
p ).
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Chapter 4

Applications to Arithmetic
Groups

Let (K×
i ) be a nonempty finite set of local fields. Consider the group

G1 =
∏

i

SL(2,K ′
i).

we are interested in some discrete subgroups of finite covolume of G1. More
precisely, they are obtained in such a way: consider a quaternion algebra H/K
over a global field K such that there exist a set S of places of K satisfying
— (K×

v )v∈S = (Ki) up to permutation.
— no any place v ∈ S is ramified in H. Every archimedean place not belonging
to S is ramified in H.
These groups play an important role in various domains. Their usefulness will
be well studied soon in utilizing the arithmetic of quaternions (chapter III).

4.1 Quaternion groups

Fix a global field K, a quaternion algebra H/K, a set S of places of K containing
∞ and satisfying Eichler’s condition denoted by C.E.. WE consider the group

G1 =
∏

v∈S,v/∈Ram(H)

SL(2,Kv).

This group is non-trivial because S contains at least an unramified place in H.
We denote by R = R(S) the elements of K integral relative to the places which
do not belong to S, and by Ω the se of R-orders of H. We are interested in the
quaternion groups of reduced norm 1, in the orders O ∈ Ω:

O1 = {x ∈ O|n(x) = 1.

For each place v we fix an inclusion of K in Kv, and choose an inclusion ϕv :
H → H ′

v, where

H ′
v =

{
M(2,Kv), if v /∈ Ram(H)
Hv, if v ∈ Ram(H)

79
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where Hv denotes the quaternion field over Kv. From this we obtain an inclusion

ϕ : H →
∏

v∈S,v/∈Ram(H)

M(2,Kv) = G

which send O∞ on a subgroup of G1. By abuse of notations, we identify H ′
v with

Hv in sequel. Note that two inclusion ϕ,ϕ′ is different by an inner automorphism
of G×

Theorem 4.1.1. (1) The group ϕ(O1) is isomorphic to O1. It is a discrete
subgroup, of finite covolume of G1. It is cocompact if H is a field.
(2) The projection of ϕ(O1) onto a factor G′ =

∏
v SL(2,Kv) of G1 , with

1 6= G′ 6= G1, is equal to O1. It is dense in G′.

Proof. The nontrivial part of the theorem is an application of the fundamental
theorem III.1.4 and III.2.3. The isomorphism with O1 is trivial since the image
of O1 in G′ with 1 6= G′ is

∏
ϕv(O1) which is isomorphic to O1. The idea is to

describe the group H1
A/H1

K . Set

U = G1 · C with C =
∏

v∈S and v ∈ Ram(H)

H1
v

∏

v/∈S

O1
v.

The group U is an open subgroup in H1
A satisfying:

H1
A = H1

K and H1
K U = O1.

From this we deduce a bijection between

H1
A/H1

KU and U/O1.

According to III.1.4, and III.2.3, we have
(1) H1

K is discrete in H1
A of the finite covolume being equal to τ(H1 = 1,

cocompact if H is a field.
According to III.4.3, we have
(2) H1

KG′′ is dense in H1
A if G′′ =

∏
SL(2,Kv) with i 6= G′′.

It follows
(1) O1 is discrete in U of finite covolume being equal to 1 for the Tamagawa
measures, cocompact if H is a field.
(2) The image of O1 in G · C is dense.
We thus utilize the following lemma for finishing the proof of theorem 1.1.

Lemma 4.1.2. Let X be a locally compact group, Y a compact group, Z the
direct product X · Y , and T a subgroup of Z with its projection V in X. We
have the following properties:
a) If T is discrete in Z, then V is discrete in X. Moreover, T is of a finite
covolume (resp. cocompact) in Z if and only if V has the same property in X.
b) If T is dense in Z, then V is dense in X.

Proof. a) Suppose K to be discrete in Z. For every compact neighborhood D
of the unit in X, we show that V ∩D has only a finite number of elements. In
fact, X ∩ (D · C) has a finite number of elements, being great or equal to that
of V ∩D. Hence V is discrete in X. Let FT ⊂ Z, FV ⊂ X be the fundamental
sets of T in Z, and of V in X. It is clear that FV · C contains a fundamental
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set of T in Z, and the projection of FT in X contains a fundamental set of V
in X. (a) has been deduced.
b) Suppose that T is dense in Z. every point (x, y) ∈ X · Y is the limit of
a sequence of points (v, w) ∈ T . Hence every point x ∈ X is the limit of a
sequence of points v ∈ V , and V is dense in X.

Therefore, the theorem is proved.

Definition 4.1. Two subgroups X, Y of a group Z are commensurable if their
intersection X ∩ Y is of a finite index in X and Y . The commensurable degree
of X with respect to Y is

[X : Y ] = [X : (X ∩ Y )][Y : (X ∩ Y )]−1.

The commensurator of X in Z is

CZ(X) = {x ∈ Z|X and xXx−1 is commensurable}.

Definition 4.2. We call the group ϕ(O1) a quaternion group of G1. A subgroup
of G1 which is conjugate in G1 to a commensurable group with a quaternion
group (hence of the form ϕ(O1) for an appropriate choice of a given K,H, S, ϕ, Ω
) is called an arithmetic group.

We leave the verification of the following elementary lemma as an exercise
to readers.

Lemma 4.1.3. Let Z be a locally compact group, X and Y be two subgroups
of Z Which are commensurable. Therefore X is discrete in Z if and only if Y
is discrete in Z. Moreover, X is of a finite covolume (resp. cocompact) if and
only if Y is of a finite covolume (resp. cocompact). In this case, we have :

vol(Z/X)[X : Y ] = vol(Z/Y ).

EXAMPLE.
A subgroup Y of a finite index of a group X is commensurable to X. The
commensurable degree [X : Y ] is the index of Y in X. The commensurator of
Y in X is equal to X. For every x ∈ X, we have [X : xY x−1] = [x : Y ].

Remark 4.1.4. Takeuchi ([1]-[4]) determined all the arithmetic subgroup of
SL(2,R) which is triangular, that is to say, it admit a presentation:

Γ =< γ1, γ2, γ3|γe1
1 = γe2

2 = γe3
3 = γ1γ2γ3 = ∓1 >,

where ei are integers, 2 ≤ ei ≤ ∞. He determined the commensurable class of
a quaternion group in SL(2,R) too.

Proposition 4.1.5. The groups O1 for O ∈ Ω are pairwise commensurable.
The commensurator of a pair in

G× =
∏

v∈S,v/∈Ram(H)

GL(2,Kv)

is equal to Zϕ(H×), where Z is the center of G×.
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Proof. The first part comes from Proposition 1.4. If x ∈ G× belongs to the
commensurator of ϕ(O1), it induces an inner automorphism x̃ fixing ϕ(H).
Every automorphism of ϕ(H) fixing ϕ(K) pointwise is inner. Therefore x ∈
Zϕ(H×). Inversely it is clear that Zϕ(H×) is contained in the commensurator
of ϕ(O1) in G×.

Definition 4.3. Let I be a two-sided integer of an order O ∈ Ω. The ker-
nel O1(I) in O1 of the canonical homomorphism : O → O/I is called the
principal congruent group of O1 modulo I. A congruent group of O1 modulo I

is a subgroup of O1 containing O1(I).

The congruent group are of the commensurable groups among them. We
have

[O1 : O1(I)] ≤ [O : I].

If O′ is an Eichler order of level N contained in a maximal order O, then the
group O′1 is a congruent group of O1 modulo the two-sided ideal NO. The
groups so constructed with the Eichler orders and the principal groups are the
groups for which we have certain arithmetic information:
– the value of covolume, indices (Theorem 1.7),
– the value of the number of conjugate classes of a given characteristic polyno-
mial(III. 5.14,and 5.17).
Partially for this reason we often encounter them. Another collection of groups
we encounter sometimes( for the same reason). They are the normalizers N(ϕ(O1))
in G1 of groups ϕ(O1), where O is an Eichler order. The quotient groups
N(ϕ(O1))/ϕ(O1 are of type (2, 2, ...).
We deduce from IV.5.14,5.16,5.17, and exercise 5.12 the next proposition:

Proposition 4.1.6. Every group O1 for O ∈ Ω contains a subgroup of finite
index which contains only the the elements different from unit and of finite
orders.

The relation τ(H1) = 1 , in the form vol(G1 ·C/O1) = 1, allow us to compute
the covolume of ϕ(O1) in G1:

vol(G1/ϕ(O1)) = vol(C)−1

for Tamagawa measures. By using the definition of

C =
∏

v∈S, and v ∈ Ram(H)

H1
v

∏

p/∈S

O1
p

we can then compute the the global commensurable degree from the local com-
mensurable degrees.

Theorem 4.1.7. The commensurable degree of two groups O1,O′1 for O,O′ ∈
Ω is equal to the product of the local commensurable degrees:

[O1 : O′1] =
∏

p/∈S

[O1
p : O′1

p ] =
∏

p/∈S

vol(O1
p)vol(O′1

p )−1.

For Tamagawa measure,

vol(G1/ϕ(O1))−1 =
∏

v∈Ram(H)and v ∈ S

vol(H1
v )

∏

p/∈S

vol(O1
p).
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The explicit formulae (II,exercise 4.2,4.3) of the local volumes for the Tam-
agawa measures have obtained already for the principal congruent groups ob-
tained with the Eichler orders. By using these we obtain for example

Corollary 4.1.8. If O is a maximal order, then

vol(G1/ϕ(O1))−1 = ζK(2)(4π2)−|Ram∞(H)|D3/2
K

∏

p∈Ramf (H)

(Np−1)
∏

p∈S∩P,p/∈Ramf (H)

D−3/2
p (1−Np−2).

We shall give another examples.
EXAMPLES.

1. H is an indefinite quaternion algebra over Q, i.e. HR = M(2,R), hence
the covolume of O1 if O is a maximal Z-order is

π2

6

∏

p|D
(p− 1),

where D is the reduced discriminant of H.

2. H = M(2,Q(
√−1)) and O1 = SL(2,Z(

√−1)), then the covolume is
8ζQ(

√−1)(2) times by a number for which we are ignorant of its arithmetic
nature: we don’t know if it is transcendental. The group O1 is called now
and then the Picad group.

3. H is a quaternion algebra over Q ramified at the infinity and unramified at
p and S = {∞, p}. For a maximal order O, the group O1 is a cocompact
discrete subgroup of SL(2,Qp) and of the covolume

1
24

(1− p−2)
∏

q|D (q − 1),

where D is the reduced discriminant of H.

