
 COMSOL
Multiphysics ®

V E R S I O N 3 . 5 a

REFERENCE GUIDE

How to contact COMSOL:

Benelux
COMSOL BV
Röntgenlaan 19
2719 DX Zoetermeer
The Netherlands
Phone: +31 (0) 79 363 4230
Fax: +31 (0) 79 361 4212
info@comsol.nl
www.comsol.nl

Denmark
COMSOL A/S
Diplomvej 376
2800 Kgs. Lyngby
Phone: +45 88 70 82 00
Fax: +45 88 70 80 90
info@comsol.dk
www.comsol.dk

Finland
COMSOL OY
Arabianranta 6
FIN-00560 Helsinki
Phone: +358 9 2510 400
Fax: +358 9 2510 4010
info@comsol.fi
www.comsol.fi

France
COMSOL France
WTC, 5 pl. Robert Schuman
F-38000 Grenoble
Phone: +33 (0)4 76 46 49 01
Fax: +33 (0)4 76 46 07 42
info@comsol.fr
www.comsol.fr

Germany
COMSOL Multiphysics GmbH
Berliner Str. 4
D-37073 Göttingen
Phone: +49-551-99721-0
Fax: +49-551-99721-29
info@comsol.de
www.comsol.de

Italy
COMSOL S.r.l.
Via Vittorio Emanuele II, 22
25122 Brescia
Phone: +39-030-3793800
Fax: +39-030-3793899
info.it@comsol.com
www.it.comsol.com

Norway
COMSOL AS
Søndre gate 7
NO-7485 Trondheim
Phone: +47 73 84 24 00
Fax: +47 73 84 24 01
info@comsol.no
www.comsol.no

Sweden
COMSOL AB
Tegnérgatan 23
SE-111 40 Stockholm
Phone: +46 8 412 95 00
Fax: +46 8 412 95 10
info@comsol.se
www.comsol.se

Switzerland
FEMLAB GmbH
Technoparkstrasse 1
CH-8005 Zürich
Phone: +41 (0)44 445 2140
Fax: +41 (0)44 445 2141
info@femlab.ch
www.femlab.ch

United Kingdom
COMSOL Ltd.
UH Innovation Centre
College Lane
Hatfield
Hertfordshire AL10 9AB
Phone:+44-(0)-1707 636020
Fax: +44-(0)-1707 284746
info.uk@comsol.com
www.uk.comsol.com

United States
COMSOL, Inc.
1 New England Executive Park
Suite 350
Burlington, MA 01803
Phone: +1-781-273-3322
Fax: +1-781-273-6603

COMSOL, Inc.
10850 Wilshire Boulevard
Suite 800
Los Angeles, CA 90024
Phone: +1-310-441-4800
Fax: +1-310-441-0868

COMSOL, Inc.
744 Cowper Street
Palo Alto, CA 94301
Phone: +1-650-324-9935
Fax: +1-650-324-9936

info@comsol.com
www.comsol.com

For a complete list of international
representatives, visit
www.comsol.com/contact

Company home page
www.comsol.com

COMSOL user forums
www.comsol.com/support/forums

COMSOL Multiphysics Reference Guide
 © COPYRIGHT 1998–2008 by COMSOL AB. All rights reserved

Patent pending

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from COMSOL AB.

COMSOL, COMSOL Multiphysics, COMSOL Reaction Engineering Lab, and FEMLAB are registered
trademarks of COMSOL AB.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Version: November 2008 COMSOL 3.5a

Part number: CM020005

C O N T E N T S

C h a p t e r 1 : C o m m a n d R e f e r e n c e

Summary of Commands 2

Commands Grouped by Function 7

User Interface Functions . 7

Solver Functions . 7

Geometry Functions . 8

Geometry Objects . 10

Mesh Functions . 12

Utility Functions . 13

Postprocessing Functions 13

Shape Function Classes . 15

Element Syntax Classes . 15

Mathematical Functions . 17

Obsolete Functions in 3.5a 17

Obsolete Functions in 3.5 17

Obsolete Functions in 3.3 17

Obsolete Functions in 3.2 18

Obsolete Functions in 3.1 18

Obsolete Functions in FEMLAB 3.0 18

adaption . 20

arc1, arc2 . 26

assemble . 27

asseminit . 32

block2, block3 . 35

chamfer . 37

circ1, circ2 . 39

comsol. . 41

cone2, cone3 . 42

curve2, curve3 . 44

cylinder2, cylinder3 . 46

drawgetobj . 48

drawsetobj . 49
C O N T E N T S | i

ii | C O N T E N T S
econe2, econe3 . 50

elcconstr . 52

elconst. . 53

elcontact . 54

elcplextr . 57

elcplgenint . 60

elcplproj . 62

elcplscalar . 65

elcplsum . 67

elcurlconstr . 69

elempty . 70

elepspec . 73

eleqc . 75

eleqw . 77

elevate. . 79

elgeom. . 80

elgpspec . 81

elinline . 83

elinterp . 85

elinv. . 87

elirradiation . 88

ellip1, ellip2 . 91

ellipsoid2, ellipsoid3 . 93

elkernel . 95

elmapextr . 97

elmesh . 100

elode . 101

elpconstr . 103

elpiecewise . 105

elplastic . 107

elpric . 109

elsconstr . 110

elshape . 112

elshell_arg2 . 115

eluwhelm. 119

elvar . 120

embed . 121

extrude . 122

face3 . 124

femdiff . 126

femeig . 128

femlin . 131

femmesh . 136

femmesh/get . 142

femnlin. 143

femoptim . 149

femplot . 155

femsim. 157

femsol . 161

femsolver. 164

femstate . 180

femstatic . 182

femstruct . 192

femtime . 193

femwave . 202

fillet . 207

flcompact. 208

flcontour2mesh . 209

flc1hs, flc2hs, fldc1hs, fldc2hs 210

flform . 211

flim2curve . 213

flload . 215

flmesh2spline . 216

flngdof . 218

flnull . 219

flreport . 221

flsave . 222

flsmhs, flsmsign, fldsmhs, fldsmsign 223

gencyl2, gencyl3 . 224

geom0, geom1, geom2, geom3. 226

geom0/get, geom1/get, geom2/get, geom3/get 229

geomanalyze . 231

geomarrayr . 233

geomcoerce. 235

geomcomp . 236

geomcsg . 238
C O N T E N T S | iii

iv | C O N T E N T S
geomdel . 244

geomedit . 246

geomexport. 247

geomfile . 248

geomgetwrkpln . 251

geomgroup . 253

geomimport. 255

geominfo . 259

geomobject . 266

geomplot . 267

geomposition . 272

geomspline . 273

geomsurf . 275

getparts . 277

helix1, helix2, helix3 . 278

hexahedron2, hexahedron3 279

line1, line2 . 280

loft . 281

mesh2geom . 285

meshbndlayer . 287

meshcaseadd . 290

meshcasedel . 292

meshconvert . 293

meshcopy . 296

meshdel . 298

meshembed . 300

meshenrich . 301

meshexport . 304

meshextend . 305

meshextrude . 307

meshimport . 309

meshinit . 312

meshintegrate . 322

meshmap . 324

meshplot . 328

meshqual . 335

meshrefine . 337

meshrevolve . 339

meshsmooth . 341

meshsweep . 343

mirror . 349

move . 350

multiphysics . 351

point1, point2, point3 . 359

poly1, poly2 . 361

postanim . 362

postarrow . 363

postarrowbnd . 364

postcolormap . 365

postcont . 367

postcoord . 368

postcrossplot . 370

postdataplot . 377

posteval . 378

postflow . 382

postglobaleval . 383

postglobalplot . 385

postgp . 387

postint . 388

postinterp . 391

postiso. 394

postlin . 395

postmax . 396

postmin . 397

postmovie . 398

postplot . 400

postprinc . 420

postprincbnd . 421

postslice . 422

postsum . 423

postsurf . 425

posttet. 426

postwriteinterpfile . 427

pyramid2, pyramid3 . 428

rect1, rect2 . 430

revolve . 432
C O N T E N T S | v

vi | C O N T E N T S
rotate . 433

scale . 435

sharg_2_5 . 436

shbub . 437

shcurl . 438

shdens . 439

shdisc . 440

shdiv . 441

shgp. 442

shherm . 443

shlag . 444

shuwhelm . 445

solid0, solid1, solid2, solid3 446

solsize . 448

sphere3, sphere2 . 449

split . 451

square1, square2 . 452

tangent . 454

tetrahedron2, tetrahedron3. 456

torus2, torus3 . 457

xmeshinfo . 459

C h a p t e r 2 : D i a g n o s t i c s

Error Messages 466

2000–2999 Geometry Modeling 466

4000–4999 Mesh Generation 468

6000–6999 Assembly and Extended Mesh 469

7000—7999 Solvers and Preconditioners. 473

9000–9999 General Errors 476

Solver Error Messages . 478

C h a p t e r 3 : T h e F i n i t e E l e m e n t M e t h o d

Understanding the Finite Element Method 484

Mesh . 484

Finite Elements . 484

Discretization of the Equations 502

What Equations Does COMSOL Multiphysics Solve? 509

The Equation System/Solution Forms 510

The Full Equation System. 511

Notes on Constraints in Multiphysics Models 512

C h a p t e r 4 : A d v a n c e d G e o m e t r y T o p i c s

Advanced Geometry Topics 516

Rational Bézier Curves 516

Conic Sections. 517

Cubic Curves . 518

Rational Bézier Surfaces 518

Parameterization of Curves and Surfaces 521

Geometric Variables . 523

C h a p t e r 5 : A d v a n c e d S o l v e r T o p i c s

Advanced Solver Settings 526

Constraint Handling, Null-Space Functions, and Assembly Block Size . . 526

Settings Related to Complex-Valued Data and Undefined Operations . . 527

Storing Solutions on File 528

Solution Form . 528

Manual Control of Reassembly. 530

Scaling of Variables and Equations 531

Constraint Handling. 533
C O N T E N T S | vii

viii | C O N T E N T S
Solver Algorithms 535

The Nonlinear Solver Algorithm 535

The Augmented Lagrangian Solver Algorithm 536

The Time-Dependent Solver Algorithm 537

The Eigenvalue Solver Algorithm 538

The Parametric Solver Algorithm. 539

The Stationary Segregated Solver Algorithm 539

The Adaptive Solver Algorithm 540

The Sensitivity Solver Algorithm 543

References . 544

Linear System Solvers 546

The UMFPACK Direct Solver 546

The SPOOLES Direct Solver 547

The PARDISO Direct Solver 547

The TAUCS Cholesky Direct Solver 549

The TAUCS LDLT Direct Solver 549

The GMRES Iterative Solver. 550

The FGMRES Iterative Solver 550

The Conjugate Gradients Iterative Solver 551

The BiCGStab Iterative Solver 551

Convergence Criteria . 552

References . 554

Preconditioners for the Iterative Solvers 555

The Incomplete LU Preconditioner 555

The TAUCS Incomplete Cholesky Preconditioner 557

The Geometric Multigrid Solver/Preconditioner 557

The Algebraic Multigrid Solver/Preconditioner. 565

The SSOR, SOR, SORU, and Diagonal Scaling (Jacobi) Algorithms . . . 566

The SSOR Vector, SOR Vector, and SORU Vector Algorithms 567

The SSOR Gauge, SOR Gauge, and SORU Gauge Algorithms 569

The Vanka Algorithm . 570

References . 572

Optimization Solver Properties 574

Cendiff. 574

Checkfreq . 575

Diffint . 575

Elasticw . 576

Expfreq . 576

Facfreq. 576

Feastol . 577

Funcprec . 578

Hessdim . 578

Hessfreq . 578

Hessmem. 579

Hessupd . 579

Infbound . 580

Itlim. 580

Linesearch . 580

Linestol . 581

Majfeastol . 581

Majitlim . 582

Majprintfreq. 582

Majprintlevel . 582

Majsteplim . 583

Maximize . 584

Opttol . 584

Newsuplim . 585

Parprice . 585

Pivtol . 586

Print . 586

Printfreq . 587

Printlevel . 587

Proxmeth . 587

Qpsolver . 588

Scaleopt . 589

Scaletol . 589

Suplim . 590

Totitlim . 590

Verify . 590

Viollim . 591
C O N T E N T S | ix

x | C O N T E N T S
C h a p t e r 6 : T h e C O M S O L M u l t i p h y s i c s F i l e s

Overview 594

File Structure . 594

Records . 595

Terminology. 596

Text File Format . 596

Binary File Format . 596

Serializable Types 598

Attribute . 599

BezierCurve . 600

BezierMfd . 601

BezierSurf . 602

BezierTri . 603

BSplineCurve . 604

BSplineMfd . 605

BSplineSurf . 607

Ellipse . 608

Geom0 . 610

Geom1 . 611

Geom2 . 612

Geom3 . 614

GeomFile. 615

Manifold . 616

Mesh . 617

MeshCurve . 619

MeshSurf . 620

Plane . 621

PolChain . 622

Serializable . 623

Straight . 624

Transform . 625

VectorDouble . 626

VectorInt . 627

VectorString . 628

Examples 629

A Mesh with Mixed Element Types 629

A Planar Face . 633

INDEX 637
C O N T E N T S | xi

xii | C O N T E N T S

 1
C o m m a n d R e f e r e n c e
This chapter contains reference information for all COMSOL Multiphysics
commands with descriptions of purpose, syntax, properties, and example scripts.
With these commands, you can perform command-line modeling, calling routines
for creating geometries, assembling, meshing, solving, postprocessing, and other
tasks when using COMSOL Multiphysics with MATLAB.
 1

2 | C H A P T E R 1
S umma r y o f C ommand s
adaption on page 20

arc1, arc2 on page 26

assemble on page 27

asseminit on page 32

block2, block3 on page 35

chamfer on page 37

circ1, circ2 on page 39

comsol on page 41

cone2, cone3 on page 42

curve2, curve3 on page 44

cylinder2, cylinder3 on page 46

drawgetobj on page 48

drawsetobj on page 49

econe2, econe3 on page 50

elcconstr on page 52

elconst on page 53

elcontact on page 54

elcplextr on page 57

elcplgenint on page 60

elcplproj on page 62

elcplscalar on page 65

elcplsum on page 67

elcurlconstr on page 69

elempty on page 70

elepspec on page 73

eleqc on page 75

eleqw on page 77

elevate on page 79

elgeom on page 80

elgpspec on page 81

elinline on page 83

elinterp on page 85

elinv on page 87

elirradiation on page 88

ellip1, ellip2 on page 91
: C O M M A N D R E F E R E N C E

ellipsoid2, ellipsoid3 on page 93

elmapextr on page 97

elmesh on page 100

elode on page 101

elpconstr on page 103

elpiecewise on page 105

elplastic on page 107

elpric on page 109

elsconstr on page 110

elshape on page 112

elshell_arg2 on page 115

eluwhelm on page 119

elvar on page 120

embed on page 121

extrude on page 122

face3 on page 124

femdiff on page 126

femeig on page 128

femlin on page 131

femmesh on page 136

femmesh/get on page 142

femnlin on page 143

femoptim on page 149

femplot on page 155

femsim on page 157

femsol on page 161

femsolver on page 164

femstate on page 180

femstatic on page 182

femstruct on page 192

femtime on page 193

femwave on page 202

fillet on page 207

flcompact on page 208

flcontour2mesh on page 209

flc1hs, flc2hs, fldc1hs, fldc2hs on page 210

flform on page 211

flim2curve on page 213
S U M M A R Y O F C O M M A N D S | 3

4 | C H A P T E R 1
flload on page 215

flmesh2spline on page 216

flngdof on page 218

flnull on page 219

flreport on page 221

flsave on page 222

flsmhs, flsmsign, fldsmhs, fldsmsign on page 223

gencyl2, gencyl3 on page 224

geom0, geom1, geom2, geom3 on page 226

geom0/get, geom1/get, geom2/get, geom3/get on page 229

geomanalyze on page 231

geomarrayr on page 233

geomcoerce on page 235

geomcomp on page 236

geomcsg on page 238

geomdel on page 244

geomedit on page 246

geomexport on page 247

geomfile on page 248

geomgetwrkpln on page 251

geomgroup on page 253

geomimport on page 255

geominfo on page 259

geomobject on page 266

geomplot on page 267

geomposition on page 272

geomspline on page 273
geomsurf on page 275

getparts on page 277

helix1, helix2, helix3 on page 278

hexahedron2, hexahedron3 on page 279

line1, line2 on page 280

loft on page 281

mesh2geom on page 285

meshbndlayer on page 287

meshcaseadd on page 290

meshcasedel on page 292

meshconvert on page 293
: C O M M A N D R E F E R E N C E

meshcopy on page 296

meshdel on page 298

meshembed on page 300

meshenrich on page 301

meshexport on page 304

meshextend on page 305

meshextrude on page 307

meshimport on page 309

meshinit on page 312

meshintegrate on page 322

meshmap on page 324

meshplot on page 328

meshqual on page 335

meshrefine on page 337

meshrevolve on page 339

meshsmooth on page 341

meshsweep on page 343

mirror on page 349

move on page 350

multiphysics on page 351

point1, point2, point3 on page 359

poly1, poly2 on page 361

postanim on page 362

postarrow on page 363

postarrowbnd on page 364

postcolormap on page 365

postcont on page 367

postcoord on page 368

postcrossplot on page 370

postdataplot on page 377

posteval on page 378

postflow on page 382

postglobaleval on page 383

postglobalplot on page 385

postgp on page 387

postint on page 388

postinterp on page 391

postiso on page 394
S U M M A R Y O F C O M M A N D S | 5

6 | C H A P T E R 1
postlin on page 395

postmax on page 396

postmin on page 397

postmovie on page 398

postplot on page 400

postprinc on page 420

postprincbnd on page 421

postslice on page 422

postsum on page 423

postsurf on page 425

posttet on page 426

postwriteinterpfile on page 427

pyramid2, pyramid3 on page 428

rect1, rect2 on page 430

revolve on page 432

rotate on page 433

scale on page 435

sharg_2_5 on page 436

shbub on page 437

shcurl on page 438

shdens on page 439

shdisc on page 440

shdiv on page 441

shgp on page 442

shherm on page 443

shlag on page 444

shuwhelm on page 445

solid0, solid1, solid2, solid3 on page 446

solsize on page 448

sphere3, sphere2 on page 449

split on page 451

square1, square2 on page 452

tangent on page 454

tetrahedron2, tetrahedron3 on page 456

torus2, torus3 on page 457

xmeshinfo on page 459
: C O M M A N D R E F E R E N C E

Command s G r oup ed b y Fun c t i o n

User Interface Functions

Solver Functions

a. Requires the Optimization Lab.

FUNCTION PURPOSE

comsol Start the COMSOL Multiphysics graphical user interface or a
COMSOL Multiphysics server

FUNCTION PURPOSE

adaption Solve PDE problem using adaptive mesh refinement

femeig Solve eigenvalue PDE problem

femlin Solve linear stationary PDE problem

femnlin Solve nonlinear stationary PDE problem

femoptima Optimize stationary PDE problem

femstatic Solve stationary PDE problem

femtime Solve time-dependent PDE problem
C O M M A N D S G R O U P E D B Y F U N C T I O N | 7

8 | C H A P T E R 1
Geometry Functions

FUNCTION PURPOSE

chamfer Create flattened corners in 2D geometry object

drawgetobj Get geometry object from draw structure

drawsetobj Change geometry object in draw structure

elevate Elevate degrees of 2D geometry object Bézier curves

embed Embed 2D geometry object as 3D geometry object

extrude Extrude 2D geometry object to 3D geometry object

fillet Create circular rounded corners in 2D geometry object

flcontour2mesh Create boundary mesh from contour data

flim2curve Create 2D curve object from image data

flmesh2spline Create spline curves from mesh

geomanalyze Compose and analyze geometry of FEM problem

geomarrayr Create rectangular array of geometry object

geomcoerce Compose and coerce geometry objects

geomcomp Compose (analyze) geometry objects

geomcsg General function for analyzing geometry objects

geomdel Delete interior boundaries

geomedit Edit geometry object

geomexport Export geometry object to file

geomfile Geometry M-file

geomgetwrkpln Retrieve work plane information

geomgroup Group geometry objects into an assembly

geomimport Import geometry object from file

geominfo Retrieve geometry information.

geomobject Create geometry object

geomplot Plot a geometry object

geomposition Position 3D geometry object

geomspline Spline interpolation

geomsurf Surface interpolation

get (p. 229) Get geometry object properties

getparts Extract parts from an assembly object

loft Loft 2D geometry sections to 3D geometry
: C O M M A N D R E F E R E N C E

mirror Reflect geometry

move Move geometry object

revolve Revolve 2D geometry object to 3D geometry object

rotate Rotate geometry object

scale Scale geometry object

split Split geometry object

tangent Create a tangent line

FUNCTION PURPOSE
C O M M A N D S G R O U P E D B Y F U N C T I O N | 9

10 | C H A P T E R
Geometry Objects

FUNCTION PURPOSE

arc1, arc2 Elliptical or circular arc/solid sector

block2, block3 Rectangular block face/solid object

circ1, circ2 Circle curve/solid object

cone2, cone3 Cone face/solid object.

curve2, curve3 2D/3D rational Bézier curve object

cylinder2,
cylinder3

Cylinder face/solid object

econe2, econe3 Eccentric cone face/solid object

ellip1, ellip2 Ellipse curve/solid object

ellipsoid2,
ellipsoid3

Ellipsoid face/solid object

face3 3D rational Bézier surface object

gencyl2,
gencyl3

Straight homogeneous generalized cylinder face/solid object

geom0, geom1,
geom2, geom3

0D/1D/2D/3D geometry object

helix1,
helix2, helix3

Helix curve/face/solid object

hexahedron2,
hexahedron3

Hexahedron face/solid object

line1, line2 Open curve/solid polygon

point1,
point2, point3

1D/2D/3D point object

poly1, poly2 Closed curve/solid polygon

pyramid2,
pyramid3

Pyramid face/solid object

rect1, rect2 Rectangle curve/solid object

solid0,
solid1,
solid2, solid3

0D/1D/2D/3D solid object

sphere3,
sphere2

Sphere solid/face object

square1,
square2

Square curve/solid object
 1 : C O M M A N D R E F E R E N C E

tetrahedron2,
tetrahedron3

Tetrahedron face/solid object

torus2, torus3 Torus face/solid object

FUNCTION PURPOSE
C O M M A N D S G R O U P E D B Y F U N C T I O N | 11

12 | C H A P T E R
Mesh Functions

FUNCTION PURPOSE

femmesh Create a mesh object

flcontour2mesh Create boundary mesh from contour data

get (p. 142) Get mesh object properties

mesh2geom Create geometry from (deformed) mesh

meshbndlayer Create boundary layer mesh

meshcaseadd Add new mesh cases

meshcasedel Delete mesh cases

meshconvert Convert mesh to simplex mesh

meshcopy Copy mesh between boundaries

meshdel Delete elements in a mesh

meshembed Embed a 2D mesh into 3D

meshenrich Make mesh object complete

meshexport Export meshes to file

meshextend Extend a mesh to the desired finite element types

meshextrude Extrude a 2D mesh into a 3D mesh

meshimport Import meshes from file

meshinit Create free mesh

meshmap Create mapped quad mesh

meshplot Plot mesh

meshqual Mesh quality measure

meshrefine Refine a mesh

meshrevolve Revolve a 2D mesh into a 3D mesh

meshsmooth Jiggle internal points of a mesh

meshsweep Create swept mesh

xmeshinfo Get extended mesh information
 1 : C O M M A N D R E F E R E N C E

Utility Functions

Postprocessing Functions

FUNCTION PURPOSE

assemble Assemble the stiffness matrix, right-hand side, mass matrix, and
constraints of a PDE problem

asseminit Compute initial value

femdiff Symbolically differentiate general form

femsim Create Simulink structure

femstate Create state-space model for PDE problem

femstruct FEM structure information

femwave Extend FEM structure to a wave equation problem

flcompact Compact equ/bnd/edg/pnt fields

flform Convert between PDE forms

flload Load a COMSOL Multiphysics file

flngdof Get number of global degrees of freedom

flnull Compute null space of a matrix, its complement, and the range
of the matrix

flreport Globally turn off progress window or show it

flsave Save a COMSOL Multiphysics file

multiphysics Multiphysics function

solsize Get number of solutions in a solution object

FUNCTION PURPOSE

femplot Description of properties common to all plot functions

meshintegrate Compute integrals in arbitrary cross sections

postanim Shorthand command for animation

postarrow Shorthand command for arrow plot in 2D and 3D

postarrowbnd Shorthand command for boundary arrow plot in 2D and 3D

postcolormap Return a MATLAB colormap for a COMSOL color table

postcont Shorthand command for contour plot in 2D

postcoord Get coordinates in a model

postcrossplot Cross-section plot
C O M M A N D S G R O U P E D B Y F U N C T I O N | 13

14 | C H A P T E R
posteval Evaluate expressions on subdomains, boundaries, edges, and
vertices

postflow Shorthand command for streamline plot in 2D and 3D

postglobaleval Evaluate globally defined expressions, such as solutions to
ODEs

postglobalplot Plotting globally defined expressions, such as solutions to
ODEs

postgp Extract Gauss points and Gauss point weights

postint Integrate expression over subdomains, boundaries, edges, and
vertices

postinterp Evaluate expressions in arbitrary points

postiso Shorthand command for isosurface plot in 3D

postlin Shorthand command for line plot

postmax Compute maximum value for expression

postmin Compute minimum value for expression

postmovie Postprocessing animation function

postplot Postprocessing plot function

postprinc Shorthand command for subdomain principal stress/strain
plot in 2D and 3D

postprincbnd Shorthand command for boundary principal stress/strain plot
in 2D and 3D

postslice Shorthand command for slice plot in 3D

postsum Sum expressions over nodes

postsurf Shorthand command for surface plot in 2D and 3D

posttet Shorthand command for subdomain plot in 3D

postwriteinterpfile Create interpolation file

FUNCTION PURPOSE
 1 : C O M M A N D R E F E R E N C E

Shape Function Classes

Element Syntax Classes

FUNCTION PURPOSE

sharg_2_5 Fifth-order Argyris shape function object in 2D

shbub Bubble shape function object

shcurl Vector shape function object

shdens Density element shape function object

shdisc Discontinuous shape function object

shdiv Divergence shape function object

shgp Gauss-point shape function object

shherm Hermite shape function object

shlag Lagrange shape function object

shuwhelm Scalar plane wave basis function object

FUNCTION PURPOSE

elconst Global expression variable element

elcontact Contact map operator element

elcplextr Extrusion coupling variable element

elcplgenint Destination-aware integration coupling variable element

elcplproj Projection coupling variable element

elcplscalar Integration coupling variable element

elcplsum Summation coupling variable element

elcurlconstr Vector constraint element

elempty Empty element which defines basic syntax

elepspec Evaluation and constraint point pattern declaration element

eleqc Coefficient and general form equation element

eleqw Weak form equation element

elgeom Geometric variable element

elgpspec Integration point pattern declaration element

elinline Inline function declaration element

elinterp Interpolation function declaration element

elinv Inverse matrix component variable element
C O M M A N D S G R O U P E D B Y F U N C T I O N | 15

16 | C H A P T E R
elirradiation Irradiation coupling variable element

elmapextr Extrusion map operator element

elmesh Mesh variable element

elode Global scalar variable and equation element

elpconstr Pointwise constraint element

elpiecewise Piecewise function declaration element

elplastic Plastic strain variable element

elpric Principal component and vector variable element

elsconstr Coefficient and general form constraint element

elshape Shape function declaration element

elshell_arg2 Shell equation element

eluwhelm Ultraweak variational form equation element

elvar Expression variable element

FUNCTION PURPOSE
 1 : C O M M A N D R E F E R E N C E

Mathematical Functions

Obsolete Functions in 3.5a

Obsolete Functions in 3.5

Obsolete Functions in 3.3

FUNCTION PURPOSE

fldc1hs (p. 210) Smoothed Heaviside function with continuous first derivative

fldc1hs (p. 210) Derivative of flc1hs

flc2hs (p. 210) Smoothed Heaviside function with continuous second derivative

fldc2hs (p. 210) Derivative of flc2hs

flsmhs (p. 223) Smoothed Heaviside function

fldsmhs (p. 223) Derivative of smoothed Heaviside function

flsmsign (p. 223) Smoothed sign function

fldsmsign (p. 223) Derivative of smoothed sign function

FUNCTION PURPOSE REPLACEMENT

dst, idst Discrete sine transform

meshpoi Make regular mesh on a rectangular geometry meshmap,
meshconvert

pde2draw Convert a PDE Toolbox geometry description

pde2fem Convert a PDE Toolbox model description to an
FEM structure

pde2geom Convert a PDE Toolbox decomposed geometry

poisson Fast solution of Poisson’s equation on a
rectangular grid

femstatic

FUNCTION PURPOSE REPLACEMENT

meshhex2tet Convert hexahedral mesh to tetrahedral mesh meshconvert

meshquad2tri Convert quadrilateral mesh to triangular mesh meshconvert

FUNCTION PURPOSE REPLACEMENT

shvec First-order simplex vector shape element shcurl
C O M M A N D S G R O U P E D B Y F U N C T I O N | 17

18 | C H A P T E R
Obsolete Functions in 3.2

Obsolete Functions in 3.1

Obsolete Functions in FEMLAB 3.0

FUNCTION PURPOSE REPLACEMENT

dxfread Import geometry from DXF file geomimport

dxfwrite Export geometry to DXF file geomexport

igesread Import 3D geometry from IGES file geomimport

stlread Import 3D geometry from STL file geomimport

vrmlread Import 3D geometry from VRML file geomimport

FUNCTION PURPOSE REPLACEMENT

flgetrules Import differentiation rules from FEMLAB 1.1

flgeomsf2 Set 2D geometry object weights on standard
form

flsde Indices of edges in a set of subdomains

flsdp Indices of points in a set of subdomains

flsdt Indices of elements in a set of subdomains

fltrg Triangle geometry data

FUNCTION PURPOSE REPLACEMENT

appl2fem Expand application mode data to FEM structure multiphysics

change Change 2D geometry object

elemdefault Return available default element types for an
application mode

faceprim3 Primitive 3D face object

femiter Solve stationary PDE problem by iterative
methods

fem{n}lin

fldae Implicit DAE solver femtime

fldaek Iterative implicit DAE solver femtime

fldaspk Direct or iterative implicit DAE solver femtime

fleeceng Energy norm error estimator function adaption

fleel2 L2 norm error estimator function adaption
 1 : C O M M A N D R E F E R E N C E

In FEMLAB 3.0, all FEMLAB 2.3 Element Class Methods, Element Library
Low-Level Functions, and Shape Function Class Methods are obsolete.

fleelfun Linear functional error estimator adaption

fleig Solve generalized sparse eigenvalue problem femeig

flgbit Good Broyden iterative solver fem{n}lin

flgmres GMRES iterative solver fem{n}lin

flisop2p1 Matrix M-file for Navier-Stokes Iso P2-P1
element

fllrq Iterative real symmetric definite generalized
eigenvalue solver

femeig

flngbit Good Broyden iterative solver for use with
fldaek

femtime

flngmres GMRES iterative solver for use with fldaek femtime

flntfqmr TFQMR iterative solver for use with fldaek femtime

fltfqmr TFQMR iterative solver fem{n}lin

fltpft Minimize the error for a given number of
elements

adaption

fltpqty Refine a given fraction of the elements adaption

fltpworst Refine elements with error greater than a
fraction of the worst error

adaption

multigrid Linear or nonlinear (adaptive) multigrid solver fem{n}lin

solidprim3 Primitive 3D solid object

FUNCTION PURPOSE REPLACEMENT
C O M M A N D S G R O U P E D B Y F U N C T I O N | 19

adaption

20 | C H A P T E
adaptionPurpose Solve PDE problem using adaptive mesh refinement.

Syntax fem = adaption(fem,...)
[fem.sol,fem.mesh] = adaption(fem,...)

Description fem = adaption(fem) solves a linear or nonlinear stationary PDE problem or
eigenvalue PDE problem. In addition, adaption performs adaptive mesh
refinement.

[fem.sol,fem.mesh] = adaption(fem) explicitly returns the solution structure
and the adapted mesh object.

The function adaption accepts the following property/value pairs:

TABLE 1-1: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Adjppr auto | on | off auto Use recovery for adjoint
solution error estimate

Callback string Function to call each
callback

Callblevel refine | param |
nonlin

refine Callback solverlevel
(param/nonlin for
solver=stationary)

Callbparam cell array Parameters to the
callback function

Eefun l2 | func l2 Error estimation function

Eefunc string Error estimate functional
name (eefun=func)

Eigselect vector of positive
scalars

1 Weights for eigenmodes

Geomnum integer 1 Geometry number

Hauto positive integer 7 Mesh generation
parameter for refinement
method meshinit

L2scale vector of positive
scalars

1 Scale factors for the L2
error norm

L2staborder vector of positive
integers

2 Orders in the stability
estimate for the L2 error
estimate

Maxt positive scalar Inf Maximum number of
mesh elements
R 1 : C O M M A N D R E F E R E N C E

adaption
In addition, the common solver properties listed under femsolver are available.
Also, when using the stationary solver type, the properties listed under
femstatic apply, and for the eigenvalue solver type the properties in femeig
apply. See therefore the entries femsolver, femstatic, and femeig for more
information about the property/values.

Algorithm The algorithm solves a sequence of PDE problems using a sequence of refined
meshes. The first mesh is obtained from the mesh field in the FEM structure. The
following generations of meshes are obtained by solving the PDE problem,
computing a mesh element error indicator based on the error estimate function,
selecting a set of elements based on the element pick function, and then finally
refining these elements. The solution to the PDE problem is then recomputed. The
loop continues until the maximum number of element generations has been reached
or until the maximum number of elements is obtained.

Ngen scalar integer 5 (1D)
2 (2D)
1 (3D)

Maximum number of
refinements

Out fem | sol | u |
lambda | mesh |
solcompdof | Kc |
Lc | Dc | Null | ud |
Nnp | uscale | stop
| cell array of these
strings

fem
[sol,mesh]

Output variables

Resmethod weak |
coefficient

weak Residual computation
method

Resorder auto | scalar |
vector

auto Order of decrease of
equation residuals

Rmethod regular | longest |
meshinit

longest Refinement method

Solver stationary |
eigenvalue

stationary Solver type

Tpfun fltpft |
fltpworst |
fltpqty

fltpft Element selection
method

Tppar Nonnegative real
number

Parameter to the element
selection method

TABLE 1-1: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
21

adaption

22 | C H A P T E
The PDE problem is stored in the FEM structure fem. See femstruct for details.
The adaptive solver works in one geometry at a time. You specify the geometry
number in the property geomnum. The solver only supports simplex meshes. The
residual computation method weak support all solution forms. The residual
computation method coefficient does not support the solution form weak, weak
contributions, or constraints on subdomains.

First, the solver chosen by the property Solver is called.

Error Estimation
Then, the residuals in the equations are computed for all mesh elements. The error
estimation function is given by the property Eefun. For solver type stationary
there are two functions available: l2 and func. The function l2 computes the error
indicator using the L2 norm and the function func computes the error indicator
using a functional. For the solver type eigenvalue only the l2 function is available.

If the error estimate function functional is used, you must provide a functional
variable name using the property eefunc. This variable must have global scope. The
algorithm computes the adjoint solution related to the functional and estimates the
error in this solution. This error estimate is used for the selection of elements to
refine. Two methods are supported to estimate the error in the adjoint solution: a
recovery technique and a gradient-based method. By selecting adjppr=on you can
enforce using the recovery technique, and with adjppr=off the adaptive solver uses
the gradient method. When using the auto option, the algorithm automatically
detects if the model uses only Lagrange basis function. If so, the recovery technique
is used. Otherwise, the algorithms chooses the gradient-based method. In the
Solver Log you can inspect which method is selected. See “The Adaptive Solver
Algorithm” on page 540 for more information.

The error estimator gives local error indicators , where i is
the equation number, j is the mesh element number, h is the mesh element size, and
Vol is the mesh element volume. f(i, j) is the scaled absolute value of the ith
equation residual on the jth mesh element. The mesh element error indicator is the
sum of these local error indicators over the equation index i. The global error
indicator is the α root of the sum of the mesh element error indicators over the mesh
element index j. See “The Adaptive Solver Algorithm” on page 540 for more
information.

If the eigenvalue solver is used, you can specify the weighting of the error indicators
for the different eigenfunctions using the property Eigselect. The nth component

f i j,()h j()β i()()
α
Vol j()
R 1 : C O M M A N D R E F E R E N C E

adaption
of the Eigselect vector is the weight for the error indicator of the nth
eigenfunction.

Mesh Refinement
Then, a refinement of the mesh is generated based on the local error indicators. The
aim is to refine the mesh most where the errors are largest. The mesh refinements
ratios are determined by the function given in the property Tpfun, with parameter
Tppar. There are three predefined functions available: fltpft, fltpworst, and
fltpqty. fltpft tries to minimize the total error for a prescribed mesh size, namely
Tppar times the current number of mesh elements (the default Tppar is 1.7). Each
element can be refined several times. fltpworst and fltpqty refine each element
at most once. fltpworst refines the elements with an error greater than a fraction
of the worst error, whereas fltpqty refines a given fraction of the elements (the
fraction is given in the property Tppar, the default is 0.5).

The property Resorder is a scalar or vector that gives the order of decrease of the
equation residuals as the mesh size h tends to 0. If it is a vector, the residual of the
nth equation is O(hResorder(n)). If Resorder equals auto, the software determines
the order of decrease in equation residuals on the basis of the shape function orders
in the model. Roughly speaking, the order is one less than the shape function order
for the corresponding equation.

Once the mesh refinement ratios have been determined, the mesh is refined using
the method given in the property Rmethod, and the algorithm starts a new iteration.
The refinement method is either longest, regular, or meshinit. Details on the
first two refinement methods can be found in the entry on meshrefine. Meshinit
means that a new mesh is generated through a call to meshinit using the Hmesh
property to control the element sizes.

Convergence Control
No more than Ngen successive refinements are attempted. Refinement is also
stopped when the number of elements in the mesh exceeds Maxt.

The property Stop makes it possible to return a partially converged solution when
the nonlinear, iterative, or eigenvalue solver fails at some point. If a failure occurs,
the result from the previous iteration is returned. The output value Stop is 0 if a
complete solution was returned, 1 if a partial solution was returned, and 2 if no
solution was returned.

If the property callback is given, the solver makes interrupts (or callbacks) and
calls a function with the given name. To control when the solver makes a callback,
23

adaption

24 | C H A P T E
use the callblevel property. When callblevel is refine, the solver makes a
callback after each mesh refinement step. When the solver is stationary, the
callblevel values param and nonlin are supported as well; see the description
under the entry for femstatic on page 182 for details.

When the Report property is on, a progress window is shown. Information about
the progress of the adaptive process is printed after each adaptive step. You get a
message on the number of mesh elements obtained by the adaptive step, and an
error indicator. This error indicator is not an absolute error estimate. In favorable
cases there is a constant C such that C times the error indicator is an upper bound
of some norm of the error.

E X A M P L E : E I G E N M O D E S O F A N O N C O N V E X G E O M E T R Y

Solve the eigenvalue problem

,

where the domain Ω is a polygon with some concave corners. Adapt the mesh for
the first and second eigenpair and compare. Finally, adapt the mesh using a equally
weighted sum of the error estimates of both these eigenpairs.

clear fem
fem.geom = poly2([-1,-1,-0.5,-0.5,1,1,0.5,0.5],...
 [0,-0.4,-0.4,0,0,0.6,0.6,0.2]);
fem.shape = 2;
fem.equ.da = 1; fem.equ.c = 1;
fem.bnd.h = 1;
fem.solform = 'general';

First set the adaptive solver to eigenvalue and use the L2-norm error estimator.
Adapt for the first eigenvalue and solve the problem using a maximum number of
500 triangles:

fem.mesh = meshinit(fem);
fem.xmesh = meshextend(fem);
fem = adaption(fem,'solver','eigenvalue','eefun','fleel2',...
 'eigselect',1,'maxt',500);
clf
subplot(211), postsurf(fem,'u'), axis equal
subplot(212), meshplot(fem), axis equal

Now solve the same problem but adapt for the second eigenvalue:

fem.mesh = meshinit(fem);

∇– ∇u⋅ λu= in Ω
u 0= on Ω∂⎩

⎨
⎧

R 1 : C O M M A N D R E F E R E N C E

adaption
fem.xmesh = meshextend(fem);
fem = adaption(fem,'solver','eigenvalue','eefun','fleel2',...
 'eigselect',2,'maxt',500);
clf
subplot(211), postsurf(fem,'u','solnum',2), axis equal
subplot(212), meshplot(fem), axis equal

Finally, generate a mesh adapted for both these eigenvalues. Do so by specifying a
vector of weights for the errors in each eigenpair:

fem.mesh = meshinit(fem);
fem.xmesh = meshextend(fem);
fem = adaption(fem,'solver','eigenvalue','eefun','fleel2',...
 'eigselect',[1 2],'maxt',500);
clf
subplot(211), postsurf(fem,'u'), axis equal;
subplot(212), meshplot(fem), axis equal;

Cautionary The change of solution form to weak in COMSOL Multiphysics 3.3 may make it
necessary to add fem.solform = 'general'; to your script models before calling
meshextend.

The Coefficient residual computation method does not support weak equations and
does not take other weak contributions into account.

Diagnostics Upon termination, one of the following messages is displayed:

• Maximum number of elements reached

• Maximum number of refinements reached

Compatibility COMSOL Multiphysics 3.2: the change to weak solution may make it necessary to
add fem.solform = 'general'; to your script models before calling meshextend.

FEMLAB 3.1: error estimators fleelfun, fleeceng, and property Stop are not
supported.

The property Variables has been renamed Const in FEMLAB 2.3.

The properties epoint and tpoint are obsolete from FEMLAB 2.2. Use
fem.***.gporder to specify integration order. See assemble for details.

The properties toln and normn has been made obsolete from FEMLAB 1.2. Ntol
replaces toln.

See Also femstruct, meshinit, meshrefine, meshextend, femeig, femlin, femnlin
25

arc1, arc2

26 | C H A P T E
arc1, arc2Purpose Create elliptical or circular arc.

Syntax c = arc1(cx,cy,a,b,theta,phi1,phi2)
c = arc2(cx,cy,a,b,theta,phi1,phi2)
c = arc1(cx,cy,r,phi1,phi2)
c = arc2(cx,cy,r,phi1,phi2)

Description c = arc1(cx,cy,a,b,theta,phi1,phi2) creates a 2D curve geometry object in
the form of an elliptical arc, centered in the coordinates given by cx and cy. The
lengths of the semi-axes are a and b, and they are rotated the angle theta. The start
and end angles are phi1 and phi2, respectively, and are specified with respect to the
semi-axes of the ellipse. The valid range of these angles is 0<=phi1, phi2<2*pi.

c = arc2(cx,cy,a,b,theta,phi1,phi2) creates a 2D solid geometry object in
the form of an elliptical sector.

c = arc1(cx,cy,r,phi1,phi2) creates a 2D curve geometry object in the form
of a circular arc, where r is the radius.

c = arc2(cx,cy,r,phi1,phi2) creates a 2D solid geometry object in the form
of a circular sector.

Examples The following commands create two circular arc objects, coerce them into one
curve object, and plot the result:

c1 = arc1(0,-1,1,pi/2,3*pi/2);
c2 = arc1(0,1,1,3*pi/2,pi/2);
g = geomcsg({},{c1,c2});
c = curve2(g)
geomplot(c)
axis equal

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also geom0, geom1, geom2, geom3, curve2, curve3
R 1 : C O M M A N D R E F E R E N C E

assemble
assemblePurpose Assemble the stiffness matrix, right-hand side, mass matrix, damping matrix, and
constraints of a PDE problem.

Syntax [K,L,M,N] = assemble(fem,...)
[K,L,M,N,D] = assemble(fem,...)
[K,L,M,N,D,E] = assemble(fem,...)
[D,M,...] = assemble(fem,'Out',{'D' 'M' ...}, ...)

Description assemble is a fundamental function in COMSOL Multiphysics. It assembles a PDE
problem using a finite element discretization.

For time-dependent problems, the finite element discretization is the system of
ODEs

where L is the residual vector, M is the constraint residual vector, U is the solution
vector, and Λ is the Lagrange multiplier vector. The linearization of this system uses
the stiffness matrix K, the damping matrix D, the mass matrix E, and the constraint
Jacobian matrix N given by

Here NF is the constraint force Jacobian matrix. If only ideal constraints are used
then

.

All these matrices can depend on the solution vector U. The matrices K, D, and E
can also depend on the time derivatives and .

For a stationary problem, the discretization is

and the linearized problem is

0 L U U
·

U
··

t, , ,() NF U t,()Λ–=

0 M U t,()=

K
U∂

∂L D
U
·

∂

∂L E
U
··

∂

∂L N,
U∂

∂M
–=–=,–=,–=

NF NT
=

U
·

U
··

0 L U() NF U()Λ–=

0 M U()=

K U U0–() L NFΛ–=

NU M=
27

assemble

28 | C H A P T E
where K, L, M, N, and NF are evaluated for some linearization “point” U = U0.

For an eigenvalue problem, the discretization reads

where K, D, E, N, and NF are evaluated for an equilibrium “point” U = U0. The
eigenvalue is denoted by λ and the linearization point for the eigenvalue by λ0.

Table 1-2 lists the valid property/value pairs for the assemble function.

TABLE 1-2: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Assemtol scalar 1e-12 Assembly tolerance

Blocksize positive integer |
auto

auto Assembly block size

Complexfun on | off off Use complex-valued
functions with real input

Const cell array Definitions of constants

Eigname string Eigenvalue name

Eigref string 0 Linearization point for
the eigenvalue

Matherr on | off on Error for undefined
operations

Mcase non-negative integer mesh case with
largest number
of DOFs

Mesh case

Out K | L | M | N |NF | D |
E |Ksp | A | AL | BE
| C | DA | EA | F | G |
GA | H | Q | R | cell
array of these strings

[K,L,M,N]

[K,L,M,N,D]

[K,L,M,N,D,E]

Output matrices

Solcomp cell array of strings Degree of freedom
names to solve for

T scalar 0 Time for evaluation

U solution object |
numeric vector |
scalar

0 Solution for evaluation

KU λ λ0–()DU– λ λ0–()2EU+ NFΛ–=

NU M=
R 1 : C O M M A N D R E F E R E N C E

assemble
The property Assemtol affects the assembly process. If the local stiffness matrix
elements result in a negligible global matrix entry, this element is replaced by a zero.
These zeros are removed from the matrices after the assembly process, saving space
and computational overhead (in a sparse matrix format the zero matrix entries does
not have to be stored). The tolerance is used in a relative sense. Namely if the local
matrix contribution (from one element) is Al = {Al,ij} and the currently assembled
global matrix is Al = {Aij} then the entry Aij is replaced by a zero if

where []ij denotes the contribution from a local matrix to the global matrix entry
ij, and where εa is the assembly tolerance controlled by the property Assemtol. For
certain types of shape functions the procedure described above is not always safe to
perform. This is the case for shape function elements with degrees of freedoms that
are of different types, for example when a field variable and its spatial derivative is
combined (as in the shherm or sharg_2_5 elements), or when the displacement and
displacement angles are combined (as in some Euler Beam elements in the
Structural Mechanics Module). For this reason, the above process is never used for
local matrix contributions from these types of shape function elements. If the
Assemtol is zero then no elements are neglected, but the removal of zeros are still
performed. If Assemtol is negative, no elements are neglected, and zeros are not
removed from the assembled matrices.

The property Blocksize determines the number of mesh elements that are
assembled together in a vectorized manner. A low value gives a lower memory
consumption, while a high value might give a better performance. If the default
setting gives an unsatisfactory performance for the given problem, then it is
recommended to test with Blocksize equal to 1000.

The properties Complexfun and Matherr are described in femsolver.

The property Const gives a list of definitions of constants to be used in evaluations.
This list is a row cell array with alternating constant names and numeric values. This
list is appended to the list given in fem.const. If there is a conflict, the definition
in Const is used.

The properties Eigname and Eigref are described in femeig. Note that assemble
has an empty default value for the property Eigname. So if you want to assemble the
matrices for an eigenvalue problem formulated using and eigenvalue name, then the
Eigname property must be given. If the variable name lambda is used and if

Aij Al[]ij+ εamaxkl Al kl,<
29

assemble

30 | C H A P T E
Eigname is not set (and if lambda is not defined in another way), then this variable
is evaluated to zero.

The property Out determines which matrices to output. Ksp is the sparsity pattern
of K. The matrices A, AL, BE, C, and Q are the contributions to the K matrix that
come from the coefficients a, α, β, c, and q, respectively. The vectors F, G, and GA
are the contributions to the L vector that come from the terms f (or F), g (or G),
and γ (or Γ), respectively. The matrix H is the contribution to the N matrix that
comes from the h coefficient. The vector R is the contribution to the M vector that
comes from the r (or R) coefficient. The matrix DA is the contribution to the D
matrix that comes from the da coefficient. The matrix EA is the contribution to the
E matrix that comes from the ea coefficient.

The property Solcomp is a cell array that specifies the names of the degrees of
freedom for which to solve. This property correspondlingly restricts the sizes of the
assembled matrices K, L, M, N, D, and E.

The property T determines for which time the matrices are evaluated.

The property U determines the values of the degrees of freedom for which the
matrices are computed (that is, the linearization point), and also their first and
second time derivatives if U is a time-dependent solution object. U can be a solution
(femsol) object, a solution vector (this has to be a column vector with values for all
the degrees of freedom in the discretized problem), or a scalar (which is expanded
to a solution vector).

Examples Sparsity Structure of Finite Element Discretization of Poisson’s Equation
Assemble the stiffness matrix, right-hand side, and constraint matrices of Poisson’s
equation

where Ω is the unit disk.

clear fem
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
[K,L,M,N] = assemble(fem);

∆u– 1= in Ω
u 0= on ∂Ω⎩

⎨
⎧

R 1 : C O M M A N D R E F E R E N C E

assemble
n = size(N,1);

The sparsity structure of the FEM formulation of the PDE problem is:

spy([K,N',L;N,sparse(n,n),M]);

The column to the right corresponds to the right-hand side. You can continue and
solve the PDE problem by using the function femstatic:

fem.sol = femstatic('In',{'K' K 'L' L 'M' M 'N' N});
postsurf(fem,'u')

Compatibility FEMLAB 3.0: the properties Context and Sd are not supported and output
matrices AS, ALS, BES, CS, DAS, FS, andGAS not supported.

In FEMLAB 2.3, the size of the matrices D, K, and L was unaffected by Solcomp. In
FEMLAB 3.0, the size of the matrices D, K, L, and N shrinks if Solcomp is a subset
of all degree of freedom names.

The property Variables has been renamed Const in FEMLAB 2.3.

The properties bdl, epoint, sdl, tpoint are obsolete from FEMLAB 2.2. Use
fem.xxx.gporder to specify integration order.

The outputs KM, LM, MM, NM, DM, MC, NC, NCL, MU, and NU are no longer available in
FEMLAB 2.2 and later versions.

The default value for u and t is 0 in FEMLAB 1.1. In FEMLAB 1.0 it was an error
to use u or t in a level 4 expression when the properties u or t were not passed to
assemble.

See Also femstruct, femsolver, femlin, femnlin, femtime, femeig
31

asseminit

32 | C H A P T E
asseminitPurpose Compute initial value.

Syntax sol = asseminit(fem,...)
sol = asseminit(fem,'u',femsrc,...)
sol = asseminit(fem,'init',femsrc,...)

Description sol = asseminit(fem,...) computes a solution object corresponding to the
initial value expressions in the FEM structure fem.

sol = asseminit(fem,'u',femsrc,...) evaluates these initial value expressions
using the solution femsrc.sol in the source FEM structure femsrc.

sol = asseminit(fem,'init',femsrc,...) transfers the solution femsrc.sol
in the source FEM structure femsrc to the mesh in fem, using interpolation.

fem is an FEM structure or extended FEM structure. If Init is a solution object or
if Solnum has length greater than 1, then the output solution object is of the same
type as the source solution object (Init or U). Otherwise, the output solution
object is of the time-dependent type (containing also first time derivatives).

The function asseminit accepts the following property/values:

TABLE 1-3: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Blocksize integer 1000 Assembly block size

Complexfun on | off off Use complex functions with
real input

Const cell array Definition of constants

Framesrc string | cell array of
strings

reference
frame

Frame for source geometry

Gmap integer vector 0 Geometry map

Init solution object | cell
array | solution
vector | string | scalar
| FEM structure

Initial value specification

Mcase integer lowest
existing
mesh case

Mesh case

Mcasesrc integer Mcase Mesh case for source
solution

Out fem | sol | u sol Output
R 1 : C O M M A N D R E F E R E N C E

asseminit
The properties Blocksize, Complexfun, Const, and Outcomp are described in
femsolver.

The property Framesrc is needed when mapping a solution after remeshing in a
moving mesh simulation. In such a case, the source geometry does not conform to
the destination geometry. Rather, the deformed source mesh agrees with the
destination geometry if the source mesh is viewed in a certain frame. The property
Framesrc contains the name of this frame, or if there are several source geometries,
a frame name for each source geometry.

The geometry map vector Gmap tells for each geometry g in the destination FEM
structure fem the corresponding geometry number in the source FEM structure,
namely Gmap(G). If Gmap(G)=0, there is no corresponding source geometry. The
default is a trivial Gmap, that is, the geometry numbers are unchanged.

The initial values are given by the property Init. This can be:

• A solution object or a solution vector, corresponding to the extended mesh
Xmesh. That solution is mapped to the current extended mesh (fem.xmesh).

• A cell array of alternating DOF names and expressions, or a single expression. The
DOFs will be given the values of the expressions, evaluated for the solution U on
the extended mesh Xmesh. In this context, a DOF name can also be the name of
the time derivative of a DOF. For example, ut is the time derivative of the DOF u.

• An FEM structure. The solution in that FEM structure will be mapped to the
current extended mesh.

• A scalar. The scalar will be expanded to a solution vector.

Outcomp cell array of strings Solution components to
output

Solnum integer vector Solution numbers to use in
source solution

T real vector Time for evaluation

U solution object |
solution vector |
scalar | FEM
structure

0 Solution for evaluation

Xmesh extended mesh
object

fem.xmesh Extended mesh for source
solution

TABLE 1-3: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
33

asseminit

34 | C H A P T E
If the property Init is not given, the initial value will be computed by evaluating
the initial expressions in the FEM structure for the solution U on the extended mesh
Xmesh.

If the source solution (Init or U) is a numeric vector, its corresponding mesh case
number can be given in the Mcasesrc property.

The property Solnum gives the solution numbers to use in the source solution. If
the source solution is time-dependent, interpolation at the times in T can be used
instead. By default, only the last solution (first solution for eigensolutions) is used.

Compatibility The properties context, initmethod, and linsolver are obsolete from FEMLAB
3.0.

The property Variables has been renamed Const in FEMLAB 2.3.

See Also assemble, femsolver, femlin, femnlin, femtime, adaption, meshextend
R 1 : C O M M A N D R E F E R E N C E

block2, block3
block2, block3Purpose Create a right-angled block geometry object.

Syntax obj = block3
obj = block2
obj = block3(lx,ly,lz,...)
obj = block2(lx,ly,lz,...)

Description obj = block3 creates a right-angled solid block object with all side lengths equal
to 1, one corner at the origin, and the local z-axis equal to the global z-axis. block3
is a subclass of solid3.

obj = block3(lx,ly,lz,...) creates a right-angled solid block geometry object
with positive side lengths lx, ly, and lz. lx, ly, and lz are positive real scalars, or
strings that evaluate to positive real scalars, given the evaluation context provided by
the property const.

The functions block3/block2 accept the following property/values:

axis sets the local z-axis, stated either as a directional vector of length 3, or as a
1-by-2 vector of spherical coordinates. axis is a vector of real scalars, or a cell array
of strings that evaluate to real scalars, given the evaluation context provided by the
property const. See gencyl3 for more information on axis.

pos sets the position of the object, either centered about the position or with one
corner in the position. The corresponding values of base are center and corner.
pos is a vector of real scalars, or a cell array of strings that evaluate to real scalars,
given the evaluation context provided by the property const.

TABLE 1-4: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

base corner |
center

corner Positions the object either centered
about pos or with one corner in pos

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot real or string 0 Rotational angle about axis (radians)
35

block2, block3

36 | C H A P T E
rot is an intrinsic rotational angle for the object, about its local z-axis provided by
the property axis. rot is a real scalar, or a string that evaluate to a real scalar, given
the evaluation context provided by the property const. The angle is assumed to be
in radians if it is numeric, and in degrees if it is a string.

obj = block2(...) creates a right-angled surface block geometry object with
properties as given for the block3 function. block2 is a subclass of face3.

Block objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Examples The following commands create a surface and solid block object, where the position
is defined in the two alternative ways.

b1 = block2(1,2.1,0.5,'base','center','pos',[1 0 1],...
 'axis',[0 0 1],'rot',0)
get(b1,'xyz')
b2 = block3(1,1,1,'base','corner','pos',[-1 -1 -1])
get(b2,'xyz')

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also face3, hexahedron2, hexahedron3

TABLE 1-5: BLOCK OBJECT PROPERTIES

PROPERTY DESCRIPTION

lx, ly, lz Side lengths

base Base point

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
R 1 : C O M M A N D R E F E R E N C E

chamfer
chamferPurpose Create flattened corners in 2D geometry object.

Syntax g = chamfer(g1,...)

Description g = chamfer(g1,...) creates flattened corners in 2D geometry object g1
according to given property values.

The function chamfer accepts the following property/values:

The corners to chamfer is either specified with either the property point or edges.
The default value is the all corners are chamfered.

The size of the chamfer is specified with any of the following combinations of
properties: dist1 and dist2; dist1 and angles; dist1 and lengths; and length
and angles. If only dist1 is supplied the chamfering distance is equal for both
edges. All these properties can be given as a vector or as a single value.

Examples Chamfer a rectangle in different ways.

r = rect2;
s1 = chamfer(r,'dist1',0.1);
s2 = chamfer(r,'edges',[1 2;2 3],'angles',pi/4,'lengths',0.5);

TABLE 1-6: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

angles 1-by-m vector Angles (in radians) with respect to
edges in first row of edges

dist1 1-by-m vector Distances along edges in the first
row of edges. A positive entry
states the chamfered length and a
negative entry states the remaining
length of edge after chamfering

dist2 1-by-m vector Distances along edges in second
row of edges, using same format as
dist1

edges 2-by-m matrix Pairs of edge numbers

lengths 1-by-m vector Lengths of line segments that make
up the flattened corners

out Cell array of
strings

Determines the output

point integers | all |
none

all out
37

chamfer

38 | C H A P T E
Diagnostics If a chamfer cannot be created according to the specified properties this corner is
ignored.

When the chamfers generates intersections with other edges in the geometry, an
error message is given.

Compatibility FEMLAB 3.0: The property trim is no longer supported. Only pair of edges that
have a common vertex can be chamfered. For edges that are not linear, the linear
approximation of the edge in the corner is used to compute a chamfer.

See Also curve2, curve3, fillet
R 1 : C O M M A N D R E F E R E N C E

circ1, circ2
circ1, circ2Purpose Create circle geometry object.

obj = circ2
obj = circ1
obj = circ2(r,...)
obj = circ1(r,...)

Description obj = circ2 creates a solid circle geometry object with radius 1, centered at the
origin. circ2 is a subclass of ellip2 and solid2.

obj = circ2(r,...) creates a circle object with radius r, centered at the origin. r
is a positive real scalar, or a string that evaluates to a positive real scalar, given the
evaluation context provided by the property const.

The functions circ2/circ1 accept the following property/values:

obj = circ1(...) creates a curve circle geometry object with properties as given
for the circ2 function. circ1 is a subclass of ellip1 and curve2.

Circle objects have the following properties:

In addition, all 2D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom2 for details.

TABLE 1-7: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

base corner |
center

center Positions the object either centered
about pos or with the lower left
corner of surrounding box in pos

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot real or string 0 Rotational angle about pos (radians)

TABLE 1-8: CIRCLE OBJECT PROPERTIES

PROPERTY DESCRIPTION

r Radius

base Base point

x, y Position of the object

rot Rotational angle
39

circ1, circ2

40 | C H A P T E
Examples The commands below create a unit solid circle geometry object and plot it.

c1 = circ2(1,'base','center','pos',[0 0]);
get(c1,'base')
geomplot(c1)

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also ellip1, ellip2, curve2, curve3
R 1 : C O M M A N D R E F E R E N C E

comsol
comsolPurpose Start COMSOL software products.

Syntax comsol
comsol server

Description comsol starts the COMSOL Multiphysics graphical user interface from MATLAB.

comsol server starts a COMSOL Multiphysics server within the MATLAB
process. You can connect to the COMSOL Multiphysics server from a COMSOL
Multiphysics client. The COMSOL Multiphysics client must be started outside
MATLAB.

There is also a comsol command available on the command prompt in Windows,
UNIX/Linux, and Mac. Using the COMSOL command you can start COMSOL
Multiphysics running stand alone. You can also start a COMSOL Multiphysics
client for connecting to a COMSOL Multiphysics server. The options to this
command are listed in the COMSOL Installation and Operations Guide.
41

cone2, cone3

42 | C H A P T E
cone2, cone3Purpose Create a circular cone geometry object.

Syntax c3 = cone3
c2 = cone2
c3 = cone3(r,h)
c2 = cone2(r,h)
c3 = cone3(r,h,ang)
c2 = cone2(r,h,ang)
c3 = cone3(r,h,ang,...)
c2 = cone2(r,h,ang,...)

Description c3 = cone3 creates a solid circular cone geometry object with bottom radius and
height equal to 1, top radius equal to 0.5, and the center of the bottom at the origin.
cone3 is a subclass of econe3.

c3 = cone3(r,h) creates a solid circular cone geometry object, with bottom radius
r, height h, and top radius r/2.

c3 = cone3(r,h,ang) creates a solid circular cone geometry object, with bottom
radius r, height h, and the angle ang between the local z-axis and a generator of the
conical surface. ang is given in radians in the interval [0,pi/2).

The functions cone3/cone2 accept the following property/values:

For more information on input arguments and properties see gencyl3.

c2 = cone2(...) creates a surface circular cone geometry object without bottom
and top faces, according to the arguments as described for cone3. cone2 is a
subclass of econe2.

TABLE 1-9: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot real or string 0 Rotational angle about axis (radians)
R 1 : C O M M A N D R E F E R E N C E

cone2, cone3
Cone objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

See geomcsg and geom for more information on geometry objects.

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The numbering of faces,
edges and vertices is different from the numbering in objects created in 2.3.

Examples Create a cone with an apex

h = 2;
r = 1;
c3 = cone3(r,h,atan(r/h));
get(c3,'ang')

Created truncated and rotated cone

c2 = cone2(r,h,atan(0.7*r/h),'pos',[1 -2 4],...
 'axis',[1 -1 0.3],'rot',pi/3);
get(c2,'ax2')

See Also cylinder2, cylinder3, econe2, econe3, face3, gencyl2, gencyl3, geom0,
geom1, geom2, geom3, geomcsg

TABLE 1-10: CONE OBJECT PROPERTIES

PROPERTY DESCRIPTION

r Radius

h Height

ang Semi-angle

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
43

curve2, curve3

44 | C H A P T E
curve2, curve3Purpose Create a curve object.

Syntax c3 = curve3(x,y,z)
c3 = curve3(x,y,z,w)
c3 = curve3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd)
[c3,...] = curve3(g3,...)
c3 = curve3(g2)
c2 = curve2(x,y)
c2 = curve2(x,y,w)
c2 = curve2(vtx,edg,mfd)
[c2,...] = curve2(g2,...)

Description c3 = curve3(x,y,z) creates a 3D curve object. The degree is determined from
the number of control points given in the vectors, x, y, and z. Length 2 generates a
straight line. Lengths 3 and 4 generates rational Bézier curves of degrees 2 and 3
respectively. Unit weights are used.

c3 = curve3(x,y,z,w) works similarly to the above, but also applies the positive
weights w to the control points of the curve.

c3 = curve3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd) creates 3D curve
geometry object c3 from the arguments vtx, vtxpre, edg, edgpre, fac, mfdpre,
and mfd. The arguments must define a valid 3D curve object. See geom3 for a
description of the arguments.

[c3,...] = curve3(g3,...) coerces the 3D geometry object g3 to a 3D curve
object c3.

c3 = curve3(g2) coerces the 2D geometry object g2 to a 3D curve object c3, by
embedding it in the plane z = 0.

c2 = curve2(x,y) creates a 2D curve object in the form of a Bézier curve, with
the control points given by the vectors x and y of the same lengths. Length 2
generates a straight line. Lengths 3 and 4 generates rational Bézier curves of degrees
2 and 3, respectively. Unit weights are used.

c2 = curve2(x,y,w) works similarly to the above, but also applies the positive
weights w to the control points of the curve.

c2 = curve2(vtx,edg,mfd) creates a 2D curve object from the properties vtx,
edg, and mfd. The arguments must define a valid 2D curve object. See geom2 for a
description of the arguments.

[c2,...] = curve2(g2,...) coerces the 2D geometry object g2 to a 2D curve
object.
R 1 : C O M M A N D R E F E R E N C E

curve2, curve3
The coercion functions [c2,...] = curve2(g2,...) and [c3,...] =
curve3(g3,...) accept the following property/values:

See geomcsg and geom for more information on geometry objects.

The nD geometry object properties are available. The properties can be accessed
using the syntax get(object,property). See geom for details.

Examples The commands below compute the union of a unit circle and a unit square, coerce
the solid object to a curve object, and plot the result.

s = circ2+square2;
c = curve2(s);
geomplot(c)

The following commands generate and plot an elliptic 3D arc:

c = curve3([0 1 2],[0 1 0],[0 1 2],[1 1/sqrt(2) 1]);
geomplot(c)

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also face3, geom0, geom1, geom2, geom3, geomcsg, point1, point2, point3

TABLE 1-11: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

out stx | ftx |
ctx | ptx

{} Cell array of output names
45

cylinder2, cylinder3

46 | C H A P T E
cylinder2, cylinder3Purpose Create a cylinder geometry object.

Syntax c3 = cylinder3
c2 = cylinder2
c3 = cylinder3(r,h)
c2 = cylinder2(r,h)
c3 = cylinder3(r,h,...)
c2 = cylinder2(r,h,...)

Description c3 = cylinder3 generates a solid cylinder object, with radius and height equal to
1, axis along the z-axis and bottom surface centered at the origin. cylinder3 is a
subclass of cone3.

c3 = cylinder3(r,h) generates a solid cylinder object with radius r and height h.

The functions cylinder3/cylinder2 accept the following property/values:

For more information on input arguments and properties, see gencyl3.

c2 = cylinder2(...) creates a surface cylinder object, from arguments as
described for cylinder3. cylinder2 is a subclass of cone2.

Cylinder objects have the following properties:

TABLE 1-12: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

const Cell array of
strings

{} Evaluation context for string inputs.

pos Vector of
reals or cell
array of
strings

[0 0] Position of the bottom surface

rot real or string 0 Rotational angle about axis (radians)

TABLE 1-13: CYLINDER OBJECT PROPERTIES

PROPERTY DESCRIPTION

r Radius

h Height

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis
R 1 : C O M M A N D R E F E R E N C E

cylinder2, cylinder3
In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

See geomcsg and geom for more information on geometry objects.

Examples The following commands generates a surface cylinder object and a solid cylinder
object.

c2 = cylinder2(0.5,4,'pos',[1,1,0],'axis',[pi/2,0]);
c3 = cylinder3(20,40,'pos',[0,0,-100],'axis',[1,1,1]);

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The numbering of faces,
edges and vertices is different from the numbering in objects created in 2.3.

See Also gencyl2, gencyl3, cone2, cone3, face3, geom0, geom1, geom2, geom3,
geomcsg

ax3 Axis of symmetry

rot Rotational angle

TABLE 1-13: CYLINDER OBJECT PROPERTIES

PROPERTY DESCRIPTION
47

drawgetobj

48 | C H A P T E
drawgetobjPurpose Get geometry object from draw structure.

Syntax obj = drawgetobj(fem,name)

Description obj = drawgetobj(fem,name) retrieves the geometry object(s) with name name
in the FEM structure fem. All objects with names beginning with name are returned
in the cell array obj. If only one object matches, it is returned without an enclosing
cell array.

objs = drawgetobj(fem) returns all objects in the draw structure fem.draw in a
cell array.

Example clear fem
fem.draw.s.objs = {rect2 rect2(1,2,0,1)};
fem.draw.s.name = {'R1' 'R2'};
drawgetobj(fem,'R1')

See Also drawsetobj, geomanalyze
R 1 : C O M M A N D R E F E R E N C E

drawsetobj
drawsetobjPurpose Change geometry object in draw structure.

Syntax fem = drawsetobj(fem,name,obj)

Description fem = drawsetobj(fem,name,obj) replaces the existing geometry object named
name with obj in the draw structure fem.draw.

Example clear fem
fem.draw.s.objs = {rect2 rect2(1,2,0,1)};
fem.draw.s.name = {'R1' 'R2'};
fem = drawsetobj(fem,'R1',scale(drawgetobj(fem,'R1'),2,2));
fem.draw.s.objs{1}

See Also drawgetobj, geomanalyze
49

econe2, econe3

50 | C H A P T E
econe2, econe3Purpose Create eccentric cone geometry object.

Syntax ec3 = econe3
ec2 = econe2
ec3 = econe3(a,b,h)
ec2 = econe2(a,b,h)
ec3 = econe3(a,b,h,rat)
ec2 = econe2(a,b,h,rat)
ec3 = econe3(a,b,h,rat,...)
ec2 = econe2(a,b,h,rat,...)

Description ec3 = econe3 creates a solid eccentric cone geometry object with height and
semi-axes of the elliptical bottom surface equal to one, axis along the coordinate
z-axis, and the center of the bottom surface at the origin. econe3 is a subclass of
gencyl3.

ec3 = econe3(a,b,h) creates a solid eccentric cone geometry object with
semi-axes a and b, and height h.

ec3 = econe3(a,b,h,rat) creates a cone with the non-negative ratio rat
between the top and bottom surface.

The functions econe3/econe2 accept the following property/values:

For more information on input arguments and properties see gencyl3.

TABLE 1-14: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

const Cell array of
strings

{} Evaluation context for string inputs

displ 2-by-nd
matrix

[0;0] Displacement of extrusion top

pos Vector of
reals or cell
array of
strings

[0 0] Position of the bottom surface

rot real or string 0 Rotational angle about axis (radians)
R 1 : C O M M A N D R E F E R E N C E

econe2, econe3
ec2 = econe2(...) creates a surface eccentric cone geometry object, without
bottom and top faces, according to the arguments described for econe3. econe2 is
a subclass of gencyl2.

Eccentric cone objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The numbering of faces,
edges and vertices is different from the numbering in objects created in 2.3.

Examples Create a truncated eccentric cone with the basis surface in the xy-plane.

e = econe2(10,40,20,0.5)

Create an eccentric cone with an apex, that is, a singular patch, on top.

e = econe3(1,2,4,0,'displ',[1,1],'pos',[100 100 100],...
 'axis',[0 1 4],'rot',pi/4)

See Also cone2, cone3, gencyl2, gencyl3, face3

TABLE 1-15: ECCENTRIC CONE OBJECT PROPERTIES

PROPERTY DESCRIPTION

a, b Semi-axes

r Radius

h Height

rat Ratio

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
51

elcconstr

52 | C H A P T E
elcconstrPurpose Define coefficient or general form constraints.

Syntax el.elem = 'elcconstr'
el.g{ig} = geomnum
el.form = 'coefficient' | 'general'
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.dim{idim} = dimvarname
el.geomdim{ig}{edim}.r{eldomgrp} = rvec
el.geomdim{ig}{edim}.h{eldomgrp} = hmat
el.geomdim{ig}{edim}.cpoints{eldomgrp}{ic} = cpind

Description The elcconstr element adds a set of constraints specified in coefficient or general
form, as specified by the el.form field, to the FEM problem. For the syntax of the
ind field, see elempty. The coefficient rvec has the same syntax as the fem.bnd.r
field, while hmat corresponds to an fem.bnd.h entry. See further the chapter
“Specifying a Model” on page 3 of the COMSOL Multiphysics MATLAB Interface
Guide. The cpoints field differs from fem.bnd.cporder in that it contains pattern
indices instead of orders, see elepspec.

Dirichlet boundary conditions are implemented using elcconstr elements if the
solution form is Coefficient or General. When assembling in the Weak solution
form, an elpconstr elements replaces the elcconstr.

Examples In a 2D model, add a Dirichlet boundary condition on u at boundary 1 and 2 using
constraint point pattern 1:

el.elem = 'elcconstr';
el.g = {'1'};
el.form = 'coefficient';
gd.ind = {{'1','2'}};
gd.dim = {'u'};
gd.r = {{'0'}};
gd.h = {{'1'}};
gd.cpoints = {{'1'}};
el.geomdim{1} = {{},gd,{}};
fem.elem = [fem.elem {el}];

See Also elempty, elpconstr, elcurlconstr, elepspec, eleqc
R 1 : C O M M A N D R E F E R E N C E

elconst
elconstPurpose Define global expression variables.

Syntax el.elem = 'elconst'
el.var{2*ivar-1} = varname
el.var{2*ivar} = varexpr

Description The elconst element declares expression variables varname to be accessible across
all geometries and dimensions. The defining expressions, varexpr, can contain any
variables, including variables that are only present on some domains. Expressions are
expanded in the context where evaluation is requested.

Examples Add global expressions for the transformation between Cartesian and cylindrical
polar coordinates.

clear el;
el.elem = 'elconst';
el.var = {'r','sqrt(x^2+y^2)','phi','atan2(y,x)'};
fem.elem = [fem.elem {el}];

See Also elempty
53

elcontact

54 | C H A P T E
elcontactPurpose Define contact map operators.

Syntax el.elem = 'elcontact'
el.g{ig} = geomnum
el.opname{iop} = opname
el.mphname{iop} = mphname
el.gapname{iop} = gapname
el.contname{iop} = contname
el.conttol{iop} = 'auto' | abstol
el.visname{iop} = visname
el.method{iop} = 'direct' | 'ball'
el.checkdist{iop} = chkdist

el.srcframe{iop} = frame
el.srcn{iop}{idim} = srcnx_i
el.dstx{iop}{idim} = dstx_i
el.dstn{iop}{idim} = dstnx_i

el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.src{iop} = eldomgrplist

Description The elcontact element defines contact map operators and related gap distance,
contact flag and visibility flag variables.When evaluated, a contact map operator
searches for the closest source (or master) point found following a ray in the dstn
direction from the point given by the dstx expressions evaluated at the destination
(or slave) point.

For each operator name, a set of master domains is specified by listing one or more
domain group indices in the corresponding el.geomdim{ig}{edim}.src{iop}
field. Normal direction expressions for the master domains are specified in the
el.srcn{iop}{idim} fields. Coordinate expressions for the master are obtained
indirectly from the frame specified in the el.srcframe{iop} field.

The map operator allows evaluation of any expression at a corresponding master
point, while the gap distance variable evaluates to the distance between master and
slave point. The optional mphname field for each map operator gives the name of a
corresponding multiphysics operator. This second operator evaluates to the same
value as the main contact operator, but its Jacobian does not contain any
contribution from the map (mesh position), only from the argument expression

The contact flag variable evaluates to a nonzero value if th.e master point is well
defined and the gap distance less than the conttol treshold value. The visibility flag
variable is nonzero if a corresponding master point was found for the slave point
where the flag is evaluated.
R 1 : C O M M A N D R E F E R E N C E

elcontact
There are two slightly different methods available to search for master points. The
'direct' method is a clean and stable direct search algorithm while the 'ball'
method is faster by only treating master elements inside a given ball radius
accurately. This ball radius can be set using the checkdist field, and should
normally be larger than any mesh element taking part in the search.

Cautionary The elcontact element is only implemented for boundaries. That is, no edge-edge,
edge-boundary or similar contact can be detected and evaluated.

The computation of complete Jacobians rely on the availability of spatial derivatives
of the mapped expression with respect to local coordinate directions. These local
derivatives cannot be calculated for all variables, a notable example being any global
spatial derivatives. Therefore, for expressions like map(uTx) some Jacobian
contributions will be missing.

Examples Evaluate and display the distance from a hard surface to the closest point of a
cylinder lying on its side on the surface.

clear fem;
fem.geom = ...
rect2(2,0.2,'pos',[-1,-0.2])+circ2(0.8,'pos',[0,0.8]);
fem.mesh = meshinit(fem);
fem.sshape = 2;

clear el;
el.elem = 'elcontact';
el.g = {'1'};
el.opname = {'map'};
el.gapname = {'gap'};
el.visname = {'vis'};
el.method = 'ball';
el.checkdist = '1';
el.srcframe = {'xy'};
el.srcn = {{'nx','ny'}};
el.dstx = {{'x','y'}};
el.dstn = {{'nx','ny'}};

clear src11
src11.ind = {{'3','4'}};
src11.src = {{'1'}};
el.geomdim{1} = {{},src11};

fem.elem = {el};
fem.xmesh = meshextend(fem);
fem.sol = asseminit(fem);
55

elcontact

56 | C H A P T E
postcrossplot(fem,1,[6 8],'lindata','if(vis,gap,0)',...
'linxdata','if(vis,map(x),sign(x))');

% compare to the theoretical value
hold on;
x=-1:0.05:1;
plot(x,sqrt(x.^2+0.8^2)-0.8,'ro')

See Also elmapextr
R 1 : C O M M A N D R E F E R E N C E

elcplextr
elcplextrPurpose Define extrusion coupling variables.

Syntax el.elem = 'elcplextr'
el.g{ig} = geomnum
el.var{ivar} = varname
el.map{imap} = linmap | genmap | unitmap
el.usenan = 'true' | 'false'
el.extttol = tol
el.src{ig}{edim}.ind{srcdomgrp} = domainlist
el.src{ig}{edim}.expr{ivar}{srcdomgrp} = srcexpr
el.src{ig}{edim}.map{ivar}{srcdomgrp} = imap
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.map{ivar}{eldomgrp} = imap

linmap.type = 'linear'
linmap.sg = srcig
linmap.sv{ivtx} = srcvtx
linmap.sframe = srcframe
linmap.dg = dstig
linmap.dv{ivtx} = dstvtx
linmap.dframe = dstframe

genmap.type = 'local’
genmap.expr{idim} = transexpr
genmap.frame = frame

unitmap.type = 'unit'
unitmap.frame = frame

Description The elcplextr element declares the extrusion coupling variable names listed in the
var field to be accessible on domains where the corresponding destination map field
geomdim{ig}{edim}.map{ivar}{eldomgrp} entry is nonempty. Both destination
and source map fields contain indices into the map field which consists of a list of
transformation specifications.

The available transformation types are 'linear', 'local', and 'unit', each with
its own syntax. The unit transformation takes one optional argument specifying
which frame is to be used for evaluating the mesh position. If not given, the
reference frame is assumed. Unit transformations without a frame field actually
never has to be specified explicitly, since using index zero in the source and
destination map fields is interpreted as an implicit unit transformation.

The local transformation, which is called “general” in the COMSOL Multiphysics
user interface, lets you specify an arbitrary expression for each source dimension.
These expressions can contain spatial coordinate variables from any frame. The
frame field decides which frame to use in the search operation when the local
57

elcplextr

58 | C H A P T E
transformation is used as source transformation. Therefore, choose a frame such that
the transformation is as linear as possible relative to the given frame.

Linear transformations are described in the section “Extrusion Coupling Variables”
on page 275 of the COMSOL Multiphysics User’s Guide. Note that the source
geometry and vertex fields linmap.sg and linmap.sv refer to the vertices that are
used as source for the transformation, which are usually related to the coupling
variable destination domain. This is because linear maps are best used as destination
maps, specifying a map from the destination domain into the source domain.The
frame fields specify which coordinate set to use in evaluating the vertex positions.

The coupling variable source transformation and expression is set up using the src
field. A separate domain grouping is specified for the source dimensions which does
not contribute to the global domain group splitting. Source expressions in the
expr{ivar}{srcdomgrp} field can be left as empty cell arrays to signify that the
particular source domain group is not part of the source for a given variable.

Cautionary Parameter or time dependency in the source transformation is not properly detected
by the solvers, which means that the source transformation will not be updated
between parameter or time steps in that case. Solution dependencies in the
transformation are properly detected, but do not give any Jacobian contributions
from the transformation.

Examples Calculate the first ten eigenvalues of a 3-by-2 rectangle with periodic boundary
conditions both left-right and top-bottom. Different map types are used.

fem.geom = rect2(3,2);
fem.mesh = meshinit(fem,'hmax',0.05);
fem.equ.c = 1;
fem.equ.da = 1;
fem.bnd.ind = [0 1 2 0];
fem.bnd.constr = {'ucx-u','ucy-u'};
fem.elem = {};

el.elem = 'elcplextr';
el.g = {'1'};
el.var = {'ucx','ucy'};

clear map1;
map1.type = 'linear';
map1.sg = '1';
map1.sv = {'2','3'};
map1.dg = '1';
map1.dv = {'1','4'};
R 1 : C O M M A N D R E F E R E N C E

elcplextr
clear map2;
map2.type = 'local';
map2.expr = {'x'};

el.map = {map1 map2};

clear src;
src.ind = {{'1'},{'4'}};
src.expr = {{{},'u'},{'u',{}}};
src.map = {{{},'0'},{'2',{}}};
el.src{1} = {{},src,{}};

clear dst;
dst.ind = {{'2'},{'3'}};
dst.map = {{'1',{}},{{},'2'}};
el.geomdim{1} = {{},dst,{}};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
fem.sol = femeig(fem,'neigs',10,'shift',1);
postplot(fem,'tridata','u','triz','u','refine',3,'solnum',8);

See Also elempty, elcplproj
59

elcplgenint

60 | C H A P T E
elcplgenintPurpose Define destination-aware integration coupling variables.

Syntax el.elem = 'elcplgenint'
el.g{ig} = geomnum
el.var{ivar} = varname
el.global = varlist
el.src{ig}{edim}.ind{srcdomgrp} = domainlist
el.src{ig}{edim}.expr{ivar}{srcdomgrp} = srcexpr
el.src{ig}{edim}.ipoints{ivar}{srcdomgrp} = ip
el.src{ig}{edim}.iorders{ivar}{srcdomgrp} = io
el.src{ig}{edim}.frame{ivar}{srcdomgrp} = frame
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.usage{ivar} = eldomgrplist

Description The elcplgenint element accepts the same syntax as the elcplscalar element
with the only notable exception that a destination operator dest(subexpr) can be
used in the source expression. The destination operator’s argument will be evaluated
on the destination point instead of on the source domain. This can be used to
evaluate convolution integrals.

Cautionary The integral is evaluated for each destination point, whether the dest() operator is
present in the source expression or not. Use an elcplscalar element if there is no
destination dependence.

Examples Plot part of the Fourier transform of g=|x|<1.

clear fem;
fem.geom = geom1([-10 10]);
fem.mesh = meshinit(fem,'report','off','hmax',0.1);
fem.equ.gporder = 4;
fem.elem = {};

clear el
el.elem = 'elcplgenint';
el.g = {'1'};
el.var = {'G'};
clear src;
src.expr = {{'(abs(x)<1)*exp(-i*dest(x)*x)'}};
src.iorders = {'4'};
el.src = {{{},src}};
clear dst;
dst.usage = {{'1'}};
el.geomdim = {{{},dst}};
fem.elem = [fem.elem {el}];

fem.xmesh=meshextend(fem);
postplot(fem,'lindata','G','liny','G');
R 1 : C O M M A N D R E F E R E N C E

elcplgenint
See Also elepspec, elcplscalar, elgpspec
61

elcplproj

62 | C H A P T E
elcplprojPurpose Define projection coupling variables.

Syntax el.elem = 'elcplproj'
el.g{ig} = geomnum
el.var{ivar} = varname
el.map{imap} = projmap | linmap | genmap | unitmap
el.src{ig}{srcdim}.ind{srcdomgrp} = domainlist
el.src{ig}{srcdim}.expr{ivar}{srcdomgrp} = srcexpr
el.src{ig}{srcdim}.iorder{ivar}{srcdomgrp} = intorder
el.src{ig}{srcdim}.map{ivar}{srcdomgrp} = imap
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.map{ivar}{eldomgrp} = imap

projmap.type = 'projection'
projmap.sg = srcig
projmap.sv{ivtx} = srcvtx
projmap.sframe = srcframe
projmap.dg = dstig
projmap.dv{ivtx} = dstvtx
projmap.dframe = dstframe

linmap.type = 'linear'
linmap.sg = srcig
linmap.sv{ivtx} = srcvtx
linmap.sframe = srcframe
linmap.dg = dstig
linmap.dv{ivtx} = dstvtx
linmap.dframe = dstframe

genmap.type = 'local'
genmap.expr{idim} = transexpr
genmap.frame = frame

unitmap.type = 'unit
unitmap.frame = frame'

Description The elcplproj projection variable element is closely related to the elcplextr
element. Both elements map the srcdim-dimensional source domain onto an
intermediate srcdim-dimensional fictitious domain. While the destination
transformation in the elcplextr element maps the destination domain into the
intermediate domain, the elcplproj element destination transformation maps the
destination only into the first srcdim-1 dimensions. The last dimension of the
fictitious domain is collapsed by integration onto the first srcdim-1 dimensions.
For more information about coupling variables, see “Using Coupling Variables” on
page 269 of the COMSOL Multiphysics User’s Guide.
R 1 : C O M M A N D R E F E R E N C E

elcplproj
All map types available for elcplextr can be used also in projection coupling
variables. The common combination of a unit source map and a linear
destination map is not very useful, though. Instead, there is a map type projection
which specifies srcdim+1 vertices in the source geometry and srcdim vertices in the
destination. The basis defined by vectors from the first source vertex to each of the
remaining vertices is mapped onto a right-handed orthogonal system with unit axes.
The basis described by the destination vertices is then mapped onto the first
srcdim−1 dimensions of the same orthogonal basis. This means that the direction
of integration is effectively from the first source vertex to the last.

In addition to the fields present in the elcplextr element, the elcplproj requires
an integration order for the line integrals evaluated for each destination point. The
iorder field specifies the order of polynomials that should be exactly integrated.

Cautionary Projection coupling is only implemented for simplex meshes. When finding
integration limits, the elcplproj element works directly on the basic polyhedral
mesh. Therefore, results can be inaccurate if the mesh does not properly resolve the
geometry.

Parameter or time dependency in the source transformation is not properly detected
by the solvers, which means that the source transformation will not be updated
between parameter or time steps in that case. Solution dependencies in the
transformation are properly detected, but do not give any Jacobian contributions
from the transformation.

The automatic detection of nonlinear and time-dependent or parameter-dependent
problems does not work properly in that all problems containing projection
coupling variables are considered to be nonlinear and time dependent.