4. Congruent groups. Let K be a non-archimedean local field of an integer
ring R, and let p be a uniform parameter of R. For every integer m ≥ 1,
we defined ( II.exercise 4.3) in the canonical Eichler order of levle pmR of
M(2,K) the groups Γ0(pm) ⊃ Γ1(pm) ⊃ Γ(pm), by which we computed
the volumes for Tamagawa measure. Consider now a global field K, a set
of places S satisfying C¿E¿ for a quaternion algebra H/K, and R the ring
of elements of K which are integral for v /∈ S. For every ideal N of R
being prime to the reduced discriminant D of H/K, let O be an Eichler
R-order in H of level N . For every prime ideal p|N , and such that pm||N ,
we choose an inclusion ip : K → Kp, where Kp is a non-archimedean local
field. We can extend ip to an inclusion of H in M(2,Kp) ,denoted by the
same way, such that ip(O) is the canonical Eichler order of level pmRp.
The preimage by ip of the groups Γ0(pm) and Γ(pm) is O1 and O1(pm)
respectively. We define the congruent groups of mixed type by considering
the subgroup Γ of O1 defined by

Γ = {x ∈ O1|ip(x) ∈





Γ0(pm) p|N0

Γ1(pm) if p|N1 , or pm||N
Γ(pm) if p|N2
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1 for all the decompositions N = N0N1N2 of N into factors N0, N1, N2

which are prime to each other. We can consider therefore an inclusion
ψ of H× in G× =

∏
GL(2,Kv) where v ∈ S but v /∈ Ram(H), and the

image ϕ(Γ) in G1. The volume of φ(Γ)\G1 for Tamagawa measure can be
calculate explicitly. We have:

vol(φ(Γ)/backslashG1) = (4π2)−|Ram∞H|·D3/2
K ζK(2)·

∏

p|D
(Np−1)·N0N

2
1 N3

2 ·

∏

p|N0

(1 + Np−1) ·
∏

p|N1N2

(1−Np−2) ·
∏

p∈S,p/∈Ram(H)

D−3/2
p (1−Np−2).

We notice that the volume depends uniquely on the given objects: DK , ζK(2), |Ram∞(H)|, D, N0, N1, N2, S.

5. Arithmetic group.
a)The arithmetic groups of SL(2,R) are the commensurable groups to the
quaternion group defined by the quaternion algebra H/K over field K ,
totally real K, such that H⊗R = M(2,R)⊕Hn−1, where n = [K;Q], and
by S = ∞. If O is a maximal order of H over the the integer ring of K,
and if Γ1 is the image of O1 in SL(2,R) by an inclusion of H in M(2,R),
we then have for Tamagawa measure:

vol(Γ1\SL(2,R)) = ζK(2)D3/2
K (4π2)1−[K:Q]

∏

p|D
(Np− 1)

where DK is the reduced discriminant of H/K.
b) The arithmetic subgroups of SL(2,C) are the commensurable groups
to the quaternion groups defined as follows. H/K is a quaternion algebra
over a number field K such that H ⊗ R = M(2,C) ⊕ H[K;Q]− 2, and
S = ∞. If O is a maximal order of H over the integer ring of K, and Γ1

is an image being isomorphic to O1 in SL(2,C), we have for Tamagawa
measure :

vol(Γ1\SL(2,C)) = ζK(2)D3/2
K (4π2)2−[K:Q]

∏

p|D
(Np− 1).

c) If p is a finite place of a global field K, the arithnetic subgroup of
SL(2,Kp) are the commensurable groups to the quatrnion groups defined
as follows.
— if K is a function field, S = {p}, H/K is unramified at p,
— if K is a number field, H/K is toally ramified at the infinity, that is to
say, Ram∞(H) = ∞, unramified at p, and S = {p}.
If O is a maximal order of H over the ring of elements of K which are
integral at the places not belonging to S, and Γ1 is the image of O1 in
SL(2,Kp), we have for Tamagawa measure

vol(Γ1\SL(2,Kp)) = ζK(2)D3/2
K D−3/2

p (1−Np−2)
∏

p|D
(Np− 1) · (4π2)−n

where n = 0 if K is a function field, and n = [K : Q] otherwise.
1The number m depends on p obviously.
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6. Hilbert’s modular group. If K is a totally real number field, and if H =
M(2,K), then the group SL(2, R) where R is the integer ring of K is called
the Hilbert modular group. It is a discrete subgroup of SL(2,R)[K:Q], and
for Tamagawa measure we have

vol(SL(2, R)\SL(2,R)[K:Q]) = ζK(−1)(−2π2)−[K:Q].

It can be seen by using the relation between ζK(2) and ζK(−1) obtained
by the functional equation:

ζK(2)D3/2
K (−2π2)−[K:Q] = ζK(−1).

7. Let H/K be a quaternion algebra. If S is a set of places satisfying C.E.,
therefore S′ = {v ∈ S|v /∈ Ramf (H)} satisfies C.E. If O is an order over
the ring of the elements of K which are integral at the places v ∈ S, then
O′ = {x ∈ O|x is integral for v ∈ Ramf (H)} is an order over the ring of
the elements of K which are integral at the places v /∈ S′. It is easy to
check that O1 = O′1. It follows that in the study of quaternion groups we
can suppose Ramf (H) ∩ S = ∅.

4.2 Riemann surfaces

Let H be the upper half-plane equipped with a hyperbolic metric ds2:

H = {z = (x, y) ∈ R2|y > 0}, ds2 = y−2(dx2 + dy2).

The group PSL(2,R) acts on H by homographies. A discrete subgroup of finite
covolume
barΓ ⊂ PSL(2,R) defines a Riemann surface Γ̄\H. Consider those which are
associated with the quaternion groups Γ ⊂ SL(2,R) with image Γ̄ ⊂ PSL(2,R).
The results of III.5, IV.1 allow us conveniently obtain – the genus,
– the number of the elliptic points of a given order,
– the number of the minimal geodesic curves of a given length.
We shall deduce them with simple examples and the explicit expression of the
isospetral (for laplacian) but not isometric riemannian surfaces(§3)

Definition 4.4. A complex homography is a mapping of C∪∞ in C∪∞ of the
form

z 7→ (az + b)(cz + d)−1 = t,where g =
(

a b
c d

)
∈ GL(2,C).

We set t = ḡ(z) and X̄ = {x̄|x ∈ X} for every set X ⊂ GL(2,C).

We are interested henceforth only in real homographies induced by SL(2,R).
We have

Y = y|cz + d|−2.

These homographies preserve the upper (lower) half-plane H and the real axis.
Differentiating the relation of t, we have

dt = (cz + d)−2dz.
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It follows two consequences:
1) If c 6= 0, the location of points such that |dt| = |dz| is the circle |cz + d| =
1. the circle is called the isometric circle of the homography, which play an
important role in the construction of fundamental domain explicitly of discrete
subgroup Γ ⊂ PSL(2,R) in H.
2) PSL(2,R) acts on H by the isometry of the upper half-plane H equipped
with its hyperbolic metrics. The isotropic group of point i = (01) in SL(2,R)
is SO(2,R). The action of PSL(2,R) on H is transitive. We have then a
realization:

H = SL(2,R)/SO(2,R).

W e thus can talk about length, area, geodesic for the hyperbolic metrics on H.
WE obtain

Definition 4.5. The hyperbolic lengthof a curve in H is the integral
∫
|dz|y−1,

taking along this curve.
The hyperbolic surface of an area of in H is the double integral

∫ ∫
y−2dxdy,

taking in the interior of this area.
The hyperbolic geodesic are the circles with its center at the real axis (including
the line perpendicular to the real axis).

(Here is a picture)!!!

The real axis is the line to the infinity of H.

The isometric group ofH is isomorphic to PGL(2,R). We associate to
(

a b
c d

)
∈

GL(2,R) the homography

t =

{
(az + b)(cz + d)−1, if ad− bc > 0
(az̄ + b)(cz̄ = d)−1, if ad− bc < 0.

Proposition 4.2.1. 2.1. The hyperbolic distance of two points z1, z2 ∈ H is
equal to

d(z1, z2) = |arccosh(1 + |z1 = z2|2/2z1z2|.
Proof. (Here is a picture!!!)

If the geodesic between the two points is a vertical line,ds = | ∫ y2

y1
dy/y| =

| log(y2/y1)|. If the geodesic is an arc of the circle with center on the real axis,∫
ds =

∫ θ2

θ1
dθ/ sin θ = | log |tg(θ1/2)/tg(θ2/2)||. In all of these two cases we find

that given formula.
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Corollary 4.2.2. Let N be a positive real number. For every point z0 ∈ H of
its real part zero, we have

log N = d(z0, Nz0) = inf
z∈H

d(z, Nz).

Proof. d(z,Nz) = arccosh(1 + (N−1)2

2N (1 + x2

y2 )) is minimal for x = 0 and equal
to log N .

Proposition 4.2.3. The area of a triangle whose vertices are at the infinity is
equal to π.

Proof. (A picture here!!!)

∫ ∫
y−2dxdy =

∫ π

0

− sin θdθ

∫ ∞

sin θ

y−2dy = π.

The common area of these triangles can be taken as the definition of the value
π.

Proposition 4.2.4. The area of a hyperbolic triangle of the angles at the ver-
tices being θ1, θ2, θ3 is equal to π − θ1 − θ2 − θ3,

Proof. The formula is true if every vertex is at infinity. We use the Green for-
mula if no any vertex is at the infinity: if Ci, i = 1, 2, 3 are the edges of the
triangle , then

∫ ∫
y−2dxdy =

∑
i

∫
Ci

dx/y

Here are two pictures!!!

∫
C

dx/y =
∫ θ2

θ1
r sinu/(−r sinu)du = α.

The area is thus I = α1 + α2 + α3. The total rotation of the turning normal
along is the triangle 2π, and that around a vertex of angle θ is π− θ. It follows
2π =

∑
i(π− θi) +

∑
i αi, from this we have I = π− θ1 − θ2 − θ3. It turns back

to one of these two cases when one of the angles is zero (its vertex corresponds
to the infinity). By the triangulation we can compute the area of a polygon.

Corollary 4.2.5. The area of a hyperbolic polygon with the angles at vertices
θ1, ..., θn equals (n− 2)π − (θ1 + ... + θ2).

EXAMPLE. A fundamental domain of PSl(2,Z). The group PSL(2,Z) is
generated by the homographies t = z + 1 and t = −1/z. We show that the
hatching domain in the picture is a fundamental set

F = {z ∈ C|Imz > o, |z| ≥ 1,−1/2 ≤ Rez ≤ 1/2}.

It ia a triangle with one of its vertices being at the infinity. Its area is π−2π/3 =
π/3. It equals the area of the triangle without hatching, which is also a funda-
mental set of SL(2,Z) in H.

Here is a picture!!!
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We give am exact sequence of continuous mapping:

1 −−−−→ SO(2,R) i−−−−→ SL(2,R)
ϕ−−−−→ H −−−−→ 1

where i is the natural inclusion, and ϕ(g) = ḡ(i), a Haar measure on SL(2,R)
with the compatibility of the hyperbolic measure of H and a Haar measure dθ
of SL(2,R). Denote it by

y−2dxdydθ.

It is false in general that for a discrete subgroup of finite covolume Γ ⊂ SL(2,R)
we could have for this measure:

(1) vol(Γ̄\H)vol(SO(2,R) = vol(Γ\SL(3,R)),

but it is true if Γ acts without fixed point in H.

Corollary 4.2.6. The Tamagawa measure on SL(2,R) equals y−2dxdydθ, where
dθ is normalized by vol(SO(2,R) = π.

Proof. In view of 1.6, the group SL(2,Z) possesses a subgroup Γ of finite index
which does not contain the root of unit different from 1. A group with this
property acts without fixed points and faithfully o H. according to 1.3, we have

vol(Γ\SL(2,R)) = vol(SL(2,Z)\SL(2,R))[SL(2,Z) : Γ].

On the other hand, if F is a fundamental domain of PSL(2,Z) in H, then ∪γF ,
with γ ∈ Γ̄\PSL(2,Z) is a fundamental domain of Γ̄ in H, thus

vol(Γ̄\H) = vol(PSL(2,Z)\H)[PSL(2,Z) : Γ̄].

Since [SL(2,Z) : Γ] = 2[PSL(2,Z) : Γ̄], it follows from (1) the relation

(2) vol(PSL(2,Z)\H)vol(SO(2,R)) = 2vol(SL(2,Z)\SL(2,R).

We saw in the precedent example and 1) in §1 that

vol(PSL(2,Z)\H) = π/3 for the hyperbolic measure,

vol(SL(2,Z)\SL(2,R)) = π2/6 for Tamagawa measure.

Corollary 2.6 then follows.

In the proof we obtain also the following property.

Corollary 4.2.7. Let Γ be an arithmetic group. The volume of Γ̄\H for the
hyperbolic measure is equal to

1
π

vol(Γ\SL(2,R))

{
1, if −1 /∈ Γ
2, if −1 ∈ Γ

calculated for Tamagawa measure.

It allows to calculate by 1.7 the hyperbolic volume of Γ̄\H. We consider a

nontrivial real homography associated with g =
(

a b
c d

)
∈ SL(2,R). It has two
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double points in C ∩∞:

(1) distinct, real if (a + d)2 > 4,
(2) distinct, complex conjugation, if (a + d)2 < 4,
(3) mingling if (a + d)2 = 4.
We obtain the above statement easily in virtue of the equalities:

z = (az + b)(cz + d)−1 is equivalent to cz2 + (d− a)z − b = 0.

The discriminant of the quadratic equation is (d + a)2 − 4.

Definition 4.6. In the case (1), the homography is said to be hyperbolic. Its
norm or its multiplicator is equal to N = λ2, where λ is the proper value of g
which is great than 1 strictly.
In case (2), it said to be elliptic. Ita angle or its multiplicatoris equal to N = λ2,
where λ = eiθ is the proper value of g such that 0 ≤ θ ≤ π.
In case (3), it is said to be parabolic.

These definitions depend only on the conjugate class of g in GL(2,R), and
hence can be extended to the conjugate classes.

Proposition 4.2.8. Let ḡ be a homography of norm N . We have

log N = d(z0, ḡ(z0) = inf
z∈H

d(z, ḡ(z))

for every element z0 belonging to the geodesic joining the double points of ḡ.

Proof. Since GL(2,R) acts by isometry, it follows that ḡ(z) = Nz, and then use
2.2.

compactificaton of H. We shall compactify H by embeding it in the space
H ∪ R ∪∞ which is equipped a topology as follows: the system of basic neigh-
borhoods at the infinity is the open neighborhoods Vy, y > 0 defined as below :

two pictures here!!!

for ∞ : Vy = {z ∈ H|Imz > 0}, for A ∈ R : Vy = {z ∈ H|d(B − z) < y}.
Fundamental domains. We recall a certain number of classic results about the
construction of fundamental domains.
References: Poincare [1], Siegal [3].
Let Γ be a discrete subgroup of SL(2,R) of finite covolume, and Γ̄ be the group
of the homographies associate with Γ.

1. For every element z0∈H which is not the double point of any elliptic matrix
of Γ ( the existence of such point is easy to prove), the set

F = {z ∈ H|d(z, z0 ≤ d(ḡ(z), z0) ∀ḡ ∈ Γ̄}

is a hyperbolic polygon and a fundamental set of Γ in H2.

2. The edges of F are even in number and congruent pairwise modulo Γ̄. We
can also rearrange them in pairs (Ci, ḡi(Ci)), 1 ≤ i ≤ n.
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3. The group Γ̄ is of finite type, and generated by the homographies {ḡi, 1 ≤
i ≤ n}. It comes from that {ḡF |ḡ ∈ Γ̄} forms a pavement of H. If ḡ ∈ Γ̄, it
exists ḡ′ belonging to the group generated by these ḡi such that ḡF = ḡ′F ,
hence ḡ = ḡ′. by Using again an argument of pavement we see:

4. A cycle of F being a equivalent class of vertices of F in H∪R∪∞ modulo
Γ̄,The sum of the angles around the vertices of a cycle is of the form 2π/q
where q is an integer great than 1, or q = ∞.

Definition 4.7. A cycle is said to be
hyperbolic if q = 1,
elliptic of order q if q > 1, q 6= ∞,
parabolic if q = ∞.
The angle 2π/q is the angle of cycle. eq denotes the number of cycles of angle
2π/q.

Definition 4.8. A point of H ∪ R ∪ ∞ is said to be elliptic of order q (rep.
parabolic or a point) for Γ̄ if it is a double point of an elliptic homography of
order q (resp. parabolic) of Γ̄.

It is easy to show that the elliptic cycles of order q constitute a system of
representatives modulo Γ̄ of the elliptic points of order q. It is the same for
the parabolic points . The interior of F contains no any elliptic point, no any
parabolic. The union of H and the points of Γ̄ is denoted by H∗.
Searching cycles. We look for the cycles in such a way: Let A,B, C, ... be the
vertices of F in H∗ when we run along the boundary of F in a sense given in
advance. In order to find the cycle of A, we run along the edge AB = C1 and
then the edge which is congruent to A′B′ = g1(C1) in the chosen sense. It
remains that B′ = A2, and runs along the next edge C2, then the edge which
is congruent to g2(C2) with its end point A3,... till to that when we find again
A = Am. Integer m is the length of the cycle.
EXAMPLE:
1)The fundamental domain of modular group PSL(2,Z):

A picture here !!!

a point {∞}, a cycle {A,C} of order 3, a cycle B of order 2. The group is
generated by the homographies z 7→ z + 1 and z 7→ −1/z.
2)
A picture here!!!

In the example given by this figure, we have two points {A,B, E} and ∞,
and two cycles of order 2: {B}, {D}.
Lemma 4.2.9. The number of elliptic cycles of order q is equal to the half
of the number of conjugate classes of Γ of the characteristic polynomial X2 −
2 cos(2π/aq)X + 1, where a is the index of the center in Γ.

Proof. The two numbers defined in (1), (2) are equal to eq:
(1) The number of the equivalent classes modulo Γ̄ of the set Eq = {z ∈
H| elliptic of order q} = {z ∈ H| Γ̄z is cyclic of order q}, where Γ̄z is the isotropic
group of z in Γ̄.



4.2. RIEMANN SURFACES 91

(2) The number of the conjugate classes in Γ of the cyclic subgroups of order
2q if −1 ∈ Γ, and of order q if −1 /∈ Γ, i.e. of order aq.
Two elements q, q′ of order aq in an cyclic group of order aq > a contained in
Γ are not conjugate. Otherwise, it would be g′ = g′′gg′′−1. Since aq 6= 2 the
common trace of g and g′ is not zero, therefore g′ = g. the lemma is proved.

This lemma together with III.5,14-17, allow us to calculate explicitly the
number eq for the quaternion groups.
The surface Γ̄\H∗ is compact. It is a Riemann surface (Shimura [6]) which is
locally equivalent to H if it is not in. the neighborhood of an elliptic point. Its
genus is given by the classic formula:

2− 2g = P + S −A

for every subdivision in polygons which is consists of P polygons, S vertices, A
faces. Let s be the number of cycles in the fundamental domain F , and suppose
the pairs (Ci, ḡi(Ci)) not to be congruent modulo Γ̄. We then have by 2.5:

− 1
2π

vol(Γ̄\H∗) = 1− n +
∑
q>1

eq/q = 1− n + s−
∑

q≥1

eq
q − 1

q
− e∞.

Therefore we have

Proposition 4.2.10. The genus of the Riemann surface Γ̄\H∗ is given by

2− 2g == − 1
2π

vol(\H∗) +
∑

q≥1

q − 1
q

+ e∞.

Corollary 4.2.11. If Γ does not contain hyperbolic elements, the genus of the
compact Riemann surface Γ̄\H is strictly great than 2. It is given by

2− 2g = − 1
2π

vol(Γ̄\H∗).

In view of 2.7, 2.8 we can calculate explicitly the genus of the quaternion
group. Notice that a being an integer, the number

− 1
2π

vol(Γ̄\H)

is rational. It remind of replacing the hyperbolic measure by the arithmetic measure
with the name of Euler-Poincare:

−dxdy

2πy2
.

Denote by vola(X) an area of the surface for the measure. We relate the Tam-
agawa measures and the arithmetic measures with 2.7

vola(\H) = −π−2vol(Γ\SL(2,R)) ·
{

1 if −1 ∈ Γ
1/2 if −1 /∈ Γ

.

We obtain by example 5),6) in §1 the corollary below.
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Corollary 4.2.12. If K is a totally real field, then ζK(−1) is rational.

It is a special case of a theorem of Siegel which asserts that the numbers
ζK(1− n) for n ≥ 1 are the rational number.
The number e∞ of points for an arithmetic group is not zero if and only if
the group is commensurable to PSL(2,Z). For the congruent group Γ(N) and
Γ0(N), the formula for the number of points can be found in the book of Shimura
[6],p.25.

Exercise

. Let Γ be the group of the proper automorphisms of the quadratic form

x2 + y2 −D(z2 + t2)

where D is an integer great or equal to 1. Prove
1) Γ is the the unit group of reduced norm 1 and of order O = Z[1, i, j, ij] of
the quaternion algebra H/Q generated by the elements i, j satisfying

i2 = −1, j2 = D, ij = −ji.

2) The volume V of a fundamental domain of Γ in H2 for the hyperbolic metric
given by Humbert formula:

V = D
∏

p|D,p 6=2

(1 + (
−1
p

)p−1).

Hint: Write V = pi3
∏

p|D Vp, where

V2 = 2m−1(1 +
1
2
) if 2m||D,

Vp = pm(1 + (
−1
p

)p−1) if pm||D.

Then compare Vp with the volume of O1
p for Tamagawa measure.

4.3 Examples and Applications

A. congruent groups. Let H/Q be a quaternion algebra contained in M(2,R), of
reduced discriminant D, and Γ be a congruence group of level N = N0, N1, N2,
for the definition see example 4) in §1. The genus of Γ̄\H∗ is given by

2− 2g = vola(Γ̄\H2) + e2/2 + 2e3/3 + e∞.

The volume of Γ̄\H2 which is calculated for Euler-Poicare measure is equl to

vola(Γ̄\H2) = −1
6

∏

p|D
(p− 1) ·N0N

2
1 N3

2 ·
∏

p|N0

(1 + p−1) ·
∏

p|N1N2

(1− p−2) · (1/2)

by putting (1/2) = 1 if N1N2 ≤ 2 and (1/2) = 1/2 otherwise.
Let the quadratic cyclotomic extension of Q be Q(x) and Q(y) with x, y being
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the solutions of x2 + 1 = 0 and y2 + y + 1 = 0, and the roots of unit be of order
2 and 3, we see that eq = 0 if q 6= 2, 3. We shall show solution then the above
equations have no solutions in Γ if N2 > 1 or if N1 > 2. Since Z[x] and Z[y]
are of the maximal order in Q(x) and Q(y), according to Chapter II, exercise
3.1. we has then e2 = 0 if 4|N and e3 = 0 if 9|N . In other cases, e2 and e3 can
be calculated by III,5.17. Suppose the Eichler condition to be satisfied, there is
an order O which contains an element of reduced norm −1, and if B = Z[x] or
Z[y], we then have [n(O×) : n(B×)] = 2. Therefore if N = N0, we have

e2 =
∏

p|D
(1− (

−4
p

))
∏

p|N
(1 + (

−4
p

)) if 4 - N,

e3 =
∏

p|D
(1− (

−3
p

))
∏

p|N
(1 + (

−3
p

)) if 3 - N.