Examples Project the diagonal cross section distance on the left and bottom edges of a square.

clear fem
fem.geom = square2;
fem.mesh = meshinit(fem);
fem.elem = {};

el.elem = 'elcplproj';
el.g = {'1'};
el.var = {'d','d'};

clear map1;
map1.type = 'projection';
map1.sg = '1';
map1.sv = {'1','2','3'};
63

elcplproj

64 | C H A P T E
map1.dg = '1';
map1.dv = {'1','2'};

clear map2;
map2.type = 'projection';
map2.sg = '1';
map2.sv = {'1','4','3'};
map2.dg = '1';
map2.dv = {'1','4'};

el.map = {map1 map2};

clear src;
src.ind = {{'1'}};
src.expr = {{'1'},{'1'}};
src.iorder = {{'1'},{'1'}};
src.map = {{'1'},{'2'}};
el.src{1} = {{},{},src};

clear dst;
dst.ind = {{'1'},{'4'}};
dst.map = {{'1',{}},{{},'2'}};
el.geomdim{1} = {{},dst,{}};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
postint(fem,'d/sqrt(2)','edim',1,'dl',[1 4])

See Also elempty, elcplextr
R 1 : C O M M A N D R E F E R E N C E

elcplscalar
elcplscalarPurpose Define integration coupling variables.

Syntax el.elem = 'elcplscalar'
el.g{ig} = geomnum
el.var{ivar} = varname
el.global = varlist
el.maxvars = maxvarlist

el.src{ig}{edim}.ind{srcdomgrp} = domainlist
el.src{ig}{edim}.expr{ivar}{srcdomgrp} = srcexpr
el.src{ig}{edim}.ipoints{ivar}{srcdomgrp} = ip
el.src{ig}{edim}.iorders{ivar}{srcdomgrp} = io
el.src{ig}{edim}.frame{ivar}{srcdomgrp} = frame
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.usage{ivar} = eldomgrplist

Description The elcplscalar element declares the integration coupling variable names listed
in the var field to be accessible on domain groups specified as a, possibly empty, cell
array for each variable in the usage field, or globally if the variable index is
mentioned in the global field. The same variable cannot be defined as both global
and local.

If a variable index is included in the maxvars list, the elcplscalar element
computes an approximate maximum value of the source expression over the source
domains, instead of the integral. The expression is evaluated and compared only in
the same quadrature points as would otherwise have been used for integration; see
below.

The source domain grouping specified in the src{ig}{edim}.ind field does not
contribute to the global domain splitting. For each variable and source domain
group, a possibly empty (no contribution) source expression is given in the expr
field.

The ipoint field specifies an integration point pattern using indices referring to an
elgpspec element. If the ipoints field is not present, the iorders field will be
read instead and assumed to contain Gauss-Legendre quadrature orders for the
source expressions. When specifying an elcplscalar element in a script, the latter
syntax is more convenient.

The frame field selects the set of spatial variables with reference to which the
integration is performed. For example, if the source expression is '1', using the
reference frame makes the variable evaluate to the undeformed volume of the source
domains, while choosing a moving frame gives you the deformed volume.
65

elcplscalar

66 | C H A P T E
Examples Make the average and maximum values of the solution available on the boundary of
a circle.

fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.elem = {};

clear el;
el.elem = 'elcplscalar';
el.g = {'1'};
el.var = {'area' 'mean' 'max'};
el.global = {'1'};
el.maxvars = {'3'};

clear src;
src.ind = {{'1'}};
src.expr = {{'1'},{'u/area'},{'u'}};
src.iorders = {{'4'},{'4'},{'4'}};
el.src{1} = {{},{},src};

clear dst;
dst.ind = {{'1','2','3','4'}};
dst.usage = {{},{'1'},{'1'}};
el.geomdim{1} = {{},dst,{}};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);

postint(fem,'u/pi')
postint(fem,'mean/(2*pi)','edim',1)
postint(fem,'max/(2*pi)','edim',1)

See Also elepspec, elgpspec
R 1 : C O M M A N D R E F E R E N C E

elcplsum
elcplsumPurpose Define summation coupling variables.

Syntax el.elem = 'elcplsum'
el.g{ig} = geomnum
el.var{ivar} = varname
el.global = varlist
el.src{ig}{edim}.ind{srcdomgrp} = domainlist
el.src{ig}{edim}.expr{ivar}{srcdomgrp} = srcexpr
el.src{ig}{edim}.nodes{ivar}{srcdomgrp} = nodes
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.usage{ivar} = eldomgrplist

Description The elcplsum element declares the summation coupling variable names listed in
the var field to be accessible on domain groups specified as a, possibly empty, cell
array for each variable in the usage field, or globally if the variable index is
mentioned in the global field. The same variable cannot be defined as both global
and local.

The source domain grouping specified in the src{ig}{edim}.ind field does not
contribute to the global domain splitting. For each variable and source domain
group, a possibly empty (no contribution) source expression is given in the expr
field.

The nodes field specifies the evaluation point pattern used to perform the sum over.
If the nodes field is given as -1 or 'all' then all points that have a degree of
freedom is used, otherwise the given integer is a Lagrange point order that specifies
the Lagrange points to sum over.

Example Define res as the sum of the node-wise constraint forces in all nodes at the
boundary of a square domain.

fem.geom = rect2;
fem.mesh = meshinit(fem);
fem.equ.c = 1;
fem.equ.f = 1;
fem.bnd.h = 1;

fem.elem = {};
clear el;
el.elem = 'elcplsum';
el.g = {'1'};
el.var = {'res'};
el.nodes = {'all'};
el.global = {'1'};
clear src;
src.ind = {{'1','2','3','4'}};
67

elcplsum

68 | C H A P T E
src.expr = {{'reacf(u)'}};
el.src{1} = {{},src,{}};
fem.elem = [fem.elem {el}];

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem,'reacf','on');
postglobaleval(fem,{'res'})

See Also elcplscalar, postsum
R 1 : C O M M A N D R E F E R E N C E

elcurlconstr
elcurlconstrPurpose Define constraints compatible with first order vector elements.

Syntax el.elem = 'elcurlconstr'
el.g{ig} = geomnum
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.constr{eldomgrp}{ic} = vconstr

Description The elcurlconstr element adds constraints on vector expressions, vconstr,
which are given as cell arrays with one entry for each space dimension. The
projection of the vector expression onto element edges is constrained to zero at
element edge center points.

For the syntax of the ind field, see elempty. The constr field has one entry for each
domain group, each being a cell array of vector expressions to be constrained.

Cautionary This element is currently tailored to fit the shcurl vector shape functions by
constraining the actual degrees of freedom. Other uses may be possible, but
performance will be unpredictable.

Examples Add a PEC condition on boundaries 1 to 6 in a 3D electromagnetics model.

el.elem = 'elcurlconstr';
el.g = {'1'};
gd.ind = {{'1','2','3','4','5','6'}};
gd.constr = {{{'tEx','tEy','tEz'}}};
el.geomdim{1} = {{},{},gd,{}};
fem.elem = [fem.elem {el}];

When exporting the fem structure from a vector element electromagnetics model,
similar elcurlconstr elements are added to the fem.elemmph field.

See Also elempty, elpconstr
69

elempty

70 | C H A P T E
elemptyPurpose Define some basic functionality of the element syntax elements.

Syntax el.elem = 'elempty'
el.g{ig} = geomnum
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist

Description The elempty element does not contribute anything directly to the problem
description. It is described here because all element classes are derived from elempty
and therefore share some basic syntax. This “element syntax” uses a limited subset
of data structures to describe the complete FEM problem. All models have to be
converted into element syntax before solving, a conversion handled by the
meshextend function. Additional elements can be added in the fem.elem field.
Unless there are conflicts, the additional elements are added to the global problem
description.

The only building blocks allowed in the element syntax are strings, row cell arrays
and structs. Note that pure numerical values are not allowed: both integers and
decimal number have to be wrapped up as strings. Most elements accept empty cell
arrays as placeholders to signify that the element does not wish to contribute
anything for some variable or on some domain.

At the top level, all elements are structs with at least the field elem containing the
element class name as a string. Most elements define contributions that are in some
way local to one or more geometries. Such elements have a g field, which contains
a row cell array of geometry numbers (quoted as strings). These geometries are in
turn referred to internally in the element using the position in the g field as index,
called ig.

Most element classes specify their contributions per geometry, dimension and
domain group. See further the chapter “Specifying a Model” on page 3 of the
COMSOL Multiphysics MATLAB Interface Guide for an explanation of the
domain group concept. The geomdim field, where present, is a nested cell array
where the outer level position corresponds to local geometry index, ig, and inner
level position corresponds to space dimension plus one, called edim in the element
context.

The geomdim{ig}{edim} entries are used as structs with field names and syntax
depending on the particular element class. There are, however, some common
principles. Whenever there is an ind field present, it is a cell array where the position
corresponds to element domain group number, called eldomgrp, each entry being
a domain list. The domain lists are in turn cell arrays of quoted domain numbers.
R 1 : C O M M A N D R E F E R E N C E

elempty
If the ind field is not present in an element structure for an element that accepts a
domain grouping, it is defaulted as if all domains belong to group one. Other fields
can usually be specified either per domain group or using one entry valid for all
groups, whether explicitly specified or defaulted as one single group. Note that this
behavior is not explicitly documented for each element type.

Cautionary Adding element syntax contributions bypasses all high-level syntax checks, which
can result in unintelligible error messages or even unexpected termination of a
scripting session.

Examples Create a simple model (Poisson’s equation on unit circle) and extract the element
syntax created by meshextend.

clear fem;
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);

elstr = fem.xmesh.getElements;
clear elem;
for i=1:length(elstr)
 elem{i} = eval(elstr(i));
end

elstr = fem.xmesh.getInitElements;
clear eleminit;
for i=1:length(elstr)
 eleminit{i} = eval(elstr(i));
end

The element syntax can be studied, modified, and then fed back into the fem.elem
and fem.eleminit fields. An additional call to meshextend with property
'standard' set to 'off' updates the fem.xmesh field before solving.

fem.elem = elem;
fem.eleminit = eleminit;
fem.xmesh = meshextend(fem,'standard','off');
fem.sol = femstatic(fem);
postsurf(fem,'u');

An elempty element can be used to force a domain group split, which can be
necessary in some cases where subdomain variables are accessed on boundaries. To
split the boundary into two domain groups, add the following commands to the
element syntax created above:
71

elempty

72 | C H A P T E
clear el;
el.elem = 'elempty';
gd.ind = {{'1','2'},{'3','4'}};
el.geomdim{1} = {{},{},gd};
fem.elem = [fem.elem {el}];

See Also elcconstr, elconst, elcplextr, elcplgenint, elcplproj, elcplscalar,
elcurlconstr, elepspec, eleqc, eleqw, elgeom, elgpspec, elinline,
elinterp, elinv, elirradiation, elmesh, elpconstr, elplastic, elpric,
elshape, elshell_arg2, elvar
R 1 : C O M M A N D R E F E R E N C E

elepspec
elepspecPurpose Declare constraint point patterns.

Syntax el.elem = 'elepspec'
el.g{ig} = geomnum
el.geom{ig}.ep = meshcases | patterns

meshcases.default = patterns
meshcases.case{elmcase} = patterns
meshcases.mind{elmcase} = caselist

patterns{iptrn} = lagorder | ptrnlist

ptrnlist{2*itype-1} = bmtypename
ptrnlist{2*itype} = lagorder | ptrn

ptrn{ipnt} = lcoords

Description The elepspec element defines local evaluation point patterns typically used for
pointwise constraints. In contrast to most elements, the elepspec does not have a
geomdim field. The geom field has one entry per geometry listed in the g field and
one subfield, ep, which lists a number of patterns that other elements refer to by
position.

If there are no alternate mesh cases specified, each entry in the ep field is either an
integral number, which is interpreted as a Lagrange point order to be used on all
basic mesh element types and dimensions, or a cell array of pairs of basic mesh
element type and a Lagrange order or an explicit pattern. For a list of basic mesh
element type names, see elshape. Explicit patterns are cell arrays of points in the
local coordinate system on each element, each point being a cell array of the same
dimension as the basic mesh element type.

If there are multiple mesh cases present in the model, the ep field is a struct with
fields default, case, and mind. The default field has the same syntax as described
above for the ep field itself. Multiple alternate cases which need the same evaluation
point patterns can be grouped together using the mind field. This field is a cell array
containing groups of mesh case numbers, each group, caselist, given as a cell
array. For each element mesh case group, elmcase, an alternate pattern specification
is given in the case field.

Cautionary Currently, there can only be one elepspec element for each geometry, which is
generated by default when converting the standard syntax. Therefore, no additional
elepspec can be added in the fem.elem field unless meshextend is called with
property standard set to off.
73

elepspec

74 | C H A P T E
Examples Given a single-geometry fem structure with an xmesh field, extract elements and
add an additional pattern that can be used by other elements and update the xmesh.

elstr = fem.xmesh.getElements;
clear elem;
for i=1:length(elstr)
 elem{i} = eval(elstr(i));
 if strcmp(elem{i}.elem,'elepspec')
 iepspec = i;
 end
end

elstr = fem.xmesh.getInitElements;
clear eleminit;
for i=1:length(elstr)
 eleminit{i} = eval(elstr(i));
end

newptrn = length(elem{iepspec}.geom{1}.ep)+1;
elem{iepspec}.geom{1}.ep{newptrn} = {'s(1)' {{'0.5'}}};
fem.elem = elem;
fem.eleminit = eleminit;

Here, additional elements using the constraint pattern with index newptrn can be
added to the fem.elem field.

fem.xmesh = meshextend(fem,'standard','off');

See Also elempty, elgpspec, elshape, elpconstr, elcconstr
R 1 : C O M M A N D R E F E R E N C E

eleqc
eleqcPurpose Define coefficient form or general form equation contributions.

Syntax el.elem = 'eleqc'
el.g{ig} = geomnum
el.form = 'coefficient' | 'general'
el.eqvars = 'on' | 'off'
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.dim{idim} = dimvarname
el.geomdim{ig}{edim}.ea{eldomgrp} = eacoeff
el.geomdim{ig}{edim}.da{eldomgrp} = dacoeff
el.geomdim{ig}{edim}.c{eldomgrp} = ccoeff
el.geomdim{ig}{edim}.al{eldomgrp} = alcoeff
el.geomdim{ig}{edim}.ga{eldomgrp} = gacoeff
el.geomdim{ig}{edim}.be{eldomgrp} = becoeff
el.geomdim{ig}{edim}.a{eldomgrp} = acoeff
el.geomdim{ig}{edim}.f{eldomgrp} = fcoeff
el.geomdim{ig}{edim}.ipoints{eldomgrp}{idim} = ipind

Description The eleqc element adds equation contributions in coefficient form or general form
as specified by the el.form field. It also defines variables that evaluate to various
parts of the equations. These equation variables can be turned off using the eqvars
field.

For the syntax of the ind field, see elempty. The ea, da, c, al, ga, be, a, and f
coefficients have the same syntax as the corresponding fem.equ fields. See further
the chapter “Specifying a Model” on page 3 of the COMSOL Multiphysics
MATLAB Interface Guide. In contrast to the standard syntax, the eleqc
coefficients have the same names on all dimensions. That is, the standard
fem.bnd.g and fem.bnd.q fields correspond to a geomdim{ig}{sdim-1}.f and a
geomdim{ig}{sdim-1}.a, respectively.

The ipoints field differs from the gporder fields in the standard syntax (for
example, fem.equ.gporder) in that it always contains pattern indices instead of
orders (see elgpspec).

The COMSOL Multiphysics user interface generates an eleqc element for
geometries where the solution form is the coefficient or general form. When
assembling using the weak solution form (the default), equations are converted to
weak form and an eleqw element is generated instead.

Cautionary Because of the naming convention for equation variables, at most one eleqc
element per geometry can have equvars set to on. Because the default eleqc
element has equation variables turned on, unless otherwise specified, it is proper
75

eleqc

76 | C H A P T E
procedure to turn them off for any additional eleqc elements added in the
fem.elem field.

Make sure that the integration point pattern index you use really does exist and
corresponds to a reasonable integration order. When adding an eleqc element to
an existing model, it may be necessary to extract and modify also the default
elgpspec element.

Examples Because equation contributions are simply added, you can introduce additions to a
single coefficient using the fem.elem field.

clear fem;
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 0;
fem.bnd.h = 1;
fem.elem = {};

clear el;
el.elem = 'eleqc';
el.g = {'1'};
el.form = 'coefficient';
el.eqvars = 'off';
clear equ;
equ.dim = {'u'};
equ.ind = {{'1'}};
equ.f = {{'1'}};
equ.ipoints = {{'1'}};
el.geomdim{1} = {{},{},equ};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postplot(fem,'tridata','u','triz','u','refine',3);

See Also elempty, eleqw, elgpspec
R 1 : C O M M A N D R E F E R E N C E

eleqw
eleqwPurpose Define weak form contributions.

Syntax el.elem = 'eleqw'
el.g{ig} = geomnum
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.coeff{eldomgrp}{iequ} = weak
el.geomdim{ig}{edim}.tcoeff{eldomgrp}{iequ} = dweak
el.geomdim{ig}{edim}.ipoints{eldomgrp}{iequ} = ipind
el.geomdim{ig}{edim}.dvolname{eldomgrp}{iequ} = dvolname

Description The eleqw element adds weak form contributions to the FEM problem. For the
syntax of the ind field, see elempty. The weak and dweak coefficients have the same
syntax as the corresponding fields in the standard fem struct syntax. See further the
chapter “Specifying a Model” on page 3 of the COMSOL Multiphysics MATLAB
Interface Guide. The ipoints field differs from the gporder fields in the standard
syntax (for example, fem.equ.gporder) in that it always contains pattern indices
instead of orders (see elgpspec).

The field dvolname specifies the name of the differential volume factor to be used
in integrating the particular equation. If you are using multiple frames, this name
effectively decides in which frame the equation is defined. There is normally a
unique volume factor name tied to each frame, with dvol being the default for fixed
meshes.

The main difference between specifying equations using eleqw and using eleqc is
that the former always gives a correct Jacobian if it is possible to automatically
differentiate all functions called.

Cautionary Make sure that the integration point pattern index you use really does exist and
corresponds to a reasonable integration order. When adding an eleqw element to
an existing model, it may be necessary to extract and modify also the default
elgpspec element.

Examples As equation contributions are simply added, it is easy to introduce additional weak
form terms using the fem.elem field.

clear fem;
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 0;
fem.bnd.h = 1;
fem.elem = {};

clear el;
77

eleqw

78 | C H A P T E
el.elem = 'eleqw';
el.g = {'1'};
clear equ;
equ.ind = {{'1'}};
equ.coeff = {{'u_test'}};
equ.ipoints = {{'1'}};
el.geomdim{1} = {{},{},equ};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postplot(fem,'tridata','u','triz','u','refine',3);

See Also elempty, eleqc, elgpspec
R 1 : C O M M A N D R E F E R E N C E

elevate
elevatePurpose Elevate degrees of 2D geometry object Bézier curves.

Syntax ge = elevate(g,en,d)
[ge,tl] = elevate(g,en,d)
ge = elevate(g,dl)
[ge,tl] = elevate(g,dl)

Description ge = elevate(g,en,d) elevates the degrees of edges en in the 2D geometry object
g, using the degree steps d. en is a vector that specifies the edge numbers of the
curves to be degree elevated, and d is the corresponding vector that specifies the
degrees of elevation, so that curve number en(i) is elevated by d(i) degrees.

ge = elevate(g,dl) degree elevates the Bézier curve defined by g.rb{i}(:,k)
and g.wt{i}(:,k), by the number of degrees specified in dl{i}(:,k). dl is a cell
array of the same size as rb and wt. See geom2 for details on these properties. The
first and last entries in dl must be empty, since there are no curves of degree 0, and
curves of maximum degree cannot be degree elevated.

[ge,tl] = elevate(g,...) additionally returns the cell array tl, of length 3,
containing permutation vectors for vertices, edges and subdomains, respectively.
Entry i of such a vector contains the entity number j of the geometry object g from
which the entity i in ge originates.

Examples Elevate the degree of edge 1 and 3 in a circle, by one degree.

c1 = circ2;
figure, geomplot(c1,'edgelabels','on','ctrlmode','on');
axis equal
[c2,tl] = elevate(c1,[1 3],[1 1]);
figure, geomplot(c2,'edgelabels','on','ctrlmode','on');
axis equal

An alternative way of obtaining the same degree elevated circle, is to use the input
argument dl, as is done below.

c3 = elevate(c1,{[] [] [1 0 1 0] []});
figure, geomplot(c3,'edgelabels','on','ctrlmode','on');
axis equal

See Also geom0, geom1, geom2, geom3
79

elgeom

80 | C H A P T E
elgeomPurpose Define geometrical variables.

Syntax el.elem = 'elgeom'
el.g{ig} = geomnum
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.frame = frame
el.sorder = sorder
el.method = {'Lenoir'} | 'fl33'

Description The elgeom element evaluates geometrical variables for the (undeformed)
geometry, notably coordinates, curve and face parameters, and tangential vectors.
These variables are defined on the domains in domainlist. The variable names are
derived from the space coordinate names of the frame frame. See further the
chapter “Specifying a Model” on page 3 of the COMSOL Multiphysics MATLAB
Interface Guide.

The Lenoir method (the default method) provides a continuous piecewise
polynomial interpolation of order sorder. The fl33 method, which was the default
method until version 3.3a, provides a discontinuous nonpolynomial-based
interpolation. The sorder field is only applicable when using the Lenoir method
and has a default value of 1.

Examples The default generated elgeom element for a 2D model is:

el.elem = 'elgeom';
el.g = {'1'};
el.frame = 'xy';
el.sorder = '1';
el.method = 'Lenoir';

See Also elempty, elmesh
R 1 : C O M M A N D R E F E R E N C E

elgpspec
elgpspecPurpose Declare integration point patterns.

Syntax el.elem = 'elgpspec'
el.g{ig} = geomnum
el.geom{ig}.ep{iptrn} = order | ptrnlist

meshcases.default = patterns
meshcases.case{elmcase} = patterns
meshcases.mind{elmcase} = caselist

patterns{iptrn} = lagorder | ptrnlist

ptrnlist{2*itype-1} = bmtypename
ptrnlist{2*itype} = order | ptrn

ptrn{ipnt} = {lcoords,weight}

Description The elgpspec element defines local integration point patterns and weights for the
numerical quadrature needed when assembling equations on each mesh element. In
contrast to most elements, the elgpspec does not have a geomdim field. The geom
field has one entry per geometry listed in the g field and one subfield, ep, which lists
a number of patterns which other elements refer to by position.

If there are no alternate mesh cases specified, each entry in the ep field is either an
integral number, which is interpreted as the order of polynomials that should be
integrated exactly on all basic mesh element types and dimensions, or a cell array of
pairs of basic mesh element type and a polynomial order or an explicit pattern. For
a list of basic mesh element type names, see elshape. Explicit patterns are cell arrays
of points and weights in the local coordinate system on each element, each
point-weight pair being represented as a single cell array where the weight follows
directly after the coordinates.

If there are multiple mesh cases present in the model, the ep field is a struct with
fields default, case, and mind. The default field has the same syntax as described
above for the ep field itself. Multiple alternate cases which need the same integration
point patterns can be grouped together using the mind field. This field is a cell array
containing groups of mesh case numbers, each group, caselist, given as a cell
array. For each element mesh case group, elmcase, an alternate pattern specification
is given in the case field.

Cautionary Currently, there can only be one elgpspec element for each geometry, which is
generated by default when converting the standard syntax. Therefore, no additional
81

elgpspec

82 | C H A P T E
elgpspec can be added in the fem.elem field unless meshextend is called with
property 'standard' set to 'off'.

Note that the sum of weights in an explicit pattern specification are supposed to be
equal to the element’s volume in the element local coordinate system, that is, to 1/
2 for triangles and 1/6 for tetrahedra.

Examples Given an fem structure with an xmesh field, extract elements and add an additional
pattern which uses fourth order integration on curved simplices and explicit zeroth
order integration on other simplices. Finally, the extended mesh xmesh is updated.

elstr = fem.xmesh.getElements;
clear elem;
for i=1:length(elstr)
 elem{i} = eval(elstr(i));
 if strcmp(elem{i}.elem,'elgpspec')
 igpspec = i;
 end
end

elstr = fem.xmesh.getInitElements;
clear eleminit;
for i=1:length(elstr)
 eleminit{i} = eval(elstr(i));
end

newptrn = length(elem{igpspec}.geom{1}.ep)+1;
elem{igpspec}.geom{1}.ep{newptrn} = {'s(2)', '4', ...
 'ls(2)', {{'0.333333333','0.333333333','0.5'}}};
fem.elem = elem;
fem.eleminit = eleminit;

Here, additional elements using the integration point pattern with index newptrn
can be added to the fem.elem field.

fem.xmesh = meshextend(fem,'standard','off');

See Also elempty, elepspec, elshape, eleqc, eleqw
R 1 : C O M M A N D R E F E R E N C E

elinline
elinlinePurpose Declare functions and corresponding symbolic derivatives.

Syntax el.elem = 'elinline'
el.name = fname
el.args{iarg} = argname
el.expr = evalexpr
el.dexpr{iarg} = devalexpr
el.complex = 'true' | 'false'
el.linear = 'true' | 'false'

Description The elinline element declares a new function with differentiation rules in terms
of other built-in functions or MATLAB functions. COMSOL Multiphysics calls the
function using the MATLAB interpreter if you run COMSOL Multiphysics with
MATLAB.

Declared inline functions can be used with the syntax fname(arg1,arg2,...)
anywhere except for in other inline function definitions. The args field contains a
list of formal parameter names which can be used in the expr field defining the
function itself and the dexpr field defining derivative expressions with respect to
each of the formal arguments.

The evalexpr and devalexpr expressions can contain any valid expression in the
formal arguments. Global constants and variables are not available with pi being the
only noticeable exception. Note that differentiation with respect to some formal
argument can be disabled by just specifying the corresponding devalexpr as '0'.

Functions which can generate complex values from real data must have the complex
field set to 'true'. The linear property decides if the function is treated as linear
when deciding whether to reassemble the Jacobian at each time step/iteration or
not.

Cautionary Note that inline functions cannot depend on other inline functions, only on built-in
functions and functions defined on your MATLAB path. Inline functions can be
used to override built-in functions but can never override another inline function.

Examples Use an inline function to redefine the derivative of the sqrt function in such a way
that the Jacobian of sqrt(u^2+v^2) will exist for u=v=0.

el.elem = 'elinline';
el.name = 'sqrt';
el.args = {'a'};
el.expr = 'sqrt(a)';
el.dexpr = {'1/(2*sqrt(a)+eps)'};
el.complex = 'true';
el.linear = 'false';
83

elinline

84 | C H A P T E
fem.elem = [fem.elem {el}];

See Also elempty
R 1 : C O M M A N D R E F E R E N C E

elinterp
elinterpPurpose Declare interpolation functions.

Syntax el.elem = 'elinterp'
el.name = fname
el.x = xcoords
el.y = ycoords
el.z = zcoords
el.data = fdata
el.mesh = tridata
el.method = 'neighbor' | 'linear' | 'piecewisecubic' | 'cubicspline'
el.extmethod = 'const' | 'interior' | 'linear' | value

Description The elinterp element declares an interpolation function based on a 1D, 2D, or 3D
data set provided by the user. Interpolation functions take one, two, or three
arguments, depending on the dimension of the data set.

The xcoords, ycoords, and zcoords parameters are cell arrays of points.
Depending on the dimensions, not all fields are used. For 1D interpolation, the
fdata parameter is a cell array of values corresponding to the points in el.x. For
structured 2D data, the size of fdata is length(xcoords)*length(ycoords), with
x increasing fastest, and similarly in 3D, with the entries sorted in increasing order.
For unstructured data, xcoords, ycoords, czcoords, and fdata must be of the
same length. In this case, it is also possible to supply a triangulation of the points in
the mesh field. mesh should be a cell array of strings, where each string is a
whitespace-separated list of indices representing one row in the elem matrix in the
function syntax for the interpolation functions (see “User-Defined Functions” on
page 22 in the COMSOL Multiphysics MATLAB Interface Guide).

There are four interpolation methods to choose from. Nearest neighbor and linear
interpolation are available in all dimensions, while 'piecewisecubic' and
'cubicspline' can only be used for interpolation in 1D data sets. The difference
between the latter two is, generally speaking, that 'piecewisecubic' preserves
monotonicity and does not overshoot at the cost of discontinuous second
derivatives at the tying points.

There are also four extrapolation methods to choose from. The method 'const'
gives the function the same value outside boundary as on the boundary of the
defined data set. The method'interior' continues the interpolating function
outside the defined data set. It can only be used with structured evaluation. The
method 'linear' makes the function linear outside the defined data set. Both the
function and the derivative are continuous on the boundary of the data set. This
method can only be used in 1D with the interpolation methods 'piecewisecubic'
and 'cubicspline'. If extmethod is a string containing a real number (value),
85

elinterp

86 | C H A P T E
this value is used outside the defined data set. For unstructured interpolation, only
'const' and value are supported.

Cautionary Interpolation is provided only for real numbers. To interpolate complex numbers,
real and imaginary parts have to be treated separately.

Examples Given the matrices x (1-by-m), y (1-by-n) and F (m-by-n), create a corresponding
interpolation element declaring a function f(x,y).

cellX = cell(1,m);
for i=1:m
 cellX{i} = num2str(x(i));
end

cellY = cell(1,n);
for i=1:n
 cellY{i} = num2str(y(i));
end

cellF = cell(1,m*n);
for i=1:m*n
 cellF{i} = num2str(F(i));
end

el.elem = 'elinterp';
el.name = 'f';
el.x = cellX;
el.y = cellY;
el.data = cellF;
el.method = 'linear';
fem.elem = [fem.elem {el}];

See Also elempty
R 1 : C O M M A N D R E F E R E N C E

elinv
elinvPurpose Define matrix inverse component variables.

Syntax el.elem = 'elinv'
el.g{ig} = geomnum
el.matrixdim = mdim
el.format = 'symmetric' | 'hermitian' | 'unsymmetric'
el.basename = bname
el.postname = pname
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.matrix{eldomgrp} = matexpr

Description The elinv element defines components of the inverse of an mdim-by-mdim matrix
field. The matexpr is a cell array of expressions which specify the source matrix in
column order. If the format is 'symmetric' or 'hermitian', only the upper
triangle has to be given.

Matrix inverse component names, that is, the variable names defined by the element,
are created by appending row and column indices to the bname parameter and, if
the postname field is present, append '_pname'. If the format is specified as
'symmetric', variables are generated only for the upper triangular part of the
inverse, otherwise for all components.

Examples Define variables to evaluate the Jacobian inverse components for an explicit variable
transformation [X(x,y,z), Y(x,y,z), Z(x,y,z)].

el.elem = 'elconst';
el.var = {'X','2*x','Y','y+z','Z','z'};
fem.elem = [fem.elem {el}];

clear el;
el.elem = 'elinv';
el.g = {'1'};
el.matrixdim = '3';
el.format = 'unsymmetric';
el.basename = 'd';
gd.ind = {{'1'}};
gd.matrix = {{'diff(X,x)','diff(X,y)','diff(X,z)',...
 'diff(Y,x)','diff(Y,y)','diff(Y,z)',...
 'diff(Z,x)','diff(Z,y)','diff(Z,z)'}};
el.geomdim{1} = {{},{},gd};
fem.elem = [fem.elem {el}];

See Also elempty, elpric
87

elirradiation

88 | C H A P T E
elirradiationPurpose Define irradiation variables for radiative heat transfer.

Syntax el.elem = 'elirradiation'
el.g{ig} = geomnum
el.method = 'area' | 'hemicube'
el.iorder = order
el.resolution = res
el.sectors = nsectors
el.cache = 'on' | 'off'
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.name{eldomgrp} = Gname
el.geomdim{ig}{edim}.ambname{eldomgrp} = Fname
el.geomdim{ig}{edim}.expr{eldomgrp} = Jexpr
el.geomdim{ig}{edim}.opexpr{eldomgrp} = opacity
el.geomdim{ig}{edim}.dnsign{eldomgrp} = normalsign
el.geomdim{ig}{edim}.cavity{eldomgrp} = cavitylist

Description The elirradiation element defines one variable Gname representing the local
irradiation from other surfaces and one Fname, known as ambient view factor,
representing the fraction of the field of view not covered by other surfaces. The
variable names can differ between domain groups.

The irradiation at each point depends on the radiosity at all other visible surface
points. An expression for the radiosity is provided in the expr field. For interior
boundaries, it has to be made clear in which direction the radiation goes. If the field
opexpr is present, the opacity expression is evaluated on adjacent subdomains, and
is expected to be nonzero on exactly one. Otherwise, the dnsign field is expected
to contain a multiplier (either +1 or -1) aligning the outward normal from the
geometrical down side, [dnx, dny, dnz], with the desired radiation direction.

To avoid unnecessary visibility checks, the surfaces can be manually assigned to one
or more cavities, each of which exchanges radiation only with other surfaces in the
same cavity. For each domain group, specify to which cavities the group belongs.

There are currently two view factor evaluation methods which can be selected using
the method field. The 'area' method implies direct area integration using a simple
quadrature rule of order order and no visibility checks. Different convex cavities
can be held apart using the cavity field. The 'hemicube' method, and its
generalizations to lower dimensions, uses techniques borrowed from computer
graphics to handle surfaces obstructing each other. Essentially, images of resolution
res-by-res are generated from each evaluation point in 3D.

Use the sectors field to specify that a 2D geometry shall be interpreted as axially
symmetric and to set the azimuthal resolution when evaluating view factors. The
R 1 : C O M M A N D R E F E R E N C E

elirradiation
value nsectors is the number of sectors to a full revolution in a virtual 3D
geometry created by revolving the 2D mesh about the axis.

Due to the rather complex evaluation, it is usually beneficial to store the view factors
between calls. This can, however, generate a lot of data, which can potentially be a
limiting factor preventing a solution on a given system. Therefore, the cache field
can be set to 'off', but this increases run times considerably.

Cautionary Radiation is currently only possible between boundaries, that is, between entities of
dimension one lower than the space dimension. Also, radiation only works within
one geometry.

The elirradiation element is available only if your license includes the Heat
Transfer Module.

Examples Compare the irradiation calculated by the hemicube algorithm with an analytical
solution in a known case.

clear fem;
fem.geom = geomcsg({rect2(1,1,'pos',[0 -1]),...
 rect2(1,1,'pos',[-1 0]),...
 rect2(.8,.8,'pos',[.2 .2])});
fem.mesh = meshinit(fem);
fem.expr = {'xb', 0.2,...
 'yb', 0.2,...
 'xc', 'xb+xb*yb/(1-yb)',...
 'y1', '(x>xc)*(xb*yb/(x-xb)+yb)+(x<=xc)',...
 'Gref', '0.5-x/(2*sqrt(x^2+y1^2))'};
fem.elem ={};

clear el
el.elem = 'elirradiation';
el.g = {'1'};
el.method = 'hemicube';
el.resolution = '512';
clear gd;
gd.ind = {{'6','7'},{'8','9'}};
gd.name = 'G';
gd.ambname = 'F_amb';
gd.expr = {'1','0'};
gd.opexpr = '1';
el.geomdim{1} = {{},gd,{}};
fem.elem = [fem.elem {el}];

fem.xmesh = meshextend(fem);
postint(fem,'abs(G-Gref)','edim',1,'dl',7)/...
 postint(fem,'abs(Gref)','edim',1,'dl',7)
89

elirradiation

90 | C H A P T E
See Also elempty
R 1 : C O M M A N D R E F E R E N C E

ellip1, ellip2
ellip1, ellip2Purpose Create ellipse geometry object.

Syntax obj = ellip2
obj = ellip1
obj = ellip2(a,b,...)
obj = ellip1(a,b,...)

Description obj = ellip2 creates a solid ellipse geometry object with center at the origin and
semi-axes equal to 1. ellip2 is a subclass of solid2.

obj = ellip2(a,b,...) creates an ellipse object with semi-axes equal to a and b,
respectively, centered at the origin. a and b are positive real scalars, or strings that
evaluate to positive real scalars, given the evaluation context provided by the
property const.

The functions ellip2/ellip1 accept the following property/values:

obj = ellip1(...) creates a curve circle geometry object with properties as given
for the ellip2 function. ellip1 is a subclass of curve2.

Ellipse objects have the following properties:

In addition, all 2D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom2 for details.

TABLE 1-16: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

base corner |
center

center Positions the object either centered
about pos or with the lower left
corner of surrounding box in pos

const cell array of
strings

{} Evaluation context for string inputs

pos vector of
reals or cell
array of
strings

[0 0] Position of the object

rot real or string 0 Rotational angle about pos (radians)

TABLE 1-17: ELLIPSE OBJECT PROPERTIES

PROPERTY DESCRIPTION

a, b Semi-axes

x, y Position of the object

rot Rotational angle
91

ellip1, ellip2

92 | C H A P T E
Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

Examples The commands below create an ellipse object and plot it.

e1 = ellip2(1,0.3,'base','center','pos',[0,0],'rot',pi/4)
get(e1,'rot')
geomplot(e1)

See Also circ1, circ2, curve2, curve3, geomcsg
R 1 : C O M M A N D R E F E R E N C E

ellipsoid2, ellipsoid3
ellipsoid2, ellipsoid3Purpose Create an ellipsoid geometry object.

Syntax obj = ellipsoid3
obj = ellipsoid2
obj = ellipsoid3(a,b,c)
obj = ellipsoid2(a,b,c)
obj = ellipsoid3(a,b,c,...)
obj = ellipsoid2(a,b,c,...)

Description obj = ellipsoid3 creates a solid ellipsoid geometry object with center at the
origin and semi-axes equal to 1. ellipsoid3 is a subclass of solid3.

obj = ellipsoid3(a,b,c,...) creates a solid ellipsoid object with semi-axes a,
b, and c. a, b, and c are positive real scalars, or strings that evaluate to positive real
scalars, given the evaluation context provided by the property Const.

The functions ellipsoid3/ellipsoid2 accept the following property/values:

Axis sets the local z-axis, stated either as a directional vector of length 3, or as a
1-by-2 vector of spherical coordinates. Axis is a vector of real scalars, or a cell array
of strings that evaluate to real scalars, given the evaluation context provided by the
property Const. See gencyl3 for more information on Axis.

Pos sets the center of the object. Pos is a vector of real scalars, or a cell array of
strings that evaluate to real scalars, given the evaluation context provided by the
property Const.

Rot is an intrinsic rotational angle for the object about its local z-axis provided by
the property Axis. Rot is a real scalar, or a string that evaluates to a real scalar given

TABLE 1-18: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Axis vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

Const cell array of
strings

{} Evaluation context for string inputs

Pos vector of
reals or cell
array of
strings

[0 0] Position of the object

Rot real or string 0 Rotational angle about Axis (radians)
93

ellipsoid2, ellipsoid3

94 | C H A P T E
the evaluation context provided by the property Const. The angle is assumed to be
in radians if it is numeric, and in degrees if it is a string.

obj = ellipsoid2(...) creates a surface ellipsoid object with the properties as
given for the ellipsoid3 function. ellipsoid2 is a subclass of face3.

Ellipsoid objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Examples The following commands create a surface and solid ellipsoid object, where the
position and semi-axis are defined in the two alternative ways.

e2 = ellipsoid2(1,1,1,'pos',[0 1 0],'axis',[0 0 1],'rot',0)
e3 = ellipsoid3(12,10,8)

Compatibility The representation of the ellipsoid objects has been changed. The FEMLAB 2.3
syntax is obsolete but still supported. If you use the old syntax or open 2.3 models
containing ellipsoids they are converted to general face or solid objects.

See Also face3, geom0, geom1, geom2, geom3, sphere3, sphere2

TABLE 1-19: ELLIPSOID OBJECT PROPERTIES

PROPERTY DESCRIPTION

a, b, c Semi-axes

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
R 1 : C O M M A N D R E F E R E N C E

elkernel
elkernelPurpose Fast evaluation of predefined convolution integrals

Syntax el.elem = 'elkernel'
el.g{ig} = geomnum
el.name = opname | opnamelist
el.kernel = 'unit' | 'helmholtz2D' | 'helmholtz2Dinf' | 'helmholtz3D' |

'helmholtz3Dinf' | 'helmholtz2Daxi' | 'helmholtz2Daxiinf' |
'maxwell3Dinf' | 'maxwellTEinf' | 'maxwellTMinf' | 'maxwellTEaxiinf'
| 'maxwellTMaxiinf'

el.frame = srcframe
el.iorder = gporder
el.k = wavenumber
el.symflags{idim} = '-1' | '0' | '1'

el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.srcn{idim}{eldomgrp} = nexpr
el.geomdim{ig}{edim}.srcu{eldomgrp} = uexpr
el.geomdim{ig}{edim}.srcnux{eldomgrp} = nuxexpr
el.geomdim{ig}{edim}.srcnxe{eldomgrp} = nxeexpr
el.geomdim{ig}{edim}.srcnxcurle{eldomgrp} = nxculreexpr

Description The elkernel element is a wrapper which defines an operator that represents a
predefined convolution integral. You can choose between plain integration of an
arbitrary expression, Helmholtz-Kirchhoff integral solutions to Helmholtz’
equation in various dimensions and a number of instances the Stratton-Chu formula
for far-field evaluation of electromagnetic fields under various conditions. For
Helmholtz equation, both the complete integral solution and the far-field limiting
case are provided.

The type of integral is specified in the kernel field where 'unit' gives you an
operator which takes an expression as only argument, while the rest define operators
which are functions of the evaluation point coordinates. The 3D Stratton-Chu
formula requires a list of three operator names, one for each field component, while
TM waves require two operator names and the remaining only one.

The integrals are evaluated on the mesh with the integration order specified in
iorder and using the source coordinate names corresponding to the given frame.
Both Helmholtz-Kirchhoff and Stratton-Chu integral evaluation require a
free-space wave number, which is expected to be a global constant. The former, in
addition, needs expressions for the normal vector, solution value and its normal
derivative on the source domains, specified in srcn, srcu, and srcnux, respectively.
The Stratton-Chu formula requires the cross products of source normal with electric
95

elkernel

96 | C H A P T E
field and source normal with curl of electric field, specified in srcnxe and
srcnxcurle, respectively.

The source domains are expected to form a closed surface containing all sources and
inhomogenities, and the specified normal vector must be facing into the domain
enclosed by this surface. When exploiting symmetry to model only 1/2, 1/4, or 1/8
of the actual geometry, a closed surface can be recovered using the symmetry flags.
In the symflags field, -1 in position idim is interpreted as antisymmetry with
respect to the coordinate plane normal to the idim-axis, while +1 means that the
plane is a symmetry plane. If the symflags field is not given, all entries are
considered to be 0, which signifies that the model is neither symmetric nor
antisymmetric.

Cautionary The operators defined by elkernel are primarily intended for postprocessing and
therefore do not define any Jacobian contributions.

Examples The acoustic field from a baffled piston oscillating with specified velocity normally
to an infinite rigid plane can be evaluated explicitly using the helmholtz2Daxi
kernel with srcu set to zero since the terms proportional to u cancel out anyway.

fem.geom = circ2*rect2;
fem.mesh = meshinit(fem);

fem.expr = {'SPL' '10*log10(0.5*abs(p(x,y))^2/2e-5^2)'};

clear el;
el.elem = 'elkernel';
el.g = {'1'};
el.kernel = 'helmholtz2Daxiinf';
el.name = 'p';
el.iorder = '20';
el.k = '100';
clear src11
src11.ind = {{'2'}};
src11.srcn = {'0','-1'};
src11.srcu = '0';
src11.srcnux = {'1'};
el.geomdim{1} = {{},src11};
fem.elem = {el};

fem.xmesh = meshextend(fem);
fem.sol = asseminit(fem);

postcrossplot(fem,1,3,'lindata','SPL','linxdata',...
'180/pi*atan2(y,x)','refine',10);
R 1 : C O M M A N D R E F E R E N C E

elmapextr
elmapextrPurpose Define extrusion map operators.

Syntax el.elem = 'elmapextr'
el.g{ig} = geomnum
el.opname{iop} = opname
el.flagname{iop} = flagname
el.extttol = tol
el.usenan = 'true' | 'false'
el.map{imap} = linmap | genmap | unitmap
el.srcmap{iop} = imap
el.dstmap{iop} = imap
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.src{iop} = eldomgrplist

linmap.type = 'linear'
linmap.sg = srcig
linmap.sv{ivtx} = srcvtx
linmap.sframe = srcframe
linmap.dg = dstig
linmap.dv{ivtx} = dstvtx
linmap.dframe = dstframe

genmap.type = 'local'
genmap.expr{idim} = transexpr
genmap.frame = frame

unitmap.type = 'unit'
unitmap.frame = frame

Description The elmapextr element defines extrusion map operators which can be used at any
location where the source and destination transformations make sense. Each map
operator takes its values from the source domain groups listed in the corresponding
el.geomdim{ig}{edim}.src{iop} field.

For each operator, transformations are specified in the srcmap and dstmap fields in
the form of indices into the map field that consists of a list of transformation
specifications. The available transformation types are 'linear', 'local', and
'unit'. They are described in detail under elcplextr on page 57.

For each operator name a global variable flagname{iop} is also defined, which
evaluates to 1 for all destination points where the map operation can find a
corresponding source point, otherwise it evaluates to 0. If the flagname field is not
given, the flag variables will be given the same name as the corresponding operator.
Therefore, statements like if(my_map,my_map(u),0) make perfect sense.
97

elmapextr

98 | C H A P T E
Cautionary Parameter or time dependency in the source transformation is not properly detected
by the solvers, which means that the source transformation will not be updated
between parameter or time steps in that case. Solution dependencies in the
transformation are properly detected but do not give any Jacobian contributions
from the transformation.

Examples Calculate the first ten eigenvalues of a 3-by-2 rectangle with periodic boundary
conditions both left-right and top-bottom. Different map types are used. Note that
this is the same example as used under elcplextr.

fem.geom = rect2(3,2);
fem.mesh = meshinit(fem,'hmax',0.05);
fem.equ.c = 1;
fem.equ.da = 1;
fem.bnd.ind = [0 1 2 0];
fem.bnd.constr = {'left2right(u)-u','lower2upper(u)-u'};
fem.elem = {};

el.elem = 'elmapextr';
el.g = {'1'};
el.opname = {'left2right','lower2upper'};

clear map1;
map1.type = 'unit';

clear map2;
map2.type = 'linear';
map2.sg = '1';
map2.sv = {'2','3'};
map2.dg = '1';
map2.dv = {'1','4'};

clear map3;
map3.type = 'local';
map3.expr = {'x'};

el.map = {map1 map2 map3};

el.srcmap = {'1','3'};
el.dstmap = {'2','3'};

clear src;
src.ind = {{'1'},{'4'}};
src.src = {{'2'},{'1'}};
el.geomdim{1} = {{},src,{}};

fem.elem = [fem.elem {el}];
fem.xmesh = meshextend(fem);
R 1 : C O M M A N D R E F E R E N C E

elmapextr
fem.sol = femeig(fem,'neigs',10,'shift',1);
postplot(fem,'tridata','u','triz','u','refine',3,'solnum',8);

See Also elcplextr
99

elmesh

100 | C H A P T
elmeshPurpose Define mesh variables and a frame.

Syntax el.elem = 'elmesh'
el.g{ig} = geomnum
el.frame = frame
el.xvars = 'on' | 'off'
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.sizename{eldomgrp} = sname
el.geomdim{ig}{edim}.qualname{eldomgrp} = qname
el.geomdim{ig}{edim}.dvolname{eldomgrp} = dvolname
el.geomdim{ig}{edim}.meshtypename{eldomgrp} = meshtypename
el.geomdim{ig}{edim}.meshelemname{eldomgrp} = meshelemname
el.geomdim{ig}{edim}.sshape{eldomgrp} = sshape
sshape{2*i-1} = bmtypename
sshape{2*i} = params
params.type = 'fixed' | 'moving_abs' | 'moving_rel' | 'moving_expr'
params.sorder = sorder
params.sdimdofs{idim} = dofname
params.sdimexprs{idim} = expr
params.refframe = refframename

Description Concerning the syntax of the ind field, see elempty. For each domain group, the
elmesh element defines the variable names sname, qname, dvolname,
meshtypename, and meshelemname, which evaluate to local mesh element size,
element quality, element volume, mesh type index, and mesh element number,
respectively. Also, if xvars='on' the space coordinates, the space coordinate’s
reference time derivative, and the normal vector are defined. These variable names
are derived from the space coordinates of the frame frame. The type of frame is
determined by sshape.

Examples By default, the mesh size variable h is available only on the top dimension. If
evaluated on a boundary, h returns the size of the adjacent subdomain element. An
additional elmesh element can be used to define h on the boundary to represent the
size of the boundary element.

el.elem = 'elmesh';
el.g = {'1'};
el.frame = 'xy'
el.xvars = 'off'
gd.sizename = 'h';
el.geomdim{1} = {{},gd,{}};
fem.elem = [fem.elem {el}];

See Also elempty
E R 1 : C O M M A N D R E F E R E N C E

elode
elodePurpose Define global scalar dependent variables and equations.

Syntax el.elem = 'elode'
el.dim{idim} = depvarname
el.f{idim} = rexpr
el.weak{iweak} = wexpr

Description The elode element adds globally available scalar dependent variables (named
degrees of freedom) and corresponding equations. The dim field lists unique
variable names which are allocated on a fictitious 0D geometry and made available
throughout the model. The optional f field has the same number of entries as the
dim field, while the weak field, if present, can have any number of entries. These
fields define scalar equations on the form rexpr=0 and wexpr=0, respectively. The
f field requires the presence of a dim field. See further “fem.ode—Global Variables
and Equations” on page 45 of the COMSOL Multiphysics MATLAB Interface
Guide.

The fictitious geometry mentioned above is for most purposes equivalent to a real
0D geometry with one domain, a point. This geometry can be explicitly referenced
using geometry index 0. Therefore, the expressions rexpr and wexpr can contain
variables which are globally available or explicitly available on domain 1 of
geometry 0.

For further examples of use of scalar dependent variables and equations, see the
COMSOL Multiphysics User’s Guide.

Cautionary Though the elode element applies to the ever-present fictitious geometry 0, a real
geometry also has to be defined for the solvers to work. Note also that elode can
be used to define global weak contributions to existing equations. That is, the weak
field may be used without the presence of a dim field.

Examples Solve a simple scalar wave equation:

clear fem
fem.geom = geom0(zeros(0,1));
fem.mesh = meshinit(fem);

clear el
el.elem = 'elode';
el.dim = {'u'};
el.f = {'utt+u'};
fem.elem = {el};

clear elinit;
elinit.elem = 'elconst';
101

elode

102 | C H A P T
elinit.var = {'u','0','ut','1'};
fem.eleminit = {elinit};

fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',linspace(0,4*pi,100),...

'maxorder',2,'rtol',1e-8,'atol',1e-8);
postcrossplot(fem,0,1,'pointdata','u')

See Also elempty, eleqc, eleqw, elshape
E R 1 : C O M M A N D R E F E R E N C E

elpconstr
elpconstrPurpose Define general pointwise constraints.

Syntax el.elem = 'elpconstr'
el.g{ig} = geomnum
el.nname = Nname
el.nfname = NFname
el.mname = Mname

el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.constr{eldomgrp}{ic} = constrexpr
el.geomdim{ig}{edim}.constrf{eldomgrp}{ic} = constrfexpr
el.geomdim{ig}{edim}.cpoints{eldomgrp}{ic} = cpind

Description The elpconstr element adds a set of pointwise constraints of type constrexpr=0.
The constr field has the same syntax as the fem.bnd.constr field. See further the
chapter “Specifying a Model” on page 3 of the COMSOL Multiphysics MATLAB
Interface Guide. The optional constrf field controls the way constraint forces are
applied. You enter an expression such that its Jacobian with respect to the test
functions decides on which degrees of freedom the reaction force is applied for each
constraint. If constrf is omitted, constraints are ideal, which corresponds to
setting constrf to test(constrexpr).

The constraint and constraint force Jacobians are by default assembled to matrices
called NT and NF, and the constraint residual is called M. This can be changed by
assigning different names to the optional nname, nfname and mname fields. Only
certain names are recognized by functions like assemble, though, see page 27.

The constraints are enforced at the same local coordinates in all elements in one
domain group. The constraint point pattern is specified as a pattern index in the
cpoints field. Indices refer to patterns defined by an elepspec element.

Compared to the elcconstr element, the elpconstr can implement a wider range
of constraints, as a correct constraint Jacobian is always calculated on the fly. This is
in contrast to the user-specified Jacobian matrix h, used in fem.bnd.h and the
elcconstr element.

Examples Solve a 1D biharmonic equation (related to Euler beams) with constraints on both
value and normal derivative at the endpoints.

clear fem;
fem.geom = solid1([0,1]);
fem.mesh = meshinit(fem);
fem.shape = 'shherm(1,3,''u'')';
fem.form = 'weak';
fem.equ.weak = 'uxx_test*uxx';
103

elpconstr

104 | C H A P T
fem.bnd.dim = {'u'};
fem.bnd.cporder = 1;
fem.elem = {};

clear el;
el.elem = 'elpconstr';
el.g = {'1'};
clear gd;
gd.ind = {{'1'},{'2'}};
gd.constr = {{'-u','1-ux'},{'-u','1+ux'}};
gd.cpoints = {{'1'},{'1'}};
el.geomdim{1} = {gd,{}};
fem.elem = [fem.elem {el}];

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postplot(fem,'liny','u');

See Also elempty, elcconstr, elcurlconstr, elepspec
E R 1 : C O M M A N D R E F E R E N C E

elpiecewise
elpiecewisePurpose Declare piecewise functions.

Syntax el.elem = 'elpiecewise'
el.subtype = 'poly' | 'exppoly' | 'general'
el.name = fname
el.args = argname
el.intervals{ibnd} = interval_bound
el.expr{iexpr} = poly_spec | expr
el.extmethod = 'interior' | 'const' | double_value | 'none'
el.smoothzone = double_value
el.smoothorder = '0' | '1' | '2'
el.complex = 'true' | 'false'
el.linear = 'true' | 'false'

poly_spec{2*ipow} = exponent
poly_spec{2*ipow+1} = coefficent

Description The elpiecewise element declares a function fname which is of type subtype in
each interval, the boundaries of which are given in the intervals field. The
polynomials or general expressions are given for each subinterval in the expr field,
which contains one pair of polynomial exponent and coefficient or one expression
for each interval. Derivatives are calculated by automatic symbolic differentiation.
Outside the intervals, the value of the function is either extrapolated, taken from the
nearest interval boundary, or given a fixed number, according to the extmethod
field. 'none' indicates that extrapolation is deactivated and results in errors or NaN
values for out-of-range values, depending on how and where the element is used.

Because the given expressions can be discontinuous at the interval boundaries,
elpiecewise includes an optional smoothing option. If given, the smoothzone
field specifies a relative size of the smoothing zone, interpreted as the fraction of
each interval length which should be smoothed at the intersections between
intervals. The smoothorder field gives the number of continuos derivatives that
must exist at the boundary between smoothing zone and interval.

Functions which can generate complex values from real data must have the complex
field set to 'true'. The linear property decides if the function is treated as linear
when deciding whether to reassemble the Jacobian at each time step/iteration or
not.

Examples Setup a piecewise function element of the polynomials 0.2x-6 + 5.1x + 0.05x6 and
60x, defined from 1.7 to 4 and 4 to 5.2, respectively, with continuos first derivatives
at the intersection:

el.elem = 'elpiecewise';
105

elpiecewise

106 | C H A P T
el.name = 'myfun';
el.subtype = 'poly';
el.expr = {{'-6' '0.2' '1' '5.1' '6' '0.05'} {'1' '60'}}
el.intervals = {'1.7' '4' '5.2'}
el.smoothzone = '0.1';
el.smoothorder = '1';
fem.elem = [fem.elem {el}];

See Also elempty, elinterp, elinline
E R 1 : C O M M A N D R E F E R E N C E

elplastic
elplasticPurpose Define plastic strain variables.

Syntax el.elem = 'elplastic'
el.g{ig} = geomnum
el.vars{ivar} = varname
el.varsToCache = cachevarlist
el.varPairsToGpProcess{2*igpvar-1} = gpvarname
el.varPairsToGpProcess{2*igpvar} = gpvarexpr
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.Yield{eldomgrp} = yieldexpr
el.geomdim{ig}{edim}.EffStress{eldomgrp} = effstressexpr
el.geomdim{ig}{edim}.G{eldomgrp}{ivar} = gexpr
el.geomdim{ig}{edim}.gporder{eldomgrp} = iorder

Description The elplastic element defines the plastic strain variable names specified in the
vars field. For the syntax of the ind field, see elempty. The yield function is
effstressexpr−yieldexpr. For each strain variable in vars, the right-hand side
of the corresponding rate equation is gexpr times the plastic multiplier, lambda. See
“Continuum Application Modes”, section “Theory Background”, in the
Structural Mechanics Module User’s Guide. The gporder field specifies a
quadrature rule order, which should preferably be the same as the order used in the
assembly of the main equation.

The varsToCache field contains a list of variables that can be assumed not to
depend explicitly on the plastic strains. By specifying variable names representing
complicated material property expressions or interpolated data independent of the
plastic strains, it is possible to avoid repeated evaluation in the inner, plastic, loop.

In addition to the plastic strain variables, the varPairsToGpProcess field defines a
number of postprocessing variable-expression pairs, which, when evaluated, are
linearly extrapolated from the integration points. Use this feature, for example, to
avoid problems with nonconvergent plastic strains at sharp geometry corners.

For each variable and integration point, the elplastic element declares an
additional degree of freedom, which appears in the solution vector. However,
consider these degrees of freedom to be internal data of the elplastic element.
They are updated only by a special procedure in the nonlinear solver.

Cautionary Note that some of the field names are mixed case, and case matters. Also, the
domain-dependent fields do not accept empty entries for any domain group.

The elplastic element is available only if your license includes the Structural
Mechanics Module or the MEMS Module.
107

elplastic

108 | C H A P T
Examples By faking a single plastic strain variable, the elplastic element can be used also as
a pure postprocessing element to define variables extrapolated from the integration
points. The following example works for a 2D plane strain model.

el.elem = 'elplastic';
el.g = {'1'};
el.vars = {'foo'};
el.varPairsToGpProcess = {'ex','ex_smpn',...
 'ey','ey_smpn',...
 'exy','exy_smpn'};
gd.ind = {{'1'}};
gd.Yield = {'0'};
gd.EffStress = {'0'};
gd.G = {{'0'}};
gd.gporder = {'2'};
el.geomdim{1} = {{},{},gd};
fem.elem = [fem.elem {el}];

See Also elempty
E R 1 : C O M M A N D R E F E R E N C E

elpric
elpricPurpose Define variables which evaluate principal values and vector components.

Syntax el.elem = 'elpric'
el.g{ig} = geomnum
el.basename = bname
el.postname = pname
el.sdim{idim} = dimname
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.tensor{eldomgrp} = matexpr

Description The elpric element evaluates eigenvalues and eigenvectors of a 3-by-3 real
symmetric matrix. The tensor field always has six components specifying the upper
triangle of the source matrix as a cell array of expressions in column order. The
basename field is compulsory and specifies a single name from which all output
variable names are derived. The output variables are defined wherever the tensor
field is nonempty.

Eigenvalue variable names are created by appending numbers 1 to 3 to bname and,
if postname is present, append '_pname'. Eigenvector component names are then
created by inserting the space variable names given in sdim directly after the
component number. Eigenvalues are sorted in decreasing order.

Cautionary No Jacobian contribution is calculated even if the tensor expressions contain
dependent variables. The reason is the condition that the eigenvalues are sorted,
which makes the eigenvector components discontinuous functions of the input
matrix components.

Examples Define postprocessing variables for principal strains and directions, given strain
components [ex,ey,ez,exy,exz,eyz].

el.elem = 'elpric';
el.g = {'1'};
el.basename = 'e';
el.sdim = {'x','y','z'};
gd.ind = {{'1'}};
gd.tensor = {{'ex','exy','ey','exz','eyz','ez'}};
el.geomdim{1} = {{},{},{},gd};
fem.elem = [fem.elem {el}];

See Also elempty, elinv
109

elsconstr

110 | C H A P T
elsconstrPurpose Define pointwise constraints controlled by shape functions.

Syntax el.elem = 'elsconstr'
el.g{ig} = geomnum
el.nname = Nname
el.nfname = NFname
el.mname = Mname

el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.shelem = meshcases | shapelist

meshcases.default = shapelist;
meshcases.case{elmcase} = shapelist;
meshcases.mind{elmcase} = caselist;

shapelist{eldomgrp}{ishape}{3*i-2} = bmtypename
shapelist{eldomgrp}{ishape}{3*i-1} = shapename
shapelist{eldomgrp}{ishape}{3*i} = shapeparams

el.geomdim{ig}{edim}.constr{eldomgrp}{ic}{j} = constrexpr
el.geomdim{ig}{edim}.constrf{eldomgrp}{ic}{j} = constrfexpr
el.geomdim{ig}{edim}.cshape{eldomgrp}{ic} = ishape

Description The elsconstr element defines pointwise constraints where the type of constraint
is determined by a shape function object. The idea is that the constraint points are
selected to be appropriate for variables having the corresponding shape function.
For the syntax of the ind field, see elempty. For the syntax of the shelem field, see
elshape. A difference to the syntax in elshape is that the cell array shapelist has
three levels instead of two.

The expressions that are used to formulate the constraint are given in the constr
field, and the index of the corresponding shape function object is given in the
cshape field. More precisely, in element geometry ig, dimension edim, and
element domain group eldomgrp, constraint number ic is defined by the shape
function object with index
ishape=el.geomdim{ig}{edim}.cshape{eldomgrp}{ic}. The expressions
needed to formulate this constraint is given by the cell array
el.geomdim{ig}{edim}.constr{eldomgrp}{ic}. The number of expressions ne
in this cell array depends on the shape function object.

The optional constrf field controls the way constraint forces are applied. You enter
an expression such that its Jacobian with respect to the test functions decides on
which degrees of freedom the reaction force is applied for each constraint. If
constrf is omitted, constraints are ideal, which corresponds to setting the
components of constrf to test(constrexpr).
E R 1 : C O M M A N D R E F E R E N C E

elsconstr
The constraint and constraint force Jacobians are by default assembled to matrices
called NT and NF, and the constraint residual is called M. This can be changed by
assigning different names to the optional nname, nfname and mname fields. Only
certain names are recognized by functions like assemble, though, see page 27.

The elsconstr constraint element is only implemented for the shape functions
shlag, shcurl, and shdiv. For shlag, the number of expressions ne=1, and this
expression is constrained to be zero in the node points of the shlag object. For
shcurl, the number of expressions ne=sdim, and these expressions are considered
as components of a vector. The tangential component of this vector is constrained
to be zero in the node points for the shcurl shape function. For shdiv, the number
of expressions ne=sdim, and these expressions are considered as components of a
vector. The normal component of this vector is constrained to be zero in the node
points for the shdiv shape function.

Example Impose a constraint on a vector field E represented using shcurl shape functions of
order 2. The constraint is that the tangential component of E-(2,3) is zero.

clear fem;
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 'shcurl(2,''E'')';
fem.dim = {'Ex' 'Ey'};
fem.equ.weak = '-(Ex*Ex_test+Ey*Ey_test+dExy_test*dExy)';

clear el gd;
el.elem = 'elsconstr';
el.g = {'1'};
gd.ind = {{'1','2','3','4'}};
gd.shelem{1}{1} = ...
 {'s(1)','shcurl',struct('fieldname','E','order','2')};
gd.constr{1}{1} = {'Ex-2','Ey-3'};
gd.cshape{1}{1} = '1';
el.geomdim{1} = {{},gd,{}};
fem.elem = {el};

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postarrow(fem,{'Ex' 'Ey'});

See Also elempty, elpconstr, elshape, shdiv, shlag, shcurl
111

elshape

112 | C H A P T
elshapePurpose Define dependent variables and select shape functions.

Syntax el.elem = 'elshape'
el.g{ig} = geomnum
el.tvars = 'on' | 'off'
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.shelem = meshcases | shapelist

meshcases.default = shapelist;
meshcases.case{elmcase} = shapelist;
meshcases.mind{elmcase} = caselist;

shapelist{eldomgrp}{3*ishape-2} = bmtypename
shapelist{eldomgrp}{3*ishape-1} = shapename
shapelist{eldomgrp}{3*ishape} = shapeparams

Description The elshape element is responsible for allocating degrees of freedom and defining
dependent variables. For the syntax of the ind field, see elempty. The tvars field
turns the generation of time derivative variables on or off (default on).

The shelem field has a rather complicated syntax. If no alternate mesh cases are
defined, it is a cell array which for each domain group contains a cell array of triplets
bmtypename—shapename—shapeparams. The string bmtypename is a unique
identifier for a basic mesh element shape with certain additional properties, see the
table below.

TABLE 1-20: BASIC MESH ELEMENT TYPE IDENTIFIERS FOR ELEMENT TYPES GENERATED IN MESHES

NAME DESCRIPTION

ls(0) 0D simplex (all elements are equivalent in 0D)

s(1) 1D simplex, higher-order shape generated on boundaries in
2D and 3D

ls(1) 1D simplex, linear shape generated in 1D

s(2) 2D simplex (triangle), higher-order shape generated on
boundaries in 3D and in a layer closest to boundaries in 2D

ls(2) 2D simplex (triangle), linear shape generated in the inner of
2D domains

b(2) 2D brick (quadrilateral, quad), higher-order shape generated
on boundaries in 3D and in a layer closest to boundaries in
2D

lb(2) 2D brick (quadrilateral, quad), bilinear shape generated in the
inner of 2D domains

s(3) 3D simplex (tetrahedron), higher-order shape generated in a
layer closest to boundary surfaces and free edges
E R 1 : C O M M A N D R E F E R E N C E

elshape
The shapename identifier selects a shape function for the base mesh type, and the
format of the shapeparams parameter in turn depends on the particular shape
function. Typically, the shape function expects a struct with fields specifying
dependent variable name and order.

If there are multiple mesh cases present in the model, the shelem field is a struct
with fields default, case, and mind. The default field has the same syntax as
described above for the shelem field itself. Multiple alternate cases which use the
same shape functions can be grouped together using the mind field. This field is a
cell array containing groups of mesh case numbers, each group, caselist, given as
a cell array. For each element mesh case group, elmcase, an alternate shape list is
given in the case field.

Cautionary Multiple shape functions can be specified by the same elshape element simply by
repeating a basic mesh type name with different shape function and/or parameters
in the shelem field. This means that there also has to be some conflict resolution.
When multiple shape functions specify the same dependent variable name, the one
with the highest interpolation order for the basic field prevails.

The field variables defined on a given domain are the union of the variables defined
in the default case by shape functions on all basic mesh element types on that
domain. This means that variables can at times be missing on certain mesh element
types or for certain mesh cases.

Examples Add a dependent variable lm on the boundary that can be used as a Lagrange
multiplier in a weak constraint.

clear fem;

ls(3) 3D simplex (tetrahedron), linear shape generated away from
boundaries and edges in 3D

b(3) 3D brick (hexahedron, hex), higher-order shape generated in
a layer closest to boundary surfaces and free edges

lb(3) 3D brick (hexahedron, hex), trilinear shape generated away
from boundaries and edges in 3D

prism 3D prism (pentahedron, wedge), higher-order shape
generated in a layer closest to boundary surfaces and free
edges

lprism 3D prism (pentahedron, wedge), bilinear shape generated
away from boundaries and edges in 3D

TABLE 1-20: BASIC MESH ELEMENT TYPE IDENTIFIERS FOR ELEMENT TYPES GENERATED IN MESHES

NAME DESCRIPTION
113

elshape

114 | C H A P T
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.weak = 'lm_test*u+lm*u_test';
fem.elem = {};

clear el;
el.elem = 'elshape';
el.g = {'1'};
el.tvars = 'off';
gd.ind = {{'1','2','3','4'}};
gd.shelem = ...
 {{'s(1)','shlag',struct('basename','lm','order','2')}};
el.geomdim{1} = {{},gd,{}};
fem.elem = [fem.elem {el}];

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postplot(fem,'tridata','u','triz','u');

See Also elempty, sharg_2_5, shbub, shdens, shdiv, shgp, shlag, shcurl
E R 1 : C O M M A N D R E F E R E N C E

elshell_arg2
elshell_arg2Purpose Create a linear flat faceted shell element.

Syntax el.elem = 'elshell_arg2'
el.g{ig} = geomnum
el.dim = depvarnames
el.equation = equation type
el.omega = frequency
el.postname = postfix
el.geomdim{ig}{3}.ind{eldomgrp} = domainlist
el.geomdim{ig}{3}.E{eldomgrp} = E_expr
el.geomdim{ig}{3}.nu{eldomgrp} = nu_expr
el.geomdim{ig}{3}.rho{eldomgrp} = rho_expr
el.geomdim{ig}{3}.thickness{eldomgrp} = th_expr
el.geomdim{ig}{3}.height{eldomgrp} = height_expr
el.geomdim{ig}{3}.alphadM{eldomgrp} = alpha_expr
el.geomdim{ig}{3}.betadK{eldomgrp} = beta_expr
el.geomdim{ig}{3}.xlocalx{eldomgrp} = xlx_expr
el.geomdim{ig}{3}.xlocaly{eldomgrp} = xly_expr
el.geomdim{ig}{3}.xlocalz{eldomgrp} = xlz_expr
el.geomdim{ig}{3}.nsidex{eldomgrp} = nx_expr
el.geomdim{ig}{3}.nsidey{eldomgrp} = ny_expr
el.geomdim{ig}{3}.nsidez{eldomgrp} = nz_expr

Description The elshell_arg2 element describes a linear Mindlin theory shell made up of
essentially constant-strain triangles with added drilling rotations. The element lives
on a 2D surface embedded in a 3D geometry. Its material properties, constraints
and loads are specified directly in the element syntax structure.

An elshell_arg2 element implements tasks which are handled by an eleqc or
eleqw element when using the standard syntax. That is, it directly assembles
contributions to the stiffness and mass matrices and to the residual vector. In
addition, it defines a number of postprocessing variables. The shell element
structure contains global properties, common to the entire shell, as well as local
material properties on the boundary level. Note that the shell exists only on the
boundary level and below.

Note: The elshell_arg2 element requires a triangular mesh and will not work
with a quadrilateral mesh.

Global properties: The equation field specifies whether to treat the problem as
stationary, time harmonic or time-dependent. The three displacement and three
rotation field variable names must be specified in the dim field, for example,
115

elshell_arg2

116 | C H A P T
e.dim = {'u','v','w','thx','thy','thz'}

The displacement fields are most easily defined using 6 separate shlag objects of
order 1.

Material, loads and constraints: The shell described by the elshell_arg2 element
can be considered a collection of discrete, homogeneous, flat triangles. The material
properties, including damping factors as well as the element thickness, are taken to
be constant within any triangle. The syntax of the material properties, loads and
constraints is analogous to the syntax of the coefficient form level 1 coefficients. See
further the chapter “Specifying a Model” on page 3 of the COMSOL Multiphysics
MATLAB Interface Guide. However note that all values as well as expressions
must be strings.

TABLE 1-21: GLOBAL PROPERTIES OF THE ELSHELL_ARG2 SHELL ELEMENT STRUCTURE

FIELD MEANING SYNTAX DEFAULT
VALUE

elem Shell element name elshell_arg2 -

g Geometry index scalar number 1

dim Field variable names for displacements and rotations 1-by-6 cell vector
of strings

-

equation Affects how matrices are assembled static | freq |
time | eigen

omega Frequency for the freq equation string expression 0

postname Name that is appended to postprocessing variables string empty string

TABLE 1-22: BND LEVEL PROPERTIES IN THE ELSHELL_ARG2 SHELL ELEMENT STRUCTURE

FIELD MEANING SYNTAX

E Elasticity modulus / Young’s modulus level 1 coefficient

nu Poisson’s ratio level 1 coefficient

rho Density level 1 coefficient

thickness Shell thickness level 1 coefficient

height Postprocessing level level 1 coefficient

alphadM Mass damping coefficient (submodes
time and freq only)

level 1 coefficient

betadK Stiffness damping coefficient
(submodes time and freq only)

level 1 coefficient
E R 1 : C O M M A N D R E F E R E N C E

elshell_arg2
Postprocessing variables: The postprocessing variables defined by the
elshell_arg2 element have standard names that do not depend on the names of
the space variables given in fem.sdim. The postname property of the shell element
structure, if not the empty string, is appended to all postprocessing variables. For
example, the direct x strain will be referenced as exs or exs_postname, depending
on the value of the postname field.

Theory: The elshell_arg2 shell element is a combination of an isotropic version
of the TRIC element proposed by Argyris and others (Ref. 1) and the constant strain
triangle with drilling rotations due to Allman (Ref. 2). As such, the element is
essentially a constant strain triangle whose displacement field vary linearly in the
direction tangential to each edge, and as a restricted third order polynomial in the
normal direction.

The material properties are considered to be constant within any triangle, and
therefore symbolic integration can be used to describe an element stiffness matrix
and a consistent element mass matrix in terms of element geometry and material
data.

xlocalx, xlocaly, xlocalz Vector, whose projection on the shell
defines the local x direction

level 1 coefficient

nsidex, nsidey, nsidez Direction vector which defines the
“up” side of the shell

level 1 coefficient

TABLE 1-22: BND LEVEL PROPERTIES IN THE ELSHELL_ARG2 SHELL ELEMENT STRUCTURE

FIELD MEANING SYNTAX

TABLE 1-23: POSTPROCESSING VARIABLES DEFINED BY THE ELSHELL_ARG2 ELEMENT

VARIABLE MEANING

exs, eys, ezs, exys, exzs,
eyzs

Strain tensor components in global coordinates

exls, eyls, ezls, exyls,
exzls, eyzls

Strain tensor components in local coordinates

Nxls, Nyls, Nxyls In-plane forces in local coordinates

Qxls, Qyls Out-of-plane forces in local coordinates

Mxls, Myls, Mxyls In-plane moments in local coordinates

exlxs, exlys, exlzs Local system x-axis expressed in global coordinates

eylxs, eylys, eylzs Local system y-axis expressed in global coordinates
117

elshell_arg2

118 | C H A P T
Cautionary The elshell_ar2 shell element is not multiphysics enabled. This means that there
will be no contributions to the exact Jacobian from solution-dependent material
data.

The elshell_arg2 element is available only if your license includes the Structural
Mechanics Module.

Compatibility COMSOL Multiphysics 3.2: The tdim field and wave extension in the
time-dependent case are no longer used.

See Also elempty

References [1] J. Argyris, L. Tenek, and L. Olofsson, “TRIC: a simple but sophisticated 3-node
triangular element based on 6 rigid-body and 12 straining modes for fast
computational simulations of arbitrary isotropic and laminated composite shells,”
Comput. Methods Appl. Mech. Engrg., vol. 145, pp. 11–85, 1997.

[2] D. J. Allman, “Evaluation of the constant strain triangle with drilling rotations,”
Int. J. Numer. Meth. Engrg., vol. 26, pp. 2645–2655, 1988.
E R 1 : C O M M A N D R E F E R E N C E

eluwhelm
eluwhelmPurpose Assemble acoustic Helmholtz equation on ultraweak variational form.

Syntax el.elem = 'eluwhelm'
el.g{ig} = geomnum
el.basename = fieldname
el.ndir = ndir
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.Rho{eldomgrp} = rho
el.geomdim{ig}{edim}.K{eldomgrp} = k
el.geomdim{ig}{edim}.Q{eldomgrp} = q

Description The eleqw element uses the Ultraweak variational formulation (UWVF) to
implement a Helmholtz equation for the acoustic pressure, p,

with boundary conditions of the form

The density ρ0, wave number k, and parameter q are supplied directly to the
element, while the boundary term g and all volume, point, and edge sources must
be implemented separately, outside the element.

The acoustic field variable fieldname must be represented by an shuwhelm shape
function with fixed number of directions, ndir, throughout the domains where the
eluwhelm element is active.

Cautionary The eluwhelm element does not currently account for curved boundaries—all
element edges and faces are assumed to be planar. This may change, which can
possibly affect future element syntax.

See Also elempty, shuwhelm

∇ p∇
ρ0
-------–⎝ ⎠

⎛ ⎞⋅ k2

ρ0
------p– 0=

n p∇
ρ0
-------⋅ i k

ρ0
------p+ q n–

p∇
ρ0
-------⋅ i k

ρ0
------p+⎝ ⎠

⎛ ⎞ g+=
119

elvar

120 | C H A P T
elvarPurpose Define expression variables.

Syntax el.elem = 'elvar'
el.g{'ig'} = geomnum
el.geomdim{ig}{edim}.ind{eldomgrp} = domainlist
el.geomdim{ig}{edim}.var{2*ivar-1} = varname
el.geomdim{ig}{edim}.var{2*ivar}{eldomgrp} = varexpr

Description The elvar element declares expression variables varname to be accessible on
domain groups for which the defining expression varexpr is nonempty. For the
syntax of the ind field, see elempty.

Examples Redefine the space derivatives of u on an interior boundary to be evaluated on the
“up” side instead of being averaged.

clear fem;
fem.geom = geomcsg({rect2(1,1,'pos',[-1 0]),rect2});
fem.mesh = meshinit(fem);
fem.equ.ind = [1 2];
fem.equ.c = {1 2};
fem.bnd.ind = [1 0 0 0 0 0 2];
fem.bnd.h = 1;
fem.bnd.r = {0 1};
fem.elem = {};

clear el;
el.elem = 'elvar';
el.g = {'1'};
clear gd;
gd.ind = {{'4'}};
gd.var = {'ux',{'up(ux)'},'uy',{'up(uy)'}};
el.geomdim{1} = {{},gd,{}};
fem.elem = [fem.elem {el}];

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postplot(fem,'lindata','ux','linz','ux');

See Also elempty
E R 1 : C O M M A N D R E F E R E N C E

embed
embedPurpose Embed a 2D geometry object as a 3D geometry object.

Syntax g3 = embed(g2)
g3 = embed(g2,p_wrkpln)

Description g3 = embed(g2) embeds the 2D geometry object as a 3D geometry object. A 2D
solid object becomes a 3D face object, a 2D curve object becomes a 3D curve
object, and a 2D point object becomes a 3D point object.

g3 = embed(g2,p_wrkpln) additionally, p_wrkpln specifies the position in the 3D
space. See geomgetwrkpln for more information on p_wrkpln.

See also extrude, curve2, curve3, face3, geom0, geom1, geom2, geom3, point1,
point2, point3
121

extrude

122 | C H A P T
extrudePurpose Extrude a 2D geometry object into a 3D geometry object.

Syntax g3 = extrude(g2,...)

Description g3 = extrude(g,...) extrudes the 2D geometry object g into a 3D geometry
object g3 according to given parameters.

The function extrude accepts the following property/values:

The 3D object g3 is an extruded object, where Distance is the extrusion distance
in the normal direction of the bottom plane, defined by the property Wrkpln.

The properties Displ, Scale, and Twist defines the translation displacements, scale
factors and rotation of the top with respect to the bottom of the extruded object.
They are defined in the local system of the work plane.

To define a piecewise linear extrusion, Distance is given as a row vector, of size
1-by-nd, of displacements with respect to the bottom work plane. Scale, Displ,
and Twist need to have the same number of columns as Distance.

To define a cubic extrusion Distance is given as a 3-by-nd matrix where rows 2 and
3 contain weights of the extrusion segments. The weights are given in the interval
[0 1] and specifies the influence of the tangential continuity at the junctions. The
weights of rows 2 and 3 specifies the influence from the first- and second-junction,
respectively, of each segment. If the weight is close to 0, the influence of the
junction is weak, and if it is close to 1, the influence is strong.

Polres defines the resolution in the polygon representations of the edges.

Face specifies if cross-sectional faces are removed: all removes them, none keeps
them.

TABLE 1-24: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Displ 2-by-nd matrix [0;0] Displacement of extrusion top

Distance k-by-nd matrix 1 Extrusion distances

Face string all Cross-sectional faces to delete

Polres scalar 50 Polygon resolution

Scale 2-by-nd matrix [1;1] Scale of extrusion top

Twist 1-by-nd vector 0 Twist angle (in radians)

Wrkpln 3-by-3 matrix [0 1 0;
 0 0 1;
 0 0 0]

Work plane for 2D geometry
cross section
E R 1 : C O M M A N D R E F E R E N C E

extrude
Compatibility The numbering of faces, edges and vertices is different from the numbering in
objects created in 2.3.

Examples Creation of a cylinder of height 1.3.

g3 = extrude(circ2,'distance',1.3);

Extrusion of rectangle from a zx-plane.

p_wrkpln = geomgetwrkpln('quick',{'zx',10});
g3 = extrude(rect2(1,2),'distance',1.3,'displ',[0.4;0],...
 'scale',[2;2],'wrkpln',p_wrkpln);
geomplot(g3);

Cubic extrusion of a circle.

g3 = extrude(circ2,'distance',[1 3 4;0.3 0.3 0.3;0.3 0.3 0.3],...
 'scale',[1 1.5 2;1 1 2],'twist',[0 pi/6 pi/6],...
 'displ',[0 0 0;0 1 1]);

See Also geom0, geom1, geom2, geom3, geomcsg, geomgetwrkpln
123

face3

124 | C H A P T
face3Purpose Create 3D surface geometry object.

Syntax f3 = face3(x,y,z)
f3 = face3(x,y,z,w)
f3 = face3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd)
[f3,...] = face3(g3,...)
f3 = face3(g2)

Description f3 = face3(x,y,z) creates a face3 object f3. The degree of the rational Bézier
surfaces is determined from the size of the matrices x, y, and z. The arrays x, y, and
z are always of equal size. If size(x,2)>1 then a rectangular patch is created. If
size(x,2)==1 then a triangular patch is created.

The valid combinations of matrix sizes of x, y, and z are: 3-by-1 for creating
triangular planar patches, 2-by-2, 3-by-2, 4-by-2, 3-by-3, 4-by-3, 4-by-4 for
rectangular patches of degree (1,1), (2,1), (3,1), (2,2), (3,2), and (3,3) respectively.

f3 = face3(x,y,z,w) works similarly to the above, but also applies arbitrary
positive weights to the points of the surface.

f3 = face3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd) creates a 3D surface
geometry object f3 from the fields vtx, vtxpre, edg, edgpre, fac, mfdpre, and
mfd. The arguments must define a valid face object. See geom3 for a description of
the arguments.

[f3,...] = face3(g3,...) coerces the 3D geometry object g3 to a 3D face
object f3.

f3 = face3(g2) coerces the 2D geometry object g2 to a 3D face object f3. The
object f3 is then embedded in the plane z=0 and is a trimmed planar patch since it
is not in general representable as a rectangular or triangular Bézier patch.

The coercion function [f3,...] = face3(g3,...) a accepts the following
property/values:

See geomcsg and geom for more information on geometry objects.

The 3D geometry object properties are available. The properties can be accessed
using the syntax get(object,property). See geom3 for details.

TABLE 1-25: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx |
ctx | ptx

{} Cell array of output names
E R 1 : C O M M A N D R E F E R E N C E

face3
Examples Create an untrimmed triangular patch in the plane, y = 1.

f1 = face3([0 1 0]',[1 1 1]',[0 0 1]');

Create a circular face as a trimmed patch in the plane, z = 0.

f2 = face3(circ2(0,20,10));

A patch that can constitute the wall of a cylinder, is created by setting the control
weights explicitly, as in the command below.

f3 = face3([-1 -1;-1 -1;0 0],[0 0;-1 -1;-1 -1],...
 [0 1; 0 1; 0 1],[1 1;1/sqrt(2) 1/sqrt(2);1 1]);

To generate a third degree rectangular patch, the following commands can be given.

[x,y] = meshgrid(-3:3:6,0:2:6);
z = rand(size(x));
f4 = face3(x,y,z);

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also curve2, curve3, geom0, geom1, geom2, geom3, geomcsg, point1, point2,
point3
125

femdiff

126 | C H A P T
femdiffPurpose Symbolically differentiate a PDE in general form.

Syntax fem1 = femdiff(fem,...)
xfem1 = femdiff(xfem,...)

Description fem1 = femdiff(fem,...) symbolically differentiates the Γ, F, G, and R
coefficients in a PDE given in general form. xfem can also be an extended FEM
structure. In this case, femdiff differentiates all FEM structures in general form.
The coefficients are obtained from the ga, f, and g, r fields from the fem.equ and
fem.bnd structures, respectively. It returns an FEM structure where the fields equ
and bnd have been updated with the fields c, al, be, a, and q, h according to “The
Linear or Linearized Model” on page 386 in the COMSOL Multiphysics User’s
Guide.

The expressions in the coefficients Γ, F, G, and R can contain expressions
containing the binary operators +, -, *, /, ̂ , ==, ~=, >, >=, <, <=, |, and &; the unary
operators +, -, and ~; and the functions abs, acos, acosh, acot, acoth, acsc,
acsch, asec, asech, asin, asinh, atan, atanh, cos, cosh, cot, coth, csc, csch,
erf, exp, lambw, log, log10, log2, sec, sech, sign, sin, sinh, sqrt, tan, and
tanh.

The function femdiff accepts the following property/value pairs:

The properties Diff, Rules, and Simplify can alternatively be given as fields in the
FEM structure: fem.diff, fem.rules, and fem.simplify.

TABLE 1-26: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Defaults off | on off Return default fields

Diff off | on | cell array
containing a selection
of ga, g, f, r, var, and
expr

on List of fields which can
be differentiated in order
to evaluate the Out
values. The default string
'on' is equivalent to the
cell array {'ga' 'g'
'f' 'r' 'expr'}.
Note: not 'var'

Shrink off | on on List of differentiation
rules

Simplify off | on on Simplify differentiated
expressions
E R 1 : C O M M A N D R E F E R E N C E

femdiff
Use the field fem.rules to specify additional differentiation rules. The derivative of
the inverse hyperbolic tangent function atanh can, for example, be specified as

{'atanh(x)','1/(1-x^2)'}.

It can also be stored as a field in the FEM structure.

Assume a user-defined function foo(a,b) has been written, implementing the
analytical expression a^2+a*sin(b^3). The derivatives of this function are specified
as:

'rules', {'foo(a,b)', '2*a+sin(b^3),3*a*b^2*cos(b^3)'}

femdiff does not support functions with string arguments.

Cautionary The relational and Boolean operators have been included for convenience only, and
must be used with extreme caution. Their symbolic derivative is considered to be
identically 0.

Coefficient M-files are not allowed in the input.

Compatibility The function flgetrules for converting FEMLAB 1.0/1.1 differentiation rules is
no longer available.

The properties bdl, out, rules, and sdl are obsolete in FEMLAB 3.0.

The fields fem.equ.varu and fem.bnd.varu, etc. are no longer generated in
FEMLAB 3.0.

The precedence rules for the operators | and & have been changed to comply with
MATLAB 6.0 precedence.

The differentiation algorithm is new in FEMLAB 1.2. The @fldiffobj class is
obsolete.

See Also femnlin
127

femeig

128 | C H A P T
femeigPurpose Solve eigenvalue PDE problem.

Syntax fem.sol = femeig(fem,...)
[u,lambda] = femeig(fem,...)
fem = femeig(fem,'Out',{'fem'},...)
fem.sol = femeig('In',{'D' D 'K' K 'N' N},...)

Description fem.sol = femeig(fem,...) assembles and solves the eigenvalue PDE problem
described by the (possibly extended) FEM structure fem.

fem.sol = femeig('In',{'D' D 'K' K 'N' N},...) solves the eigenvalue
problem given by the matrices D, K, and N.