It can proceed the calculations for every N without any difficulty, by using II.3,
if necessary.
REFERENCES. The formulae for the volume and the number of elliptic points
of given order are well known. Here is a list of articles where they are used,
and often re-prove them in a particular cases for want of the general references:
Eichler [7]-[14], Fueter [1], Hashimoto [1], hijikata [1], Pizer [1]-[5], Ponomarev
[1]-[5], Prestrl [1], Schneider [1], Shimizu [1]-[3], Vigneras [1]-[3], Vigneras-Gueho
[1]-[3], Yamada [1].
It will be evident particularly in all the explicit formulae of the trace of Hecke
operators. This explains their concern with theory of automorphic forms.

B. Normalizers (Michon [1]). It is given here a quaternion field over Q, in-
cluded in M(2,R) of reduced discriminant D = p1 · · · p2m. Let O be a maximal
order. Using III. exercise 5.4, we see that its normalizer N(O) satisfies

N(O)/O×Q× ' (Z/2Z)2m.

The elements of N(O) of positive reduced norm forms a group. Its image by
the mapping x 7→ xn(x)−

1
2 is a subgroup of SL(2,R), denoted by G. The group

O1 = Γ is distinguished in G and

G/Γ ' (Z/2Z)m.

It defines also a covering Γ̄\H → Ḡ\H of degree 22m explicitly, The elements of
G can be described by xn(x)−1/2 with x ∈ O and n(x)|D. Note that eq(Γ), eq(G)
are the number of elliptic cycles of Γ, G of order q.

Lemma 4.3.1. The volume of Γ̄\H and Ḡ\H for Euler-Poincare measure, de-
noted by VΓ and VG, are

VΓ = −1
6

∏

p|D
(p− 1), VG = 2−2mVΓ.

The genus of Γ̄\H, Ḡ\H, denoted by gΓ, gG, satisfying

2− gγ = VΓ +
1
2
e2(Γ) +

2
3
e3(Γ),

2− 2gG = VG +
1
2
e2(G) +

3
4
e4(G) =

5
6e6

(G).
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Proof. The assertion for Γ comes from Example 2.1. As for G, it suffices to verify
that the possible values of the order of the cyclic groups which are contained in
G are 1, 2, 4, 6, 8, 12. It can be obtained at once from the structure of G\Γ and
the order of the cyclic groups in Γ.

The formulae for eq(G) are not so simple as for eq(Γ) but can be obtained
by elementary method.
The following table gives the list of all surfaces barΓ\H of genus 0,1,2.

here is Table 1 !!!

Using the results of Ogg about the hyperelliptic Riemann surfaces of genus
g ≥ 2, we can determine the surfaces Γ̄\H of genus g ≥ 2 which are hyperellip-
tic. In all these cases, the hyperelliptic involution is induced by an element of
G.
We denote by πi the element of O of reduced norm pi (1 ≤ i ≤ 2m) and gd

the element of G defined by

gd = d−1/2πε1
1 ...πε2m

2m for d = πε1
1 ...πε2m

2m , εi = 0 or 1

The table below gives the list of the hyperelliptic surfaces with their genus and
the element of G which induces the hyperelleptic involution:
Here is a talbe!!!

C The construction of a fundamental domain for Γ and G in The case of D = 15.(Michon
[1]). The quaternion algebra is generated by i, j satisfying

i2 = 3, j2 = 5, ij = −ji.

The order O generated over Z by

1, i, (i + j)/2, (i + k)/2

is maximal. It has the matrix representation

O = {1
2

(
x

√
5y√

5ȳ x̄

)
, |x, y ∈ Q(

√
3) are integer, and x ≡ y mod (2)}.

The group Γ = O1 is consists of the above matrices such that

(1) n(x)− 5n(y) = 4.

The group G normalizing Γ is consists of the matrices satisfying

(2) n(x)− 5n(y) = 4, 12, 20, or 60

divided by the square root of their determinants. The fixed points in C of an
element of G are distinct and given by

z =
b
√

3∓√a2 − 4√
5(̄y)

if x = a + b
√

3, a, b ∈ Z.

The elliptic fixed points corresponds to a = −1, or 1. It can be restricted
to a = 0 or 1, since the change of sign of the matrix does not change the
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homography. The elliptic points are distributed on the ray staring from origin
and with slope b−1. All the elliptic points which locate on an admissible ray
obtained by solving the following equation

(3) − 5n(y) = 4−N(x), y is integer in Q(
√

3).

If z0 is an elliptic point, we see that εnz0, n ∈ Z is also an elliptic point if ε
is fundamental unit of Q(

√
3). Let η be the fundamental unit of Q

√
5, namely

1
2 (1 +

√
5). It has norm −1. Consider its square η2 included in Γ, with image

k =
1
2

(
3

√
5√

5 3

)
.

In view of the symmetry, kn(z0), n ∈ Z is also an elliptic point. The first values
of b such that the equation (3) having a solution are b = ∓2,∓8. for b = 2, it
becomes

−n(y) = 3, y is integer in Q(
√

3).

For b = 8, it becomes

−n(y) = 37, y is integer in Q(
√

3).

Denote
A =

1√
5

2 + i

2−√3
, C =

1√
5

8 + i

4 +
√

3
, C ′ =

1
5

8 + i

4−√3
.

The set of elliptic points on the line of slope 1/2 is {εn, n ∈ Z}; on the line on
slope 1/8, it is {εnC, εnC ′, n ∈ Z}. Denote by B,B′ the symmetry of A,A′ with
respect to the imaginary axis with A′ = ε2A.

Lemma 4.3.2. The hyperbolic hexagon BACC ′A′B′ is a fundamental domain
of Γ.

Proof. Let

h =
(

ε 0
0 ε

)
, l =

1
2

(−4 +
√

3 −√15√
15 −4−√3

)
.

We have
A′ = h(A), B′ = h(B)
C = k(B), C ′ = k(B′)
A = l(A′), C = l(C ′)

.

The hexagon has for the angles at vertices B,B′C,C ′ are π/6, and π/3 at A,A′.
It is a fundamental domain for the group

< l, h, k >

generated by l.h.k. It has two cycles {A,A′}, {B,B′C, C ′} each of order 3. Its
hyperbolic volume is

(6− 2)π − 2
2π

3
=

8π

3
.

On the other hand, for the hyperbolic measure the volume of Γ̄\H from the first
table of the precedent exercise is equal to 8π/3. Therefore, Γ =< l, h, k > and
the polygon is fundamental. The same procedure allows to treat by the same
way the case of G.
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We denote

E =
i

2 +
√

3
, E′ =

i

2−√3
, F + i,H = −1 + 2i√

5
,

u =
(

0 −√15√
15 0

)
, v =

1
2

(−√3 −√15√
15

√
3

)
.

The transformation u fixes F and exchange E and E′. The transformation v
fixed H and exchange B and B′.

Lemma 4.3.3. The hyperbolic quadrilateral BEE′B′ is a fundamental domain
of G. The transformations h, u/

√
15, v/

√
3 generates G. Its area is 8π/6.

Here are tree figures:
1)fundamental domain of Γ . 2) fundamental domain of G 3)Unit disc. these
pictures are designed by C.Leger.

D Minimal geodesic curves.

Definition 4.9. Let g be a hyperbolic matrix of Γ of norm N . Let P is a point
of the geodesic of H joining the double points of ḡ. The image of Γ̄\H of the
orient segment of the geodesic joining P to g(P ) is an orient closed curve, being
independent of P , of length log N , called the minimal geodesic curve of ḡ.

Definition 4.10. an element ḡ ∈ Γ̄is primitive if it not the power of the other
element of Γ̄ with exponent strictly great than 1. Its conjugate class in Γ̄ is said
to be primitive too.

If ḡ is primitive, hyperbolic, then it generates the cyclic group of elements of
Γ̄ which has the same fixed points. Its minimal geodesic curve is passes through
a single time. If g′ = gm, m ∈ Z,m 6= 0, the norm of g′ is Nm, and the minimal
geodesic curve of g′ is the curve obtain by passing through that of g m times,
in the same direction if m > 0, and in the contrary direction otherwise. The
minimal geodesic curve of the hyperbolic ḡ, ḡ′ ∈ Γ̄ are the same if and only if ḡ
and ḡ′ are conjugate in Γ̄. We have thus the following result.

Lemma 4.3.4. The number of the minimal geodesic curves of length logN is
equal to the number of conjugate classes of the elements of Γ with the charac-
teristic polynomial X2 − (N1/2 + N−1/2)X + 1. Denoted it by e(N).

Notice that if g, g−1 are conjugate in Γ, ther exists then x ∈ Γ satisfying

xgx−1 = g−1 ⇒ x2 ∈ R(x) ∩ R(g) = R,

hence x2 = −1. If Γ does not contain such an element, e(N) is even. For the
quaternion group, e(N) can be computed explicitly(III.5). EXAMPLE: Γ is the
unit group of reduced norm 1 of a maximal order of a quaternion field over Q
of its discriminant 26. We have the following results:

1. ) Γ is embedded in SL(2,R), since 26 = 2 · 13 is the product of two prime
factors.

2. ) Γ does not contain any parabolic element according to 1.1.
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3. ) Γ does not contain any elliptic element, since (−1
13 ) = (−3

13 ) = 1 according
to III,3.5.

4. ) The genus g of Γ̄\H is equal to 2, since by A,

g = 1 +
1
12

(2− 1)(13− 1) = 2.

5. ) The conjugate classes of hyperbolic Γ̄, have its norm ε2m, m ≥ 1, where
ε runs through the fundamental units of norm 1 of real quaternion field,
In them not 2 nor 3 can be decomposed.

6. ) The number of the primitive conjugate classes of Γ̄ with reduced norm
ε2m is equal to

(2)h(B)
∏

p=2,13

(1− (
B

p
))

where (2) = 1 or 2 according to Q(ε) containing a unit of −1 or not, where
B runs the orders of Q(ε) of which the unit group of norm 1 is generated
by ε2m, and the number of classes of B is related to that of L = Q(ε) by
the formula

h(B) = hLf(B)[R×L : B×]−1prodp|f(B)(1− (
L

p
)p−1)

with RL = the integer ring of L, of class number hL, f(B) = conductor
of B.

EXAMPLE. Γ̄ is the modular group PSL(2,Z). We have e2 = 1, e3 = 1, e∞ = 1
and the genus of the surface Γ̄\H∗2 is 0, since

g = 1 + 1/12− e2/4− e3/3− e∞/2 = 0.

The number of the hyperbolic primitive conjugate classes of a given norm is

(2)
∑

h(B)

with the same notations as that in the precedent example.
E The examples of Riemann surfaces which are isospectral but not isometric. There
are some numerical invariants as follows. — vol(Γ̄\H)
— eq = the number of elliptic points of order q in Γ̄\H
— e∞ =the number of points of Γ̄\H
— e(N) = the the number of the minimal geodesic of length log N of Γ̄\H which
are not depend on the isometric class of the surface Γ̄\H.
Using the properties of Selberg ( Cartier-Hejhal-Selberg) zeta function we can
prove: — To give the spectral for the hyperbolic laplacian in L2(Γ̄\H) is equiv-
alent to give the invariants.
– Two groups of the same invariants but for a finite number between them, have
the same invariants.