For both linear and nonlinear PDE problems, the eigenvalue problem is that of the
linearization about a solution U0. If the eigenvalue appears nonlinearly, COMSOL
Multiphysics reduces the problem to a quadratic approximation around a value λ0
specified by the property eigref. The discretized form of the problem reads

where K, D, E, N and NF are evaluated for U = U0 and λ = λ0. Λ is the Lagrange
multiplier vector, λ is the eigenvalue. The eigenvalue name can be given by the
property eigname. The linearization point U0 can be given with the property U. The
shift, described below, is compensated according to the linearization point for the
eigenvalue. Therefore, changing the linearization point has no effect at all for linear
or quadratic eigenvalue problems.

The function femeig accepts the following property/value pairs:

TABLE 1-27: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Eigname string lambda Name of eigenvalue
variable

Eigref string 0 Linearization point for
the eigenvalue

Etol positive scalar 0 Eigenvalue tolerance

In cell array of names and
matrices K | N | D | E

N is empty
E=0, D=0

Input matrices

Krylovdim positive integer Dimension of Krylov
space

KU λ λ0–()DU– λ λ0–()2EU+ NFΛ–=

NU M=
E R 1 : C O M M A N D R E F E R E N C E

femeig
In addition, the properties described in the entry femsolver are supported.

Specify where to look for the desired eigenvalues with the property shift. Enter a
real or complex scalar; the default value is 0, meaning that the solver tries to find
eigenvalues close to 0.

For the tolerance parameter in the convergence criterion for linear systems, the
number given by Itol is used.

Using the property In you can specify explicit values for the matrices in the
eigenvalue problem. The value for this property is a cell array with alternating matrix
names and matrix values. The matrix names can be D, E, K, or N. If the N matrix is
not given, it is taken to be empty. If the D or E matrix is not given, it is taken to be 0.

The property Out defines the output variables and their order. The output fem
means the FEM structure with the solution object fem.sol added. sol is a femsol
object containing the fields lambda and u. lambda is a row vector containing the
eigenvalues. u is a solution matrix. Each column in the solution matrix is the
solution vector of the eigenfunction for the corresponding eigenvalue in lambda.
The output value stop returns nonzero if the solution process was not completed.
stop is 1 if a partial solution was returned, and 2 if no solution was returned. For
the other outputs, see femlin.

For more information about the eigenvalue solver, see “The Eigenvalue Solver” on
page 402 in the COMSOL Multiphysics User’s Guide.

Example Eigenmodes and Eigenvalues of the L-shaped Membrane
Compute eigenvalues corresponding to eigenmodes for the PDE problem

Neigs positive integer 6 Number of
eigenvalues sought

Out fem | sol | u | lambda |
stop | solcompdof | Kc |
Dc | Ec | Null | Nullf |
Nnp | uscale | nullfun |
symmetric

sol Output variables

Shift scalar 0 Eigenvalue search
location

TABLE 1-27: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

∆u– λu= in Ω
u 0= on ∂Ω⎩

⎨
⎧

129

femeig

130 | C H A P T
where Ω is the L-shaped membrane. Start by setting up the problem:

clear fem
fem.geom = poly2([-1 0 0 1 1 -1],[0 0 1 1 -1 -1]);
fem.mesh = meshinit(fem,'hmax',0.1);
fem.shape = 2;
fem.equ.c = 1; fem.equ.da = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femeig(fem,'neigs',16);

Display the first and sixteenth eigenmodes. The membrane function is available in
MATLAB.

postsurf(fem,'u') % first eigenmode
membrane(1,20,9,9) % the MATLAB function
postsurf(fem,'u','solnum',16) % sixteenth eigenmode

Cautionary Consider the case of a linear eigenvalue problem, E = 0. Write the generalized
eigenvalue problem as (A − λB)u = 0. In the standard case the coefficients c and da
are positive in the entire region. All eigenvalues are positive, and 0 is a good choice
for the shift (eigenvalue search location). The cases where either c or da is zero are
discussed below.

• If da = 0 in a subregion, the mass matrix B becomes singular. This does not cause
any trouble, provided that c > 0 everywhere. The pencil (A, B) has a set of infinite
eigenvalues.

• If c = 0 in a subregion, the stiffness matrix A becomes singular, and the pencil
(A, B) has many zero eigenvalues. Choose a positive shift below the smallest
nonzero eigenvalue.

• If there is a region where both c = 0 and da = 0, we get a singular pencil. The
whole eigenvalue problem is undetermined, and any value is equally plausible as
an eigenvalue.

Compatibility The property Variables has been renamed Const in FEMLAB 2.3.

The properties Epoint and Tpoint are obsolete from FEMLAB 2.2. Use
fem.***.gporder to specify integration order.

See Also femsolver, assemble, femlin
E R 1 : C O M M A N D R E F E R E N C E

femlin
femlinPurpose Solve linear or linearized stationary PDE problem.

Syntax fem.sol = femlin(fem,...)
fem = femlin(fem,'Out', {'fem'},...)
[Ke,Le,Null,ud] = femlin(fem,...)
[Kl,Ll,Nnp] = femlin(fem,...)
[Ks,Ls] = femlin(fem,...)
fem.sol = femlin('In',{'K' K 'L' L 'M' M 'N' N 'NF' NF},...)

Description fem.sol = femlin(fem) solves a linear or linearized stationary PDE problem
described by the (possibly extended) FEM structure fem. See femstruct for details
on the FEM structure.

fem.sol = femlin(fem, 'pname','P', 'plist',list,...) solves a linear or
linearized stationary PDE problem for several values of the parameter P. The values
of the parameter P are given in the vector list.

fem = femlin(fem,'out',{'fem'}) modifies the FEM structure to include the
solution structure, fem.sol.

[Ke,Le,Null,ud] = femlin(fem) partially solves the PDE problem by
eliminating the constraints. The solution of PDE problem can be obtained by the
scripting command u = u0+Null*(Ke\Le)+ud, where u0 is the linearization point.

[Kl,Ll,Nnp] = femlin(fem) partially solves the PDE problem by using the
Lagrange method. The solution can then be obtained by u = Kl\Ll, and then u =
u0+u(1:Nnp).

[Ks,Ls] = femlin(fem) partially solves the PDE problem by approximating the
constraints with stiff springs. The solution to the PDE problem is u = u0+Ks\Ls.

fem.sol = femlin('in',{'K' K 'N' N 'NF' NF 'L' L 'M' M}) solves a
pre-assembled PDE problem.

 u = femlin('in’,{'K' K 'L' L},'out','u') is equivalent to solving the linear
system using u = K\L, with the important difference that you have access to all
linear system solvers (except Geometric multigrid) using the Linsolver property.

Consider the finite element discretization of a stationary PDE problem:

where L, NF, and M depend on the solution vector U. femlin solves the linearized
form of this problem:

0 L NFΛ–

M
=

131

femlin

132 | C H A P T
where K, NF, N, L, and M are evaluated for U = U0. Thus, if the original problem
is linear and K is the correct Jacobian, femlin computes the solution of the original
problem. The linearization “point” U0 can be specified with the property U.

femlin can also partially solve the eigenvalue problem:

in that it transforms the problem using one of the constraint-handling methods.
Here λ is the eigenvalue, the name can be controlled by the property eigname. λ0
is the eigenvalue linearization point, the value can be controlled by the property
eigref.

The function femlin accepts the following property/values:

TABLE 1-28: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Eigname string lambda Eigenvalue name

Eigref string 0 Linearization point for the
eigenvalue

In cell array of names
and matrices K | L | M
| N | NF | D | E

N and M are
empty, D=E=0,
NF=NT

Input matrices

Keep string containing K, N
| auto

auto Parameter-independent
quantities

Oldcomp cell array of strings Old parameter
components

Out fem | sol | u | plist
| stop | solcompdof
| Kc | Lc | Dc | Ec |
Null | Nullf | Nnp |
ud | uscale |
nullfun |
symmetric | cell
array of these strings

sol Output variables

Pinitstep positive real Initial stepsize for
parameter

K NF

N 0

U U0–

Λ
L
M

=

KU λ λ0–()DU– λ λ0–()2EU+ NFΛ–=

NU M=
E R 1 : C O M M A N D R E F E R E N C E

femlin
In addition, the properties described in the entry femsolver are supported.

The parametric solver properties Oldcomp, Pdistrib, Pinitstep, Plist, Pmaxstep,
Pminstep, Pname, Porder, and Stopcond are described under femnlin.

The property In explicitly provides assembled matrices. Its value is a cell array with
alternating matrix names and matrix values. The allowed matrix names are K, L, M,
N, NF, D, and E.

The property Out explicitly sets output variables and their order. The output
variable fem means the FEM structure with the solution object fem.sol added. The
outputs sol, u, and plist are the solution object, the solution matrix (sol.u), and
the parameter list (sol.plist), respectively. The output value stop is 0 if a
complete solution was returned, 1 if a partial solution was returned, and 2 if no
solution was returned. The output solcompdof is a vector containing the indices of
the degrees of freedom solved for. The output matrix Kc and the vector Lc are the
matrix and right-hand side of the linear system after constraint handling; see
“Constraint Handling” on page 533. The matrices Dc and Ec are the corresponding
damping matrix and mass matrix after constraint handling for an eigenvalue or
time-dependent problem. The outputs Null, Nullf and ud are related to the
eliminate constraint handling method. The outputs Nnp and uscale are the number
of degrees of freedom solved for and the scale factors used in the rescaling of the
degrees of freedom; see “Scaling of Variables and Equations” on page 531. The
outputs nullfun and symmetric can be useful in finding out the result of the
automatic null function or the automatic symmetric mechanisms.

Plist real vector List of parameter values

Pmaxstep positive real Maximum stepsize for
parameter

Pminstep positive real Minimum stepsize for
parameter

Pname cell array of strings Parameter names

Porder 0 0 Predictor order for
parameter stepping

Stopcond string with
expression

Stop parameter stepping
before expression
become negative

TABLE 1-28: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION
133

femlin

134 | C H A P T
Example The L-Shaped Membrane with Three Subdomains
Take a look at the geometry of the L-shaped membrane for examples of what you
can do. First create the L-shaped membrane and examine the subdomain labels and
edge segment labels by plotting:

clear fem
sq1 = square2(0,0,1);
sq2 = move(sq1,0,-1);
sq3 = move(sq1,-1,-1);
fem.geom = sq1+sq2+sq3;
fem.mesh = meshinit(fem);
geomplot(fem,'edgelabel','on','sublabel','on')

Say you want to use c = 1, 1/2, and 1/3 and f = x, y, and x2+1 in subdomains 1, 2,
and 3, respectively. Use Dirichlet boundary conditions on the outer boundaries:

fem.shape = 2;
fem.equ.c = {1 1/2 1/3};
fem.equ.f = {'x' 'y' 'x^2+1'};
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femlin(fem);
postsurf(fem,'u')

You can set fem.bnd.h = 1 because fem.border has not been set (and defaults to
off). When fem.border is set to on you must type fem.bnd.h = {1 1 1 0 1 1
0 1 1 1}. Otherwise you get u=0 also on interior boundaries.

Using anisotropic and f = 1 in all subdomains can be done by
typing

fem.equ.c = {{{2 'x+y' 10}}};
fem.equ.f = 1;
fem.xmesh = meshextend(fem);
fem.sol = femlin(fem);
postsurf(fem,'u')

Cautionary When using the general form it is assumed that the coefficients c, α, β, a, q, h have
been computed using fem=femdiff(fem). In the user interface, this is done
automatically.

Compatibility The property Variables has been renamed Const in FEMLAB 2.3.

If scaling is used, the matrix outputs from femlin are derived from the rescaled
system. This means that the scale factors uscale have to be taken into account if a
solution is computed from the matrices. See “Scaling of Variables and Equations”
on page 531.

c 2 x y+

x y+ 10
=

E R 1 : C O M M A N D R E F E R E N C E

femlin
The properties Epoint and Tpoint are obsolete from FEMLAB 2.2. Use
fem.***.gporder to specify integration order.

The properties u and t have been made obsolete in FEMLAB 1.1.

See Also femsolver, femstruct, assemble, asseminit, femnlin, femeig, flnull
135

femmesh

136 | C H A P T
femmeshPurpose Create a mesh object.

Syntax fem.mesh = femmesh(p, el)

Description fem.mesh = femmesh(p, el) creates a mesh object from the mesh data stored in
p and el.

p is an sdim-by-np matrix containing the coordinates of the mesh vertices. The x-,
y-, and z-coordinates are stored in the first, second, and third row, respectively. np
is the number of mesh vertices.

el is a cell array of structures with mesh element information. Each structure stores
information on elements of a specific type.

The field param is only valid for elements of dimension 1, that is, edge elements, in
2D and 3D, and for elements of dimension 2, that is, triangular or quadrilateral
elements, in 3D. For each edge element, the first and second row contain the
starting and ending parameter value, respectively, in 2D, and starting and ending arc
length value, respectively, in 3D. For each triangular and quadrilateral element, the
rows contain the first and second parameter values for each element corner.

The field ud is only valid for elements of dimension sdim−1, also referred to as
boundary elements. The direction of the normal vector of a boundary element

STRUCTURE
FIELD

VALUE DESCRIPTION

type vtx | edg | tri |
quad | tet | prism
| hex

Element type. The valid element types are:
vertex element (vtx), edge element (edg),
triangular element (tri), quadrilateral
element (quad), tetrahedral element (tet),
prism element (prism), and hexahedral
element (hex)

elem matrix of size
nNodes-by-nElem

Mesh vertex indices for the element points.
nElem is the number of elements and
nNodes is the number of element points

dom matrix of size
1-by-nElem

Geometry domain numbers

param matrix of size
nParam-by-nElem

Geometry parameter values

ud matrix of size
2-by-nElem

Up- and down-side subdomain numbers.
The first row contains the up-side
subdomain numbers and the second row the
down-side subdomain numbers
E R 1 : C O M M A N D R E F E R E N C E

femmesh
defines the up-side and down-side of the boundary element. For a 1D boundary
element, the normal points to the left, considering the direction of the boundary
element. For a 2D boundary element, the normal is defined as the cross product of
the vector going from the first to the second element corner and the vector going
from the first to the third element corner.

When defining a mesh object using the femmesh command the domain numbering
for each dimension must start from 1 and must not contain gaps.

The properties p and el can be accessed using the syntax get(object,property).

The (local) numbering of the corners of an element is defined according to the
following.

Edge element (edg):

Triangular element (tri):

Quadrilateral element (quad):

2

1

2

3

1

2

4

1

3

137

femmesh

138 | C H A P T
Tetrahedral element (tet):

Prism element (prism):

Hexahedral element (hex):

For second-order mesh element types, the strings edg2, tri2, quad2, tet2,
prism2, and hex2 are used. The second-ordered nodes are numbered after the
corner vertices according to the following.

Edge element (edg2):

2

3

4

1

3

5
6

1

4

2

6
7

8

4
2

1

5

3

3

E R 1 : C O M M A N D R E F E R E N C E

femmesh
Triangular element (tri2):

Quadrilateral element (quad2):

Tetrahedral element (tet2):

Prism element (prism2):

The mid node number for each quadrilateral face of the prism element can also be
seen in the following table.

FACE (EDGE NODES) FACE MID NODE

7,10,12,16 11

5 6

4

6

5

9

87

6

8 10
9

5 7

7

8

9

10

12

15
11

13
14

16 18

17
139

femmesh

140 | C H A P T
Hexahedral element (hex2):

The mid-node number for each quadrilateral face of the hexahedral element can also
be seen in the following table.

The mid-node number for the hexahedral element is 18.

When importing meshes with reduced second-order elements, also called
serendipity elements, the mid node of quadrilateral elements (or quadrilateral faces)
and the mid node of hexahedral elements must be added manually. The coordinates
for the mid node for a second order quadrilateral element (or quadrilateral face) is
calculated from the surrounding nodes according to
0.5*edgNodes-0.25*vertNodes, where edgNodes is the sum of the surrounding
(4) edge mid nodes and vertNodes is the sum of the surrounding (4) vertex nodes.
For a second order hexahedron, the coordinates of the mid node is calculated from
the surrounding nodes according to 0.25*edgNodes-0.25*vertNodes, where
edgNodes is the sum of the surrounding (12) edge mid nodes and vertNodes is the
sum of the surrounding (8) vertex nodes.

8,10,15,17 13

9,12,15,18 14

FACE (EDGE NODES) FACE MID NODE

9,10,12,13 11

9,14,16,23 15

10,14,20,24 17

12,16,22,26 19

13,20,22,27 21

23,24,26,27 25

FACE (EDGE NODES) FACE MID NODE

9

10
11

12

13

14

16

20

22
15

17
18

19
21

23

24

26
25 27
E R 1 : C O M M A N D R E F E R E N C E

femmesh
Degenerated elements (or collapsed elements), that is, elements where two or more
nodes refer to the same mesh point, are not allowed.

Compatibility The FEMLAB 2.3 (and earlier) mesh structure format is a valid input to femmesh
as well.

See also meshinit, meshrefine, meshplot
141

femmesh/get

142 | C H A P T
femmesh/getPurpose Get mesh object properties.

Syntax get(m,prop)

Description get(m,prop) returns the value of a property prop for a mesh object m.

prop is a string that contains a valid property name. The following tables list the
valid property names for mesh objects:

p is a matrix where each column contains the coordinates for the corresponding
mesh vertex. For example, p(:,34) returns the coordinates for Vertex 34.

el is a cell array of structures with mesh element information. See femmesh on page
136 for information about the field in these structures.

For information about the formats for the vtx property, see “1D Geometry Object
Properties” on page 228.

Example Create a triangular mesh and determin the vertices that form mesh element 100:

m = meshinit(rect2);
el = get(m,'el');
el{3}.elem(:,100);

See Also femmesh

TABLE 1-29: MESH OBJECT PROPERTY NAMES

PROPERTY NAME DESCRIPTION

p Mesh vertex coordinates

el Element information
E R 1 : C O M M A N D R E F E R E N C E

femnlin
femnlinPurpose Solve nonlinear stationary PDE problem.

Syntax fem.sol = femnlin(fem,...)
fem = femnlin(fem,'Out',{'fem'},...)

Description fem.sol = femnlin(fem) solves a stationary PDE problem.

fem.sol = femnlin(fem,'pname','P','plist',list,...) solves a stationary
PDE problem for several values of the parameter P. The values of the parameter P
are given in the vector list.

The PDE problem is stored in the (possibly extended) FEM Structure fem. See
femstruct for details.

The solver is an affine invariant form of the damped Newton method. The solver
can optionally be combined with Uzawa iterations, often used to solve problems
with the augmented Lagrangian technique.

The function femnlin accepts the following property/value pairs:

TABLE 1-30: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Augcomp cell array of strings Augmented Lagrange
components

Augmaxiter positive integer 25 Max number of
augmentation iterations

Augsolver umfpack | spooles |
taucs_llt_mf |
taucs_ldlt | luinc
| taucs_llt | gmres
| fgmres | cg |
bicgstab | amg |
gmg | ssor | ssoru |
sor | soru | jac |
lumped

umfpack Linear system solver for
augmented Lagrange
components

Augtol positive real 1e-6 Tolerance for augmented
Lagrange

Damp positive real 1 Damping factor for the
damped Newton method

Dtech const | autodamp |
newton

see below Damping technique

Hnlin on | off off Indicator of a highly
nonlinear problem

Initstep non-negative scalar see below Initial damping factor
143

femnlin

144 | C H A P T
Jtech minimal | once |
onevery

see below Jacobian update technique

Keep string containing K, N
| auto

auto Parameter and
iteration-independent
quantities

Maxiter positive integer 25 Maximum number of
Newton iterations

Minstep positive scalar see below Minimum damping factor

Ntol positive scalar 1e-6, 1e-3
(segregated
solver groups)

Relative tolerance for
stationary problem

Oldcomp cell array of strings {} Old parameter
components

Out fem | sol | u | plist
| stop | solcompdof
| Kc | Lc | Null | Nnp
| ud | uscale |
nullfun |
symmetric | cell
array of these strings

sol Output variables

Pdistrib on | off off If the solver should
distribute the parameter
sweep

Pinitstep positive real Initial stepsize for
parameter

Plist real matrix List of parameter values

Pmaxstep positive real Maximum stepsize for
parameter

Pminstep positive real Minimum stepsize for
parameter

Pname cell array of strings Parameter names

Porder 0 | 1 1 Predictor order for
parameter stepping

Rstep real scalar > 1 10 Restriction for step size
update

Stopcond string with
expression

Stop parameter stepping
before expression
becomes negative

TABLE 1-30: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femnlin
In addition, the properties described in the entry femsolver are supported.

The property Augcomp control the augmentation components. If this property is set
to a subset of the solution components, then the solution procedure is split into two
substeps, that are repeated until a convergence criterion is met or until the
maximum number of iterations is reached. The main components, which are the
solution components excluding the augmentation components, are first solved for,
while the augmentation components are held fix. After this, the augmentation
components are solved for while the main components are held fix. In this second
solution step, a linear solution approach is taken. Therefore, with the main
components fixed, the augmentation components are assumed to fulfill a linear
equation. The property Augtol control the tolerance for the augmentation
components and the property Ntol the tolerance for the main components in the
convergence criterion for the combined iteration (two substeps each). The
convergence criterion is that the relative increment, from one iteration to the next,
for the augmented components and the main components must not be larger than
their tolerances. The maximum number of combined iterations is controlled by the
property Augmaxiter. The linear system solver used for the solution of the
augmentation components can be controlled by the property Augsolver. For a
more detailed description of this solution procedure, see the “Nonlinear Solver
Settings” on page 389 in the COMSOL Multiphysics User’s Guide.

The property Dtech controls which damping factor to use in the damped Newton
iterations. When Dtech=const, the constant damping factor specified in the
property Damp is used. When Dtech=autodamp, the solver determines an
appropriate damping factor. With Dtech=newton, a full Newton approach is used;
that is, the constant damping factor one is used. For a stationary problem, the
default is autodamp. When the problem is time-dependent (femtime is used), the
default is const.

Setting Hnlin to on causes the solver to treat the problem as being highly nonlinear.
This option can be tried if there is no convergence with Hnlin set to off.
Depending on this parameter, certain standard values are selected for the Initstep
and Minstep properties. Moreover, certain internal control structures are adapted.
Especially, the error control is biased from a more absolute norm towards a relative
norm. So this parameter is also useful if a solution with components of highly
varying orders of magnitudes are present. In the context of parameter stepping, you
can also try this option if the step sizes in the parameter seem to be too small.
145

femnlin

146 | C H A P T
Initstep is the initial damping factor for the step length. The default is 1 if Hnlin
is off and 1e-4 if Hnlin is on.

When Dtech=const, the property Jtech can be used to control how often the
Jacobian is updated. With Jtech=minimal, the Jacobian is updated as seldom as
possible (only once for a stationary problem and at most once per time step for a
time-dependent problem). For time-dependent problems, the choice Jtech=once
makes the solver update the Jacobian once per time step. With Jtech=onevery, the
Jacobian is updated on every Newton iteration. The default is onevery for
stationary problems and minimal for time-dependent problems.

Maxiter and Minstep are safeguards against infinite Newton iterations. They
bound the number of iterations and the damping factor used in each iteration.
Minstep defaults to 1e-4 if Hnlin is off and 1e-8 if Hnlin is on.

The tolerance Ntol gives the criterion for convergence for a stationary problem, see
“Nonlinear Solver Settings” on page 389 in the COMSOL Multiphysics User’s
Guide.

The property Out explicitly sets output variables and their order. The output
variable fem means the FEM structure with the solution object fem.sol added. The
solution object sol has a field sol.u, which is the solution vector for the FEM
formulation of the PDE problem. The solution vector u is a column vector with one
component for each degree of freedom of the discretized problem. If the parameter
variation feature is used, then sol.u is a matrix, and there are additional fields
sol.pname and sol.plist. The field sol.pname is the name of the parameter, and
sol.plist is a matrix with parameter values for which a solution was computed.
The corresponding solution vectors are stored as columns in the matrix sol.u. The
output variable Stop is 0 if a complete solution was returned, 1 if a partial solution
was returned, and 2 if no solution was returned. For the other outputs, see femlin.

femlin and femnlin can solve a stationary problem for a number of values of a
parameter or several parameters at once. The name of the parameters are specified
with the property Pname, and the values of the parameters are specified with the
property Plist. The matrix in Plist can be an increasing or decreasing sequence
in the first parameter. It is also possible to specify Plist as a vector containing pairs
of group values. If more than two parameter values are given, then solutions are
delivered for these parameter values (though the algorithm may internally compute
the solution for intermediate values). If only two parameter values are given, the
algorithm also delivers the solutions for the intermediate values determined by the
algorithm. The algorithm tries to follow a continuous path of solutions when
E R 1 : C O M M A N D R E F E R E N C E

femnlin
varying the parameter, and adjusts the step size in the parameter in order achieve
this. If the algorithm detects that some sort of singularity or turning point is
approached, then the stepsize is reduced, and the algorithm terminates. In this case,
if the property Stop is set to on, the solutions for the visited parameter values are
delivered.

If the property Pdistrib is set to on and the distributed version is used, the
parameter sweep will be distributed between the computer nodes. It is assumed that
the parameters are independent in the sense that the list can be split in any way
without causing convergence problems for each separate problem. The distributed
version only stores the solutions for the values in Plist.

When going from one parameter value to another, the initial guess at the new
parameter value is by default obtained by following the tangent to the solution curve
at the old parameter value. If the property Porder is set to 0, then the initial guess
is instead taken as the solution for the old parameter value. In very simple cases,
Porder = 0 may give better performance than the default Porder = 1. In the case
of parameter sweeps with several parameters involved the last solution is always used
as initial guess, i.e. Porder is always 0.

The property Pinitstep specifies the initial parameter stepsize that will be tried.
The algorithm terminates if the Newton method diverges and the parameter step is
less than Pminstep. The property Pmaxstep provides an upper bound on the
parameter step. If any of the properties Pinitstep, Pminstep, or Pmaxstep are 0
or not given, they are given default values.

For some applications the access to the solution at a previous parameter value is
needed. Such an application is for example contact problems with friction in
Structural Mechanics. The solution components controlled by the property
Oldcomp are treated in a separate linear solution step, or updating step, performed
after the solver for the parameter step has finished. These components are subtracted
from the solution components and are not included in the main parametric solver
step. The linear system solver used in the update solver step is UMFPACK.

For more information on the parameter-stepping feature, see “The Parametric
Solver” on page 405 in the COMSOL Multiphysics User’s Guide.

The property Rstep sets a restriction for the damping factor update in the Newton
iteration. Each time the damping factor is updated, it is allowed to change at most
by a factor Rstep.
147

femnlin

148 | C H A P T
If the property Stop is set to on, the solver gives an output even if the algorithm
fails at some point. If the parameter stepping feature is used with more than one
parameter value, the output contains the solutions for the parameters that were
successfully computed. Otherwise, the output is the nonconverged solution
corresponding to the iteration where the failure occurred. If Stop is set to off, the
solver terminates with an error if the algorithm fails.

Use the property Stopcond to make sure the solver stops when a specified condition
is fulfilled. You provide a scalar expression that is evaluated after each parameter
step. The parameter stepping is stopped if the real part of the expression is evaluated
to something negative. The corresponding solution, for which the expression is
negative is not returned.

For more information about the nonlinear stationary solver, see “The Stationary
Solver” on page 385 in the COMSOL Multiphysics User’s Guide.

Diagnostics If the Newton iteration does not converge, the error messages Maximal number of
iterations reached or Damping factor too small are displayed. If during the
solution process NaN or Inf elements are encountered in the solution even after
reducing the damping factor to the minimum, the error message Inf or NaN
repeatedly found in solution is printed. The message Underflow of
parameter step length means that the Newton iterations did not converge, even
after reducing the parameter step length to the limit given in Pminstep. This
probably means that the curve of solutions has a turning point or bifurcation point
close to the current parameter value and solution.

Compatibility The property Variables has been renamed Const in FEMLAB 2.3.

The properties Epoint and Tpoint are obsolete from FEMLAB 2.2. Use
fem.***.gporder to specify integration order.

The property/value Jacobian/Lumped has been made obsolete from FEMLAB
1.1.

The properties Toln and Normn have been made obsolete from FEMLAB 1.2. Ntol
replaces Toln.

See Also assemble, asseminit, femlin, femsolver, femstatic, femstruct
E R 1 : C O M M A N D R E F E R E N C E

femoptim
femoptimPurpose Solve a PDE-constrained optimization problem

Syntax fem.sol = femoptim(fem,...);
[fem.sol obj] = femoptim(fem,...)

Description fem.sol = femoptim(fem,...) solves a PDE-constrained optimization problem,
returning the PDE solution evaluated for the optimal set of design variables. When
the gradient-evaluation method is analytic, femoptim also returns the adjoint
solution. The complete problem description is given by the FEM structure and an
OPT structure, whose fields are described in Table 1-32.

Note: femoptim requires the Optimization Lab.

[fem.sol obj] = femoptim(fem,...) in addition returns a vector obj
containing the values of the objective function at all major iterations.

The function femoptim accepts the following property/value pairs:

TABLE 1-31: VALID PROPERTY/VALUE PAIRS FOR FEMOPTIM

PROPERTY VALUE DEFAULT DESCRIPTION

Callback string Empty Function to call after
each evaluation of the
objective function

Callblevel optim | param |
nonlin

optim Callback solverlevel

Callbparam cell array Empty Allows additional
arguments to be passed
to the callback function

Gradient analytic |
numeric

analytic Gradient/Jacobian
evaluation method

Limitexpr string Empty Reduce SQP step length
if limitexpr<limitval

Limitval real scalar 0 Threshold value for
limitexpr

Nsolvemax integer not set Maximum number of
PDE solutions

Opt OPT structure fem.opt Problem definition

Optcomp cell array Empty Active optimization
variables
149

femoptim

150 | C H A P T
The callback function is called with the FEM structure fem and optional
arguments callbparam. A cell array is unpacked in the function call, that is,
callbparam = {a1,a2} results in the function being called with
callback(fem,a1,a2). To control when the solver makes a callback, use the
callblevel property. When callblevel is optim, the solver makes a callback after
each optimization step. Note that one optimization step may require solving the
PDE more than once. For the values param and nonlin, see the description under
the entry for femstatic on page 182.

The property Out determines whether femoptim returns the PDE solution (if the
value is sol or the property is not specified), the objective function (if the value is
objfun), or both (if the value is a cell array of these two strings).

The property Solprop may contain most property/value pairs listed under
femstatic and femsolver.

By default, femoptim looks for an optimization problem definition in the field
fem.opt. If there is an OPT structure supplied in the argument list using the Opt
property, fem.opt is ignored. Table 1-32 lists the valid fields in the OPT scructure.

Optprop cell array See Table 1-33 Optimization solver
parameters

Out sol | objfun | cell
array of these
strings

sol Output variables

Report on | off off Report progress

Solcomp cell array all Active PDE solution
components and
optimization variables

Solprop cell array See femstatic Solver properties

TABLE 1-32: VALID FIELDS IN THE OPT STRUCTURE

FIELD VALUE DESCRIPTION

names.obj string Objective function name

names.constr cell array of strings Scalar constraint names

names.constrlb cell array of strings Scalar constraint lower bounds

names.construb cell array of strings Scalar cosntraint upper bounds

names.nlinconstr on | off Assumption about constraint linearity

TABLE 1-31: VALID PROPERTY/VALUE PAIRS FOR FEMOPTIM

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femoptim
The names given in the OPT structure must be global scalar variables in the FEM
problem. In addition to the scalar constraints, which can be general nonlinear
functions of both FEM state variables and parameters, the FEM structure can specify
pointwise constraints on the parameters that are assembled to matrices named NP
and MP. Corresponding lower and upper bounds are assembled as MLB and MUB,
respectively.

Pointwise constraints are assumed to be linear in the parameters and independent of
the PDE state. However, if the names.nlinconstr field is set to on, nonlinear
constraints can also be applied, but convergence might be slow.

The value of the property Optprop is a cell array of property/value pairs for the
optimization solver. Table 1-33 lists the allowed properties. In the table, m refers to
the number of constraints and n1 to the number of nonlinear variables (computed
internally by the solver). For detailed descriptions of the various properties, see the
section “Optimization Solver Properties” on page 574.

TABLE 1-33: ALLOWED PROPERTY/VALUE PAIRS IN THE OPTPROP CELL ARRAY

PROPERTY VALUE DEFAULT DESCRIPTION

cendiff numeric 6.0e-6 Central difference
interval

checkfreq integer 60 Check frequency

diffint numeric 1.5e-8 Difference interval

elasticw numeric 1.0e4 Elastic weight

expfreq integer 10000 Expand frequency

facfreq integer 50 Factorization
frequency

feastol numeric 1.0e-6 Minor feasibility
tolerance

funcprec numeric 3.8e-11 Function precision

hessdim integer min(1000,n1+1) Hessian dimension

hessfreq integer 9999999 Hessian frequency

hessmem full | limited limited if n1 > 75
or qpsolver is cg

Hessian memory

hessupd integer 10 if hessmem is
limited

Hessian updates

infbound positive numeric 1.0e20 Infinite bound size

itlim integer 500 Minor iteration
limit
151

femoptim

152 | C H A P T
linesearch derivative |
nonderivative

derivative Linesearch method

linestol numeric 0.9 Linesearch
tolerance

majfeastol numeric 1.0e-6 Major feasibility
tolerance

majitlim integer max(1000,m) Major iterations
limit

majprintlevel integer 1 Controls the
amount of output
to the print file for
the major
iterations

majprintlevel integer 1 Controls the
amount of output
to the print file for
the major
iterations

majsteplim numeric 2.0 Major step limit

maximize on | off off on if objective
should be
maximized

newsuplim integer 99 New superbasics
limit

opttol numeric 1.0e-6 Optimality
tolerance

parprice integer 1 Partial price

pivtol numeric 3.7e-11 Pivot tolerance

print filename Empty (no printing) Print information
about the solver
progress and
solution to file

printfreq integer 100 Print frequency for
the minor
iterations

TABLE 1-33: ALLOWED PROPERTY/VALUE PAIRS IN THE OPTPROP CELL ARRAY

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femoptim
The property qpsolver specifies the active-set algorithm for solving the QP
subproblem as follows: cholesky indicates the Cholesky solver; qn indicates the
quasi-Newton method; and cg uses an active-set method similar to qn but it uses
the conjugate-gradient method to solve all systems involving the reduced Hessian.

The value of the property verify determines the verification level as follows: -1
indicates that derivative checking is disabled; 0 indicates that only a cheap test is

printlevel integer 1 Controls the
amount of output
to the print file for
the minor
iterations

proxmeth 1 | 2 1 Proximal point
method

qpsolver cholesky | cg | qn cholesky Specifies the
active-set
algorithm used to
solve the QP
subproblem; see
below for details

scaleopt 0 | 1 | 2 1 Scale option

scaletol numeric 0.9 Scale tolerance

stop on | off on When on, deliver
partial solution
when failing

suplim integer n1+1 Superbasics limit

totitlim integer max(10000,20*m) Iterations limit
(absolute limit on
the total number of
minor iterations

verify -1 | 0 | 1 | 2 | 3 0 Verification level of
derivatives through
finite differences.
Derivatives are
checked at the first
point that satisfies
all bounds and
linear constraints.

viollim numeric 10 Violation limit

TABLE 1-33: ALLOWED PROPERTY/VALUE PAIRS IN THE OPTPROP CELL ARRAY

PROPERTY VALUE DEFAULT DESCRIPTION
153

femoptim

154 | C H A P T
performed, requiring two calls to user functions; 1 indicates that individual
gradients are checked with a more reliable test; 2 indicates that individual columns
of the problem Jacobian are checked; and 3 indicates that both options 2 and 1
occur (in that order).

See Also femsolver, femstatic
E R 1 : C O M M A N D R E F E R E N C E

femplot
femplotPurpose Description of properties common to all plot functions.

Description Valid property/value pairs:

PROPERTY VALUE DEFAULT DESCRIPTION

Axis numeric vector Axis limits

Axisequal on | off on Axis equal

Axislabel cell array of strings X-, Y- and Z-axis
labels

Axisvisible on | off on Axis visible

Camlight on | off off Light at camera
position

Campos 1-by-3 numeric
vector

Position of camera

Camprojection orthographic |
perspective

perspective Projection

Camtarget 1-by-3 numeric
vector

Camera aiming point

Camup 1-by-3 numeric
vector

Rotation of the
camera

Camva numeric between 0
and 180

90 Field of view in
degrees

Grid on | off off Grid visible

Lightmodel flat | gouraud |
phong | none

phong Lighting algorithm

Lightreflection dull | shiny |
metal | default |
1-by-3, 4, or 5
numeric vector

default Reflectance of
surfaces

Parent axes handle Handle to axes
object

Renderer auto | painters |
zbuffer | opengl

auto Rendering algorithm

Scenelight on | off off Create scene light

Scenelightpos 1-by-3 numeric
vector

Location of scene
light object

Title string empty Plot title

Titlecolor color k Title color
155

femplot

156 | C H A P T
Transparency number between 0
and 1

1 Transparency (only
has effect when
using OpenGL)

View 2 or 3 | numeric
pair

2 or 3 3D view point

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femsim
femsimPurpose Create a Simulink structure.

Syntax sct = femsim(fem,...)

Description sct = femsim(fem,...) creates a Simulink structure sct for the FEM structure
fem.

To use the exported Simulink structure in Simulink, open the Blocksets &
Toolboxes library in Simulink, double-click on the COMSOL Multiphysics icon,
and drag the COMSOL Multiphysics Subsystem block to your Simulink model.
Double click on your copy of the block, and enter the name of your Simulink
Structure. This sets up the input and the output ports of the block.

The function femsim accepts the following property/value pairs:

In addition, the common solver properties described in the entry femsolver are
supported, with modifications described below.

TABLE 1-34: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Input cell array of strings fem.const Input variable names

Keep string containing K, L,
M, N, D, E | auto

auto Time-independent
quantities

Nonlin off | on | auto auto Use nonlinear stationary
solver

Outnames cell array of strings y1,y2,... Output data names

Output cell array {} Output data (see below)

Redcomp cell array of strings Degrees of freedom in
model reduction of wave
equations

Redmodes integer 10 Number of eigenmodes in
reduction

Redstatic off | on on Use static modes in
reduction

Reduction off | on off Model reduction

State off | on off Use linearized state-space
model

Static off | on off Use static solver

T scalar 0 Time for evaluation of
linearized model
157

femsim

158 | C H A P T
The names of the input variables are given in the property Input. The default is all
names in fem.const.

The output values are determined by the entries in the Output cell array. Each entry
in this cell array should be a cell array of the following form:

{'expr' xx pvlist}

where 'expr' is an expression, xx is a column vector containing global coordinates,
and pvlist is a (possibly empty) list of property/value pairs (see postinterp). The
function postinterp is used to evaluate the output value as

postinterp('expr', xx, pvlist)

The names of the output ports of the COMSOL Multiphysics Subsystem block are
given in the property Outnames. The default names are y1, y2, etc.

The COMSOL Multiphysics Subsystem block can act in four different modes,
chosen by the properties State and Static:

General Dynamic Export (State=off, Static=off)
Export a dynamic model, where the COMSOL Multiphysics degrees of freedom are
part of the Simulink state vector. The COMSOL Multiphysics solver is called several
times for each time step to compute the time derivative of the state vector, with
inputs from Simulink. Only linear, time-independent constraints and the
eliminate constraint handling method is supported. The Itol property is
supported, see femstatic. The Const property is not supported.

General Static Export (State=off, Static=on)
Export a static model, where the COMSOL Multiphysics degrees of freedom are
not part of the Simulink state vector. To compute the outputs of the COMSOL
Multiphysics Subsystem block, the COMSOL Multiphysics linear or nonlinear
stationary solver is called for each time step, with inputs from Simulink. If
Nonlin=off, the linear solver is used and the property Itol is supported, see
femstatic. If Nonlin=on, the nonlinear solver is used and the properties Hnlin,
Initstep, Maxiter, Minstep, Ntol, and Rstep are supported, see femnlin.

Linearized Dynamic Export (State=on, Static=off)
Export a dynamic linearized model. The model is linearized about an equilibrium
solution, and the matrices in the state-space form are computed. The COMSOL
Multiphysics degrees of freedom are part of the Simulink state vector. At each time
step, the matrices in the state-space form are used to compute the time derivative of
the state vector, instead of calling the COMSOL Multiphysics solver. Only linear,
E R 1 : C O M M A N D R E F E R E N C E

femsim
time-independent constraints and the eliminate constraint handling method is
supported. The Const property is not supported.

The linearization point should be an equilibrium point (stationary solution) and is
controlled by the property U, see femsolver. The inputs and the outputs are
deviations from the equilibrium values.

Model reduction can be used to approximate the linearized model with a model that
has fewer degrees of freedom, by using Reduction=on. A number of eigenmodes
(given by the property Redmodes) and static modes (if Restatic=on) will then be
computed, and the linearized model will be projected onto the corresponding
subspace. The properties Etol, Itol, Krylovdim, and Shift of the eigenvalue
solver are supported, see femeig.

When using model reduction on wave equation models that have been rewritten as
a system of first-order equations (wave extension), the algorithm needs to know the
names of the original (non time derivative) solution components. The names of the
non-time derivative solution components should be specified using the property
Redcomp. Since COMSOL Multiphysics 3.2, wave equations are usually formulated
without wave extension; then the Redcomp property should not be used.

Linearized Static Export (State=on, Static=on)
Export a static linearized model. The model is linearized about an equilibrium
solution, and a transfer matrix is computed. The COMSOL Multiphysics degrees of
freedom are not part of the Simulink state vector. To compute the outputs of the
COMSOL Multiphysics Subsystem block, the transfer matrix is used.

The linearization point should be an equilibrium point (stationary solution) and is
controlled by the property U, see femsolver. The inputs and the outputs are
deviations from the equilibrium values.

Example Heat equation with heat source Q as input.

fem.geom = solid1([0 1]); fem.mesh = meshinit(fem);
fem.shape = 2; fem.equ.da = 1; fem.equ.c = 1; fem.equ.f = 'Q';
fem.xmesh = meshextend(fem);
% Temperature u at x = 0.5 is output
sct = femsim(fem, 'input',{'Q'}, 'outnames',{'Temp'}, ...
 'output',{{'u' 0.5}});

Compatibility For backward compatibility, the Input property can also be a vector of indices into
fem.const.
159

femsim

160 | C H A P T
Most of the FEMLAB 2.3 data types in the Output cell array are still supported:

The properties Mass and Timescale are no longer supported.

A Simulink structure with State=off can no longer be saved to file using the
commands save or flsave.

See Also femsolver, femlin, femnlin, femeig, femtime, femstate

TABLE 1-35: FEMLAB 2.3 OUTPUT DATA TYPES

ENTRY IN OUTPUT CELL ARRAY INTERPRETATION

Cell array {N iName} The solution component fem.dim{iName} at mesh
vertex number N in fem.mesh or
fem.fem{g}.mesh, where g is the geometry given in
the Geomnum property (default is 1)

Integer N Shortcut for {N 1}. That is, solution component
fem.dim{1} at mesh vertex number N

Struct lfun Linear functional, is no longer supported. Use an
integration coupling variable instead

Cell array {N 'expr'} Value of expression 'expr' at mesh vertex number
N in the geometry given in the Geomnum property

String func Value of function func(fem,u,t,indata), is no
longer supported
E R 1 : C O M M A N D R E F E R E N C E

femsol
femsolPurpose Create a solution object.

Syntax fem.sol = femsol(u)
fem.sol = femsol(u,'tlist',tlist)
fem.sol = femsol({u ut},'tlist',tlist)
fem.sol = femsol(u,'plist',plist,'pname',plist)
fem.sol = femsol(u,'lambda',lambda)

Description fem.sol = femsol(u) creates a stationary solution object from a column vector u.
The length of u must equal number of degrees of freedoms in the extended mesh
object, fem.xmesh, (see flngdof).

fem.sol = femsol(u,...) stores a matrix corresponding to a time-dependent,
parametric, or eigenvalue solution in the solution object. The number of rows must
equal the number of degrees of freedoms in the extended mesh object, fem.xmesh,
(see flngdof) and the number of columns of u must equal the number of time
steps, parameter values, or eigenvalues, respectively (see solsize).

fem.sol = femsol({u ut},...) creates a time-dependent solution object
containing also the first time derivative. The matrix u is the usual solution matrix,
and ut is its time derivative.

fem.sol = femsol(u,'mcase',mcase) sets the mesh case of the created solution
object to mcase. The default mesh case is 0.

Access Functions
The following access functions lets you fetch properties from the solution object.

TABLE 1-36: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES

fem.sol.u Solution vector or matrix

fem.sol.ut Matrix containing time derivative (time-dependent
solutions)

fem.sol.tlist List of time steps (time-dependent solutions)

fem.sol.plist List of parameter values (parametric solutions)

fem.sol.pname Parameter name (parametric solutions)

fem.sol.lambda List of eigenvalues (eigenvalue solutions)

fem.sol.mcase Mesh case

fem.sol.reacf Reaction force vectors

fem.sol.sens Forward sensitivity vectors

fem.sol.adj Adjoint solution vector or matrix
161

femsol

162 | C H A P T
If the time-derivatives have not been stored in the femsol object, fem.sol.ut is
computed as the slope of the linear interpolation between the time steps. To store
the time derivatives in the solution, use the Outcomp property, see femsolver.

When the solver property reacf is on (default), reaction forces are stored for
degrees of freedom corresponding to nonzero rows in the constraint force Jacobian
matrix, NF. Remaining rows in fem.sol.reacf are NaN.

For a stationary solution with forward sensitivity analysis enabled, fem.sol.sens is
an N-by-M-by-P array where N is the number of degrees of freedom, M is the
number of sensitivity variables, and P is the number of parameter steps in the
parametric solver output. The second index corresponds to positions in
fem.sol.sensidx, which contains the sensitivity variable degree of freedom index
for the corresponding column.

The adjoint sensitivity method creates the field fem.sol.adj, which has the same
size as fem.sol.u and contains the corresponding adjoint solution. In addition, the
adjoint method always generates functional sensitivities in fem.sol.fsens. Rows
which correspond to sensitivity variables in this matrix contain derivatives of the
sensitivity functional with respect to the sensitivity variable. Remaining rows are
NaN. If the property sensfunc is specified, also the forward method generates
fem.sol.fsens.

Example Create a solution object:

fem.geom = rect2;
fem.mesh = meshinit(fem);
fem.shape = 2; fem.equ.c = 1; fem.equ.f = 1; fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',0:0.1:1)

Fetch the solution vector and the list of time steps.

u = fem.sol.u;
tlist = fem.sol.tlist;

Multiply the solution by 2 and recreate a solution object.

fem.sol = femsol(2*u,'tlist',tlist);

Postprocess the solution.

fem.sol.fsens Functional sensitivity vectors

fem.sol.sensidx Sensitivity variable indices in the solution vectors

TABLE 1-36: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES
E R 1 : C O M M A N D R E F E R E N C E

femsol
postplot(fem,'tridata','u')

Compatibility In FEMLAB 2.3 the solution was represented with a MATLAB structure. The
solution object does not allow exactly the same type access as the structure. The
solution object has been designed to be compatible with the MATLAB structure.

See also asseminit, femeig, femlin, femnlin, femtime
163

femsolver

164 | C H A P T
femsolverPurpose Description of properties common to all solvers.

Description In addition to the properties in the table below, the solvers accept properties
controlling the linear system solvers, see the sections starting with “Linear System
Solvers” on page 169.

TABLE 1-37: COMMON SOLVER PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Assemtol scalar 1e-12 Assembly tolerance

Blocksize positive integer | auto auto Assembly block size

Complexfun off | on off Use complex-valued
functions with real
input

Conjugate off | on off Use complex conjugate,
Hermitian transpose

Const cell array of alternating
strings and values, or a
structure

Definition of constants

Constr auto | ideal |
nonideal

auto Constraint force
Jacobian

Init solution object |
numeric vector | scalar

Initial value

Keep string containing K, L,
M, N, D, E | auto

auto Manual control of
reassembly

Linsolver umfpack | spooles |
pardiso |
pardiso_ooc |
taucs_llt_mf |
taucs_ldlt | luinc |
taucs_llt | gmres |
fgmres | cg |
bicgstab | amg | gmg |
ssor | ssoru | sor |
soru | jac | vanka

umfpack Linear system solver

Matherr off | on on Error for undefined
operations

Mcase non-negative integer
(or vector for GMG)

mesh case
with largest
number of
DOFs

Mesh case to solve for
E R 1 : C O M M A N D R E F E R E N C E

femsolver
In addition to the constants in fem.const, you can define constants using the
Const property, see assemble.

The parameter Constr controls how the constraint force Jacobian is computed. For
auto and nonideal, the constraint force Jacobian matrix NF is assembled
independently of the constraint Jacobian matrix N. When auto is selected, a
comparison between NF and NT is performed. If these matrices are found equal (up
to a tolerance), then NF is cleared and NF = NT. For ideal, only the constraint
Jacobian matrix N is assembled and NF = NT.

If the solver fails to find a complete solution, it returns a partial solution if the
property Stop is on (this is the default).

Method eliminate |
elimlagr | lagrange
| spring

eliminate Constraint handling
method

Nullfun flnullorth |
flspnull | auto

auto Null space function

Outcomp cell array of strings Solution components
to store in output

Report off | on on Show progress dialog
box

Rowscale off | on on Equilibrate rows

Solcomp cell array of strings Solution components
to solve for

Solfile off | on off Store solution on file

Solfileblock positive scalar 16 Max size of solution
block (MB)

Stop off | on on Deliver partial solution
when failing

Symmetric on | off | auto auto Symmetric matrices

Symmtol non-negative scalar 1e-10 Symmetry detection
tolerance

U solution object |
numeric vector | scalar

Values of variables not
solved for and
linearization point

Uscale auto | init | none |
cell array | solution
vector

auto Scaling of variables

TABLE 1-37: COMMON SOLVER PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
165

femsolver

166 | C H A P T
You can use the property Symmetric to tell the solver that the model is symmetric
or you can use the automatic feature to find out. The symmetry detection tolerance
Symmtol is used for this automatic feature (see “Which Problems Are Symmetric?”
on page 431 in the COMSOL Multiphysics User’s Guide). If the model is
Hermitian, you should set both the Symmetric and Conjugate properties to on.

P R O P E R T I E S C O R R E S P O N D I N G T O T H E S O L V E R M A N A G E R

The properties Init, U, Solcomp, and Outcomp correspond to settings in the Solver
Manager (see “The Solver Manager” on page 436 in the COMSOL Multiphysics
User’s Guide).

The property Init determines the initial value for the solution components you
solve for. For possible syntaxes, see asseminit. If you omit this property, the solver
computes the initial value by evaluating the initial value expressions in
fem.equ.init, fem.equ.dinit, fem.bnd.init, fem.bnd.dinit, etc. If any of
these expressions depend on a solution component, the value 0 is used for that
solution component.

The property U determines the value of solution component you do not solve for
and the linearization point. A scalar value is equivalent to a solution vector
containing that value in all its components.

The property Solcomp is a cell array containing the names of the degrees of freedom
to solve for. The default is all degrees of freedom.

The property Outcomp is a cell array containing the names of the degrees of freedom
to store in the output solution object. If the solution is time dependent, the
property Outcomp can contain also the time derivatives of the DOF names. The
default is all degrees of freedom (excluding the time derivatives).

T H E P R O G R E S S W I N D O W

By default, a progress window appears when a solver is called. This is similar to the
progress window that appears in the COMSOL Multiphysics user interface (see
“Solution Progress” on page 446 in the COMSOL Multiphysics User’s Guide). The
progress window gives you the possibility to cancel or stop the solver. Also, when
running in MATLAB, it gives you the possibility to examine the convergence in a
plot. Using the properties specified under Probe Plot Parameters below, in addition,
the progress window gives you the possibility to plot values of certain quantities
during the solution process for the time dependent and parametric solver. If you do
not want the progress window, use the Report property or the flreport command
(see flreport).
E R 1 : C O M M A N D R E F E R E N C E

femsolver
P R O B E P L O T P A R A M E T E R S

Properties to the time-dependent solver and the parametric solver:

The properties plotglobalpar, plotinpar, plotsumpar, and plotinterppar
must be a cell array containing property/values to the corresponding evaluating
function postglobaleval, postint, postsum, and postinterp, respectively. In
addition, the property title can be specified. Also, plotinterppar must contain
the property probecoord with the value being an sdim-by-n coordinate matrix. If,
for example, plotint is a cell array of expressions to plot, plotintpar can either
be a cell array of property/values, or, if different property/values are to be specified
for the different expressions, a cell array of cell arrays of property/values.

An example of a femstatic call for a parametric problem specifying one global
expression, one interpolation expression, and two integration expressions.

fem.sol = femstatic(fem, ...
 'solcomp',{}, ...
 'outcomp',{}, ...
 'plotglobal',{'w1','w2'}, ...
 'plotglobalpar',{'phase',pi,'title','Global'}, ...
 'plotinterp','u', ...
 'plotinterppar',{'probecoord',[0.1; 0.2]}, ...
 'plotint',{'u','ux','uy'}, ...
 'plotintpar',{{'phase',0, 'edim',0,'dl',4}, ...

PROPERTY NAME PROPERTY VALUE DESCRIPTION

plotglobal String or cell array of
strings

Global plot expressions

plotglobalpar Cell array or cell
array of cell arrays

Property/values to
postglobaleval

plotint String or cell array of
strings

Integration plot expressions

plotintpar Cell array or cell
array of cell arrays

Property/values to postint

plotinterp String or cell array of
strings

Probe plot expressions

plotinterppar Cell array or cell
array of cell arrays

Property/values to
postinterp

plotsum String or cell array of
strings

Summation plot
expressions

plotsumpar Cell array or cell
array of cell arrays

Property/values to postsum
167

femsolver

168 | C H A P T
 {'phase',pi,'edim',1,'intorder',5},...
 {'phase',pi,'edim',2,'dl',[3,6,7]}});

A D V A N C E D S O L V E R P A R A M E T E R S

The section “Advanced Solver Settings” on page 526 describes the features
corresponding to the properties Blocksize, Complexfun, Conjugate, Keep,
Method, Nullfun, Rowscale, Solfile, and Uscale.

The property Assemtol affects the assembled matrices, see assemble for details.

By default, COMSOL Multiphysics gives an error message if the solver encounters
an undefined mathematical operation when solving the model, for instance 0/0 or
log(0). If you instead want the solver to proceed, put the property Matherr=off.
Then 0/0=NaN (not a number) and log(0)=-Inf.

The Symmetric and Conjugate properties correspond to the Solver Parameters
dialog box settings Matrix symmetry and Use Hermitian transpose in constraint matrix

and in symmetry detection according to the following table:

The property Keep corresponds to the manual control of reassembly feature. Its
value can be a string containing the letters D, E, K, L, M, N, or the string auto. These
letters have the following meaning: E=constant mass, D=constant damping,
K=constant Jacobian, L=constant load, M=constant constraint, N=constant constraint
Jacobian (see “Manual Control of Reassembly” on page 530).

For the Nullfun property, flnullorth is the orthonormal null-space function, and
flspnull is the sparse null-space function.

If Solfile=on, the solution is stored on a temporary file. The temporary file is
stored in the temporary directory created at startup. You can decide the temporary
directory with the -tmpdir switch; see page 53 of the COMSOL Installation and
Operations Guide for further details). A part of the solution is stored in memory in

MATRIX SYMMETRY USE HERMITIAN
TRANSPOSE

SYMMETRIC CONJUGATE

Automatic cleared auto off

Automatic selected auto on

Nonsymmetric cleared off off

Nonsymmetric selected off on

Symmetric n.a. on off

Hermitian n.a. on on
E R 1 : C O M M A N D R E F E R E N C E

femsolver
a few blocks (usually 1–5 blocks reside in memory). The maximum block size (in
megabytes) can be controlled with the property Solfileblock.

The property Uscale determines a scaling of the degrees of freedom that is applied
in order to get a more well-conditioned system; see “Scaling of Variables and
Equations” on page 531. The possible values are:

The default is auto, except when using one of the syntaxes

[Ke,Le,Null,ud] = femstatic(fem,...)
[Kl,Ll,Nnp] = femstatic(fem,...)
[Ks,Ls] = femstatic(fem,...)
fem.sol = femstatic('In',{'K' K 'L' L 'M' M 'N' N},...)

which assume that the property Out is not given in the first three cases. In these cases
the default is none. The resulting vector of scale factors is contained in the output
variable uscale. The scaling of the degrees of freedom is applied symmetrically to
the Jacobian matrix, that is, both the rows and columns are scaled.

L I N E A R S Y S T E M S O L V E R S

The properties Linsolver, Prefun, Presmooth, Postsmooth, and Csolver select
the linear system solver, preconditioner, presmoother, postsmoother, and coarse
solver, according to the following table.

TABLE 1-38: VALUES FOR THE PROPERTY USCALE

VALUE MEANING

auto The scaling is automatically determined

init The scaling is determined from the initial value. Use this if the sizes
of the components of the initial value give a good estimate of the
order of magnitude of the solution

none No scaling is applied

cell array A cell array with alternating degree of freedom names and positive
numbers. The numbers specify the expected magnitude of the
corresponding degree of freedom

solution
vector

A numeric vector with positive components that specify the
expected magnitude of the solution

TABLE 1-39: LINEAR SYSTEM SOLVERS/PRECONDITIONERS/SMOOTHERS

NAME ALGORITHM

umfpack UMFPACK direct solver

spooles SPOOLES direct solver

pardiso PARDISO direct solver
169

femsolver

170 | C H A P T
For a description of these solvers, see the section “The Linear System Solvers” on
page 426 in the COMSOL Multiphysics User’s Guide.

pardiso_ooc PARDISO Out-of-core solver

taucs_llt_mf TAUCS direct Cholesky solver

taucs_ldlt TAUCS direct LDLT solver (not recommended)

luinc Incomplete LU preconditioner/smoother

taucs_llt TAUCS Incomplete Cholesky preconditioner

gmres GMRES iterative solver

fgmres FGMRES iterative solver

cg Conjugate Gradients iterative solver

bicgstab BiCGStab iterative solver

amg Algebraic Multigrid iterative solver/preconditioner

gmg Geometric Multigrid iterative solver/preconditioner

ssor SSOR preconditioner/smoother

ssoru SSORU preconditioner/smoother

sor SOR preconditioner/smoother

soru SORU preconditioner/smoother

jac Jacobi (diagonal scaling) preconditioner/smoother

ssorvec SSOR vector preconditioner/smoother

sorvec SOR vector preconditioner/smoother

soruvec SORU vector preconditioner/smoother

ssorgauge SSOR gauge preconditioner/smoother

sorgauge SOR gauge preconditioner/smoother

sorugauge SORU gauge preconditioner/smoother

vanka Vanka-type preconditioner/smoother

TABLE 1-39: LINEAR SYSTEM SOLVERS/PRECONDITIONERS/SMOOTHERS

NAME ALGORITHM
E R 1 : C O M M A N D R E F E R E N C E

femsolver
D I R E C T L I N E A R S Y S T E M S O L V E R P R O P E R T I E S

The umfpack, spooles, pardiso, pardiso_ooc, taucs_llt_mf, luinc, and
taucs_llt direct linear solvers/preconditioners/smoothers have the following
properties.

TABLE 1-40: DIRECT LINEAR SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Droptol scalar between 0 and 1 0.01 when
used as pre-
conditioner or
smoother,
0 when used
as solver

Drop tolerance
(luinc, taucs_llt,
umfpack, spooles)

Errorchk on | off | auto on Check error estimate
(pardiso)

Errorchkd on | off off Check error estimate
(umfpack, spooles)

Fillratio non-negative scalar 2 Column fill-ratio
(luinc)

Itol positive real 1e-6
0.1 (coarse
solver)

Error check tolerance
(pardiso, umfpack,
spooles)

Maxdepth positive integer 10000 Maximum recursion
depth
(taucs_llt_mf)

Modified on | off off Modified incomplete
Cholesky
(taucs_llt)

Oocmemory positive real 512.0 Out-of-core memory
(pardiso_ooc)

Pivotperturb scalar between 0 and 1 1e-8 Pivot perturbation
threshold (pardiso)

Pivotrefines non-negative integer 0 Number of forced
iterative refinements

Pivotstrategy on | off on Use 2-by-2
Bunch-Kaufmann
pivoting (pardiso)

Preorder mmd | nd | ms | both nd Preordering algorithm
(spooles)
171

femsolver

172 | C H A P T
I T E R A T I V E L I N E A R S Y S T E M S O L V E R P R O P E R T I E S

The iterative linear solvers/preconditioners/smoothers luinc, gmres, fgmres,
cg, bicgstab, amg, gmg, ssor, ssoru, sor, soru, jac, ssorvec, sorvec, soruvec,
ssorgauge, sorgauge, sorugauge, vanka have the following properties.

Pardreorder mmd | nd nd Preordering algorithm
(pardiso)

Pardrreorder on | off on Row preordering
algorithm (pardiso)

Respectpattern on | off on Do not drop original
nonzeros (luinc)

Rhob scalar > 1 400
1 (coarse
solver)

Factor in linear error
estimate (pardiso,
umfpack, spooles)

Thresh scalar between 0 and 1 0.1
(umfpack,
spooles)
1.0 (luinc)

Pivot threshold
(umfpack, spooles,
luinc)

Umfalloc non-negative scalar 0.7 Memory allocation
factor (umfpack)

TABLE 1-41: ITERATIVE LINEAR SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Divcleantol positive real 1e-6 Divergence cleaning
tolerance (SOR gauge
algorithms)

Iluiter non-negative integer 1 Fixed number of
iterations (when used
as preconditioner,
smoother, or coarse
solver) (luinc)

Iter non-negative integer 2 Fixed number of
iterations (when used
as preconditioner,
smoother, or coarse
solver) (all except
luinc)

TABLE 1-40: DIRECT LINEAR SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femsolver
Itol positive real 1e-6
0.1 (coarse
solver)

Relative tolerance
(note that when used
as preconditioner or
smoother a fixed
number of iterations is
default)

Itrestart positive integer 50 Number of iterations
before restart (gmres,
fgmres)

Maxlinit positive integer 10000
500 (coarse
solver)

Maximum number of
linear iterations (when
used with a tolerance)

Prefun luinc | taucs_llt |
umfpack | spooles |
gmres | fgmres | cg |
bicgstab | amg | gmg |
ssor | ssoru | sor |
soru | jac | ssorvec |
sorvec | soruvec |
ssorgauge |
sorgauge |
sorugauge | vanka |
none

luinc Preconditioner
(gmres, fgmres, cg,
bicgstab)

Prefuntype left | right left (gmres,
cg)
right
(bicgstab)

Left or right
preconditioning
(gmres, cg,
bicgstab)

Prepar cell array of property/
value pairs or structure

Preconditioner
properties (gmres,
fgmres, cg,
bicgstab)

Relax scalar between 0 and 2 1 Relaxation factor
(Jacobi, SOR-based
algorithms, incomplete
LU, and Vanka)

Rhob scalar >= 1 400
1 (coarse
solver)

Factor in linear error
estimate (when used
with a tolerance)

TABLE 1-41: ITERATIVE LINEAR SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
173

femsolver

174 | C H A P T
The property Divcleantol is used in the inequality | TTb | < divcleantol · | b | to
ensure that the numerical divergence after divergence cleaning is small enough, see
“The SSOR Gauge, SOR Gauge, and SORU Gauge Algorithms” on page 569.

Seconditer nonnegative integer 1 Number of secondary
iterations (SOR vector
and SOR gauge
algorithms), number of
SSOR updates (vanka)

Sorblocked on | off on Blocked SOR method

Sorvecdof cell array of strings Vector element
variables (SOR vector
and SOR gauge
algorithms)

Vankablocked on | off on Blocked Vanka method

Vankarelax scalar between 0 and 2 0.8 Relaxation factor for
Vanka update

Vankarestart positive integer 100 GMRES restart value
(vanka)

Vankasolv gmres | direct gmres Local block solver
(vanka)

Vankatol positive scalar 0.02 GMRES tolerance
(vanka)

Vankavars cell array of strings {} Lagrange multiplier
variables (vanka)

TABLE 1-41: ITERATIVE LINEAR SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femsolver
M U L T I G R I D S O L V E R P R O P E R T I E S

The multigrid solvers/preconditioners amg and gmg accept the following properties
in addition to those in table Table 1-41.

TABLE 1-42: MULTIGRID SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

amgauto integer between 1 and 10 3 Quality of
multigrid
hierarchy (amg)

csolver umfpack | spooles |
pardiso | pardiso_ooc |
taucs_llt_mf |
taucs_ldlt | luinc |
taucs_llt | gmres |
fgmres | cg | bicgstab |
amg | ssor | ssoru | sor |
soru | jac | ssorvec |
sorvec | soruvec |
ssorgauge | sorgauge |
sorugauge | vanka

umfpack Coarse solver

csolverpar cell array with property/
value pairs

{} Coarse solver
properties

maxcoarsedof positive integer 5000 Maximum
number of DOFs
at coarsest level
(amg)

meshscale vector of positive numbers 2 Mesh scale
factor (gmg)

mgassem on | off | numeric vector on Assembly on
coarse levels
(gmg)

mgauto off | explicit |
meshscale | shape |
both | meshrefine

Method for
mesh case
generation (gmg)

mgcycle v | w | f v Cycle type

mggeom vector of positive integers all Geometry
numbers for
multigrid
hierarchy (gmg)

mgkeep on | off off Keep generated
mesh cases
(gmg)
175

femsolver

176 | C H A P T
For the Geometric multigrid solver/preconditioners, the construction of the
multigrid hierarchy is controlled by the properties Mgauto, Mcase, Mglevels,
Meshscale, Shapechg, and Mgassem:

• If Mgauto=both, shape, or meshscale, then the multigrid hierarchy is
automatically constructed starting from the mesh case given in the property
Mcase. This process is described in the section “Constructing a Multigrid
Hierarchy” on page 560, where the methods are called Coarse mesh and lower

order (both), Lower element order first (shape), and Coarse mesh (meshscale).
The mesh coarsening factor is given in the scalar Meshscale, the shape function
order change amount is given in the scalar Shapechg, and the number of
multigrid levels (including the finest level) is given in the property Mglevels
(default 2).

mglevels integer > 1 6 (amg), 2
(gmg)

Maximum
number of
multigrid levels

postsmooth ssor | ssoru | sor | soru
| jac | ssorvec | sorvec
| soruvec | ssorgauge |
sorgauge | sorugauge |
luinc | gmres | fgmres |
cg | bicgstab | amg |
vanka

soru Postsmoother

postsmoothpar cell array with property/
value pairs

{} Postsmoother
properties

presmooth ssor | ssoru | sor | soru
| jac | ssorvec | sorvec
| soruvec | ssorgauge |
sorgauge | sorugauge |
luinc | gmres | fgmres |
cg | bicgstab | amg |
vanka

sor Presmoother

presmoothpar cell array with property/
value pairs

{} Presmoother
properties

rmethod regular | longest regular Mesh refinement
method (gmg)

shapechg vector of integers -1 Change in shape
function orders
(gmg)

TABLE 1-42: MULTIGRID SOLVERS PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femsolver
• If Mgauto=explicit, then the multigrid hierarchy is automatically constructed
starting from the mesh case given in the property Mcase. The properties
Meshscale and Shapechg should be vectors of the same length (however if one
is scalar, it is expanded to the same length as the other). A number of coarse levels
are constructed, where level i has a mesh that is coarsened with the factor
Meshscale(i), and shape functions orders incremented with Shapechg(i)
relative to mesh case Mcase. Shapechg(i) should be negative or zero.

• If Mgauto=meshrefine, then the multigrid hierarchy is automatically
constructed by refining the mesh in mesh case Mcase repeatedly. The number of
multigrid levels (including the original, coarsest level) is given in the property
Mglevels (default 2). The refinement method can be specified using the
property Rmethod, see meshrefine.

• If Mgauto=off, then only existing mesh cases are used in the hierarchy. If the
property Mcase is a scalar, then all mesh cases that have fewer degrees of freedom
than the mesh case Mcase are used as coarse levels. If Mcase is a vector with more
than one component, the mesh cases in that vector are used. However, if the
property Mglevels is given, no more than Mglevels levels are used. The solver
sorts the list of mesh cases according to decreasing number of DOFs, and the
solution is delivered for the mesh case with the largest number of DOFs. This
corresponds to the Manual option in the COMSOL Multiphysics user interface.

The default for Mgauto is as follows: If the FEM structure has several mesh cases,
then Mgauto=off, otherwise Mgauto is the same as the default in meshcaseadd.

The construction of coarse level matrices is controlled by the property Mgassem. If
Mgassem is a vector, Mgassem(i) should be a 0 or 1. Mgassem(i)=1 means that
matrices should be assembled in mesh case Mcase(i), rather than being projected
from the next finer level. The length of Mgassem should be (at least) the number of
mesh cases used, including the finest level. The value of Mgassem(i) for the finest
level i is ignored, because matrices are always assembled on the finest level. A scalar
Mgassem applies to all coarse mesh cases.

When an iterative solver is used as preconditioner, smoother, or coarse solver you
can choose whether to solve using a tolerance or to perform a fixed number of
iterations. When used as a coarse solver the default is to solve using a tolerance.
When used as a preconditioner or smoother the default is to perform a fixed number
of iterations. If both properties Itol and Iter (or Iluiter for luinc) are given,
the program will solve using a tolerance.
177

femsolver

178 | C H A P T
Four Examples How to Construct the Geometric Multigrid Hierarchy
Assume that fem only contains the mesh case 0, and no extended mesh (xmesh
field).

Alternative 1:

fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem,'linsolver','gmg');

This alternative uses a temporary hierarchy that is constructed by the solver. Because
the solver also constructs a temporary extended mesh, this alternative wastes some
memory.

Alternative 2:

fem = femstatic(fem,'linsolver','gmg','out','fem');

Here, the solver uses a temporary hierarchy, but there is only one extended mesh.
If another such solver call is made, first delete fem.xmesh to save some memory.

Alternative 3:

fem =
femstatic(fem,'linsolver','gmg','mgkeep','on','out','fem');

Now the generated hierarchy is kept, which means that you can reuse it in a
subsequent call:

fem.sol = femstatic(fem,'linsolver','gmg');

Alternative 4:

fem = meshcaseadd(fem);
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem,'linsolver','gmg');

The meshcaseadd call adds mesh cases to the FEM structure. These mesh cases
form the multigrid hierarchy in the solver.

Compatibility COMSOL Multiphysics 3.2: The default of the Conjugate property has been
changed to off.

The following FEMLAB 2.3 general solver properties are obsolete in FEMLAB 3.0:

TABLE 1-43: OBSOLETE PROPERTY/VALUE PAIRS

PROPERTY VALUES IMPLICATION

Initmethod weak | pointwise |
local | dof

No longer supported

Itsolv gbit | gmres | tfqmr Use Linsolver property
E R 1 : C O M M A N D R E F E R E N C E

femsolver
The default of the property Stop has been changed to On.

Jacobian lumped | numeric No longer supported

Linsolver matlab | superlu Uses default direct solver

Maxlinit vector with 2
components

Ignores second component and warns

Nullfun name of user-defined
function

No longer supported

Sd Use streamline diffusion, see the
chapter “Stabilization Techniques” on
page 481 in the COMSOL Multiphysics
Modeling Guide

TABLE 1-43: OBSOLETE PROPERTY/VALUE PAIRS

PROPERTY VALUES IMPLICATION
179

femstate

180 | C H A P T
femstatePurpose Compute state-space form of a time-dependent PDE problem.

Syntax [A,B,C,D] = femstate(fem,...)
[M,MA,MB,C,D] = femstate(fem,...)
[M,MA,MB,C,D,Null,ud,x0] = femstate(fem,...)
state = femstate(fem,...)

Description [A,B,C,D] = femstate(fem,...) calculates the linearized state-space form of the
dynamic PDE model fem on the format

where x are the state variables, u are the input variables, and y are the output
variables.

[M,MA,MB,C,D] = femstate(fem,...) calculates the state-space form on the
format

The matrices M and MA are usually much sparser than the matrix A.

[M,MA,MB,C,D,Null,ud,x0] = femstate(fem,...) also returns the null-space
matrix Null, the constraint contribution ud, and the initial state x0. The full
solution vector U can be obtained from the state variables by U = Null*x+u0, where
u0 is the linearization point.

state = femstate(fem,...) returns the structure state containing the fields M,
MA, MB, C, D, Null, and x0.

state = femstate(fem,'out','statenom',...) returns the structure state
containing the fields A, B, C, D, Null, and x0.

s = femstate(fem,'out','ss',...) returns the Control System Toolbox
state-space object s = ss(A,B,C,D).

The output from femstate is intended for use from Simulink or the Control System
Toolbox. The function femstate with the output state is equivalent to femsim

td
dx Ax Bu+=

y Cx Du+=⎩
⎪
⎨
⎪
⎧

M
td

dx MAx MBu+=

y Cx Du+=⎩
⎪
⎨
⎪
⎧

E R 1 : C O M M A N D R E F E R E N C E

femstate
with the property State=on. In addition to the properties of femsim, femstate
accepts the following property/value pairs:

The property Sparse controls whether the matrices A, B, C, D, M, MA, MB, and Null
are stored in the sparse format. See femsim for a description of the other properties.

The matrices M and MA are produced by the same algorithms that do the
finite-element assembly and constraint elimination in COMSOL Multiphysics. M
and MA are the same as the matrices Dc (eliminated mass matrix) and −Kc (Kc is the
eliminated stiffness matrix), respectively, from a call to femlin (see femlin on page
131). The matrices are produced from an exact residual vector Jacobian calculation
(that is, differentiation of the residual vector with respect to the degrees of freedoms
x) plus an algebraic elimination of the constraints. The matrix C is produced in a
similar way; that is, the exact output vector Jacobian matrix plus constraint
elimination.

The matrices MB and D are produced by a numerical differentiation of the residual
and output vectors, respectively, with respect to the input parameters (the algorithm
systematically perturbs the input parameters by multiplying them by a factor
(1+10−8)).

When exporting the A and B matrices, A and B are computed by A = M \ MA and
B = M \ MB (that is, from an LU factorization of M using the UMFPACK solver.

Compatibility See the femsim entry.

See Also femsim

TABLE 1-44: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out A | B | C | D | M | MA |
MB | Null | ud | x0 |
state | statenom |
ss | cell array of
these strings

[A,B,C,D]
[M,MA,MB,C,D]
[M,MA,MB,C,D,
Null,ud,x0]
state

Output variables

Sparse off | on off Sparse matrices
181

femstatic

182 | C H A P T
femstaticPurpose Solve stationary PDE problem with a nonlinear or linear solver.

Syntax fem.sol = femstatic(fem,...)
fem = femstatic(fem,'Out',{'fem'},...)

Description fem.sol = femstatic(fem) solves a stationary PDE problem using either a linear
or nonlinear solver.

fem.sol = femstatic(fem,'pname','P', plist',list,...) solves a
stationary PDE problem for several values of the parameter P. The values of the
parameter P are given in the vector list.

The PDE problem is stored in the (possibly extended) FEM Structure fem. See
femstruct for details.

The function femstatic accepts the following property/value pairs:

TABLE 1-45: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Callback string Function to call at each
callback

Callblevel param | nonlin Callback solverlevel

Callbparam cell array Parameters to the
callback function

Llimitdof cell array of strings Lower limit dofs

Llimitval vector 0 Lower limit vals

Maxsegiter positiv integer 100 Maximum number of
segregated iterations

Maxsubiter integer vector 20 Maximum number of
substep iterations

Nonlin off | on | auto auto Use the nonlinear solver

Out fem | sol | u | plist |
stop | solcompdof |
Kc | Lc | Null | Nnp |
ud | uscale |
nullfun | symmetric
| nonlin |
interrupted | cell
array of these strings

sol Output variables

Reacf on | off on Compute reaction
forces
E R 1 : C O M M A N D R E F E R E N C E

femstatic
Segcomp cell array of strings Segregated group
components

Seggrps cell array of cell array Segregated group
properties

Segiter positive integer 1 Fixed number of
segregated iterations

Segorder integer vector Segregated substep
group numbers

Segterm iter | tol | itertol
| cell array of these
strings

tol Segregated solver
termination technique

Senscomp cell array of strings Sensitivity components

Sensfunc string Sensitivity functional
variable name

Sensmethod none | adjoint |
forward

none Sensitivity analysis

Subdamp real vector 0.5 Segregated substep
damping factors

Subdtech const | autodamp |
cell array of these
strings

const Segregated substep
damping technique

Subhnlin off | on | cell array of
these strings

off Segregated substep
indicators of highly
nonlinear problems

Subinitstep real vector see below Segregated substep
initial damping factors

Subiter integer vector 1 Segregated substep
iterations

Subjtech minimal | once |
onfirst | onevery |
cell array of these
strings

see below Segregated substep
Jacobian update
technique

Subminstep real vector see below Segregated substep
minimum damping
factors

Subntol real vector 1e-2 Segregated substep
tolerances for stationary
problem

TABLE 1-45: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
183

femstatic

184 | C H A P T
Segcomp cell array of strings Segregated group
components

Seggrps cell array of cell array Segregated group
properties

Segiter positive integer 1 Fixed number of
segregated iterations

Segorder integer vector Segregated substep
group numbers

Segterm iter | tol | itertol
| cell array of these
strings

tol Segregated solver
termination technique

Senscomp cell array of strings Sensitivity components

Sensfunc string Sensitivity functional
variable name

Sensmethod none | adjoint |
forward

none Sensitivity analysis

Subdamp real vector 0.5 Segregated substep
damping factors

Subdtech const | autodamp |
cell array of these
strings

const Segregated substep
damping technique

Subhnlin off | on | cell array of
these strings

off Segregated substep
indicators of highly
nonlinear problems

Subinitstep real vector see below Segregated substep
initial damping factors

Subiter integer vector 1 Segregated substep
iterations

Subjtech minimal | once |
onfirst | onevery |
cell array of these
strings

see below Segregated substep
Jacobian update
technique

Subminstep real vector see below Segregated substep
minimum damping
factors

Subntol real vector 1e-2 Segregated substep
tolerances for stationary
problem

TABLE 1-45: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femstatic
Segcomp cell array of strings Segregated group
components

Seggrps cell array of cell array Segregated group
properties

Segiter positive integer 1 Fixed number of
segregated iterations

Segorder integer vector Segregated substep
group numbers

Segterm iter | tol | itertol
| cell array of these
strings

tol Segregated solver
termination technique

Senscomp cell array of strings Sensitivity components

Sensfunc string Sensitivity functional
variable name

Sensmethod none | adjoint |
forward

none Sensitivity analysis

Subdamp real vector 0.5 Segregated substep
damping factors

Subdtech const | autodamp |
cell array of these
strings

const Segregated substep
damping technique

Subhnlin off | on | cell array of
these strings

off Segregated substep
indicators of highly
nonlinear problems

Subinitstep real vector see below Segregated substep
initial damping factors

Subiter integer vector 1 Segregated substep
iterations

Subjtech minimal | once |
onfirst | onevery |
cell array of these
strings

see below Segregated substep
Jacobian update
technique

Subminstep real vector see below Segregated substep
minimum damping
factors

Subntol real vector 1e-2 Segregated substep
tolerances for stationary
problem

TABLE 1-45: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
185

femstatic

186 | C H A P T
Segcomp cell array of strings Segregated group
components

Seggrps cell array of cell array Segregated group
properties

Segiter positive integer 1 Fixed number of
segregated iterations

Segorder integer vector Segregated substep
group numbers

Segterm iter | tol | itertol
| cell array of these
strings

tol Segregated solver
termination technique

Senscomp cell array of strings Sensitivity components

Sensfunc string Sensitivity functional
variable name

Sensmethod none | adjoint |
forward

none Sensitivity analysis

Subdamp real vector 0.5 Segregated substep
damping factors

Subdtech const | autodamp |
cell array of these
strings

const Segregated substep
damping technique

Subhnlin off | on | cell array of
these strings

off Segregated substep
indicators of highly
nonlinear problems

Subinitstep real vector see below Segregated substep
initial damping factors

Subiter integer vector 1 Segregated substep
iterations

Subjtech minimal | once |
onfirst | onevery |
cell array of these
strings

see below Segregated substep
Jacobian update
technique

Subminstep real vector see below Segregated substep
minimum damping
factors

Subntol real vector 1e-2 Segregated substep
tolerances for stationary
problem

TABLE 1-45: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femstatic
Segcomp cell array of strings Segregated group
components

Seggrps cell array of cell array Segregated group
properties

Segiter positive integer 1 Fixed number of
segregated iterations

Segorder integer vector Segregated substep
group numbers

Segterm iter | tol | itertol
| cell array of these
strings

tol Segregated solver
termination technique

Senscomp cell array of strings Sensitivity components

Sensfunc string Sensitivity functional
variable name

Sensmethod none | adjoint |
forward

none Sensitivity analysis

Subdamp real vector 0.5 Segregated substep
damping factors

Subdtech const | autodamp |
cell array of these
strings

const Segregated substep
damping technique

Subhnlin off | on | cell array of
these strings

off Segregated substep
indicators of highly
nonlinear problems

Subinitstep real vector see below Segregated substep
initial damping factors

Subiter integer vector 1 Segregated substep
iterations

Subjtech minimal | once |
onfirst | onevery |
cell array of these
strings

see below Segregated substep
Jacobian update
technique

Subminstep real vector see below Segregated substep
minimum damping
factors

Subntol real vector 1e-2 Segregated substep
tolerances for stationary
problem

TABLE 1-45: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
187

femstatic

188 | C H A P T
This solver uses the nonlinear solver described in femnlin if nonlin is on, and it
uses the linear solver described in femlin if nonlin is off. If nonlin is set to auto
an analysis is performed to automatically detect if the problem can be solved with
the linear solver.

In addition to the properties listed above, also the properties for femlin or femnlin
are supported, depending on which solver is used. For example, the linear solver
does not support the properties Augcomp, Augsolver, Augtol, Augmaxiter,
Porder, and Ntol. Similarly, the nonlinear solver does not support the property In.
Furthermore, the properties described in the entry femsolver are supported.

If the property callback is given, the solver makes interrupts (or callbacks) and
calls a function with the given name. To control when the solver makes a callback,
use the callblevel property. When callblevel is param, the solver makes a
callback after each parameter step that is exported to the output; this is the default
for the parameter solver. When callblevel is nonlin, the solver makes a callback
after each nonlinear (or segregated) iteration.; this is the default for the stationary
solver. If the stationary problem is linear, no callback is done.

The automatic nonlinear/linear detection works in the following way. The linear
solver is called if the residual Jacobian matrix (the stiffness matrix, K) and the
constraint Jacobian matrix (the constraint matrix, N) are both found not solution
dependent and if these matrices are detected as complete. In all other situations the
nonlinear solver is used. The analysis is performed by a symbolic analysis of the
expressions contributing to these matrices. Complete here means that in the residual
and constraint vectors, only expressions where found for which COMSOL
Multiphysics will compute the correct Jacobian contribution.

Subntolfact real vector 1 Segregated substep
tolerance factors for
time-dependent
problem

Subrstep real vector 10 Segregated substep
restrictions for stepsize
updates

Subterm iter | tol | itertol
| cell array of these
strings

iter Segregated substep
termination techniques

TABLE 1-45: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femstatic
Therefore, if you want to solve a linearized (nonlinear) problem, you must select
nonlin to off. Furthermore, there are variables for which COMSOL Multiphysics
is conservative and will flag these, and their Jacobian contribution, as solution
dependent even though they not always are. For these situations, the nonlinear
solver will be used even though the linear solver could be used. This should only
result in some extra computational effort, and should not influence the result. The
opposite situation however, where the linear solver is used for a nonlinear problem
is more dangerous. So, select nonlin to off with great care.

The property Reacf controls the computation and storage of constraint reaction
forces. The value Reacf=on (default) means that the solver stores the FEM residual
vector L in the solution object fem.sol. Because L = NFΛ for a converged solution,
the residual is the same as the constraint force. Only the components of L that
correspond to nonzero rows of NF are stored. The value Reacf=off gives no
computation or storage of the reaction force and saves some memory.

The property Sensmethod controls if also one of the two supported sensitivity
analysis methods should be used. These methods reuses the Jacobian matrix from
the primal solution step and performes a second linear solution step, by reusing the
linear solvers. For the adjoint method the transpose of the matrix is solved for. The
linear solver UMFPACK can solve for the transpose without extra initialization cost,
while the SPOOLES and PARDISO methods performes a new factorization of the
matrix. The method adjoint requires that a functional variable name is given by
the property Sensfunc, while the method forward requires that at least one
sensitivity parameter is given by the property Senscomp.

If the property Augcomp is given then the augmented lagrange solver is used, if the
property Seggrps is given then the segregated solver is used and otherwise the
standard nonlinear solver is used. These solvers are described in the COMSOL
Multiphysics User’s Guide; see “The Stationary Solver” on page 385, “The
Parametric Solver” on page 405, “The Stationary Segregated Solver” on page 411,
and “The Parametric Segregated Solver” on page 416.

The segregated solver group properties are given through the Seggrps property
with one list for each group. The only mandatory property is the property Segcomp
defining which solution components to be used for the group. Optional group
properties are the standard solver properties; Ntol, Linsolver, Prefun, Uscale,
and so on.

The segregated substeps are controlled by the property Segorder where the
segregated group numbers should be given in the preferred solution order by an
189

femstatic

190 | C H A P T
integer vector. The number of substeps is thereby determined by the length of the
given integer vector. If this property is not given, the groups are solved for from first
to last.

Termination of the segregated solver is controlled by the property Segterm. The
default setting is tol in which case the segregated iterations are terminated when
for each group, the estimated error is below the corresponding tolerance set
through the group property Ntol, see “The Stationary Segregated Solver
Algorithm” on page 539. However, a maximum number of allowed segregated
iterations is chosen through the property Maxsegiter; if the maximum is reached,
the iterations are terminated and an error message is displayed. Termination after a
fixed number of segregated iterations is achieved by instead choosing iter. The
number of segregated iterations is controlled by the property Segiter. The third
available option for Segterm is itertol, which is a combination of the other two
options; the segregated iterations are terminated when one of the two convergence
criteria of tol and iter is met. Note that the property Maxsegiter is only
supported when tol is used for termination. For both the settings iter and
itertol, the number of iterations is controlled by the property Segiter.

Analogously, the property Subterm controls how each substep is terminated
through the properties Maxsubiter, Subiter, and Subntol/Subntolfact for a
stationary/time-dependent problem.

The damping technique used in each substep is controlled by the property
Subdtech. The default setting is const, which means that damped Newton
iterations with a fixed damping factor is used. The damping factor is set in the
property Subdamp. The other available damping technique is autodamp in which
case the damping factor is automatically adjusted. For substeps which uses
autodamp, four other properties are supported: Subhnlin, Subinitstep,
Subminstep, and Subrstep. For each substep, these properties set the properties
Hnlin, Initstep, Minstep, and Rstep supported by the nonlinear solver, see
femnlin.

In substeps with Subdtech=const, how often the Jacobian is updated is controlled
by the property Subjtech. The values minimal, once, and onevery give the same
Jacobian update techniques as they do when applied to the coupled solver through
the property Jtech, see femnlin on page 143. The value onfirst makes the solver
update the Jacobian of the substep on the first subiteration each time the substep is
solved for. Default value is onevery for stationary problems and minimal for
time-dependent problems.
E R 1 : C O M M A N D R E F E R E N C E

femstatic
The linear solver uses the property Itol for termination of iterative linear system
solvers and for error checking for direct solvers (if enabled). The nonlinear solver
uses an adaptive tolerance for termination of iterative linear system solvers. This
adaptive tolerance is based on the maximum of Ntol and Itol. During the
nonlinear iterations, it can, however, be larger or smaller than this number. The
segregated solver uses the same tolerance as the linear solver when constant
damping is used. However, when automatically adjusted damping is used, the
adaptive tolerance of the nonlinear solver is used. The parametric solver uses the
same tolerance as the corresponding stationary solver.

See Also femlin, femnlin, femsolver, femstruct, assemble, asseminit
191

femstruct

192 | C H A P T
femstructPurpose FEM structure.

Syntax help femstruct

Description The FEM structure is a container for the full description of a PDE problem. See
“FEM Structure Overview” on page 4 in the COMSOL Multiphysics MATLAB
Interface Guide.

Compatibility The fields fem.equiv and fem.mat are no longer supported. The fem.rules field
is obsolete and replaced by fem.functions.

The field fem.variables has been renamed fem.const in FEMLAB 2.3.
E R 1 : C O M M A N D R E F E R E N C E

femtime
femtimePurpose Solve time-dependent PDE problem.

Syntax fem.sol = femtime(fem,'Tlist',[t1 ... tn],...)
fem = femtime(fem,'Tlist',[t1 ... tn],'Out',{'fem'},...)
fem.sol = femtime('in',{'K' K 'N' N 'L' L 'M' M 'D' D 'E' E},...
 'Tlist',[t1 ... tn],...)

Description fem.sol = femtime(fem,...) solves a time-dependent PDE problem.

The PDE problem is stored in the (possibly extended) FEM structure fem. See
femstruct for details. The time interval and possible intermediate time values are
given in the property Tlist. The output times are controlled by the property Tout.

 fem.sol = femtime('in',{'K' K 'N' N 'L' L 'M' M 'D' D 'E' E}) solves
the pre-assembled linear problem

The function femtime accepts the following property/values:

TABLE 1-46: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Atol See below 1e-3 Absolute tolerance

Callback string Function to call at each
callback

Callbfreq tout | tsteps tout Callback frequency
(callblevel=time)

Callblevel time | nonlin time Callback solverlevel

Callbparam cell array Parameters to the
callback function

Complex on | off off Complex numbers

Consistent off | on | bweuler bweuler Consistent
initialization of DAE
systems

Estrat 0 | 1 0 Error estimation
strategy

Eventout on | off See below Store both pre- and
post-event solutions

Eventtol numeric 0.01 Tolerance for event
detection and location

EU
··

DU
·

KU+ + L NFΛ–=

NU M=
193

femtime

194 | C H A P T
In cell array of names and
matrices K | L | M | N |
D | E

N and M are
empty,
D=E=0

Input matrices

Incrdelay on | off off Use delay in time step
increase

Incrdelaysteps positive integer 15 Number of time steps
to delay a time step
increase

Initialstep positive scalar Initial time step

Keep string containing K, L,
M, N, D, E | auto

auto Time-independent
quantities

MassSingular yes | maybe maybe Singular mass matrix

Maxorder integer between 1 and
5

5 Maximum BDF order

Maxreinit positive integer 100 Maximum number of
reinitializations at an
event

Maxstep positive scalar Maximum time step

Minorder 1 | 2 1 Minimum BDF order

Nlsolver automatic | manual automatic Nonlinear solver
settings

Ntolfact positive scalar 1 Tolerance factor for
solution of nonlinear
system

Odesolver bdf_ida | genalpha
| bdf_daspk

bdf_ida Time-stepping method

Out fem | sol | u | tlist |
solcompdof | stop |
Kc | Lc | Dc | Ec |
Null | Nnp | ud |
uscale | nullfun |
symmetric | cell array
of these strings

sol Output variables

Predictor linear | constant linear Predictor

Ratelimit positive scalar 0.9, 1
(segregated
solver)

Limit on nonlinear
convergence rate

TABLE 1-46: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

femtime
In addition, the properties described in the entry femsolver are supported.

When Odesolver equals genalpha, or when Odesolver equals bdf_ida and
Nlsolver is set to manual, you can control the process of solving the linear or
nonlinear system of equations in each time step manually. For a coupled problem,
this is done through the properties Damp, Dtech, Hnlin, Initstep, Jtech,
Maxiter, Minstep, and Rstep listed under femnlin. For a segregated problem, the
properties listed under femstatic that are related to the segregated solver are
available.

The maximum allowed relative error in each time step (the local error) is specified
using Rtol. However, for small components of the solution vector U, the algorithm
tries only to reduce the absolute local error in U below the tolerance given in Atol.

Reacf on | off on Compute reaction
forces

Rhoinf numeric 0.75 Amplification factor
for high frequencies

Rtol numeric 0.01 Relative tolerance

Stopcond string with expression
| integer

Stop when expression
becomes negative or
when implicit event is
triggered

Timestep numeric scalar |
numeric vector | string
with expression

0.01 Time step when
manual time stepping

Tlist numeric vector Time list

Tout tlist | tsteps tlist Output times

Tsteps free |
intermediate |
strict | init |
manual (genalpha)

free Time-stepping mode

Uifscale none | init | cell
array | solution vector

none Scaling of indicator
functions

Useratelimit on | off on Use limit on nonlinear
convergence rate

TABLE 1-46: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION
195

femtime

196 | C H A P T
The absolute tolerance Atol can be given for each degree of freedom separately. The
value for the property Atol can be:

• A scalar.

• A solution vector.

• A solution object.

• A row cell array with alternating degree of freedom names and definitions. The
definitions can be numeric scalars or string expressions. The string expressions
may only depend on constants defined in fem.const or Const. Unspecified
degree of freedom names are given the default value 0.

There is no guarantee that the error tolerances are met strictly, that is, for hard
problems they can be exceeded.

For the tolerance parameter in the convergence criterion for linear systems, the
maximum of the numbers Rtol and Itol is used.

Use Complex=on if complex numbers occur in the solution process.

The property Consistent controls the consistent initialization of a differential
algebraic equation (DAE) system. The value Consistent=off means that the
initial values are consistent (this is seldom the case, because the initial value of the
time derivative is 0). Otherwise, the solver tries to modify the initial values so that
they become consistent. The value Consistent=on can be used (when
Odesolver=bdf_ida and Nlsolver=automatic or when Odesolver=bdf_daspk)
for index−1 DAEs. Then the solver fixes the values of the differential DOFs, and
solve for the initial values of the algebraic DOFs and the time derivative of the
differential DOFs. The value Consistent=bweuler can be used for both index-1
and index-2 DAEs. Then the solver perturbs the initial values of all DOFs by taking
a backward Euler step.

For a DAE system, if Estrat=1, then the algebraic DOFs are excluded from the
error norm of the time discretization error.

You can suggest a size of the initial time step using the property Initialstep.

By default, the solver determines whether the system is differential-algebraic by
looking after zero rows or columns in the mass matrix. If you have a DAE where the
mass matrix has no zero rows or columns, put Masssingular=yes.

The property Maxorder gives the maximum degree of the interpolating polynomial
in the BDF method (when Odesolver=bdf_ida or Odesolver=bdf_daspk).
E R 1 : C O M M A N D R E F E R E N C E

femtime
The property Maxstep puts an upper limit on the time step size (this property is not
allowed when Tsteps=manual).

The property Nlsolver controls which nonlinear solver is used to solve the linear
or nonlinear system of equations in each time step when Odesolver=bdf_ida. With
Nlsolver=automatic, the nonlinear solver which is included in the solver IDA is
used. With Nlsolver=manual, the nonlinear solver in COMSOL Multiphysics is
used.

When the COMSOL Multiphysics nonlinear solver is used (when
Odesolver=bdf_ida and Nlsolver=manual or when Odesolver=genalpha), the
property Ntolfact controls how accurately the nonlinear system of equations is
solved. The value given in Ntolfact is multiplied with the default tolerance in the
convergence criteria. Also, the solution process is interrupted (and the Jacobian
updated or the time step reduced) if the convergence is too slow. This can be
disabled by setting Useratelimit=off. When Useratelimit=on, what is to be
considered as too slow convergence can be controlled through the property
Ratelimit. The solution process is interrupted if the estimated linear convergence
rate (of all steps, when the segregated solver is used) becomes larger than the value
given in Ratelimit.

The property Odesolver is used to select which time-stepping method to use. With
Odesolver=bdf_ida, the solver IDA (which uses variable order backward
differentiation formula) is used. A similar solver, DASPK, is used if
Odesolver=bdf_daspk. With Odesolver=genalpha, the method generalized-α is
used. With generalized-α, the numerical damping can be controlled by giving a
value, , by which the amplitude of the highest possible frequency is
multiplied each time step (hence, a small value corresponds to large damping while
a value close to 1 corresponds to little damping). This is done through the property
Rhoinf. Also, the initial guess for the solution at the next time step (needed by the
nonlinear solver) can be controlled through the property Predictor when
generalized-α is used. With Predictor=linear, linear extrapolation using the
current solution and time-derivative is used. With Predictor=constant, the
current solution is used as initial guess.

If the property callback is given, the solver makes interrupts (or callbacks) and
calls a function with the given name. To control when the solver makes a callback,
use the callblevel property. When callblevel is time, the solver makes
callbacks at the time-loop level. If callbfreq is tout, the callback is made at the
times that are exported to the output, and when callbfreq is set to tsteps, the

0 ρ∞ 1≤ ≤
197

femtime

198 | C H A P T
callback is made at times taken by the solver. When callblevel is nonlin, the
solver makes a callback after each nonlinear (or segregated) iteration. Nonlin is only
supported when odesolver is genalpha or when odesolver is bdf_ida with
nlsolver set to manual. The callbfreq property does not apply when
callblevel is nonlin.

The property Out determines the output arguments and their order. The solution
object fem.sol contains the output times and the corresponding solutions, see
femsol. By default, the time derivatives are not stored in the solution. To store
them, use the Outcomp property, see femsolver. This will also give a more accurate
value in postprocessing of values interpolated in time. The output u is a matrix
whose columns are the solution vectors for the output times. The output tlist is
a row vector containing the output times. The output variable Stop is 0 if a
complete solution was returned, 1 if a partial solution was returned, and 2 if no
solution was returned. For the other outputs, see femlin.

The property Reacf controls the computation and storage of the constraint reaction
force. The value Reacf=on (default) means that the solver stores the FEM residual
vector L in the solution object fem.sol. Because L = NFΛ for a converged solution,
the residual is the same as the constraint force. Only the components of L that
correspond to nonzero rows of NF are stored. For each time for which the solution
is requested an extra residual vector assembly is performed. The value Reacf=off
gives no computation or storage of the reaction force and can therefore save some
computational time.

The property Stop makes it possible to return a partial solution when the time
stepping fails at some point. If a failure occurs, the computed time steps are returned
in sol.

Use the property Stopcond to make sure the solver stops when a specified condition
is fulfilled. When you provide a scalar expression, then the expression is evaluated
after each time step. The time stepping is stopped if the real part of the expression
is evaluated to something negative. The corresponding solution, for which the
expression is negative is not returned. When you provide an integer the solver stops
when the corresponding implicit event is triggered.

You can use the property Keep to tell femtime that certain quantities are constant
in time, which sometimes can speed up the computation, see “Manual Control of
Reassembly” on page 530. The corresponding value is a string or a cell array of
strings.
E R 1 : C O M M A N D R E F E R E N C E

femtime
The property Tlist must be a strictly monotone vector of real numbers.
Commonly, the vector consists of a start time and a stop time. If more than two
numbers are given, the intermediate times can be used as output times, or to control
the size of the time-steps (see below). If just a single number is given, it represents
the stop time, and the start time is 0.

The property Tout determines the times that occur in the output. If Tout=tsteps,
then the output contains the time steps actually taken by the solver. If Tout=tlist,
then the output contains interpolated solutions for the times in the Tlist property.
The default is Tout=tlist.

The property Tsteps controls the selection of time steps. If Tsteps=free, then the
solver selects the time steps according to its own logic, disregarding the
intermediate times in the Tlist vector. If Tsteps=strict, then time steps taken by
the solver contain the times in Tlist. If Tsteps=intermediate, then there is at
least one time step in each interval of the Tlist vector. With Tsteps=init, the
solver only computes consistent initial values (for the start time, as defined by the
property Tlist) and then stops. Note that time derivatives of algebraic variables and
indicator functions might still be uninitialized after this operation. Such
uninitialized quantities will be represented by NaN (not a number) in the solution
object. If Tsteps=manual (only possible when Odesolver=genalpha), the solver
follows the time step specified in the property Timestep. If Timestep is a scalar
value, this time step is taken in the entire simulation. When Timestep is a (strictly
monotone) numeric vector, the solver computes the solution at the times in the
vector. The start time and stop time is still obtained from Tlist; the vector given
in Timestep is truncated and/or expanded using the first and/or last time step in
the vector so that the start time and stop time agrees with the values in Tlist.
Finally, an expression using variables with global scope and which results in a scalar
can be used as Timestep.

For problems of wave-type, the logic by which the solver selects the time step can
sometimes result in a time step which oscillates in an inefficient manner. When
Odesolver=genalpha (the solver typically used for problems of wave-type), such
oscillations in the time step can be avoided through the property Incrdelay. When
Incrdelay=on, a counter keeps track of the number of consecutive time steps for
which a time step increase has been warranted. When this counter exceeds the
number given in the property Incrdelaysteps, the time step is increased and the
counter is set to zero.
199

femtime

200 | C H A P T
The properties Eventout, Eventtol, Maxreinit, and Uifscale only have an
effect when used in setups containing events which is only possible with
Odesolver=bdf_ida. The property Eventtol determines how accurately implicit
event times should be detected. Typically, the value of this property should be
similar to the value of rtol. When an event occurs, the property Eventout
determines whether both the solution before reinitialization and after
reinitialization should be saved. When Tout=tsteps the default value is on, and
when Tout=tlist the default value is off. If Tout=tsteps and Eventout=off
only the solution prior to reinitialization will be saved. The update at an event and
the subsequent reinitialization might trigger new events. The property Maxreinit
controls how many times triggered events are allowed to trigger new events at one
particular time. Finally, the property Uifscale works just like the property Uscale,
but is only applicable to indicator functions. See the entry femsolver for a
description of the property Uscale.

For more information about the time-dependent solver; see “The Time-Dependent
Solver” on page 391 of the COMSOL Multiphysics User’s Guide.

Example Solve the heat equation

on a square geometry . Choose u(0) = 1 on the disk x2 + y2 < 0.42,
and u(0) = 0 otherwise. Use Dirichlet boundary conditions u = 0. Compute the
solution at times linspace(0,0.1,20).

clear fem
fem.geom = square2(2,'pos',[-1 -1])+circ2(0.4);
fem.mesh = meshinit(fem);
fem.shape = 2;
fem.equ.c = 1; fem.equ.da = 1;
fem.bnd.h = 1;
fem.equ.init = {0 1};
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'report','on','tlist',linspace(0,0.1,20));
postanim(fem,'u')

Cautionary In structural mechanics models, the displacements are often quite small, and it is
critical that the Atol property is chosen to be smaller than the actual displacements.

Compatibility The property Variables has been renamed Const in FEMLAB 2.3.

∂u
∂t
------ u∆– 0=

1– x y, 1≤ ≤
E R 1 : C O M M A N D R E F E R E N C E

femtime
The properties Epoint and Tpoint are obsolete from FEMLAB 2.2. Use
fem.***.gporder to specify integration order.

See Also femsolver, assemble, asseminit, femstruct, femlin, femnlin
201

femwave

202 | C H A P T
femwavePurpose Extend FEM structure to a wave equation problem.

Syntax fem1 = femwave(fem)
xfem1 = femwave(xfem)

Description fem1 = femwave(fem) extends the coefficients of the PDE problem to a wave
equation problem. xfem can also be an extended FEM structure. In the latter case,
use geomnum to specify the geometry number for the wave extension.

Note: Since COMSOL Multiphysics 3.2, wave equations can be more easily and
efficiently formulated using the ea coefficient or the second time derivative
variable.

When fem is given in coefficient form, fem1 contains extended PDE and boundary
coefficients to solve the wave equation problem

where the da coefficient was stored in the fem.equ.da field of the FEM structure
fem. In the same way, when fem is given in general or weak form, fem1 contains
extended PDE and boundary coefficients to solve the wave equation problem
obtained by replacing the first time derivative term in the standard problem by a
second time derivative.

The function introduces a set of new variables, v, such that

da
t2

2

∂

∂ u ∇ c∇u αu γ–+()⋅– β∇u au+ + f=

v
t∂

∂u
=

E R 1 : C O M M A N D R E F E R E N C E

femwave
and then transforms the PDE problem by doubling the size of the system, and
rewriting the coefficients according to the table below:

TABLE 1-47: TRANSFORMATION DONE BY FEMWAVE

PDE COEFFICIENT COEFFICIENT FORM GENERAL FORM

c 0 0
c 0

0 0
c 0

α 0 0
α 0

0 0
α 0

γ 0
γ

0
γ

a 0 I–

a 0
0 I–

a 0

f 0
f

v
f

da I 0
0 da

I 0
0 da

ea ea 0

0 0

ea 0

0 0

q 0 0
q 0

0 0
q 0

g 0
g

0
g

203

femwave

204 | C H A P T
When the property Tdiff is off, the following modifications to the table applies:

For a PDE problem in general form, femwave produces h using femdiff, when the
Diff property is on and the field h does not exist.

If the coefficients weak, dweak, and constr are present, either in addition to the
above coefficients, or on their own because the problem is in weak form, they also
become doubled in size, but their treatment is very special because they may contain
explicit references to the n dependent variables u, their time derivatives u_time and
the test functions u_test, ux_test, etc.

Weak coefficients are cell arrays of length n. They become cell arrays of length 2n,
by moving the existing entries down to the second half, then replacing all references
therein to u_test, ux_test, etc. with references to v_test, vx_test, etc. The first
half of the vector contains n entries of the form vi*ui_test.

Dweak coefficients are cell arrays of length n. They become cell arrays of length 2n,
by moving the existing entries down to the second half, then replacing all references
therein to u_time, ux_time, u_test, ux_test, etc. with references to v_time,
vx_time, v_test, vx_test, etc. The first half of the vector contains n entries of the
form ui_time*ui_test.

Constr coefficients are cell arrays of length n. They become cell arrays of length 2n,
by moving the existing entries down to the second half. If Tdiff is on, then the top

TABLE 1-48: TRANSFORMATION DONE BY FEMWAVE

TABLE 1-47: TRANSFORMATION DONE BY FEMWAVE

PDE COEFFICIENT COEFFICIENT FORM GENERAL FORM

h

t∂
∂h h

h 0
t∂

∂h h

h 0

r

t∂
∂r

r
t∂

∂r hv–

r

h 0 0
h 0

0 0
h 0

r 0
r

0
r

E R 1 : C O M M A N D R E F E R E N C E

femwave
half of the vector is filled by the following entries. If one of the coefficients is ci, one
of the new entries in the top half of the new vector is

where represents the partial derivative of vj with respect to space coordinate
xk, and where there is implicit summation over repeated indices.

The function femwave accepts the following property/value pairs:

Use fem.rules to specify additional differentiation rules. The derivative of the
Inverse hyperbolic tangent function atanh can, for example, be specified as
{'atanh','1./(1-x.^2)'}. It can also be stored as a field in the fem structure.

Cautionary The properties bdl, out, rules, and sdl are obsolete in FEMLAB 3.0.

The h and r coefficients at level 4 of the syntax must be given either as a scalar
numeric value, or a string containing an expression.

You should set the ODE Suite parameter maxorder to 2 for the solver ode15s for
wave type problems. This is automatically done by the graphical user interface.

Compatibility In FEMLAB 1.0, when using general form, you had to apply femdiff before
femwave. This was because the h coefficient in fem affects the result of the r
coefficient in the output fem1, and h had to be computed by symbolic

TABLE 1-49: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Defaults off | on off Return default fields

Diff cell array with strings
that may contain the
strings r, var, and/or
expr or the strings
off or on

on (for
general form)

Differentiate constraints.
Describes which fields
that are differentiated if
Tdiff is on. See also
femdiff.

Geomnum integer 1 Geometry number

Shrink off | on off Shrinks coefficients to
most compact form.

Simplify off | on on Simplify differentiated
expressions

Tdiff off | on on Differentiate constraints
with respect to time

t∂
∂ci vj uj∂

∂ci vj()xk uj()xk
∂
∂ci+ +

vj()xk
205

femwave

206 | C H A P T
differentiation by femdiff. In FEMLAB 1.1, h is automatically computed by
femwave if not provided. Therefore femdiff can be applied after the femwave call
in FEMLAB 1.1.

See Also femtime
E R 1 : C O M M A N D R E F E R E N C E

fillet
filletPurpose Create circular rounded corners in geometry object.

Syntax g = fillet(g1,...)

Description g = fillet(g1,...) creates rounded corners in 2D geometry object.

The function fillet accepts the following property/values:

 The corners to fillet is either specified with either the property point or edges. The
default value is the all possible corners are filleted.

If there is only one radius but more than one corner then the single radius is used
for all corners.

Examples Fillet a rectangle object:

r = rect2;
s1 = fillet(r,'radii',0.1);
s2 = fillet(r,'edges',[1 2;2 3],'radii',0.2);

Diagnostics If fillet does not succeed in creating a rounded corner according to the specified
radius, the corner is skipped.

When a fillet intersects another edge, the function generates an error message.

Compatibility The FEMLAB 2.3 property Trim is no longer supported. Only pair of edges that
have a common vertex can be filleted. For edges that are not linear, the linear
approximation of the edge in the corner is used to compute an approximate fillet.

See Also chamfer, curve2, curve3

TABLE 1-50: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

out Cell array of
strings

none Determines the output

point integers | all |
none

all Specifies which vertices are filleted

radii 1-by-m vector Curvature radii of the fillet
207

flcompact

208 | C H A P T
flcompactPurpose Compact equ/bnd/edg/pnt fields.

Syntax fem = flcompact(fem)

Description fem = flcompact(fem) removes unused and duplicated coefficients in the
fem.equ, fem.bnd, fem.edg, and fem.pnt fields. The resulting structures always
have numeric ind fields. Coefficients are considered equal if they represent the same
expression, that is, equivalent short-hand and expanded forms are compacted.

The function flcompact accepts the following property/value pairs:

Compatibility The syntaxes

equ = flcompact(equ,'equ',nsd)
bnd = flcompact(bnd,'bnd',nbnd)
edg = flcompact(edg,'edg',nedg)
pnt = flcompact(pnt,'pnt',npnt)
field = flcompact(field,fldnames,nelem)

are no longer supported in FEMLAB 3.1.

See Also multiphysics

TABLE 1-51: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

defaults off | on off Return default fields

shrink off | on off Shrinks coefficients to
most compact form.
E R 1 : C O M M A N D R E F E R E N C E

flcontour2mesh
flcontour2meshPurpose Create boundary mesh from contour data.

Syntax m = flcontour2mesh(c)

Description m = flcontour2mesh(c) creates a boundary mesh m with fields m.p and m.e from
the contour data c. The contour matrix c is a two-row matrix of contour lines. Each
contiguous drawing segment contains the value of the contour, the number of (x,y)
drawing pairs, and the pairs themselves. The segments are appended end-to-end as

c = [level1 x1 x2 x3 ... level2 x2 x2 x3 ...;
 pairs1 y1 y2 y3 ... pairs2 y2 y2 y3 ...]

The contour matrix format is used by the MATLAB function contourc.

By using the contour matrix format, you can convert geometry data defined by a
point set, to a COMSOL Multiphysics geometry object. Firstly, define a contour
matrix c corresponding to your point set and use flcontour2mesh to convert the
contour matrix c to a 2D boundary mesh m. Then, use flmesh2spline to convert
the mesh object m to a curve2 object.

Examples Create a mesh from contour data.

[x,y] = meshgrid(linspace(-3,3,50));
z = (x.^2+y.^2).*exp(-x.^2-y.^2)+cos(y)+sin(x);
figure
c = contour(z);
m = flcontour2mesh(c);
figure
meshplot(m);

See Also contourc, flmesh2spline, flim2curve
209

flc1hs, flc2hs, fldc1hs, fldc2hs

210 | C H A P T
flc1hs, flc2hs, fldc1hs, fldc2hsPurpose Smoothed step functions.

Syntax y = flc1hs(x,scale)
y = flc2hs(x,scale)
y = fldc1hs(x,scale)
y = fldc2hs(x,scale)

Description y = flc1hs(x,scale) and y = flc2hs(x,scale) compute the values of a
smoothed version of the Heaviside function y = (x>0). The function is 0 for
x<-scale, and 1 for x>scale.

In the interval -scale<x<scale, flc1hs is a smoothed Heaviside function with a
continuous first derivative without overshoot. It is defined by a fifth-degree
polynomial.

In the interval -scale<x<scale, flc2hs is a smoothed Heaviside function with a
continuous second derivative without overshoot. It is defined by a a sixth-degree
polynomial.

The input x can be an array. The input scale must be positive scalar.

yp = fldc1hs(x,scale) and yp = fldc2hs(x,scale) compute the derivative
of the functions flc1hs and flc2hs, respectively.

See Also flsmhs, flsmsign, fldsmhs, fldsmsign
E R 1 : C O M M A N D R E F E R E N C E

flform
flformPurpose Convert between PDE forms.

Syntax fem1 = flform(fem,'outform',form,...)
[equ,bnd] = flform(fem,'outform',form,...)

Description fem1 = flform(fem,'outform',form,...) converts the FEM structure fem to
an FEM structure fem1 on form. The fields in fem1.equ and fem1.bnd contain the
corresponding fields from fem.equ and fem.bnd converted to the form form.
fem1.form is set to form. All other fields in fem are copied to fem1.

[equ,bnd] = flform(fem,'outform',form,...)

is an alternative syntax, returning only the equ and bnd fields of the FEM structure.

Conversion from coefficient to general form is performed according to

using a notation where there is an implicit summation over the k (or l) and i indices
in each product. Affected fields are therefore ga, c, al, f, be, and a from equ and
g, q, r, and h from bnd, with c, al, be, a, g, and q removed and ga, f, r, and g
remaining. Other fields within equ and bnd, such as shape, weak, init, var, etc.,
remain unchanged.

Conversion from general form to weak form is performed according to

Γlj clkji xi∂
∂uk– αlkjuk– γlj+=

Fl fl βlki xi∂
∂uk– alkuk–=

Gl gl qlkuk–=

Rm rm hmlul–=

Wl
n() Wl

n() Γlj xj∂
∂vl Flvl+ +=

Wl
nt() Wl

nt() dalk t∂
∂ukvl ealk

t2

2

d

d ukvl+ +=

Wl
n 1–() Wl

n 1–() Glvl+=

Rm
n() Rm=
211

flform

212 | C H A P T
where there is an implicit summation over the k and i indices in each product. n is
the space dimension. Affected fields are therefore ga, f, weak, da, ea, and dweak
from equ and g, weak, r, and constr from bnd, with weak, dweak, and constr the
only fields remaining. Other fields within equ and bnd, such as shape, init, var,
etc., remain unchanged.

In addition, when converting to weak form, flform tries to take fem.border into
account. That is to say that if fem.border is not 1 or on, there may be interior
boundaries on which boundary conditions should not be applied. This process is
carried out because meshextend and the solvers pay no attention to fem.border
when considering weak, dweak, and constr, unlike ga, c, f, q, r, h, etc.

The function flform accepts the following property/value pairs:

Cautionary Conversion from general form to coefficient form, or from weak form to general or
coefficient form is not supported.

Example The following code shows how the convergence can be improved for a stationary
solution of the model “Resistive Heating”. The system is converted to general form,
the symbolic derivatives are computed using femdiff, and the system is solved with
femstatic.

% !!! First run the example under the multiphysics entry
fem = flform(fem,'outform','general');
fem = femdiff(fem);
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem,'report','on');
postsurf(fem,'T');

Alternatively, change the outform to weak and remove the femdiff call.

See Also multiphysics, meshextend

TABLE 1-52: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

defaults off | on off Return default fields

outform coefficient |
general | weak

coefficient Output form

out fem | equ | bnd |
edg | pnt

fem Output variables

shrink off | on off Shrinks coefficients to
most compact form.

simplify off | on on Simplify expressions
E R 1 : C O M M A N D R E F E R E N C E

flim2curve
flim2curvePurpose Create 2D curve object from image data.

Syntax [c,r] = flim2curve(I,fmt,...)

Description [c,r] = flim2curve(I,fmt,...) creates a curve2 object c and small curve2
objects r from the image I (gray-scale or RGB) operated upon by parameters
contained in the cell-array fmt. c is a curve2 object that approximates the contours
of I. r is a cell-array of curve2 objects containing small curves detected by the
argument. This is very useful for images containing noise. I is either an m-by-n
intensity image matrix or an m-by-n-by-3 RGB-image matrix as typically obtained
from the function imread. fmt is a cell-array of length 2 used to create contours
from I. If fmt{2} is empty then the scalar fmt{1} is used as a threshold value. If
instead, fmt{1} is empty, then the vector fmt{2} is used to specify the contour
levels of interest. See the function contourc for an explanation of the contour level
syntax in fmt{2}. All flmesh2spline properties are supported.

c = flim2curve(i,fmt,...) is an alternative syntax and is equivalent to c =
geomcsg({},{c,r{:}}) where the arguments c and r are those obtained from the
other call. This is less stable whenever i contain small structures.

Examples Create contour-curves from function.

[x,y] = meshgrid(linspace(-3,3,50));
z = (x.^2+y.^2).*exp(-x.^2-y.^2)+cos(y)+sin(x);
figure
imagesc(z)
g = flim2curve(z,{[],[-1.5:0.5:2]});
figure
geomplot(g,'Pointmode','off');

Create curves from noisy picture.

load mri
pic = D(:,:,1,10);
figure
image(pic)
v = axis;
[c,r] = flim2curve(pic,{[],1:30:91},'KeepFrac',0.10);
figure
geomplot(c,'Pointmode','off');

Plot all small curves in a green color.

for j = 1:length(r)
 hold on
 geomplot(r{j},'Pointmode','off','edgecolor','g')
end
213

flim2curve

214 | C H A P T
axis(v)
axis ij

See Also flcontour2mesh, flmesh2spline
E R 1 : C O M M A N D R E F E R E N C E

flload
flloadPurpose Load a COMSOL Multiphysics file.

Syntax flload filename
fem = flload('filename')

Description flload(filename) retrieves FEM structures, geometry objects, or mesh objects
from a COMSOL Multiphysics file. If filename has no extension, it is assumed to
be a Model MPH-file.

flload supports Model MPH-files (.mph) for retrieving complete FEM structures
and COMSOL Multiphysics text and binary files (.mphtxt, .mphbin) for retrieving
geometry and mesh objects.

See Also flsave
215

flmesh2spline

216 | C H A P T
flmesh2splinePurpose Create spline curves from mesh.

Syntax [g2,r2] = flmesh2spline(msh,...)

Description [g2,r2] = flmesh2spline(msh,...) creates spline curves g2 and filtered small
curves r2. The structure msh is a valid mesh, where only the fields msh.p and msh.e
are needed. The object g2 is a curve2 object containing spline curves
approximating the edge of msh. The variable r2 is a cell-array containing small
curves filtered away by the algorithm. This is a useful feature when trying to
generate curves from meshes that originate from noisy contour data.

g2 = flmesh2spline(msh,...) is an alternative syntax and is equivalent to g2 =
geomcsg({},{g2,r2{:}}) where the arguments g2 and r2 are those obtained
from the other call. This is less stable whenever msh contain small (ill-conditioned)
structures.

The property KeepFrac provides a useful way to reduce the complexity of the
resulting geometry object. If the algorithm fails to produce the desired result, try to
lower the value of this property. The smoothing algorithm used is a simple
anti-aliasing filter, and is controlled by the property Smooth. For an explanation of
the property SplineMethod, see geomspline.

Note: You might need to refine the boundary mesh data using meshrefine to be
able to get reasonable results using this function. Alternatively, you can create a
finer mesh using meshinit by manipulating the mesh parameters.

Examples Create spline curves from a full mesh:

msh = meshinit(circ2+rect2(1,1,'pos',[0.5 0.5]));

TABLE 1-53: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

KeepFrac real scalar >0, <=1 0.2 Fraction of points to
keep

Smooth on | off on Curve smoothing on
or off

SplineMethod uniform |
chordlength |
centripetal |
foley

chordlength Method for spline
parameterization
E R 1 : C O M M A N D R E F E R E N C E

flmesh2spline
figure
meshplot(msh)
c = flmesh2spline(msh,'keepfrac',0.3)
figure
geomplot(c)

Create spline curves from contour data:

[x,y] = meshgrid(linspace(-3,3,50));
z = (x.^2+y.^2).*exp(-x.^2-y.^2)+cos(y)+sin(x);
figure
c = contour(z);
m = flcontour2mesh(c);
figure
meshplot(m)
g = flmesh2spline(m);
figure
geomplot(g)

See Also flcontour2mesh, flim2curve, geomspline
217

flngdof

218 | C H A P T
flngdofPurpose Get number of global degrees of freedom.

Syntax n = flngdof(fem)
n = flngdof(fem, mcase)

Description The returned number n is the number of degrees of freedom in the FEM structure
fem. This is the same as the length of the solution vector. If the mesh case mcase is
not given, it is taken to be the mesh case with the greatest number of degrees of
freedom in the extended mesh.

See Also meshextend
E R 1 : C O M M A N D R E F E R E N C E

flnull
flnullPurpose Compute null space of a matrix, its complement, and the range of the matrix.

Syntax Range = flnull(N,...)
[Null,Compl] = flnull(N,...)
[Null,Compl,Range] = flnull(N,...)
[...] = flnull('in',{...},'out',{...},...)

Description Range = flnull(N,...) computes the range of N.

[Null,Compl] = flnull(N,...) computes the null space of N and its
complement.

[Null,Compl,Range] = flnull(N,...) computes null space, its complement,
and the range of N.

[...] = flnull('in',{...},'out',{...},...) compute null space, its
complement, and the range of N.

The function flnull accepts the following property/value pairs:

The property Nullfun selects the null-space algorithm. The algorithm flnullorth
computes a orthonormal basis for the null space by using singular value
decomposition in a block-wise pattern. The method flspnull handles constraint
matrices with non-local couplings by employing a sparse algorithm. The auto
method automatically selects the most appropriate of flnullorth and flspnull.

See the sections “Advanced Solver Settings” on page 526 and “Constraint
Handling” on page 533 for further information on the use of these matrices.

Example The Poisson Equation on the Unit Disk
Solve this problem by elimination. The example illustrates the way femstatic
handles the constraints internally by the default constraint handling method:
eliminate.

clear fem
fem.geom = circ2;
fem.mesh = meshinit(fem);

TABLE 1-54: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

In N | NT N Input matrices

Nullfun flnullorth |
flspnull | auto

auto Null-space function

Out null | range |
compl

Output variables
219

flnull

220 | C H A P T
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
[K,L,M,N] = assemble(fem);
[Null,Compl,Range] = flnull(N);
ud = Compl*((Range'*N*Compl)\(Range'*M));
Ke = Null'*K*Null;
Le = Null'*(L-K*ud);
vn = Ke\Le;
u = Null*vn+ud;
fem.sol = femsol(u);
postplot(fem,'tridata','u')

See Also femlin, assemble
E R 1 : C O M M A N D R E F E R E N C E

flreport
flreportPurpose Globally turn off the report progress window or show it.

Syntax flreport('off')
flreport('on')
flreport('show')
flreport('file')
flreport('file',filename)

Description flreport('off') disables the use of the progress window that is normally shown
during meshing and solution.

flreport('on') enables the use of the progress window again. This means that
COMSOL Multiphysics uses the value of the 'report' property to determine if the
progress window should be shown.

flreport('show') shows the progress window if it has been closed.

flreport('file') prints progress information to file. If you have not provided a
filename in an earlier call to flreport, it prints progress information to the standard
output (stdout).

flreport('file',filename) prints progress information to the file filename. If
no filename is given, it prints progress information to the standard output (stdout).
221

flsave

222 | C H A P T
flsavePurpose Save a COMSOL Multiphysics file.

Syntax flsave filename fem

Description flsave filename arg1 arg2 ... saves FEM structures, geometry objects, and
mesh objects to a COMSOL Multiphysics file. flsave supports Model MPH-file
(.mph) and the COMSOL Multiphysics text and binary formats (.mphtxt,
.mphbin).

flsave filename saves all valid COMSOL data in the workspace.

flsave('filename',arg1,...) is an alternative syntax.

Compatibility Since FEMLAB 3.0, flsave is obsolete for saving a MAT-file. Use save to save an
FEM structure or any part of the FEM structure.

See Also flload
E R 1 : C O M M A N D R E F E R E N C E

flsmhs, flsmsign, fldsmhs, fldsmsign
flsmhs, flsmsign, fldsmhs, fldsmsignPurpose Smoothed step functions and their derivatives.

Syntax y = flsmhs(x,scale)
y = flsmsign(x,scale)
yp = fldsmhs(x,scale)
yp = fldsmsign(x,scale)

Description y = flsmhs(x,scale) computes the values of a smoothed version of the Heaviside
function y = (x>0). The function is 0 for x<-scale, and 1 for x>scale.

y = flsmsign(x,scale) computes the values of a smoothed version of the sign
function y = sign(x). The function is -1 for x<-scale, and 1 for x>scale.

In the interval -scale<x<scale, the functions flsmhs and flsmsign are defined
by a seventh-degree polynomial, which is chosen so that the second derivative is
continuous. Moreover, the moments of order 0, 1, and 2 agree with those for the
Heaviside function and the sign function, respectively. This implies that the
functions have small overshoots.

yp = fldsmhs(x,scale) and yp = fldsmsign(x,scale) compute the derivative
of the functions flsmhs and flsmsign, respectively.

The input x can be an array. The input scale must be positive scalar.

See Also flc1hs, flc2hs, fldc1hs, fldc2hs
223

gencyl2, gencyl3

224 | C H A P T
gencyl2, gencyl3Purpose Create straight homogeneous generalized cylinder geometry object.

Syntax s3 = gencyl3
s2 = gencyl2
s3 = gencyl3(base)
s2 = gencyl2(base)
s3 = gencyl3(base,h)
s2 = gencyl2(base,h)
s3 = gencyl3(base,h,rat)
s2 = gencyl2(base,h,rat)
s3 = gencyl3(base,h,rat,...)
s2 = gencyl2(base,h,rat,...)

Description s3 = gencyl3 creates a solid straight homogeneous generalized cylinder geometry
object s3, with a solid circle base surface, cylinder axis of length 1 along the z-axis,
and size of top surface equal to base surface. gencyl3 is a subclass of solid3.

s3 = gencyl3(base) creates a solid straight homogeneous generalized cylinder
geometry object with base surface base.

s3 = gencyl3(base,h) also sets the height of the generalized cylinder to h.

s3 = gencyl3(base,h,rat) additionally specifies top surface with the scale factor
rat with respect to the origin, that is, all 2D points in the top plane are obtained by
multiplying the points in the base plane with rat.

The functions gencyl3 and gencyl2 accept the following property/values:

TABLE 1-55: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object.

Const Cell array of
strings

{} Evaluation context for string inputs.

Displ 2-by-nd
matrix

[0;0] Displacement of extrusion top

Pos Vector of
reals or cell
array of
strings

[0 0] Position of the bottom surface.

Rot real or string 0 Rotational angle about Axis (radians).
E R 1 : C O M M A N D R E F E R E N C E

gencyl2, gencyl3
s2 = gencyl2(...) creates a surface straight homogeneous generalized cylinder,
from the same arguments as described for gencyl3. gencyl2 is a subclass of face3.

Generalized cylinder objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The numbering of faces,
edges and vertices is different from the numbering in objects created in 2.3.

Examples Creation of a 3D solid with two circular edges, and with a top face that is smaller
than the bottom face.

base = solid2(geomdel(rect2(2,6,'pos',[-1 -3])+...
 circ2(1,'pos',[0 -3])+circ2(1,'pos',[0 3])));
g3 = gencyl3(base,2,0.75);
geomplot(g3)

See Also econe2, econe3, extrude, face3

TABLE 1-56: GENERALIZED CYLINDER OBJECT PROPERTIES

PROPERTY DESCRIPTION

base Base 2D geometry object

h Height

rat Ratio

dx, dy Semi-axes

x, y, z, xyz Object position—components and vector form

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
225

geom0, geom1, geom2, geom3

226 | C H A P T
geom0, geom1, geom2, geom3Purpose Low-level constructor functions for geometry objects.

Syntax g = geom3(vertex,pvertex,edge,pedge,face,mfd,pcurve,...)
[g,...] = geom3(g3,...)
g = geom2(vertex,edge,curve)
[g,...] = geom2(g2,...)
g = geom1(p,ud)
[g,...] = geom1(g1,...)
g = geom0(p)

Description g3 = geom3(vertex,pvertex,edge,pedge,face,mfd,pcurve,...) creates a
geom3 object.

[g,...] = geom3(g3,...) coerces any 3D geometry object g3 to a geom3 object.

c = geom2(vertex,edge,curve,...) creates a geom2 object.

[g,...] = geom2(g2,...) coerces any 2D geometry object to a geom2 object.

c = geom1(vtx) creates a 1D geometry object from the property vtx.

[g,...] = geom1(g1,...) coerces any 1D geometry object to a geom1 object.

g = geom0(p) creates a 0D geometry object, where p is a matrix of size 0-by-1.

g = geom0(g1,...) coerces any 0D geometry object to a geom0 object.

The coercion functions accept the following property/values:

3D Geometry Object Properties
vertex is a 5-by-nv matrix representing the vertices of the 3D geometry. Rows 1,
2, and 3 provide the 3D coordinates of the vertices. Row 4 provides the subdomain
number. Row 5 contains a relative local tolerance for the entity. For nontolerant
entities the tolerance is NaN.

pvertex is a 6-by-npv matrix containing embeddings of vertices in faces. Row 1
contains the vertex index (i.e. column in VERTEX), rows 2 and 3 contain (s, t)
coordinates of the vertex on the face, row 4 contains a face index, and row 5
contains the manifold index into mfd. Row 6 contains a relative local tolerance for
the entity.

TABLE 1-57: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx |
ctx | ptx

{} Cell array of output names
E R 1 : C O M M A N D R E F E R E N C E

geom0, geom1, geom2, geom3
edge is a 7-by-ne matrix representing the edges of the 3D geometry. Rows 1 and 2
contain the start and end vertex indices of the edge (0 if they do not exist). Rows 3
and 4 give the parameter values of the these vertices. Row 5 gives the index of a
subdomain if the edge is not adjacent to a face. Row 6 gives a sign and an index to
the underlying manifold. The sign indicates the direction of the edge relative the
curve. Finally, row 7 contains a relative local tolerance for the entity.

pedge is a 10-by-npe matrix representing the embeddings of the edges in faces. The
first row gives the index of the edge in edge. Rows 2 and 3 contain the start and
end vertex indices in pvertex. Rows 4 and 5 give the parameter values of the these
vertices. Row 6 and 7 give the indices of the faces to the left and right of the edge,
respectively. Row 8 gives a sign and index to the parameter curve (if any), and row
9 gives the index to the surface. Row 10 contains a relative local tolerance for the
entity.

face is a 4-by-nf matrix representing the faces of the 3D geometry. Rows 1 and 2
contain the up and down subdomain index of the face, and row 3 contains the
manifold index of the face. Row 4 contains a relative local tolerance for the entity.

mfd is a cell array or Java array of 3D manifolds.

pcurve is a cell array or Java array of parameter curves.

All properties can be accessed using the syntax get(object,property).

2D Geometry Object Properties
vertex is a 4-by-nv matrix representing the vertices of the 3D geometry. Rows 1
and 2 provide the 2D coordinates of the vertices. Row 3 provides the subdomain

TABLE 1-58: JAVA 3D MANIFOLD CLASSES

MANIFOLD USAGE DESCRIPTION

MfdBezierCurve (xyzw) Rational Bezier curve

MfdBezierTri (xyzw) Rational Bezier triangular surface

MfdBezierSurf (xyzw) Rational Bezier tensor-product
surface

MfdBSplineCurve (deg,knots,P,w) B-spline curve

MfdBSplineSurf (uDeg,vDeg,uKnots,
vKnots,P,w)

B-spline surface

MfdMeshCurve (coord,par) Mesh curve

MfdMeshSurface (coord,par,tri) Mesh surface

MfdPolChain (pol) Polygon chain manifold
227

geom0, geom1, geom2, geom3

228 | C H A P T
number. Row 4 contains a relative local tolerance for the entity. For non-tolerant
entities the tolerance is NaN.

edge is a 8-by-ne matrix representing the edges of the 3D geometry. Rows 1 and 2
contain the start and end vertex indices of the edge, 0 if they do not exists. Rows 3
and 4 give the parameter values of the these vertices. 5 and 6 contain the left and
right subdomain number of the edge. Row 7 gives a sign and an index to the array
of underlying curves. The sign indicates the direction of the edge relative the curve.
Row 8 contains a relative local tolerance for the entity.

curve is a cell array or Java array of 2D curves.

All properties can be accessed using the syntax get(object,property).

1D Geometry Object Properties
vtx is a 3-by-nvtx matrix representing the vertices of the 2D geometry. Row 1
provides the 1D coordinates of the vertices. Rows 2 and 3 provides the up and down
subdomain.

All properties can be accessed using the syntax get(object,property).

0D Geometry Object Properties
A 0D geometry object g has the property p, a 0-by-ns double of empty coordinates.
ns can be either 1 or 0, for a nonempty and empty object, respectively.

All properties can be accessed using the syntax get(object,property).

Compatibility The FEMLAB 3.0 syntax is obsolete but still supported.

See Also geom0/get, geom1/get, geom2/get, geom3/get, geomobject, geomedit,
geominfo, point1, point2, point3, curve2, curve3, face3

TABLE 1-59: JAVA 2D MANIFOLD CLASSES

MANIFOLD ARGUMENTS DESCRIPTION

MfdBezierCurve (xyzw) Rational Bézier curve manifold

MfdBSplineCurve (deg,knots,P,w) B-spline curve

MfdFileCurve (name,ind,s1,s2) Geometry M-file manifold

MfdMeshCurve (coord,par) Mesh curve

MfdPolChain (pol) Polygon chain manifold
E R 1 : C O M M A N D R E F E R E N C E

geom0/get, geom1/get, geom2/get, geom3/get
geom0/get, geom1/get, geom2/get, geom3/getPurpose Get geometry object properties.

Syntax get(g,prop)

Description get(g,prop) returns the value of the property prop for a geometry object g, which
can be a geometry object of type geom1 (1D geometry object), geom2 (2D
geometry object), or geom3 (3D geometry object).

prop is a string that contains a valid property name. The following tables list the
valid property names for geom1, geom2, and geom3 objects:

For information about the formats for the vtx property, see “1D Geometry Object
Properties” on page 228.

For information about the formats for the properties vertex, edge, and curve, see
“2D Geometry Object Properties” on page 227.

TABLE 1-60: GEOM1 PROPERTY NAMES

PROPERTY NAME DESCRIPTION

vtx Vertices

nv Number of vertices

ns Number of subdomains

mp Vertex coordinates

sd Vertex subdomain numbers

TABLE 1-61: GEOM2 PROPERTY NAMES

PROPERTY NAME DESCRIPTION

vertex Vertices

edge Edges

curve 2D manifolds

nv Number of vertices

ne Number of edges

ns Number of subdomains

mp Vertex coordinates

sd Vertex subdomain numbers

TABLE 1-62: GEOM3 PROPERTY NAMES

PROPERTY NAME DESCRIPTION

vertex Vertices

pvertex Parameter vertices
229

geom0/get, geom1/get, geom2/get, geom3/get

230 | C H A P T
For information about the formats for the properties vertex, pvertex, edge,
pedge, face, mfd, and pcurve, see “3D Geometry Object Properties” on page 226.

You can also use get to retrieve specific properties for primitives such as circ2,
rect2, block3, cylinder3, ellipsoid3, and sphere3. For example,
get(sph,'r') returns the radius of the sphere sph. In this case, type

help sphere3/get

to get a list of available property names.

For geom0 objects, the property ns returns either 1 or 0, for a nonempty and empty
object, respectively (see “0D Geometry Object Properties” on page 228).

Example Create a cylinder object and return the number of subvolumes (1), the number of
vertices (8), and the number of faces (6):

cyl = cylinder3;
ns = get(cyl,'ns')
nv = get(cyl,'nv')
nf = get(cyl,'nf')

See Also geom0, geom1, geom2, geom3, geominfo

edge Edges

pedge Parameter edges

face Faces

mfd 3D manifolds

pcurve Parameter curves

nv Number of vertices

ne Number of edges

nf Number of faces

ns Number of subvolumes

mp Vertex coordinates

sd Vertex subdomain numbers

TABLE 1-62: GEOM3 PROPERTY NAMES

PROPERTY NAME DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

geomanalyze
geomanalyzePurpose Decompose and analyze geometry of FEM problem.

Syntax fem = geomanalyze(fem, ...)
fem = geomanalyze(fem, draw, ...)
[fem, map] = geomanalyze(fem, ...)

Description fem = geomanalyze(fem,...) analyzes and updates the geometry data for the
model defined by fem.

fem = geomanalyze(fem, draw, ...) analyzes and updates the geometry data
in the model defined by fem. draw is one or several input arguments given in the
same ways as in geomcsg.

[fem, map] = geomanalyze(fem, ...) additionally returns a cell array of vectors
representing the mappings for the different domains. The vector map{k+1}
describes the mapping of k-dimensional domains. Each element in this vector is the
associated index of that domain in fem.geom before the call.

The function supports the following property/values:

If the property paircand is not specified, the geometry data in the model is the
result of the boolean operation specified in the property sf. See geomcsg for more
details.

If the property paircand is specified, an assembly geometry is created. In addition
identity pairs are created using the property imprint. See geomgroup for details.

The above properties are explained in geomcsg and geomgroup.

TABLE 1-63: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Geomnum integer 1 Geometry number

Imprint on | off on Make imprints when creating
pairs

Ns cell array of strings {} Names of input solids

Paircand all | none | cell
array of strings

not
specified

Specifies the geometries
among which pairs are created

Repairtol positive scalar 1e-6 Repair tolerance, relative to
size of union of input objects

Sf text expression union of
objects

Set formula for Boolean
operation

Solidify on | off off Create subdomains from
empty regions
231

geomanalyze

232 | C H A P T
Example The following is an example of a circle containing the source for the model, moving
through two different subdomains.

% Circle moving through two rectangles
clear fem
draw{1} = rect2(.5,1,'pos',[0 0]);
draw{2} = rect2(.6,1,'pos',[0.5 0]);
draw{3} = circ2(.1,'pos',[0.2 0.5]);
% Create analyzed geometry
fem = [];
fem = geomanalyze(fem,draw,'ns',{'R1','R2','C1'});
% Create mesh
fem.mesh = meshinit(fem,'report','off');
% Set source in circle
fem.appl.mode = 'FlPDEC';
fem.appl.equ.f = {0 0 1};
fem.appl.equ.c = 1;
fem.appl.bnd.h = 1;
fem = multiphysics(fem);
% Assemble and solve
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem,'report','off');
% Plot solution
postplot(fem,'tridata','u')
% Start loop and move geometry
nSteps = 5; % number of steps in loop
dist = .75/nSteps; % distance to move every step
for i = 1:nSteps
 % Modify geometry in draw structure
 c1 = drawgetobj(fem,'C1');
 fem = drawsetobj(fem,'C1',move(c1, dist, 0));
 % Re/analyze geometry, and update boundary conditions
 fem = geomanalyze(fem);
 % Create mesh for new geometry
 fem.mesh = meshinit(fem,'report','off');
 % Update equation system
 fem = multiphysics(fem);
 % Assemble and solve new equation system
 fem.xmesh = meshextend(fem);
 fem.sol = femstatic(fem,'report','off');
 % Plot solution
 figure, postplot(fem,'tridata','u')
end

Compatibility The default for Repairtol has changed from 1e-10 to 1e-6 in version 3.5.

See Also geomcsg, geomgroup, geomedit
E R 1 : C O M M A N D R E F E R E N C E

geomarrayr
geomarrayrPurpose Create rectangular array of geometry objects.

Syntax cg1 = geomarrayr(g1,dx)
cg1 = geomarrayr(g1,dx,n)
cg2 = geomarrayr(g2,dx,dy)
cg2 = geomarrayr(g2,dx,dy,n)
cg2 = geomarrayr(g2,dx,dy,nx,ny)
cg3 = geomarrayr(g3,dx,dy,dz)
cg3 = geomarrayr(g3,dx,dy,dz,n)
cg3 = geomarrayr(g3,dx,dy,dz,nx,ny,nz)

Description cg1 = geomarrayr(g1,dx) distributes copies of the 1D geometry object g1 with
absolute displacements, dx with respect to geometry object g1. cg1 is a cell array
with the distributed geometry objects. The cg1 cell array has the same size as dx.

cg1 = geomarrayr(g1,dx,n) distributes copies of the 1D geometry object g1, n
times with the relative scalar displacements dx.

cg2 = geomarrayr(g2,dx,dy) distributes copies of the 2D geometry object g2
with absolute displacements, dx and dy with respect to geometry object g2. The
displacements dx and dy are matrices of equal size. cg2 is a cell array with the
distributed geometry objects. The cg2 cell array has the same size as dx and dy.

cg2 = geomarrayr(g2,dx,dy,n) distributes copies of the 2D geometry object g2,
n times with the relative scalar displacements dx and dy.

cg2 = geomarrayr(g2,dx,dy,nx,ny) distributes copies of the 2D geometry
object g2, nx, and ny times in corresponding directions, with the relative
displacements dx and dy. The geometry g2 is included as the first item in the output
cell array cg2.

cg3 = geomarrayr(g3,dx,dy,dz) distributes copies of the geometry object g3
with absolute displacements, dx, dy, and dz with respect to geometry object g3. The
displacements dx, dy, and dz are matrices of equal size. cg3 is a cell array with the
distributed geometry objects. The cg3 cell array has the same size as dx, dy, and dz.

cg3 = geomarrayr(g3,dx,dy,dz,n) distributes copies of the geometry object g3,
n times with the relative scalar displacements dx, dy, and dz.

cg3 = geomarrayr(g3,dx,dy,dz,nx,ny,nz) distributes copies of the geometry
object g3, nx, ny, and nz times in corresponding directions, with the relative
displacements dx, dy, and dz. The geometry g3 is included as the first item in the
output cell array cg3.
233

geomarrayr

234 | C H A P T
The input argument g1, g2, or g3 could also be a cell array of geometry objects. In
that case the corresponding output argument cg1, cg2, or cg3 is a cell array of cell
arrays.

Example The following commands are used to create a block object with four equally sized
holes.

g=geomcsg(geomarrayr(cylinder3,4,4,0,2,2,1));
g2=block3(10,14,5,'corner',[-3 -5 -4])-g;
geomplot(g2)

See Also geom0, geom1, geom2, geom3, move
E R 1 : C O M M A N D R E F E R E N C E

geomcoerce
geomcoercePurpose Compose and coerce geometry objects.

Syntax [g,...]=geomcoerce(class,ol,...)

Description g=geomcoerce(class,ol) forms the union of the geometry objects in the cell
array ol, coerces the composite object to the class class, and returns the coerced
geometry object in g. Class is one of the strings: solid, face, curve, or point.

The function geomcoerce accepts the following property/values:

For information on the geometry tables stx, ftx, ctx, and ptx, see geomcsg.

Compatibility The default for Repairtol has changed from 1e-10 to 1e-6 in version 3.5.

See Also geomcomp, geomcsg, geomanalyze

TABLE 1-64: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx | ctx | ptx
| cell array of these

Outputs (except the
output geometry)

Repairtol positive scalar 1e-6 Repair tolerance, relative
to size of union of inputs
235

geomcomp

236 | C H A P T
geomcompPurpose Compose (analyze) geometry objects.

Syntax [g,...]=geomcomp(ol,...)

Description [g,...]=geomcomp(ol,...) composes the geometry objects in the cell array ol
and returns the composite (analyzed) geometry in g.

The function geomcomp accepts the following property/values:

The function works as follows:

1 The solids among the input objects are combined using the set formula in the
property Sf (the default is union). The operators +, *, and - correspond to the
set operations union, intersection, and difference. The names of the solids are
given by the property Ns.

2 The union of the resulting solid with the input non-solids is formed.

3 Faces, edges, and vertices are deleted according to the properties Face, Edge,
Point, see geomdel.

4 If all input objects are of the same class (solid, face, curve, point), the result is an
object of the same class.

TABLE 1-65: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Edge all | none none Delete isolated edges on a
face (3D). Delete interior
edges and edges not
adjacent to a subdomain
(2D).

Face all | none none Delete interior faces (3D)

Ns cell array of strings Names of input solids

Out stx | ftx | ctx | ptx
| cell array of these

Outputs (except the
output geometry)

Point all | none none in 3D
none in 2D
all in 1D

Delete isolated vertices
on a face (3D). Delete
isolated vertices in a
subdomain (2D).

Repairtol positive scalar 1e-6 Repair tolerance, relative
to size of union of inputs

Sf text expression union of
objects

Set formula for Boolean
operation
E R 1 : C O M M A N D R E F E R E N C E

geomcomp
5 If requested, the outputs stx, ftx, ctx, and ptx are computed, see geomcsg.

Compatibility The default for Repairtol has changed from 1e-10 to 1e-6 in version 3.5.

See Also geomcsg, geomdel, geomanalyze, geomcoerce
237

geomcsg

238 | C H A P T
geomcsgPurpose Analyze geometry model.

Syntax g = geomcsg(fem,...)
g = geomcsg(draw,...)
g = geomcsg(sl,...)
g = geomcsg(sl,fl,...)
g = geomcsg(sl,fl,cl,...)
g = geomcsg(sl,fl,cl,pl,...)
g = geomcsg(sl,cl,...)
g = geomcsg(sl,cl,pl,...)
g = geomcsg(sl,pl,...)
[g,st] = geomcsg(sl,...)
[g,st,ft] = geomcsg(sl,fl,...)
[g,st,ft,ct] = geomcsg(sl,fl,cl,...)
[g,st,ft,ct,pt] = geomcsg(sl,fl,cl,pl,...)
[g,st,ct] = geomcsg(sl,cl,...)
[g,st,ct,pt] = geomcsg(sl,cl,pl,...)
[g,st,pt] = geomcsg(sl,pl,...)
[g,...] = geomcsg(sl,...,'Out',{'g' ...},...)

Description g = geomcsg(fem) analyzes the geometry model in fem.draw, by performing
Boolean operations on the solid objects and superimposing the objects of lower
dimension on top of the result of the Boolean operations. The result is an analyzed
geometry object g.

g = geomcsg(draw) analyzes the geometry model draw and returns the geometry
object g.

g = geomcsg(ol) decomposes the geometry objects in the cell array ol into the
analyzed geometry object g.

g = geomcsg(sl,fl,...) decomposes the 3D solid objects sl and the 3D face
objects fl into the analyzed 3D geometry g.

g = geomcsg(sl,fl,cl,...) decomposes the 3D solid objects sl, the 3D face
objects fl, and the 3D curve objects cl into the analyzed 3D geometry g.

g = geomcsg(sl,fl,cl,pl,...) decomposes the 3D solid objects sl, the 3D
face objects fl, the 3D curve objects cl, and the 3D point objects pl into the
analyzed 3D geometry g.

g = geomcsg(sl,cl,...) decomposes the 2D solid objects sl and the 2D curve
objects cl into the analyzed 2D geometry g.

g = geomcsg(sl,cl,pl,...) decomposes the 2D solid objects sl, the 2D curve
objects cl, and the 2D point objects pl into the analyzed 2D geometry g.
E R 1 : C O M M A N D R E F E R E N C E

geomcsg
g = geomcsg(sl,pl,...) decomposes the 1D solid objects sl and the 1D point
objects pl into the analyzed 1D geometry g.

[g,st] = geomcsg(sl) additionally returns a solid table, st, which relates the
original solid objects in sl to the subdomains in g.

[g,st,ft] = geomcsg(sl,fl,...) additionally returns a face table, ft, which
relates the original face objects in fl to the face segments in g.

[g,st,ft,ct] = geomcsg(sl,fl,cl,...) additionally returns the curve table,
ct, which relates curve objects in cl to edge segments in g.

[g,st,ft,ct,pt] = geomcsg(sl,fl,cl,pl,...) additionally returns the point
table, pt, which relates point objects in pl to vertices in g.

[g,ct] = geomcsg(sl,cl,...) additionally returns the curve table, ct, for 2D
geometry objects.

[g,ct,pt] = geomcsg(sl,cl,pl,...) additionally returns the point table, pt,
for 2D geometry objects.

[g,pt] = geomcsg(sl,pl,...) additionally returns the point table, pt, for 1D
geometry objects.

sl, fl, cl, and pl are cell arrays containing solid objects, face objects, curve objects,
and point objects, respectively.

st, ft, ct, and pt are sparse matrices where column number i corresponds to the
ith object in sl, fl, cl, or pl, and row number j corresponds to the object index
of the corresponding geometric entity in g.

The function geomcsg accepts the following property/values:

TABLE 1-66: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Ns cell array of strings Names of input solids

Out g | st | ft | ct | pt |
stx | ftx | ctx | ptx
| cell array of these

g Output variables

Repairtol positive scalar 1e-6 Repair tolerance, relative
to the size of the union of
the input objects
239

geomcsg

240 | C H A P T
The function works as follows:

1 The solids among the input objects are combined using the set formula in the
property Sf (the default is union). The operators +, *, and - correspond to the
set operations union, intersection, and difference. The names of the solids are
given by the property Ns.

2 The union of the resulting solid with the input non-solids is formed.

3 If Solidify='on', empty regions are converted to solid subdomains.

4 If requested, the outputs stx, ftx, ctx, ptx, st, ft, ct, and pt are computed.

The outputs stx, ftx, ctx, and ptx correspond to st, ft, ct, and pt but contain
more detailed information about the relations between the original solid objects,
face objects, curve objects, and point objects and the subdomains, faces, edge
segments, and vertices in the geometry object g. stx, ftx, ctx, and ptx are cell
arrays of the same length as the cell array ol = {sl{:},fl{:},cl{:},pl{:}}.
Each cell corresponds to a geometry object in ol and contains a sparse matrix whose
elements encode maps from the geometric entities in that object to those in the
output object g.

 stx is a cell array of sparse matrices, each corresponding to a geometry object in ol.
In each matrix, column number i corresponds to subdomain number i − 1 in the
corresponding object in ol, and row number j corresponds to the final subdomain
index j − 1 in g. In both cases, subdomain index 0 refers to the complement of the
union of all subdomains. If a geometry object in ol contains no subdomains, the
single column of the corresponding matrix in stx shows how subdomain 0 is
mapped to g.

 ftx (in 3D only) is a cell array of sparse matrices, each corresponding to a geometry
object in ol. In each matrix, column number i corresponds to face number i in the
corresponding object in ol, and row number j corresponds to the final face index j
in g. If a geometry object in ol contains no faces, the corresponding matrix in ftx
will be empty.

Sf text expression union of
objects

Set formula for boolean
operation

Solidify off | on off Create subdomains from
empty regions

TABLE 1-66: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

geomcsg
 ctx (in 2D and 3D only) is a cell array of sparse matrices, each corresponding to a
geometry object in ol. In each matrix, column number i corresponds to edge
number i in the corresponding object in ol, and row number j corresponds to the
final edge index j in g. If a geometry object in ol contains no edges, the
corresponding matrix in ctx will be empty.

 ptx is a cell array of sparse matrices, each corresponding to a geometry object in OL.
In each matrix, column number i corresponds to vertex number i in the
corresponding object in ol, and row number j corresponds to the final vertex index
j in g. If a geometry object in ol contains no vertices, the corresponding matrix in
ptx will be empty.

 Ns is a cell array of variable names that relates the elements in sl to variable names
in sf. Each element in ns contains a variable name. Each such variable assigns a
name to the corresponding solid object in sl. This way you can refer to a solid
object in sl in the set formula sf.

 Sf represents a set formula with variable names from ns. The operators +, *, and -
correspond to the set operations union, intersection, and set difference, respectively.
The precedence of the operators + and - are the same. * has higher precedence. You
can control the precedence with parentheses.

Geometry Model
The geometry model fem.draw contains the following fields:

TABLE 1-67: GEOMETRY MODEL OR DRAW STRUCTURE

FIELD 1D 2D 3D DESCRIPTION

s.objs √ √ √ Cell array of solid objects

s.name √ √ √ Cell array of names (default for the
property ns)

s.sf √ √ √ String with Boolean expression (default
for the property sf)

f.objs √ Cell array of face objects

f.name √ Cell array of names (ignored by
geomcsg)

c.objs √ √ Cell array of curve objects

c.name √ √ Cell array of names (ignored by
geomcsg)
241

geomcsg

242 | C H A P T
Examples 3D Geometries
Perform a solid operation on two intersecting cylinders:

s1=cylinder3(2,2,[0.5 0.5 -1],[0 0 1]);
s2=cylinder3(1,1,[0.5 0.5 -0.5],[0 0 1]);
[g,st,stx]=geomcsg({s1,s2},'out',{'g','st','stx'}, ...
 'ns',{'Cyl1','Cyl2'},'sf','Cyl1-Cyl2');

To easily create solid objects, use the overloaded operators +, *, and -, instead of
calling geomcsg:

s=s1-s2;
geomplot(s,'facemode','off')

s and g are equivalent, except that g is a geom3 object while s is a solid3 object.

2D Geometries
Create a unit circle solid object and a unit square solid object:

c1 = circ2;
sq1 = square2;
g = geomcsg({c1 sq1},{},'ns',{'a' 'b'},'sf','a-b');

Using object arithmetic for solid objects, the same result can be obtained by typing.

g = c1-sq1;

You can plot the geometry object by

geomplot(g,'sublabel','on','edgelabel','on')

or just

geomplot(g)

You can obtain the number of subdomains and edge segment by just typing g or by
explicitly getting the object properties.

g
get(g,'nmr')
get(g,'nbs')

There is one subdomain, with five edge segments, three circle edge segments, and
two line edge segments.

p.objs √ √ √ Cell array of point objects.

p.name √ √ √ Cell array of names (ignored by
geomcsg)

TABLE 1-67: GEOMETRY MODEL OR DRAW STRUCTURE

FIELD 1D 2D 3D DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

geomcsg
1D Geometries
Create a simple 1D geometry by composing two 1D solids:

g1 = geomcsg({solid1([0 0.1 4]),solid1([3 4])});
geomplot(g1,'pointlabel','on','sublabel','on')

The resulting geometry consists of three subdomains and four vertices.

Compatibility The default for Repairtol has changed from 1e-10 to 1e-6 in version 3.5.

See Also geomanalyze, geomgroup, geomdel, geomcoerce, geomcomp, geominfo,
geomplot
243

geomdel

244 | C H A P T
geomdelPurpose Delete points, edges, or faces in a geometry.

Syntax [g,...] = geomdel(g1,...)
g = geomdel(g1)

Description [g,...] = geomdel(g1,...) deletes points, edges, or faces in the geometry
object g1 according to the specified properties. The resulting object is of the same
type (solid, face, curve, or point) as the original one.

g = geomdel(g1) deletes all interior boundaries.

The function geomdel accepts the following property/values:

In 1D, Point can either be an array of integers specifying which points that are
deleted or one of the strings all or none. all means that all interior points are
deleted and none that no points are deleted. The default value is all.

In 2D, Edge all means that all interior boundaries and edges outside any
subdomain are deleted and none that no edges are deleted. The default value is all.
Point all means that all vertices lying inside a subdomain are deleted and none
that no vertices are deleted. The default value is none. Only isolated vertices can be
deleted.

In 3D, Face all means that all faces inside or between subdomains are deleted and
none that no faces are deleted. The default value is all. Edge all means that all
edges lying inside faces are deleted and none that no edge segments are deleted. The

TABLE 1-68: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Edge integer vector |
all | none

all Specifies which edges that
are deleted

Face integer vector |
all | none

all Specifies which faces that
are deleted

Out stx | ftx | ctx |
ptx

none Output variables (only in
3D). For more
information, see the entry
geomcsg

Point integer vector |
all | none

all in 3D
none in 2D
all in 1D

Specifies which vertices
that are deleted

Subdomain integer vector |
all | none

none Specifies which
subdomains that are
deleted
E R 1 : C O M M A N D R E F E R E N C E

geomdel
default value is all. Only edge segments that are not face boundaries can be
deleted. Point all means that all vertices lying in faces are deleted and none that
no vertices are deleted. The default value is none. Only vertices that are not adjacent
to an edge can be deleted.

Examples The following command generates a block with a face inside, partitioning the
subdomain into two parts:

g = geomcsg({block3},...
{face3([0.5 0.5;0.5 0.5],[0 1;0 1],[0 0;1 1])});

Remove the inner face and all interior edge segments:

g1=geomdel(g);

See Also geomcsg
245

geomedit

246 | C H A P T
geomeditPurpose Edit geometry object.

Syntax [g,...] = geomedit(g0,...)
g1 = geomedit(g)
g2 = geomedit(g, g1)

Description g1 = geomedit(g, ...) splits the geometry object g into primitive objects g1 that
can be edited. Each object in g1 is associated with the object g so that it is possible
to recreate the composite object again.

 g2 = geomedit(g, g1) creates the geometry g2 by using the geometry objects in
the cell array g1, with associative information to g, to create a new composite
geometry object that is as similar as possible to g.

 geomedit only works for 2D geometries.

The function geomedit accepts the following property/values:

Examples The following commands create a geometry containing eight curves, then splits the
geometry into primitive objects, and finally recreates the geometry with one
primitive object omitted:

g = curve2(rect2+circ2);
gg = geomedit(g);
[g2, ctx] = geomedit(g, gg([1:4 6:end]), 'out', {'ctx'});

See Also geomcsg, geom0, geom1, geom2, geom3, geomanalyze

TABLE 1-69: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ctx | ptx none Output variables. For
more information, see the
entry geomcsg
E R 1 : C O M M A N D R E F E R E N C E

geomexport
geomexportPurpose Export geometry objects to file.

Syntax geomexport(filename, geoms,...)

Description geomexport(filename, geoms...) exports the geometry data in the cell array
geoms of geometry objects to a file.

filename can be any of the following formats:

Note 1: This format requires a license for the COMSOL CAD Import Module.
Only geometries imported using the CAD Import Module (cad3part objects) can
be exported to Parasolid format.

The following properties are supported

 Report determines if a progress window appears during the call.

Examples r = rect2;
geomexport('foo.dxf',{r})
b = block3;
geomexport('bar.mphtxt',{b})

Diagnostics geomexport replaces the functionality of the 3.1 function dxfwrite.

See Also geom0, geom1, geom2, geom3, meshexport, geomimport

TABLE 1-70: VALID FILE FORMATS

FILE FORMAT NOTE FILE EXTENSIONS

COMSOL Multiphysics Binary .mphbin

COMSOL Multiphysics Text .mphtxt

Parasolid Binary 1 .x_b

Parasolid Text 1 .x_t

DXF .dxf

TABLE 1-71: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY
VALUE

DEFAULT DESCRIPTION

Report on | off on Display a progress window
247

geomfile

248 | C H A P T
geomfilePurpose Geometry M-file.

Syntax ne = geomfile
d = geomfile(bs)
[x,y] = geomfile(bs,s)

Description The Geometry M-file is a template format for a user-specified M-file that contains
the complete geometry for a model. You can specify both 1D and 2D geometries by
using the Geometry M-file format. The geomfile format is not supported in 3D.

1D Geometry
For 1D geometries, the Geometry M-file essentially contains a set of points, and
geometry information on the intervals between these point.

ne = geomfile returns the number of boundary points ne.

d = geomfile(bs) returns a matrix d with one column for each boundary point
specified in bs, with the following contents:

• Row 1 contains the x-coordinate of the boundary point

• Row 2 contains the label of the “up” subdomain (“up” is the positive direction)

• Row 3 contains the label of the “down” subdomain (“down” is the negative
direction)

The complement of the union of all subdomains is assigned the subdomain number
0.

2D Geometry
2D subdomains are represented by parameterized edge segments. Both the
subdomains and edge segments are assigned unique positive numbers as labels. The
edge segments cannot overlap. The full 2D problem description can contain several
nonintersecting subdomains, and they can have common interior boundary
segments. The boundary of a subdomain can consist of several edge segments. Each
subdomain boundary need to consist of at least two edge segments. All edge
segment junctions must coincide with edge segment endpoints.

ne = geomfile returns the number of edge segments ne.

d = geomfile(bs) returns a matrix d with one column for each edge segment
specified in bs, with the following contents:

• Row 1 contains the start parameter value

• Row 2 contains the end parameter value
E R 1 : C O M M A N D R E F E R E N C E

geomfile
• Row 3 contains the label of the left-hand subdomain (left with respect to
direction induced by start and end from row 1 and 2)

• Row 4 contains the label of the right-hand subdomain

The complement of the union of all subdomains is assigned the subdomain number
0.

[x,y] = geomfile(bs,s) produces coordinates of edge segment points. bs
specifies the edge segments and s the corresponding parameter values. bs can be a
scalar.

 Examples The function cardg defines the geometry of a cardioid:

function [x,y]=cardg(bs,s)
%CARDG Geometry File defining the geometry of a cardioid.
nbs=4;

if nargin==0
 x=nbs;
 return
end
dl=[0 pi/2 pi 3*pi/2
 pi/2 pi 3*pi/2 2*pi;
 1 1 1 1
 0 0 0 0];

if nargin==1
 x=dl(:,bs);
 return
end

x=zeros(size(s));
y=zeros(size(s));
[m,n]=size(bs);
if m==1 & n==1
 bs=bs*ones(size(s)); % expand bs
elseif m~=size(s,1) & n~=size(s,2),
 error('bs must be scalar or of same size as s');
end

r=2*(1+cos(s));
x(:)=r.*cos(s);
y(:)=r.*sin(s);

 You can test the function by typing:

r 2 1 φ()cos+()=
249

geomfile

250 | C H A P T
clear fem
fem.geom = 'cardg'
geomplot(fem), axis equal
fem.mesh = meshinit(fem);
meshplot(fem), axis equal

Then solve the PDE problem –∆u = 1 on the geometry defined by the cardioid. Use
Dirichlet boundary conditions u = 0 on ∂Ω . Finally plot the solution.

fem.equ.c = 1;
fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postsurf(fem,'u')

Cautionary The Geometry M-file format is not supported in 3D.

In 2D, each subdomain boundary must consist of at least two edge segments.

See Also geom0, geom1, geom2, geom3, geominfo, meshinit, meshrefine
E R 1 : C O M M A N D R E F E R E N C E

geomgetwrkpln
geomgetwrkplnPurpose Retrieves coordinates for a work plane.

Syntax [p_wrkpln,localsys] = geomgetwrkpln(type,args)

Description [p_wrkpln,localsys] = geomgetwrkpln(type,args) returns the coordinate
matrix p_wrkpln, spanning a plane, and the local coordinate system localsys of
that plane, according to the string type and the cell array args.

The columns of the 3-by-3 coordinate matrix p_wrkpln contain point coordinates
for 3 non co-linear points spanning a work plane with a local z direction defined by
lz = cross(p(:,2)-p(:,1),(p(:,3)-p(:,1)). The vector lx =
p(:,2)-p(:,1) is defined to be the local x-axis, and the local y-axis is defined as ly
= cross(lz,p(:,2)-p(:,1)). The corresponding normalized unit vectors are
nlx, nly, and nlz, respectively.

The local coordinate system localsys is formed as localsys =
[p(:,1),nlx,nly,nlz], where p(:,1) is the position of the local origin and nlx,
nly, and nlz specifies unit vectors in the direction of the positive local coordinate
axes.

Work Plane of Type Explicit

[p_wrkpln,localsys] = geomgetwrkpln('explicit',{p_wrkpln1})

copies the coordinates p_wrkpln1 and forms the corresponding local coordinate
system.

Work Plane of Type Quick

[p_wrkpln,localsys] = geomgetwrkpln('quick',{coordplane,offset})

forms a work plane parallel to the coordinate plane defined by coordplane, which
can have any of the values xy, yz, or zx. The real scalar offset specifies the signed
offset from the coordinate plane.

Work Plane of Type FaceParallel

[p_wrkpln,localsys] =
 geomgetwrkpln('faceparallel',{g,fn,dir,offset})

creates a work plane, parallel to face fn in 3D geometry object g. The direction dir
takes the values +1 or -1 and specifies if the local z-axis, localsys(:,4), should be
in the direction of the face’s normal, or reversed normal, respectively. The scalar
offset specifies the displacement along the local z-axis for the work plane with
251

geomgetwrkpln

252 | C H A P T
respect to the face. The face, with number fn, must be planar. If the face is not
planar, within the system tolerance, an error message occurs.

Work Plane of Type EdgeAngle

[p_wrkpln,localsys] =
 geomgetwrkpln('edgeangle',{g,en,angle,fn,dir})

creates a work plane rotated angle radians about the edge en in the 3D geometry
object g. The zero-angle is defined by the tangent plane of the face with face number
fn. The face fn must be adjacent to the edge en and the face must have a single
tangent plane common to all points of the edge en. The direction dir takes the
values +1 or -1 and specifies if the rotation should be in positive or negative
direction, with respect to the direction of the edge en, respectively. The matrix
p_wrkpln, and the system localsys, referred to above, are formed based on the
coordinate system induced by the selected edge, where the edge becomes the
positive x-axis.

Work Plane of Type Vertices

[p_wrkpln,localsys] =
 geomgetwrkpln('vertices',{gl,vn,dir,offset})

creates a work plane spanned by the three vertices vn in the 3D geometry objects
gl. vn is an index vector of length 3, corresponding to the entries in the cell array
gl. The direction dir takes the values +1 or -1 and specifies if the local z-axis,
localsys(:,4), should be in the direction of the positive normal, or reversed
normal, respectively. The positive normal is defined as the cross product of the
vectors in the direction from vn(1) to vn(2), and from vn(1) to vn(3),
respectively. The scalar offset specifies the displacement along the local z-axis for
the work plane with respect to the plane containing the vertices vn. The matrix
p_wrkpln, and the system localsys, referred to above, are formed based on the
chosen vertices such that, for offset = 0, the vector from vn(1) to vn(2) forms
the local x-axis. The local y-axis is formed based on this vector and the local z-axis,
as to produce a right-handed local coordinate system.

See Also geomposition
E R 1 : C O M M A N D R E F E R E N C E

geomgroup
geomgroupPurpose Groups geometry objects into an assembly.

Syntax [g, ...] = geomgroup(gl, ...)
[g, ...] = geomgroup(draw, ...)
[g, ...] = geomgroup(fem, ...)

Description [g, ...] = geomgroup(gl, ...) creates an assembly object g from the geometry
objects in the cell array gl.

[g, ...] = geomgroup(draw, ...) creates an assembly object g from the
geometry objects in the draw struct draw.

[g, ...] = geomgroup(fem, ...) creates an assembly object g from the
geometry objects in the draw struct fem.draw.

Note that the parts of assembly g are not identical to gl. They are canonized and
may have additional domains due to imprints.

The function supports the following properties:

Note: If the first syntax from above is used and the property paircand is a cell array
of strings, also the property ns has to be specified.

The output pairs is a cell array of sparse matrices containing the pair information
of the operation. Element i contains information for pairs of domains of dimension
i − 1. The column refers to the source and the row to the destination.

TABLE 1-72: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Imprint on | off on Make imprints, when creating pair
information

Ns cell array of
strings

Names of input solids

Out cell array of
strings: g, gt,
st, ft, ct, pt,
stx, ftx, ctx,
ptx, pairs

{'g'} Outputs

Paircand all | none |
cell array of
strings

all Specifies the geometries which are
used to create the pair information

Repairtol positive scalar 1e-6 Repair tolerance, relative to size of
union of input objects
253

geomgroup

254 | C H A P T
The output gt is a sparse matrix that relates the parts in the assembly to the original
geometry objects. If an object has not been modified during the operation the value
in gt is 1, otherwise 2.

Examples [g pairs] = geomgroup({rect2 move(rect2,[1 0.5])},'out',...
{'g' 'pairs'});
[gg,stx,ctx,ptx] = getparts(g,'out',{'stx','ctx','ptx'})

Compatibility The default for Repairtol has changed from 10−10 to 10−6 in version 3.5.

See Also geomcsg, geomanalyze, getparts
E R 1 : C O M M A N D R E F E R E N C E

geomimport
geomimportPurpose Import geometry objects from a file.

Syntax gl = geomimport(filename,...)

Description gl = geomimport(filename,...) reads the geometry file filename and
translates the geometry data using the specified properties into a cell array of
geometries gl.

filename can be of any of the following formats:

Note 1: This format requires a license for the COMSOL CAD Import Module.

Note 2: This format requires a license for a format-specific module from COMSOL.

Note 3: This format requires a license for any of the following modules: AC/DC
Module, MEMS Module, or the RF Module.

TABLE 1-73: SUPPORTED FILE FORMATS

FILE FORMAT NOTE FILE EXTENSIONS OBJECT TYPE IN COMSOL
MULTIPHYSICS

Autodesk Inventor 2 .ipt, .iam CAD object

CATIA V4 2 .model CAD object

CATIA V5 2 .CATPart, .CATProduct CAD object

COMSOL Multiphysics
Binary

.mphbin CAD and/or
COMSOL objects

COMSOL Multiphysics
Text

.mphtxt CAD and/or
COMSOL objects

DXF .dxf COMSOL object

GDS 3 .gds COMSOL object

IGES 1 .igs, .iges CAD object

NETEX-G 3 .asc COMSOL object

ODB++(X) 3 .xml COMSOL object

Parasolid 1 .x_t, .x_b CAD object

Pro/ENGINEER 2 .prt, .asm CAD object

SAT 1 .sat, .sab CAD object

STEP 1 .step, .stp CAD object

STL .stl COMSOL object

VDA-FS 2 .vda CAD object

VRML .wrl, .vrml COMSOL object
255

geomimport

256 | C H A P T
This function supports the following properties:

When importing COMSOL Multiphysics files the function ignores all properties,
except for Report.

For DXF import, the default for Coercion is curve.

For STL and VRML imports, the command supports all properties in the function
meshenrich.

 Coercion can force the import process to knit boundary segments together and
possibly try to form solid entities.

 Keepbnd, Keepfree, and Keepsolid indicate which type of entities the module
should consider in the imported data.

 Repair determines if the module should process the imported data to improve the
quality. These operations include snapping of points, removal of small entities, and
improvement of geometric data.

 Repairtol is a relative tolerance. It indicates the size of entities to remove, which
points to snap together, and similar features.

TABLE 1-74: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Check on | off on Check imported data for errors.
(Only when importing CAD
Import Module formats.)

Coercion solid | face |
curve | point
| off

solid Coerce the imported geometry

Keepbnd on | off on Keep boundary entities

Keepfree on | off off Keep free edge/point entities

Keepsolid on | off on Keep solid entities

Repair on | off on Repair imported data

Repairtol positive scalar 1e-4 Repair tolerance

Importtol positive scalar 1e-5 Absolute repair tolerance used
when importing CAD Import
Module formats

Report on | off on Display a progress window

Layers cell array Determines which layers to be
imported when importing DXF,
GDS, ODB++, and NETEX-G.
E R 1 : C O M M A N D R E F E R E N C E

geomimport
 Importtol is an absolute tolerance. It indicates the size of entities to remove, which
points to snap together, and similar features. It is used when importing a file using
the CAD Import module, replacing Repairtol.

 Report determines if a progress window should appear during the call.

The property Layers controls which DXF layers are imported. The value can be
either a cell array of strings, containing the names of the layers that are to be
imported, or an array of integers, where the integers refer to the order in which the
DXF layers occur in the DXF file. This property is also used for ODB++, NETEX-G,
and GDS import to identify which layers to import, but then only a cell array of
strings is allowed as the value. In addition, the ODB++, NETEX-G, and GDS file
formats all support the set of properties listed in Table 1-75.

TABLE 1-75: VALID PROPERTY/VALUE PAIRS FOR GDS, ODB++, AND NETEX-G

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Edge on | off on Keeps interior edges of nets

Cell string Name of top net or cell to
import for GDS and NETEX-G
files

Importtype full3d |
shell

full3d Determines if metal layers are
imported as solid or faces

Grouping all | layers
none

all The grouping of the imported
layers, where all returns one
single object, and layers gives
you one object per layer. In 2D,
all is the same as layer.

Bondtype edge | block |
cylinder

edge Specifies how bond wires are
modeled for NETEX-G files

Importdielec
trics

on | off on Import dielectric regions

Table cell matrix Table representing the settings
for layer specific changes (rows
x 4). Columns are row number,
name, type, and thickness.

Leftmargin positive scalar 0 Distance to the left edge of the
dielectric region

Rightmargin positive scalar 0 See Leftmargin

Topmargin positive scalar 0 See Leftmargin

Bottommargin positive scalar 0 See Leftmargin
257

geomimport

258 | C H A P T
For more details, see the “ECAD Import” section in the User's Guide of the AC/
DC Module, MEMS Module, or the RF Module.

Examples The following example imports the DXF file demo1.dxf as a curve2 object:

filepath = which('demo1.dxf');
g = geomimport(filepath);
geomplot(g{1})

Diagnostics geomimport replaces the functionality of the COMSOL Multiphysics 3.0 functions
dxfread, gdsread, igesread, stlread, and vrmlread. We no longer support
those functions and their properties, and therefore do not document them.

See Also geom0, geom1, geom2, geom3, meshimport, geomexport

Abovemargin positive scalar 0 Add extra layer above the
imported geometry

Belowmargin positive scalar 0 See Abovemargin

Sdim 2 | 3 2 Import to 2D or 3D

Findarcs on | off on Turns on arc recognition for
GDS and NETEX-G files

Arcradiustol positive scalar 0.4 Tolerance for arc curvature

Arcminangle positive scalar pi/50 Minimum angle for segments to
part of an arc (in radians).

Arcmaxangle positive scalar pi/5 Maximum angle for segments

Findlines on | off on Only available when findarcs
is turned on. Also tries to find
segments that lies on a straight
line.

Ignoretext on | off on Ignore objects marked as text in
ODB++ files

TABLE 1-75: VALID PROPERTY/VALUE PAIRS FOR GDS, ODB++, AND NETEX-G

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

geominfo
geominfoPurpose Retrieve geometry information.

Syntax [xx,...] = geominfo(geom,'Out', {'xx' ...},...)

Description [xx,...] = geominfo(geom,'Out', {'xx',...},...) retrieves geometry
information specified in property Out from the analyzed geometry geom.

geom is an analyzed geometry, which is a geometry object, a mesh object or a
Geometry M-file. The two latter formats are not supported in 3D. The
Decomposed Geometry matrix of the PDE Toolbox is supported as well, but this
alternative may be eliminated in future releases. For details on analyzed geometries,
see the chapter “Geometry Modeling and CAD Tools” on page 23 of the COMSOL
Multiphysics User’s Guide or the entries geomcsg, geomfile, and meshinit in this
manual.

In the following description, a geometric entity refers to a vertex, an edge segment,
a face segment, or a subdomain.

• If geom is a 1D analyzed geometry, the geometric entities are vertices and 1D
subdomains that are bounded by vertices.