We may ask if two surfaces Γ̄\H and Γ̄′\H of the same numerical invariants
are isometric. The answer is NO. We can restrict ourselves to the cocompact
groups Γ without elliptic points. Our examples shall utilize the quaternion
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groups. In those examples, like in the tori of dimension 16 of Milnor (1), two
isospectral riemannian manifolds have the isometric covering of finite degree.
This comes from the arithmetic nature of those examples.

We make a note to the terminology: a riemannian surface is a surface equipped
with a riemannian metric. Two riemannian surfaces are equal if they are iso-
metric.
They will proceed from the simple observation that the Eichler orders of level
N in a quaternion field H/K over a number field K which is totally real such
that there exists one and only one infinite place of K nonramified in H, define
the surfaces they have the same invariants. But it is well known that it can be
chosen K such that the class number of K is divided by a power of 2 as large as
we like. For example we can take K as a real quadratic field of its discriminant
divisible by by a great number of prime numbers. The formula for the type
number of orders leads us to choose K, H, N such that the the type number of
Eichler order of level N in H is as large as we desire(III,5.7).
Examine then the condition of the isometry for two compact riemannian sur-
faces. Fix the Notations: H/K, and H ′/K ′ are two quaternion field satisfy-
ing the above conditions, and not containing any roots of unit different from
∓1. Let O and O′ be two orders of H and H ′ over the integer rings R and
R′ of the center K and K ′ respectively. We say an automorphism σ of C
that means a complex automorphism and suppose that K, and K ′ are em-
bedded in C. We denote by σ(H) the quaternion field over σ(K) such that
Ram(σ(H)) = {σ(v)|v ∈ Ram(H)}. We still denote by σ the isomorphism of
H in σ(H) which extending σ : K → σ(K).
EXAMPLE: If H = {a, b} is the K-algebra of base i, j related by

i2 = a, j2 = b, ij = −ji,

where a, b are the nonzero elements of K, thus σ(H) = {σ(a), σ(b)} is the K-
algebra of base σ(i), σ(j) related by

σ(i)2 = σ(a), σ(j)2 = σb, σ(i)σ(j) = −σ(j)σ(i).

We denote by σ(K) and σ(K ′) the inclusion of K and K ′ in R such that H ⊗R
and H ′⊗R is isomorphic to M(2,R). We can suppose then σ(H) and σ′(H ′) are
contained in M(2,R). The images σ(O1) and σ(O′1)are the groups which we
denoted above by Γ and Γ′. Their canonical images in PSL(2,R) are denoted
by Γ̄ and Γ̄′.

Theorem 4.3.5. The riemannian surface Γ̄\H2 and Γ̄′\H2 are isomorphic if
and only if there exists a complex automorphism σ such that

H ′ = σ(H),O′ = σ(aOa−1), a ∈ H×.

Proof. We prove first that H = Q(O1). Actually this assertion is true under
a general hypothese. Let (e) be a base of H/K contained in O1. Every el-
ement of Q(O1) is of the form x =

∑
aee, where the coefficients ae belongs

to K. The reduced trace being non-degenerated, then the Cramer system
t(xe′) =

∑
aet(ee′) can be solved. The coefficients hence like t(xe′) belong

to Q(O). Set k = K ∩ Q(O1). we have just proved that Q(O1) = k(e). It
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follows that Q(O1) is a central simple algebra over k of dimension 4. It is sim-
ple because that by performing tensor product of it with K over k, it becomes
simple. Therefore Q(O) is a quaternion algebra over k. an infinite place w of
k which is extended to a place v of K ramified in H is definitely ramified in
Q(O). An infinite place w of k which is unramified in Q(O1) has their every
extension v in K to be unramified in H. A place w associating with a real
inclusion iw : k → R can be extended in [K : k] real places. It deduces from 1.1
that k = K.
Every isometry of Γ̄\H2 to Γ̄′\H2 is lifted to an isometry of the universal cover-
ing H2. The isometries of H2 forms a group which is isomorphic to PGL(2,R).
It follows that Γ̄\H2 and Γ̄′\H2 are isomorphic if and only if Γ and Γ′ are
conjugate in GL(2,R). From it Q(σ(O1)) and Q(σ′(O,1)) are conjugate in
GL(2,R). The center remains fixed, thus σ(K) = σ′(K ′). The quaternion al-
gebra Q(σ(O1)) and Q(σ′(O′1)) are hence isomorphic. It may then suppose
they are equal. Every automorphism of a quaternion algebra is inner one,
therefore there exists a ∈ H× such that σ′(O′) = σ(aOa−1). We finally have
H ′ = σ

′−1σ(H) and O′ = σ
′−1σ(aOa−1).

It is clear that this proof can be generalized to riemanian manifold ΓX where
X is a product of H2 and H3, and Γ̄ here is the image of a quaternion group.
The isometric group of X is determined in virtue of a theorem of de Rham [1].

Corollary 4.3.6. If the type number of the order of H is great than the degree
[K : Q], then it exists in H two maximal orders O and O′ such that the surfaces
Γ̄\H and Γ̄′\H are isospectral but not isometric.

In fact, the number of the conjugate σ(H) of H is dominated by the degree
[K : Q]. The corollary can be refined considerably, if necessary, by observing:
– the non-maximal orders
– a better upper bound of Card{σ(H)}, depending on the given (K,H).
EXAMPLE. Suppose that K is a real quadratic field, of which the class number
is great than or equal to 4, for example Q(

√
82). Suppose that Ram(H) is

consists of just one infinite place and of the finite places such that all of their
correspondent prime ideals are principal. Therefore, it exists at least 4 types
of maximal orders, and we can construct some isospectral riemannian surfaces
but they are not isometric. We can thus compute the genera of the obtained
surfaces, by the genus formula and the tables of ζK(−1) calculated by Cohen
[1].
EXAMPLE. H is the quaternion field over K = Q(

√
10) which is ramified at

an infinite place, and above the principal prime ideals (7), (11), (11 + 3
√

10) H
does not contain the roots of unit other than ∓1 since (7) is decomposed into
two cyclotomic quadratic extensions of K, i.e. K(

√−1) and K(
√−3). H is

never fixed by any Q-automorphism and contains two types of maximal orders,
because the class number of Q(

√
10) is 2. The unit groups of reduced norm 1

of two non-equivalent maximal orders allow us to construct two isospectral but
non-isometric surfaces.

Remark 4.3.7. The construction can be generalized and is allowed to construct
some isospectral but non isometric riemannian surfaces in all the dimension
n ≥ 2.
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F Hyperbolic space of dimension 3 . We want to extend a complex homog-
raphy to a transformation of R3. Every complex homography is an even product
of inversions with respect to the cicles in plane which is identified with C. Con-
sider now the spheres which have the same circle and same rays as that circles,
and the operation of R3 consistent with the performance of the product of the
inversion with respect to these spheres. extend then a complex homography to
R3. We now verify the consistence of this definition (Poincarè[1]). It remains
to find the equations of the transformation. We identify the points of R3 with
the points

u = (z, v) ∈ C× R
or with the matrices

u =
(

z −v
v z̄

)
.

The operation of R3 extending the homography associated with g =
(

a b
c d

)
∈

SL(2,C) is u 7→ U = (au + b)(cu + d)−1. Set U = ḡ(u) = (Z, V ). We verify the
following formulae:

Z = ((az + b)(cz + d) + ac̄v2)(|cz + d|2 + |c|2v2)−1,

V = v(|cz + d|2 + |c|2v2)−1.

Differentiating the formula U = g(u) we see that

V −1dU = v−1du.

We equip H3 = {u ∈ R3|v > 0} the upper half-space the hyperbolic metric

v−2(dx2 + dy2 + dv2), u = (x + iy, v).

The group SL(2,C) acts on the hyperbolic half-space by isometries. Its action is
transitive. the isotropic group of (1, 0) is equal to SU(2,C) and SL(2,C)/SU(2,C)
is homeomorphic to H3. The group of all the isomorphisms of H3 is generated
by the mapping (z, v) 7→ (z̄, v) and the group is isomorphic to PSL(2,C) of
isometries associated with SL(2,C).The geodesics are the circles(or the straight
lines) orthogonal to plane C.

Definition 4.11. The volume element deduced from the hyperbolic metric is

v−3dxdydv.

Definition 4.12. Milnor (Thurston, [1]) introduced a function, i.e. the Lobachevski function,

L(θ) = −
∫ θ

0

log |2 sin u|du.

The function allows to express the volume of a tetrahedron. The function
is related to the values of the zeta functions of the (complex) number field at
point 2, hence we have the relation

(1) L(θ) = 1/2
∑

n≥1

sin(2nθ)/n2, 0 ≤ θ ≤ π
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deduced from the relation between L(θ) and the dilogarithm

ψ(z) = −
∫

0z

log(1− w)dw/w =
∑

n≥1

zn/n2,

for |z|leq1, |w|leq1, obtained by setting z = e2iθ:

ψ(e2iθ − ψ(1) = −θ(π − θ) + 2iL(θ).

From this and using the Fourier transformation we have

(2)
∑

kmod(D)

(
−D

k
)L(πk/D) =

√
D

∑

n≥1

(
−D

n
)n−2 =

√
DζQ(

√−D)(2)/ζQ(2) = 6π−2
√

DζQ(
√−D)(2).

We also have the relations

(3) L(θ) is periodic of period π and odd.

(4) L(nθ) =
∑

jmod(n)

nL(θ + j/n), for every integer n 6= 0.

The relation (3) is immediate, the relation (4) is deduced from the trigonometric
identity 2 sinu =

∑
jmod(n) 2 sin(u+jπ/n) which can be proved by factoring the

polynomial Xn − 1.
Milnor conjecture that every rational linear relation among the real numbers
L(θ), for the angles which are the rational multiples of π, is a consequence of
(3) and (4). See also Lang [1].
Volume of a tetrahedron of which one vertices is at the infinity.
A picture here!!!

The base of such a tetrahedron is a sphere with center on C. The projection on
C from the tetrahedron is a triangle, of which the angles are the dihedral angles
of their edges meeting at the infinity:= α, β, γ. Therefore,

α + β + γ = π.

Suppose γ = π/2 and A is projected to (0, 0), and let V be the volume of the
tetrahedron

V =
∫ ∫ ∫

v−3dxdydv =
∫ ∫

t

dxdy/2(1− x2 − y2)

where t = {(x, y)|0 < x ≤ x tanα}, we obtain by setting x = cos θ,

V = −1/4
∫ δ

π/2

log(sin(θ + α)/ sin(θ − α))dθ,

then
V = 1/4(L(α + δ) + L(α− δ) + 2L(π/2− α)).

If the vertex B is in C (two vertices are at the infinity), we have δ = α and

V = 1/2L(α).
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Volume of a tetrahedron of which its three vertices are at the infinity.

A picture here!!!
Since in the neighborhood of each vertex the sum of dihedral angles is π, the
opposite dihedral angles are equal: we have then at most 3 distinct dihedral an-
gles. Let they be α, β, γ and by intersecting the dihedral with the tetrahedron
of the precedent type, we see that

Proposition 4.3.8. The volume of a tetrahedron of which the vertices are at
the infinity, and of the dihedral angles α, β, γ, is equal to

V = L(α) + L(β) + L(γ).