• If geom is a 2D analyzed geometry, the geometric entities are vertices, 1D edge
segments bounded by vertices, that are assumed to be smooth in the interior, that
is, sufficiently differentiable, and 2D subdomains bounded by edge segments.

• If geom is a 3D analyzed geometry, the geometric entities are vertices, 1D edge
segments bounded by vertices, 2D smooth face segments bounded by edges, and
3D subdomains bounded by face segments.

The function geominfo accepts the following property/values:

TABLE 1-76: VALID PROPERTY/VALUE PAIRS.

PROPERTY 1D 2D 3D DESCRIPTION

Od √ √ √ Vector that contains geometric entity dimension
numbers

Odp √ √ √ Matrix with columns that contain geometric
entity dimension number pairs

Out √ √ √ Output arguments, cell array containing strings
specifying the output arguments

Par √ √ √ Cell array, where each element is a cell array
containing two matrices defining geometric
entity number and parameter values
259

geominfo

260 | C H A P T
Out specifies the geometry information to retrieve and return as output arguments.
It is a cell array that can contain string equal to the entries given in Table 1-77.

Par is a cell array containing parameter values and corresponding numbers of
geometric entities. Par{m} is a cell containing the matrix Bm and the matrix Sm. Bm
is of size nm1-by-nm2, and gives the numbers of entities of dimension d for which
the parameters, in the nm1-by-nm2-by-d array Sm, are valid. Bm can also be a scalar or
a vector, and as such it is expanded to the size of Sm. Note that the size of the third
dimension in Sm, that is, d, defines if the entity number refers to a vertex (d = 0 or
Par{m} = {Bm}), an edge (d = 1), or a face (d = 2).

The following table lists the valid outputs to geominfo.

TABLE 1-77: OUTPUT ARGUMENTS

OUT 1D 2D 3D DESCRIPTION INPUT
PROPERTY

gd √ √ √ Geometry dimension

no √ √ √ Number of objects of the
dimensions specified in Od

Od

adj √ √ √ Adjacency relations of entities in
Odp

Odp

xx √ √ √ Coordinate information Par

dx √ √ First-order derivative information Par

ddx √ √ Second-order derivative
information

Par

nor √ √ Normal vector information Par

ff1 √ First fundamental matrices Par

ff2 √ Second fundamental matrices Par

crv √ √ Curvature information Par

rng √ √ Parameter range of geometric
entities

Od

ud √ √ √ Up and down subdomains

se √ √ √ Start and end vertices of all 1D
primitive objects

nmr √ √ √ Number of subdomains

nbs √ √ √ Number of boundary segments

mp √ Coordinates of vertices

sd √ Vertex subdomain numbers
E R 1 : C O M M A N D R E F E R E N C E

geominfo
no is a vector of the same size as Od, containing the number of primitive objects of
the dimension as specified in Od.

adj is a cell array of adjacency matrices, where adj{k} corresponds to Odp(:,k),
and is a sparse matrix where abs(sign(adj{k}(i,j))) = 1 iff object i of
dimension Odp(1,k) is adjacent to object j of dimension Odp(2,k). If the relation
Odp(1,k) and Odp(2,k) can be given an orientation, the matrix entries +1 and −1
denotes positive or negative orientation, respectively. If both oriented and non
orientable relations exist, −1, +1, and +2 are used, where +2 indicates a non oriented
relation. If Odp is a vector of length 2, then adj is a sparse matrix. For subdomain
information, the 0-domain is represented as output domain number 1. Thus, there
is always an offset of 1 for subdomains.

xx is a cell array of same size as Par containing coordinate information, where xx{m}
is an nm1-by-nm2-by-gd array, where gd is the geometry dimension, and nm1 and nm2
are given from the size of Par{m}{2}. If the outer curly brackets in Par are not
present, then xx is an n1-by-n2-by-gd array.

dx is a cell array of same size as Par containing first order derivative information for
edges or faces. For edges, the dx{m} has the same format as xx{m} above. For faces
dx{m} is a nm1-by-nm2-by-3-by-2 array, where the last dimension refers to the two
vectors, formed by the derivatives of u and v respectively, spanning the tangent
plane.

ddx is a cell array of same size as Par containing second order derivative information
for edges or faces. For edges, ddx{m} has the same format as xx{m}. For faces ddx
is a nm1-by-nm2-by-3-by-2-by-2 array, where the last two dimensions refer to the
2-by-2 matrix of second order derivatives in the parameters u and v.

nor is a cell array of same size as Par, where the contents are the normalized normal
vectors. They are given on the same format as the contents in xx.

ff1 is a cell array of same size as Par containing the first fundamental matrices of
faces, where ff1{m} is an array of size nm1-by-nm2-by-2-by-2. For a parameter point
given by the indices im1 and im2, the first fundamental matrix is given by GG =
reshape(ff1{m}(im1,im2,:,:),2,2) and the corresponding Jacobian is given
by J = reshape(dx{m}(im1,im2,:,:),3,2). It then holds that GG = J'*J.

ff2 is a cell array of same size as Par containing the second fundamental matrices
of faces, where ff2{m} is an array of size nm1-by-nm2-by-2-by-2. For a parameter
point given by the indices im1 and im2, the second fundamental matrix is given by
261

geominfo

262 | C H A P T
DD = reshape(ff2{m}(im1,im2,:,:),2,2). If the corresponding normal
derivative DNN and Jacobian J are obtained as above, then DD = -DNN'*J.

crv is a cell array of same size as Par containing curvature information of edges and
faces. crv{m} is of size nm1-by-nm2-by-2 in 3D, where for a parameter point defined
by the indices im1 and im2, crv{m}(im1,im2,1) is the curvature and
crv{m}(im1,im2,2) is the torsion, when referring to an edge. The corresponding
values obtained for a face is the Gaussian curvature and the mean curvature,
respectively. In 2D, crv{m} is of size nm1-by-nm2 where crv{m}(im1,im2) contains
the curvature of an edge for a given parameter.

rng is a cell array of same length as Od, containing parameter range information for
edges or faces. For edges, the first row in a matrix corresponds to the starting
parameter value at the starting point, and the second row corresponds to the end
parameter value at the end point. For faces, the first and third row contains the lower
bounds on parameter values for the u and v parameters respectively. The second and
fourth row contains the upper bounds on parameter values for the u and v
parameters respectively. The range for geometry edges is from zero to the arc-length
of each edge. If no Od is specified, rng is a matrix of range information for all edge
curves, in 2D, or all faces, in 3D.

ud is a matrix containing up (left) and down (right) subdomain numbering for
boundary segments, in the first and second row, respectively. One column of ud
corresponds to one boundary segment.

sd is a vector containing the subdomain numbering of the vertices of mp. If a vertex
is adjacent to more than one subdomain, the contents are NaN.

There is a family of low-level geometry functions used by geominfo, for obtaining
the geometric data described above. These can be called directly, which in some
cases can be preferred. Their names and descriptions are given in the table below.

TABLE 1-78: LOW-LEVEL GEOMETRY FUNCTIONS

FUNCTION DESCRIPTION

flgeomadj Get geometry adjacency matrices

flgeomec Get curvature information from curve derivatives

flgeomed Get coordinates and derivatives for geometry edges

flgeomes Get parameter space size of geometry edge

flgeomfc Get curvature from fundamental forms

flgeomfd Get coordinates and derivatives for geometry faces
E R 1 : C O M M A N D R E F E R E N C E

geominfo
For details on the syntaxes for calling these functions, write help followed by the
function name on the command line.

Examples 3D Geometries
To demonstrate the geominfo command, create a solid block object with a circular
curve object on top, using the following commands.

g3 = geomcsg({block3},{},...
 {move(embed(circ1(0.3,'pos',[0.5 0.5])),[0 0 1])})
geomplot(g3,'facelabels','on')

The generated object g3 is a solid 3D object consisting of 1 subdomain, 7 faces, 16
edges and 12 vertices. These can be obtained using geominfo with the arguments
given below.

[gd,no,rng,ud,nbs] = geominfo(g3,...
 'out',{'gd' 'no' 'rng' 'ud' 'nbs'},'od',0:3);

From the arguments gd and no, it is clear that g3 is a 3D object with the number of
entities as above. The number of faces is also given in nbs, that is, the number of
boundary segments. The parameter range of both faces and edges are given in rng.
These are of importance when setting up parameter arrays for edge/face
information evaluation below.

flgeomff1 Get first fundamental form from derivatives

flgeomff2 Get second fundamental form from derivatives

flgeomfn Get normals from face derivatives

flgeomfs Get parameter space size of geometry face

flgeomnbs Get number of geometry boundary segments

flgeomnes Get number of geometry edge segments

flgeomnmr Get number of subdomains

flgeomnv Get number of vertices

flgeomsdim Get space-dimension of geometry object

flgeomse Get end-point indices of geometry edges

flgeomud Get up-down subdomain numbering of geometry faces

flgeomvtx Get coordinates for geometry vertices

TABLE 1-78: LOW-LEVEL GEOMETRY FUNCTIONS

FUNCTION DESCRIPTION
263

geominfo

264 | C H A P T
The following commands set up parameter matrices in two different formats, for
faces 4, 5, and 7. The parameter range of these faces is 0<u<0.5, 0<v<0.5, as given
by rng{3}(:,[4 5 7]).

[u,v] = meshgrid(0:0.1:0.5,0:0.1:0.5);
S1 = reshape([u(:) v(:)],1,36,2);
B1 = 7;
S2(1,:,:) = deal([u(:) v(:)]);
S2(2,:,:) = deal([u(:) v(:)]);
B2 = [4;5];

Appropriate parameter values for the bounding edges of face 7, can be obtained by
first creating the face-edge adjacency matrix with geominfo, and then using this
information together with the argument rng to set up the parameter vectors. This
is done with the following commands.

adj = geominfo(g3,'out','adj','odp',[1;2]);
B3 = find(adj{1}(:,7));
for i=1:length(B3)
 S3(i,:,1) = linspace(rng{2}(1,B3(i)),rng{2}(2,B3(i)),10);
end

Now, coordinate values of the faces and edges given above, together with
coordinates for vertex 3, are obtained as follows.

[xx] = geominfo(g3,'out',{'xx'},...
 'par',{{B1 S1} {B2 S2} {B3 S3} {3}})

To see the obtained results, simply give the following commands.

hold on
plot3(xx{1}(:,:,1),xx{1}(:,:,2),xx{1}(:,:,3),'r.')
plot3(xx{3}(:,:,1),xx{3}(:,:,2),xx{3}(:,:,3),'b.')

Finally, derivatives and curvatures, for both faces and edges are with the command
below. Note that, both curvature measures for all points at face 7 are 0, as is the
torsion for the surrounding curves. The curvature of these curves is however
nonzero.

[dx,crv] = geominfo(g3,'out',{'dx' 'crv'},...
 'par',{{B1 S1} {B3 S3}})

2D Geometries
Create a solid ellipse, and retrieve coordinates and curvatures for all four edge
segments, by the following commands.

e = ellip2(0,0,1,2)
[xy,c] = geominfo(e,'out',{'xx','crv'},'par',...
 {ones(11,1)*[1 2 3 4],(0:0.1:1)'*ones(1,4)})
E R 1 : C O M M A N D R E F E R E N C E

geominfo
Plot the obtained coordinates of the ellipse by the command.

plot(xy(:,:,1),xy(:,:,2),'b-')

The curvature of one of the edges are obtained via

figure,plot(0:0.1:1,c(:,1))

The command below retrieves the number of primitive objects (vertices, edges and
subdomains) from geometry file (geomfile) cardg:

no = geominfo('cardg','out',{'no'},'od',[0 1 2])

1D Geometries
A 1D geometry consisting of two subdomains, is created by the following
command.

g1 = solid1([-1 0.2 1])

Since no parameter domain exist only coordinates of vertices can be retrieved. The
up and down subdomain of every vertex is given in ud, and the vertex-subdomain
adjacency information is given in adj.

[xx,ud,adj] = geominfo(g1,'out',{'xx' 'ud' 'adj'},...
 'par',{2},'odp',[0;1])

Note that the same information is given in ud and adj. The matrix adj is directly
obtained from ud via the command:

adj = sparse(repmat(1:3,2,1),ud+1,[ones(1,3);-1*ones(1,3)])

Compatibility The FEMLAB 2.3 function flgeomepol is obsolete.

See Also geomcsg, geomedit, meshinit
265

geomobject

266 | C H A P T
geomobjectPurpose Create geometry object.

Syntax obj = geomobject(input)

Description obj = geomobject(input) creates a geometry object from input.

input can be any of the following

• A geometry object. See geom0, geom1, geom2, geom3.

• A mesh object. See femmesh.

• A geometry M-file name. See geomfile.

Note that in 3D, input cannot be a Geometry M-file.

See Also geom0, geom1, geom2, geom3, femmesh, geomfile
E R 1 : C O M M A N D R E F E R E N C E

geomplot
geomplotPurpose Plot geometry.

Syntax geomplot(fem,...)
geomplot(geom,...)
h = geomplot(fem,...)
h = geomplot(geom,...)

Description geomplot(fem) plots the analyzed geometry fem.geom. For an extended FEM
structure, xfem.fem{geomnum}.geom is plotted, where geomnum is 1 by default.

geomplot(geom) plots the analyzed geometry geom.

h = geomplot(...) additionally returns handles to the plotted axes objects.

The analyzed geometry can be any of the following geometry representations: a
geometry object, a Geometry M-file, or a mesh. The geometry object and
Geometry M-file are described in the entries geomcsg and geomfile, respectively.
The mesh data structure is described in the entry meshinit.

In 3D, the default plot is a patch plot of the faces with the edge segments and
isolated vertices plotted as lines and markers respectively. The face, edge segment,
and vertex parts of the plot can be controlled by the property/values starting with
face, edge, and point respectively. Subdomains cannot be plotted directly, only
indirectly through their adjacent faces.

In 2D, the default plot is a patch plot of the subdomains with the edge segments
and vertices plotted as lines and markers, respectively. The subdomain, edge
segment, and vertex parts of the plot can be controlled by the properties starting
with sub, edge, and point, respectively. You can turn on indication of curve
parameter direction by using the property edgearrows.

In 1D, the default plot is a line plot of the subdomains with vertices plotted as
markers. The subdomain and vertex parts of the plot can be controlled by the
properties starting with sub and point, respectively.

The following table shows the property/value pairs for the geomplot command.
The interpretation of the properties in 1D, 2D and 3D varies with dimension. The
267

geomplot

268 | C H A P T
design philosophy has been to keep property interpretation constant over space
dimension, but to plot these properties as plot objects of different types.

TABLE 1-79: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION

Boxcolor √ color k Control polygon
color

Boxstyle √ line style -- Control polygon
line style

Ctrlmarker √ marker
symbol

o Control polygon
marker style

Ctrlmode √ on | off off Show control
polygon

Detail √ √ fine |
normal |
coarse

normal Geometry
resolution

Edgearrows √ on | off off Show edge
directions with
arrows

Edgecolor √ √ color k Edge color data

Edgelabels √ √ on | off |
list of
strings

off Edge label list

Edgemode √ √ on | off on Show edges

Edgestyle √ √ line style - Edge line style

Facelabels √ on | off |
list of
strings

off Face label list

Facemode √ on | off on Show faces

Labelcolor √ √ √ color k Label color data

Linewidth √ √ numeric 1 Line width

Linewidth √ numeric 2 Line width

Markersize √ √ √ numeric 6 Marker size

Mesh √ √ mesh new
special
mesh

Mesh used to
render geometry

Pointcolor √ √ √ color b Point color data
E R 1 : C O M M A N D R E F E R E N C E

geomplot
In addition, the common plotting properties listed under femplot are available.

The properties sublabels, facelabels, edgelabels, and pointlabels control
the display of subdomain labels, face labels, edge segment labels, and point labels,
respectively.

The properties that control marker type or coloring can handle any standard marker
or color type in MATLAB. See, for example, the plot command in the MATLAB
documenation.

Examples 3D Example
Create a simple 3D geometry:

c1 = cylinder3(0.5,2,[-1,0,0],[1,0,0]);
c2 = cylinder3(0.2,2,[0,-1,0],[0,1,0]);
g = c1-c2;

Plot edges and face labels.

geomplot(g,'facemode','off','facelabels','on')
axis equal

Plot faces with lighting and without edges and axis in high quality.

geomplot(g,'edgemode','off','detail','fine')
light, lighting phong
axis equal, axis off

Both faces and edges are plotted by default.

2D Example
Start by creating a simple geometry.

Pointlabels √ √ √ on | off |
list of
strings

off Point label list

Pointmarker √ √ √ marker
symbol

o Point marker

Pointmode √ √ √ on | off |
isolated

on Show points

Sublabels √ √ √ on | off |
list of
strings

off Subdomain label
list

Submode √ √ on | off on Show
subdomains

TABLE 1-79: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
269

geomplot

270 | C H A P T
clear fem
c1 = circ2;
l1 = curve2([-1,-1,1,1],[-1,1,-1,1]);
p1 = point2(0,0.5);
fem.draw.s.objs = {c1};
fem.draw.c.objs = {l1};
fem.draw.p.objs = {p1};
fem.geom = geomcsg(fem);

Plot the standard geometry plot with subdomains indicated as patches, and edge
segments and vertices indicated by lines and markers, respectively.

geomplot(fem), axis equal

Remove patch plot of subdomains, add parameter direction for curves, subdomain
numbers, and control polygons.

geomplot(fem,'submode','off','edgearrow','on','pointmode',...
 'isolated','sublabels','on','ctrlmode','on')

1D Example
Start by creating a simple geometry.

clear fem
s1 = solid1([0 0.1 1]);
p1 = point1(2);
fem.draw.s.objs = {s1};
fem.draw.p.objs = {p1};
fem.geom = geomcsg(fem);

The standard geometry plot with subdomains indicated as lines, and vertices
indicated by markers.

geomplot(fem), axis equal

Change the color of the vertices to red, add vertex labeling, and change the vertex
markers to diamonds.

geomplot(fem,'pointcolor','r','pointlabels','on',...
 'pointmarker','diamond')
axis equal

Compatibility The properties pt, ct, ft, and st have been removed in FEMLAB 3.1.

Cautionary The value numeric of the sublabels, edgelabels, and pointlabels properties
was replaced by on in FEMLAB 1.1. The value numeric is still supported however,
and is equivalent to on.

The default for the ctrlmode property was changed to off in FEMLAB 1.1.
E R 1 : C O M M A N D R E F E R E N C E

geomplot
See Also geomcsg, geomedit
271

geomposition

272 | C H A P T
geompositionPurpose Position 3D geometry object in space using work plane info.

Syntax g3 = geomposition(g32,p_wrkpln)

Description g3 = geomposition(g32,p_wrkpln) positions the 3D geometry object g32 in
space by transforming the point matrix according to the work plane information in
p_wrkpln. The geometry g32 is thus assumed to be defined in the local coordinate
system of the work plane.

See geomgetwrkpln for more information on work planes and the work plane
points representation p_wrkpln.

See Also geomgetwrkpln
E R 1 : C O M M A N D R E F E R E N C E

geomspline
geomsplinePurpose Spline interpolation.

Syntax c = geomspline(p,...)

Description c = geomspline(p,...) creates a curve2 or curve3 object from point data p by
spline interpolation. The object generated is a closed or open, C1 or C2 continuous,
spline.

 p is a 2-by-np (in 2D) or 3-by-np (in 3D) matrix that specifies interpolation points.

The function geomspline accepts the following property/value pairs:

The property SplineDir is used to specify a tangent vector for the corresponding
point in p. This means that the first control point is given and the curve thus
generated is only guaranteed to be C1 (continuous first derivatives). If this property
is not given, however, the curve generated is guaranteed to be C2 (continuous
second derivatives). The SplineMethod property does not affect the curve if the
SplineDir property is used.

The property SplineMethod controls the method for how to compute the global
parameterization of the curve. The global parameterization is a parameter that varies
from 0 to 1, from the first interpolated point to the last. For a closed curve the last
point is equivalent to the first. The value uniform means that the global
parameterization is [0, 1,..., np]/np. The default value chordlength means
that the global parameterization is [0, norm(p(:,2)-p(:,1)),
norm(p(:,3)-p(:,2)),..., norm(p(:,np)-p(:,np-1))]/

sum(sqrt(sum((diff(p')').^2)')), where the denominator is the total chord
length. The values centripetal and foley are two additional methods that handle
irregular point sets p more effectively.

The property Closed controls the closure of the spline. If Closed is on the first
point is regarded as the last point. The value auto for the property Closed generates
a closed curve whenever the first and last points in a scaled version of the point set

TABLE 1-80: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Closed auto | on | off auto Closed or open curve

SplineDir 2-by-np matrix
3-by-np matrix

Tangent vectors for the
corresponding points in p

SplineMethod uniform |
chordlength |
centripetal |
foley

chordlength Method for global
parameterization
273

geomspline

274 | C H A P T
p agree to within 1000*eps in Euclidean distance. Otherwise, an open curve is
generated.

On success, c is a curve2, or curve3 object that passes through the points defined
by p. If p does not define a spline curve properly, either an error occurs or a line1,
curve2, curve3, or circ1 object is created that meets the requirements in some
way.

Example % Interpolate irregularly distributed point on a circle.
% First create circle data
phi=0:0.2:2*pi; phi(end)=[];
% Remove some of the points.
phi([1 3 6 7 10 20 21 25 28])=[];
p=[cos(phi);sin(phi)];
% Add some noise.
randn('state',17)
p=p+0.05*randn(size(p));
plot(p(1,:),p(2,:),'r.')
% Interpolate using uniform parameterization.
c=geomspline(p,'splinemethod','uniform','closed','on')
hold on
geomplot(c,'pointmode','off')
% Interpolate using centripetal parameterization.
c=geomspline(p,'splinemethod','centripetal','closed','on')
hold on
geomplot(c,'pointmode','off','edgecolor','b')
axis equal

See Also curve2, curve3
E R 1 : C O M M A N D R E F E R E N C E

geomsurf
geomsurfPurpose Create 3D geometry surface using height data defined on a grid.

Syntax f = geomsurf(x,y,z)
f = geomsurf(z)
s = geomsurf(x,y)

Description f = geomsurf(x,y,z) creates a 3D face object f on the grid defined by x and y,
using z as height data.

f = geomsurf(z) is equivalent to f = geomsurf(1:nx,1:ny,z), where
[nx,ny]=size(z).

s = geomsurf(x,y) creates a 2D solid object s corresponding to the syntax f =
geomsurf(x,y,z) with z all zeros.

The function supports the following property:

If Geomrep is bezier, the returned face object consists of several faces, each using
a bilinear parameterization. If Geomrep is mesh, the object contains a single face that
is parameterized using piecewise quadratic interpolation on a triangular mesh. If
Geomrep is spline, there is also a single face, and it is parameterized using a
quadratic spline surface. The surface has a continuous normal vector when Geomrep
is mesh or spline.

Example % Create randomly generated surface
% Create rectangular grid
[x,y]=meshgrid(-0.1:0.2:1.1,-0.4:0.2:0.4);
% Initialize random generator
randn('state',1);
% Create random height data
z=0.1*randn(size(x));
% Create 3D surface
f=geomsurf(x,y,z);
% Plot the surface
geomplot(f)

% Create approximation to a catenoidal surface
% Create grid in spherical coordinates
[theta,phi]=meshgrid(pi/8:pi/32:3*pi/8,pi/4:pi/32:pi/2);
% The conical surface is expressed in spherical coordinates
r=1;

TABLE 1-81: VALID PROPERTY/VALUE PAIR

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Geomrep bezier | mesh |
spline

bezier Representation of surface
275

geomsurf

276 | C H A P T
x=r.*cos(theta)./sin(phi);
y=r.*sin(theta)./sin(phi);
z=r.*log((1+sin(phi))./sin(phi));
% Now, create the piecewise bilinear
% approximative surface
catenoid=geomsurf(x,y,z);
% Plot the surface
geomplot(catenoid)
axis equal

See Also face3, meshgrid
E R 1 : C O M M A N D R E F E R E N C E

getparts
getpartsPurpose Extract parts from an assembly object.

Syntax [gl, ...] = getparts(g, ...)

Description [gl, ...] = getparts(g, ...) returns a cell array where each element contains
a part.

The function supports the following properties:

Example g = geomgroup({rect2 move(rect2,[1 0])});
[gg,stx,ctx,ptx] = getparts(g,'out',{'stx','ctx','ptx'});

See Also geomgroup, geomcsg

TABLE 1-82: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Out cell array of strings {} Cell array of strings: stx, ftx,
ctx, ptx

Part all | none |
vector of integers

all Specifies which parts to extract
277

helix1, helix2, helix3

278 | C H A P T
helix1, helix2, helix3Purpose Create helix geometry object.

Syntax h1 = helix1(r,dh,h)
h2 = helix2(dr,r,dh,h,n)
h3 = helix3(dr,r,dh,h,n)

Description h1 = helix1(r,dh,h) creates a helix-shaped curve3 object with radius r, distance
between consecutive turns dh, and total height h. The helix is centered at the origin
with main axis in the z direction. All arguments are optional; when arguments are
omitted, the following default values are used: r = 1.0, dh = 1.0, and h = 1.0.

 h2 = helix2(dr,r,dh,h,n) creates a helix-shaped face3 object with
cross-section radius dr, radius r, distance between consecutive turns dh, total height
h, and resolution n. The resolution n is an integer that specifies the number of
curved sections for every turn; a higher resolution yields a smoother-looking helix.
The helix is centered at the origin with main axis in the z direction. All arguments
are optional; when arguments are omitted, the following default values are used:
dr = 0.1, r = 1.0, dh = 1.0, h = 1.0, and n = 12.

 h3 = helix3(dr,r,dh,h,n) creates a helix-shaped solid3 object with
cross-section radius dr, radius r, distance between turns dh, total height h, and
resolution n. The resolution n is an integer that specifies the number of curved
sections for every turn; a higher resolution yields a smoother-looking helix. The
helix is centered at the origin with main axis in the z direction. All arguments are
optional; when arguments are omitted, the following default values are used:
dr = 0.1, r = 1.0, dh = 1.0, h = 1.0, and n = 12.

Example The following command generates a solid helix-shaped object:

h3 = helix3(1,5,1,5,12);

See Also extrude, loft, revolve
E R 1 : C O M M A N D R E F E R E N C E

hexahedron2, hexahedron3
hexahedron2, hexahedron3Purpose Create bilinear hexahedron geometry object.

Syntax h2 = hexahedron2(p)
h3 = hexahedron3(p)

Description h3 = hexahedron3(p) creates a solid hexahedron object with corners in the 3D
coordinates given by the eight columns of p. hexahedron3 is a subclass of solid3.

 h2 = hexahedron2(p) creates a surface hexahedron object with corners in the 3D
coordinates given by the eight columns of p. hexahedron3 is a subclass of face3.

For a hexahedron approximately aligned to the coordinate planes, the points in p
are ordered as follows. The first four points and the last four points projected down
to the (x, y)-plane defines two negatively oriented quadrangles. The corresponding
plane for the second quadrangle must lie above the plane of the first quadrant in the
z direction. Generally oriented hexahedra have the points of p ordered in a similar
way, except for a rigid transformation of the defining point set.

The default value of p is

p=[0 0 1 1 0 0 1 1;
 0 1 1 0 0 1 1 0;
 0 0 0 0 1 1 1 1]

The 3D geometry object properties are available. The properties can be accessed
using the syntax get(object,property). See geom3 for details.

Example The following command generates a solid hexahedron object.

h3 = hexahedron3([0 0 1 1 0 0 1 1;...
 0 0.8 1 0 0 1 1.2 0;...
 0 0.1 0 0.2 1 1 2 1]);

See Also face3, geom0, geom1, geom2, geom3
279

line1, line2

280 | C H A P T
line1, line2Purpose Create polygons.

Syntax c = line1(x,y)
s = line2(x,y)

Description s = line2(x,y) creates a 2D solid object s in the form of a solid polygon with
vertices given by the vectors x and y.

c = line1(x,y) creates a 2D curve object c in the form of an open polygon with
vertices given by the vectors x and y.

Examples The commands below create an open regular n-gon (n=11) and plot it.

n = 11
xy = exp(i*2*pi*linspace(0,1-1/n,n));
l = line1(real(xy),imag(xy));
geomplot(l)

See Also arc1, arc2, circ1, circ2, ellip1, ellip2, geomcsg, poly1, poly2
E R 1 : C O M M A N D R E F E R E N C E

loft
loftPurpose Loft 2D geometry sections to 3D geometry.

Syntax g3 = loft(gl,...)

Description g3 = loft(gl,...) lofts the 2D geometry sections in gl to a 3D geometry object
g3.

gl is a cell array of size 1-by-ng of 2D geometry objects that belongs to one of the
subclasses solid2 or curve2. That is, gl{i} contains the geometry object of
section number i.

The function loft accepts the following property/value pairs:

The properties LoftEdge, LoftSgnEdge, or LoftVtxPair are needed to make the
connection between edges and vertices in different sections unique.

The property LoftEdge with the value {e1,e2,...} means that the edge with
number e1(1) in gl{1} should be lofted to match the edge with number e2(1) in
gl{2} and so on for all elements in e1 and e2.

Likewise, the property LoftSgnEdge with the value {e1,e2,...} means the same
thing, except that edges with different directions is indicated by using negative
signs. This is often more reliable than LoftEdge above.

The property LoftVtxPair is used in the same way, but uses pairs of vertices
instead. Thus, LoftVtxPair with the value {v1,v2,...} means that the vertex
with number v1(1,1) in gl{1} is to be matched with vertex number v2(1,1) in

TABLE 1-83: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DESCRIPTION

LoftEdge 1-by-ng cell array of integer
vectors

Permutation vectors for edges

LoftSgnEdge 1-by-ng cell array of integer
vectors

Signed permutation vector for
edges

LoftVtxPair 1-by-ng cell array of integer
matrices with two rows

Permutation vector for vertex
pairs

LoftSecPos 1-by-3 cell array Positioning for 2D geometry
sections

Wrkpln 1-by-ng cell array of 3-by-3
matrices

Work planes for 2D geometry
sections

LoftWeights Matrix of size 2-by-(ng-1) Cubic lofting weights

LoftMethod linear | cubic Lofting method
281

loft

282 | C H A P T
gl{2} and so on. It is required that v1([1 2],1) are the end points on the same
curve.

Only one of these properties is allowed. If, however, none is specified then the
property/value-pair LoftSgnEdge with the value {[1:nbs],[1:nbs],...} is used
as default, where nbs is the number of edges in gl{1}. This means that the edges
are considered in order, and is useful for lofting between sections that are simple or
similar to each other.

The properties LoftSecPos or Wrkpln are used to specify the geometrical data of
each section.

The property LoftSecPos with the value {D,V,R} has the following meaning:

D is either a 1-by-(ng−1) vector or a 3-by-ng matrix that specifies the position for
each geometry section. If D is a vector, it contains real numbers that specifies the
relative displacement in the local z direction between each pair of consecutive
sections in gl, where it is assumed that gl{1} is positioned at z = 0. If D is a matrix,
then each column specifies the 3D displacements for each of the sections in gl.
Rows 1, 2, and 3 specifies the displacements in the x, y, and z direction, respectively.

V is either a 2-by-ng or a 3-by-ng matrix specifying the tilt-rotations of the geometry
objects. If V is a 2-by-ng matrix, then each column specifies rotational angles in
spherical coordinates. V(1,:) are the polar angles, that is, the angles between
directional normals of each object and the positive z-axis, and V(2,:) are the
azimuthal angles of the directional normals. If V is a 3-by-ng matrix, then each
column specifies a directional normal vector for each section.

R is a 1-by-ng vector that specifies the intrinsic rotation of the geometry sections.
Every element of R is a rotational angle, in radians, with respect to the local z-axis.

The alternative syntax is the property Wrkpln with the value {T1,T2,...}, where
Ti is a matrix of size 3-by-3. Here Ti is understood to specify the work plane for
section gl{i}. See geomgetwrkpln for more information on work planes.

Only one of these properties is allowed. If none is specified then the property
LoftSecPos with the value {ones(1,ng-1),zeros(2,ng),zeros(1,ng)} is used
as default. Moreover, if any of the cells D, V, or R is left empty, the default value is
used for that cell.

The property LoftWeights specifies the relative significance of the geometry
sections with respect to tangential continuity. This argument has no meaning for
linear lofting and is then ignored.
E R 1 : C O M M A N D R E F E R E N C E

loft
The property LoftMethod can have the values linear or cubic, specifying if the
lofting should be linear/ruled or bicubic, respectively. The default method is cubic,
with the LoftWeights property set to the value [0.3*ones(1,ng-1);
0.7*ones(1,ng-1)].

Examples Create a loft between a circle and a square.

gl1 = cell(1,2);
gl1{1} = circ2;
gl1{2} = rect2(2,2,'pos',[-1 -1]);

Let the edge between vertices number one and two in the circle correspond to the
edge between vertex number one and two in the square.

tl1 = cell(1,2); tl1{1} = [1;2]; tl1{2} = [1;2];
g1 = loft(gl1,'LoftVtxPair',tl1);
figure, geomplot(g1)

Create a loft between edge number 1 in the circle and edge number 1 in the square.

tl2 = cell(1,2); tl2{1} = 1; tl2{2} = 1;

Also, rotate the square.

g2 = loft(gl1,'LoftEdge',tl2,...
 'LoftSecPos',{1,zeros(2,2),[0 -pi/4]});
figure, geomplot(g2)

Create a more complicated example.

gl2 = cell(1,3);
gl2{1} = arc2(0,0,2,0,pi/2)-circ2;
gl2{2} = rect2(2,2,'pos',[-1 -1]);
gl2{3} = gl2{1};

Specify reversed direction of edges by using negative signs.

tl3 = cell(1,3); tl3{1} = 4; tl3{2} = -2; tl3{3} = -3;

Also, rotate the last two sections.

g3 = loft(gl2,'LoftSgnEdge',tl3,'LoftSecPos',...
 {[-1 -1 0; 0 0 1; 1 1 2]',zeros(2,3),[0 pi/4 pi]});
figure, geomplot(g3)

In the latter case, since there are no ambiguities, you could also use unsigned edge
numbers by specifying the property LoftEdge.

tl4 = cell(1,3); tl4{1} = 4; tl4{2} = 2; tl4{3} = 3;
g4 = loft(gl2,'LoftEdge',tl4,'LoftSecPos',...
 {[-1 -1 0; 0 0 1; 1 1 2]',zeros(2,3),[0 pi/4 pi]});
figure, geomplot(g4)
283

loft

284 | C H A P T
See Also extrude, geomgetwrkpln, revolve
E R 1 : C O M M A N D R E F E R E N C E

mesh2geom
mesh2geomPurpose Create an analyzed geometry and/or a draw object from a (deformed) mesh.

Syntax [xfem,g] = mesh2geom(xfem,args)

Description [xfem,g] = mesh2geom(xfem,args) returns a new extended fem structure xfem
with the fields specified in the destfield property filled, generated from the source
specified in the srcdata property. If draw is specified in destfield, the created
draw object g is also returned.

The source can be either the deformed geometry from solving an ALE or
parameterized geometry problem (deformed), or a mesh (mesh).

The destination can be any nonempty subset of {'draw','geom','mesh'},
indicating that a mesh, an analyzed geometry, and/or a draw object should be
created. If draw is specified, you can use the drawtag property to specify the tag of
the new Draw-mode object.

The destination geometry destfem can be an existing geometry or the next
undefined geometry, in which case a new geometry is created.

Examples Creating an Analyzed Geometry From a Mesh
Create a mesh.

clear fem;

TABLE 1-84: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Srcdata deformed |
mesh

mesh Source data: deformed
geometry or mesh

Destfield cell array of
strings: mesh |
geom | draw

{'geom',
'mesh'}

Destination: mesh, analyzed
geometry, or draw object

Srcfem positive integer 1 Source geometry

Destfem positive integer 1 Destination geometry

MCase integer 0 Source and/or destination mesh
case

Drawtag string Draw tag to use when creating
draw object

Frame string Frame to use when retrieving
deformed geometry

Solnum positive integer last
solution

Solution to use when retrieving
deformed geometry
285

mesh2geom

286 | C H A P T
fem.mesh=meshinit(rect2);

Create an analyzed geometry from the mesh, into the new geometry Geom2.

xfem=mesh2geom(fem,'destfem',2);

Creating an Analyzed Geometry From a Deformed Mesh
Draw two rectangles, one inside the other, and mesh

clear fem
g1=rect2(1.8,1.2,'base','corner','pos',[-0.8,-0.8]);
g2=rect2(0.2,0.4,'base','corner','pos',[-0.2,-0.4]);
fem.geom=geomcsg({g1,g2});
fem.mesh=meshinit(fem);

Set the inner rectangle to move along the x-axis.

clear appl
appl.mode.class = 'MovingMesh';
appl.sdim = {'X','Y','Z'};
appl.assignsuffix = '_ale';
appl.prop.analysis='transient';
appl.prop.weakconstr.value = 'off';
appl.bnd.defflag = {{1;1}};
appl.bnd.deform = {{0;0},{'t';0}};
appl.bnd.ind = [1,1,1,2,2,2,2,1];
appl.equ.type = {'free','pres'};
appl.equ.presexpr = {{0;0},{'t';0}};
appl.equ.ind = [1,2];
fem.appl{1} = appl;
fem.sdim = {{'X','Y'},{'x','y'}};
fem.frame = {'ref','ale'};
fem=multiphysics(fem);
fem.xmesh=meshextend(fem);

Solve the problem:

fem.sol=femtime(fem,'tlist',[0:0.01:0.1]);

Create an analyzed geometry from the deformed mesh.

fem=mesh2geom(fem,'srcdata','deformed','frame','ale');

Remesh the created geometry and continue solving.

fem.mesh=meshinit(fem);
fem.xmesh=meshextend(fem);
fem.sol=femtime(fem,'tlist',[0:0.01:0.1]);
E R 1 : C O M M A N D R E F E R E N C E

meshbndlayer
meshbndlayerPurpose Create boundary layer mesh

Syntax fem.mesh = meshbndlayer(fem,...)
fem.mesh = meshbndlayer(fem.geom,...)
fem = meshbndlayer(fem,'out',{'fem'},...)

Description fem.mesh = meshbndlayer(fem,...) returns a boundary layer mesh derived
from the geometry in fem.geom.

fem.mesh = meshbndlayer(geom,...) returns a boundary layer mesh derived
from the geometry geom.

fem = meshbndlayer(fem,'Out','fem',...) modifies the fem structure to
include a boundary layer mesh in fem.mesh.

A boundary layer mesh is a mesh with dense element distribution in the normal
direction along specific boundaries. This type of mesh is typically used for fluid flow
problems to resolve the thin boundary layers along the no-slip boundaries. In 2D,
a layered quadrilateral mesh is used along the specified no-slip boundaries. In 3D, a
layered prism mesh or a layered hexahedral mesh is used depending on if the
corresponding boundary layer boundaries contain a triangular mesh or a
quadrilateral mesh.

The boundary layer mesher inserts boundary layer elements into an existing mesh.
If the starting mesh is empty the free mesher is automatically used to create a
starting mesh.

Boundary layers are not allowed on isolated boundaries, that is, boundaries with the
same subdomain on each side of the boundary.

The function meshbndlayer accepts the following property/value pairs.

TABLE 1-85: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Blbnd array all exterior
boundaries

Boundary layer boundaries

Blhmin numeric | cell
array

Initial boundary layer thickness

Blhminfact numeric | cell
array

1 Factor that the default Blhmin is
multiplied by

Blnlayers numeric | cell
array

8 Number of boundary layers
287

meshbndlayer

288 | C H A P T
meshbndlayer accepts all property/values that meshinit does. The meshinit
command is used to create the starting mesh for the subdomains to be processed by
the boundary layer mesher if these are not already meshed.

The property blbnd is an array specifying the boundaries for which boundary layers
are created. By default boundary layers are created for all exterior boundaries.

Use the properties blhmin, blstretch, and blnlayers to specify the distribution
of the boundary layers. The value of each of these properties is a scalar value for all
boundaries or an even numbered cell array where the odd entries contain boundary
indices, either as scalar values, or as vectors with boundary indices, and the even
entries contain the corresponding parameters. blhmin specifies the thickness of the
initial boundary layer, blstretch a stretching factor, and blnlayers the number
of boundary layers. This means that the thickness of the mth boundary layer (m=1
to blnlayers) is blstretch(m-1)blhmin. The default value of blhmin is 1/50 of the
size of the elements for the corresponding boundary layer boundaries. Note that the
number of boundary layers and the thickness of the boundary layers might be
automatically reduced in thin regions.

It is also possible to specify the thickness of the initial layer by using the blhminfact
property. If you use this property the initial layer thickness is defined as blhminfact
* blhmindef, where blhmindef is the default value of the property blhmin. The
value of this property is a scalar value for all boundaries or an even numbered cell
array where the odd entries contain boundary indices, either as scalar values, or as
vectors with boundary indices, and the even entries contain the corresponding
parameters.

Blstretch numeric | cell
array

1.2 Boundary layer stretching factor

Hauto numeric 5 Predefined mesh element size

Mcase numeric 0 Mesh case number

Meshstart mesh object empty Starting mesh

Out fem | mesh mesh Output variables

Report on | off on Display progress

Subdomain numeric array
| auto | all |
none

auto Specifies the subdomains that are
meshed

TABLE 1-85: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

meshbndlayer
hauto is an integer between 1 and 9 that controls the element size in the starting
mesh. The default value is 5. For more information on this property see meshinit.

The meshstart property is used when meshing a geometry interactively. The value
of this property is the starting mesh of the meshing operation. If meshstart does
not contain a mesh of the subdomains to be processed a starting mesh is
automatically created using the meshinit command before inserting the boundary
layer elements.

Use the property subdomain to specify the subdomains to be meshed. If you use
this property together with the meshstart property, the value auto means that all
subdomains that are not meshed in the starting mesh are meshed, none means that
no further subdomains are meshed, and all means that all subdomains are meshed.
It is also possible to specify the subdomains to be meshed using a vector of
subdomain indices.

Examples Specify the boundary layer boundaries and the number of boundary layers

fem.geom = rect2(10,5) - circ2(1,'pos',[3 2.5]);
fem.mesh = meshbndlayer(fem,'blbnd',[2:3 5:8],...
 'blnlayers',{5:8 8});
figure, meshplot(fem)

Insert boundary layers to an existing mesh containing both quadrilateral elements
and triangular elements.

fem.geom = rect2 + rect2(1,1,'pos',[1 0]) - circ2(1.5,0.5,0.2);
fem.mesh = meshmap(fem,'subdomain',1);
fem.mesh = meshinit(fem,'meshstart',fem.mesh);
figure, meshplot(fem)
fem.mesh = meshbndlayer(fem,'blbnd',[2:3 5:6 8:11],...
 'meshstart',fem.mesh,...
 'subdomain','all');
figure, meshplot(fem)

Create a boundary layer mesh consisting of prism elements along the boundary layer
boundaries and tetrahedral elements in the interior

fem.geom = block3(10,5,5) - sphere3(1,'pos',[3 2.5 2.5]);
fem.mesh = meshbndlayer(fem,'blbnd',[2:13]);
figure, meshplot(fem)
figure, meshplot(fem,'ellogic','x<3')

See Also meshinit, meshmap, meshsweep
289

meshcaseadd

290 | C H A P T
meshcaseaddPurpose Add new mesh cases

Syntax fem = meshcaseadd(fem, ...)

Description fem = meshcaseadd(fem) adds one or several new mesh cases to the FEM
structure FEM. The mesh cases are typically used as hierarchy in the Geometric
multigrid solver. The new mesh cases are constructed by coarsening or refining the
mesh (or keeping the same mesh), and possibly changing the order of the shape
functions. If the order is changed, the integration point order and the constraint
point order is changed accordingly.

The function meshcaseadd accepts the following property/value pairs:

The function meshcaseadd operates on the FEM structures corresponding to the
geometries Mggeom. The FEM structures for other geometries are left unaffected.

Before creating new mesh cases, all existing mesh cases except Mcasekeep are
deleted.

TABLE 1-86: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

Mcasekeep array of nonnegative
integers | all

Mcaseorig Mesh cases to keep

Mcaseorig array of nonnegative
integers

lowest
existing
mesh case

Original mesh case(s)

Meshscale array of positive numbers 2 Scale factors for mesh
size h

Mgauto meshscale | shape |
anyshape | both |
meshrefine | explicit

Method for generating
mesh cases

Mggeom array of positive integers all Geometry numbers

Nmcases positive integer 1 Number of new mesh
cases to generate

Report on | off on Display progress

Rmethod regular | longest regular Mesh refinement
method

Shapechg array of integers -1 Change in shape
function orders
E R 1 : C O M M A N D R E F E R E N C E

meshcaseadd
The mesh case generation method is determined by the property Mgauto. The new
mesh cases will be given the numbers mcmax+1, ..., mcmax+n, where mcmax is
the current highest mesh case number.

• If Mgauto=both, shape, anyshape, or meshscale, then the new mesh cases are
constructed starting from the mesh case given in the property Mcaseorig (this
should be a single nonnegative integer). This process is described in the section
“Constructing a Multigrid Hierarchy” on page 560, where the methods are
called Coarse mesh and lower order (both), Lower element order first (all) (shape),
Lower element order first (any) (anyshape), and Coarse mesh (meshscale). The
mesh coarsening factor is given in the scalar Meshscale, the shape function order
change amount is given in the scalar Shapechg, and the number of new mesh
cases to create is given by the property Nmcases.

• If Mgauto=explicit, then new mesh cases are constructed starting from the
mesh case(s) given in the property Mcaseorig. The properties Mcaseorig,
Meshscale, and Shapechg should be vectors of the same length n (however if
one is scalar, it is expanded to the same length as the other). Mesh case mcmax+i
will have a mesh that is coarsened with the factor Meshscale(i), and shape
function orders incremented with Shapechg(i) relative to mesh case
Mcaseorig(i).

• If Mgauto=meshrefine, then the new mesh cases are constructed by refining the
mesh in mesh case Mcaseorig (this should be a single nonnegative integer)
repeatedly. The number of new mesh cases to create is given by the property
Nmcases. The refinement method can be specified using the property Rmethod,
see meshrefine.

The default value of Mgauto is as follows. Let n be the length of the longest among
the vectors Meshscale, Mcaseorig, and Shapechg. The default for Mgauto is
shape if n = 1, and explicit if n > 1.

The following fields in the FEM structure are affected by meshcaseadd:

mesh, shape, gporder, ***.gporder, cporder, and ***.gporder, where *** is
equ, bnd, edg, or pnt. Also, the corresponding fields in the appl field are affected.

See Also femsolver, meshcasedel
291

meshcasedel

292 | C H A P T
meshcasedelPurpose Delete mesh cases

Syntax fem = meshcasedel(fem)
fem = meshcasedel(fem,mcases)

Description fem = meshcasedel(fem) deletes all mesh cases except 0 from the FEM structure
fem.

fem = meshcasedel(fem,mcases) deletes the mesh cases in the integer array
mcases from the FEM structure fem.

The following fields in the FEM structure are affected by meshcasedel:

mesh, shape, gporder, ***.gporder, cporder, and ***.gporder, where *** is
equ, bnd, edg, or pnt. Also, the corresponding fields in the appl field are affected.

See Also meshcaseadd
E R 1 : C O M M A N D R E F E R E N C E

meshconvert
meshconvertPurpose Convert mesh to simplex mesh

Syntax fem.mesh = meshconvert(fem,...)
fem.mesh = meshconvert(mesh,...)

Description fem.mesh = meshconvert(fem,...) converts nonsimplex elements in the mesh
object stored in fem.mesh to simplex elements using the geometry object stored in
fem.geom.

fem.mesh = meshconvert(mesh,...) converts nonsimplex elements in the mesh
object stored in mesh to simplex elements.

The function meshconvert accepts the following property/value pairs.

Use the property subdomain in 2D and 3D and the property face in 3D to specify
for which subdomains and faces, respectively, the meshconvert function converts
nonsimplex elements to simplex elements.

Use the property splitmethod to specify how to split quadrilateral and hexahedral
elements into triangular and tetrahedral elements, respectively. Use the diagonal
option to split each quadrilateral element into two triangular elements and each
hexahedral element into five tetrahedral element. Use the center option to split
each quadrilateral element into four triangular elements and each hexahedral
element into 28 tetrahedral elements. To be able to use the center option in 3D
you have to provide a geometry object corresponding to the mesh object. Prism
elements are not affected by this property because each prism element is always split
into three tetrahedral elements. Note that the conversion also affects quadrilateral
elements on the boundaries of the specified subdomains in 3D, which are converted
into two triangular elements (when the option diagonal is used) or four triangular
elements (when the option center is used).

TABLE 1-87: VALID PROPERTY/VALUE PAIRS

PROPERTY 2D 3D VALUE DEFAULT DESCRIPTION

Face √ integer
array | all
| none

all Faces where the quadrilateral
elements are converted to
triangular elements

Out √ √ fem |
mesh

mesh Output data structure

Splitmethod √ √ diagonal
| center

diagonal Split method for quadrilateral
and hexahedral elements

Subdomain √ √ integer
array | all
| none

all Subdomains where the
nonsimplex elements are
converted to simplex elements
293

meshconvert

294 | C H A P T
Algorithm Each quadrilateral element that is located either on a face in 3D specified by the
property face, or in a subdomain in 2D specified by the property subdomain, is
split into two or four triangular elements.

The property splitmethod specifies the technique that is used to convert the
quadrilateral elements.

• Diagonal means that each quadrilateral element is split along a diagonal into two
triangles.

• Center means that an extra mesh vertex is placed in the centroid of each
quadrilateral, and the element is then split into four triangles.

Each prism element that is located in a subdomain specified by the property
subdomain is converted into 3 tetrahedral elements. Any hexahedral element
adjacent to a prism element is first converted into two prism elements by splitting it
along the diagonal of a face. A hexahedral element split in this way is ultimately
converted into 6 tetrahedral elements. Note that because the algorithm introduces
new prisms by splitting the hexahedron, more hexahedrons might be split in this
way.

Each hexahedral element that is located in a subdomain specified by the property
subdomain is converted into 5 or 28 tetrahedral elements, unless it was split into a
prism as described above.

The property splitmethod specifies the technique that is used to convert the
hexahedral elements.

• Diagonal means that each hexahedral element is converted into 5 tetrahedral
elements by splitting each face of the element along the diagonal.

• Center means that each hexahedral element is converted into 28 tetrahedral
elements. Seven extra mesh vertices are added for each hexahedral element,
placed in the centroid of each face and in the center of the element.

Note that the quadrilateral elements on the boundaries of the specified subdomains
are also converted, either into two triangular elements (when option diagonal is
used) or into four triangular elements (when option center is used). It is therefore
necessary to convert all adjacent subdomains at the same time and with the same
technique.
E R 1 : C O M M A N D R E F E R E N C E

meshconvert
Examples Create a mapped quad mesh on a unit rectangle and convert each quadrilateral
element into four triangular elements:

fem.geom = rect2;
fem.mesh = meshmap(fem);
fem.mesh = meshconvert(fem, 'splitmethod', 'center');
meshplot(fem);

Create a prism mesh and convert each prism into three tetrahedral elements.

fem.geom = block3;
fem.mesh = meshinit(fem, 'face', 1, 'subdomain', []);
fem.mesh = meshsweep(fem, 'meshstart', fem.mesh);
fem.mesh = meshconvert(fem);
meshplot(fem);

See also meshinit, meshsweep, meshplot
295

meshcopy

296 | C H A P T
meshcopyPurpose Copy mesh between boundaries

Syntax fem.mesh = meshcopy(fem,...)
fem = meshcopy(fem,'out',{'fem'})

Description fem.mesh = meshcopy(fem,...) copies the mesh between boundaries in the
mesh object fem.mesh.

 fem = meshcopy(fem,'out',{'fem'}) modifies the FEM structure to include
the new mesh object in fem.mesh.

Copy the mesh from one or several source boundaries to one target boundary. The
source boundary (or in the case of several source boundaries, the combined source
boundaries) and the target boundary must be of the exact same shape. However, a
scaling factor between the boundaries is allowed.

In 3D, the edges around the source and target boundaries are allowed to be
partitioned differently, but only in such a way that several edges of the source
boundary map to one edge of the target boundary, not the other way around.

The function meshcopy accepts the following property/value pairs:

Use the properties source and target to specify the source and target boundaries.
Note that source can be either a scalar value or a vector. The property target is
always a scalar value. This means that copying from several boundaries is allowed,
but you can only copy the mesh to a single boundary.

In 3D, use the properties sourceedg, targetedg, and direction to specify the
edge mapping from the source to the target boundary. The property sourceedg can
be either a single edge index or a vector of edge indices. The property targetedg
is always a single edge index. The property direction specifies the direction

PROPERTY 2D 3D VALUE DEFAULT DESCRIPTION

Direction √ √ auto |
same |
opposite

auto Direction between
edges

Mcase √ √ integer 0 Mesh case number

Source √ √ integer
array

Source boundaries

Sourceedg √ integer
array

Source edges

Target √ √ integer Target boundary

Targetedg √ integer Target edge
E R 1 : C O M M A N D R E F E R E N C E

meshcopy
between sourceedg and targetedg. The possible values are same, opposite, and
auto, where the last option means that the direction between the edges is
automatically determined by the algorithm. If sourceedg is a vector, then
direction refers to the direction between targetedg and the edge with the lowest
edge index in sourceedg.

In 2D, use the property direction to specify the direction between the edges given
in the properties source and target. The properties sourceedg and targetedg
are not used in 2D.

If you do not specify how to orient the source mesh on the target boundary through
the sourceedg, targetedg, and direction properties, the algorithm attempts to
determine the orientation automatically.

Copying a mesh is only possible if the target boundary is not adjacent to any meshed
subdomain. If the target boundary is already meshed, the current mesh is first
deleted and the source mesh is then copied to the target boundary.

In 3D, copying a mesh to a target boundary that is adjacent to a meshed boundary
is allowed if the edge between these boundaries has the same number of elements
as the corresponding source edges. In this case, the mesh on the target edge is kept,
and the copied boundary elements are modified to fit with this edge mesh.

Examples Mesh Face 1 of a block and copy the mesh to the opposite Face 4.

fem.geom = block3;
fem.mesh = meshinit(fem,'point',[],'edge',[], ...
 'face',1,'subdomain',[]);
fem.mesh = meshcopy(fem,'source',1,'target',4);

Mesh Boundaries 1 and 3 of a rectangle and then copy the mesh to Boundary 5.

g1 = rect2;
g2 = point2(0,0.3);
fem.geom = geomcsg({g1 g2});
fem.mesh = meshinit(fem,'hnumedg',{1 8 3 4},'point',[], ...
 'edge',[1,3],'subdomain',[]);
fem.mesh = meshcopy(fem,'source',[1 3],'target',5);

See also femmesh, meshinit, meshplot
297

meshdel

298 | C H A P T
meshdelPurpose Delete elements in mesh.

Syntax fem.mesh = meshdel(fem,...)
mesh = meshdel(mesh,...)
fem = meshdel(fem,’Out’,{’fem’},...)

Description fem.mesh = meshdel(fem,...) deletes elements from the mesh object fem.mesh
belonging to domains according to the specified properties.

mesh = meshdel(mesh,...) deletes elements from the mesh object mesh.

fem = meshdel(fem,'out',{'fem'},...) modifies the fem structure to include
the new mesh object in fem.mesh.

The function meshdel accepts the following property/values:

Deleting elements corresponding to a specific domain, all elements on adjacent
domains of higher dimension are deleted as well.

Examples Create a mesh of a 2D geometry with 3 subdomains.

fem.geom = rect2+circ2;
geomplot(fem,'sublabels','on','edgelabels','on')
fem.mesh = meshinit(fem);

TABLE 1-88: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Deladj on | off on Specifies if elements
belonging to adjacent
domains of lower
dimensions are deleted as
well

Edge integer array | all |
none

none Specifies the edge domains
for which the elements are
deleted

Face integer array | all |
none

none Specifies the face domains
for which the elements are
deleted

Out fem | mesh mesh Output variables

Point integer array | all |
none

none Specifies the vertex
domains for which the
elements are deleted

Subdomain integer array | all |
none

none Specifies the subdomains
for which the elements are
deleted
E R 1 : C O M M A N D R E F E R E N C E

meshdel
Delete the elements belonging to subdomain 3 only.

fem.mesh = meshdel(fem.mesh,'subdomain',3,'deladj','off');
figure, meshplot(fem)

Delete the elements belonging to subdomain 1 and all adjacent domains of lower
dimensions that can be deleted.

fem.mesh = meshdel(fem.mesh,'subdomain',1,'deladj','on');
figure, meshplot(fem)

Delete the edge elements belonging to edge 1. Note that the elements belonging
to the adjacent subdomain (subdomain 2) are deleted as well.

fem.mesh = meshdel(fem.mesh,'edge',1);
figure, meshplot(fem)

See Also femmesh, meshenrich, meshinit
299

meshembed

300 | C H A P T
meshembedPurpose Embed a 2D mesh object as a 3D mesh object.

Syntax fem1 = meshembed(fem0,...)
[mesh,geom]= meshembed(fem,’Out’,{’mesh’,’geom’},...)

Description fem1 = meshembed(fem0,...) embeds the 2D geometry object in fem0.geom
and the 2D mesh object in fem0.mesh, as a 3D geometry object and a 3D mesh
object stored in fem1.geom and fem1.mesh, respectively.

[geom,mesh]= meshembed(fem,’Out’,{’geom’,’mesh’},...) returns the
embedded 3D geometry object in geom and the embedded 3D mesh object in mesh.

Valid property/value pairs for the meshembed function are given in the following
table. In addition, all embed parameters are supported and are passed to embed for
creating the embedded 3D geometry object.

Embedding a 2D mesh object as a 3D mesh object, the 2D vertex elements, the 2D
boundary elements, the 2D triangular elements, and the 2D quadrilateral elements,
are embedded as 3D vertex elements, 3D edge elements, 3D triangular boundary
elements, and 3D quadrilateral boundary elements, respectively.

See also embed, meshextrude, meshrevolve, femmesh

PROPERTY VALUES DEFAULT DESCRIPTION

Mcase integer 0 Mesh case number

Out fem | mesh | geom fem Output variables
E R 1 : C O M M A N D R E F E R E N C E

meshenrich
meshenrichPurpose Make mesh object complete.

Syntax fem.mesh = meshenrich(fem,...)
mesh = meshenrich(mesh,...)
fem = meshenrich(fem,’Out’,{’fem’},...)

Description fem.mesh = meshenrich(fem,...) completes the mesh object fem.mesh with
element information necessary for using the mesh object in a simulation or for
converting into a geometry object.

mesh = meshenrich(mesh,...) completes the mesh object mesh.

fem = meshenrich(fem,'out',{'fem'},...) modifies the fem structure to
include the new mesh object in fem.mesh.

The function meshenrich accepts the following property/value pairs.

TABLE 1-89: VALID PROPERTY/VALUE PAIRS

PROPERTY 2D 3D VALUE DEFAULT DESCRIPTION

Extrangle √ numeric 0.01 Maximum angle between
boundary element normal and
extrusion plane that will cause
the element to be a part the
extruded face if possible

Faceangle √ numeric 1.8 Maximum angle between any
two boundary elements in the
same face

Facecleanup √ numeric 0.01 Avoid creating small faces. Faces
with an area less than
Facecleanup * the mean face
area, are merged with adjacent
faces

Facecurv √ numeric 0.2 Maximum relative curvature
deviation between any two
boundary elements in the same
face

Faceparam √ on | off on Specifies if faces are
parameterized

Minareaecurv √ numeric 1 Minimum relative area of face to
be considered as a face with
constant curvature

Minareaextr √ numeric 0.05 Minimum relative area of face to
be considered extruded
301

meshenrich

302 | C H A P T
Algorithm These are the main steps of the 3D algorithm:

1 If the domain information (dom field) for the subdomain elements is missing, all
subdomain elements are assigned the same domain label.

2 Missing boundary elements are added. Boundary elements are required at the
boundaries of the subdomains.

3 The up-down subdomain information (ud field) for the boundary elements is
made complete.

4 If the domain information (dom field) for the boundary elements is missing, the
face domain partitioning is determined according to the following steps.

- Search for planar faces according to Planarangle and Minareaplane.

- Search for extruded faces according to Extrangle and Minareaextr.

- Search for faces with constant curvature according to Facecurv and
Minareacurv. This search is only done for second order elements.

- The remaining boundary elements are divided into face domains according to
Neighangle and Faceangle.

5 Exceedingly small faces are merged with neighboring faces according to
Facecleanup.

6 The faces are parameterized (param field).

Minareaeplane √ numeric 0.005 Minimum relative area of face to
be considered planar

Neighangle √ √ numeric 0.35 Maximum angle between a
boundary element and a
neighbor that will cause the
elements to be part of the same
boundary domain if possible

Out √ √ fem |
mesh

mesh Output variables

Planarangle √ numeric 0.01 Maximum angle between
boundary element normal and a
neighbor that will cause the
element to be a part the planar
face if possible

TABLE 1-89: VALID PROPERTY/VALUE PAIRS

PROPERTY 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

meshenrich
7 Missing edge elements are added. Edge elements are required at the boundaries
of the faces. Domain and parameter information (dom and param fields) for the
edge elements is also added.

8 Missing vertex elements are added. Vertex elements are required on the
boundaries of the edges.

The 1D and 2D algorithms work in a similar way.

Example Create an initial mesh object from mesh point coordinates and tetrahedral element
information.

load coord.txt;
load tet.txt;
el = cell(1,0);
tet = tet+1; % Lowest mesh point index is zero in tet.txt
el{1} = struct('type','tet','elem',tet');
m = femmesh(coord',el);

Use meshenrich to create a complete mesh object, that is, a mesh object with
boundary elements, edge elements and vertex elements with necessary geometry
information.

m = meshenrich(m);
meshplot(m)

See Also geominfo, meshinit, femmesh
303

meshexport

304 | C H A P T
meshexportPurpose Export meshes to file.

Syntax meshexport(filename,ml,...)

Description meshexport(filename,ml,...) exports the meshes in the cell array ml to a file.
ml can also be one single mesh object.

The function meshexport supports the following mesh formats:

Example Create a 3D mesh and export in the text file format.

m = meshinit(block3+cone3,'hauto',9)
meshexport('meshfile.mphtxt',m);

See Also femmesh, meshimport

FORMAT FILE EXTENSION

COMSOL Multiphysics text file .mphtxt

COMSOL Multiphysics binary file .mphbin
E R 1 : C O M M A N D R E F E R E N C E

meshextend
meshextendPurpose Extend a mesh to the desired finite element types.

Syntax fem.xmesh = meshextend(fem, ...)
[fem.xmesh, cv] = meshextend(fem, ...)

Description fem.xmesh = meshextend(fem) extends the (possibly extended) FEM structure
fem with the xmesh field. The xmesh object contains the full finite element mesh for
the model, and also the full description of the model using an internal syntax (the
element syntax).

[fem.xmesh, cv] = meshextend(fem) also outputs a cell array cv containing
names of variables that were multiply defined.

The function meshextend reads the field fem.solform and generates the extended
using this solution form. The default value for fem.solform is weak meaning that
the weak solution form will be used.

The function meshextend accepts the following property/values:.

TABLE 1-90: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Blocksize positive integer 1000 Block size

Eqvars on | off | cell array on Generate equation
variables

Cplbndeq on | off | cell array on Generate
boundary-coupled
equation variables

Cplbndsh on | off | cell array off Generate
boundary-coupled shape
variables

Geoms integer vector All meshed
geometries

Extend the mesh on these
geometries

Interiorbnd on | off on if
fem.equ.bnd is
present

Assemble on interior
mesh boundaries

Linshape integer array All meshed
geometries

Use linear geometry
shape order for inverted
elements on these
geometries
305

meshextend

306 | C H A P T
Use the properties linshape and linshapetol to avoid problems with inverted
elements in the extended mesh. linshape is an integer array specifying the
geometries where the software avoids inverted elements by using linear geometry
shape order for the corresponding elements. linshapetol is the tolerance or a
vector of tolerances of the same length as linshape. The tolerance values specify
the minimum allowed value of the variable reldetjacmin for elements not being
considered inverted.

Compatibility If the FEM structure has a version field fem.version and the version is older than
COMSOL Multiphysics 3.2, then the default for fem.solform is equal to
fem.form.

See Also xmeshinfo

Linshapetol scalar or vector 0.1 Use linear geometry
shape order for inverted
elements on these
geometries

Mcase integer array All mesh cases Extend the mesh for these
mesh cases

Report on | off on Show progress window

Standard on | off on Convert standard syntax
to element syntax

TABLE 1-90: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

meshextrude
meshextrudePurpose Extrude a 2D mesh object into a 3D mesh object.

Syntax fem1 = meshextrude(fem0,...)
[mesh,geom]= meshextrude(fem,’Out’,{’mesh’,’geom’},...)

Description fem1 = meshextrude(fem0,...) extrudes the 2D geometry object in fem0.geom
and the 2D mesh object in fem0.mesh, into a 3D geometry object and a 3D mesh
object stored in fem1.geom and fem1.mesh, respectively, according to the given
parameters.

[geom,mesh]= meshextrude(fem,’Out’,{’geom’,’mesh’},...) returns the
3D geometry object in geom and the 3D mesh object in mesh.

Valid property/value pairs for the meshextrude function are given in the following
table. In addition, all extrude parameters are supported and are passed to extrude
for creating the extruded 3D geometry object.

The property Elextlayers defines the distribution of mesh element layers in the
extruded mesh. The value of Elextlayers is a cell array where each entry
corresponds to a section in the extruded geometry object. If a cell entry is a scalar,
it defines the number of equally distributed mesh element layers that is generated
for the corresponding extruded section. Alternatively, if a cell entry is a vector, it
defines the distribution of the mesh element layers for the corresponding extruded
section. The values in the vector, that are sorted and starts with 0, specify the
placements, in relative arc length, of the mesh element layers. Note that more
element layers might be introduced due to the division of the revolved geometry
into sections. By default, the number of element layers is determined such that the
distance of each layer is equal to the mean element size in the original 2D mesh.

Extruding a 2D mesh object into a 3D mesh object, the 2D vertex elements, the 2D
boundary elements, the 2D triangular elements, and the 2D quadrilateral elements,
are extruded into 3D edge elements, 3D quadrilateral boundary elements, 3D prism
elements, and 3D hexahedral elements, respectively.

Examples Create an extruded prism mesh on a cylinder of height 1.3.

PROPERTY VALUES DEFAULT DESCRIPTION

Elextlayers 1-by-nd cell array Distribution of mesh element
layers in extruded mesh

Mcase integer 0 Mesh case number

Out fem | mesh | geom fem Output variables
307

meshextrude

308 | C H A P T
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem1 = meshextrude(fem,'distance',1.3);

Create a hexahedral mesh by extruding a quad mesh on a rectangle.

fem.geom = rect2(1,2,'pos',[0 0]);
fem.mesh = meshmap(fem);
fem1 = meshextrude(fem,'distance',[1.3 2],...
 'displ',[0.4 0;0 -0.2],...
 'scale',[2 1;2 1.5],...
 'elextlayers',{5 [0 0.2 0.8 1]});
meshplot(fem1);

Cautionary Extruding a mesh with any scale factor equal to zero is not supported.

See also extrude, meshembed, meshrevolve, femmesh
E R 1 : C O M M A N D R E F E R E N C E

meshimport
meshimportPurpose Import meshes from file.

Syntax meshes = meshimport(filename,...)

Description meshes = meshimport(filename,...) reads the file with name filename using
the specified properties and returns a cell array of meshes.

The function meshimport supports the following mesh formats:

Valid property/value pairs for the NASTRAN format include.

meshimport accepts all property/values that meshenrich does.

elemsplit specifies if mesh elements of different element forms—that is,
tetrahedral, pentahedral, or hexahedral—get different subdomain labels. The
default value is off.

enrichmesh specifies if the meshes are enriched with domain information—that is,
boundary elements, edge elements, and vertex elements. The domain partitioning
is controlled by the properties of meshenrich. If the value is off the output meshes
are not complete meshes. The default value is on.

FORMAT FILE EXTENSION

COMSOL Multiphysics text file .mphtxt

COMSOL Multiphysics binary file .mphbin

NASTRAN file .nas | .bdf | .dat

TABLE 1-91: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

elemsplit on | off off Specifies if mesh elements of different
element forms get different subdomain
labels.

enrichmesh on | off on Specifies if the imported meshes are
enriched.

linearelem on | off off Specifies if extended node points are
ignored.

materialsplit on | off on Specifies if material data in the file is used
to determine the domain partitioning of
the subdomain elements.

report on | off on Determines if a progress window is
displayed.
309

meshimport

310 | C H A P T
linearelem determines if extended node points are ignored. If the value is on all
imported elements are linear. Otherwise, the order of the imported elements is
determined from the order of the elements in the file. The default value is on.

materialsplit determines if material data in the file is used (if available) to
determine the domain partitioning of the subdomain elements. If the value is off
all subdomain elements in the imported mesh belongs to the same subdomain if
possible. The default value is on.

report specifies if a progress window is displayed. The default value is on.

The table below specifies the NASTRAN bulk data entries that are parsed in
meshimport.

The NASTRAN bulk data format uses reduced second-order elements; that is, the
center node on quadrilateral mesh faces (quadNode) and the center node of
hexahedral elements (hexNode) are missing. Importing a NASTRAN mesh with
second-order elements, COMSOL Multiphysics interpolates the coordinates of
these missing node points from the surrounding node points using the following
formulas: quadNode = 0.5*quadEdgeNodes-0.25*quadCornerNodes, where
quadEdgeNodes is the sum of the coordinates of the surrounding 4 edge nodes and
quadCornerNodes is the sum of the coordinates of the surrounding 4 corner nodes,
and hexNode = 0.25*hexEdgeNodes-0.25*hexCornerNodes, where

BULK DATA ENTRY

CBAR

CHEXA

CORD1C

CORD1R

CORD1S
CORD2C
CORD2R
CORD2S
CPENTA

CQUAD4
CQUAD8

CTETRA

CTRIA3

CTRIA6

GRID
E R 1 : C O M M A N D R E F E R E N C E

meshimport
hexEdgeNodes is the sum of the coordinates of the surrounding 12 edge nodes and
hexCornerNodes is the sum of the coordinates of the surrounding 8 corner nodes.

Cautionary meshimport does not handle NASTRAN files in free field format where the data
fields are separated by blanks.

See Also femmesh, meshenrich, meshexport
311

meshinit

312 | C H A P T
meshinitPurpose Create free mesh

Syntax fem.mesh = meshinit(fem,...)
fem.mesh = meshinit(geom,...)
fem = meshinit(fem,'out',{'fem'},...)

 Description fem.mesh = meshinit(fem,...) returns a mesh object derived from the
geometry object fem.geom. The mesh size is determined from the shape of the
geometry object and various property/value pairs.

fem.mesh = meshinit(geom,...) returns a mesh object derived from the
geometry object geom.

The mesh object fem.mesh is the data structure for the mesh. See femmesh for a full
description of the mesh object.

fem = meshinit(fem,'Out',{'fem'},...) modifies the FEM structure to
include the mesh object fem.mesh.

The function meshinit accepts the following property/value pairs:

TABLE 1-92: VALID PROPERTY/VALUE PAIRS

PROPERTY 0D 1D 2D 3D VALUE DEFAULT DESCRIPTION

edge √ √ numeric
array |
auto | all
| none

auto Specifies the edges
that are meshed

edgelem √ √ √ cell array Edge element
distribution

face √ integer
array |
auto | all
| none

auto Specifies the faces
that are meshed

hauto √ √ numeric 5 Automatic setting of
several mesh
parameters

hcurve √ numeric 0.3 Curvature mesh size

hcurve √ numeric 0.6 Curvature mesh size

hcurveedg √ √ numeric
array

hcurve Curvature mesh size
for edges

hcurvefac √ numeric
array

hcurve Curvature mesh size
for faces
E R 1 : C O M M A N D R E F E R E N C E

meshinit
hcutoff √ numeric 0.001 Curvature
resolution cutoff

hcutoff √ numeric 0.03 Curvature
resolution cutoff

hcutoffedg √ √ numeric
array

hcutoff Curvature
resolution cutoff for
edges

hcutofffac √ numeric
array

hcutoff Curvature
resolution cutoff for
faces

hgrad √ √ numeric 1.3 Element growth rate

hgrad √ numeric 1.5 Element growth rate

hgradvtx √ √ √ numeric
array

hgrad Element growth rate
for vertices

hgradedg √ √ numeric
array

hgrad Element growth rate
for edges

hgradfac √ numeric
array

hgrad Element growth rate
for faces

hgradsub √ √ √ numeric
array

hgrad Element growth rate
for subdomains

hmax √ √ √ numeric estimate Global maximum
element size

hmaxvtx √ √ √ numeric
array

hmax Maximum element
for vertices

hmaxedg √ √ numeric
array

hmax Maximum element
for edges

hmaxfac √ numeric
array

hmax Maximum element
for faces

hmaxsub √ √ √ numeric
array

hmax Maximum element
for subdomains

hmaxfact √ √ √ numeric 1 A factor that the
default hmax is
multiplied by

hmesh √ √ √ numeric Element size given
on mesh

TABLE 1-92: VALID PROPERTY/VALUE PAIRS

PROPERTY 0D 1D 2D 3D VALUE DEFAULT DESCRIPTION
313

meshinit

314 | C H A P T
hnarrow √ numeric 1 Resolution of
narrow regions

hnarrow √ numeric 0.5 Resolution of
narrow regions

hnumedg √ √ cell array Number of elements
for edges

hnumsub √ cell array Number of elements
for subdomains

hpnt √ numeric 10 Global number of
resolution points

hpnt √ numeric 20 Global number of
resolution points

hpntedg √ numeric
array

Hpnt Number of
resolution points for
edges

hpntfac √ numeric
array

Hpnt Number of
resolution points for
faces

jiggle √ √ on | off on Improve mesh
quality

mcase √ √ √ √ integer 0 Mesh case number

mesh √ √ √ mesh
object

Mesh for hmesh

meshstart √ √ √ √ mesh
object

Starting mesh

methodsub √ cell array |
tri |
triaf |
quad

triaf Specify triangle
(Delaunay), triangle
(advancing front), or
quad mesh

minit √ √ on | off off Boundary
triangulation

mlevel √ vtx | sub sub Meshing level

mlevel √ vtx | edg |
sub

sub Meshing level

mlevel √ vtx | edg |
fac | sub

sub Meshing level

TABLE 1-92: VALID PROPERTY/VALUE PAIRS

PROPERTY 0D 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

meshinit
Use the properties point, edge, face, and subdomain to specify the domains to be
meshed. If you use these properties together with the meshstart property, the
value auto means that all domains that are not meshed in the starting mesh are
meshed and none that no further domains are meshed. all means that all domains
not already meshed in the starting mesh and all meshed domains that are not
adjacent to a meshed domain of higher dimension are meshed (or remeshed). It is
also possible to specify the domains to be meshed (or remeshed) using a vector of
domain indices.

The meshstart property is used when meshing a geometry interactively. The value
of this property is the starting mesh of the meshing operation.

Use the property methodsub in 2D to specify if subdomains should be meshed with
triangles, using either a Delaunay based method or an advancing front based
method, or quads. The property is set to tri, triaf, or quad, respectively. The

point √ √ √ integer
array |
auto | all
| none

auto Specifies the
vertices that are
meshed

out √ √ √ √ fem | mesh
| p | e | t |
vg | eg |
vg

mesh Output variables

report √ √ √ √ on | off on Display progress

subdomain √ √ √ √ integer
array |
auto | all
| none

auto Specifies the
subdomains that are
meshed

xscale √ √ numeric 1 Scale geometry in
x direction before
meshing

yscale √ √ numeric 1 Scale geometry in
y direction before
meshing

zscale √ numeric 1 Scale geometry in
z direction before
meshing

TABLE 1-92: VALID PROPERTY/VALUE PAIRS

PROPERTY 0D 1D 2D 3D VALUE DEFAULT DESCRIPTION
315

meshinit

316 | C H A P T
default option is triaf. In general, the advancing front algorithm produces a mesh
of higher quality.

The value of the property can also be an even numbered cell array, where the odd
entries contain subdomain indices, either as scalar values, or as vectors with
subdomain indices, and the even entries are either quad, tri, or triaf, specifying
which method to use for each subdomain. Default is tri for all subdomains.

Use the property methodfac in 3D to specify if faces should be meshed with
triangles, using either a Delaunay based method or an advancing front based
method, or quads. The property methodfac in 3D is equivalent to the property
methodsub in 2D, and is specified in the same way, but for faces instead of
subdomains.

The property edgelem is used to explicitly control the distribution of the edge
elements in the mesh. The value of this property is an even numbered cell array
where the odd entries contain edge indices, either as scalar values, or as a vectors
with edge indices, and the even entries contain scalar values or vectors specifying the
edge element distribution on the corresponding edge(s). If the edge element
distribution is specified by a scalar, the edge elements on the corresponding edge(s)
are equally distributed in arc length and the number of edge elements equals the
value of the scalar. To get full control over the edge element distribution on an edge,
the vector form is used. The values in the vector, that are sorted and starts with 0,
specify the relative placement of the mesh vertices along the direction of the
corresponding edge(s). The edgelem property can also be used on subdomains in
1D to control the element distribution.

The minit property is related to the way the mesh algorithm works. By turning on
minit you can see the initial discretization of the boundaries. This property is only
valid for mlevel sub.

Hauto is available in 2D and 3D and is an integer between 1 and 9. This integer is
used to set several mesh parameters in order to get a mesh of desired size. Smaller
values of hauto generate finer meshes with more elements.

TABLE 1-93: MESH PARAMETERS SET BY THE PROPERTY HAUTO IN 2D

HAUTO HMAXFACT HCURVE HGRAD HCUTOFF

1 0.15 0.2 1.1 0.0001

2 0.3 0.25 1.2 0.0003

3 0.55 0.25 1.25 0.0005

4 0.8 0.3 1.3 0.001
E R 1 : C O M M A N D R E F E R E N C E

meshinit
 Hcurve is a scalar numeric value that relates the mesh size to the curvature of the
geometry boundaries. The radius of curvature is multiplied by the hcurve factor to
obtain the mesh size along the boundary.

 hcurveedg and hcurvefac are matrices with two rows where the first row contains
edge indices and face indices respectively, and the second row contains
corresponding values of hcurve. If several faces are represented in one patch, the
value of hcurvefac for the faces in the patch is set to the minimum value of the
hcurvefac values for the corresponding faces.

 hcutoff is used to prevent the generation of many elements around small curved
parts of the geometry. The interpretation is that when the radius of curvature is
smaller than hcutoff*maxdist the radius of curvature is taken as
hcutoff*maxdist, where maxdist is the longest axis parallel distance in the
geometry.

 hcutoffedg and hcutofffac are matrices with two rows where the first row
contains edge indices and face indices respectively, and the second row contains
corresponding values of hcutoff. If several faces are represented in one patch, the

5 1 0.3 1.3 0.001

6 1.5 0.4 1.4 0.005

7 1.9 0.6 1.5 0.01

8 3 0.8 1.8 0.02

9 5 1 2 0.05

TABLE 1-94: MESH PARAMETERS SET BY THE PROPERTY HAUTO IN 3D

HAUTO HMAXFACT HCURVE HGRAD HCUTOFF HNARROW

1 0.2 0.2 1.3 0.001 1

2 0.35 0.3 1.35 0.005 0.85

3 0.55 0.4 1.4 0.01 0.7

4 0.8 0.5 1.45 0.02 0.6

5 1 0.6 1.5 0.03 0.5

6 1.5 0.7 1.6 0.04 0.4

7 1.9 0.8 1.7 0.05 0.3

8 3 0.9 1.85 0.06 0.2

9 5 1 2 0.07 0.1

TABLE 1-93: MESH PARAMETERS SET BY THE PROPERTY HAUTO IN 2D

HAUTO HMAXFACT HCURVE HGRAD HCUTOFF
317

meshinit

318 | C H A P T
value of hcutofffac for the faces in the patch is set to the minimum value of the
hcutofffac values for the corresponding faces.

The property hgrad tells how fast the element size—measured as the length of the
longest edge of the element—can grow from a region with small elements to a
region with larger elements. If two elements lie one unit length apart, the difference
in element size can be at most hgrad.

 hgradvtx, hgradedg, hgradfac, and hgradsub are matrices with two rows where
the first row contains vertex indices, edge indices, face indices, and subdomain
indices respectively, and the second row contains corresponding values of hgrad. If
several faces are represented in one patch, the value of hgradfac for the faces in the
patch is set to the minimum value of the hgradfac values for the corresponding
faces.

The hmax parameter controls the size of the elements in the mesh. meshinit creates
a mesh where no element size exceeds hmax. The default hmax value is one fifteenth
of the longest axis parallel distance in the geometry in 1D and 2D and one tenth of
the longest axis parallel distance in the geometry in 3D.

hmaxvtx, hmaxedg, hmaxfac, and hmaxsub are matrices with two rows where the
first row contains vertex indices, edge indices, face indices, and subdomain indices
respectively, and the second row contains corresponding values of hmax.

The hmaxfact property is used to scale the defaulted hmax value.

hmesh is a vector with one entry for every mesh vertex or element in the mesh given
in the mesh property. This can be used to specify the size of the elements using the
mesh provided with the property mesh.

The hnarrow parameter controls the size of the elements in narrow regions.
Increasing values of this property decrease the size of the elements in narrow
regions. If the value of hnarrow is less than one, elements that are anisotropic in size
might be generated in narrow regions.

hnumedg and hnumsub are cell arrays where the odd entries contain edge indices and
subdomain indices respectively, and even entries contain number of elements.

The hpnt property controls the number of points that are placed on each edge in
2D and in each parametric direction on each geometry patch in 3D to resolve the
geometry.

hpntedg is a matrix with two rows where the first row contains edge indices and the
second row contains corresponding values of hpnt.
E R 1 : C O M M A N D R E F E R E N C E

meshinit
hpntfac is a matrix with two rows where the first row contains face indices and the
second row contains corresponding number of resolution points in each parametric
direction of the underlying geometry patch. If several faces are represented in one
patch the value of hpntfac for the faces in the patch is set to the maximum value of
the hpntfac values for the corresponding faces.

The jiggle property determines if the quality of the mesh is improved before the
mesh is returned.

Use the mesh property to specify a mesh for the property hmesh.

The property mlevel determines to which level the mesh is generated. If it is vtx,
only the vertices in the geometry are returned. If it is edg, the edges in the geometry
are resolved. If it is fac the edges and faces in the geometry are resolved. If it is sub
elements in the subdomains are generated as well.

The properties xscale, yscale, and zscale specify scalar factors in each axis
direction that the geometry is scaled by before meshing. The resulting mesh is then
scaled back to fit the original geometry. The values of other properties correspond
to the scaled geometry. By default, no scaling is done.

Examples 3D Example
Create a 3D mesh of a cylinder.

clear fem
fem.geom=cylinder3;
fem.mesh=meshinit(fem);
meshplot(fem)

Use advancing front meshing on the boundary.

fem.mesh = meshinit(fem,'methodfac','triaf');
meshplot(fem)

2D Example
Make a simple mesh of a unit square.

clear fem
fem.geom = geomcsg({square2(0,1,1)});
fem.mesh = meshinit(fem);
meshplot(fem), axis equal

Make the mesh finer than the default.

fem.mesh = meshinit(fem,'hmax',0.02);
meshplot(fem), axis equal

Now, make the mesh denser only near the edge segment to the left.
319

meshinit

320 | C H A P T
fem.mesh = meshinit(fem,'hmaxedg',[1; 0.02]);
meshplot(fem), axis equal

Use instead the advancing front method to create the mesh.

fem.mesh = meshinit(fem,'methodsub','triaf');
meshplot(fem), axis equal

Make a free quad mesh of a circle

clear fem
fem.geom = geomcsg({circ2});
fem.mesh = meshinit(fem,'methodsub','quad');
meshplot(fem), axis equal

1D Example
Create a mesh on the interval [0,1] that is finer near the point 0 and grows toward 1.

fem.geom = geomcsg({solid1([0 1])});
fem.mesh = meshinit(fem,'hmax',0.1,'hmaxvtx',[1; 0.001]);
meshplot(fem)

2D Example Dealing with Interactive Meshing
Create a boundary mesh of a geometry

clear fem;
fem.geom = rect2+circ2;
fem.mesh = meshinit(fem,'subdomain','none');
meshplot(fem)

Mesh subdomain 2 using the boundary mesh as starting mesh

fem.mesh = meshinit(fem,'subdomain',2,'meshstart',fem.mesh);
meshplot(fem)

Mesh the remaining subdomains using the previous mesh as starting mesh

fem.mesh = meshinit(fem,'meshstart',fem.mesh);
meshplot(fem)

Compatibility The second and third row in the vg field as well as the second row in the v field will
be removed in future versions.

Cautionary To achieve compatibility with FEMLAB 2.3, the geometry input is automatically
converted to a geometry object using the function geomobject. The geometry
input can be any analyzed geometry. See geomobject for details.

If you create a mesh with methodsub set to quad in 2D, or methodfac set to quad
in 3D, the generated mesh is not guaranteed to contain only quadrilateral elements.
If the algorithm for some reason fails to mesh the entire domain with quad elements,
E R 1 : C O M M A N D R E F E R E N C E

meshinit
or if the quality of a quad element is very low, some triangular elements are
generated instead.

See Also femmesh, geomcsg, meshplot, meshrefine

Reference George, P. L., Automatic Mesh Generation—Application to Finite Element
Methods, Wiley, 1991.
321

meshintegrate

322 | C H A P T
meshintegratePurpose Integrate over arbitrary cross section

Syntax I = meshintegrate(p,t,d)
I = meshintegrate(p,d)
I = meshintegrate(p)

Description I = meshintegrate(p,t,d) computes the integral I over the mesh given by p and
t, with values (for each point) in d. d is of size 1-by-np, where np is the number of
points in p (=size(p,2)). The elements are considered to be linear.

I = meshintegrate(p,d) assumes t=[1,2,3,... (np-1) ; 2,3,4,... np],
(where np=size(p,2)), i.e., that the mesh is a line and that the points in p are
sorted.

I = meshintegrate(p) calls meshintegrate(p(1,:), p(2,:)).

This function is useful for computing integrals along cross sections plotted with
postcrossplot, in which case p, t, and d are extracted from the output when the
property outtype is set to postdata.

Examples Line integral in 2D:

% Just set up a problem:
clear fem
fem.geom = circ2+rect2;
fem.mesh = meshinit(fem);
fem.shape = 2; fem.equ.c = 1; fem.equ.f = 1; fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);

% Make a cross-section plot, with output being a postdata
% structure
pd = postcrossplot(fem,1,[0 1;0 1],'lindata','u',...
 'npoints',100,'outtype','postdata');

% Call meshintegrate:
I = meshintegrate(pd.p);

Line integral in 3D:

% Just set up a problem:
clear fem, fem.geom = block3;
fem.mesh = meshinit(fem,'hmax',0.15);
fem.shape = 2;
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = {1 1 0 0 1 1};
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
E R 1 : C O M M A N D R E F E R E N C E

meshintegrate
% Make cross-section plot:
pd = postcrossplot(fem,1,[0 1;0 1;0 1],'lindata','u',...
 'npoints',100,'outtype','postdata');

% Call meshintegrate:
I = meshintegrate(pd.p)

Surface integral in 3D using the same problem as above:

pd = postcrossplot(fem,2,[0 0 0;0 1 0;1 0 1]','surfdata','u',...
 'outtype','postdata');
I = meshintegrate(pd.p, pd.t, pd.d)

This function only works for lines and surfaces actually intersecting the geometry.
For plots along geometry boundaries or edges (or 1-D subdomains), better results
are achieved using postint.

Cautionary This function is not implemented for 3-D elements, i.e., when T has four rows.

See also postcrossplot, postint
323

meshmap

324 | C H A P T
meshmapPurpose Create mapped quad mesh.

Syntax fem.mesh = meshmap(fem,...)
fem.mesh = meshmap(geom,...)
fem = meshmap(fem,'out',{'fem'},...)

Description fem.mesh = meshmap(fem,...) returns a mapped quad mesh derived from the
geometry fem.geom. For a 3D geometry, only the faces are meshed.

fem.mesh = meshmap(geom,...) returns a mapped quad mesh derived from the
geometry geom.

fem = meshmap(fem,'out',{'fem'},...) modifies the fem structure to include
a mesh in fem.mesh.

The quad mesh is generated by a mapping technique. For each subdomain in 2D
and face in 3D, a logical mesh is generated on a square geometry and is then mapped
onto the real geometry by transfinite interpolation.

The following criteria must be met by the input geometry object for the mapping
technique to work:

• Each subdomain/face to be meshed must be bounded by one connected
boundary component only.

• Each subdomain/face to be meshed must be bounded by at least four edges.

• The subdomains/faces to be meshed must not contain isolated vertices or edges.

• The shape of each subdomain/face to be meshed must not differ too much from
rectangular shape.

The function meshmap accepts the following property/values:

PROPERTY VALUE DEFAULT DESCRIPTION

edgegroups cell array of
size 1-by-ns

Determines the grouping of the edges,
per subdomain/face, into four edge
groups, corresponding to the edges of
the logical square

edgelem cell array Edge element distribution

face integer array |
auto | all |
none

auto Specifies the faces in 3D that are
meshed

hauto numeric 5 Predefined mesh element size

mcase integer 0 Mesh case number
E R 1 : C O M M A N D R E F E R E N C E

meshmap
The property edgegroups is a cell array where each cell entry, corresponding to
each subdomain/face, determines the relation between the edges defining the
boundary of the corresponding subdomain/face, and the four edges of the logical
square. If a cell entry is left empty, the meshing algorithm splits the edges bounding
the subdomain/face into the four edge groups at the vertices corresponding to the
four sharpest corners. The relation between the edges of each subdomain/face and
the edges of the logical square is specified as a cell array, where each cell entry
contains the indices to the edges in the real geometry that correspond to one edge
of the logical square.

The property edgelem determines the distribution of the edge elements in the
mesh. The value of this property is an even numbered cell array where the odd
entries contain edge indices, either as scalar values, or as a vectors with edge indices,
and the even entries contain scalar values or vectors specifying the edge element
distribution on the corresponding edge(s). If the edge element distribution is
specified by a scalar, the edge elements on the corresponding edge(s) are equally
distributed in arc length and the number of edge elements equals the value of the
scalar. To get full control over the edge element distribution on an edge, the vector
form is used. The values in the vector, that are sorted and starts with 0, specify the
placements, in arc length, of the mesh vertices along the direction of the
corresponding edge(s).

hauto is an integer between 1 and 9 that controls the element size in the generated
mesh. The default value is 5 which means that the element size is set to 1/15 in 2D
and 1/10 in 3D of the size of the geometry for the elements not affected by the
edgelem property. By changing the value of this property, the default element size
is multiplied by the following factors.

meshstart mesh object empty Starting mesh

report on | off on Display progress

out fem | mesh mesh Output variables

subdomain integer array |
auto | all |
none

auto Specifies the subdomains in 2D that are
meshed

HAUTO SCALE
FACTOR

1 0.2

2 0.35

PROPERTY VALUE DEFAULT DESCRIPTION
325

meshmap

326 | C H A P T
Use the property subdomain in 2D and face in 3D to specify the subdomains/faces
to be meshed. If you use this property together with the meshstart property, the
value auto means that all subdomains/faces that are not meshed in the starting
mesh are meshed, none means that no further subdomains/faces are meshed, and
all means that all subdomains/faces are meshed (or remeshed). It is also possible
to specify the subdomains/faces to be meshed (or remeshed) using a vector of
subdomain/face indices.

The meshstart property is used when meshing a geometry interactively. The value
of this property is the starting mesh of the meshing operation.

Note that for the mapping technique to work, opposite edges require the same
number of edge elements. If this requirement is not met by the specified values in
edgelem, an error is generated.

Examples Create a mapped quad mesh on a geometry where all subdomains are topologically
equivalent with a rectangle.

clear fem
fem.geom = rect2(2,0.98)+rect2(2,0.04,'pos',[0 0.98])+...
 rect2(2,0.98,'pos',[0 1.02]);
fem.mesh = meshmap(fem,'edgelem',{[2 7] 12 [1 8] ...
 [0 0.2:0.2:0.8 ...
 0.86:0.04:0.98]});
figure, meshplot(fem);

Create a mapped quad mesh on a geometry with two subdomains.

fem.geom = ...
 rect2+rect2(1,1,'pos',[1 0])-circ2(0.4,'pos',[1.1 -0.1]);
figure, geomplot(fem,'edgelabels','on')
fem.mesh = meshmap(fem,'edgegroups',{{1 3 2 [4 8]},...
 {4 5 7 [9 10 6]}});
figure, meshplot(fem);

3 0.55

4 0.8

5 1

6 1.5

7 1.9

8 3

9 5

HAUTO SCALE
FACTOR
E R 1 : C O M M A N D R E F E R E N C E

meshmap
Create a mesh with both triangle and quad elements

fem.geom = geomcomp({circ2(0.5,'pos',[0 0.5]),rect2,...
 circ2(0.5,'pos',[1 0.5])},'edge',7:10);
figure, geomplot(fem)
fem.mesh = meshmap(fem,'subdomain',2,'hauto',3);
fem.mesh = meshinit(fem,'meshstart',fem.mesh,'hauto',3);
figure, meshplot(fem);

See also meshdel, meshinit, meshplot
327

meshplot

328 | C H A P T
meshplotPurpose Plot mesh.

Syntax meshplot(fem,...)
meshplot(mesh,...)
h = meshplot(...)

Description meshplot(fem,...) plots the mesh object fem.mesh.

meshplot(mesh,...) plots the mesh object mesh.

h = meshplot(...) additionally returns handles to the plotted axes objects.

The mesh of the PDE problem is specified by the mesh object. Details on the
representation of the mesh can be found in the entry femmesh.

There is a multitude of options that enables you to plot the mesh in virtually any
conceivable way. For 2D and 3D meshes, there are basically two types of mesh plots;
the wireframe plot and the patch plot.

In 3D, the default type is a patch plot, where both the triangular faces of the
elements and the boundary elements are rendered. Only the visible faces of the
elements are included in the plot, and the boundary elements and other mesh faces
are plotted in different colors. The characteristics of this plot type are controlled by
the properties that start with edge and bound. The edge properties control the plot
of the element faces, and the bound properties control the boundary element plot
(the name edge has historic reasons; it was first used in 2D). The color of the edges
of the element faces is determined by the property eledgecolor.

The alternative type of 3D plot is a wireframe plot, consisting of the (1D) edges of
the elements and the boundary elements. The properties that start with dedge and
dbound control the plot characteristics of this plot type. The dedge properties
control the plot of the element edges, and the dbound properties control the plot
of the edges of the boundary elements. See the 3D example below for how to obtain
a patch plot and a wireframe plot of a mesh. You can also plot the mesh edges that
lie on geometry edges (curves) with a special color. The characteristics of this plot
is controlled by the properties that begin with curve.

In 2D, there are basically two types of mesh plots. The default type is a wireframe
plot of the edges of the elements, where the boundary elements are plotted in a
different color. The properties that start with edge and bound control the plot
characteristics of this plot type. The edge properties control the plot of the element
edges, and the bound properties control the boundary element plot.
E R 1 : C O M M A N D R E F E R E N C E

meshplot
The alternative type of 2D plot is a patch plot of the triangular elements, where the
edges of the elements can have a different color. The properties that start with el
control the characteristics of this plot type. See the 2D example below for how to
obtain the two plot types. The two plot types can be combined, but doing this is not
always useful.

In 1D, the default is to combine the above two types of plots into one plot type.
Thus, by default you can see both the elements, the boundary elements, and the
intermediate mesh vertices. The plot of the elements is controlled by the properties
that begin with el, and the plot of the boundary elements is controlled by the
bound properties. The plot of the mesh vertices is controlled by the edge properties.

In all dimensions, you may plot the mesh vertices (sometimes called node points) in
a special color. This plot is controlled by the properties that start with node.

The table shows the valid property/value pairs for the meshplot command. The
design philosophy has been to keep property interpretation constant over space
dimension, but to plot these properties as plot objects of different types. The mode
properties that turn the different visualization types on and off, have been marked
with the type of the plot produced in the different space dimensions: m for marker
plot, l for line/wireframe plot, and p for patch plot.

TABLE 1-95: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION

bdl √ √ integer array all Boundary list

boundcolor √ √ color r Boundary color

boundcolor √ color | qual r Boundary color

boundmarker √ marker o Boundary marker

boundmode m l p on | off |
isolated (1D)

on
off (3D)

Show boundary
elements

curvecolor √ color g Curve (edge)
coloring data

curvemode l on | off off Show mesh edges on
curves (edges)

dboundcolor √ color r Boundary wireframe
color

dboundmode l on | off off Show boundary
elements as
wireframe
329

meshplot

330 | C H A P T
dedgecolor √ color b Element wireframe
color

dedgemode l on | off off Show elements as
wireframe

edgecolor √ color b Color of mesh
vertices

edgecolor √ color b Color of mesh edges

edgecolor √ color | qual b Color of mesh faces

edgemarker √ marker x Mesh vertex marker

edgemode m on | off on Show mesh vertices

edgemode l on | off on Show wireframe plot
of mesh edges

edgemode p on | off on Show triangular
mesh faces as patch
plot

edl √ integer array all Edge list

elcolor √ color k Element color

elcolor √ color gray Element color

eledgecolor √ √ color k Mesh edge color in
patch plot

elkeep √ √ number between
0 and 1

1 Fraction of elements
to keep

elkeeptype √ √ min | max |
random

random Which elements to
keep

ellabels √ √ on | off off Mesh element labels

ellogic √ logical
expression

1 Select elements
using a logical
expression

ellogictype √ all | any | xor all Interpretation of the
logical expression

elmode l on | off on Show elements

elmode p on | off off Show elements

markersize √ √ √ scalar 6 Marker size

nodecolor √ √ √ color k Mesh vertex (node)
color

TABLE 1-95: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

meshplot
In 3D, the properties Sdl, Bdl, Elkeep, Elkeeptype, Ellogic, and Ellogictype
determine what part of the mesh is displayed. Only elements lying in subdomains in
the list Sdl, and boundary elements lying on boundaries in the list Bdl, are shown.
The set of elements is restricted further by the properties Elkeep, Elkeeptype,
Ellogic, and Ellogictype. These affect the patch and wireframe plots of the
elements (controlled by the Edge and Dedge properties). Only the mesh elements
whose corners satisfy the logical expression Ellogic are shown. Ellogictype
determines whether all, some, or some but not all of the corners are required to
satisfy the condition. Only a fraction Elkeep of the mesh elements are shown. The
property Elkeeptype determines whether this fraction is the elements of worst
quality, or if it is a random set of elements.

The El property group controls the display of the actual element. This is only
possible in 1D and 2D. The Edge property group controls the display of the
boundaries of the elements. This visualization type is available in all space
dimensions. In 1D it is done by displaying marker symbols, in 2D it is done by
displaying a wireframe plot of the element edges, and in 3D it is done by displaying

nodelabels √ √ √ on | off off Mesh vertex (node)
labels

nodemarker √ √ √ marker . Mesh vertex (node)
marker

nodemode m m m on | off See below Show mesh vertices
(node points)

parent √ √ √ axes handle Handle to axes
object

pointcolor √ √ √ color b Point color data

pointlabels √ √ √ off | on | list of
strings

off Point label list

pointmarker √ √ √ marker symbol o Point marker

pointmode √ √ √ on | off |
isolated

on Show points

qualbar √ √ on | off on Show color legend

qualdlim √ √ 1-by-2 numeric [0,1] Color limits

qualmap √ color table Rainbow Color table

qualmapstyle √ auto | reverse auto Color table style

sdl √ √ integer array all Subdomain list

TABLE 1-95: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
331

meshplot

332 | C H A P T
the element edges as patches. In 3D, the property dedge makes it possible to obtain
wireframe plots of the elements.

The bound property group controls the display of the boundary elements. In 1D it
displays marker symbols, in 2D it displays the boundary elements as a wireframe, and
in 3D it displays the boundary elements as a patch plot. In 3D, the property dbound
makes it possible to get wireframe plots of the boundary elements.

In 3D, the curve property group controls the display of mesh elements on
geometry edges.

The point property group displays the mesh vertex elements as marker symbols in
all space dimensions.

The node property group displays the mesh vertices (node points) as marker
symbols in all space dimensions.

The ellabels property is available in 1D and 2D and controls the display of mesh
element labels. If there are more than one type of mesh elements, for example both
triangular and quadrilateral elements in a 2D mesh, the different types are labeled
individually. This means that the triangles will be labeled from 1 to the number of
triangles, and the quads will be labeled from 1 to the number of quads.

The properties that control marker type or coloring can handle any standard
scripting marker or color type (see the plot command). In 3D, the patch coloring
can be made according to the element quality, by specifying the color as 'qual'.

meshplot can display meshes where there are no elements on a certain element
dimension. In these cases, the default values for curvemode and nodemode change
to make the best possible mesh visualization.

Examples 3D Example
Start by creating a 3D geometry and a mesh.

c1 = cylinder3(0.2,1,[0.5,0.5,0]);
b1 = block3;
geom = b1-c1;
mesh = meshinit(geom);

Plot the mesh as a quality patch plot with parts of the elements excluded by a logical
expression. These types of options make it easy to study the mesh inside the
geometry.

meshplot(mesh,'ellogic','x+y>0.8',...
 'edgecolor','qual','boundcolor',[0.7 0.7 0.7],...
E R 1 : C O M M A N D R E F E R E N C E

meshplot
 'qualbar','on')

You can get a wireframe plot of the same mesh with only a fraction of the tetrahedra
visible, by the command

meshplot(mesh,'ellogic','x+y>0.8','elkeep',1/100,...
 'edgemode','off','boundmode','off',...
 'dedgemode','on','dboundmode','on','curvemode','on')

The plot shows only a small fraction of the elements. It is not possible to get a mesh
quality plot by using only wireframes.

2D Example
Start by creating the geometry and a coarse mesh.

clear fem
sq1 = square2;
sq2 = move(sq1,0,-1);
sq3 = move(sq1,-1,-1);
fem.geom = sq1+sq2+sq3;
fem.mesh = meshinit(fem,'hmax',0.4);

Then plot the mesh as a line plot of the edges of the elements. The element edges
are blue except on the boundary elements, where they are red. This is the default
mesh plot type.

meshplot(fem)

You can change the colors of the element edges to yellow and green.

meshplot(fem,'edgecolor','y','boundcolor','g')

Now, plot the mesh as a patch plot. You need to disable both the element edge and
boundary element plots, and enable the element plot.

meshplot(fem,'edgemode','off','boundmode','off','elmode','on')

You can change the color of the elements to red, with white edges, and add mesh
vertex labels by

meshplot(fem,'edgemode','off','boundmode','off','elmode',...
 'on','elcolor','r','eledgecolor','w')

1D Example
Start by creating the geometry and mesh.

clear fem
s1 = solid1([0 0.1 4]);
s2 = solid1([3 4]);
fem.geom = s1+s2;
fem.mesh = meshinit(fem,'hmax',0.4);
333

meshplot

334 | C H A P T
The standard mesh plot in 1D is the following plot.

meshplot(fem)

You can turn on node labeling, change the element color to red, and change the
element edge boundary coloring to green by

meshplot(fem,'elcolor','r','boundcolor','g')

Compatibility meshplot no longer supports the properties boundlabels, curvelabels,
ellabels, and labelcolor from FEMLAB 2.3.

See Also femmesh, geomplot, postplot
E R 1 : C O M M A N D R E F E R E N C E

meshqual
meshqualPurpose Mesh quality measure.

Syntax q = meshqual(mesh)

Description q = meshqual(mesh) returns the mesh element quality for all elements in the mesh
object mesh.

The mesh element quality is a number between 0 and 1. The quality is 1 for a perfect
element.

Details on the mesh object can be found in the entry on femmesh.

The triangle quality is given by the formula

where a is the area and h1, h2, and h3 the side lengths of the triangle. If q > 0.3 the
mesh quality should not affect the quality of the solution. q = 1 when h1 = h2 = h3.

For a quadrilateral,

where h1, h2, h3, and h4 are the side lengths. q=1 for a square.

The tetrahedron mesh quality measure is given by

where V is the volume, and h1, h2, h3, h4, h5, and h6 are the side lengths of the
tetrahedron. If q > 0.1 the mesh quality should not affect the quality of the solution.

For a hexahedron,

where hi are the edge lengths. q=1 for a cube. For a prism,

q 4 3a

h1
2 h2

2 h3
2

+ +
--------------------------------,=

q 4A

h1
2 h2

2 h3
2 h4

2
+ + +

---,=

q 72 3V

h1
2 h2

2 h3
2 h4

2 h5
2 h6

2
+ + + + +()

3 2⁄
--,=

q 24 3V

hi
2

i 1=

12

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 3 2⁄
------------------------------,=
335

meshqual

336 | C H A P T
where hi are the edge lengths. q=1 for a right-angled prism where all edge lengths
are equal.

The element quality is always 1 in 1D.

See Also meshrefine, femmesh, meshsmooth

Reference Bank, Randolph E., PLTMG: A Software Package for Solving Elliptic Partial
Differential Equations, User’s Guide 6.0, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1990.

q 36 3V

hi
2

i 1=

9

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 3 2⁄
------------------------------,=
E R 1 : C O M M A N D R E F E R E N C E

meshrefine
meshrefinePurpose Refine a mesh.

Syntax fem.mesh = meshrefine(fem,...);
fem = meshrefine(fem,'Out',{'fem'},...);

Description fem.mesh = meshrefine(fem,...) returns a refined version of the triangular
mesh specified by the geometry, fem.geom, and the mesh, fem.mesh.

fem = meshrefine(fem,'Out',{'fem'},...) modifies the FEM structure to
include the refined mesh in fem.mesh.

meshrefine is supported for meshes containing simplex elements only, that is, lines,
triangles, and tetrahedra.

The function meshrefine accepts the following property/values:

The default refinement method in 2D is regular refinement, where all of the
specified triangles are divided into four triangles of the same shape. Longest edge
refinement, where the longest edge of each specified triangle is bisected, can be
demanded by giving longest as Rmethod. Using regular as Rmethod results in
regular refinement. Some triangles outside of the specified set may also be refined,
in order to preserve the triangulation and its quality.

In 3D, the default refinement method is longest. The regular refinement method
is only implemented for uniform refinements.

In 1D, regular refinement, where each element is divided into two elements of the
same shape, is always used.

Examples Refine the mesh of the L-shaped membrane several times and plot the mesh for the
geometry of the L-shaped membrane:

TABLE 1-96: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

mcase integer 0 Mesh case number

out fem | mesh mesh Output variables

rmethod longest |
regular

see below Refinement method

subdomain integer array | all |
none

all Specifies the subdomains
that are refined

tri one row vector or
two row matrix

all elements
once

List of elements to refine
(second row is number
of refinements)
337

meshrefine

338 | C H A P T
clear fem
fem.geom = square2 + move(square2,0,-1) + move(square2,-1,-1);
fem.mesh = meshinit(fem,'hmax',0.4);
subplot(2,2,1), meshplot(fem)
fem.mesh = meshrefine(fem,'tri',[1:50;ones(1,50)]);
subplot(2,2,2), meshplot(fem)
fem.mesh = meshrefine(fem,'subdomain',...
 [1 2],'rmethod','longest');
subplot(2,2,3), meshplot(fem)
fem.mesh = meshrefine(fem,'subdomain',1);
subplot(2,2,4), meshplot(fem)

Algorithm The 2D algorithm is described by the steps below:

1 Pick the initial set of elements to be refined.

2 Either divide all edges of the selected elements in half (regular refinement), or
divide the longest edge in half (longest edge refinement).

3 Divide the longest edge of any element that has a divided edge.

4 Repeat step 3 until no further edges are divided.

5 Introduce new points on all divided edges, and replace all divided entries in e by
two new entries.

6 Form the new elements. If all three sides are divided, new elements are formed
by joining the side midpoints. If two sides are divided, the midpoint of the
longest edge is joined with the opposing corner and with the other midpoint. If
only the longest edge is divided, its midpoint is joined with the opposing corner.

Compatibility To achieve compatibility with FEMLAB 2.3, the geometry input is automatically
converted to a geometry object using the function geomobject. The geometry
input can be any analyzed geometry. See geomobjectfor details.

The output u is obsolete from FEMLAB 2.2. Use asseminit to interpolate the
solution to a new mesh.

See Also femmesh, geomcsg, meshinit
E R 1 : C O M M A N D R E F E R E N C E

meshrevolve
meshrevolvePurpose Revolve a 2D mesh object into a 3D mesh object.

Syntax fem1 = meshrevolve(fem0,...)
[mesh,geom]= meshrevolve(fem,’Out’,{’mesh’,’geom’},...)

Description fem1 = meshrevolve(fem0,...) revolves the 2D geometry object in fem0.geom
and the 2D mesh object in fem0.mesh, into a 3D geometry object and a 3D mesh
object stored in fem1.geom and fem1.mesh, respectively, according to the given
parameters.

[geom,mesh]= meshrevolve(fem,’Out’,{’geom’,’mesh’},...) returns the
3D geometry object in geom and the 3D mesh object in mesh.

Valid property/value pairs for the meshrevolve function are given in the following
table. In addition, all revolve parameters are supported and are passed to revolve
for creating the revolved 3D geometry object.

The property elrevlayers defines the distribution of the mesh element layers in
the revolved mesh. If the value of elrevlayers is a scalar, it defines the number of
equally distributed mesh element layers in the revolved mesh. Alternatively, if
elrevlayers is a vector, it defines the distribution of the mesh element layers in the
revolved mesh. The values in the vector, that are sorted and starts with 0, specifies
the placements, in relative arc length, of the mesh element layers. By default, the
number of element layers is determined such that the distance of each layer is equal
to the mean size of the elements in the original 2D mesh.

Revolving a 2D mesh object into a 3D mesh object, the 2D vertex elements, the 2D
boundary elements, the 2D triangular elements, and the 2D quadrilateral elements,
are revolved into 3D edge elements, 3D quadrilateral boundary elements, 3D prism
elements, and 3D hexahedral elements, respectively.

Examples Create a revolved prism mesh on a torus:

fem.geom = circ2(1,'pos',[2 0]);
fem.mesh = meshinit(fem);
fem1 = meshrevolve(fem);

PROPERTY VALUES DEFAULT DESCRIPTION

elrevlayers scalar | vector Distribution of mesh element
layers in revolved mesh

mcase integer 0 Mesh case number

out fem | mesh | geom fem Output variables
339

meshrevolve

340 | C H A P T
Create a revolved hex mesh from the zx plane:

p_wrkpln = geomgetwrkpln('quick',{'zx',10});
ax = [0 1;0.5 2]';
fem.geom = rect2(1.5,1,'pos',[0.5 0]);
fem.mesh = meshmap(fem);
fem1 = meshrevolve(fem,'angles',[-pi/3 pi/3],...
 'revaxis',ax,'wrkpln',p_wrkpln);
meshplot(fem1);

Cautionary Revolving a triangular mesh adjacent to the revolution axis or a mesh containing a
quadrilateral element with only one corner adjacent to the revolution axis is not
supported.

See also meshembed, meshextrude, femmesh, revolve
E R 1 : C O M M A N D R E F E R E N C E

meshsmooth
meshsmoothPurpose Smooth interior mesh vertices and improve quality of a mesh.

Syntax fem.mesh = meshsmooth(fem,...)
mesh = meshsmooth(mesh,...)
fem = meshsmooth(fem,'out',{'fem'},...)

Description mesh = meshsmooth(fem,...) improves the quality of the elements in the mesh
fem.mesh by adjusting the mesh vertex positions and by swapping mesh edges.

mesh = meshsmooth(mesh,...) improves the quality of the elements in the mesh
object mesh.

fem = meshsmooth(fem,'out',{'fem'},...) modifies the fem structure to
include the new mesh object in fem.mesh.

In 3D, meshsmooth is supported for meshes containing tetrahedral elements only.

The function meshsmooth accepts the following property/values:

Algorithm 2D
Each mesh vertex that is not located on the boundary is moved such that the quality
of the surrounding element increases. This process is controlled via the properties
Jiggleiter and Qualoptim.

Jiggleiter specifies the maximum number of jiggling iterations. The default value
is 5.

Qualoptim specifies the technique that is used to improve the quality of the mesh.

• Off means that no improvement operations are performed.

• Mean means that jiggling is repeated until the mean element quality does not
significantly increase, or until the bound Jiggleiter is reached. Furthermore,
after every third jiggling iteration, edge swapping operations are performed.

TABLE 1-97: VALID PROPERTY/VALUE PAIRS

PROPERTY 2D 3D VALUE DEFAULT DESCRIPTION

Jiggleiter √ numeric 5 Maximum number of jiggling
iterations

Qualoptim √ off | mean |
min | optim

min Optimization method

Out √ √ fem | mesh mesh Output parameters

Subdomain √ √ integer array
| all | none

all Specifies the subdomains that
are smoothed
341

meshsmooth

342 | C H A P T
• Min means that jiggling is repeated until the minimum element quality does not
significantly increase, or until the bound Jiggleiter is reached. Furthermore,
after every third jiggling iteration, edge swapping operations are performed.

• Optim means that a mesh quality optimizer is used. This tries to increase the
minimum quality to at least 0.8. The Jiggleiter parameter has no effect in this
case.

3D
Relocation of points similar to the 2D case is combined with edge swapping
operations to improve the quality of the tetrahedra.

Examples Create a triangular mesh of the L-shaped membrane without quality improvement
and improve the quality by calling meshsmooth:

clear fem
sq1 = square2(0,0,1);
sq2 = move(sq1,0,-1);
sq3 = move(sq1,-1,-1);
fem.geom = sq1+sq2+sq3;
fem.mesh = meshinit(fem,'jiggle','off');
q = meshqual(fem.mesh);
minQual1 = min(q)
fem.mesh = meshsmooth(fem);
q = meshqual(fem.mesh);
minQual2 = min(q)

See Also meshqual, femmesh, meshinit
E R 1 : C O M M A N D R E F E R E N C E

meshsweep
meshsweepPurpose Create swept mesh.

Syntax fem.mesh = meshsweep(fem,...)
fem.mesh = meshsweep(fem.geom,...)

Description fem.mesh = meshsweep(fem,...) returns a swept mesh derived from the 3D
geometry in fem.geom.

fem.mesh = meshsweep(geom,...) returns a swept mesh derived from the 3D
geometry geom.

A swept mesh is created for each subdomain by meshing the corresponding source
face, if this face is not already meshed, and sweeping the resulting face mesh along
the subdomain to the opposite target face. For straight and circular sweep paths it
is allowed to use several connected faces as source faces.

If the source face for a subdomain is not meshed prior to the meshsweep operation,
the source face is automatically meshed with triangles using the free triangle mesher
(meshinit). Then, the swept mesh consists of prism elements. To create a swept
mesh with hexahedral elements, you need to mesh the source face with quadrilateral
elements using either the mapped quad mesher (meshmap), or the free quad mesher
(meshinit), prior to the meshsweep operation.

The function meshsweep accepts the following property/value pairs.

TABLE 1-98: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Elsweeplayers cell array Distribution of mesh element layers in the
sweep direction

Hauto numeric 5 Predefined mesh element size

Mcase integer 0 Mesh case number

Meshstart mesh
object

empty Starting mesh

Out fem |
mesh

mesh Output variables

Report on | off on Display progress

Sourceface cell array Source faces

Subdomain integer
array |
auto |
all |
none

auto Specifies the subdomains that are meshed
343

meshsweep

344 | C H A P T
The property elsweeplayers determines the distribution of the mesh element
layers in the sweep direction. The value of this property is an even numbered cell
array where the odd entries contain subdomain indices, either as scalar values, or as
vectors with subdomain indices, and the even entries contain scalar values or vectors
specifying the element layer distribution for the corresponding subdomains. If the
element layer distribution is specified by a scalar, the element layers for the
corresponding subdomains are equally distributed and the number of element layers
equals the value of the scalar. To get full control over the element layer distribution
for a subdomain, the vector form is used. The values in the vector, that are sorted
and starts with 0, specifies the distances of the element layers along the direction of
the sweep for the corresponding subdomains.

Hauto is an integer between 1 and 9 that controls the element size in the generated
mesh. The default value is 5 which means that the element size is set to 1/10 of the
size of the geometry for the elements not affected by the elsweeplayers property.

Use the property subdomain to specify the subdomains to be meshed. If you use
this property together with the meshstart property, the value auto means that all
subdomains that are not meshed in the starting mesh are meshed, none means that
no further subdomains are meshed, and all means that all subdomains are meshed
(or remeshed). It is also possible to specify the subdomains to be meshed (or
remeshed) using a vector of subdomain indices.

The meshstart property is used when meshing a geometry interactively. The value
of this property is the starting mesh of the meshing operation.

The property sourceface is a cell array specifying the source faces for the
subdomains. The value of this property is an even numbered cell array where the
odd entries contain subdomain indices, either as scalar values, or as vectors with
subdomain indices, and the even entries contain the source face indices for the
corresponding subdomains.

The property targetface defines the target faces for the subdomains. The syntax
of this property is the same as for the sourceface property.

Sweeppath string |
cell array

auto Sweep path

Targetface cell array Target faces

Targetmesh string |
cell array

auto Target mesh method

TABLE 1-98: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

meshsweep
Use the property sweeppath if you want to specify the shape of the sweep path. The
value of this property is a string specifying the sweep path for all subdomains or a an
even numbered cell array where the odd entries contain subdomain indices, either
as scalar values or as vectors with subdomain indices, and the even entries contain a
string specifying the sweep path for the corresponding subdomains. The string is
either auto, straight, circular, or general. Straight means that all interior
mesh points are located on straight lines between the corresponding source and
target points. Circular means that all interior mesh points are located on circular
arcs between the corresponding source and target points. General means that the
positions of the interior mesh points are determined by a general interpolation
procedure. Auto, which is default, means that the meshsweep algorithm
automatically tries to determine if the sweep path is straight or circular. If this is the
case sweeppath is set to straight or circular, respectively. Otherwise,
sweeppath is set to general.

Use the property targetmesh if you want to specify the method to be used for
transferring the source mesh to the target face. The value of this property is a string
specifying the target mesh method for all subdomains or a an even numbered cell
array where the odd entries contain subdomain indices, either as scalar values or as
vectors with subdomain indices, and the even entries contain a string specifying the
target mesh method for the corresponding subdomains. The string is either auto,
morph, or rigid. Morph means that the target mesh is created from the source mesh
by a morphing technique, and rigid means that the target mesh is created by a rigid
transformation of the source mesh. Auto, which is default, means that the
meshsweep algorithm automatically tries to determine a suitable method for
creating the target mesh.

If the source face or target face is not specified for a subdomain, the software
automatically tries to determine these faces.

The following criteria must be met by the input geometry object for the sweeping
technique to work.

• Each subdomain must be bounded by one shell, that is, a subdomain must not
contain holes that do not penetrate the source and target face.

• There can only be one target face per subdomain. For straight and circular sweep
paths several connected source faces are allowed. For other more general sweep
paths there can only be one source face per subdomain.
345

meshsweep

346 | C H A P T
• The source and target for a subdomain must be opposite one another in the
subdomain’s topology.

• The cross section along the direction of the sweep for a subdomain must be
topologically constant.

Each face about a subdomain to be swept is classified as either a source face, a target
face, or a boundary face. The boundary faces are the faces linking the source and
target face. The sweep algorithm can handle subdomains with multiple boundary
faces in the sweep direction.

If any of the faces about a subdomain is meshed prior to the meshsweep operation,
the following must be fulfilled.

• If the source and target faces are meshed, these meshes must match.

• Mapped quad meshes must be applied to the boundary faces.

Cautionary The sweeppath property cannot be set to general when sweeping from several
source faces or when the targetmesh property is set to rigid. Furthermore, when
sweeping from several source faces, the targetmesh property cannot be set to
morph.

Algorithm The subdomains to be meshed are processed in the following order.

1 The subdomains where the source and/or target faces are specified are swept first.
These subdomains are swept in the order of increasing subdomain number.

2 The remaining subdomains, with no specified source face or target face but with
one adjacent meshed face, are swept in the order of increasing subdomain
number.

3 Finally, the remaining subdomains, with no specified source face or target face
and with none or several adjacent meshed faces, are swept in the order of
increasing subdomain number.

When a swept has been generated for a subdomain, the source face of the next
subdomain, that is, the subdomain adjacent to the target face of the current
subdomain, is set to the target face of the current subdomain if the source and target
faces for the next subdomain are not specified.

For a subdomain with no specified source and target face, the source face is
determined according to the following.

1 If not any face about the subdomain is meshed, the software determines the
opposite face pairs for the subdomain. An opposite face pair is a pair of faces about
E R 1 : C O M M A N D R E F E R E N C E

meshsweep
the subdomain that are not adjacent to each other but to all other faces about the
subdomain. The face in these face pairs with lowest geometric degree and face
index is used as source face and the opposite face is used as target face. If no
opposite face pairs exist for the subdomain, an error is thrown and the user is
asked to specify the source face.

2 If there is at least one meshed face about the subdomain, the source face is
determined according to the following.

a The face with lowest geometric degree and face index of the meshed faces
about the subdomain that is not a boundary face of another subdomain.

b The face with lowest geometric degree and face index of the unmeshed faces.

c The face with lowest geometric degree and lowest face index of all faces about
the subdomain.

Examples Create a swept mesh on a cylinder geometry specifying the element layer
distribution in the sweep direction.

fem.geom = cylinder3;
fem.mesh = meshsweep(fem,'sourceface',{1 3},...
 'elsweeplayers',{1 logspace(0,1,11)-1});
meshplot(fem);

Create a swept mesh on a helix shaped geometry.

fem.geom = helix3;
fem.mesh = meshsweep(fem,'sourceface',{1 1});
meshplot(fem);

Create a mesh with both tetrahedra and prisms using meshinit and meshsweep,
respectively.

fem.geom = block3 + cone3(0.3,1,pi/20,'pos',[1 0.5 0.5],...
 'axis',[1 0 0]) + cone3(0.3,1,pi/20,...
 'pos',[3 0.5 0.5],'axis',[-1 0 0]) + ...
 block3(1,1,1,'pos',[3 0 0]);
fem.mesh = meshsweep(fem,'subdomain',[2 3],'sourceface',{2 7});
fem.mesh = meshinit(fem,'meshstart',fem.mesh);
meshplot(fem);

Create a swept mesh with hexahedrons for a geometry with two subdomains by
meshing the source faces prior to the meshsweep operation using the free quad
mesher.

fem.geom = block3 + cylinder3(0.25,1,'pos',[0.5 0.5 1]);
fem.mesh = meshinit(fem,'subdomain',[],'face',...
 [4 8],'edge',[],'point',[],...
347

meshsweep

348 | C H A P T
 'methodfac','quad','hauto',3);
meshplot(fem);

See Also meshdel, meshinit, meshmap
E R 1 : C O M M A N D R E F E R E N C E

mirror
mirrorPurpose Reflect geometry.

Syntax [gm,...] = mirror(g,pt,vec,...)

Description [gm,...] = mirror(g,pt,vec,...) creates a mirrored copy of the geometry
object g, as reflected in the plane with normal vector vec, centered at pt.

Property value list for mirror.

Examples In 2D:

g = rect2;
gm = mirror(g,[1 1],[1 1]);
figure,geomplot(g),hold on,geomplot(gm),axis equal

In 3D:

g = block3;
gm = mirror(g,[1 1 1],[1 1 1]);
figure, geomplot(g), hold on, geomplot(gm), axis equal

See Also geom0, geom1, geom2, geom3, scale

TABLE 1-99: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx |
ctx | ptx

{} Cell array of output names
349

move

350 | C H A P T
movePurpose Move geometry object.

Syntax [g,...] = move(g3,x,y,z,...)
[g,...] = move(g2,x,y,...)
[g,...] = move(gn,x,...)

Description [g,...] = move(g3,x,y,z,...) moves a 3D geometry object by the vector
(x,y,z).

[g,...] = move(g2,x,y,...) moves a 2D geometry object by the vector (x,y).

[g,...] = move(gn,x,...) moves an nD geometry object by the vector x of
length n.

The function move accepts the following property/values:

Examples The commands below move the circle from the origin to (2,3) and plot the result.

c1 = circ2;
c2 = move(c1,2,3);
geomplot(c2)

See Also geomcsg

TABLE 1-100: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx | ctx |
ptx

{} Output parameters
E R 1 : C O M M A N D R E F E R E N C E

multiphysics
multiphysicsPurpose Multiphysics function.

Syntax fem1 = multiphysics(fem,...)
xfem1 = multiphysics(xfem,...)

Description fem1 = multiphysics(fem) combines the application modes in fem.appl to the
composite system fem1.

xfem1 = multiphysics(xfem), where xfem is a structure with a field fem,
performs the above call for all of the structures xfem.fem{:}. The results are placed
in xfem1.fem. In addition the fields elemmph and eleminitmph created for each
structure in xfem.fem are concatenated and placed as fields in xfem1.

The function multiphysics accepts the following property/values:

TABLE 1-101: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Bdl cell array of integers |
integer vector | NaN

all boundaries Only affect the indicated
boundaries in fem.bnd

Defaults on | off off Return default fields

Diff cell array of ga, f, r,
or g | on | off

on for general
output form,
otherwise off

Differentiate these
coefficients

Edl cell array of integers |
integer vector | NaN

all edges Only affect the indicated
edges in fem.edg

Outform coefficient |
general | weak

the most general
output form of the
application modes
in fem.appl

Output form

Outsshape positive integer | NaN generated from
the application
modes in
fem.appl

Output sshape.
NaN is the same as not
providing Outsshape.
Can also be given for each
structure in xfem.fem, by
giving a cell array of values

Pdl cell array of integers |
integer vector | NaN

all points Only affect the indicated
points in fem.pnt

Sdl cell array of integers |
integer vector | NaN

all subdomains Only affect the indicated
subdomains in fem.equ

Shrink on | off on Shrink coefficients to
most compact form

Simplify on | off on Simplify expressions
351

multiphysics

352 | C H A P T
The properties Diff, Outform, Outsshape, Rules, and Simplify can also be
specified by using fields in the fem structure. The default value for Diff is 'off' if
the resulting model has coefficient or weak form and 'on' if it has general form.

For calls of the form xfem1 = multiphysics(xfem,...), The properties Sdl/
Bdl/Edl/Pdl/Outsshape/Outform/Diff/Simplify can be given as cell arrays
indicating the properties’ values for the different elements of xfem.fem. In this case
the number of elements of the cell arrays giving the values must be the same as the
number of elements of xfem.fem. For Sdl/Bdl/Edl/Pdl/Outsshape, the value
NaN may be given if no value is actually intended to be passed.

For calls of the form xfem1 = multiphysics(xfem,...) Where the property Out
is specified, the value 'fem' means xfem1 as described above, but 'equ'/'bnd'/
'edg'/'pnt'/'dim'/'form'/'shape'/'sshape'/'border'/'var' are
returned as cell arrays containing these properties for each of the elements of
xfem.fem, and 'elemmph'/'eleminitmph' are concatenations of the individual
resulting properties.

Algorithm The description below relates to the call fem1 = multiphysics(fem) unless
otherwise stated. The applications are specified as a cell array in the field appl in the
fem structure: fem.appl={a1 a2 ...}.

The notations ***, XXX and xxx used below means the fields equ, bnd, edg, and/
or pnt. *** denotes any of these fields, XXX is used to denote the field which
corresponds to the largest dimension (usually equ), while xxx denotes the fields
corresponding to lower dimensions (usually bnd, edg, and pnt). Not all of them are
always present, rather their presence is dependent on the geometry of the domain
and the type of problem being solved.

The table below describes the fields in the appl structure.

TABLE 1-102: APPL STRUCTURE FIELDS

FIELD INTERPRETATION

appl.assign Application mode variable name assignments

appl.bnd Boundary coefficients/application data

appl.border Cell array with strings on/off or a corresponding logical
vector, one for each solution component

appl.dim Cell array with names of the solution components or an
integer specifying the number of solution components

appl.edg Edge coefficients/application data
E R 1 : C O M M A N D R E F E R E N C E

multiphysics
appl.assign contains the application mode variable name assignments. It is a cell
array of alternating fixed names and assigned names for the application mode
variables. The default is an empty cell array.

appl.bnd is a structure with fields describing the boundary data. The structure
contains one field for each of the application-specific boundary parameters, with the
field name equal to the parameter name. Each field should be a cell array containing
data for the boundaries. appl.bnd also contains a field type, which is a cell array
with strings describing the boundary type for each boundary. If only one boundary
type is available in the application mode, the type field may be omitted.

appl.dim provides the dependent variable names. The default is obtained from the
application mode for physics modes. For PDE modes with no mode field and with
a numeric appl.dim, default variable names are substituted according to the global
position in the system.

appl.elemdefault contains a string indicating what kind of element is the default
in this application. This method is used to generate the defaults for
appl.XXX.gporder, appl.XXX.cporder, appl.shape, appl.XXX.shape, and
appl.sshape. See elemdefault for a list of valid strings.

appl.elemdefault A string indicating what kind of element is the default in this
application

appl.equ Subdomain coefficients/application data

appl.form Problem form: coefficient, general, or weak

appl.mode Application mode

appl.pnt Point coefficients/application data

appl.shape Shape functions. A cell array of shape function objects.

appl.sshape Element geometry order. An integer.

appl.***.shape Pointers to appl.shape

appl.XXX.usage Activate/deactivate domain

appl.***.gporder Order of numerical quadrature

appl.***.cporder Constraints discretization order

appl.XXX.init Initial conditions

appl.var Application mode specific variables

TABLE 1-102: APPL STRUCTURE FIELDS

FIELD INTERPRETATION
353

multiphysics

354 | C H A P T
appl.edg is a structure with fields describing the edge data. The structure contains
one field for each of the application-specific edge parameters, with the field name
equal to the parameter name. Each field should be a cell array containing data for
the edges.

appl.equ is a structure with fields describing the PDE data on subdomains. The
structure contains one field for each of the application-specific PDE parameters,
with the field name equal to the parameter name. Each field should be a cell array
containing data for the subdomains.

appl.mode is a string with the name of the application mode or an application mode
object. If the appl.mode field is omitted, the application structure can be used to
describe ordinary coefficient/general/weak form PDE problem. This is useful in
the definition of multiphysics problems, where coefficient/general/weak form
models can be combined with application mode models. See the COMSOL
Modeling Guide for a description of the application-specific data for each
application mode.

appl.pnt is a structure with fields describing the point data. The structure contains
one field for each of the application-specific point parameters, with the field name
equal to the parameter name. Each field should be a cell array containing data for
the points.

 appl.shape is a cell array of shape function objects.

 appl.sshape is an integer giving the order of geometry approximation.

The fields fem.XXX.shape and fem.xxx.shape are ind-based cell arrays of vectors
pointing to elements of appl.shape. Indicates which shape functions to use in each
domain group. An empty vector indicates that no shape functions are used in this
domain group. Zero indicates that the affected domain group should use defaults
or inherit shape functions. Appl.XXX.shape takes defaults, whereas
appl.xxx.shape inherits from appl.XXX.shape. Where there is a conflict over
which domain group in appl.XXX.shape to inherit from, the first appropriate
group is used.

The fields fem.appl.xxx.usage are ind-based cell arrays of ones and zeros
indicating domain group usage. Wherever a zero entry exists, the information in
appl.xxx.shape is ignored when forming fem.xxx.shape.

The fields appl.XXX.gporder and appl.xxx.gporder indicate the order of
quadrature formula to use in the different domain groups. In fully expanded form
it is a cell array where each element is a cell array (of positive integers) of length
E R 1 : C O M M A N D R E F E R E N C E

multiphysics
equal to the number of dependent variables (excluding submode variables) in this
mode. Defaulting and inheritance can be induced by using 0. The inherited order is
the maximum order used in the objects from the XXX level in contact with the group
at the xxx level. Where different elements within a domain group would inherit
different orders, some domain group splitting takes place. This field is not present
in the appl.pnt field.

The fields appl.XXX.cporder and appl.xxx.cporder indicate domain group
constraints discretization order. Behaves exactly as gporder.

The fields appl.XXX.init indicate domain group initial conditions. For format see
asseminit.

appl.var contains the application scalar variables. The default is obtained from the
application mode for physics modes.

The composite system is created by appending the subsystems in the order they are
specified in fem.appl. The affected fields in the fem1 structure are dim, form, equ,
bnd, edg, pnt, var, elemmph, eleminitmph, shape, sshape, and border. All the
other fields in fem are copied to fem1. In the description below the notation *** is
used to represent any or all of the fields equ, bnd, edg, and/or pnt.

The dim field of the composite system, fem1.dim, is a cell array of the dependent
variable names:

fem1.dim={fem.appl{1}.dim{:}, fem.appl{2}.dim{:}, ...}

The default names ('u1', 'u2', ...) Are used for subsystems with integer dim fields
and no mode field.

The form of each subsystem may be converted by using flform, in the direction
'coefficient' -> 'general' -> 'weak'. The default form of the composite
system, fem1.form, is the first form which all the subsystems may attain, possibly
applying flform to some subsystems. The output form can be forced by using the
property outform.

First, each application structure is converted to an FEM structure with all the
above-mentioned fields. Then the fields in fem1.*** are computed from the
corresponding fields in the subsystems according to the table below. The numbers
355

multiphysics

356 | C H A P T
after the coefficient names refer to the subsystems in the order they are specified in
fem.appl.

The fields fem.***.expr are kept unchanged as far as possible; the only difference
being the permutation of ind-groups to suit a new ind vector if one is generated.
For ind groups where a particular expr variable is undefined, the entry [] is used.

Note that the coefficients in the second row of the table are weakly coupled in the
sense that the corresponding coefficients in the composite system are block
diagonal. This puts some limitations on the coupling between the subsystems. By
using general form, however, there are no limitations on the composite system
except for the da coefficient. The resulting stronger couplings are obtained by using
a call to femdiff with the full system resulting from the composition of the
subsystems. The properties Diff, Rules, and Simplify control or supplement the
call to femdiff. Further couplings between applications can be introduced by the
method global_compute which is called for each application before femdiff.

Elements of fem1.***.(f/ga/g/r/weak/dweak/constr/c/da/ea/al/be/a/
q/h) which correspond to subsystems for which the corresponding field does not
exist are '0'. Elements of fem1.***.init in such cases are empty strings. Elements
in fem1.***.(gporder/cporder) in such cases are 1. The fields fem1.elemmph
and fem1.eleminitmph are obtained by concatenating the contents of the results
of calling elem_compute for each application. The field fem1.shape is obtained by
concatenating the contents of the fields fem.appl{:}.shape. Duplicate shape
functions are removed and the fields fem.***.shape are adjusted to take account
of this. The field fem1.sshape is obtained by taking the maximum of the fields
fem.appl{:}.sshape. The resulting value is overridden if the property Outsshape
is given. The fem1.border field is always 1 because coefficients for boundary

QUANTITY COMPOSITE SYSTEM

f γ g r init, , , ,
weak dweak constr, ,

gporder cporder,

f1

f2

…

c da ea α β a q h, , , , , , , c1 0 0

0 c2 0

0 0 …

var varu vart, , var1 var2 ...
E R 1 : C O M M A N D R E F E R E N C E

multiphysics
conditions that are not used due to border being on or off in the application mode
are set to zero and can be “applied”.

Suppose multiphysics has been called previously, and fem is the result of such a
call. If changes are made to fem.equ and it is wished to keep them (that is not allow
changes to be written over when multiphysics is called again), it is possible to
restrict the set of subdomains for which multiphysics writes over fem.equ. Thus
giving the property Sdl the value [1 2] in a call to multiphysics results in the
coefficients for subdomains 1 and 2 being “refreshed” from the applications, but all
the coefficients in fem.equ relating to other subdomains being kept and copied into
fem1.equ. The same principle holds for bnd/edg/pnt using the properties Bdl/
Edl/Pdl.

Example The model “Resistive Heating” uses the multiphysics function. Note that the
structure fem contains the data that is common for the subsystems, that is, the
geometry and the mesh. The electrical subsystem and the heat transfer subsystem
are specified in the application structures a1 and a2, and the multiphysics
function is used to combine them.

clear fem a1 a2
fem.geom = geomcsg({square2(0,0,1)});
fem.mesh = meshinit(fem);
a1.mode = 'ConductiveMediaDC';
a1.assignsuffix = '_dc';
a1.bnd.V0 = {0.1 0 0};
a1.bnd.type = {'V' 'nJ0' 'V0'};
a1.bnd.ind = [1 2 2 3];
a1.equ.init = '0.1*(1-x)';
a1.equ.T0 = 293;
a1.equ.T = 'T';
a1.equ.alpha = 0.0039;
a1.equ.res0 = 1.754e-8
a1.equ.sigtype = 'heat';
a2.mode = 'HeatTransfer';
a2.assignsuffix = '_ht';
a2.bnd.T0 = {300 0};
a2.bnd.type = {'T' 'q0'};
a2.bnd.ind = [1 2 2 1];
a2.equ.rho = 8930;
a2.equ.C = 340;
a2.equ.k = 384;
a2.equ.Q = 'Q_dc';
a2.equ.init = 300;
fem.appl = {a1 a2};
fem = multiphysics(fem);
fem.xmesh=meshextend(fem);
357

multiphysics

358 | C H A P T
fem.sol = femtime(fem,'tlist',linspace(0,3000,41), ...
 'report','on');

Diagnostics All variables in the appl{:}.dim fields must be unique. If any appl{:}.dim has not
been provided, no other appl{:}.dim may collide with the defaults. If they do, an
error message is generated.

If any form appl{:}.form is more general than Outform, an error message is
generated.

Compatibility To simplify the output of the multiphysics functions in FEMLAB 3.0, its defaults
has been changed by the introduction of the properties Shrink and Defaults. The
compatibility problems typically occur when you perform changes to the data
generated by multiphysics. For example, modifying the α coefficient

fem=multiphysics(fem);
fem.equ.al{1}{2,1}=...;
fem.equ.al{1}{3,1}=...;

may not work as in FEMLAB 2.3 because alpha is often just empty. The code above
assumes that fem.equ.al{1} is a 3-by-3 cell array. To obtain fully backward
compatible output, use

fem=multiphysics(fem,'shrink','off','defaults','on');

which makes the above example work.

The properties out and rules are obsolete from FEMLAB 3.0.

The property Idl is obsolete in FEMLAB 2.2 and later versions.

The fields fem.init and fem.usage are no longer constructed. They are
superseded by the fields fem.***.init and fem.***.shape, respectively.
Fem.***.init is constructed for all fields fem.***, but many entries contain just
empty strings.

See also femdiff, flform, multiphysics
E R 1 : C O M M A N D R E F E R E N C E

point1, point2, point3
point1, point2, point3Purpose Constructor functions for point objects.

Syntax p3 = point3(x,y,z)
p3 = point3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd)
[p3,...] = point3(g3,...)
p2 = point2(x,y)
p2 = point2(vtx,edg,mfd)
[p2,...] = point2(g,...)
p1 = point1(x)
p1 = point1(vtx)
[p1,...] = point1(g,...)

Description p3 = point3(x,y,z) creates a 3D single point object with coordinate (x, y, z).

 p3 = point3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd) creates a 3D point
geometry object p3 from the arguments vtx, vtxpre, edg, edgpre, fac, mfdpre,
mfd. The arguments must define a valid 3D point object. See geom3 for a description
of the arguments.

 p3 = point3(g3) coerces the 3D geometry object g3 to a 3D point object p3.

 p2 = point2(x,y) creates a 2D point object consisting of a single point with
coordinates (x,y).

 p2=geom2(vtx,edg,mfd,…) creates a 2D point object from the properties vtx,
edg, and mfd. The arguments must define a valid 2D point object. See geom2 for
information on vtx, edg, and mfd.

 p2 = point2(g2) coerces the 2D geometry object to a point object.

 p1 = point1(x) creates a 2D point object consisting of a single point with
coordinate x.

 p1 = point1(vtx,…) creates a 1D point object from vtx. The arguments must
define a valid 1D point object. See geom1 for information on vtx.

 [p1,…] = point1(g,…) coerces the 1D geometry object to a point object.

The coercion functions [p1,…] = point1(g1,…), [p2,…] = point2(g2,…), and
[p3,…] = point3(g3,…) accept the following property/values:

See geomcsg for more information on geometry objects.

TABLE 1-103: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx |
ctx | ptx

{} Cell array of output names.
359

point1, point2, point3

360 | C H A P T
The nD geometry object properties are available. The properties can be accessed
using the syntax get(object,property). See geom for details.

Example The commands below create a 2D point object with four points and plot the result.

c1 = circ1;
p1 = point2(c1);
geomplot(p1)

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also curve2, curve3, face3, geom0, geom1, geom2, geom3, geomcsg
E R 1 : C O M M A N D R E F E R E N C E

poly1, poly2
poly1, poly2Purpose Create polygons.

Syntax c = poly1(x,y)
s = poly2(x,y)

Description s = poly2(x,y) creates a 2D solid object s in the form of an solid polygon with
vertices given by the vectors x and y.

c = poly1(x,y) creates a 2D curve object c in the form of an closed polygon with
vertices given by the vectors x and y.

See geomcsg for more information on geometry objects.

Example The commands below create a regular n-gon (n=11) and plot it.

n = 11
xy = exp(i*2*pi*linspace(0,1-1/n,n));
p = poly1(real(xy),imag(xy));
geomplot(p)

Cautionary poly1 and poly2 always creates closed polygon objects. To create open polygon
curves, use line1 and line2.

See Also arc1, arc2, circ1, circ2, ellip1, ellip2, geomcsg, line1, line2
361

postanim

362 | C H A P T
postanimPurpose Shorthand command for animation in 1D, 2D and 3D.

Syntax postanim(fem,expr,...)
M = postanim(fem,expr,...) % MATLAB only

Description postanim(fem,expr,...) plots an animation of the expression expr. The
function accepts all property/value pairs that postmovie does. In 1D, this
command is just shorthand for the call

postmovie(fem,'liny',expr,...
 'linstyle','bginv',...)

and in 2D, it is shorthand for

postmovie(fem,'tridata',expr,...
 'tribar','on',...
 'geom','on',...
 'axisequal','on',...)

and in 3D, this command is just shorthand for

postmovie(fem,'slicedata',expr,...
 'slicebar','on',...
 'geom','on',...
 'axisequal','on',...)

M = postanim(fem,expr,...) additionally returns a matrix in MATLAB movie
format.

If you want to have more control over your animation, use postmovie instead of
postanim.

Cautionary When you are replaying a movie that has been stored in a matrix M, you should
explicitly provide a figure handle to the movie command.

M = postanim(fem,expr,...)
movie(gcf,M)

Otherwise the animation does not look good.

Compatibility The syntax of the command is not compatible with its corresponding FEMLAB 2.1
syntax.

See Also postplot, postsurf, postcont, postlin, postarrow, postarrowbnd,
postflow, postslice, postiso, posttet
E R 1 : C O M M A N D R E F E R E N C E

postarrow
postarrowPurpose Shorthand command for subdomain arrow plot in 2D and 3D.

Syntax postarrow(fem,expr,...)
h = postarrow(fem,expr,...)

Description postarrow(fem,expr,...) plots a subdomain arrow plot for the expressions in
the cell array expr. In 2D, expr has length 2 or 3, and in 3D, it has length 3. The
function accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'arrowdata',expr,...
 'geom','on',...
 'axisequal','on',...)

h = postarrow(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your arrow plot, use postplot instead of
postarrow.

See Also postplot, postanim, postsurf, postcont, postlin, postarrowbnd, postflow,
postprinc, postprincbnd, postslice, postiso, posttet
363

postarrowbnd

364 | C H A P T
postarrowbndPurpose Shorthand command for boundary arrow plot in 2D and 3D.

Syntax postarrowbnd(fem,expr,...)
h = postarrowbnd(fem,expr,...)

Description postarrowbnd(fem,expr,...) plots a boundary arrow plot for the expressions in
the cell array expr. In 2D, expr has length 2 or 3, and in 3D, it has length 3. The
function accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'arrowbnd',expr,...
 'geom','on',...
 'axisequal','on',...)

h = postarrowbnd(fem,expr,...) additionally returns handles to the plotted
handle graphics objects.

If you want to have more control over your arrow plot, use postplot instead of
postarrowbnd.

See Also postplot, postanim, postsurf, postcont, postlin, postarrow, postflow,
postprinc, postprincbnd, postslice, postiso, posttet
E R 1 : C O M M A N D R E F E R E N C E

postcolormap
postcolormapPurpose Return a MATLAB colormap for a COMSOL color table.

Syntax m = postcolormap(name)

Description m = postcolormap(name) returns the color table (of 1024 colors) for name, where
name can be one of the following strings:

TABLE 1-104: THE COMSOL COLOR TABLES

NAME DESCRIPTION

Cyclic A color table that varies the hue component of the
hue-saturation-value color model, keeping the
saturation and value constant (equal to 1). The colors
begin with red, pass through yellow, green, cyan, blue,
magenta, and finally return to red. This table is
particularly useful for displaying periodic functions and
has a sharp color gradient.

Disco This color table spans from red through magenta and
cyan to blue.

DiscoLight Similar to Disco but uses lighter colors.

GrayScale A color table that uses no color, only the gray scale
varying linearly from black to white.

GrayPrint Varies linearly from dark gray (0.95, 0.95, 0.95) to light
gray (0.05, 0.05, 0.05). This color table overcomes two
disadvantages that the GrayScale color table has when
used for printouts on paper, namely that it gives the
impression of being dominated by dark colors, and
that white cannot be distinguished from the
background.

Rainbow The color ordering in this table corresponds to the
wavelengths of the visible part of the electromagnetic
spectrum: beginning at the small-wavelength end with
dark blue, the colors range through shades of blue,
cyan, green, yellow, and red.

RainbowLight Similar to Rainbow, this color table uses lighter colors.

Thermal Ranges from black through red and yellow to white,
which corresponds to the colors iron takes as it heats
up.

ThermalEquidistant Similar to Thermal but uses equal distances from black
to red, yellow, and white, which means that the black
and red regions become larger.

Traffic Spans from green through yellow to red.
365

postcolormap

366 | C H A P T
Example Calling postcolormap is equivalent to calling the corresponding color-table
function directly.

m = postcolormap('Rainbow');
m = rainbow;

TrafficLight Similar to Traffic but uses lighter colors.

Wave Ranges linearly from blue to light gray, and then
linearly from white to red. When the range of the
visualized quantity is symmetric around zero, the
color red or blue indicates whether the value is
positive or negative, and the saturation indicates the
magnitude.

WaveLight Similar to Wave and ranges linearly from a lighter blue
to white (instead of light gray) and then linearly from
white to a lighter red.

TABLE 1-104: THE COMSOL COLOR TABLES

NAME DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postcont
postcontPurpose Shorthand command for contour plot in 2D.

Syntax postcont(fem,expr,...)
h = postcont(fem,expr,...)

Description postcont(fem,expr,...) plots a contour plot for the expression expr. The
function accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'contdata',expr,...
 'contbar','on',...
 'geom','on',...
 'axisequal','on',...)

h = postcont(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your contour plot, use postplot instead of
postcont.

Example Plot the contours of the solution to the equation −∆u = 1 over a unit circle. Use
Dirichlet boundary conditions u = 0 on ∂Ω .

clear fem
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.mesh = meshrefine(fem);
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postcont(fem,'u')

Compatibility The syntax of the command is not compatible with its corresponding FEMLAB 2.1
syntax.

See Also postplot, postanim, postsurf, postlin, postarrow, postarrowbnd,
postflow, postprinc, postprincbnd, postslice, postiso, posttet
367

postcoord

368 | C H A P T
postcoordPurpose Get coordinates in a model.

Syntax coord = postcoord(fem,...)

Description coord = postcoord(fem,...) returns global coordinates in a model by
specifying, for example, a boundary and the number of points on the boundary.

To specify start points for particle tracing in postplot, property/values to
postcoord can be specified in the postplot property partstart.

Valid property/value pairs for postcoord are given in the following table.

The properties Frame, Solnum, T, and U are only used when the model fem contains
moving meshes. The default behavior of Solnum and T are described in
postinterp.

Examples % Set up a 2D geometry with a mesh and an extended mesh
clear fem
fem.geom = circ2+rect2;
fem.mesh = meshinit(fem);

TABLE 1-105: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

coord cell array of double
vectors

Coordinates where
scalar expansion is used

dl integer vector all domains Domain list

edim -1 | 1 -1 Element dimension

frame string spatial frame Coordinate frame

geomnum positive integer 1 Geometry number

grid positive integer or
vector of domain
parameters

Domain parameters

mcase non-negative integer Mesh case

npoints non-negative integer Number of subdomain
points, picked from
mesh vertices
(edim=-1)

solnum integer vector | all |
end

See below Solution number

T double vector See below Time for evaluation

U solution object |
solution vector | scalar

fem.sol or 0 Solution(s) for
evaluation
E R 1 : C O M M A N D R E F E R E N C E

postcoord
fem.xmesh = meshextend(fem);

% Get the coordinates of 17 evenly spaced points on
% boundaries 1,2,4
coord = postcoord(fem,'edim',1,'grid',17,'dl',[1,2,4]);

Compatibility This function was introduced in COMSOL Multiphysics 3.3.

See Also postinterp, postplot
369

postcrossplot

370 | C H A P T
postcrossplotPurpose Cross-section plot.

Syntax postcrossplot(fem,cdim,dom,...)
h = postcrossplot(fem,cdim,dom,...)
[h,data] = postcrossplot(fem,cdim,dom,...)

Description postcrossplot(fem,cdim,dom,...) displays a plot of an expression, including
an FEM solution, in one or several cross sections of the geometry, with space
dimension cdim and defined by dom (coordinates) or on mesh elements of space
dimension cdim, specified by dom (domain list). The argument dom is therefore
either a number of points to specify a cross section or a list of domains. To specify a
cross section, dom must be one of the following, where sdim denotes the space
dimension of the geometry:

• An sdim-by-2 matrix to specify a cross-section line (the line between the two
points in the columns of dom) in 2D and 3D. Used with properties lindata and
surfdata. Here, cdim must be 1.

• A 3-by-3 matrix to specify a cross-section plane (the plane containing all three
points in the columns of dom) in 3D. Used with property surfdata. Here, cdim
must be 2.

• An sdim-by-np matrix to specify np points for point plots. Used with property
pointdata. Here, cdim must be 0.

To specify a list of domains (geometry vertices, geometry edges, geometry
boundaries, or geometry subdomains), dom must be:

• A 1-by-nd integer matrix, where nd is the number of domains with space
dimension cdim (vertices, edges, boundaries, or subdomains) to plot on. When
used with surfdata in 3D, nd must be one.

In 1D, if all entries in dom are integers greater than or equal to 1, they are interpreted
as indices to geometry vertices. Otherwise, they are interpreted as coordinates. To
specify a coordinate which is an integer greater than or equal to 1, use the property
pointtype set to coord.

The expressions that are plotted can be COMSOL Multiphysics expressions
involving variables, in particular application mode variables.

The following plot types can be made:

Point plots (1D, 2D, 3D) Plot of an expression on any geometry vertex or arbitrary
point in the subdomains of the geometry. This is most useful when there are several
E R 1 : C O M M A N D R E F E R E N C E

postcrossplot
solutions, in which case this plot shows the value of the expression in the selected
points for the different solutions. If there is only one solution, the values in the
specified points are displayed in the x-axis range [0 1].

Line plots on domains (1D, 2D, 3D) Plot of an expression on a set of connected 1D
domains (edges in 3D, boundaries in 2D and subdomains in 1D). If Linxdata is
not specified, this is done by folding out the arc length of the 1D domain to the
x-axis of the resulting plot, and letting the value of the expression be set on the
x-axis. If dom contains more than one domain, the different arc lengths are just
added to each other on the x-axis. In this case, the domains have to be connected
and so that not more than two selected domains meet in the same vertex.

If Linxdata is specified, this is the quantity on the x-axis in the resulting plot. Using
Linxdata, you can project cross sections to, e.g., the x-axis by setting Linxdata to
x.

The direction of the path is so that the start point is the point along the path with
lowest geometry vertex number. If the selected domains form a closed curve, so that
this point is also the end point, the direction is in the direction of the domain with
lowest number.

If there are several solutions (that is, Solnum or T is a vector), the curves for the
different solutions can be either plotted in the same x-y-plot or can be extruded
along the third axis to generate a surface. This is controlled by specifying either the
property Lindata or Surfdata.

Line plots on cross sections (2D, 3D) In 2D and 3D, plot of an expression along a
straight line, defined between the two points in dom, in the geometry. The points in
dom are regarded as the end points of the cross-section line and are the x-axis limits
in the resulting plot, hence if the line between the two specified points do not
intersect the geometry, the resulting plot will be empty.

Surface plots on domains (2D, 3D) Plot of an expression on a boundary in 3D or on
a set of subdomains in 2D. In 3D, if Surfxdata and Surfydata are not specified,
the boundary is plotted in an xy-plane where x and y correspond to the
(s,t)-parameters of the boundary. If Surfxdata and Surfydata are specified, these
represent the quantities on the x- and y-axis in the resulting plot. Using Surfxdata
and Surfydata, you can project a cross section to, for example, the xy-plane of the
geometry by setting Surfxdata to x and Surfydata to y. If there are several
371

postcrossplot

372 | C H A P T
solutions, all plots for the different solutions are displayed along the third axis, as a
slice plot. In 3D, dom must be a single integer.

Surface plots on cross sections (3D) Plot of an expression on one or more 2D
cross-section planes, defined by the three points in dom, of the 3D geometry. If more
than one cross section is selected, or only one cross section is selected but there are
several solutions, all plots for the different cross sections/solutions are displayed
along the third axis, as a slice plot. The cross-section plane is the plane containing
the three points in the columns of dom.

For line plots, if more than one curve is plotted (either one cross section and several
solutions or vice versa), the different curves can be either plotted in the same
x-y-plot or can be extruded along the third axis to generate a surface. This is
controlled by specifying either the property Lindata or Surfdata.

h = postcrossplot(fem,cdim,dom,...) additionally returns handles or a
postdata structure (depending on the value of the property Outtype) to the plotted
objects.

Valid property/value pairs for postcrossplot are given in the following table,
where the columns S, L, and P denote if the property has effect on surface, line and
point plots, respectively.

TABLE 1-106: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME S L P PROPERTY VALUE DEFAULT DESCRIPTION

Axistype √ √ √ cell array of strings
lin or log

X-, Y- and Z-axis types

Complexfun √ √ √ off | on on Definition of constants

Const √ √ √ cell array Definition of constants

Cont √ √ √ off | on off Make output continuous

Crosslicecs √ local | global global Coordinate system to plot
cross-section slices in

Geom √ off | on Show geometry contour

Frame √ √ √ string spatial frame Coordinate frame

Geomnum √ √ √ integer (or vector of
integers when cdim=2
and dom is 3-by-3)

 1 Geometry number

Lincolor √ √ colorspec | cell array
of colorspec

cycle Line color

Lindata √ string Expression to plot
E R 1 : C O M M A N D R E F E R E N C E

postcrossplot
Linewidth √ √ numeric 0.5 Line width

Linlegend √ √ off | on off Color legend

Linmarker √ √ marker specifier | cell
array of marker
specifiers

none Line marker

Linstyle √ √ symbol | cell array of
symbols

'-' Line style

Linxdata √ string Line x-axis expression

Markersize √ √ integer 6 Size of markers

Matherr √ √ √ off | on off Error for undefined
operations

Npoints √ integer 200 Number of points on each
line, when dom is a cross
section

Outtype √ √ √ handle | postdata |
postdataonly

handle Output type

Phase √ √ √ scalar 0 Phase angle

Pointdata √ string Expression to plot

Pointtype √ coord | vertex vertex Point plot type when
cdim=0 and dom is
integer(s)

Pointxdata √ string Point plot x-axis expression

Recover √ √ √ off | ppr | pprint off Accurate derivative
recovery

Refine √ √ integer | auto See posteval Refinement of element in
evaluation

Sdl √ integer vector | cell
array of integer
vectors | all

all Subdomain list for
cross-section slice plots

Solnum √ √ √ integer vector | all |
end

all Solution numbers

Spacing √ √ integer 1 Number of planes/lines or
vector with distances, when
dom is a cross section

Surfbar √ off | on off Color legend

Surfdata √ √ string Expression to plot

TABLE 1-106: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME S L P PROPERTY VALUE DEFAULT DESCRIPTION
373

postcrossplot

374 | C H A P T
In addition, the common plotting properties listed under femplot are available.

If the field fem.sol.u does not exist and the property U is not specified, expressions
not depending on the solution can still be plotted.

The notation colorspec in the value column denotes a color specification. See
postplot for a description of this.

The property Phase is described in posteval.

Examples 3D Example
clear fem
fem.geom = geomcsg({cylinder3});
fem.mesh = meshinit(fem);
fem.equ.c = 1; fem.equ.f = 1; fem.equ.da = 1;
fem.bnd.h = 1;
fem.shape = 2;
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',0:0.01:0.1);

Plot solutions on a cross section:

crosspts = [0 0 1;0 1 1;0 0 1];
postcrossplot(fem,2,crosspts,'surfdata','u','solnum',1:2:10,...
 'crosslicecs','local')

Plot fourth solution on five cross sections with geometry boundaries:

postcrossplot(fem,2,crosspts,'surfdata','u','solnum',4,...

Surfdlim √ [min max] full range Surface plot color limits

Surfedgestyle √ flat | interp | none
| bg | bginv |
colorspec

none Triangle edge style

Surffacestyle √ flat | interp | none
| bg | bginv |
colorspec

interp Triangle face style

Surfmap √ color table Color table

Surfmapstyle √ auto | reverse auto Color table style

Surfxdata √ string Surface x-axis expression

Surfydata √ string Surface y-axis expression

T √ √ √ vector Times for evaluation

U √ √ √ solution object or
vector

fem.sol or 0 Solution for evaluation

TABLE 1-106: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME S L P PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postcrossplot
 'geom','on','refine',3,'axisequal','on',...
 'spacing',5)

Plot on a boundary 6 for the last time value:

postcrossplot(fem,2,6,'surfdata','ux','cont','on','solnum',11)

Compare this with

postplot(fem,'tridata','ux','cont','on','bdl',6,'geom','on',...
 'solnum',11)

Plot on a boundary 6 for some time values with overlaid mesh:

postcrossplot(fem,2,6,'surfdata','ux','cont','on',...
 'surfedgestyle','k','refine',1,...
 'solnum',[1,4,7,11])

Plot along a line intersecting the geometry:

linpts = [-1 1;-1 1;0 1];
postcrossplot(fem,1,linpts,'lindata','u','npoints',100)

Same but with time extrusion:

postcrossplot(fem,1,linpts,'surfdata','u','npoints',100,...
 'camlight','on')

Plot along some connected edges:

postcrossplot(fem,1,[4 5 8 11],'lindata','t1x')
% Compare this with the postplot call
postplot(fem,'lindata','t1x','edl',[4 5 8 11],'linbar','on',...
 'geom','off')

Point plot on n points in geometry:

n = 30;
pts = [linspace(-1,1,n);linspace(0,1,n);linspace(0,1,n)];
postcrossplot(fem,0,pts,'pointdata','u')

2D Examples
Time-dependent problem (Heat equation)

clear fem
fem.geom = geomcsg({rect2});
fem.mesh = meshinit(fem);
fem.equ.c = 1; fem.equ.f = 1; fem.equ.da = 1;
fem.bnd.h = 1;
fem.shape = 2;
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',0:0.01:0.1);

Plot solution along the diagonal for all time-steps:
375

postcrossplot

376 | C H A P T
postcrossplot(fem,1,[0 1;1 0],'lindata','u')

Plot solution at time step 4 in several parallel cross sections:

postcrossplot(fem,1,[0 1;1 0],'lindata','u*x','solnum',4,...
 'spacing',5,'lincolor','r')

Plot along three boundaries for the first five time steps:

postcrossplot(fem,1,[1 2 3],'lindata','ux','cont','on',...
 'solnum',1:5)

Same but with time-extrusion:

postcrossplot(fem,1,[1 2 3],'surfdata','ux','cont','on',...
 'solnum',1:5)

Make point plot of square of solution on three points in geometry:

pts = [0.2 0.3 0.6;0.1 0.7 0.2];
postcrossplot(fem,0,pts,'pointdata','u^2')

Compatibility In FEMLAB 3.0a, extrusion plots, i.e., when plotting for several solutions (Solnum
or T is a vector), cdim is 1, and Surfdata is used, can only be made for plots where
the extrusion axis represents the solution. Extrusions cannot be made between
parallel lines for cross-section line plots. Also, all line plots are all plotted in the x-y
plane, also for several solutions and for several parallel cross-section lines.

The property Variables has been renamed Const in FEMLAB 2.3.

See Also postplot, postinterp
E R 1 : C O M M A N D R E F E R E N C E

postdataplot
postdataplotPurpose Plot a post data structure.

Syntax postdataplot(pd,...)
h = postdataplot(pd,...)

Description postdataplot(pd,...) displays a plot of a post data structure, typically returned
by posteval. The function supports plotting postdata structures with element
dimension 1 or 2, corresponding to the posteval property Edim.

h = postdataplot(pd,...) additionally returns handles to the plotted objects.

The function postdataplot accepts the following property/values:

In addition, the common plotting properties listed under femplot are available.

The notation colorspec in the value column denotes a color specification. See
postplot for details.

Compatibility The function postdataplot was introduced in COMSOL Multiphysics 3.4.

See Also posteval

TABLE 1-107: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Colorbar off | on on Display a color legend

Colormap color table Rainbow The color table

Colormapstyle auto | reverse auto Color table style

Edgestyle flat | interp |
none | bg | bginv |
colorspec

none Surface edge style

Facestyle flat | interp |
none | bg | bginv |
colorspec

interp Surface face style
377

posteval

378 | C H A P T
postevalPurpose Evaluate expressions in subdomains, boundaries, edges or vertices.

Syntax [v1,v2,...,vn] = posteval(fem,e1,e2,...,en,...)

Description [v1,v2,...,vn] = posteval(fem,e1,e2,...,en,...) returns values
v1,v2,...,vn of the expressions e1,e2,...,en. The expressions can be evaluated
on any domain type: subdomain, boundary, edge, and vertex, using one or several
solutions.

The values vi are post data, a structure with fields p, t, q, d, and elind. The field
p contains node point coordinate information. The number of rows in p is the
number of space dimensions. The field t contains the indices to columns in p of a
simplex mesh, each column in t representing a simplex. The field q contains the
indices to columns in p of a quadrilateral mesh, each column in q representing a
quadrilateral. The field d contains data values. The columns in d correspond to node
point coordinates in columns in p. There is one row in d for each solution (see the
properties Solnum and T below). The data contains the real part of complex-valued
expressions. The field elind contains indices to mesh elements for each point.

The string expressions can be any COMSOL Multiphysics expressions involving
variables, in particular application mode variables.

The function posteval accepts the following property/values:

TABLE 1-108: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Bpoint double matrix Local coordinates for
quadrilateral and block
elements

Complexfun off | on on Use complex-valued
functions with real input

Const cell array Definition of constants

Cont off | on |
internal

off Smoothing

Dl integer vector or
cell array of integer
vectors

all domains Domain lists

Edim integer full Element dimension

Frame integer spatial frame Coordinate frame

Geomnum positive integer 1 Geometry number
E R 1 : C O M M A N D R E F E R E N C E

posteval
The property Refine constructs evaluation points by making a regular refinements
of each element. Each mesh edge is divided into Refine equal parts. If auto is used,
an automatic refinement value is computed internally and used, which depends on
the maximum element order and the number of elements evaluated on. This value
is most useful in postplot.

Use the properties Spoint, Bpoint, and Prpoint to specify arbitrary local element
evaluation points for simplex elements (triangular, tetrahedral, and edge elements),
quadrilateral/block elements, and prism elements, respectively. If you specify any of
these properties, the fields t and q in the output postdata structure are empty, and
the property Cont is neglected.

The property Edim decides which elements to evaluate on. Evaluation takes place
only on elements with space dimension Edim. If not specified, Edim=sdim is used,
where sdim is the space dimension of the geometry. For example, in a 3D model, if
evaluation is done on edges (1D elements), Edim is 1. Similarly, for boundary
evaluation (2D elements), Edim is 2, and for subdomain evaluation (3D elements),
Edim is 3 (default in 3D).

Matherr off | on off Error for undefined
operations

Phase scalar 0 Phase angle

Prpoint double matrix Local coordinates for
prism elements

Refine integer | auto 3 Refinement of element
for evaluation points

Solnum integer vector | all
| end

See below Solution number

Spoint double matrix Local coordinates for
simplex elements

T double vector Time for evaluation

Triangulate off | on off Divide quad elements
into triangles

U solution object or
vector

fem.sol or 0 Solution for evaluation

TABLE 1-108: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION
379

posteval

380 | C H A P T
The property Dl controls on which domains (subdomains, boundaries, etc.)
evaluation should take place. If Geomnum is a vector, Dl must be a cell array of the
same length as Geomnum containing domain lists for each geometry.

The property Cont controls if the post data is forced to be continuous on element
edges. When Cont is set to internal, only elements not on interior boundaries are
made continuous.

The expressions ei are evaluated for one or several solutions. Each solution
generates an additional row in the d field of the post data output structure. The
properties Solnum and T control what solutions are used for the evaluations. If
Solnum is provided, the solution indicated by the indices provided with the Solnum
property are used. It T is provided, solutions are interpolated The property T can
only be used for time dependent solutions. If nether Solnum nor T is provided, a
single solution is evaluated. For parametric and time-dependent solutions, the final
solution is used. For eigenvalue solution the first solution is used.

For time-dependent problems, the variable t can be used in the expressions ei. The
value of t is the interpolation time when the property T is provided, and the time
for the solution, when Solnum is used. Similarly, lambda and the parameter are
available as eigenvalues for eigenvalue problems and as parameter value for
parametric problems, respectively.

When the property Phase is used, the solution vector is multiplied with
exp(i*phase) before evaluating the expression.

Example Solve Poisson’s equation on two rectangles and evaluate the solution on one of
them and the negative solution on the other.

clear fem
fem.geom = square2(1,'pos',[0 -1])+square2;
fem.mesh = meshinit(fem);
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = 1;
fem.equ.expr = {'uu' {'u','-u'}};
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
pd = posteval(fem,'uu');

Compatibility The properties Spoint and Bpoint was re-introduced and Prpoint was introduced
in COMSOL Multiphysics 3.2a.
E R 1 : C O M M A N D R E F E R E N C E

posteval
The FEMLAB 3.0 output type has been changed to a structure containing data
suitable for further postprocessing. The new output format is incompatible with
FEMLAB 2.3 and earlier versions.

The properties Context, Contorder, Posttype, and Spoint are obsolete from
FEMLAB 3.0.

The property Variables has been renamed Const in FEMLAB 2.3.

The properties Bdl, Epoint, Sdl, and Tpoint, are obsolete from FEMLAB 2.2.
Use the Dl property to specify domain lists. The post data format has changed in
FEMLAB 2.2 and later versions.

The variable name lambda introduced in FEMLAB 1.2 can introduce a variable
name conflict for old models.

See Also postdataplot, postglobaleval, postint, postinterp, postsum
381

postflow

382 | C H A P T
postflowPurpose Shorthand command for streamline plot in 2D and 3D.

Syntax postflow(fem,expr,...)
h = postflow(fem,expr,...)

Description postflow(fem,expr,...) plots a streamline plot for the expressions in the cell
array expr. In 2D, expr has length 2, and in 3D, it has length 3. The function
accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'flowdata',expr,...
 'geom','on',...
 'axisequal','on',...)

h = postflow(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your streamline plot, use postplot instead
of postflow.

See Also postplot, postanim, postsurf, postcont, postlin, postarrow,
postarrowbnd, postprinc, postprincbnd, postslice, postiso, posttet
E R 1 : C O M M A N D R E F E R E N C E

postglobaleval
postglobalevalPurpose Evaluate globally defined expressions, such as solutions to ODEs.

Syntax data = postglobaleval(fem,...)
data = postglobaleval(fem,expr,...)

Description postglobaleval(fem,expr,...) is the evaluation function for globally defined
expressions, such as solution variables for ODEs and other space-independent
equations.

The input expr contains the expressions to plot. It must be a cell array of strings. If
omitted, the expressions in fem.ode.dim are evaluated.

data = postglobaleval(fem,...) returns a structure with fields x, y, and
legend. The values can be plotted with

plot(data.x, data.y)
legend(data.legend)

Valid property/value pairs for postglobaleval are given in the following table.

The property Phase is described in posteval.

Examples Example: Solve the Lotka-Volterra equations for two populations, r and f:

clear fem
fem.ode.dim={'r','f'};
fem.ode.f={'r*(1-2*f)-rt','-f*(3-r)-ft'};
fem.ode.init={'10','1'};
fem.ode.dinit={'0','0'};
fem.geom=solid1([0,1]);

TABLE 1-109: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Complexfun off | on on Use complex-valued
functions with real
input

Const cell array Definition of constants

Matherr off | on off Error for undefined
operations

Phase scalar 0 Phase angle

Solnum integer vector | all |
end

all Solution number

T vector Times for evaluation

U solution object or
vector

fem.sol or 0 Solution for evaluation
383

postglobaleval

384 | C H A P T
fem.mesh = meshinit(fem);
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',[0,1]);

% Evaluate 'r' and 'f' for all time steps
data = postglobaleval(fem);

% Evaluate 'r+f' and 'r*f' and plot the result
data = postglobaleval(fem,{'r+f','r*f'})
plot(data.x, data.y)
legend(data.legend)

Compatibility This function was introduced in COMSOL Multiphysics 3.2a.

See Also postglobalplot, postinterp
E R 1 : C O M M A N D R E F E R E N C E

postglobalplot
postglobalplotPurpose Plot globally defined expressions, such as solutions to ODEs.

Syntax postglobalplot(fem,expr,...)
h = postglobalplot(fem,expr,...)

Description postglobalplot(fem,expr,...) is the plot function for globally defined
expressions, such as solution variables for ODEs and space-independent equations.

The input expr contains the expressions to plot. It must be a string or a cell array
of strings.

h = postglobalplot(fem,expr,...) additionally returns handles or a postdata
structure (depending on the value of the property Outtype) to the plotted objects.

Valid property/value pairs for postglobalplot are given in the following table.

TABLE 1-110: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Complexfun off | on on Use complex-valued
functions with real
input

Const cell array Definition of constants

Lincolor colorspec | cell array
of colorspec

cycle Line color

Linewidth numeric 0.5 Line width

Linlegend off | on off Color legend

Linmarker marker specifier | cell
array of marker
specifiers

none Line marker

Linstyle symbol | cell array of
symbols

'-' Line style

Linxdata string Line x-axis expression

Markersize integer 6 Size of markers

Matherr off | on off Error for undefined
operations

Outtype handle | postdata |
postdataonly

handle Output type

Phase scalar 0 Phase angle

Solnum integer vector | all |
end

all Solution number
385

postglobalplot

386 | C H A P T
In addition, the common plotting properties listed under femplot are available.

If Outtype is 'handle', postglobalplot returns a vector of handles to the plots.
If Outtype is 'postdata' or 'postdataonly', the function returns a post data
structure. The post data structure has the same format as the output from
posteval. When 'postdataonly' is used, no plot is generated.

The notation colorspec in the value column denotes a color specification. See
postplot for a description of this specification.

The property Phase is described in posteval.

Examples Example: Solve the Lotka-Volterra equations for two populations r and f
clear fem
fem.ode.dim={'r','f'};
fem.ode.f={'r*(1-2*f)-rt','-f*(3-r)-ft'};
fem.ode.init={'10','1'};
fem.ode.dinit={'0','0'};
fem.geom=solid1([0,1]);
fem.mesh = meshinit(fem);
fem.xmesh = meshextend(fem);
fem.sol = femtime(fem,'tlist',[0,1]);

% Plot the solutions r and f with legend
postglobalplot(fem,{'r','f'},'linlegend','on');

% Plot the r population versus the f population
postglobalplot(fem,'r','linxdata','f')

Compatibility This function was introduced in COMSOL Multiphysics 3.2a.

See Also postcrossplot, postinterp

T vector Times for evaluation

U solution object or
vector

fem.sol or 0 Solution for evaluation

TABLE 1-110: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postgp
postgpPurpose Extract Gauss points and Gauss point weights.

Syntax gp = postgp(type,order)
[gp,gpw] = postgp(type,order)

Description postgp(type,order) returns the gauss points of order order for an element of
type type.

[gp,gpw] = postgp(type,order) additionally returns the Gauss point weights.

The Gauss points and their weights are the ones used in postint when computing
integrals.

The input type must be one of the following: vtx, edg, tri, quad, tet, prism, or
hex corresponding to a vertex element, an edge element, a triangular element, a
quadrilateral element, a tetrahedral element, a prism element, and a hexahedral
element, respectively.

Examples % The second order Gauss points for a triangular element
gp = postgp('tri',2);

% The third order Gauss points and their weights for a hexahedral
% element
[gp,gpw] = postgp('hex',3);

Compatibility This function was introduced in COMSOL Multiphysics 3.2a.

See Also posteval, postint
387

postint

388 | C H A P T
postintPurpose Integrate expressions in domains with arbitrary space dimension.

Syntax [v1,v2,...,vn] = postint(fem,e1,e2,...,en,...)

Description [v1,i2,...,vn] = postint(fem,e1,e2,...,en,...) returns the integrals
v1,v2,...,vn of the expressions e1,...,en. The integrals can be evaluated on any
domain type: subdomain, boundary, edge, and vertex, using one or several
solutions. When the several solutions are provided, each vi is a vector with values
corresponding to the solutions.

The expressions that are integrated can be expressions involving variables, in
particular application mode variables.

postint accepts the following property/value pairs:

The expressions ei are integrated for one or several solutions. Each solution
generates an element in the output vectors vi. The properties Solnum and T control

TABLE 1-111: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Complexfun off | on on Use complex-valued
functions with real
input

Const cell array List of assignments
of constants

Dl integer vector all domains Domain list

Edim integer full Element dimension

Frame string spatial frame Coordinate frame

Geomnum positive integer 1 Geometry number

Intorder positive integer 4 Integration order

Matherr off | on off Error for undefined
operations

Phase integer vector 0 Phase angle

Recover off | ppr |
pprint

off Accurate derivative
recovery

Solnum integer vector |
all | end

See below Solution numbers

T double vector See below Time for evaluation

U solution object or
vector

fem.sol or 0 Solutions for
evaluation
E R 1 : C O M M A N D R E F E R E N C E

postint
what solutions are used for the evaluations. If Solnum is provided, the solution
indicated by the indices provided with the Solnum property are used. It T is
provided, solutions are interpolated The property T can only be used for time
dependent solutions. If nether Solnum nor T is provided, a single solution is
evaluated. For parametric and time-dependent solutions, the final solution is used.
For eigenvalue solution the first solution is used.