EXAMPLE. A fundamental domain for Picard group PSL(2,Z[i]). The do-
main defined by the relation (Picard [1]):

A picture here!!!

x2 + y2 + z2geq1, x ≤ 1/2, y ≤ 1/2, 0 ≤ x + y

is a fundamental domain for PSL(2,Z[i]) in H3. It is the union of four equal
tetrahedrons all of which have a vertex at the infinity. With the above definitions
we have δ = π/3 and α = π/4. The volume of the domain then is

V = L(π/4 + π/3) + L(π/4− π/3) + 2L(π/2− π/4)
= 1/3 · L(3π/4− π) + Lπ/4)
= 1/3 · L(−π/4) + L(π/4)
= 2/3 · L(π/4)
= (4π2)−1 ·D3/2

K · ζK(2), if K = Q(i)

.

On the other side, for Tamagawa measure we have vol(SL(2,Z(i)\SL(2,C)) =
4π2V . Using the same argument to SL(2,R), we can prove the following corol-
lary by compare.

Corollary 4.3.9. The Tamagawa measure on SL(2,C) is the product of the
hyperbolic measure on H3 by the Haar measure on SL(2,C) such that

vol(SU(2,C)) = 8π2.

Therefore, if Γ is a discrete subgroup of SL(2,C) of finite covolume

vol(SL(2,C)/Γ) =

{
4π2vol(Γ̄\H3)if −1 ∈ Γ
8π2vol(Γ̄\H3) if −1 /∈ Γ

.

We find again Humbert formula for PSL(2, R) if R is the integer ring of an
imaginary quadratic field K:

vol(PSL(2, R)\H3) = 4π2ζK(2)D3/2
K .

Remark 4.3.10. Let H/K be a quaternion algebra satisfying the properties in
the beginning of chapter IV, and C be a maximal compact subgroup of G1. The
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groups Γ of units of reduced norm 1 in the R(S)-order of H are allowed to define
the arithmetic variety :

XΓ = Γ\G1/C.

The results of Chapter III have then the interesting applications to the study of
varieties XΓ. We refer reader to the works of Ihara, Shimura, SErre, Mumford,
Cerednik, Kurahara cited in the bibliography.
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Chapter 5

Quaternion arithmetic in
the case where the Eichler
condition is not satisfied
any more

Let H/K be a quaternion algebra over a global field, ramified over every archimedean
place of K, if it exists. Let S be a nonempty finite set of places of K containing
the archimedean places, and not satisfying Eichler condition:

S 6= ∅,∞ ⊂⊂ Ram(H).

Let R = R(S) be the ring of the elements of K which are integral to the places
that are not contained in S, and O be a R-order of H. Set

X = H or K, Y = R or O.

The algebra X satisfies the fundamental property:

Xv = Yv is a field if v ∈ S.

It is allowed to give
1. The structure of unit group of Y ( the generalization of Dirichlet theorem).
2. an analytic formula for the class number of ideals of Y (the generalization of
Dirichlet formula).
So obtained formula is traditionally called a formula ”of mass” or ”with weight”,
it combines the trace formulae (III.5.11) together and can be used to calculate
the class number and the type number of Eichler orders of the give levels if
X = H.
The methods used here are the same as in VI,1.
The results 1.2 are from the direct application of III.1.4 and III.2.2, more pre-
cisely, of the following results:
the group X×

K is discrete, cocompact in XA,1, and of the covolume 1 for Tama-
gawa measure.

105
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5.1 Units

If v ∈ S, then Xv = Yv is a field. Therefore for every place v,

Zv = {y ∈ Yv|||y||v ≤ 1}
is compact in Xv. It follows that ZA = XA ∩ (

∏
Zv) is compact in XA, and

that the group
ZA ∩XK = {y ∈ Y |||y||v ≤ 1 ∀v ∈ V }

which is discrete in ZA by III.1.4 is a finite group. It is hence equal to the
torsion group Y 1 of Y . We have proved the

Lemma 5.1.1. The Group Y 1 of the roots of unit in Y is a finite group.

If X = K is commutative, it is a cyclic group according to the classical result
about the finiteness of the subgroup of commutative field. If X = H, it is not
commutative in general. When K is a number field it can be embedded in a
finite subgroup of the real quaternions. Its structure is well known(I.3.1).
According to III.1.4, the group X×

K is discrete, cocompact in XA,1. Let us
proceed as in IV.1.1, and describe XA,1/X×

K . By III.5.4 we have a finite decom-
position (at present it is not reduced to one term):

(1) XA,1 = ∪YA,1xiX
×, xi∈XA,1
K , 1 ≤ i ≤ h

where we set

YA,1 = G · C ′ with G = {x ∈ XA,1′|xv
= 1 if v /∈ S}

and C ′ is a compact group which is equal to
∏

v/∈S Y ×
v . It follows from Lemma

1.1 that
Y ×=YA,1 ∩X×

K is discrete, cocompact in G.

LEt f be the mapping which for x ∈ G associates with (||xv||v)v∈S . According
to 1.1, we have the exact sequence

1 −−−−→ Y 1 −−−−→ Y × f−−−−→ f(G).

It follows that f(Y ×) is a discrete, cocompact subgroup of a group which is
isomorphic to Ra · Zb, a + b = CardS − 1 , supposing

f(G) = {(xv) ∈
∏

v∈S

||Xv|| |
∏

xv = 1}.

Therefore, f(Y ×) is a free group with CarsS − 1 generators.

Theorem 5.1.2. Let Y × be the unit group of Y . Then it exists an exact
sequence:

1 → Y 1 → Y × → ZCardS−1 → 1

and Y 1 which is the group of the roots of unit contained in Y is finite.

When X = K is commutative, we deduce from it that Y × is the direct
product of Y 1 by a free group with CardS − 1 generators. It is not true if
X = H as what Exercise 1.1 points out. The theorem 1.2 is an analogue of
IV.1.1

Definition 5.1. The regulator of Y is the volume of f(G)/f(Y ×) calculated for
the measure induced by Tamagawa measure. we denote it by RY .
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Exercise

1. Structure of unit group if K is a number field. Keep the hypotheses and
what are given in §1 unchanging. Suppose in addition that K is a number
field.
a) Prove K is totally real (i.e. all of its archimedean places are real).
b) Deduce from 1.2 that [O× : O1R×] is finite.
c) If L/K is a quadratic extension, and RL is the integer ring of L. Prove
[RL× : R1

LR×] = 1 or 2. (Solution: see Hasse [1]).
d) Utilizing I.3.7 and exercise 3.1 prove that

e = [O× : O1R×] = 1, 2, or 4.

(Solution: Vignéras-Guého [3]). Prove more precisely, with the notations
of I.3.7 and exerise 3.1 that we have
e = 4, if O1 is cyclic, generated by s2n of order 2n, and it exists e1, e2 two
units of O, of which the reduced norms are not the squares (evidently a
necessary condition) and satisfy

e1e2 = −e2e1, if n = 1,

e1 ∈ K(s2n), e2s2n = s−1
2n e2.

e = 2, if e 6= 4, if it exists e1 ∈ O of which the reduced norm is not a
square, and
ifO1 is cyclic, dicyclic, or binary octahedral, with: ifO1 is cyclic generated
by s2n, e1 ∈ K(s2n) or e1s2n = s−1

2n e1,
if O1 =< s2n, j > is dicyclic of order 4n, e1 ∈ (1 + s2n)K×,
if O1 = E48 is the binary octahedal, e1 ∈ (1 + i)K×, where i ∈ O1 is of
order 4.
e = 1 in all other cases.

2. Let K = Q(
√

m) and H be the quaternion field {−1,−1} over K (notation
as in I.1). Prove:
a)All the infinite places of K is ramified in H.
b) There is no any finite place to be ramified in H if 2 can not be de-
composed in K. Otherwise, if v, w are two places of K above 2, , then
Ramf (H) = {v, w}.
c) m = 2. Thus

O = Z[
√

2][1, (1 + i)/
√

2, (1 + j)/
√

2, (1 + i + j + ij)/2]

is a maximal order and its unit group is (with notation in I.3.7)

O× = E48 · Z[
√

2].

d) m = 5, if τ = (1 +
√

5)/2 is the golden number we then set

e1= 1
2
(1 + τ−1i + τj),

e2= 1
2
(τ=1i + j + ij),

e3 = 1
2 (τi + τ−1j + τij),

e4 = 1
2 (i + τj + τ−1ij).
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Therefore,
O = Z[τ ][e1, e2, e3, e4]

is a maximal order, of which the unit group id

O× = E120 · Z[τ ]×.

3. Regulator Suppose X = H. Keeping the notations of §1, Prove:
a) [O× : R×] = [O1 : R1][f(O×) : f(R×)].
b) [f(O×) : f(R×)] = 22CardS−1RR/RO.
Prove also that the regulator of O and of R are related by the relation:

RO = RR22CardS−1[O1 : R1][O1 : R×]−1

or the same:

RO
CardO1

= [O× : R×]−1 RR

CardR1
22CardS−1.

5.2 Class number

The equality τ(X1) = 1 given in II.2.2 and 2.3 takes by means of the relation
(1) of §1 the form

1 = vol(XA,1/X×
K) =

h∑

i=1

vol(YA,1xiX
×
K/X×

K).

Put
Y (i) −XK ∩ x−1

i YAxi.

The global-adele dictionary in III.§5,B allows us to recognize the following prop-
erties:
1) h is the class number of ideals to the left of Y .
2)A system of representative of these ideals is described by the set {YAxi ∩
XK |1 ≤ i ≤ h}. The set of right order of the ideals is {Y (i)|1 ≤ i ≤ h}
According to the definition of regulator of Y we have

1 =
∑

vol(Y (i)
A,i/Y (i)×) = vol(C)

∑
e−1
i RY (i)

where C is a compact group being equal to

C =
∏

v∈S

X1
v

∏

p/∈S

Y ×
p .

We have proved then the following theorem which is analogue with IV.1.7.

Theorem 5.2.1. With the notations of chapter V, we have

h∑

i=1

e−1
i RY (i) = vol(C)−1.
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Corollary 5.2.2. (Dirichlet’s analytic formula). Let K be a number field, of
integer ring R, having r1(r2) real (complex) places . Let h,R, DR, w be the class
number, the regulator, the discriminant, the number of the roots of unit in R
respectively. Therefore,

lim
s→1

(s− 1)ζK(s) =
hR

w
√

DR

2r1(2π)r2 .

Proof. We apply the theorem to compute vol(C) in use of the explicit formula
II.4.3 and exercises 4.2,4.3:

vol(C) = m−1
K 2r1(2π)r2D

−1/2, mK

R = lim
s→1

(s− 1)ζK(s).

Corollary 5.2.3. Let H/K be a quaternion field ramified at every archimedean
place of a number field K, and O be an Eichler order of K. Keeping the no-
tations of corollary 2.2 we denote by D the reduced discriminant of H and by
N the level of O. We choose a system (Ii) of the representatives of the ideal
classes to the left of O. If Oi is the right order of Ii, then wi = [O×i : R×].We
have (by setting n = r1):

∑
w−1

i = 21−n|ζK(−1)|hN
∏

p|D
(Np− 1)

∏

p|N
(Np−1 + 1).