For time-dependent problems, the variable t can be used in the expressions ei. The
value of t is the interpolation time when the property T is provided, and the time
for the solution, when Solnum is used. Similarly, lambda and the parameter are
available as eigenvalues for eigenvalue problems and as parameter value for
parametric problems, respectively.

Examples Compute the integral of the solution to Poisson’s equation on the unit disk using
weak constraints. Use weak constraint to obtain accurate flux.

clear fem
fem.dim = {'u' 'lm'};
fem.geom = circ2;
fem.mesh = meshinit(fem);
fem.shape={'shlag(2,''u'')' 'shlag(2,''lm'')'};
fem.equ.c = {{1 0}};
fem.equ.f = {{1 0}};
% make shape function for u active on subdomain
fem.equ.shape={1};
fem.bnd.weak = {{'test(u)*lm' 'test(lm)*(-u)'}};
% make shape functions for u and lm active on boundary
fem.bnd.shape={[1 2]};
fem.solform = 'general';
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postint(fem,'u')

Verify that the integral of the source term in Poisson’s equation on the unit disk
cancels the integral of the flux over the boundary. To have access to the variables f1
and ncu1, you must use the General solution form.

postint(fem,'f1')
postint(fem,'lm','edim',1)

You can also use the variable ncu to compute the flux, but it is much less accurate.

postint(fem,'-ncu1','edim',1)

Compatibility The properties Context, Cont, and Contorder are obsolete from FEMLAB 3.0.

The property Variables has been renamed Const in FEMLAB 2.3.
389

postint

390 | C H A P T
See Also posteval, postsum
E R 1 : C O M M A N D R E F E R E N C E

postinterp
postinterpPurpose Evaluate expressions in arbitrary points.

Syntax [v1,v2,...,vn,pe] = postinterp(fem,e1,e2,...,en,xx,...)
[pio,pe] = postinterp(fem,xx,...)
[v1,v2,...,vn] = postinterp(fem,e1,e2,...,en,pio,...)

Description [v1,v2,...,vn,pe] = postinterp(fem,e1,e2,...,en,xx,...) returns the
values v1,v2,...,vn of the expressions e1,e2,...,en in the points xx.

[pio,pe] = postinterp(fem,xx,...) computes a PostInterp object pio, which
contains information about where the points xx are located.

[v1,v2,...,vn] = postinterp(fem,e1,e2,...,en,pio,...) returns the
values v1,v2,...,vn of the expressions e1,e2,...,en in the points given by the
PostInterp object pio.

The columns of the matrix xx are the coordinates for the evaluation points. If the
number of rows in xx equals the space dimension, then xx are global coordinates,
and the property Edim determines the dimension in which the expressions are
evaluated. For instance, Edim=2 means that the expressions are evaluated on
boundaries in a 3D model. If Edim is less than the space dimension, then the points
in xx are projected onto the closest point on a domain of dimension Edim. If, in
addition, the property Dom is given, then the closest point on domain number Dom
in dimension Edim is used.

If the number of rows in xx is less than the space dimension, then these coordinates
are parameter values on a geometry face or edge. In that case, the domain number
for that face or edge must be specified with the property Dom.

The expressions that are evaluated can be expressions involving variables, in
particular application mode variables.

The matrices v1,v2,...,vn are of the size k-by-size(xx,2), where k is the
number of solutions for which the evaluation is carried out, see below. The value of
expression ei for solution number j in evaluation point xx(:,m) is vi(j,m).

The vector pe contains the indices m for the evaluation points xx(:,m) that are
outside the mesh, or, if a domain is specified, are outside that domain.
391

postinterp

392 | C H A P T
postinterp accepts the following property/value pairs:

The properties Blocksize and Const are described in assemble.

The property Ext determines how far the extrapolation reaches. A positive value Ext
means that for points outside the mesh, the evaluation is carried out by extrapolation
from the nearest mesh element, provided that the distance to the mesh element is
at most ext times the element diameter, roughly. Other (more distant) points
outside the mesh give the value NaN in the value matrices vi.

TABLE 1-112: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Blocksize positive integer 1000 Block size

Complexfun off | on on Use complex-valued
functions with real
input

Const cell array List of assignments of
constants

Dom positive integer Domain number

Edim 0 | 1 | 2 | 3 size(xx,1) Element dimension for
evaluation

Ext number between
0 and 1

0.1 Extrapolation distance

Frame string spatial frame Coordinate frame

Geomnum positive integer 1 Geometry number

Matherr off | on off Error for undefined
operations

Mcase non-negative
integer

Mesh case

Phase scalar 0 Phase angle

Recover off | ppr |
pprint

off Accurate derivative
recovery

Solnum integer vector |
all | end

See below Solution numbers

T double vector See below Time for evaluation

U solution object |
solution vector |
scalar

fem.sol or 0 Solutions for
evaluation
E R 1 : C O M M A N D R E F E R E N C E

postinterp
The property Matherr is described in femsolver.

If the property U does not specify the mesh case number, it is given by the property
Mcase. The default is the mesh case that has the greatest number of degrees of
freedom.

The property Phase is described in posteval.

The property U specifies the solution for which the evaluation is carried out. If U is
not specified, then it is taken from fem.sol if it exists; otherwise it is the zero
vector.

The expressions ei are interpolated for one or several solutions. The properties
Solnum and T control what solutions are used for the evaluations. If Solnum is
provided, the solution indicated by the indices provided with the Solnum property
are used. It T is provided, solutions are interpolated at the given times. The property
T can only be used for time dependent solutions. If neither Solnum nor T is
provided, a single solution is evaluated. For parametric and time-dependent
solutions, the final solution is used. For eigenvalue solution the first solution is used.

For time-dependent problems, the variable t can be used in the expressions ei. The
value of t is the interpolation time when the property T is provided, and the time
for the solution, when Solnum is used. Similarly, lambda and the parameter are
available as eigenvalues for eigenvalue problems and parameter value for parametric
problems, respectively.

A subsequent evaluation with [v1,v2,...,vn] =
postinterp(fem,e1,e2,...,en,pio,...) is faster than using xx instead of pio.
In this form of the call, only the properties Const, Phase, Solnum, T, and U are used.

Compatibility The properties Context, Cont, and Contorder are obsolete from FEMLAB 3.0.

In FEMLAB 3.0, the interpolation structure is as a Java object.

The property Variables has been renamed Const in FEMLAB 2.3.

The syntax and capabilities of this function has changed since FEMLAB 2.1.

See Also posteval
393

postiso

394 | C H A P T
postisoPurpose Shorthand command for isosurface plot in 3D.

Syntax postiso(fem,expr,...)
h = postiso(fem,expr,...)

Description postiso(fem,expr,...) plots an isosurface plot for the expression expr. The
function accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'isodata',expr,...
 'isobar','on',...
 'geom','on',...
 'axisequal','on',...)

h = postiso(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your isosurface plot, use postplot instead
of postiso.

See Also postplot, postanim, postsurf, postcont, postlin, postarrow,
postarrowbnd, postflow, postprinc, postprincbnd, postslice, posttet
E R 1 : C O M M A N D R E F E R E N C E

postlin
postlinPurpose Shorthand command for line plot in 1D, 2D and 3D.

Syntax postlin(fem,expr,...)
h = postlin(fem,expr,...)

Description postlin(fem,expr,...) generates a line plot for the expression expr. The
function accepts all property/value pairs that postplot does. In 1D, this command
is just shorthand for the call

postplot(fem,'liny',expr,...
 'linstyle','bginv',...)

and in 2D, it is shorthand for

postplot(fem,'lindata',expr,...
 'linz',expr,...
 'linbar','on',...
 'axisequal','on',...)

and in 3D, it is shorthand for

postplot(fem,'lindata',expr,...
 'linbar','on',...
 'axisequal','on',...)

h = postlin(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your line plot, use postplot instead of
postlin.

See Also postplot, postanim, postsurf, postcont, postarrow, postarrowbnd,
postflow, postprinc, postprincbnd, postslice, postiso, posttet
395

postmax

396 | C H A P T
postmaxPurpose Compute maximum value of an expression.

Syntax m = postmax(fem,expr,...)
[m,p] = postmax(fem,expr,...)

Description m = postmax(fem,expr,...) returns the maximum value of the expression expr.
The function accepts all property/value pairs that posteval does, except cont. In
addition, the following property/value pairs are accepted:

[m,p] = postmax(fem,expr,...) additionally returns the sdim-by-1 matrix p
containing the coordinate for which the maximum value occurs, where sdim is the
space dimension of the geometry.

Note that the property Refine (see posteval) specifies the refinement used for
finding the element in which the maximum value occurs. This element is then
refined further to find the maximum value within the element. Therefore, the
coordinate for which the maximum value of expr is attained, is not necessarily a
node in the mesh.

Cautionary When expr is evaluated to complex numbers, the real part is used in the maximum
value calculation.

See Also posteval, postmin

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Out all | sollist all Return min over all solutions, or
min per solution, specified with
solnum or t

Useinf on | off on Allow infinity to be maximum value
E R 1 : C O M M A N D R E F E R E N C E

postmin
postminPurpose Compute minimum value of an expression.

Syntax m = postmin(fem,expr,...)
[m,p] = postmin(fem,expr,...)

Description m = postmin(fem,expr,...) returns the minimum value of the expression expr.
The function accepts all property/value pairs that posteval does, except cont. In
addition, the following property/value pairs are accepted:

[m,p] = postmin(fem,expr,...) additionally returns the sdim-by-1 matrix p
containing the coordinate for which the minimum value occurs, where sdim is the
space dimension of the geometry.

Note that the property Refine (see posteval) specifies the refinement used for
finding the element in which the minimum value occurs. This element is then
refined further to find the maximum value within the element. Therefore, the
coordinate for which the minimum value of expr is attained, is not necessarily a
node in the mesh.

Cautionary When expr is evaluated to complex numbers, the real part is used in the minimum
value calculation.

See Also posteval, postmax

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Out all | sollist all Return min over all solutions, or
min per solution, specified with
solnum or t

Useinf on | off on Allow -infinity to be minimum value
397

postmovie

398 | C H A P T
postmoviePurpose Postprocessing animation function.

Syntax postmovie(fem,...)
postmovie({fem1,fem2,fem3,...},...)
M = postmovie(fem,...) % MATLAB only

Description postmovie(fem,...) is the general solution animation function. It supports all
property/value pairs that postplot supports, and in addition to that, it supports a
set of property/value pairs that is exclusive for animation.

The input fem must be an FEM structure or a cell array of FEM structures. When
it is a cell array, the properties solnum and t must, if specified, be cell arrays of the
same size as fem. In this case, the FEM structures must have the same solution type,
for example, all time-dependent solutions.

M = postmovie(fem,...) additionally returns a matrix in the MATLAB movie
format.

The command can generate a sequence of image files containing all images in the
movie. In addition, the command can generate an AVI movie file.

Valid property/value pairs for the postmovie function are given in the following
table. In addition, all postplot parameters are supported and are passed to
postplot. See the entry on postplot for a description of the post data formats.

TABLE 1-113: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION

Aviautoplay on | off on In MATLAB on Windows, try
to launch program associated
with AVI-extension and play
generated AVI-movie

Avicompression string Compression used for
AVI-movie

Aviquality integer between
0 and 100

75 Quality of AVI-movie

Filename string Output file name

Filetype avi | jpg |
tiff | png |
gif | animgif

avi Output file type

Fps integer 12 Frames per second

Height integer 480 Height of image/movie files

Repeat integer 5 Number of repeats
E R 1 : C O M M A N D R E F E R E N C E

postmovie
Example Run examples in postplot, and replace the postplot command with postmovie.

Cautionary When you are replaying a movie that has been stored in a matrix M, you should
explicitly provide a figure handle to the movie command.

M = postmovie(fem,'tridata','u');
movie(gcf,M)

Otherwise the animation does not look good.

Compatibility The option mov for property Filetype as well as the properties Qtrate, Qtqual,
and Qtcomp on Mac are removed in FEMLAB 3.0a. The option avi works on Mac.
When using mov, it is translated internally to avi.

See Also posteval, postplot

Reverse on | off off Make movie backwards

Resol integer 150 Resolution

Solnum integer vector |
all | end

all Solution numbers

Statfunctype string full | half |
linear

Static plot function

Statnframes integer 11 Number of frames in
animation of static solution

Width integer 640 Width of image/movie files

TABLE 1-113: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY VALUE DEFAULT DESCRIPTION
399

postplot

400 | C H A P T
postplotPurpose Postprocessing plot function.

Syntax postplot(fem,...)
h = postplot(fem,...)

Description postplot(fem,...) is the general solution plot function. It can display an FEM
solution in several different ways. The command works for both 1D, 2D, and 3D
geometries.

h = postplot(fem,...) additionally returns handles or postdata corresponding
to the drawn axes objects. See properties Out and Outtype.

The function postplot accepts the following property/value pairs:

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION

Arrowbnd √ √ vector post spec Boundary arrow data

Arrowbndz √ post spec Boundary arrow
height data

Arrowcolor √ √ colorspec red Subdomain arrow
color

Arrowcolorbnd √ √ colorspec blue Boundary arrow color

Arrowcoloredg √ colorspec black Edge arrow color

Arrowdata √ √ vector post spec Arrow data

Arrowedg √ vector post spec Edge arrow data

Arrowscale √ √ numeric auto Subdomain arrow
scale

Arrowscalebnd √ √ scalar auto Boundary arrow scale

Arrowscaleedg √ scalar auto Edge arrow scale

Arrowstyle √ √ proportional |
normalized

proportional Subdomain arrow
style

Arrowstylebnd √ √ proportional |
normalized

proportional Boundary arrow style

Arrowstyleedg √ proportional |
normalized

proportional Edge arrow style

Arrowtype √ arrow | cone |
arrow3d

cone Subdomain arrow
type

Arrowtypebnd √ √ arrow | cone |
arrow3d

cone Boundary arrow type

Arrowtypeedg √ arrow | cone |
arrow3d

cone Edge arrow type
E R 1 : C O M M A N D R E F E R E N C E

postplot
Arrowxspacing √ √ number of arrows
or vector specifying
x-coordinates

15 (in 2D)
7 (in 3D)

Arrow x-spacing

Arrowyspacing √ √ number of arrows
or vector specifying
y-coordinates

15 (in 2D)
7 (in 3D)

Arrow y-spacing

Arrowz √ post spec Arrow height data

Arrowzspacing √ number of arrows
or vector specifying
z-coordinates

7 (in 3D) Arrow z-spacing

Bdl √ √ list of boundary
numbers

all Boundary list

Bndmarker √ √ marker specifier square Boundary max/min
marker type

Bndmarkersize √ √ integer 6 Size of boundary max/
min markers

Complexfun √ √ √ off | on on Use complex-valued
functions with real
input

Const √ √ √ cell array Definition of
constants

Cont √ √ √ off | on |
internal

off Make output
continuous

Contbar √ off | on on Show color legend for
contours

Contcolorbar √ off | on on Show color legend for
contour colors

Contcolordata √ post spec Contour color data

Contcolordlim √ [min max] full range Contour color limits

Contcolormap √ color table Color table for
contour color data

Contcolormapstyle √ auto | reverse auto Color table style for
contour color data

Contdata √ post spec Contour data

Contdlim √ [min max] full range Contour limits

Contfill √ off | on off Filled contours

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
401

postplot

402 | C H A P T
Contlabel √ off | on off Show contour labels

Contlevels √ number of levels or
a vector specifying
levels

20 Contour levels

Contmap √ color table Color table for
contour plot

Contmapstyle √ auto | reverse auto Color table style for
contour plot

Contrefine √ integer | auto auto Refinement of
elements for contour
plots

Contstyle √ bg | bginv |
interp | cycle

interp Contour style

Contz √ post spec Contour height data

Deformauto √ √ on | off on Auto scaling

Deformbnd √ √ vector post spec Deform data for
boundaries

Deformdata √ √ vector post spec Deformation data

Deformedg √ vector post spec Deform data for
edges

Deformscale √ √ √ numeric Deformation scale
factor for subdomains

Deformscalebnd √ √ numeric Deformation scale
factor for boundaries

Deformscaleedg √ numeric Deformation scale
factor for edges

Deformscalesub √ numeric Deformation scale
factor for subdomains

Edgmarker √ marker specifier square Edge max/min marker
type

Edgmarkersize √ integer 6 Size of edge max/min
markers

Edl √ integer vector all Edge list

Ellogic √ √ √ logical expression 1 Logical expression for
elements to include

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
Arrowxspacing √ √ number of arrows
or vector specifying
x-coordinates

15 (in 2D)
7 (in 3D)

Arrow x-spacing

Arrowyspacing √ √ number of arrows
or vector specifying
y-coordinates

15 (in 2D)
7 (in 3D)

Arrow y-spacing

Arrowz √ post spec Arrow height data

Arrowzspacing √ number of arrows
or vector specifying
z-coordinates

7 (in 3D) Arrow z-spacing

Bdl √ √ list of boundary
numbers

all Boundary list

Bndmarker √ √ marker specifier square Boundary max/min
marker type

Bndmarkersize √ √ integer 6 Size of boundary max/
min markers

Complexfun √ √ √ off | on on Use complex-valued
functions with real
input

Const √ √ √ cell array Definition of
constants

Cont √ √ √ off | on |
internal

off Make output
continuous

Contbar √ off | on on Show color legend for
contours

Contcolorbar √ off | on on Show color legend for
contour colors

Contcolordata √ post spec Contour color data

Contcolordlim √ [min max] full range Contour color limits

Contcolormap √ color table Color table for
contour color data

Contcolormapstyle √ auto | reverse auto Color table style for
contour color data

Contdata √ post spec Contour data

Contdlim √ [min max] full range Contour limits

Contfill √ off | on off Filled contours

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
403

postplot

404 | C H A P T
Contlabel √ off | on off Show contour labels

Contlevels √ number of levels or
a vector specifying
levels

20 Contour levels

Contmap √ color table Color table for
contour plot

Contmapstyle √ auto | reverse auto Color table style for
contour plot

Contrefine √ integer | auto auto Refinement of
elements for contour
plots

Contstyle √ bg | bginv |
interp | cycle

interp Contour style

Contz √ post spec Contour height data

Deformauto √ √ on | off on Auto scaling

Deformbnd √ √ vector post spec Deform data for
boundaries

Deformdata √ √ vector post spec Deformation data

Deformedg √ vector post spec Deform data for
edges

Deformscale √ √ √ numeric Deformation scale
factor for subdomains

Deformscalebnd √ √ numeric Deformation scale
factor for boundaries

Deformscaleedg √ numeric Deformation scale
factor for edges

Deformscalesub √ numeric Deformation scale
factor for subdomains

Edgmarker √ marker specifier square Edge max/min marker
type

Edgmarkersize √ integer 6 Size of edge max/min
markers

Edl √ integer vector all Edge list

Ellogic √ √ √ logical expression 1 Logical expression for
elements to include

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
Ellogictype √ √ √ all | any | xor all Interpretation of
logical expression

Flowback √ √ off | on on Integrate streamlines
backwards

Flowbar √ √ off | on on Color legend for
streamline color data

Flowcolor √ √ interp | bg |
bginv | colorspec

interp Streamline color

Flowcolordata √ √ post spec Streamline color data

Flowcolordlim √ √ [min max] full range Streamline color data
limits, works only
when flowtype is line

Flowdata √ √ vector post spec Streamline velocity
field

Flowdens √ √ none | uniform |
velocity

none Type of streamline
density

Flowdist √ numeric 0.05 Separating distance
factor

Flowdist √ numeric 0.15 or [0.05,
0.15]

Separating distance
factor

Flowdistdel √ √ numeric 0.2 Minimum Delaunay
distance

Flowdistend √ √ numeric 0.5 Terminating distance
factor

Flowinitref √ √ integer 1 Boundary element
refinement

Flowdignoredist √ √ numeric 0.5 Fraction of streamline
length to ignore

Flowlines √ √ integer 20 Number of
streamlines

Flowlooptol √ √ numeric 0.01 Streamline loop
tolerance

Flowmap √ √ color table Rainbow Color table for
streamline color data

Flowmapstyle √ √ auto | reverse auto Color table style for
streamline color data

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
405

postplot

406 | C H A P T
Arrowxspacing √ √ number of arrows
or vector specifying
x-coordinates

15 (in 2D)
7 (in 3D)

Arrow x-spacing

Arrowyspacing √ √ number of arrows
or vector specifying
y-coordinates

15 (in 2D)
7 (in 3D)

Arrow y-spacing

Arrowz √ post spec Arrow height data

Arrowzspacing √ number of arrows
or vector specifying
z-coordinates

7 (in 3D) Arrow z-spacing

Bdl √ √ list of boundary
numbers

all Boundary list

Bndmarker √ √ marker specifier square Boundary max/min
marker type

Bndmarkersize √ √ integer 6 Size of boundary max/
min markers

Complexfun √ √ √ off | on on Use complex-valued
functions with real
input

Const √ √ √ cell array Definition of
constants

Cont √ √ √ off | on |
internal

off Make output
continuous

Contbar √ off | on on Show color legend for
contours

Contcolorbar √ off | on on Show color legend for
contour colors

Contcolordata √ post spec Contour color data

Contcolordlim √ [min max] full range Contour color limits

Contcolormap √ color table Color table for
contour color data

Contcolormapstyle √ auto | reverse auto Color table style for
contour color data

Contdata √ post spec Contour data

Contdlim √ [min max] full range Contour limits

Contfill √ off | on off Filled contours

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
Contlabel √ off | on off Show contour labels

Contlevels √ number of levels or
a vector specifying
levels

20 Contour levels

Contmap √ color table Color table for
contour plot

Contmapstyle √ auto | reverse auto Color table style for
contour plot

Contrefine √ integer | auto auto Refinement of
elements for contour
plots

Contstyle √ bg | bginv |
interp | cycle

interp Contour style

Contz √ post spec Contour height data

Deformauto √ √ on | off on Auto scaling

Deformbnd √ √ vector post spec Deform data for
boundaries

Deformdata √ √ vector post spec Deformation data

Deformedg √ vector post spec Deform data for
edges

Deformscale √ √ √ numeric Deformation scale
factor for subdomains

Deformscalebnd √ √ numeric Deformation scale
factor for boundaries

Deformscaleedg √ numeric Deformation scale
factor for edges

Deformscalesub √ numeric Deformation scale
factor for subdomains

Edgmarker √ marker specifier square Edge max/min marker
type

Edgmarkersize √ integer 6 Size of edge max/min
markers

Edl √ integer vector all Edge list

Ellogic √ √ √ logical expression 1 Logical expression for
elements to include

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
407

postplot

408 | C H A P T
Ellogictype √ √ √ all | any | xor all Interpretation of
logical expression

Flowback √ √ off | on on Integrate streamlines
backwards

Flowbar √ √ off | on on Color legend for
streamline color data

Flowcolor √ √ interp | bg |
bginv | colorspec

interp Streamline color

Flowcolordata √ √ post spec Streamline color data

Flowcolordlim √ √ [min max] full range Streamline color data
limits, works only
when flowtype is line

Flowdata √ √ vector post spec Streamline velocity
field

Flowdens √ √ none | uniform |
velocity

none Type of streamline
density

Flowdist √ numeric 0.05 Separating distance
factor

Flowdist √ numeric 0.15 or [0.05,
0.15]

Separating distance
factor

Flowdistdel √ √ numeric 0.2 Minimum Delaunay
distance

Flowdistend √ √ numeric 0.5 Terminating distance
factor

Flowinitref √ √ integer 1 Boundary element
refinement

Flowdignoredist √ √ numeric 0.5 Fraction of streamline
length to ignore

Flowlines √ √ integer 20 Number of
streamlines

Flowlooptol √ √ numeric 0.01 Streamline loop
tolerance

Flowmap √ √ color table Rainbow Color table for
streamline color data

Flowmapstyle √ √ auto | reverse auto Color table style for
streamline color data

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
Flowmaxsteps √ √ integer 400 Maximum number of
integration steps

Flowmaxtime √ √ integer 100 Maximum integration
time

Flownormal √ √ off | on off Normalize velocity
field

Flowradiusdata √ √ post spec Streamline radius data

Flowrefine √ √ integer | auto auto Refinement of
elements for
streamline plots

Flowsat √ √ numeric 1.3 Streamline saturation
factor

Flowseed √ √ 1-by-sdim numeric First start point for
streamlines when
flowdens is not none

Flowstart √ √ centers | ginput |
edges | cell array
{x y z}

centers Starting points for
streamlines

Flowstattol √ √ positive scalar 1e-2 Streamline stationary
point stop tolerance

Flowtol √ positive scalar 1e-3 Streamline integration
tolerance

Flowtol √ positive scalar 1e-2 Streamline integration
tolerance

Flowtuberes √ √ numeric 8 Tube resolution for
streamlines

Flowtubescale √ √ numeric Tube radius scale for
streamlines

Flowtype √ √ line | tube tube (line in 2D) Type of streamline

Flowz √ post spec Streamline height data

Frame √ √ √ string spatial frame Coordinate frame

Geom √ √ √ off | on on Show geometry
contours

Geomcolor √ √ √ bg | bginv |
colorspec

bginv Geometry contours
color

Geomnum √ √ √ integer 1 Geometry number

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
409

postplot

410 | C H A P T
Isobar √ on | off on Isosurface color
legend

Isocolorbar √ on | off on Color legend for
isosurfaces color data

Isocolordata √ post spec Isosurface color data

Isocolordlim √ [min max] full range Isosurface color limits

Isocolormap √ color table Rainbow Color table for
isosurface color data

Isocolormapstyle √ auto | reverse auto Color table style for
isosurface color data

Isodata √ Post spec Isosurface data

Isodlim √ [min max] full range Isosurface limits

Isoedgestyle √ flat | interp |
none | bg | bginv |
colorspec

none Isosurface edge style

Isofacestyle √ flat | interp |
none | bg | bginv |
colorspec

interp Isosurface face style

Isolevels √ number of levels or
a vector specifying
levels

5 Isosurface levels

Isomap √ color table Color table for
isosurface plot

Isomapstyle √ auto | reverse auto Color table style for
isosurface plot

Isostyle √ bg | bginv | color color Isosurface style

Linbar √ √ √ off | on on Line color legend

Lindata √ √ √ post spec Line data

Lindlim √ √ √ [min max] full range Line limits

Linmap √ √ √ color table Line color table

Linmapstyle √ √ √ auto | reverse auto Line color table style

Linrefine √ √ √ integer| auto auto Refinement of
elements for line plots

Linstyle √ √ √ flat | interp |
none | bg | bginv |
colorspec

interp Line style

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
Liny √ post spec Line y data

Linz √ √ post spec Line z data

Matherr √ √ √ off | on off Error for undefined
operations

Maxminbnd √ √ post spec Max/min marker on
boundaries

Maxminedg √ post spec Max/min marker on
edges

Maxminsub √ √ √ post spec Max/min marker on
subdomains

Out √ √ √ cell array of strings |
all

all Output

Outtype √ √ √ handle | postdata
| postdataonly

handle Output type

Partatol √ √ numeric vector Absolute tolerances
for particle tracing

Partbar √ √ off | on on Show color legend for
particle tracing

Partbnd √ √ stick | disappear stick Particle point
boundary behavior

Partcolordata √ √ post spec Particle tracing line
color

Partdropfreq √ √ numeric Time between each
particle release

Partdroptimes √ √ numeric vector Time values to release
particles

Partedgetol √ √ numeric | auto 0.001 Edge tolerance for
particle tracing

Partdata √ √ cell-array of strings Particle force

Parthmax √ √ numeric | auto Maximum time step
for particle tracing

Parthstart √ √ numeric | auto Initial time step for
particle tracing

Partlinecolor √ √ colorspec blue Particle tracing line
color

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
411

postplot

412 | C H A P T
Partmap √ √ colortable Color table for
particle tracing

Partmapstyle √ √ auto | reverse auto Color table style for
particle tracing

Partmass √ √ string 1 Particle mass

Partmaxsteps √ √ integer | auto 1000 Maximum number of
steps for particle
tracing

Partplotas √ √ lines | points |
both | along

lines Particle tracing plot
type

Partpointcolor √ √ colorspec red Particle tracing point
color

Partpointscale √ √ numeric Point radius scale

Partradiusdata √ post spec Particle tracing tube
radius

Partres √ √ integer 5 Resolution of pathline
for particle tracing

Partrtol √ √ numeric Relative tolerance for
particle tracing

Partstart √ √ numeric matrix, cell
array of double
vectors, or cell
array of property/
values to postcoord

Start points for
particle tracing

Partstatic √ √ off | on off Use instantaneous
flow field

Partstatictend √ √ numeric | auto auto End time for
stationary flows

Parttstart √ √ numeric | auto Initial time for particle
tracing

Parttuberes √ √ numeric 8 Tube resolution

Parttubescale √ √ numeric Tube radius scale

Parttvar √ √ string Particle integration
time variable name

Partvelstart √ √ cell-array of strings zero velocity Initial velocity for
particle tracing

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
Partvelvar √ √ cell-array of strings Particle velocity
variable names

Phase √ √ √ scalar 0 Phase angle

Princbnd √ vector post spec Boundary principal
plot data

Princcolor √ √ colorspec blue Subdomain principal
plot color

Princcolorbnd √ colorspec blue Boundary principal
plot color

Princdata √ √ vector post spec Subdomain principal
plot data

Princscale √ √ numeric auto Subdomain principal
plot scale

Princscalebnd √ scalar auto Boundary principal
plot scale

Princstyle √ √ proportional |
normalized

proportional Subdomain principal
plot style

Princstylebnd √ proportional |
normalized

proportional Boundary principal
plot style

Princtype √ arrow | cone |
arrow3d

cone Subdomain principal
plot type

Princtypebnd √ arrow | cone |
arrow3d

cone Boundary principal
plot type

Princxspacing √ √ number of arrows
or vector specifying
x-coordinates

8 (in 2D)
5 (in 3D)

Arrow x-spacing for
subdomain principal
plot

Princyspacing √ √ number of arrows
or vector specifying
y-coordinates

8 (in 2D)
5 (in 3D)

Arrow y-spacing for
subdomain principal
plot

Princz √ post spec Subdomain principal
plot height data

Princzspacing √ number of arrows
or vector specifying
z-coordinates

8 (in 3D) Arrow z-spacing for
subdomain principal
plot

Recover √ √ √ off | ppr | pprint off Accurate derivative
recovery

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
413

postplot

414 | C H A P T
Refine √ √ √ integer | auto auto Refinement of
elements for all plot
types

Sdl √ √ √ list of subdomain
numbers

all Subdomain list

Slicebar √ off | on on Show color legend for
slice plot

Slicedata √ post spec Slice plot data

Slicedlim √ [min max] full range Slice plot limits

Sliceedgestyle √ flat | interp |
none | bg | bginv |
colorspec

none Slice plot edge style

Slicefacestyle √ flat | interp |
none | bg | bginv |
colorspec

interp Slice plot face style

Slicemap √ color table Color table for slice
plot

Slicemapstyle √ auto | reverse auto Color table style for
slice plot

Slicerefine √ integer | auto auto Refinement of
elements for slice
plots

Slicexspacing √ number of slices or
vector specifying
x-coordinates

5 Slice plot x-positions

Sliceyspacing √ number of slices or
vector specifying
y-coordinates

[] Slice plot y-positions

Slicezspacing √ number of slices or
vector specifying
z-coordinates

[] Slice plot z-positions

Solnum √ √ √ integer | end 1 Solution number

Submarker √ √ √ marker specifier square Subdomain max/min
marker type

Submarkersize √ √ √ integer 6 Size of subdomain
max/min markers

T √ √ √ scalar Time for evaluation

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
Tetbar √ off | on on Show color legend for
subdomain plot

Tetdata √ Post spec Subdomain plot data

Tetdlim √ [min max] full range Subdomain plot limits

Tetedgestyle √ flat | interp |
none | bg | bginv |
colorspec

none Subdomain plot edge
style

Tetfacestyle √ flat | interp |
none | bg | bginv |
colorspec

interp Subdomain plot face
style

Tetkeep √ number between 0
and 1

1 Fraction of elements
to keep

Tetkeeptype √ min | max | random random Which elements to
keep

Tetmap √ color table Subdomain plot color
table

Tetmapstyle √ auto | reverse auto Subdomain plot color
table style

Tetmaxmin √ on | off off Show subdomain plot
max/min markers

Tetrefine √ integer | auto auto Refinement of
elements for
subdomain plots

Tribar √ √ off | on off Surface color legend

Tridata √ √ post spec Surface data

Tridlim √ √ [min max] full range Surface limits

Triedgestyle √ √ flat | interp |
none | bg | bginv |
colorspec

none Surface edge style

Trifacestyle √ √ flat | interp |
none | bg | bginv |
colorspec

interp Surface face style

Trimap √ √ color table Surface color table

Trimapstyle √ √ auto | reverse auto Surface color table
style

Trimaxmin √ √ on | off off Show surface max/min
markers

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
415

postplot

416 | C H A P T
The properties Out and Outtype control the format of the output h when the syntax
h = postplot(fem,...) is used.

If Out is 'all' (default), output corresponding to all plotted objects are returned.
The property Out can also be a cell array containing any of the strings 'geom',
'slice', 'iso', 'tet', 'tri', 'cont', 'lin', 'flow', 'partline',
'partpoint', 'arrow', 'arrowbnd', 'arrowedg', 'maxminsub', 'maxminbnd',
'maxminedg', and 'light'. These correspond to the plots made using the
properties 'geom', 'slicedata', 'isodata', 'tetdata', and so on. When Out is
a 1-by-n cell-array, the output h is a cell array of the same size, matching the strings
in Out.

If Outtype is 'handle', handle-graphics handles to the plots (as specified with Out)
are returned in a vector of handles if Out is 'all', otherwise in a cell array.

If Outtype is 'postdata' or 'postdataonly', post data structures are returned
in a cell array. The post data structures have the same format as the output from
posteval. In addition, for particle tracing plots (using 'partdata'), the postdata
structure contains the fields parttime and partvel, containing the time and
velocity vector, respectively, associated to each point on the path. Also, for both
particle tracing line plots and streamline plots, the fields startpts and endpts are
included, containing the coordinates of each plotted line's start and end point,
respectively. When 'postdataonly' is used, no plot is generated.

If the property Refine is specified, its value is used for all specified plot types; that
is, it overrides all other properties ending with refine. See posteval.

The properties Princdata and Princbnd can either be specified as the names of the
three principal stress or strain values in a 1-by-3 cell array of strings, for example,
{'s1','s2','s3'}, or as the expressions for the value and then the vector
components for each principal direction, for example,
{'e1','e1x','e1y','e1z','e2','e2x','e2y','e2z','e3','e3x','e3y',

'e3z'}.

Trirefine √ √ integer | auto auto Refinement of
elements for surface
plots

Triz √ post spec Triangle height

U √ √ √ solution vector fem.sol.u Solution for
evaluation

TABLE 1-114: VALID PROPERTY/VALUE PAIRS

PROPERTY 1D 2D 3D VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postplot
The camera properties (Campos, Camtarget, etc.) override the setting of view if
both are used.

The notation colorspec in the value column denotes a color specification, that is a
single letter string: y, m, c, r, g, b, w, and k, meaning yellow, magenta, cyan, red,
green, blue, white, and black, respectively (also 'yellow', 'magenta', etc. are
acceptable as color specification), or a 1-by-3 numeric array with RGB values.

Post spec is one of the following.

• A string with an expression to be evaluated. It can be a COMSOL Multiphysics
expression involving variables, in particular application mode variables.

• A cell array, where the first entry is a string with an expression to be evaluated or
a cell array of such strings, and the other entries are parameters passed to
posteval.

Vector post spec is a cell array of Post specs.

The properties can be grouped in terms of what plot entity it refers to. The table
below shows this grouping.

The symbol ∂Ω indicates the boundary of the domain, and the symbol Ω indicates
the domain itself. For the boundary of the domain, post data evaluated on the

TABLE 1-115: PROPERTY GROUPING

PLOT ENTITY 1D 2D 3D PROPERTY NAMES STARTING WITH

Arrows Ω Ω arrow

Arrows ∂Ω ∂Ω arrowbnd

Arrows ∂2Ω arrowedg

Contours Ω cont

Isosurfaces Ω iso

Lines Ω ∂Ω ∂2Ω lin

Principal stress/strain plots Ω Ω princ

Principal stress/strain plots ∂Ω princbnd

Slices Ω slice

Particle tracing Ω Ω part

Streamlines Ω Ω flow

3D subdomains Ω tet

Surfaces Ω ∂Ω tri
417

postplot

418 | C H A P T
boundary is plotted. For the domain itself, post data evaluated on the domain is
plotted.

Examples 3D Example
Solve the Poisson equation on a unit square:

clear fem
fem.geom = block3;
fem.mesh = meshinit(fem,'hmax',0.15);
fem.equ.c = 1; fem.equ.f = 1;
fem.bnd.h = {1 1 0 0 1 1};
fem.xmesh = meshextend(fem); fem.sol = femstatic(fem);

Plot the solution as a slice plot

postplot(fem,'slicedata','u')

Plot the solution using isosurfaces

postplot(fem,'isodata','u','scenelight','on')

Plot lighted cones showing the gradient together with geometry edges

postplot(fem,'arrowdata',{'ux','uy','uz'},...
 'geom','on','camlight','on','arrowtype','cone')

2D Example
Solve the Poisson equation on the unit circle

clear fem
fem.geom = circ2; fem.mesh = meshinit(fem);
fem.equ.c = 1; fem.equ.f = 1; fem.bnd.h = 1;
fem.xmesh = meshextend(fem); fem.sol = femstatic(fem);

Plot the solution as triangle color and z-height, and u.*x as contour lines

postplot(fem,'tridata','u','contdata','u*x',...
 'triz','u','contz','u');

Plot 30 streamlines for the field (-uy, x*ux) with color data u.

postplot(fem,'flowdata',{'-uy','x*ux'},...
 'flowlines',30,'flowcolordata','u')

Cautionary Some default values have changed from FEMLAB 2.3 resulting in slightly different
plots.

Compatibility The properties contlabel, context, contorder, and tetmarker are no longer
supported in FEMLAB 3.0.
E R 1 : C O M M A N D R E F E R E N C E

postplot
Properties ending with maxmin are no longer supported. To plot max/min markers,
use the properties maxminsub, maxminbnd, and maxminedg to plot markers on
subdomains, boundaries, and edges, respectively.

The support for outputs from posteval as Post spec, has only a limited support and
is not recommended.

The properties starting with Princ are added in FEMLAB 3.1.

The property contlabel is added in COMSOL Multiphysics 3.2a.

See Also geomplot, meshplot, postanim, postarrow, postarrowbnd, postcont,
postcrossplot, posteval, postflow, postiso, postlin, postmovie,
postprinc, postprincbnd, postslice, postsurf, posttet
419

postprinc

420 | C H A P T
postprincPurpose Shorthand command for subdomain principal stress/strain plot in 2D and 3D.

Syntax postprinc(fem,expr,...)
h = postprinc(fem,expr,...)

Description postprinc(fem,expr,...) plots a subdomain principal stress/strain plot for the
expressions in the cell array expr, which can have length 3 or 12. See property
Princdata in postplot. The function accepts all property/value pairs that
postplot does. This command is just shorthand for the call

postplot(fem,'princdata',expr,...
 'geom','on',...
 'axisequal','on',...)

h = postprinc(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your principal stress/strain plot, use
postplot instead of postprinc.

See Also postplot, postanim, postsurf, postcont, postlin, postarrowbnd, postflow,
postprincbnd, postslice, postiso, posttet

Compatibility This function was added in FEMLAB 3.1.
E R 1 : C O M M A N D R E F E R E N C E

postprincbnd
postprincbndPurpose Shorthand command for boundary principal stress/strain plot in 2D and 3D.

Syntax postprincbnd(fem,expr,...)
h = postprincbnd(fem,expr,...)

Description postprincbnd(fem,expr,...) plots a boundary principal stress/strain plot for
the expressions in the cell array expr, which can have length 3 or 12. See property
Princdata in postplot. The function accepts all property/value pairs that
postplot does. This command is just shorthand for the call

postplot(fem,'princbnd',expr,...
 'geom','on',...
 'axisequal','on',...)

h = postprincbnd(fem,expr,...) additionally returns handles to the plotted
handle graphics objects.

If you want to have more control over your principal stress/strain plot, use
postplot instead of postprincbnd.

See Also postplot, postanim, postsurf, postcont, postlin, postarrowbnd, postflow,
postprinc, postslice, postiso, posttet

Compatibility This function was added in FEMLAB 3.1.
421

postslice

422 | C H A P T
postslicePurpose Shorthand command for slice plot in 3D.

Syntax postslice(fem,expr,...)
h = postslice(fem,expr,...)

Description postslice(fem,expr,...) plots a slice plot for the expression expr. The function
accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'slicedata',expr,...
 'slicebar','on',...
 'geom','on',...
 'axisequal','on',...)

h = postslice(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your slice plot, use postplot instead of
postslice.

See Also postplot, postanim, postsurf, postcont, postlin, postarrow,
postarrowbnd, postflow, postiso, postprinc, postprincbnd, posttet
E R 1 : C O M M A N D R E F E R E N C E

postsum
postsumPurpose Compute the sum of expressions in nodes.

Syntax [v1,v2,...,vn] = postsum(fem,e1,e2,...,en,...)

Description [v1,v2,...,vn] = postsum(fem,e1,e2,...,en,'nodes',order) returns the
sums v1,v2,...,vn of the expressions e1,...,en in the Lagrange nodes of order
order. When order is equal to 'all' or the property 'nodes' is not given, the sums
are taken over all nodes for which there exists a degree of freedom. The sums can
be evaluated on any domain type: subdomain, boundary, edge, and vertex, using
one or several solutions. When several solutions are provided, each vi is a vector
with values corresponding to the solutions.

The expressions that are summed can be expressions involving variables, in
particular application mode variables.

postsum accepts the following property/value pairs:

TABLE 1-116: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION

Blocksize positive integer 1000 Vectorization block
size

Complexfun off | on on Use complex-valued
functions with real
input

Const cell array List of assignments
of constants

Dl integer vector all domains Domain list

Edim integer full Element dimension

Geomnum positive integer 1 Geometry number

Matherr off | on off Error for undefined
operations

Nodes all | positive
integer

all Nodes to sum

Phase integer vector 0 Phase angle

Recover off | ppr |
pprint

off Accurate derivative
recovery

Solnum integer vector |
all | end

See below Solution numbers
423

postsum

424 | C H A P T
The expressions ei are summed for one or several solutions. Each solution generates
an element in the output vectors vi. The properties Solnum and T control what
solutions are used for the evaluations. If Solnum is provided, the solutions indicated
by the indices provided with the Solnum property are used. If T is provided,
solutions are interpolated. The property T can only be used for time-dependent
solutions. If neither Solnum nor T is provided, a single solution is evaluated. For
parametric and time-dependent solutions, the final solution is used. For eigenvalue
solution the first solution is used.

For time-dependent problems, the variable t can be used in the expressions ei. The
value of t is the interpolation time when the property T is provided and the time for
the solution when Solnum is used. Similarly, lambda and the parameters are available
as eigenvalues for eigenvalue problems and as parameter values for parametric
problems, respectively.

Example Calculate the sum of the node-wise constraint forces in all nodes at the boundary of
a square domain for the solution to Poisson’s equation.

fem.geom = rect2;
fem.mesh = meshinit(fem);
fem.equ.c = 1;
fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem,'reacf','on');
res = postsum(fem,'reacf(u)','edim',1);

See Also postint, posteval

T double vector See below Time for evaluation

U solution object or
vector

fem.sol or 0 Solutions for
evaluation

TABLE 1-116: VALID PROPERTY/VALUE PAIRS

PROPERTY
NAME

PROPERTY VALUE DEFAULT DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

postsurf
postsurfPurpose Shorthand command for surface plot in 2D and 3D.

Syntax postsurf(fem,expr1,...)
postsurf(fem,expr1,expr2...)
h = postsurf(fem,...)

Description postsurf(fem,expr1,expr2...) plots a surface plot on subdomains in 2D
colored according to the expression expr1 and with height according to expr2. For
a 3D model, it plots a colored surface plot on the boundaries, colored according to
expr1. The function accepts all property/value pairs that postplot does. In 2D,
this command is just shorthand for the call

postplot(fem,'tridata',expr1,...
 'triz',expr2,...
 'tribar','on',...
 'axisequal','on',...)

and in 3D, it is shorthand for

postplot(fem,'tridata',expr1,...
 'tribar','on',...
 'geom','on',...
 'axisequal','on',...)

h = postsurf(fem,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your surface plot, use postplot instead of
postsurf.

Example Surface plot of the solution to the equation –∆u = 1 over the geometry defined by
the L-shaped membrane. Use Dirichlet boundary conditions u = 0 on ∂Ω.

sq1 = square2(0,0,1);
sq2 = move(sq1,0,-1);
sq3 = move(sq1,-1,-1);
clear fem
fem.geom = sq1+sq2+sq3;
fem.mesh = meshinit(fem);
fem.equ.c = 1;
fem.equ.f = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);
fem.sol = femstatic(fem);
postsurf(fem,'u')

See Also postplot, postanim, postcont, postlin, postarrow, postarrowbnd,
postflow, postprinc, postprincbnd, postslice, postiso, posttet
425

posttet

426 | C H A P T
posttetPurpose Shorthand command for subdomain plot in 3D.

Syntax posttet(fem,expr,...)
h = posttet(fem,expr,...)

Description posttet(fem,expr,...) plots a subdomain plot for the expression expr. The
function accepts all property/value pairs that postplot does. This command is just
shorthand for the call

postplot(fem,'tetdata',expr,...
 'tetbar','on',...
 'geom','on',...
 'axisequal','on',...)

h = postcont(fem,expr,...) additionally returns handles to the plotted handle
graphics objects.

If you want to have more control over your subdomain plot, use postplot instead
of posttet.

See Also postplot, postanim, postsurf, postcont, postlin, postarrow,
postarrowbnd, postflow, postprinc, postprincbnd, postslice, postiso
E R 1 : C O M M A N D R E F E R E N C E

postwriteinterpfile
postwriteinterpfilePurpose Create interpolation file

Syntax postwriteinterpfile(filename,x,data)
postwriteinterpfile(filename,x,y,data)
postwriteinterpfile(filename,x,y,z,data)

Description postwriteinterpfile(filename,x,data) creates the file filename in the
format of a 1D interpolation function. x and data must be vectors of equal length.

 postwriteinterpfile(filename,x,y,data) creates the file filename in the
format of a 2D interpolation function. data must have size
(length(x), length(y)).

postwriteinterpfile(filename,x,y,z,data) creates the file filename in the
format of a 3D interpolation function. data must have size
(length(x), length(y), length(z)).

Examples To create a 1D interpolation function of x2:

x = 1:10;
postwriteinterpfile('fun.txt',x,x.^2);

To create a 2D interpolation function of x2 + 2 y:

x = 1:3;
y = 1:5;
[xx,yy] = meshgrid(x,y);
postwriteinterpfile('fun.txt',x,y,(xx').^2+2*yy');

See Also elinterp
427

pyramid2, pyramid3

428 | C H A P T
pyramid2, pyramid3Purpose Create rectangular pyramid geometry object.

Syntax rp3 = pyramid3
rp2 = pyramid2
rp3 = pyramid3(a,b,h)
rp2 = pyramid2(a,b,h)
rp3 = pyramid3(a,b,h,rat)
rp2 = pyramid2(a,b,h,rat)
rp3 = pyramid3(a,b,h,rat,...)
rp2 = pyramid2(a,b,h,rat,...)

Description ec3 = pyramid3 creates a solid rectangular pyramid geometry object with height
and side lengths of bottom surface equal to one, axis along the coordinate z-axis,
and the center of the bottom surface at the origin. pyramid3 is a subclass of
gencyl3.

ec3 = pyramid3(a,b,h) creates a solid rectangular pyramid geometry object with
side lengths a and b, and height h.

ec3 = pyramid3(a,b,h,rat) creates a pyramid with the non-negative ratio rat
between the top and bottom surface.

The functions pyramid3 and pyramid2 accept the following property/values:

For more information on input arguments and properties see gencyl3.

TABLE 1-117: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

Const Cell array of
strings

{} Evaluation context for string inputs

Displ 2-by-nd
matrix

[0;0] Displacement of extrusion top

Pos Vector of
reals or cell
array of
strings

[0 0] Position of the bottom surface

Rot real or string 0 Rotational angle about Axis (radians)
E R 1 : C O M M A N D R E F E R E N C E

pyramid2, pyramid3
ec2 = pyramid2(...) creates a surface rectangular pyramid geometry object,
without bottom and top faces, according to the arguments described for pyramid3.
pyramid2 is a subclass of gencyl2.

Pyramid objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The numbering of faces,
edges and vertices is different from the numbering in objects created in version 2.3.

See Also econe2, econe3, gencyl2, gencyl3

TABLE 1-118: PYRAMID OBJECT PROPERTIES

PROPERTY DESCRIPTION

a, b Side lengths

h Height

rat Ratio

dx, dy Semi-axes

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
429

rect1, rect2

430 | C H A P T
rect1, rect2Purpose Create rectangle geometry object.

Syntax obj = rect2
obj = rect1
obj = rect2(lx,ly,...)
obj = rect1(lx,ly,...)

Description obj = rect2 creates a solid rectangle geometry object with all side lengths equal
to 1, and the lower left corner at the origin. rect2 is a subclass of solid2.

obj = rect2(lx,ly,...) creates a solid rectangle object with side lengths equal
to lx and ly, respectively, and the lower left corner at the origin. lx and ly are
positive real scalars, or strings that evaluate to positive real scalars, given the
evaluation context provided by the property Const.

The function rect1 similarly creates curve rectangle objects.

The functions rect2 and rect1 accept the following property/values:

obj = rect1(...) creates a curve circle geometry object with properties as given
for the rect2 function. rect1 is a subclass of curve2.

Rectangle objects have the following properties:

TABLE 1-119: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

base corner |
center

corner Positions the object either centered
about pos or with the lower left
corner at pos

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot Real or string 0 Rotational angle about pos (radians)

TABLE 1-120: RECTANGLE OBJECT PROPERTIES

PROPERTY DESCRIPTION

lx, ly Side lengths

base Base point

x, y Position of the object

rot Rotational angle
E R 1 : C O M M A N D R E F E R E N C E

rect1, rect2
In addition, all 2D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom2 for details.

Example The commands below create a geometry object corresponding to the L-shaped
membrane using the union of three rectangles and plot the result.

sq1 = rect2(1,1);
sq2 = move(sq1,0,-1);
sq3 = move(sq1,-1,-1);
lshape = sq1+sq2+sq3
geomplot(lshape);

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also geomcsg, curve2, curve3, square1, square2
431

revolve

432 | C H A P T
revolvePurpose Revolve a 2D geometry object into a 3D geometry object.

Syntax g3 = revolve(g2,..)

Description g3 = revolve(g2,...) revolves the 2D geometry object g2 into a 3D geometry
object g3 according to given parameters.

The function revolve accepts the following property/values:

The 3D object g3 is a revolved object, where the 2D geometry object g2 lying in
the plane defined by the property wrkpln is revolved about the revolution axis
between the angles defined by the property angles. angles can also be given as a
scalar, in which case the first angle is assumed to be 0.

The property revaxis is a 2-by-2 matrix where the first column specifies a point on
the axis, and the second column specifies the direction of the revolution axis.

polres defines the number of parameter value pairs in the polygon representations
of the edges.

Examples Create torus about the y-axis:

re = revolve(circ2(1,'pos',[2 0]));

Create revolved object from zx-plane:

p_wrkpln = geomgetwrkpln('quick',{'zx',10});
ax = [0 1;0.5 2]';
g3 = revolve(circ1(0.4,'pos',[1 0]),'angles',[-pi/3 pi/3],...
 'revaxis',ax,'wrkpln',p_wrkpln);
geomplot(g3);

See Also extrude, geom0, geom1, geom2, geom3, geomcsg, geomgetwrkpln

TABLE 1-121: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUES DEFAULT DESCRIPTION

angles 1-by-2 vector [0 2*pi] Revolution angle

polres scalar 50 Polygon resolution

revaxis 2-by-2 matrix [0 0;
 0 1]

Revolution axis

wrkpln 3-by-3 matrix [0 1 0;
 0 0 1;
 0 0 0]

Work plane for 2D geometry
cross section
E R 1 : C O M M A N D R E F E R E N C E

rotate
rotatePurpose Rotate geometry object.

Syntax [g,...] = rotate(g,r,...)
[g3,...] = rotate(g,r,v,c,...)
[g3,...] = rotate(g,r,vx,vy,vz,cx,cy,cz,...)
[g3,Q,c] = rotate(g,...)
[g,...] = rotate(g,r,c,...)
[g,...] = rotate(g,r,cx,cy,...)

Description [g,...] = rotate(g,r,...) rotates the 2D or 3D geometry object g by r radians
about the z-axis.

[g3,...] = rotate(g,r,v,c,...) rotates the 3D geometry object g by r radians
about the axis v=(vx,vy,vz), with center of rotation c=(cx,cy,cz). v can also be
a vector of spherical coordinates, where v(1) is the polar angle, that is, the angle
between the axis of rotation and the positive z-axis, and v(2) is the azimuthal angle
of the axis of rotation.

[g3,...] = rotate(g,r,vx,vy,vz,cx,cy,cz,...) is the same as above, but
the components of the axis and center of rotation are explicitly given.

[g3,Q,c] = rotate(g,...) additionally returns a rotation matrix Q
corresponding to rotation given by r and v centered at the origin. The translation
vector c is also returned for convenience. This means that a point set p, of size
3-by-n, containing 3D point coordinates, that is to be rotated in the same way as g,
is transformed according to prot = Q*(p-cp)+cp, where cp =
repmat(c(:),1,size(p,2)) represents the center of rotation.

[c,...] = rotate(g,r,c,...) rotates a 2D geometry object about the point
c=(cx,cy).

[c,...] = rotate(g,r,cx,cy,...) is the same as above, but the center
coordinates are explicitly given.

The function rotate accepts the following property/values:

See geomcsg for more information on geometry objects.

Example The command below rotates the ellipse by 1 radian about (2,3) and plots the result.

TABLE 1-122: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx | ctx |
ptx

empty Output parameters
433

rotate

434 | C H A P T
e1 = ellip2(0,0,1,3);
e2 = rotate(e1,1,2,3);
geomplot(e2)

See Also geomcsg
E R 1 : C O M M A N D R E F E R E N C E

scale
scalePurpose Scale geometry object.

Syntax [g,...] = scale(g3,fx,fy,fy,...)
[g,...] = scale(g3,fx,fy,fy,x,y,z,...)
[g,...] = scale(g3,fxyz,xyz,...)
[g,...] = scale(g2,fx,fy,...)
[g,...] = scale(g2,fx,fy,x,y,...)
[g,...] = scale(g1,fx,...)
[g,...] = scale(g1,fx,x,...)

Description [g,...] = scale(g3,xscale,yscale,zscale,...) scale the 3D geometry
object g3 by (xscale, yscale, zscale) about the origin.

[g,...] = scale(g,xscale,yscale,zscale,x,y,z,...) scale the 3D
geometry object g3 by (xscale, yscale, zscale) about (x, y, z).

[g,...] = scale(g,xyzscale,xyz,...) scale the 3D geometry object g3 by

the vector fxyz about the vector xyz.

[g,...] = scale(g2,fx,fy,...) scale the 2D geometry object by (fx, fy)
about the origin.

[g,...] = scale(g2,fx,fy,x,y,...) scale the 2D geometry object by (fx, fy)
about (x,y).

[g,...] = scale(g2,fx,...) scale the 1D geometry object by fx about the
origin.

[g,...] = scale(g2,fx,x,...) scale the 1D geometry object by fx about x.

The function scale accepts the following property/values:

See geomcsg for more information on geometry objects.

Examples The commands below scale the unit circle by (1,2) about (2,3) and plot the result.

c1 = circ2;
c2 = scale(c1,1,2,2,3);
geomplot(c2)

See Also geomcsg

TABLE 1-123: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx | ctx |
ptx

empty Output parameters
435

sharg_2_5

436 | C H A P T
sharg_2_5Purpose Create an Argyris shape function object.

Syntax obj = sharg_2_5(basename)

Description The Argyris shape function object is used to implement the Argyris element of order
5 on triangles in 2D.

 obj = sharg_2_5(basename), where basename is a string.

For more information, see “The Argyris Element” on page 489.

See Also shbub, shcurl, shdens, shdisc, shdiv, shgp, shherm, shlag, shuwhelm
E R 1 : C O M M A N D R E F E R E N C E

shbub
shbubPurpose Create a bubble element shape function object.

Syntax obj = shbub(mdim,basename)

Description The bubble element shape function object is used to implement finite elements of
bubble type of order mdim + 1 on a simplex.

mdim is the maximum dimension of the bubble and basename is a string.

For more information, see “Bubble Elements” on page 492.

See Also sharg_2_5, shcurl, shdens, shdisc, shdiv, shgp, shherm, shlag, shuwhelm
437

shcurl

438 | C H A P T
shcurlPurpose Create a vector shape function object.

Syntax obj = shcurl(order,fieldname)

Description The vector shape function object is used to implement finite elements of curl (edge)
type of order order on all types of mesh elements (also called Nédélec elements).
fieldname is a string with the field name or a cell array containing the names of the
field components.

For more information, see “The Curl Element” on page 494.

Compatibility COMSOL Multiphysics 3.3: Replaces the shvec vector shape function object.
shvec still works for backward compatibility reasons.

See Also sharg_2_5, shbub, shdens, shdisc, shdiv, shgp, shherm, shlag, shuwhelm
E R 1 : C O M M A N D R E F E R E N C E

shdens
shdensPurpose Create a density element shape function object.

Syntax obj = shdens(order,basename)

Description The density element shape function object is used to implement finite elements of
density type on any mesh element type. order is the element order, and basename
is a string. For more information, see “Density Elements” on page 498.

See Also sharg_2_5, shbub, shcurl, shdisc, shdiv, shgp, shherm, shlag, shuwhelm
439

shdisc

440 | C H A P T
shdiscPurpose Create a discontinuous element shape function object.

Syntax obj = shdisc(mdim,order,basename)

Description The discontinuous element shape function object is used to implement finite
elements of discontinuous type on any mesh element type.

mdim is the maximum dimension of the element, order is the default element order,
and basename is a string.

For more information, see “Discontinuous Elements” on page 496.

Compatibility Since COMSOL Multiphysics 3.2 the meaning of the degrees of freedom has
changed. This means that you have to re-solve models made in earlier versions of
COMSOL Multiphysics that include discontinuous elements.

See Also sharg_2_5, shbub, shcurl, shdens, shdiv, shgp, shherm, shlag, shuwhelm
E R 1 : C O M M A N D R E F E R E N C E

shdiv
shdivPurpose Create a divergence shape function object.

Syntax obj = shdiv(order,fieldname)

Description The divergence shape function object is used to implement finite elements of
divergence type of order order on any type of mesh element. fieldname is a string
with the field name or a cell array containing the names of the field components.

For more information, see “Divergence Elements” on page 499.

Compatibility Since COMSOL Multiphysics 3.2 the meaning of the degrees of freedom has
changed. This means that you have to re-solve models made in earlier versions of
COMSOL Multiphysics that include divergence elements.

The syntax obj = shdiv(fieldname) is obsolete but still works in COMSOL
Multiphysics 3.3.

See Also sharg_2_5, shbub, shcurl, shdens, shdisc, shgp, shherm, shlag, shuwhelm
441

shgp

442 | C H A P T
shgpPurpose Create a Gauss-point shape function object.

Syntax obj = shgp(mdim, order, basename)

Description The Gauss-point shape function object is used to implement finite elements of
Gauss-point type of any order on any type of mesh element. The shape function
have the degrees of freedoms in the points determined by the Gauss-point pattern
for the element type. mdim is the maximum dimension of the element, order is a
positive integer and determines the number of points used through the order of the
Gauss-point pattern. basename is a string. The variable basename is evaluated as the
degree of freedom value in the nearest Gauss point.

See Also sharg_2_5, shbub, shcurl, shdens, shdisc, shdiv, shherm, shlag, shuwhelm
E R 1 : C O M M A N D R E F E R E N C E

shherm
shhermPurpose Create a Hermite shape function object.

Syntax obj = shherm(order, basename)

Description The Hermite shape function object is used to implement finite elements of Hermite
type of any order on mesh elements of any type. order is a positive integer greater
than 2, and basename is a string. The variable basename is represented as a
polynomial of degree (at most) order in the local coordinates.

For more information, see “The Hermite Element” on page 490.

See Also sharg_2_5, shbub, shcurl, shdens, shdisc, shdiv, shgp, shlag, shuwhelm
443

shlag

444 | C H A P T
shlagPurpose Create a Lagrange shape function object.

Syntax obj = shlag(order, basename)

Description The Lagrange shape function object is used to implement finite elements of
Lagrange type of any order on any type of mesh element. order is a positive integer
and basename is a string. The variable basename is represented as a polynomial of
degree (at most) order in the local coordinates.

For more information, see “The Lagrange Element” on page 487.

Examples The following three sequences set up shape functions for the variables u and v of
order 1 and 2, respectively, using the standard syntax:

fem.dim = {'u' 'v'};
fem.shape = [1 2];

fem.dim = {'u' 'v'};
fem.shape = {'shlag(1,''v'')' 'shlag(2,''v'')'}};

fem.dim = {'u' 'v'};
fem.shape = {'shlag(''basename'',''u'',''order'',1)' ...
 'shlag(''basename'',''v'',''order'',2)'}

See Also sharg_2_5, shbub, shcurl, shdens, shdisc, shdiv, shgp, shherm, shuwhelm
E R 1 : C O M M A N D R E F E R E N C E

shuwhelm
shuwhelmPurpose Create a scalar plane-wave basis function object.

Syntax obj = shuwhelm(ndir,basename,'kvar')
obj = shuwhelm(ndir,basename,'kvar',{'xvar','yvar'})
obj = shuwhelm('ndir',ndir,'basename',basename,'kexpr','kvar',...
 'xexpr',{'xvar','yvar'})

Description The scalar plane-wave basis function object, shuwhelm, implements scalar
plane-wave basis functions for solving scalar wave equations of Helmholtz type
using an ultraweak variational formulation. The plane-wave basis functions are
discontinuous between mesh elements. ndir is a positive integer for the number of
directions of the plane-wave basis functions and basename is a string. 'kvar' is a
variable representing the wave number. You can also add expressions for the
transformation of the spatial coordinates. The default values are the global x, y, and
z (in 3D) directions, typically 'x', 'y', and 'z'. For PML domains (perfectly
matched layers), where the spatial coordinates are mapped to a complex domain, the
spatial coordinates in the PML domain provide the coordinate transformation, for
example, 'PMLx_acpr' and 'PMLy_acpr' (in 2D), where acpr is the name of the
application mode.

See Also sharg_2_5, shbub, shcurl, shdens, shdisc, shdiv, shgp, shherm, shlag
445

solid0, solid1, solid2, solid3

446 | C H A P T
solid0, solid1, solid2, solid3Purpose Constructor functions for solid objects.

Syntax p3 = solid3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd)
[s3,...] = solid3(g3,...)
s3 = solid3(g2)
p2 = solid2(vtx,edg,mfd)
[s2,...] = solid2(g,...)
s1 = solid1(x)
s1 = solid1(vtx)
[s1,...] = solid1(g,..)
s0 = solid0(full)
[s0,...] = solid0(p,...)

Description s3 = solid3(vtx,vtxpre,edg,edgpre,fac,mfdpre,mfd) creates 3D solid
geometry object s3 from the arguments vtx, vtxpre, edg, edgpre, fac, mfdpre,
mfd. The arguments must define a valid 3D solid object. See geom3 for a description
of these arguments.

 [s3,...] = solid3(g3,...) coerces the 3D geometry object g3 to a 3D solid
object s3.

 s3 = solid3(g2) coerces the 2D geometry object g2 to a 3D solid object s3, by
embedding g2 in the plane, z = 0.

 p2 = solid2(vtx,edg,mfd) creates a 2D solid geometry object from the
properties vtx, edg, and mfd. The arguments must define a valid 2D solid object.
See geom2 for a description of these arguments.

 [s2,...] = solid2(g,...) coerces the 2D geometry object to a 2D solid object.

s1 = solid1(x) creates a 1D solid object that spans all the coordinate values in the
vector x.

 s1 = solid1(vtx) creates a 1D solid geometry object from vtx. The arguments
must define a valid 2D solid object. See geom1 for a description of this argument.

 [s1,...] = solid1(g,...) coerces the 1D geometry object to a 1D solid object.

 g = solid0(full) creates a 0D solid geometry object, where the Boolean full
determines if the object is empty or not.

 g = solid0(p) creates a 0D solid geometry object, where p is a matrix of size
0-by-1.

 [s0,...] = solid0(g,...) coerces the 0D geometry object to a 0D solid object.
E R 1 : C O M M A N D R E F E R E N C E

solid0, solid1, solid2, solid3
The coercion functions [s0,...] = solid0(g1,...), [s1,...] =
solid1(g1,...), [s2,...] = solid2(g2,...), and [s3,...] =
solid3(g3,...) accept the following property/values:

See geomcsg for more information on geometry objects.

The nD geometry object properties are available. The properties can be accessed
using the syntax get(object,property). See geom for details.

Examples The following commands create a unit curve circle object, coerce it to a curve
object, and then back to a solid object.

c1 = circ2
c2 = curve2(c1)
c3 = solid2(c2)

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also curve2, curve3, face3, geomcsg, geom0, geom1, geom2, geom3, point1,
point2, point3

TABLE 1-124: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx |
ctx | ptx

{} Cell array of output names
447

solsize

448 | C H A P T
solsizePurpose Get number of solutions in a solution object.

Syntax sz = solsize(fem.sol)

Description sz = solsize(fem.sol) returns the number of solutions in the femsol
object fem.sol.
E R 1 : C O M M A N D R E F E R E N C E

sphere3, sphere2
sphere3, sphere2Purpose Create a spherical geometry object.

Syntax obj = sphere3
obj = sphere2
obj = sphere3(r)
obj = sphere2(r)
obj = sphere3(r,...)
obj = sphere2(r,...)

Description obj = sphere3 creates a solid sphere geometry object with center at the origin and
semi-axes equal to 1. sphere3 is a subclass of ellipsoid3.

obj = sphere3(r,...) creates a solid sphere object with radius r. r is a positive
real scalar, or a string that evaluates to a positive real scalar, given the evaluation
context provided by the property const.

The functions sphere3/sphere2 accept the following property/values:

axis sets the local z-axis, stated either as a directional vector of length 3, or as a
1-by-2 vector of spherical coordinates. axis is a vector of real scalars, or a cell array
of strings that evaluate to real scalars, given the evaluation context provided by the
property const. See gencyl3 for more information on axis.

pos sets the position of the center of the object. pos is a vector of real scalars, or a
cell array of strings that evaluate to real scalars, given the evaluation context
provided by the property const.

rot is an intrinsic rotational angle for the object, about its local z-axis provided by
the property axis. pos is a real scalar, or a string that evaluate to a real scalar, given

TABLE 1-125: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot real or string 0 Rotational angle about axis (radians)
449

sphere3, sphere2

450 | C H A P T
the evaluation context provided by the property const. The angle is assumed to be
in radians if it is numeric, and in degrees if it is a string.

obj = sphere2(...) creates a surface sphere object with the properties as given
for the sphere3 function. sphere2 is a subclass of ellipsoid2.

Sphere objects have the following properties:

In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

Examples The following commands create a surface and solid sphere object, where the
position and radius are defined in the two alternative ways.

s2 = sphere2(1,'pos',[0 0 0],'axis',[0 0 1],'rot',0)
s3 = sphere3(4)

Compatibility The representation of the sphere objects has been changed. The FEMLAB 2.3
syntax is obsolete but still supported. If you use the old syntax or open 2.3 models
containing spheres they are converted to general face or solid objects.

See Also geom0, geom1, geom2, geom3, ellipsoid2, ellipsoid3

TABLE 1-126: SPHERE OBJECT PROPERTIES

PROPERTY DESCRIPTION

r Radius

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle
E R 1 : C O M M A N D R E F E R E N C E

split
splitPurpose Split a geometry object.

Syntax [gg,...] = split(g,...)

Description [gg,...] = split(g,...) returns a cell array where each cell entry contains a
geometry object. When g is solid, face, curve, and point objects, the output gg
contains object of the respective type. When g is a geometry object, the output
contains a combination of solid, face, curve, and point objects.

The function scale accepts the following property/values:

Examples Split union of a solid circle and a solid rectangle.

g = solid2(geomcsg({rect2,circ2}));
gg = split(g);

See Also geom0, geom1, geom2, geom3

TABLE 1-127: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Out stx | ftx | ctx |
ptx

empty Output parameters
451

square1, square2

452 | C H A P T
square1, square2Purpose Create square geometry objects.

Syntax obj = square2
obj = square1
obj = square2(l,...)
obj = square1(l,...)

Description obj = square2 creates a solid square geometry object with all side lengths equal
to 1, and the lower left corner at the origin. square2 is a subclass of rect2 and
solid2.

obj = square2(l,...) creates a solid square object with side lengths equal to l.
l is a positive real scalar, or a string that evaluates to a positive real scalar, given the
evaluation context provided by the property const.

The function square1 similarly creates curve square objects.

The functions square2/square1 accept the following property/values:

obj = square1(...) creates a curve circle geometry object with properties as
given for the rect2 function. square1 is a subclass of rect1 and curve2.

Square objects have the following properties:

TABLE 1-128: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

base corner |
center

corner Positions the object either centered
about pos or with the lower left
corner in pos

const Cell array of
strings

{} Evaluation context for string inputs

pos Vector of
reals or cell
array of
strings

[0 0] Position of the object

rot Real or string 0 Rotational angle about pos (radians)

TABLE 1-129: SQUARE OBJECT PROPERTIES

PROPERTY DESCRIPTION

l Side length

base Base point

x, y Position of the object

rot Rotational angle
E R 1 : C O M M A N D R E F E R E N C E

square1, square2
In addition, all 2D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom2 for details.

Example The commands below create a unit solid square geometry object and plot it.

sq1 = square2(1);
geomplot(sq1)

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported.

See Also geomcsg, rect1, rect2
453

tangent

454 | C H A P T
tangentPurpose Create a tangent to a 2D geometry object.

Syntax g = tangent(g1,g2,...)
g = tangent(g1,p1,...)

Description g = tangent(g1,g2,...) creates a common tangent line between geometry
object g1 and geometry object g2.

 g = tangent(g1,p1,...) creates a tangent line from geometry object g1 to a
point p1.

The function tangent accepts the following property/values pairs:

The following properties are valid in the Out cell array:

TABLE 1-130: VALID PROPERTY/VALUE PAIRS

PROPERTY NAME PROPERTY
VALUE

DEFAULT DESCRIPTION

Edim1 0 or 1 geometry
dependent

Starting point element
dimension: 0 for vertex, 1 for
edge

Edim2 0 or 1 geometry
dependent

Ending point element
dimension: 0 for vertex, 1 for
edge

Dom1 positive
integer

1 Starting point domain number

Dom2 positive
integer

1 Ending point domain number

Start1 number
between 0
and 1

0.5 Starting point parameter value
on specified edge

Start2 number
between 0
and 1

0.5 Ending point parameter value on
specified edge

Out cell array of
strings

{} Additional output data (see
Table 1-131)

TABLE 1-131: OUTPUT DATA TYPES

ENTRY IN OUT CELL ARRAY DESCRIPTION

Dom1 Domain number of starting point

Dom2 Domain number of ending point

Param1 Parameter value of starting point

Param2 Parameter value of ending point
E R 1 : C O M M A N D R E F E R E N C E

tangent
Examples The following commands generate a tangent from the unit circle to the point (2, 0)
and plot the result:

c=circ2;
t=tangent(c,[2 0]);
geomplot(c); hold on; geomplot(t);

The following commands generate a common tangent between two circles and plot
the result:

c1=circ2;
c2=circ2(1,'pos',[2 2]);
t=tangent(c1,c2,'dom1',4,'dom2',4);
geomplot(c1); hold on; geomplot(c2); geomplot(t);

Coord1 Coordinate of starting point

Coord2 Coordinate of ending point

TABLE 1-131: OUTPUT DATA TYPES

ENTRY IN OUT CELL ARRAY DESCRIPTION
455

tetrahedron2, tetrahedron3

456 | C H A P T
tetrahedron2, tetrahedron3Purpose Create a tetrahedron geometry object.

Syntax t2 = tetrahedron2(p)
t3 = tetrahedron3(p)

Description t3 = tetrahedron3 creates a solid tetrahedron object with the corners at the
origin and at the distance 1 from the origin along each positive coordinate axis.
tetrahedron3 is a subclass of solid3.

 t3 = tetrahedron3(p) creates a solid tetrahedron object with the corners given
by the four columns of p.

 t2 = tetrahedron2(...) creates a surface tetrahedron object. tetrahedron2 is
a subclass of face3.

The 3D geometry object properties are available. The properties can be accessed
using the syntax get(object,property). See geom3 for details

Examples The following command generates a solid tetrahedron object.

t3 = tetrahedron3([0 0 1 1;...
 0 0.8 1 0;...
 0 0.1 0 0.2]);

See Also face3, geom0, geom1, geom2, geom3
E R 1 : C O M M A N D R E F E R E N C E

torus2, torus3
torus2, torus3Purpose Create torus geometry object.

Syntax t3 = torus3
t2 = torus2
t3 = torus3(rmaj,rmin)
t2 = torus2(rmaj,rmin)
t3 = torus3(rmaj,rmin,phi)
t2 = torus2(rmaj,rmin,phi)
t3 = torus3(rmaj,rmin,phi,...)
t2 = torus2(rmaj,rmin,phi,...)

Description t3 = torus3 creates a solid torus object with directrix radius 1 and generatrix radius
0.5 about the z-axis. torus3 is a subclass of solid3.

t3 = torus3(rmaj,rmin) creates a solid torus with directrix radius rmaj and
generatrix radius rmin, where rmaj>rmin.

t3 = torus3(rmaj,rmin,phi) additionally sets the revolution angle phi of the
torus.

The functions torus3/torus2 accept the following property/values:

t3 = torus2(...) works similarly to above, but creates a surface torus object.
torus2 is a subclass of face3.

Torus objects have the following properties:

TABLE 1-132: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Axis Vector of
reals or cell
array of
strings

[0 0] Local z-axis of the object

Const Cell array of
strings

{} Evaluation context for string inputs

Pos Vector of
reals or cell
array of
strings

[0 0] Position of the bottom surface

Rot real or string 0 Rotational angle about Axis (radians)

TABLE 1-133: TORUS OBJECT PROPERTIES

PROPERTY DESCRIPTION

rmaj Directrix

rmin Generatrix
457

torus2, torus3

458 | C H A P T
In addition, all 3D geometry object properties are available. All properties can be
accessed using the syntax get(object,property). See geom3 for details.

For more information on geometry objects, see geom and geomcsg.

Compatibility The FEMLAB 2.3 syntax is obsolete but still supported. The numbering of faces,
edges and vertices is different from the numbering in objects created in 2.3.

Examples The following commands generate a surface and solid torus, respectively.

t2 = torus2(2,1,pi,'pos',[0 0 0],'axis',[0 0 1]);
t3 = torus3(10,2,pi/2,'pos',[1 1 1],'axis',[0 0 -100],...
 'rot',pi/3);

See Also face3, geom0, geom1, geom2, geom3

revang Revolution angle

x, y, z, xyz Position of the object. Components and vector forms

ax2 Rotational angle of symmetry axis

ax3 Axis of symmetry

rot Rotational angle

TABLE 1-133: TORUS OBJECT PROPERTIES

PROPERTY DESCRIPTION
E R 1 : C O M M A N D R E F E R E N C E

xmeshinfo
xmeshinfoPurpose Get extended mesh information.

Syntax out = xmeshinfo(fem,...);
out = xmeshinfo(xmesh,...);

Description The xmeshinfo function provides information about the numbering of elements,
nodes, and degrees of freedom (DOFs) in the extended mesh and in the matrices
returned by assemble and the solvers.

The properties Mcase, Geomnum, Edim, and Meshtype determine the part of the
extended mesh that information is requested for. The properties Lnode, Dofname,
and Ldof determine the local nodes, DOF names, and local DOFs that information

TABLE 1-134: VALID PROPERTY/VALUE PAIRS

PROPERTY VALUE DEFAULT DESCRIPTION

Dofname string | cell array of strings all DOF names

Edim integer vector all Element
dimensions

Geomnum integer vector all Geometry
numbers

Ldof cell array all Local DOFs

Lnode real matrix all Local coordinates
of nodes

Mcase integer mesh case
with
largest
number of
DOFs

Mesh case

Meshtype vtx | edg | tri | quad | tet | hex |
prism | edg2 | tri2 | quad2 | tet2
| hex2 | prism2 | cell array of these
strings

all Mesh element
types

Null sparse matrix identity Null-space matrix
for constraint
elimination

Out mcases | femindex | dofs | nodes
| edims | types | dofnames |
ndofs | elements | cell array of
these strings

dofs Output names

Solcomp string | cell array of strings all DOFs solved for
459

xmeshinfo

460 | C H A P T
is requested for. The property Ldof is a cell array where the first row contains DOF
names, and the remaining rows contain local coordinates.

N U M B E R I N G C O N V E N T I O N S

The numbering provided by xmeshinfo corresponds to the numbering in the mesh
data structure (see femmesh). The extended mesh uses a different numbering
internally. All numberings are 1-based.

• Elements. For each mesh element type, the element numbering of femmesh is
used.

• Node points. The node points in femmesh have the same numbers in the extended
mesh. Additional node points have higher numbers (these are arbitrarily
ordered).

• Local node points. The numbering of the local node points within a mesh element
is different from the numbering in femmesh. However, the same definition of the
local coordinate system is used. In the extended mesh, the local node points are
ordered in lexicographical order of their local coordinates. In femmesh, the mesh
vertices come first, in lexicographical order, and then come the other node points
in lexicographical order (the latter are only present for a second-order mesh).

• DOFs. By default, the DOF number is the index in the complete set of degrees of
freedom of the model. If the property Solcomp is given, the DOF number is the
index in the set of DOFs solved for. If the property Null is given, it is assumed
that the Eliminate constraint handling method is used, and the DOF number is
the index in the set of unconstrained DOFs. This assumes a simple form of the
constraints, where each constraint only constrains one DOF. In other words, each
column of the Null matrix has a single nonzero element. If Null does not have
this form, an error message is given. The Null matrix is an output from the
solvers (see femlin).

O U T P U T S W I T H G L O B A L S C O P E

mcases = xmeshinfo(xmesh,'out','mcases') returns an integer vector
containing all mesh cases in the extended mesh xmesh.

femindex = xmeshinfo(xmesh,'out','femindex') returns an integer vector
containing indices into xfem.fem for all geometries in xmesh. That is, geometry
geomnum in xmesh is xfem.fem{femindex(geomnum)}.geom.
E R 1 : C O M M A N D R E F E R E N C E

xmeshinfo
dofs = xmeshinfo(xmesh,'out','dofs') returns information about DOFs in
xmesh for the mesh case given by the property Mcase. The return value dofs is a
structure with the following fields:

O U T P U T S R E L A T E D T O G E O M E T R I E S

nodes = xmeshinfo(xmesh,'out','nodes') returns information about nodes in
the part of xmesh determined by the properties Mcase and Geomnum. The return
value nodes is a struct or a cell array of structs with the following fields:

TABLE 1-135: DOFS STRUCT

FIELD CONTENTS

mcase Mesh case number

geomnums Geometry numbers for all DOFs (vector)

nodes Node numbers for all DOFs (vector)

coords Global coordinates for all DOFs. The kth
column of this matrix contains the coordinates
of DOF number k

names DOF names. Note that this is a subset of the
property Dofname (if given)

nameinds Indices into names for all DOFs (vector). The
value 0 means that the DOF is not present in
names

solcompinds Indices into set of DOFs solved for
(determined by property Solcomp) for all
DOFs (vector). This field is only present if the
Null property is given

alldofinds Indices into total set of DOFs in the model for
all DOFs (vector). This field is only present if
the Solcomp property is given

TABLE 1-136: NODES STRUCT CORRESPONDING TO A GEOMETRY

FIELD CONTENTS

mcase Mesh case number

geomnum Geometry number

names DOF names in this geometry. Note that this is a
subset of the property Dofname (if given)
461

xmeshinfo

462 | C H A P T
O U T P U T S R E L A T E D T O M E S H E L E M E N T T Y P E S

edims = xmeshinfo(xmesh,'out','edims') returns a vector containing the
element dimensions in the part of xmesh determined by the properties Mcase,
Geomnum, Edim, and Meshtype.

types = xmeshinfo(xmesh,'out','types') returns a cell array of strings
containing the mesh element types in the part of xmesh determined by the
properties Mcase, Geomnum, Edim, and Meshtype.

dofnames = xmeshinfo(xmesh,'out','dofnames') returns a cell array of strings
containing the DOF names in the part of xmesh determined by the properties
Mcase, Geomnum, Edim, Meshtype, Lnode, Dofname, and Ldof.

ndofs = xmeshinfo(xmesh,'out','ndofs') returns the number of DOFs in the
part of xmesh determined by the properties Mcase, Geomnum, Edim, Meshtype,
Lnode, Dofname, and Ldof.

elements = xmeshinfo(xmesh,'out','elements') returns information about
mesh elements in the part of xmesh determined by the properties Mcase, Geomnum,
Edim, and Meshtype. The return value elements is a struct or a cell array of structs
with the following fields:

dofs DOF numbers for all nodes in this geometry.
dofs(k,n) is the DOF number for DOF name
names{k} at node point n. A value 0 means that
there is no DOF with this name at the node

coords Global coordinates for all nodes. The nth column
of the matrix coords contains the coordinates of
node point number n

TABLE 1-137: ELEMENTS STRUCT CORRESPONDING TO A MESH ELEMENT TYPE

FIELD CONTENTS

mcase Mesh case number

geomnum Geometry number

edim Element dimension

type Mesh element type

lnodes Local coordinates of nodes. The kth column of
the matrix lnodes contains the coordinates of
local node point number k. Note that lnodes is
a subset of the property Lnode (if given)

TABLE 1-136: NODES STRUCT CORRESPONDING TO A GEOMETRY

FIELD CONTENTS
E R 1 : C O M M A N D R E F E R E N C E

xmeshinfo
Examples Assume that fem.mesh is an imported NASTRAN mesh with second-order
tetrahedral elements, where node point numbering starts at 1. Use second-order
Lagrange elements:

m= meshimport('nastrandemo1.nas');
fem.mesh = m{1};
fem.dim = 'u';
fem.shape = 2;
fem.equ.c = 1;
fem.bnd.h = 1;
fem.xmesh = meshextend(fem);

To get the DOF number corresponding to node point number 22 in the
NASTRAN mesh, type

nodes = xmeshinfo(fem,'out','nodes');
nodes.dofs(1,22)

Compute an eliminated stiffness matrix and a null-space matrix by

[Kc,Null]=femstatic(fem,'out',{'Kc' 'Null'});

To find the node point number corresponding to column 30 of Kc, and its
coordinates, type

dofs = xmeshinfo(fem,'out','dofs','null',Null);
n = dofs.nodes(30)

nodes Node point indices for all mesh elements of type
type. nodes(k,el) is the node point number
within geometry geomnum (see the output
nodes) for local node point k within mesh
element el. A value 0 means that there is no
node point at this location

ldofs A cell array containing the local DOFs. The first
row contains DOF names, and the remaining
rows contain local coordinates. If the property
Ldof is given, ldofs is restricted to a subset.
Otherwise, ldofs is restricted by the properties
Lnode and Dofname (if given)

dofs DOF numbers for all mesh elements of type
type. dofs(k,el) is the DOF number for local
DOF ldofs(:,k) within mesh element el. A
value 0 means that there is no DOF at this
location

TABLE 1-137: ELEMENTS STRUCT CORRESPONDING TO A MESH ELEMENT TYPE

FIELD CONTENTS
463

xmeshinfo

464 | C H A P T
dofs.coords(:,30) % alternatively:
nodes.coords(:,n)

To find the six DOF numbers in tetrahedron element 10 of the mesh, type

elements = xmeshinfo(fem,'out','elements',...
 'meshtype','tet2');
elements.dofs(:,10)

To find the total number of DOFs on the boundary, type

xmeshinfo(fem,'out','ndofs','edim',2)

See Also femmesh, meshextend
E R 1 : C O M M A N D R E F E R E N C E

 2
D i a g n o s t i c s
This chapter contains lists of the most common error messages that might occur
in COMSOL Multiphysics. The lists also include an explanation of the error and
possible causes and workarounds.
 465

466 | C H A P T E R

ML

ons are not
E r r o r Me s s a g e s

This section summarizes the most common error messages and solver messages
generated by COMSOL Multiphysics. All error messages are numbered and sorted in
different categories according to the following table.

For error messages that do not appear in the following lists, contact COMSOL’s
support team for help.

2000–2999 Geometry Modeling

TABLE 2-1: ERROR MESSAGE CATEGORIES

NUMBERS CATEGORY

1000–1999 Importing Models

2000–2999 Geometry Modeling

3000–3999 CAD Import

4000–4999 Mesh Generation

5000–5999 Point, Edge, Boundary, and Subdomain Specification

6000–6999 Assembly and Extended Mesh

7000–7999 Solvers

8000–8999 Postprocessing

9000–9999 General

TABLE 2-2: GEOMETRY MODELING ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

2118 Negative output from empty input Incorrect Geometry M-file.

2119 Non scalar output from empty input Incorrect Geometry M-file.

2120 Normal directions are inconsistent Incorrect input data from STL/VR
import.

2138 Self intersections not supported Curves resulting in self-intersecti
supported.

2140 Singular extrusions not supported Error in input parameters.
 2 : D I A G N O S T I C S

ity at the z
er using a
geometry

mesh.

mesh.

et/chamfer.

an empty
wed. Make
s not

ometry
f the
e axis for
2141 Singular revolutions not supported The revolved mesh has a singular
axis. If possible, create the cylind
3D primitive or by revolving the
before meshing.

2146 Subdomain must bounded at least four
boundary segments

Incorrect geometry for mapped

2147 Subdomain must bound one connected edge
component only

Incorrect geometry for mapped

2190 Invalid radius or distance Incorrect input parameters to fill

2197 Operation resulted in empty geometry
object

Geometry operation resulted in
geometry object which is not allo
sure an empty geometry object i
created.

2209 Geometry to revolve may not cross axis of
revolution

The axis of revolution and the ge
intersect. Check the dimension o
geometry and the definition of th
the revolution.