Proof. We proceed as in 2.2 by using the relation between R and the regulator
of O which we saw in exercise 1.3. We obtain

∑
w−1

i = vol(C)−1(
R
w

22n−1)−1 = (mKvolC)−1hD
−1/2
R 21−n

mKvolC = (2π2)nD−2
R ζK(2)f(D, N),

f(D, N) = N
∏

p|D
(Np− 1)

∏

p|N
(Np−1 + 1)

where we notice that K is totally real, hence n = r1, and the functional equation
of the zeta function permit to connect ζK(2) with ζK(−1):

ζK(2)D−3/2
R (−2π2)−n = ζK(−1).

2.3 follows.

In order to go further, it is necessary to use the trace formula III.5.11:

(i)∑

O
= h(B)

∏

p/∈S

mp.

When C.E. is not satisfied, the structure of O× implies the number of maximal
inclusions of B in O(i) is finite and equal to

Card{xgx−1|x ∈ T (i)
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if B = R[g] ⊂ H in the notations of III.5. It follows that if wi = [O(i) : R×] and
w(B) = [B× : R×], we then have

mi = m
(i)
O wi/w(B) = mi(B).

It follows ∑
mi/wi =

h(B)
w(B)

∏

p/∈S

mp.

Definition 5.2. We call

M =
h∑

i=1

1/wi,M(B) =
h∑

i=1

mi/wi

the mass of O and the mass of B in O.

We consider then the Eichler-Brandt matrices P (A) defined in III. exercise
5.8 for the integral ideal of R. these are the matrices in M(h,N). The entries at
i- place of the diagonal αi,i is equal to the number of the principal ideals in O(i)

with reduced norm A. When C.E. is not satisfied the traces of the matrices can
be calculate in use of III.5.11 and V.2.3. The result is given below. Suppose K
to be a number field.

Proposition 5.2.4. (The trace of Eichler-Brandt matrix). The trace of matrix
P (A) is null if A in not a principal ideal. If A is not the square of a principal
ideal, it is equal to

1
2

∑

(x,B)

M(B).

Otherwise, it is equal to

M +
1
2

∑

(x,B)

M(B)

where (x,B) runs through all the pairs formed by an element x ∈ Ks, and a
commutative order B satisfying:
– x is the root of an irreducible polynomial X2 − tX + a, where (a) is a system
of representatives of the generators of A modulo R×2, and t ∈ R; – R[x] ⊂ B ⊂
K(x).

Proof. If A is not principal, this is clear. Otherwise, we utilize

2wiαi,i =
∑

a

Card{x ∈ O(i)|n(x) = 1}.

Introduce now the pairs (x,B). By the definitions of III.5.11, we see that

2wiαi,i =
∑

(x,B)

+

{
0 if A is not a square
2 if A is a square

.

We then use the precedent definition for mass.
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Corollary 5.2.5. (class number). The class number of the ideals to the left of
O equals

M +
1
2

∑

B

M(B)(w(B)− 1)

where B runs through the orders of the quadratic extensions L/KContained in
Ks.

Proof. 2.4 will be used with A = R. We utilize that B being fixed, the sum
over x is equal to w(B), since the units ∓1 are gained by M . The order B only
appear when w(B) 6= 1. This happens only a finite number of times.

This explicit formula can be recover by the computation of II.4. We can
obtain by the same procedure a formula for the type number of the orders of
O. Let 2r = [N(OA) : O×AK×

A ], and h′i be the class number of the two-sided
ideals of O(i). Choose a system (A) of principal integral ideals of R, representing
that ideals which are principal, of reduced norm the two-sided ideals of O, and
modulo the squares of the principal ideals. Therefore,

h′i = h2r/
∑

αi,i(A).

It follows ∑

A

traceP (A) = th2r

from it we have a expression for t.

Corollary 5.2.6. The type number of orders of an Eichler order is equal to

1
h2r+1

∑

B

M(B)w(B)x(B) +
M

h2r

where x(B) is the number of pricipal integral ideals of B of reduced norm in
(A). The orders B runs all the orders of the quadratic extensions L ⊂ Ks over
K.

In this general formula we find again that results which were proved in the
particular cases by different authors (Deuring [3], Eichler [2], [8], Latimer [2],
Pizer [1], Vigneras-Gueho [2]). We can find some applications of these results to
the forms defined by quaternions in the articls of Ponomarv [1]-[5] and Peters
[1].

5.3 Examples

A Quaternion algebra over Q.
Let H/Q be a quaternion algebra such that HR = H, and of reduced discriminant
D. It is interesting to consider the maximal orders of H. Let O be such an order.
The group of its units is equal to the group of its units with reduced norm 1.
Let h be the class number of O. We have

Proposition 5.3.1. The unit group of of a maximal order is cyclic of order
2, 4 or 6, except for

H = {−1,−1}, where D = 2, h = 1,O× ' E24;

H{−1,−3}, where D = 3, h = 1,O× '< s6, j >.
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The notations used here are that in I.3.7. Suppose D 6= 2, 3 and denote by
hi the class number of ideals I to the left of O such that the unit group of I−1I
is of order 2i. Applying 2.4 and the formula for mass M(B), with B = Z[

√−1]
and Z[

√−3], we have

Proposition 5.3.2. The class number h, h2, h3 are equal to

h = 1
12

∏
p|D(p− 1) + 1

4

∏
p|D(1− (−4

p )) + 1
3

∏
p|D(1− −3

p ))
h2 = 1

2

∏
p|D(1− (−4

p ))
h3 = 1

2

∏
p|D(1− (−3

p ))
.

We can give another proof of the formula for h in a pure algebraic way .
It will use the relation between the quaternion algebras and the elliptic curves
(Igusa [1]). We shall give a table for h and for the type number of maximal
orders t in the end of §3.
B.Arithmetic graphes.
We shall give a geometric interpretation of the class numbers h, h2, h3, and the
Brandt matrices i terms of graphs. Let p be a prime number which does not
divide D. The tree X = PGL(2,Zp\PGL(2,Qp) admits a description by the
orders and the ideals of H: we fix first a maximal order O,
– The vertices of X correspond bijectively to the maximal orders O′ such that
Oq = O′q, ∀q 6= p;
– The edges of X of the starting O′ are correspond bijectively to the integral
ideals which are to the left of O′ and with reduced norm pZ.
Precisely, to x ∈ X, with the representative a ∈ GL(2,Qp) = H×

p , we associate
the order O′ such that O′p = a−1Opa, and O′q = Oq if q 6= p. SEE II.2.5 and
2.6.
Let Z(p) be the set of the rational number of the form a/pn, a ∈ Z, n ∈ N.
The maximal orders O′, i.e. the vertices of X, generate the same Z(p)-order
O(p) =

∏
q 6=p(Oq ∩ H). The unit group Op× defines an isometric group Γ =

O(p)×/Z(p)× of the tree X of which the quotient graph is finite. The group
ΓO′of the isometries of Γ fixing a vertex O′ is equal to O′×/Z×. It is from the
above results :
—A cyclic group of order 1, 2, 3;
—A4, if H = {−1,−1};
—D3, if H = {−1,−3}.
By definition Card(ΓO′) is the order of vertex of X/Γ defined by O′.

Proposition 5.3.3. The number of the vertices of the quotient graph X/Γ is
equal to the number of class h of H.
If H = {−1,−1} resp. H = {−1,−3}, the quotient graph has a single vertex
of order 12, resp, of order 6. In the other cases, the number of the vertices of
order i of the quotient graph is equal to hi.

In fact, this is the consequence of a formal computation in the ideles : Since
{∞, p} satisfies the Eichler condition, and Z(p) is principal, the order O(p) is
principal(Ch.III), thus it has the decomposition H×

A =
∏O×q H×

∞H×
p H×, the

product is taken on all the prime numbers q 6= p. By using the decomposition
Q×A = Q×Z×p

∏
Z×q expressing that Z is principal, we see that the class number

of maximal orders (over Z) of H is the cardinal of one of the sets which is
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isomorphic to

Q×AH×
∞O×p

∏
O×q \H×

A /H× = O×p Qp\H×
p /O(p)× = X/Γ.

Precisely, if (Ii) is a system of the representatives of classes of the ideals to the
left of O, the right orders the ideals Ii , denoted by O(i), constitute a system
of representatives of the quotient graph X/Γ. An order O′, vertices of the tree
X, is Γ-equivalent to O(i) if it is joined to O by an ideal I which is equivalent
to Ii.
The Brandt matrix can be explained geometrically as the homomorphism of the
free group Z[X/Γ] generated by the vertices of the quotient graph X/Γ. Let
f : Z[X] → Z[X/Γ] be the homomorphism induced by the surjection X → X/Γ.
For every integer n ≥ 1, let Pn be the homomorphism od Z[X/Γ] such that
Pnf = fTn where Tn is the homomorphism of Z[X] defined by the relations,
Ch.II,§1,

T0(O′) = O′, T1(O′) =
∑

d(O′,O′′)=1

O′′, T1Tn = Tn+1 + qTn−1.

The Brandt matrices P (pn) are the matrices of homomorphism Pn on the basis
of Z[X/Γ] consisting of the vertices xi , the images of the maximal order Oi.
In fact, it suffices to prove for n = 0, 1, since the last relation of Tn is true
for Pn and P (pn). For n = 0, It is evident because P (1) is the identity ma-
trix. For n = 1, the coefficient aij of the matrix P1 on the basis xi defined by
P1(xi) =

∑
aijxj , is:

aij = Card{O′′|f(O′′) = Oj , d(Oi,O′′) = 1}.

this is the number of the integral ideals I to the left of Oi with reduced norm pZ
such that IiI is equivalent to Ij . We do discover here the definition of Brandt
matrix P (p).
The group Γ(O′,O′′) of the isometries of Γ which fix an edge (O′,O′′) with start-
ing point O′ and end point O′′ is (O′× ∩O′′×)/Z×. The number CardΓ(O′,O′′)
is called the order of the edge of quotient graph X/Γ,which is the image of
(O′,O′′). For every vertex x of the quotient graph X/Γ we denote by A(x),
resp. S(x) the set of the edges y of X/Γ with the starting point x, resp. of the
end points of that edges with starting point x, and e(x), resp. e(y), the order
of vertex x, resp. the order of the edge y. We have

q + 1 = e(x)
∑

y∈A(x)

e(y)−1

and the homomorphism P1 is given by

P1(x) = e(x)
∑

x′∈S(x)

e(y)−1x′, where x′ is the end point of y.

We see thus immediately that the matrix of P1 is symmetric with respect to the
basis (e(x)−1/2x), where x runs through the vertices of X/Γ. This is simply the
matrix (a(x, x′)), where a(x, x′) = e(x, x′)−1 if the vertices x, x′ are joined by
an edge y = (x, x′) and a(x, x′) = 0 if there is no any edge joining x to x′.
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C Classical isomorphism.
We are going to explain How certain isomorphisms of finite groups can be proved
by taking advantage of quaternion. Let q = pn, n ≥ 0 be a power of a prime num-
ber p, we have then Card(GL(2,Fq)) = (q2− 1)(q2− q) and Card(SL(2,Fq)) =
(q − 1)q(q + 1). In particular, Car(SL(2,F3)) = 24, Card(GL(2,F3)) = 48,
Card(SL(2,F4)) + 60, Card(SL(2,F5)) = 120.

Proposition 5.3.4. The tetrahedral binary group E24 of order 24 is isomorphic
to SL(2,F3). The Alternate group A5 of order 60 is isomorphic to SL(2,F4)
and the icosahedral binary group E120 of order 120 is isomorphic to SL(2,F5).

Proof. E24 is isomorphic to the unit group of a maximal order(uniquely deter-
mined up to isomorphism) O of a quaternion field {−1,−1} over Q of reduced
discriminant 2, and the natural homomorphism O → O/3O = M(2,F3) induces
an isomorphism of E24 onto SL(2,F3. E120 is isomorphic to the unit group of
reduced norm 1 of a maximal order (unique up to isomorphism) O of the quater-
nion field {−1,−1} over Q(

√
5) which is unramified at the finite places. The

natural homomorphism O → O/2O = M(2,F4 induces a homomorphism of
E120 onto SL(2,F4) with kernel {∓1}, hence A5 = E120/{∓1} is isomorphic to
SL(2,F4). The natural homomorphism O → /

√
5O induces an isomorphism of

E120 onto SL(2,F5).

D The construction of Leech lattice.
Recently Jacques Tits gave a nice construction of Leech lattice in virtue of
quaternions which we shall give as an example of the application of the arith-
metic theory of quaternion. We shall point out that J.Tits in this manner
obtained an elegant geometric description of the twelve among the twenty-four
sporadic groups defined in practice (these 12 groups appear as the subgroups os
automorphisms of Leech lattice).

Definition 5.3. A Z-lattice of dimension n is a subgroup of Rn which is iso-
morphic to Zn. We denote by x · y the usual scalar product in Rn. We say that
the lattice L is even if all the scalar product x · y are integers for x, y ∈ L, and
if all the scalar products x · x are even for x ∈ L. We say that L is Unimodular
if it is equal to its dual lattice L′ = {x ∈ Rn|x ·L ⊂ Z} with respect to the scalar
product. We say that two lattices are equivalent if it exists an isomorphism from
one group to another such that it conserves the scalar product invariant.

We can show easily that a unimodular even lattice is of dimension divided
by 8, and even classify these lattices in the dimension 8, 16, 24 where they have
1, 224 classes respectively. In the higher dimension, the Minkowski-Siegel for-
mula, the mass formula analogue to what we have proved for the quaternion
algebra, and that it amounts to as a formula for a Tamagawa number, show
that the class number is gigantic: it increases with the number of variables, and
it in dimension 32 is already great than 80 millions! Leech discovered that one
of these lattices in dimension 24 has a remarkable property which characterizes
the following

Proposition 5.3.5. The Leech lattice is the only lattice which is even,unimadular,
of dimension 24, and not containing any vector x with x · x = 2.

The method for constructing the even unimodular lattice.
Choose a commutative field K which is totally real and of even degree 2n such
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that the difference of K is totally principal in the restrict sense and denote by
H the unique quaternion field( up to isomorphism )which is totally defined over
K and unramified at the finite places. Let R, Rd be the integer ring of K and
its difference respectively.

Proposition 5.3.6. The maximal R-orders of H equipped with the scalar prod-
uct:

x · y = TK/Q(d−1t(xȳ)

are the unimodular, even lattice of dimension 8n.

Proof. Recall that the inverse of the difference is the dual of the integer ring R
of K with respect to the bilinear form TK/Q(xȳ) defined by the trace TK/Q of
K over Q. Let O be a maximal R-order of H. It is clear that O is isomorphic
to a Z-lattice of dimension 8n. It should prove that the bilinear form defined in
the proposition is equivalent to the usual scalar product, or in another words,
the quadratic form defined by q(x) = 2TK/Q(d−1n(x)) is positively definite. In
fact, x ∈ H× implies That d−1n(x) is totally positive and the trace is strictly
positive.
We verify that
a) x · y ∈ Z and x · x ∈ 2Z, because the inverse of the difference Rd−1 were sent
to each other by the trace in Z.
b) O is equal to its dual O′ = {x ∈ H|TK/Q(d−1t(xO)) ⊂ Z = {x ∈ H|t(xO) ∈
R} because H is not ramified at the finite places.

The construction of Leech lattice.
For the reasons prior to the curiosity of a non-specialist in the theory od finite
groups which is justified by the presence of the binary icasahedral group in the
automorphisms of Leech’s lattice, The construction of Tits for the lattice utilizes
the quternion field H which is totally defined and unramified over K = Q(

√
5).

We have seen that a maximal R-order O equipped with the scalar product in
the precedent proposition is a unimodular even latticeof order 8, and recall that,
if τ = (1 +

√
5)/2, Then

R = Z[1, τ ] and x · y = TK/Q(2xȳ/(5 +
√

5)).

We shall observe later that the only integers x which are totally positive in R
of trace TK/Q(x) ≤ 4 are

(1) 0, 1, 2, τ2 = (3 +
√

5)/2, τ−2 = (3−
√

5)/2.

Although it is not used here, it bears in mind that we have given an explicit
R-basis of an order O in exercise. The unit group of reduced norm 1 of O
denoted by O1 is isomorphic to the icosahedral binary group of order 120, and
contains the cubic roots of unit. Let x be one of them, put e = x + τ . We can
prove immediately that n(e) = 2, and e2 = emod(2).
We denote by h the standard hermitian form of the H-vector space H3:

h(x, y) =
∑

xiȳi, if x = (xi) and y = (yi) belong to H3,

from it we deduce on that on R24 there is a scalar product induced by the
Q-bilinear form of Q-vector space H3 of dimension 24:

x · y = TK/Q(2h(x, y)/(5 +
√

5))
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. The Leech lattice is the lattice in R24 equipped with the above scalar product
and defined by one of the following equivalent ways:

(a) L = {x ∈ O3|ex1 ≡ ex2 ≡ ex3 ≡
∑

ximod(2)},

(b) L is the free O-module of basis f = (1, 1, e), g = (0, ē, ē), h = (0, 0, 2).

we shall prove that we obtain rightly the Leech lattice. Actually the lattice L is
– even, since x, y ∈ Z, and x · x ∈ 2Z, it is evident.
– unimodular, since if x ∈ H3 the equality x·L ⊂ Z is equivalent to h(x, L) ⊂ 2R
and the definition (b) shows the last inclusion is equivalent to x ∈ L.
– not contains any element x such that x · x = 2. Otherwise x ∈ L, x · x = 2,
then put ri = n(xi). It follows that

∑
ri = 2, and since the elements ri are

totally positive, (1) implies that one of them at least should be annihilated. The
definition (a) of lattice implies then that exi ∈ 2O for every 1 ≤ i ≤ 3, From it
we have 2n(xi) ∈ 4R and xi ∈ 2O. Taking again the same reason, we see that
at most one of xi is nonzero and ri ∈ 4R, It leads to a contradiction.
E Tables.
If H is a quaternion algebra totally defined over Q, i.e. HR = H the Hamilton
quaternion field, of reduced discriminant D =

∏
p∈Ram(H) p, the class number and the type number of the Eichler orders of level N without square factor

are given by the formulae:

h = h(D, N) =
1
12

∏

p|D
(p−1)

∏

p|N
(p+1)+

1
4
f(D, N)(1)+

1
3
f(D, N)(3), t = 2−r

∑

m|DN

tr(m)

where r is the number of prime divisors of DN ,

f(D, N)(m) =
∏

p|D
(1− (

d(−m)
p

))
∏

p|N
(1 + (

d(−m)
p

)

d(−m), h(−m) are the discriminant and the class number ofQ(
√

m) respectively.

d(−m) =

{
−m, if m ≡ −1mod(4)
−4m, if m � −1mod(4)

, d(−1) = −4, d(−3) = −3,

g(D, N)(m) = 2
∏

p|D
(1− (

d(−m)
p

))
∏

p|(N/2

(1 + (
d(−m)

p
)), defined if N is even.

Set:

a(m) =





1, if m � −1mod4
2, if m ≡ 7mod8 or m = 3
4, if m ≡ 3mod8 and m 6= 3

,

b(m) =

{
a(m), if m � 3mod8 or m = 3
3, if m ≡ 3mod8 and m 6= 3

,

the number tr(m) are the traces of the Brandt matrices P (Zm) for m|DN :

2tr(m) =





f(D, N)(m)h(−m), if D is even
f(D, N)(m)h(−m)a(m), if DN is odd
g(D, N)(m)h(−m)b(m), if N is even

.
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The class number of ideals for the relation J = aIb, I, J are the ideals of the
order of level N , a, b ∈ H× is given by the formula

h+ = 2−r
∑

m|DN

tr(m)2.

these tables were computed by Henri Cohen of The Center of Computation at
Bordeaux.
Here are tables occupying two pages!!! See this original book, pp.153,154.

With the help of these tables, we can prove that there are 10 Eichler orders
of the level N without square factors , of a quaternion field totally defined
over Q, and of the reduced discriminant D, and of the class number 1 ( up to
isomorphisms). We obtain them with:

D N

2 1,3,5,11
3 1,2
5 1,2
7 1
13 1

The explicit computation for the quaternion algebra totally defined over a
real quadratic field Q(

√
m) Allows to prove that the Eichler orders of level N

without square factor of the quaternion algebras , which are totally defined over
Q(
√

m) of the reduced discriminant D, have the class number equal to h+
m, and

have the class number in the restrict sense of Q(
√

m), are obtained with the
following data:

m D N

2 1,p2p3, p2p5, p2p
(i)
7 1

1 p2, p
(i)
7 , p

(i)
23

3 p2p3, p2p5, p2p
(i)
13 , p3p

(i)
13 1

1 p2, p3, p
(i)
11

5 1,p2p5, p2p
(i)
11 1

1 p2, p3, p5, p
(i)
11 , p

(i)
19 , p

(i)
29 , p

(i)
59

6 p2p3, p3p
(i)
5 1

13 1, p2p
(i)
3 1

1 p
(i)
5

15 p2p3 1
17 1 1, p

(i)
2

21 1, p2p3 1
1 p

(i)
5

33 p
(i)
2 p3 1

There are 54 couples (D, N). The ideals p
(i)
a , i = 1, 2 represent the prime ideals
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of Q(
√

m) above a. For the different values of m we have

m 2 3 5 6 7 13 15 17 21 33
ζQ(

√
m)(−1) 1/12 1/6 1/30 1/2 2/3 1/6 2 1/3 1/3 1

h+
m 1 2 1 2 2 1 4 1 2 2

Abelian cubic field: The Eichler order of level N without square factor,of dis-
criminant D, in a quaternion algebra totally defined over an abelian cubic field
of discriminant m2, and which has a class number equal to the class number h+

m

of center, are the 19 maximal orders given by the following list:

m equation ζ(−1) D

7 x3 − 7x− 7 −1/21 p2, p3, p
(i)
13 , p

(i)
29 , p

(i)
43

9 x3 − 3x + 1 −1/9 p3, p
(i)
19 , p

(i)
37

13 x3 − x2 − 4x− 1 −1/3 p13

Reference: Vigneras-Gueho [3].

Exercise

Euclidean orders. Prove it exists exactly 3 quaternion algebras totally defined
over Q, of which the maximal orders (over Z) are euclidean for the norm. Their
reduced discriminants are 2,3,5 respectively.

(I translate this book just for those who want read it but up to now still has
a little difficulty for reading French. I am not an expert both in quaternion
algebra and French language, so definitely there are many mistakes both in
mathematics and in language. When you read it you must be more careful than
usual. Correct them please.—translator,27 Sept. 2006. Beijing)