TABLE 2-2: GEOMETRY MODELING ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
E R R O R M E S S A G E S | 467

468 | C H A P T E R

erical
rons with

arameters.
rrow
f the
oundary
mall and
rt
cent to

erical
s with a
ameters.
rrow
f the
oundary
mall and
rt
cent to

apped
rs or
ssibly help

 the given

oint there
4000–4999 Mesh Generation

TABLE 2-3: MESH GENERATION ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

4002 A degenerated tetrahedron was created The mesh generator ran into num
difficulties while creating tetrahed
a size based on user-controlled p
Causes could be too small and na
subdomains relative to the rest o
geometry or exceedingly short b
segments. Try to avoid creating s
narrow subdomains and very sho
boundary segments that are adja
longer boundary segments.

4003 A degenerated triangle was created The mesh generator ran into num
difficulties while creating triangle
size based on user-controlled par
Causes could be too small and na
subdomains relative to the rest o
geometry or exceedingly short b
segments. Try to avoid creating s
narrow subdomains and very sho
boundary segments that are adja
longer boundary segments.

4012 Cannot create mapped mesh for this
geometry

The geometry does not fulfill the
topological requirements for a m
mesh. Changes in input paramete
further subdomain division can po
this.

4026 Failed create matching edge discretizations Cannot make mapped mesh with
input parameters.

4029 Failed to insert point Problems inserting point at given
coordinate. Manually inserting a p
may help.
 2 : D I A G N O S T I C S

king the
ometry
is could be
or contains
rences in
t some
oo narrow
ometry.

used for
 be

o the
s is found.
s not

 edge of

rms of
of
hat variable
s with

 the name
e names of
e entered
92.
6000–6999 Assembly and Extended Mesh

4031 Failed to respect boundary element on
geometry edge

The mesh generator failed in ma
elements compatible with the ge
object’s edges. The reason for th
that the face mesh is too coarse
adjacent elements with large diffe
scale. Another reason can be tha
subdomains in the geometry are t
with respect to the rest of the ge

4032 Failed to respect boundary element on
geometry face

See Error message 4031.

4044 Internal error boundary respecting See Error message 4031.

4054 Invalid topology of geometry The geometry object cannot be
creating a mapped mesh. It must
subdivided.

4055 Isolated entities found Entities that are not connected t
boundaries of a geometry object
The mapped mesh generator doe
support such isolated entities.

4119 Singular edge detected The geometry object contains an
zero length.

TABLE 2-3: MESH GENERATION ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

TABLE 2-4: ASSEMBLY AND EXTENDED MESH ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

6008 Circular variable dependency detected A variable has been defined in te
itself, possibly in a circular chain
expression variables. Make sure t
definitions are sound. Be cautiou
equation variables in equations.

6063 Invalid degree of freedom name The software does not recognize
of a degree of freedom. Check th
dependent variables that you hav
for the model. See also Error 71
E R R O R M E S S A G E S | 469

470 | C H A P T E R

d solution
umber of
ue to a
elements
ware. To
 Initial

 and select
 initial

thout using

d solution
umber of
ue to a
elements
ware. To
 Value of
rization
 and click
 frame

s a divisor
e sure that
n any

t
e variable
s for a
n
 variable.
riables.

ing the
OMSOL
 variable
ssage
SOL
te. Make
riables
s.
6139 Wrong number of DOFs in initial value The current solution or the store
has for some reason the wrong n
degrees of freedom, sometimes d
change of the implementation of
between two versions of the soft
overcome the problem, go to the
value area in the Solver Manager,
Initial value expression. Then the
value expressions is evaluated wi
the current or stored solution.

6140 Wrong number of dofs in linearization point The current solution or the store
has for some reason the wrong n
degrees of freedom, sometimes d
change of the implementation of
between two versions of the soft
overcome the problem, go to the
variables not solved for and linea
point area in the Solver Manager,
the Use setting from Initial value
button or the Zero button.

6163 Divide by zero A property in the model contain
that becomes zero. Check to mak
division by zero does not occur i
expression or coefficient.

6164 Duplicate variable name A variable name has two differen
definitions. For instance, the sam
name appears two or more time
dependent variable, a constant, a
expression variable, or a coupling
Remove or rename one of the va

6170 Failed to evaluate variable An error occurred when evaluat
variable. The domains in which C
Multiphysics tried to evaluate the
are indicated. Also, the error me
shows the expression that COM
Multiphysics was unable to evalua
sure that you have defined the va
correctly in the indicated domain

TABLE 2-4: ASSEMBLY AND EXTENDED MESH ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
 2 : D I A G N O S T I C S

 where a
ke the
e that a>0.
gative (due
 process).
e
nstant.
bs(a)). If
ogarithm,
Parameters
ions with

ture such
 matrix)
t possible
 solvers/

ersions of
). Try the
instead.

 during
odel. See

re a
 integer. To
ke sure
 slightly
in the
le solution
small
se
e a
Advanced
ct Use
t.
6176 Attempt to evaluate real logarithm of
negative number

An expression contains log(a),
becomes negative or zero. To ma
logarithm well-defined, make sur
Often, a becomes only slightly ne
to approximations in the solution
Then, a possible solution is to us
log(a+e), where e is a small co
Another remedy is to use log(a
you do want to have a complex l
go to the Advanced tab of Solver
and select the Use complex funct
real input check box.

6177 Matrix has zero on diagonal When the equations have a struc
that the stiffness matrix (Jacobian
has zeros on the diagonal, it is no
to use the following linear system
preconditioners/smoothers: all v
SOR and Diagonal scaling (Jacobi
Vanka preconditioner/smoother

6188 Out of memory during assembly The software ran out of memory
assembly of the finite element m
error 7144 regarding general
memory-saving tips.

6194 Attempt to evaluate non-integral power of
negative number

An expression contains a^b, whe
becomes negative and b is not an
make the power well-defined, ma
that a>0. Often, a becomes only
negative (due to approximations
solution process). Then, a possib
is to use (a+e)^b, where e is a
constant. Another remedy is to u
abs(a)^b. If you do want to hav
complex number a^b, go to the
tab of Solver Parameters and sele
complex functions with real inpu

TABLE 2-4: ASSEMBLY AND EXTENDED MESH ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
E R R O R M E S S A G E S | 471

472 | C H A P T E R

re root)
ot of a
e that the
tive or
 with real
 tab in the

ined
nction
tion is in
AB’s path.

bles. As a
ns of the
f any

undary

 triangular
10, and for
an be up to
ection
 505.

ing the
. The
tiphysics
 indicated.
he variable
s.
6199 Attempt to evaluate real square root of
negative number

The model contains a sqrt (squa
function that takes the square ro
negative number. Either make sur
square-root argument is nonnega
select the Use complex functions
input check box on the Advanced
Solver Parameters dialog box.

6204 Undefined function call An expression contains an undef
function name. Check that the fu
name is correct and that the func
COMSOL Multiphysics’ or MATL

6206 Internal evaluation error: unexpected NaN
encountered

Not-A-Number (NaN) appears
unexpectedly. A possible cause is
improperly defined coupling varia
first step, check that the definitio
source and destination domains o
coupling variables or periodic bo
conditions are correct.

6245 Unsupported integration order Integration order is too high. For
elements the order can be up to
tetrahedral elements the order c
8. Find more information in the s
“Numerical Quadrature” on page

6259 Failed to evaluate variable Jacobian An error occurred when evaluat
Jacobian of the indicated variable
domains in which COMSOL Mul
tried to evaluate the variable are
Make sure that you have defined t
correctly in the indicated domain

TABLE 2-4: ASSEMBLY AND EXTENDED MESH ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
 2 : D I A G N O S T I C S

 mesh
g
r turn off
tch from
hedral

 mesh
g triangular
aptive

lar

lver do not
ne reason
 boundary
nar inflow
ent
he model.

rs when
at returns
ed, for the
 instance,
tains a
garithm of
blem,
ial value so
d when
e variables.
he Log

re are no
 the case

esh, try
e mesh to
7000—7999 Solvers and Preconditioners

TABLE 2-5: SOLVER ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

7001 Adaption only implemented for tetrahedral
meshes

It is only possible to use adaptive
refinement in 3D for models usin
tetrahedral mesh elements. Eithe
adaptive mesh refinement or swi
brick or prism elements to tetra
elements.

7002 Adaption only implemented for triangular
meshes

It is only possible to use adaptive
refinement in 2D for models usin
mesh elements. Either turn off ad
mesh refinement or switch from
quadrilateral elements to triangu
elements.

7022 Segregated solver steps do not involve all of
solcomp

The groups for the segregated so
include all dependent variables. O
for this error could be that some
conditions (for example, for lami
in fluid-flow models) add depend
variables that are not initially in t

7043 Initial guess leads to undefined function
value

This error message usually appea
you have set up an expression th
“not a value,” that is, it is undefin
initial condition you have set. For
this happens if an expression con
divisor that becomes zero or a lo
a negative value. To solve the pro
change the expression or the init
that the expression is well-define
substituting the initial value of th
Also, watch out for warnings in t
window.

7067 System matrix is zero This error message appears if the
volume elements in the mesh. In
that you have a mapped surface m
sweeping or extruding the surfac
get a volume mesh.
E R R O R M E S S A G E S | 473

474 | C H A P T E R

 did not
s or a bad
 on the
e a better
direct

ind a name
me of
al page of

ry. See

uring back
rding

uring LU
arding

rix or
 solver

ns that the
ck that all
hat the
iate. For
u usually
n on some
d also
o low
uality is
ouble.
ssage is
rders for
, for
the same
at are
7069 Maximum number of linear iterations
reached

The iterative linear system solver
converge due to a bad initial gues
preconditioner. Increase the limit
number of linear iterations or us
preconditioner. If possible, use a
linear system solver.

7081 No parameter name given The parametric solver does not f
for the parameter. Check the Na
parameter edit field on the Gener
the Solver Manager.

7092 Out of memory in Algebraic multigrid The Algebraic multigrid solver/
preconditioner ran out of memo
error 7144 regarding general
memory-saving tips.

7093 Out of memory during back substitution The solver ran out of memory d
substitution. See error 7144 rega
general memory-saving tips.

7094 Out of memory during LU factorization The solver ran out of memory d
factorization. See error 7144 reg
general memory-saving tips.

7111 Singular matrix The system matrix (Jacobian mat
stiffness matrix) is singular, so the
cannot invert it. Usually this mea
system is underdetermined. Che
equations are fully specified and t
boundary conditions are appropr
instance, in a stationary model yo
need to have a Dirichlet conditio
boundary. A singular matrix coul
occur if mesh elements are of to
quality. If the minimum element q
less than 0.005 you might be in tr
Another reason for this error me
that you have different element o
two variables that are coupled by
example, a weak constraint. Use
element order for all variables th
coupled.

TABLE 2-5: SOLVER ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
 2 : D I A G N O S T I C S

of the
e solution.
tioner,

mory. The
nerated a
ou run out
fficient
zing
ntially, and
s. See the
age 377 in
 for more

L Installation
n about

memory.
l

memory.
l

ut of
ng general

e in the
dvanced
log box
dent

 algorithms
algorithm
g.
7136 Very ill-conditioned preconditioner. The
relative residual is more than 1000 times
larger than the relative tolerance

You need to improve the quality
preconditioner to get an accurat
For the Incomplete LU precondi
lower the drop tolerance.

7144 Out of memory in adaptive solver The adaptive solver ran out of me
adaptive mesh refinement has ge
too fine mesh. In general, when y
of memory, try to use memory-e
modeling techniques such as utili
symmetries, solving models seque
selecting memory-efficient solver
chapter “Solving the Model” on p
the COMSOL Multiphysics User’s Guide
information. See also the COMSO
and Operations Guide for informatio
system memory management.

7145 Out of memory in eigenvalue solver The eigenvalue solver ran out of
See error 7144 regarding genera
memory-saving tips.

7146 Out of memory in stationary solver The stationary solver ran out of
See error 7144 regarding genera
memory-saving tips.

7147 Out of memory in time-dependent solver The time-dependent solver ran o
memory. See error 7144 regardi
memory-saving tips.

7192 Invalid degree of freedom name in manual
scaling

The name of a dependent variabl
Manual scaling edit field on the A
page in the Solver Parameters dia
does not match any of the depen
variables in the model.

7199 Reordering failed One of the PARDISO reordering
failed. Try a different reordering
or try turning off row preorderin

TABLE 2-5: SOLVER ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
E R R O R M E S S A G E S | 475

476 | C H A P T E R

3 for some
rror
ns you get
e error by

 of the
 an
ar, for

 been
 operation
an be
or direct
 the
 is singular
olvers this
if the
the Details
 caused the

omputer.
card does
ave a Unix/
 has not

 Detail
e error

h your
reproduce
9000–9999 General Errors

7248 Undefined value found See the explanation of error 704
possible reasons as to why this e
number appears. In most situatio
a more detailed description of th
pressing the Details button.

7297 Undefined value found This error number appears if one
linear system solvers encounters
undefined value (such values appe
instance, if a division by zero has
performed or if some arithmetic
results in a larger number than c
represented by the computer). F
solvers this error might appear if
stiffness matrix (Jacobian matrix)
or almost singular. For iterative s
error might appear, for instance,
iterative process diverges. Press
button to see which linear solver
error.

TABLE 2-5: SOLVER ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

TABLE 2-6: GENERAL ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION

9037 Failed to initialize 3D graphics. OpenGL not
fully supported

OpenGL is not available on the c
This can happen if your graphics
not support OpenGL or if you h
Linux computer where OpenGL
been configured.

9040 Fatal error If you receive this error, click the
button. Copy and paste the entir
message and send it to
support@comsol.com along wit
license file and details of how to
the error.
 2 : D I A G N O S T I C S

rver name
nnect a

nection to
er crashed
g
n the TCP/

his

en
y in the
The
 the

, where
3.5a

ted
 log file
ed the
 to see the

 in doubt

ect
r and the

a MATLAB
ysics. Make
he function
nt path.
n so that all
ze and the
ze.
9052 Invalid address/port You did not enter the correct se
or server port when trying to co
client to a server.

9084 Server connection error The client somehow lost the con
the server. For example, the serv
unexpectedly, or the power savin
mechanism on a laptop shut dow
IP connection.

9143 License error The most common reasons for t
message:

The license file license.dat has be
removed from the right director
COMSOL software installation.
license.dat file must be located in
$COMSOL35a/license directory
$COMSOL35a is the COMSOL
installation directory.

The license manager has not star
properly. Please find the FLEXlm
(named by the person who start
license manager). Inspect this file
server status. Send it to
support@comsol.com if you are
about how to interpret this file.

It is crucial that you use the corr
license.dat file on both the serve
clients

9178 Error in callback An error occurred when calling
function from COMSOL Multiph
sure that the M-file that defines t
is correct and exists in the curre
Check that the function is writte
inputs are vectors of the same si
output is a vector of the same si

TABLE 2-6: GENERAL ERROR MESSAGES

ERROR NUMBER ERROR MESSAGE EXPLANATION
E R R O R M E S S A G E S | 477

478 | C H A P T E R
Solver Error Messages

These error messages can appear during solution and appear on the Log tab in the
Progress window.

TABLE 2-7: SOLVER ERROR MESSAGES IN LOG WINDOW

SOLVER ERROR MESSAGE EXPLANATION

Cannot meet error
tolerances. Increase
absolute or relative
tolerance.

The time-dependent solver cannot solve the model to the
specified accuracy.

Error in residual
computation

Error in Jacobian
computation

The evaluation of the residual or the Jacobian generated an
error during a time-dependent solution. An additional
message states the direct error. Some possible reasons are
division by zero, range and overflow errors in mathematical
functions, and interpolation failure in coupling variables
with time-dependent mesh transformation.

Failed to find a solution The nonlinear solver failed to converge. An additional
error message gives some more details. See the description
for that message.

Failed to find a solution
for all parameters, even
when using the minimum
parameter step

During a parametric solution, the nonlinear iteration did
not converge despite reducing the parameter step length
to the minimum allowed value. The solution may have
reached a turning point or bifurcation point.

Failed to find a solution
for initial parameter

The nonlinear solver failed to converge for the initial value
of the parameter during a parametric solution. An
additional error message gives some more details. See the
description for that message.

Failed to find consistent
initial values

The time-dependent solver could not modify the initial
conditions given to a DAE system to satisfy the stationary
equations at the initial time. Make sure the initial values
satisfy the equations and boundary conditions. In many
cases, this can be achieved by solving for only the algebraic
variables using a stationary solver before starting the
time-dependent solver.

Ill-conditioned
preconditioner. Increase
factor in error estimate
to X

The preconditioner is ill-conditioned. The error in the
solution might not be within tolerances. To be sure to have
a correct solution, open the Linear System Solver Settings
dialog box from the General tab of Solver Parameters.
Select Linear system solver in the tree, and increase Factor
in error estimate to the suggested number X. Alternatively,
use a better preconditioner or tune the settings for the
preconditioner.
 2 : D I A G N O S T I C S

Inf or NaN found, even
when using the minimum
damping factor

Despite reducing the step size to the minimum value
allowed, the solver cannot evaluate the residual or
modified Newton direction at the new solution iterate.
This essentially means that the current approximation to
the solution is close to the boundary of the domain where
the equations are well-defined. Check the equations for
divisions by zero, powers, and other functions that can
become undefined for certain inputs.

Inverted mesh element
near coordinates (x, y, z)

In some mesh element near the given coordinates, the
(curved) mesh element is (partially) warped inside-out.
More precisely, the Jacobian matrix for the mapping from
local to global coordinates has a negative determinant at
some point. A possible reason is that the linear mesh
contains a tetrahedron whose vertices all lie on a
boundary. When improving the approximation of the
boundary using curved mesh elements, the curved mesh
element becomes inverted. To see whether this is the case,
you can change Geometry shape order to 1 in the Model
Settings dialog box, which means that curved mesh
elements will not be used. You can usually avoid such bad
tetrahedra by using a finer mesh around the relevant
boundary. Another reason for this error message can be
that the mesh becomes inverted when using a deformed
mesh.

Last time step is not
converged.

The last time step returned from the time-dependent
solver is not to be trusted. Earlier time steps are within the
specified tolerances.

Matrix is singular When encountered during time-dependent solution: the
linear system matrix (which is a linear combination of the
mass-, stiffness-, and possibly, damping-matrices) is singular.
Usually the problem originates from the algebraic part of a
DAE. In particular, the cause can often be found in weak
constraints or constraint-like equations like the continuity
equation in incompressible flow.

Maximum number of
linear iterations reached

The iterative linear system solver failed to compute a
Newton direction in the specified maximum number of
iterations.

TABLE 2-7: SOLVER ERROR MESSAGES IN LOG WINDOW

SOLVER ERROR MESSAGE EXPLANATION
E R R O R M E S S A G E S | 479

480 | C H A P T E R
Maximum number of
Newton iterations
reached

The nonlinear solver could not reduce the error below the
desired tolerance in the specified maximum number of
iterations. This is sometimes a sign that the Jacobian is not
complete or badly scaled. It may even be almost singular, if
the system is underdetermined. If the returned solution
seems reasonable, it might be enough to restart the solver
with this solution as the initial guess.

No convergence, even
when using the minimum
damping factor

The nonlinear solver reduced the damping factor below
the minimum value allowed. The solver reduces the
damping factor each time a computed step did not lead to
a decrease in the error estimate. Make sure the model is
well-posed, in particular that there are enough equations
and boundary conditions to determine all degrees of
freedom. If the model is well-posed, it should have one or
more isolated solutions. In that case, the error is probably
due to the initial guess being too far from any solution.

Nonlinear solver did not
converge

During a time-dependent solution, the nonlinear iteration
failed to converge despite reducing the time step to the
minimum value allowed. Usually, the error is related to the
algebraic part of a DAE. For example, the algebraic
equations can have reached a turning point or bifurcation
point. The error can also appear when the algebraic
equations do not have a unique solution consistent with
the given initial conditions. Make sure algebraic equations
have consistent initial values and that they have a unique
solution for all times and values reached by the other
variables.

Not all eigenvalues
returned

When the eigenvalue solver terminated (stopped by the
user or due to an error), it had not found the requested
number of eigenvalues. The eigenvalues returned can be
trusted.

Not all parameter steps
returned

After premature termination of the parametric solver, only
some of the requested solutions have been computed.

Predicted solution guess
leads to undefined
function value

The solver computes the initial guess for the new
parameter value based on the solution for the previous
parameter value. This initial guess led to an undefined
mathematical operation. Try using another Predictor on
the Parametric tab of Solver Parameters.

TABLE 2-7: SOLVER ERROR MESSAGES IN LOG WINDOW

SOLVER ERROR MESSAGE EXPLANATION
 2 : D I A G N O S T I C S

Repeated error test
failures. May have
reached a singularity.

During a time-dependent solution, the error tolerances
could not be met despite reducing the time step to the
minimum value allowed.

Returned solution has
not converged.

The solution returned by the stationary solver is not to be
trusted. It might, however, be useful as initial guess after
modifying equations or solver settings.

The elasto-plastic solver
failed to find a solution

The Newton iteration loop for the computation of the
plastic state at some point in the geometry did not
converge.

TABLE 2-7: SOLVER ERROR MESSAGES IN LOG WINDOW

SOLVER ERROR MESSAGE EXPLANATION
E R R O R M E S S A G E S | 481

482 | C H A P T E R
 2 : D I A G N O S T I C S

 3
T h e F i n i t e E l e m e n t M e t h o d
This chapter contains a theoretical background to the finite element method and
an overview of the finite element types in COMSOL Multiphysics. Sections in this
chapter also explain how COMSOL Multiphysics forms the system of equations
and constraints that it solves and the implications of Dirichlet conditions involving
several solution components in a multiphysics model.
 483

484 | C H A P T E R
Unde r s t a nd i n g t h e F i n i t e E l emen t
Me t h od

This section describes how the Finite Element Method (FEM) approximates a PDE
problem with a problem that has a finite number of unknown parameters, that is, a
discretization of the original problem. This concept introduces finite elements, or
shape functions, that describe the possible forms of the approximate solution.

Mesh

The starting point for the finite element method is a mesh, a partition of the geometry
into small units of a simple shape, mesh elements. For more information about the
types of elements that are available in 1D, 2D, and 3D, see “Mesh Elements” on page
300 in the COMSOL Multiphysics Users Guide.

Sometimes the term “mesh element” means any of the mesh elements—mesh faces,
mesh edges, or mesh vertices. When considering a particular d-dimensional domain in
the geometry (that is, a subdomain, boundary, edge, or vertex), then by its mesh
elements you mean the d-dimensional mesh elements contained in the domain.

Finite Elements

Once you have a mesh, you can introduce approximations to the dependent variables.
For this discussion, concentrate on the case of a single variable, u. The idea is to
approximate u with a function that you can describe with a finite number of
parameters, the so-called degrees of freedom (DOF). Inserting this approximation into
the weak form of the equation generates a system of equations for the degrees of
freedom.

Start with a simple example: linear elements in 1D. Assume that a mesh consists of just
two mesh intervals: 0 < x < 1 and 1 < x < 2. Linear elements means that on each mesh
interval the continuous function u is linear (affine). Thus, the only thing you need to
know in order to characterize u uniquely is its values at the node points x1 = 0, x2 = 1,
and x3 = 2. Denote these as U1 = u(0), U2 = u(1), U3 = u(2). These are the degrees of
freedom.

Now you can write
 3 : T H E F I N I T E E L E M E N T M E T H O D

where are certain piecewise linear functions. Namely, is the function that
is linear on each mesh interval, equals 1 at the ith node point, and equals 0 at the other
node points. For example,

The are called the basis functions. The set of functions u(x) is a linear function
space called the finite element space.

For better accuracy, consider another finite element space corresponding to quadratic
elements. Functions u in this space are second-order polynomials on each mesh
interval. To characterize such a function, introduce new node points at the midpoint
of each mesh interval: x4 = 0.5 and x5 = 1.5. You must also introduce the
corresponding degrees of freedom Ui = u(xi). Then, on each mesh interval, the
second-degree polynomial u(x) is determined by the degrees of freedom at the
endpoints and the midpoint. In fact, you get

where the basis functions now have a different meaning. Specifically, is
the function that is quadratic on each mesh interval, equals 1 at the ith node point,
and equals 0 at the other node points. For example,

In general, you specify a finite element space by giving a set of basis functions. The
description of the basis functions is simplified by the introduction of local coordinates
(or element coordinates). Consider a mesh element of dimension d in an
n-dimensional geometry (whose space coordinates are denoted x1,…, xn). Consider
also the standard d-dimensional simplex

which resides in the local coordinate space parameterized by the local coordinates ξ1,
…, ξd. If d = 1, then this simplex is the unit interval. If d = 2, it is a triangle with two
45 degree angles, and if d = 3 it is a tetrahedron. Now you can consider the mesh
element as a linear transformation of the standard simplex. Namely, by letting the

u x() U1ϕ1 x() U2ϕ2 x() U3ϕ3 x()+ +=

ϕi x() ϕi x()

ϕ1 x() 1 x if 0 x 1≤ ≤–

0 if 1 x 2≤ ≤⎩
⎨
⎧

=

ϕi x()

u x() U1ϕ1 x() U2ϕ2 x() U3ϕ3 x() U4ϕ4 x() U5ϕ5 x()+ + + +=

ϕi x() ϕi x()

ϕ1 x() 1 x–() 1 2x–() if 0 x 1≤ ≤
0 if 1 x 2≤ ≤⎩

⎨
⎧

=

ξ1 0 ξ2 0 … ξd 0 ξ1 … ξd 1≤+ +,≥, ,≥,≥
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 485

486 | C H A P T E R
global space coordinates xi be suitable linear (affine) functions of the local coordinates,
you get the mesh element as the image of the standard simplex.

When described in terms of local coordinates, the basis functions assume one of a few
basic shapes. These are the shape functions. In the example with linear elements in 1D,
any basis function on any mesh element is one of the following:

Thus the first two are the shape functions in this example (0 is not counted as a shape
function). In the example with quadratic elements in 1D, the shape functions are

C U R V E D M E S H E L E M E N T S

When using higher-order elements (that is, elements of an order > 1), the solution has
a smaller error. The error also depends on how well the mesh approximates the true
boundary. To keep errors in the finite element approximation and the boundary
approximation at the same level, it is wise to use curved mesh elements. They are
distorted mesh elements that can approximate a boundary better than ordinary
straight elements (if the problem’s boundary is curved). You can get curved mesh
elements by writing the global coordinates xi as polynomials of order k (the geometry
shape order) in the local coordinates ξj. (The earlier example took k = 1). Then the
mesh element is the image of the standard simplex. For mesh elements that do not
touch the boundary, there is no reason to make them curved, so they are straight. It is
customary to use the same order k here as for the order of the (Lagrange) element.
This is referred to as using isoparametric elements.

The order k is determined by the geometry shape order for the frame (coordinate
system) associated with the finite element. You can control the geometry shape order
using the Model Settings dialog box. The frame is determined by the property frame
to the finite element (the default is the reference frame); see “Shape Function
Variables” on page 176. For certain finite elements, the geometry shape order given
by the frame can be overridden by the property sorder. In the COMSOL
Multiphysics user interface, the default setting is to use an automatic geometry shape
order, which means that the geometry shape order is equal to the highest order of any
shape function used in the model.

If a curved mesh element becomes too distorted, it can become inverted and cause
problems in the solution. The software can then reduce the geometry shape order

φ ξ1 φ 1 ξ– 1 φ,=, 0= =

φ 1 ξ1–() 1 2ξ1–() φ 4ξ1 1 ξ1–() φ ξ1 2ξ1 1–()=,=,=
 3 : T H E F I N I T E E L E M E N T M E T H O D

automatically to avoid inverted elements (see “Avoiding Inverted Mesh Elements” on
page 374 in the COMSOL Multiphysics User’s Guide).

T H E L A G R A N G E E L E M E N T

The preceding examples are special cases of the Lagrange element. Consider a positive
integer k, the order of the Lagrange element. The functions u in this finite element
space are piecewise polynomials of degree k, that is, on each mesh element u is a
polynomial of degree k. To describe such a function it suffices to give its values in the
Lagrange points of order k. These are the points whose local (element) coordinates
are integer multiples of 1/k. For example, for a triangular mesh in 2D with k = 2, this
means that you have node points at the corners and side midpoints of all mesh
triangles. For each of these node points pi, there exists a degree of freedom Ui = u(pi)
and a basis function . The restriction of the basis function to a mesh element is
a polynomial of degree (at most) k in the local coordinates such that at node
i, and at all other nodes. Thus the basis functions are continuous and you have

The Lagrange element of order 1 is called the linear element. The Lagrange element
of order 2 is called the quadratic element.

The Lagrange elements are available with all types of mesh elements. The order k can
be arbitrary, but the available numerical integration formulas usually limits its
usefulness to (for tetrahedral meshes).

Syntax for the Lagrange Element (shlag)
To specify a Lagrange shape function in the shape edit field on the Element page of
Subdomain settings, enter a string of the form shlag(k,basename), where k is the
order (a positive integer) and basename is the name of the variable (a string enclosed
in single quotes), for example, shlag(2,'u'). There is also an alternative syntax
shlag(…) based on property names and values. The following properties are allowed:

TABLE 3-1: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHLAG SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

order positive integer Basis function order

frame string reference
frame

Frame

ϕi ϕi
ϕi 1=

ϕi 0=

u Uiϕi

i
∑=

k 5≤ k 4≤
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 487

488 | C H A P T E R
It is not possible to abbreviate the property names, and you must write them in
lowercase letters enclosed in single quotation marks. For example:

shlag('order',2,'basename','u')

Note: When using the property name/value syntax for shlag in MATLAB, you must
enter the command as a string with each string argument enclosed in two single
quotes because they become strings within a string:
'shlag(''order'',2,''basename'',''u'')'.

The Lagrange element defines the following variables. Denote basename with u, and
let x and y denote (not necessarily distinct) space coordinates. The variables are
(sdim = space dimension and edim = mesh element dimension):

• u

• ux, meaning the derivative of u with respect to x, defined on edim = sdim

• uxy, meaning a second derivative, defined on edim = sdim

• uTx, the tangential derivative variable, meaning the x-component of the tangential
projection of the gradient, defined on edim < sdim

• uTxy, meaning xy-component of the tangential projection of the second derivative,
defined when edim < sdim

When computing the derivatives, the global space coordinates are expressed as
polynomials of degree (at most) sorder in the local coordinates.

Note: The use of isoparametric elements means that u is not a polynomial in the
global coordinates (if k > 1), only in the local coordinates.

border positive integer Alias for order

sorder positive integer determined by
frame

Geometry shape order

TABLE 3-1: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHLAG SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION
 3 : T H E F I N I T E E L E M E N T M E T H O D

T H E A R G Y R I S E L E M E N T

For a function represented with Lagrange elements, the first derivatives between mesh
elements can be discontinuous. In certain equations (for example, the biharmonic
equation) this can be a problem. The Argyris element has basis functions with
continuous derivatives between mesh triangles (it is defined in 2D). The second order
derivative is continuous in the triangle corners. On each triangle, a function u in the
Argyris finite element space is a polynomial of degree 5 in the local coordinates.

The Argyris element is available with triangular meshes only.

When setting Dirichlet boundary conditions on a variable that has Argyris shape
functions, a locking effect can occur if the boundary is curved and constraint order
(cporder) 5 is used. Use cporder=4 if the boundary is curved and cporder=5 for
straight boundaries.

Syntax for the Argyris Element (sharg_2_5)
To specify Argyris shape functions in the shape edit field on the Element tab in the
Subdomain Settings dialog box, enter a string of the form sharg_2_5(basename),
where basename is the name of the variable (a string enclosed in single quotes), for
example, sharg_2_5('u'). There is also an alternative syntax sharg_2_5(...) based
on property names and values. The following properties are allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: sharg_2_5('basename','u').

Note: When using the property name/value syntax for sharg in MATLAB, you must
enter the command as a string with each string argument enclosed in two single
quotes because they become strings within a string:
'sharg_2_5(''basename'',''u'')'.

TABLE 3-2: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHARG SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

frame string reference
frame

Frame
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 489

490 | C H A P T E R
The Argyris element defines the following degrees of freedom (where u is the base
name and x and y are the space coordinate names):

• u at corners

• ux and uy at corners, meaning derivatives of u

• uxx, uxy, and uyy at corners, meaning second derivatives

• un at side midpoints, meaning a normal derivative. The direction of the normal is
to the right if moving along an edge from a corner with lower mesh vertex number
to a corner with higher number

The Argyris element defines the following field variables (where sdim = space
dimension = 2 and edim = mesh element dimension):

• u

• ux, meaning the derivative of u with respect to x

• uxy, meaning a second derivative, defined for edim = sdim and edim = 0

• uxTy, the tangential derivative variable, meaning the y-component of the tangential
projection of the gradient of ux, defined for 0 < edim < sdim

When computing the derivatives, the global space coordinates are always expressed
with shape order 1 in the Argyris element.

T H E H E R M I T E E L E M E N T

On each mesh element, the functions in the Hermite finite element space are the same
as for the Lagrange element, namely, all polynomials of degree (at most) k in the local
coordinates. The difference lies in which DOFs are used. For the Hermite element, a
DOF u exists at each Lagrange point of order k, except at those points adjacent to a
corner of the mesh element. These DOFs are the values of the function. In addition,
other DOFs exist for the first derivatives of the function (with respect to the global
coordinates) at the corners (ux and uy in 2D). Together, these DOFs determine the
polynomials completely. Note that the functions in the Hermite finite element space
have continuous derivatives between mesh elements at the mesh vertices. However, at
other common points for two mesh elements, these derivatives are not continuous.
Thus, you can think of the Hermite element as lying between the Lagrange and Argyris
elements.

The Hermite element is available with all types of mesh elements. The order k ≥ 3 can
be arbitrary, but the available numerical integration formulas usually limits its
usefulness to (for tetrahedral meshes).k 5≤ k 4≤
 3 : T H E F I N I T E E L E M E N T M E T H O D

When setting Dirichlet boundary conditions on a variable that has Hermite shape
functions, a locking effect can occur if the boundary is curved and the constraint order
cporder is the same as the order of the Hermite element. This means that the
derivative becomes over constrained at mesh vertices at the boundary, due to the
implementation of the boundary conditions. To prevent this locking, you can specify
cporder to be the element order minus 1.

Syntax for the Hermite Element (shherm)
To specify Hermite shape functions in the shape edit field on the Element tab in the
Subdomain Settings dialog box, enter a string of the form shherm(k, basename),
where k is the order (an integer > 2), and basename is the name of the variable (a string
enclosed in single quotes), for example shherm(3,'u'). There is also an alternative
syntax shherm(...) based on property names and values. The following properties
are allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shherm('order',3,'basename','u').

Note: When using the property name/value syntax for shherm in MATLAB, you
must enter the command as a string with each string argument enclosed in two single
quotes because they become strings within a string:
'shherm(''order'',3,''basename'',''u'')'.

TABLE 3-3: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHHERM SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

order integer >= 3 Basis function order

frame string reference
frame

Frame

border integer Alias for order

sorder positive integer determined by
frame

Geometry shape order
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 491

492 | C H A P T E R
The Hermite element defines the following degrees of freedom:

• The value of the variable basename at each Lagrange node point that is not adjacent
to a corner of the mesh element.

• The values of the first derivatives of basename with respect to the global space
coordinates at each corner of the mesh element. The names of these derivatives are
formed by appending the space coordinate names to basename.

The Hermite element defines the following field variables. Denote basename with u,
and let x and y denote (not necessarily distinct) space coordinates. The variables are
(sdim = space dimension and edim = mesh element dimension):

• u

• ux, meaning the derivative of u with respect to x, defined when edim = sdim or
edim=0

• uxy, meaning a second derivative, defined when edim = sdim

• uTx, the tangential derivative variable, meaning the x-component of the tangential
projection of the gradient, defined when 0 < edim < sdim

• uTxy, meaning xy-component of the tangential projection of the second derivative,
defined when edim < sdim

When computing the derivatives, the global space coordinates are expressed as
polynomials of degree (at most) sorder in the local coordinates.

B U B B L E E L E M E N T S

Bubble elements have shape functions that are zero on the boundaries of the mesh
element and have a maximum in the middle of the mesh element. The shape function
(there is only one for each mesh element) is defined by a lowest-order polynomial that
is zero on the boundary of the element.

The bubble element are available with all types of mesh elements.

Syntax for Bubble Elements (shbub)
To specify discontinuous shape functions in the shape edit field on the Element page in
the Subdomain Settings dialog box, enter a string of the form shbub(mdim,basename),
where mdim is the dimension of the mesh elements for which the shape functions exist,
and basename is the name of the variable (a string enclosed in single quotes), for
 3 : T H E F I N I T E E L E M E N T M E T H O D

example shbub(3,'u'). There is also an alternate syntax shbub(…) based on property
names and values. The following properties are allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shbub('mdim',3,'basename','u').

Note: When using the property name/value syntax for shbub in MATLAB, you must
enter the command as a string with each string argument enclosed in two single
quotes because they become strings within a string:
'shbub(''mdim'',3,''basename'',''u'')'.

The bubble element has a single degree of freedom, basename, at the midpoint of the
mesh element.

The bubble element defines the following field variables. Denote basename with u,
and let x and y denote (not necessarily distinct) space coordinates. The variables are
(sdim = space dimension and edim = mesh element dimension):

• u, defined when , u = 0 if edim < mdim.

• ux, meaning the derivative of u with respect to x, defined when edim = mdim =
sdim.

TABLE 3-4: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHBUB SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

mdim nonnegative
integer

sdim Dimension of the mesh
elements on which the bubble
exist

frame string reference
frame

Frame

sorder positive integer determined by
frame

Geometry shape order

edim mdim≤
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 493

494 | C H A P T E R
• uTx, the tangential derivative variable, meaning the x-component of the tangential
projection of the gradient, defined when mdim < sdim and . uTx
= 0 if edim < mdim.

• uTxy, meaning the xy-component of the tangential projection of the second
derivative, defined when mdim < sdim and . uTxy = 0 if
edim < mdim.

T H E C U R L E L E M E N T

In electromagnetics, curl elements (also called vector elements or Nédélec’s edge
elements) are popular. Each mesh element has DOFs corresponding only to tangential
components of the field. For example, in a tetrahedral mesh in 3D each of the three
edges in a triangle face element has degrees of freedom that are tangential components
of the vector field in the direction of the corresponding edges, and in the interior there
are degrees of freedom that correspond to vectors tangential to the triangle itself (if
the element order is high enough). Finally, in the interior of the mesh tetrahedron
there a degrees of freedom in all coordinate directions (if the element order is high
enough). This implies that tangential components of the vector field are continuous
across element boundaries, but the normal component is not necessarily continuous.
This also implies that the curl of the vector field is an integrable function, so these
elements are suitable for equations using the curl of the vector field.

The curl elements are available for all types of mesh elements. The polynomial order
of the curl element can be at most 3 in 3D, and at most 4 in 2D and 1D.

Syntax for the Curl Element (shcurl)
To specify curl shape functions in the shape edit field on the Element page in the
Subdomain Settings dialog box, enter a string of the form shcurl(k,fieldname)
where fieldname is the name of the vector field (a string enclosed in single quotes),
and k is the order (a positive integer), for example shcurl(3,'E'). Alternatively, use
the syntax shcurl(k,compnames), where compnames is a cell array of strings with the
vector components, for example shcurl(3,{'Ex' 'Ey'}). There is also a syntax
shcurl(...) based on property names and values. The following properties are
allowed:

TABLE 3-5: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHCURL SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

fieldname string Field name

compnames cell array of
strings

derived from
fieldname

Names of vector field
components

edim mdim≤

edim mdim≤
 3 : T H E F I N I T E E L E M E N T M E T H O D

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shcurl('compnames’,{'Ex' 'Ey'},'dofbasename','tE').

Note: When using the property name/value syntax for shcurl in MATLAB, you
must enter the command as a string with each string argument (including arguments
within arguments) enclosed in two single quotes because they become strings within
a string:
'shcurl(''compnames'',''{''Ex'',''Ey''}'',''dofbasename'',''tE'')'.

The default for compnames is fieldname concatenated with the space coordinate
names. The default for dofbasename is tallcomponents, where allcomponents is
the concatenation of the names in compnames.

The property dcompnames lists the names of the component of the antisymmetric
matrix

,

where Ai are the vector field components and xi are the space coordinates. The
components are listed in row order. If a name is the empty string, the field variable
corresponding to that component is not defined. If you have provided compnames, the
default for the entries in dcompnames is compnames(j) sdimnames(i) compnames(i)

dofbasename string See below Base name of degrees of
freedom

dcompnames string See below Names of the anti-symmetrized
components of the gradient of
the vector field

order integer Basis function order

frame string reference
frame

Frame

border positive integer order Alias for order

sorder positive integer given by
frame

Geometry shape order

TABLE 3-5: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHCURL SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

dAij xi∂
∂Aj

xj∂
∂Ai–=
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 495

496 | C H A P T E R
sdimnames(j) for off-diagonal elements. If only fieldname has been given, the
default for the entries are dfieldname sdimnames(i)sdimnames(j). Diagonal
elements are not defined per defaults. For example,
shcurl('order',3,'fieldname','A','dcompnames',

{'','','curlAy','curlAz','','','','curlAx',''}).

The curl element defines the following degrees of freedom: dofbasename d c, where
d = 1 for DOFs in the interior of an edge, d = 2 for DOFs in the interior of a surface,
etc., and c is a number between 0 and d − 1.

The curl element defines the following field variables (where comp is a component
name from compnames, and dcomp is a component from dcompnames, sdim = space
dimension and edim = mesh element dimension):

• comp, meaning a component of the vector, defined when edim = sdim.

• tcomp, meaning one component of the tangential projection of the vector onto the
mesh element, defined when edim < sdim.

• compx, meaning the derivative of a component of the vector with respect to global
space coordinate x, defined when edim = sdim.

• tcompTx, the tangential derivative variable, meaning the x component of the
projection of the gradient of tcomp onto the mesh element, defined when edim <
sdim. Here, x is the name of a space coordinate.

• dcomp, meaning a component of the anti-symmetrized gradient, defined when
edim = sdim.

• tdcomp, meaning one component of the tangential projection of the
anti-symmetrized gradient onto the mesh element, defined when edim < sdim.

For performance reasons, prefer using dcomp in expressions involving the curl rather
than writing it as the difference of two gradient components.

For the computation of components, the global space coordinates are expressed as
polynomials of degree (at most) sorder in the local coordinates.

D I S C O N T I N U O U S E L E M E N T S

The functions in the discontinuous elements space are the same as for the Lagrange
element, with the difference that the basis functions are discontinuous between the
mesh elements. All degrees of freedom are located in the element interior.
 3 : T H E F I N I T E E L E M E N T M E T H O D

The discontinuous elements are available with all types of mesh elements. The
polynomial order k can be arbitrary, but the available numerical integration formulas
usually limits its usefulness to (for tetrahedral meshes).

Syntax for the Discontinuous Element (shdisc)
To specify discontinuous shape functions in the shape edit field on the Element tab in
the Subdomain Settings dialog box, enter a string of the form
shdisc(mdim,order,basename), where mdim is the dimension of the mesh elements
for which the shape functions exist; order is the order (a positive integer); and
basename is the name of the variable (a string enclosed in single quotes), for example
shdisc(3,2,'u'). There is also an alternative syntax shdisc(…) based on property
names and values. The following properties are allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shdisc('mdim',3,'order',2,'basename','u').

Note: When using the property name/value syntax for shdisc in MATLAB, you
must enter the command as a string with each string argument enclosed in two single
quotes because they become strings within a string:
'shdisc(''mdim'',3,''order'',2,''basename'',''u'')'.

TABLE 3-6: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHDISC SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

order integer Basis function order

mdim nonnegative
integer

sdim Dimension of the mesh
elements where the
discontinuous element exists

frame string reference
frame

Frame

border nonnegative
integer

order Alias for order

sorder positive integer given by
frame

Geometry shape order

k 5≤ k 4≤
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 497

498 | C H A P T E R
The discontinuous element defines the following field variables. Denote basename
with u, and let x denote the space coordinates. The variables are (edim is the mesh
element dimension):

• u, defined when edim = mdim.

• ux, meaning the derivative of u with respect to x, defined when edim = mdim =
sdim.

• uTx, the tangential derivative variable, meaning the derivative of u with respect to
x, defined when edim = mdim < sdim.

D E N S I T Y E L E M E N T S

The functions in the density elements space are the same as for the discontinuous
element if the mesh element is not curved. If the element is curved, the functions
define a density of the given order in local coordinates, and the value in global
coordinates depends on the transformation between local and global coordinates.

The discontinuous elements are available with all types of mesh elements. The order k
can be arbitrary, but the available numerical integration formulas usually limits its
usefulness to (for tetrahedral meshes).

Syntax for the Density Element (shdens)
To specify discontinuous shape functions in the shape edit field on the Element tab in
the Subdomain Settings dialog box, enter a string of the form
shdens(order,basename), where order is the order (a positive integer) and
basename is the name of the variable (a string enclosed in single quotes), for example
shdens(2,'u'). There is also an alternative syntax shdens(…) based on property
names and values. The following properties are allowed:

TABLE 3-7: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHDENS SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

order integer Basis function order

frame string reference
frame

Frame

border nonnegative
integer

order Alias for order

sorder positive integer given by
frame

Geometry shape order

k 5≤ k 4≤
 3 : T H E F I N I T E E L E M E N T M E T H O D

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shdens('order',2,'basename','u').

Note: When using the property name/value syntax for shdens in MATLAB, you
must enter the command as a string with each string argument enclosed in two single
quotes because they become strings within a string:
'shdens(''order'',2,''basename'',''u'')'.

The density element defines the following field variables. Denote basename with u,
and let x denote the space coordinates. The variables are (edim is the mesh element
dimension):

• u, defined when edim = sdim.

• ux, meaning the derivative of u with respect to x, defined when edim = sdim.

D I V E R G E N C E E L E M E N T S

For modeling the B (magnetic flux density) and D (electric displacement) fields in
electromagnetics, the divergence elements are useful. The DOFs on the boundary of
a mesh element correspond to normal components of the field. In addition, there are
DOFs corresponding to all vector field components in the interior of the mesh element
of dimension sdim (if the order is high enough). This implies that the normal
component of the vector field is continuous across element boundaries, but the
tangential components are not necessarily continuous. This also implies that the
divergence of the vector field is an integrable function, so these elements are suitable
for equations using the divergence of the vector field.

The divergence element are available with all types of mesh elements. The polynomial
order of the divergence element can be at most 3 in 3D, and at most 4 in 2D and 1D.

Syntax for Divergence Elements (shdiv)
To specify divergence shape functions in the shape edit field on the Element tab in the
Subdomain Settings dialog box, enter a string of the form shdiv(fieldname) where
fieldname is the name of the vector field (a string enclosed in single quotes), for
example shdiv('B'). Alternatively, use the syntax shdiv(compnames), where
compnames is a cell array of strings with the vector components, for example,
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 499

500 | C H A P T E R
shdiv({'Bx' 'By'}). There is also a syntax shdiv(...) based on property names
and values. The following properties are allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shdiv('compnames’,{'Bx' 'By'},'dofbasename','nB').

Note: When using the property name/value syntax for shdiv in MATLAB, you
must enter the command as a string with each string argument (including arguments
within arguments) enclosed in two single quotes because they become strings within
a string:
'shdiv(''compnames'',''{''Bx'',''By''}'',''dofbasename'',''nB'')'.

The default for compnames is fieldname concatenated with the space coordinate
names. The default for dofbasename is nallcomponents, where allcomponents is
the concatenation of the names in compnames.

The vector element defines the following degrees of freedom: dofbasename on
element boundaries, and dofbasename sdim c, c = 0, …, sdim − 1 for DOFs in the
interior.

TABLE 3-8: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHDIV SHAPE FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

fieldname variable name Name of vector field

compnames cell array of
strings

derived from
fieldname

Names of vector field
components

dofbasename string see below Base name of degrees of
freedom

divname string see below Name of divergence field

order integer 1 Basis function order

frame string reference
frame

Frame

border positive integer order Alias for order

sorder positive integer given by
frame

Geometry shape order
 3 : T H E F I N I T E E L E M E N T M E T H O D

The divergence element defines the following field variables (where comp is a
component name from compnames, divname is the divname, sdim = space dimension
and edim = mesh element dimension):

• comp, meaning a component of the vector, defined when edim = sdim.

• ncomp, meaning one component of the projection of the vector onto the normal of
mesh element, defined when edim = sdim–1.

• compx, meaning the derivative of a component of the vector with respect to global
space coordinate x, defined when edim = sdim.

• ncompTx, the tangential derivative variable, meaning the x component of the
projection of the gradient of ncomp onto the mesh element, defined when edim <
sdim. Here, x is the name of a space coordinate. ncompTx = 0.

• divname, means the divergence of the vector field.

For performance reasons, prefer using divname in expressions involving the
divergence rather than writing it as the sum of sdim gradient components.

For the computation of components, the global space coordinates are expressed as
polynomials of degree (at most) sorder in the local coordinates.

S C A L A R P L A N E WA V E B A S I S F U N C T I O N

The scalar plane wave basis function, shuwhelm, is used to implement scalar plane wave
basis functions for solving scalar wave equations of Helmholtz type using an ultraweak
variational formulation (UWVF). These basis functions are discontinuous in
between mesh elements.

Syntax for the Scalar Plane Wave Basis Function (shuwhelm)
To specify scalar plane wave basis functions in the shape edit field on the Element page
in the Subdomain Settings dialog box, enter a string of the form
shuwhelm(ndir,basename,kvar), where ndir is the number of directions for the
waves (a positive integer); basename is the name of the variable (a string enclosed in
single quotes); and kvar is the name of a variable for the wave number (a string
enclosed in single quotes), for example shuwhelm(1,'p','k'). In addition, you can
use the syntax shuwhelm(ndir,basename,kvar,{xvar,yvar}) to specify the
expressions for the spatial coordinate transformation as strings in a cell array, such as
{'x','y'} (in 2D). In domains that represent perfectly matched layers, the spatial
coordinates are mapped to a complex domain, and special spatial coordinate variables
provide the transformation of the spatial coordinates. There is also an alternative syntax
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 501

502 | C H A P T E R
shuwhelm(...) based on property names and values. The following properties are
allowed:

The property names cannot be abbreviated and must be written in lowercase letters
enclosed in single quotation marks.

Example: shuwhelm('ndir',2,'basename','u').

Note: When using the property name/value syntax for shuwhelm in MATLAB, you
must enter the command as a string with each string argument enclosed in two single
quotes because they become strings within a string:
'shuwhelm(''ndir'',2,''basename'',''u'')'.

The scalar plane wave basis function defines the following field variables. Denote
basename with u, and let x denote the space coordinates. The variables are (sdim =
space dimension):

• u

• ux, meaning the derivative of u with respect to x, defined on edim = sdim

Discretization of the Equations

This section describes how COMSOL Multiphysics forms the discretization of the
PDE. Consider a 2D problem for simplicity. The starting point is the weak formulation
of the problem. First comes the discretization of the constraints

TABLE 3-9: VALID PROPERTY NAME/VALUE PAIRS FOR THE SHUWHELM WAVE BASIS FUNCTION

PROPERTY VALUE DEFAULT DESCRIPTION

basename variable name Base variable name

ndir integer Number of wave directions

kexpr string Variable for the wave number

xexpr cell array of
strings

{'x','y','z'} Expressions for the x, y, and z
coordinate transformations

0 R 2()
= on Ω

0 R 1()
= on B

0 R 0()
= on P
 3 : T H E F I N I T E E L E M E N T M E T H O D

starting with the constraints on the boundaries, B. For each mesh element in B (that
is, each mesh edge in B), consider the Lagrange points of some order k (see “The
Lagrange Element” on page 487). Denote them by , where m is the index of the
mesh element. Then the discretization of the constraint is

,

that is, the constraints must hold pointwise at the Lagrange points. The Lagrange
point order k can be chosen differently for various components of the constraint vector
R(1), and it can also vary in space. COMSOL Multiphysics’ data structures denote the
k as cporder. The constraints on subdomains Ω and points P are discretized in the
same way. (Nothing needs to be done with the points P.) You can collect all these
pointwise constraints in one equation 0 = M, where M is the vector consisting of all
the right-hand sides.

COMSOL Multiphysics approximates the dependent variables with functions in the
chosen finite element space(s). This means that the dependent variables are expressed
in terms of the degrees of freedom as

where are the basis functions for variable ul. Let U be the vector with the degrees
of freedoms Ui as its components. This vector is called the solution vector because it
is what you want to compute. M depends only on U, so the constraints can be written
0 = M(U).

Now consider the weak equation:

where µ(i) are the Lagrange multipliers. To discretize it, express the dependent
variables in terms of the DOFs as described earlier. Similarly, approximate the test
functions with the same finite elements (this is the Galerkin method):

xmj
1()

0 R 1() xmj
1()()=

ul Uiϕi
l()

i
∑=

ϕi
l()

0 W 2() Ad
Ω
∫ W 1() sd

B
∫ W 0()

P
∑+ +=

v h 2()Tµ 2()⋅ Ad
Ω
∫– v h⋅ 1()Tµ 1() sd

B
∫– v h⋅ 0()Tµ 0()

P
∑–

vl Viϕi
l()

i
∑=
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 503

504 | C H A P T E R
Because the test functions occur linearly in the integrands of the weak equation, it is
enough to require that the weak equation holds when you choose the test functions as
basis functions:

When substituted into the weak equation, this gives one equation for each i. Now the
Lagrange multipliers must be discretized. Let

where are the Lagrange points defined earlier, and are certain weights (see
the following discussion). The term

is approximated as a sum over all mesh elements in B. The contribution from mesh
element number m to this sum is approximated with the Riemann sum

where is the length (or integral of ds) over the appropriate part of the mesh
element. The integral over Ω and the sum over P is approximated similarly.

All this means that you can write the discretization of the weak equation as

where L is a vector whose ith component is

evaluated for . Λ is the vector containing all the discretized Lagrange
multipliers . NF is a matrix whose ith row is a concatenation of the vectors

For problems using ideal constraints, NF is equal to the constraint Jacobian matrix
N, which is defined as

vl ϕi
l()

=

Λmj
d() µ d() xmj

d()()wmj
d()

=

xmj
d() wmj

d()

ϕi h⋅ 1()Tµ 1() sd
B
∫

ϕi xmj
1()() h 1()T xmj

1()()µ 1() xmj
1()()wmj

1()⋅
j
∑ ϕi xmj

1()() h 1()T xmj
1()()Λmj

1()⋅
j
∑=

wmj
1()

0 L NFΛ–=

W 2() Ad
Ω
∫ W 1() sd

B
∫ W 0()

P
∑+ +

vl ϕi
l()

=

Λmj
d()

ϕi xmj
d()()h d() xmj

d()()
T

 3 : T H E F I N I T E E L E M E N T M E T H O D

To sum up, the discretization of the stationary problem is

The objective is to solve this system for the solution vector U and the Lagrange
multiplier vector Λ. L is called the residual vector, M is the constraint residual, and
NF is the constraint force Jacobian matrix. Note that M is redundant in the sense
that some pointwise constraints occur several times. Similarly, Λ is redundant. Solvers
remove this redundancy.

N U M E R I C A L Q U A D R A T U R E

The integrals occurring in the components of the residual vector L (as well as K, as
noted later in this discussion) are computed approximately using a quadrature
formula. Such a formula computes the integral over a mesh element by taking a
weighted sum of the integrand evaluated in a finite number of points in the mesh
element. The order of a quadrature formula on a 1D, triangular, or tetrahedral element
is the maximum number k such that it exactly integrates all polynomials of degree k.
For a quadrilateral element, a formula of order k integrates exactly all products
p(ξ1)q(ξ2), where p and q are polynomials of degree k in the first and second local
coordinates, respectively. A similar definition holds for hexahedral and prism elements.
Thus the accuracy of the quadrature increases with the order. On the other hand, the
number of evaluation points also increases with the order. As a rule of thumb, you can
take the order to be twice the order of the finite element being used. COMSOL
Multiphysics’ data structures refer to the order of the quadrature formula as gporder
(gp stands for Gauss points). The maximum available order of the quadrature formula
(the gporder value) is:

• 41 for 1D, quadrilateral, and hexahedral meshes

• 30 for triangular and prism meshes

• 8 for tetrahedral meshes

T I M E - D E P E N D E N T P R O B L E M S

The discretization of a time-dependent problem is similar to the stationary problem

N
U∂

∂M
–=

0 L U() NF U()Λ–=

0 M U()=
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 505

506 | C H A P T E R
where U and Λ now depend on time t.

L I N E A R I Z E D P R O B L E M S

Consider a linearized stationary problem (see “The Linear or Linearized Model” on
page 386). The linearization “point” u0 corresponds to a solution vector U0. The
discretization of the linearized problem is

where K is called the stiffness matrix, and L(U0) is the load vector. For problems
given in general or weak form, K is the Jacobian of −L:

The entries in the stiffness matrix are computed in a similar way to the load vector,
namely by integrating certain expressions numerically. This computation is called the
assembling the stiffness matrix.

If the original problem is linear, then its discretization can be written

Similarly, for a time-dependent model the linearization involves the damping matrix

and the mass matrix

When E = 0, the matrix D is often called the mass matrix instead of the damping
matrix.

0 L U U
·

U
··

t, , ,() NF U t,()Λ–=

0 M U t,()=

K U0() U U0–() NF U0()Λ+ L U0()=

N U0() U U0–() M U0()=

K
U∂

∂L
–=

KU NFΛ+ L 0()=

NU M 0()=

D
U
·

∂

∂L
–=

E
U
··

∂

∂L
–=
 3 : T H E F I N I T E E L E M E N T M E T H O D

E I G E N V A L U E P R O B L E M S

The discretization of the eigenvalue problem is

where U0 is the solution vector corresponding to the linearization “point.” If the
underlying problem is linear, then D, K, and N do not depend on U0, and you can
write

WE A K C O N S T R A I N T S

Weak constraints present an alternative way to discretize the Dirichlet conditions, as
opposed to the pointwise constraints described earlier. The idea is to regard the
Lagrange multipliers µ(d) as field variables and thus approximate them with finite
elements. This concept also introduces corresponding test functions ν(d). Multiply the
Dirichlet conditions with these test functions and integrate to end up with the
following system in the case of a stationary problem in 2D:

You could add these weak equations to form a single equation. This treatment of the
Lagrange multipliers as ordinary variables has thus produced a weak equation without
constraints. This can be useful if the Lagrange multipliers are of interest in their own
right.

λ2E U0()U λD– U0()U K+ U0()U NF U0()Λ+ 0=

N U0()U 0=

KU NFΛ+ λDU λ2EU–=

NU 0=

0 W 2() Ad
Ω
∫ W 1() sd

B
∫ W 0()

P
∑+ +=

v h⋅ 2()Tµ 2() Ad
Ω
∫– v h 1()Tµ 1()⋅ sd

B
∫– v h 0()Tµ 0()⋅

P
∑–

0 ν 2() R 2()⋅
Ω
∫ dA=

0 ν 1() R 1()⋅
B
∫ ds=

0 ν 0()

P
∑ R 0()⋅=
U N D E R S T A N D I N G T H E F I N I T E E L E M E N T M E T H O D | 507

508 | C H A P T E R
Take care when combining pointwise and weak constraints. For instance, if you have
both types of constraints for some variable and the constraints are in adjacent domains,
the resulting discretization does not work. Note that you can obtain pointwise
constraints from the weak constraints formulation by using the basis functions

for the Lagrange multipliers and their test functions, that is, let

where δ is Dirac’s delta function.

δ x xmj
d()

–()

µ d() Λmj
d()δ

m j,
∑= x xmj

d()
–()
 3 : T H E F I N I T E E L E M E N T M E T H O D

Wha t Equa t i o n s Doe s COMSOL
Mu l t i p h y s i c s S o l v e ?

This section explains how COMSOL Multiphysics forms the system of equations and
constraints that it solves. It also discusses the implications of Dirichlet conditions
involving several solution components in a multiphysics model.

You specify material parameters and boundary conditions in a number of application
modes. Enter these settings in the Subdomain Settings, Boundary Settings, Edge Settings,
and Point Settings dialog boxes, which you open from the Physics menu. Each
application mode forms one or several PDEs and boundary conditions from these
settings. If you use one of the PDE modes, you specify the equation coefficients and
terms directly.

The software collects all the equations and boundary conditions formulated by the
application modes into one large system of PDEs and boundary conditions. This
process also includes converting equations and boundary conditions to the selected
solution form, which can be coefficient form, general form, or weak form. You can
select the solution form on the Advanced page in the Solver Parameters dialog box. This
dialog box also provides the option automatic (the default setting), which means that
you let the software select the solution form. COMSOL Multiphysics uses the weak
solution form unless you have chosen to use the adaptive solver. The software then
selects the general solution form because the adaptive solver does not work with the
weak form. If any of the equation system forms is weak, the solution form is also the
weak form even if you use the adaptive solver because it is not possible to convert the
equations from weak form to general form.

In the Model Settings dialog box you can specify the equation system form—the form
of the system of equations and boundary conditions that you can see in the Equation

System dialog boxes. This form can differ from the solution form. If it does, COMSOL
Multiphysics first converts the equations to the solution form before solving. If you use
a PDE mode, notice the difference between the form of the PDE in the application
mode, the equation system form, and the solution form.

Occasionally you might want to change the PDEs generated by the application modes.
You can do this by editing the settings in Equation System>Subdomain Settings dialog
box (see “Viewing and Modifying the Full Equation System” on page 217 in the
COMSOL Multiphysics User’s Guide). Similarly, you can change the boundary
W H A T E Q U A T I O N S D O E S C O M S O L M U L T I P H Y S I C S S O L V E ? | 509

510 | C H A P T E R
conditions generated by the application modes in the Equation System>Boundary

Settings dialog box (see “Modifying Boundary Settings for the Equation System” on
page 249 in the COMSOL Multiphysics User’s Guide). If you have PDEs or
constraints on edges or points, you can also modify the equations that the application
modes generate in the Equation System>Edge Settings and Equation System>Point

Settings dialog boxes.

The Equation System/Solution Forms

C O E F F I C I E N T F O R M

In the coefficient equation system form, the PDEs and boundary conditions are
written in following form (for a time-dependent model):

In addition to these PDEs, there can be weak-form contributions; see the weak and
dweak edit fields on the Weak page of the Equation System>Subdomain Settings dialog
box. If these edit fields are nonzero, COMSOL Multiphysics modifies the above PDE
by:

• Converting the PDE to the weak form by multiplying it by a test function,
integrating, and integrating the flux term by parts.

• Adding the dweak term to the left side of the resulting weak equation and adding
the weak term to the right side.

• Adding weak-form contributions from the Equation System>Boundary Settings,
Equation System>Edge Settings, and Equation System>Point Settings dialog boxes to
the resulting weak equation.

In addition to the above Dirichlet boundary condition, hu = r, there can be additional
constraints in the constr edit field on the Weak page of the Equation System>Boundary

Settings dialog box. The expressions in the constr edit field are constrained to be equal
to zero. Similarly, the constraints in the constr edit fields in Equation System>Subdomain

Settings, Equation System>Edge Settings, and Equation System>Point Settings dialog
boxes are enforced.

ea
t2

2

∂
∂ u da+

t∂
∂u ∇+ c u∇– α u– γ+()⋅ β ∇u au+⋅+ f= in Ω

n c u α u γ–+∇()⋅ qu = g hTµ–+ on Ω∂

hu r= on Ω∂
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

 3 : T H E F I N I T E E L E M E N T M E T H O D

G E N E R A L F O R M

In the general equation system form, the PDEs and boundary conditions are written
in following form (for a time-dependent model):

Just like for the coefficient form, you can modify this PDE by adding weak-form
contributions in the weak and dweak edit field (see earlier discussion). Similarly, there
can be additional constraints in the constr edit fields.

WE A K F O R M

In the weak equation system form, the PDEs are written solely in the weak formulation
(see the weak and dweak edit fields on the Weak tab of Equation System>Subdomain

Settings, Equation System>Boundary Settings, Equation System>Edge Settings, and
Equation System>Point Settings dialog boxes). The dweak fields contribute to the left
side of the equations, and the weak fields contribute to the right side of the equations.

You specify constraints in the constr edit fields in the Equation System>Subdomain

Settings, Equation System>Boundary Settings, Equation System>Edge Settings, and
Equation System>Point Settings dialog boxes. These expressions are constrained to be
equal to zero.

The Full Equation System

In addition to the PDEs and boundary conditions that you can view in the dialog
boxes from the Equation System submenu on the Physics menu, there can sometimes
be extra contributions, which are generated by the application modes or by periodic
conditions and identity conditions. You cannot view these contributions directly in the
user interface but only in the Model M-file or by exporting the FEM structure to the
command window. The extra contributions show up in the fields elemmph and
elemcpl of the FEM structure. They occur in the following cases:

• Periodic conditions generate extra constraints.

• Identity conditions generate extra constraints.

eau·· d+ au· ∇+ Γ⋅ F= in Ω

n– Γ⋅ = G hTµ– on Ω∂

0 R= on Ω∂
⎩
⎪
⎪
⎨
⎪
⎪
⎧

W H A T E Q U A T I O N S D O E S C O M S O L M U L T I P H Y S I C S S O L V E ? | 511

512 | C H A P T E R
• Dirichlet boundary conditions for the tangential component of a vector field
discretized using vector elements generate extra constraints.

• The Shell application mode in the Structural Mechanics Module generates extra
contributions to the equations.

The full system of equations and constraints is approximated using the finite element
method; see “Discretization of the Equations” on page 502.

Notes on Constraints in Multiphysics Models

In a multiphysics model, if a Dirichlet boundary condition involves two different
dependent variables and there is also a Neumann boundary condition, that Neumann
boundary condition is not the one displayed in the application mode. The displayed
Neumann boundary condition is modified by adding an extra Lagrange multiplier
term on the right-hand side.

To explain this, assume that you want to solve the system of PDEs

on the interval 0 < x < 1 with the Dirichlet boundary conditions u = 0 and v = 0 at x
= 0, and u = v at x = 1, and the Neumann boundary condition vx = 0 at x = 1. Use two
PDE, Coefficient Form application modes (one for u and one for v) and the general
equation system form.

The general form boundary conditions at x = 1 (which you can inspect in the Equation

System>Boundary Settings dialog box) read

where

The matrix h is

uxx– 1=

vxx– 1=⎩
⎨
⎧

n Γ⋅– G hTµ–=

0 R=⎩
⎨
⎧

n 1 Γ,
ux–

vx–
G, 0

0
R, v u–

0
= = = =
 3 : T H E F I N I T E E L E M E N T M E T H O D

Thus, the resulting boundary conditions are

The boundary condition ux = −µ1 is expected. It just says that −ux is equal to the
Lagrange multiplier µ1, but because µ1 is an unknown this condition can be
eliminated. However, the condition vx = µ1 is not expected and it invalidates the
argument. The resulting boundary condition is vx = −ux. Note that the
boundary-condition description in the PDE application mode for v incorrectly states
that the Neumann condition is vx = 0.

The reason for this unexpected result is the Lagrange multiplier term µ1 in the
right-hand side of the Neumann boundary condition for v. Such Lagrange multiplier
terms are often called constraint forces in a structural mechanics model. The moral is
that if you have a Dirichlet boundary condition involving both u and v, you get
constraint forces in the Neumann boundary conditions for both variables u and v. This
means that the Neumann boundary-condition description in the application modes
must be modified if you use such Dirichlet boundary conditions.

The term hTµ in the right-hand side of the Neumann boundary condition is what
characterizes ideal constraints. In the above example, you would like to have a
non-ideal constraint where the term hTµ is changed to

To accomplish this, you can remove the constraint specification on the Coefficients tab
of the Boundary Settings dialog box. Instead select User defined from the Constraint type
list on the Weak page. Then enter the constraint and the constraint force independently
in the constr and constrf edit fields, respectively.

h
∂R1 ∂u⁄ ∂R1 ∂v⁄

∂R2 ∂u⁄ ∂R2 ∂v⁄
– 1 1–

0 0
= =

ux

vx

1– 0
1 0

µ1

µ2

=

0
0

v u–

0
=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

1– 0
0 0

µ1

µ2
W H A T E Q U A T I O N S D O E S C O M S O L M U L T I P H Y S I C S S O L V E ? | 513

514 | C H A P T E R
 3 : T H E F I N I T E E L E M E N T M E T H O D

 4
A d v a n c e d G e o m e t r y T o p i c s
This chapter describes some advanced geometry topics that are part of the solid
modeling tools in COMSOL Multiphysics.
 515

516 | C H A P T E R
Ad v an c ed Geome t r y T op i c s

Rational Bézier Curves

A rational Bézier curve is a parameterized curve of the form

where the functions

are the Bernstein basis functions of degree p; bi = (x1, …, xn) are the control vertices
of the n-dimensional space; and wi are the weights, which should always be positive
real numbers. A rational Bézier curve has a direction defined by the parameter t. This
direction is used to uniquely determine subdomain numbers to the left and to the right
of a curve in 2D.

Note: The parameter t used in this section is named s or s1 when used as a variable.
It does not represent the arc length of a curve but is equivalent to the Bézier
parameter as described above.

The end-point interpolation property corresponds to b(0) = b0 and b(1) = bp.
Another useful property of the rational Bézier curves is that the direction of the
tangent vector at t = 0 and t = 1 is determined by the vectors b1 − b0 and bp − bp−1,
respectively. That is, the curve will always be tangent to the line connecting the control
vertices b0 and b1 and also to the line connecting bp−1 and bp. When joining curves
at end points, aligning the (nonzero) tangent vectors assures tangential continuity.
This technique produces visually smooth transitions between adjacent curves.

There is also an interaction between the control polygon and the curve. For instance,
the curve is always contained in the convex hull of its control polygon,

b t()

biwiBi
p t()

i 0=

p

∑

wiBi
p t()

i 0=

p

∑
-------------------------------------- 0 t 1≤ ≤,=

Bi
p t()

p
i⎝ ⎠

⎛ ⎞ ti 1 t–()p i–
=

 4 : A D V A N C E D G E O M E T R Y TO P I C S

{ b0, b1, …, bp }. A useful property is that of invariance under translation, rotation,
and scaling. Translating, rotating, or scaling the control polygon by a certain amount,
translates, rotates, or scales the curve that the polygon defines by exactly the same
amount. In formal terms, this property of rational Bézier curves is called affine
invariance.

A rational Bézier curve is equivalent to a polynomial Bézier curve (or simply a Bézier
curve) if the control weights w0, … , wp are all equal. In this case the denominator
equals the binomial expansion of (t + (1 − t))p, in which each term is one of the
Bernstein basis functions. This implies that the polynomial Bézier curves are a subset
of the rational Bézier curves.

Note that a line could be viewed as a rational Bézier curve of degree 1.

Conic Sections

Rational Bézier curves of degree 2 can represent all conic sections: circles, ellipses,
parabolas, and hyperbolas. Elliptical or circular curve segments are often called arcs.
The conic sections are also called quadric curves or quadrics. Because the parameter t
is constrained to be in the interval [0, 1], only a segment of the conic section is
represented. A 2nd degree curve consists of three control vertices and three weights.
There is a simple rule for classifying a 2nd degree curve if the end point weights are set
to 1, only allowing the central weight w1 to vary: if w0 = w2 = 1, then 0 < w1 < 1 gives
ellipses, w1 = 1 gives parabolas, and w1 > 1 gives hyperbolas. For a fixed control
polygon, at most one value of w1 (among the ellipses generated by letting 0 < w1 < 1)
gives a circle segment. For example, a quarter of a full circle is generated by a control
polygon with a right angle and with a central weight of .

R E L A T I O N T O C U R V E S O N I M P L I C I T F O R M .

A rational Bézier curve of degree 2 is a rational parameterization of an algebraic
curve of degree 2, that is, a curve on the familiar implicit form for quadrics

The unit circle, for example, has a = b = 1, f = −1 and c = d = e = 0. The set of rational
Bézier curves of degree 2 is essentially equivalent to the set of algebraic curves of
degree 2.

1 2⁄

ax2 by2 cxy dx ey f+ + + + + 0=
A D V A N C E D G E O M E T R Y TO P I C S | 517

518 | C H A P T E R
Cubic Curves

Rational Bézier curves of degree 3 (cubic curves) have more dynamic properties than
conic section curves. A cubic curve has four control vertices and four weights, making
it possible, for example, to create a self-intersecting control polygon or a zigzag control
polygon. A self-intersecting polygon may give rise to a self-intersecting curve, a loop.

A zigzag control polygon generates an S-shaped curve containing a point of inflection
where the tangent line lies on both sides of the curve.

A curve with a cusp is a limiting case of a curve with a loop. A cusp occurs when a loop
shrinks so that the area enclosed in the loop approaches zero. At the cusp the tangent
vector of the curve vanishes. That is, the curve has no well-defined tangent line at the
cusp.

R E L A T I O N T O C U R V E S O N I M P L I C I T F O R M

The set of rational Bézier curves of degree 3 is a strict subset of the set of algebraic
curves of degree 3, that is, curves that contain terms of the type x3, x2y, xy2, y3, x2,
and so on in their implicit form. This is because some algebraic curves of degree 3 do
not have a rational parameterization.

Rational Bézier Surfaces

When you create a 3D geometry object with a curved boundary, COMSOL
Multiphysics represents it by rational Bézier surfaces. The software supports two types
of Bézier surfaces: rectangular and triangular. A rectangular Bézier surface has a mixed
degree (m, n), which represents the degree of the surface in terms of two parameters,
often named s and t. A triangular Bézier surface has a single degree, m, just as a Bézier
curve.

A rectangular rational Bézier surface of degree p-by-q is described by

where and are the Bernstein basis functions of degree p and q, respectively, as
described in the previous section. This surface description is called rectangular because

S s t,()

bi j, wi j, Bi
p s()Bj

q t()
j 0=

q

∑
i 0=

p

∑

wi j, Bi
p s()Bj

q t()
j 0=

q

∑
i 0=

p

∑

---, 0 s t 1≤,≤= ,

Bi
p Bj

q

 4 : A D V A N C E D G E O M E T R Y TO P I C S

the parameter domain is rectangular, that is, the two parameters s and t can vary freely
in given intervals.

Another form of surface description is the triangular surface, also called a Bézier
triangle. A triangular rational Bézier surface is defined as

which differs from the Bézier curve description only by the use of bivariate Bernstein
polynomials instead of univariate, for the curve case. The bivariate Bernstein
polynomials of degree p are defined as

where the parameters s and t must fulfill the conditions

which form a triangular domain in the parameter space, therefore the name of this
surface description.

The normal vector, n(s , t), for a point, S (s , t), at a surface that is defined as

determines the direction of the surface. This direction is used to define the up- and
down subdomains of a surface.

The Bézier surfaces are contained in the convex hull of their control points. Bézier
surfaces also have the affine invariance property: invariance of surface under
translation, rotation, and scaling. Boundary curves of a Bézier surface are Bézier
curves, and the corners in the parameter grid that define the control points all lie on
the surface.

S s t,()

bi j, wi j, Bi j,
p s t,()

i j+ p≤
∑

wi j, Bi j,
p s t,()

i j+ p≤
∑

--- 0 s t 1≤,≤,=

Bi j,
p s t,() p!

i!j! p i– j–()!
----------------------------------sitj 1 s– t–()p i– j–

= , i j+ p≤

0 s t,≤
s t 1≤+⎩

⎨
⎧

n s t,()
s∂

∂S s t,()
t∂

∂S s t,()×=
A D V A N C E D G E O M E T R Y TO P I C S | 519

520 | C H A P T E R
The simplest form of surface is a plane. A Bézier triangle of degree 1 can define a plane
spanned by three distinct control points. A rectangular Bézier surface of degree (1, 1),
on the other hand, forms a bilinear surface where the boundary curves are lines.

COMSOL Multiphysics supports rectangular surfaces of mixed degree at most (3, 3)
and triangular surfaces of degree 1 to represent planar surfaces. Rectangular rational
Bézier surfaces of mixed degree up to (2, 2) can represent all common CAD surfaces,
including bilinear surfaces, cylinders, cones, spheres, ellipsoids, and tori. The
(3,3)-degree rational Bézier curves assist in the creation of additional free-form
surfaces. To model a cone or a cylinder you need a rectangular surface of degree (2,1).
Modeling a sphere or a torus requires rectangular surfaces of degree (2, 2).

C O N T R O L VE R T I C E S A N D WE I G H T S

A rectangular rational Bézier surface of degree (m,n) is defined by a control net
consisting of (m+1)-by-(n+1) control vertices assigned a positive weight. The surface
always interpolates the four corner points of the control net. A change in the net’s
shape produces a change in the surface’s appearance. Its shape mimics that of the
control net. The higher the surface degree the more complicated the shapes you can
create. Increasing the weight pulls the curve toward the corresponding control vertex.
This interaction between the control net and the surface makes the rational Bézier
surface representation useful.

T R I M M E D S U R F A C E S

The 3D geometry objects in COMSOL Multiphysics are formed by a set of trimmed
rational Bézier surfaces. A cylinder consists of four trimmed rectangular degree (2,1)
surfaces and two trimmed triangular planar surfaces. The planar surfaces are trimmed
by boundary curves in the parameter space so only a circular portion of each planar
surface is used. For the curved surfaces, the boundary curves in the parameter space
are lying on the rectangular boundary of the surface.

When using geometry modeling operations, the Bézier surfaces are trimmed by the
intersection curves between surfaces. By trimming surfaces, surface boundaries can
take virtually any shape. The connected surfaces of a 3D geometry object are called
faces. A surface can be divided into any number of faces, which are curved areas
bounded by trimming (intersection) curves.

Note: The parameters s and t used in this section are equivalent to the variables s1
and s2.
 4 : A D V A N C E D G E O M E T R Y TO P I C S

R A T I O N A L B É Z I E R R E P R E S E N T A T I O N S A N D N U R B S

The NURBS representation (nonuniform rational B-spline) is another popular curve
and surface representation scheme. It is usually possible to split a curve having a
NURBS representation into a sequence of rational Bézier curves.

Parameterization of Curves and Surfaces

The curves and surfaces of a geometry object can have several mathematical
representations. Thus, a local parameter s1 is defined for curves, and two local
parameters s1 and s2 are defined for faces. These parameters prove helpful when setting
up a model or postprocessing the solution. More precisely, for each value of the curve
parameter s1 within its domain of definition, there is a unique point on the curve, while
each pair of values (s1, s2) corresponds to a unique point on a face.

The faces and edges in the COMSOL geometry representation consist of trimmed
surfaces and curves, respectively. Thus there is a well-defined boundary in the
parameter domain that determines the valid values of s1 and s2. In 2D, the possible
values of the curve parameter s1 often lie in the interval [0, 1], but in 3D the parameter
domain is more complicated for surfaces as well as for curves.

The best way to determine the parameterization is to plot the parameter values. For a
block, you can do this in the way described here:

1 Open the Model Navigator, select 3D in the Space dimension list and click OK.

2 Draw a Block object with side lengths 2, 4, and 1.

3 To enter Postprocessing mode, where the software displays the parameterization of
the curves and faces, click the Solve Problem button on the Main toolbar.

4 Open the Plot Parameters dialog box, for example by clicking the Plot Parameters
button on the Main toolbar. Clear the Slice plot type check box and select Edge plot
instead.

5 Find the Edge page in the Plot Parameters dialog box and set the Expression to s1.
A D V A N C E D G E O M E T R Y TO P I C S | 521

522 | C H A P T E R
6 Click OK.

The different geometric variables available for plotting appear in the tables in
“Geometric Variables” on page 170.

7 To visualize the surface parameters on the faces, select Boundary plot in the Plot

Parameters dialog box, and enter either s1 or s2 as the Expression on the Boundary
 4 : A D V A N C E D G E O M E T R Y TO P I C S

page. Make sure to clear the Smooth check box before plotting to avoid incorrect
smoothing over the edges.

Geometric Variables

Note: In the following table of geometric variables, replace all letters in italic font
with the actual names for the independent variables (spatial coordinates) in the
model. Replace x, y, and z with the first, second, and third spatial coordinate variable,
respectively. If the model contains a deformed mesh, you can replace the symbols x, y,
z with either the spatial coordinates (x, y, z by default) or the reference coordinates
(X, Y, Z by default).

The geometric variables in the following table characterize geometric properties.

DOMAIN \ SPACE DIM 1D 2D 3D ND

POINT

EDGE s1,t1x,t1y,
t1z
A D V A N C E D G E O M E T R Y TO P I C S | 523

524 | C H A P T E R
In this table the space dimension refers to the number of independent variables. Most
geometric variables of interest are defined on boundaries.

The variables xg, yg, and zg contain the spatial coordinate values of the original
geometry as opposed to the standard spatial coordinate variables x, y, and z, which are
based on polynomial shape functions. It is the standard spatial coordinate variables’
values that COMSOL Multiphysics uses to compute the solution. The difference
between these two sets of spatial coordinate variables is normally very small. If a
deformed mesh is used, the variables xg, yg, zg are only available when x, y, z are the
reference coordinates (X, Y, Z by default).

BOUNDARY dnx,nx,unx dnx,dny,nx,
ny,s,tx,ty,
unx,uny

dnx,dny,dnz,
nx,ny,nz,s1,
s2,t1x,t1y,
t1z,t2x,t2y,
t2z,unx,uny,
unz

SUBDOMAIN h,sd,

reldetjac,

reldetjacmin

ALL x,xg,dvol x,y,xg,yg,
dvol

x,y,z,xg,yg,
zg,dvol

dvol,dom,

meshtype,

meshelement

DOMAIN \ SPACE DIM 1D 2D 3D ND
 4 : A D V A N C E D G E O M E T R Y TO P I C S

 5
A d v a n c e d S o l v e r T o p i c s
This chapter describes some advanced solver settings in COMSOL Multiphysics—
settings that you for most simulations need not worry about. It also examines the
various solvers in COMSOL Multiphysics in some detail.
 525

526 | C H A P T E R
Ad v an c ed S o l v e r S e t t i n g s

The Advanced page in the Solver Parameters dialog box controls solver settings you
normally do not need to change.

The Advanced page of the Solver Parameters dialog box.

The following sections describe the settings on this page.

Constraint Handling, Null-Space Functions, and Assembly Block Size

The Constraint handling method list controls how COMSOL Multiphysics handles
constraints. The default elimination method is always preferable, but see “Constraint
Handling” on page 533 for details.

The default selection in the Null-space function list is Automatic, which means that
COMSOL Multiphysics chooses the most appropriate of the orthonormal and sparse
null-space functions. To override this choice, select Orthonormal or Sparse from the
Null-space function list. The orthonormal null-space function computes an
 5 : A D V A N C E D S O L V E R TO P I C S

orthonormal basis for the null space of the constraint Jacobian N. For models that
involve constraints (Dirichlet boundary conditions) that couple values at several nodes,
this method typically runs out of memory. For example, this can happen if the model
contains:

• Periodic boundary conditions

• Identity conditions

• Constraints involving coupling variables, for instance integral constraints

• Constraints involving derivatives (but it is always good practice to rewrite
constraints on normal derivatives as Neumann boundary conditions).

In these cases, the sparse null-space function performs better than the orthonormal
null-space function. On the other hand, the sparse null-space function has the
following drawbacks:

• It does not always work well together with the Geometric multigrid (GMG) solver/
preconditioner.

• The computation of initial values is less efficient.

• When two boundaries with different Dirichlet boundary conditions meet, the value
at the joining node is less predictable. In the case of the orthonormal null-space
function, the average value is obtained.

The Assembly block size edit field determines the number of mesh elements that the
solver processes together during the assembly process. A lower value results in lower
memory usage, but it can also make the assembly slower. If the automatically chosen
block size gives an unsatisfactory performance for the given problem, then it is
recommended to test with block size equal to 1000.

Settings Related to Complex-Valued Data and Undefined Operations

TA K I N G T H E C O M P L E X C O N J U G A T E F O R C O M P L E X - V A L U E D M O D E L S

For a complex-valued model, the Use Hermitian transpose of constraint matrix and in

symmetry detection check box affects the meaning of the Lagrange multiplier term hTµ
in the Neumann boundary condition of the general or coefficient form, and in general
the term NF Λ in the discretized model. If you select this check box, the complex
conjugate is taken for the matrix NF (that is NF → NF

*). This check box also affects
the automatic symmetry detection. By default, the complex conjugate is not taken.
This check box is only active when Nonsymmetric or Automatic is selected in the Matrix

symmetry list on the General tab. Otherwise, the setting of the check box is determined
A D V A N C E D S O L V E R S E T T I N G S | 527

528 | C H A P T E R
by the choice Symmetric/Hermitian. That is, if Symmetric is selected, the conjugate of
the constraint force matrix is not taken, and if Hermitian is selected, the conjugate -is
taken.

U S I N G C O M P L E X F U N C T I O N S W I T H R E A L I N P U T

If a function takes real inputs, you can assume the output is real by default. For
instance, sqrt(-1) generates an error message. To change this behavior, select the Use

complex functions with real input check box.

S T O P P I N G I F E R R O R D U E T O U N D E F I N E D O P E R A T I O N S O C C U R S

By default, the solver stops with an error message when it encounters an undefined
mathematical operation in an expression that appears in the model settings, for
instance, division by zero or square root of a negative number. To change this
behavior, clear the Stop if error due to undefined operation check box. Then the solver
treats the result of the operation as Inf (infinity) or NaN (not a number). This feature
can be useful in a nonlinear problem where the steps in the iterative solution process
lead to variable values for which an expression is undefined. The solver then reduces
the step size in the Newton iteration when it encounters Inf or NaN so that it can find
a solution.

Storing Solutions on File

By default, COMSOL Multiphysics stores the solution in memory. If you select the
Store solution on file check box, the solution is primarily stored in a file. This option is
useful if you do a time-dependent or parametric simulation with a large number of time
steps or parameter steps. The large amount of solution data would otherwise fill up the
computer’s memory. The software deletes the file that it creates when the solution is
no longer needed (for instance, when you exit COMSOL Multiphysics). This file is
located in the default directory for temporary files provided by the operating system.
You can override this location with an option when starting COMSOL Multiphysics
(see the chapter “Running COMSOL” in the COMSOL Installation and Operations
Guide).

Solution Form

The solution form determines the form into which COMSOL Multiphysics converts
a PDE and its boundary conditions before solving it. For a description of how the
software forms the PDE system, see “What Equations Does COMSOL Multiphysics
Solve?” on page 509.
 5 : A D V A N C E D S O L V E R TO P I C S

The solution form does not have to be the same as the equation system form. The
equation system form is the form in which the Equation System dialog boxes display the
equations. You select the equation system form in the Model Settings dialog box. If the
solution form is different from the equation system form, COMSOL Multiphysics
transforms the equations to the solution form before solving.

When using a PDE mode, be sure not to confuse the PDE form with the solution
form; you can, for instance, solve a PDE, Coefficient Form model using the general
solution form.

When selecting the solution form, you have (at most) four options: automatic (the
default), coefficient, general, and weak. With the automatic option, COMSOL
Multiphysics selects the solution form according to the following rules:

• If you use the adaptive solver with Residual method set to Coefficient and the equation
system form is not the weak form, COMSOL Multiphysics selects the general
solution form.

• In all other cases, COMSOL Multiphysics selects the weak solution form

The reason the software selects the general solution form when using the adaptive
solver with Residual method set to Coefficient is that it does not work with the weak
solution form (see “The Adaptive Solver Algorithm” on page 540).

The only situation when you need to manually select the solution form is when you
want to use equation variables (for instance, cux and ncu), because these are not
available for the weak solution form (see “Special Variables” on page 180 of the
COMSOL Multiphysics User’s Guide). Consider the following aspects when selecting
the solution form:

• The weak solution form is usually the best choice because you normally get a correct
Jacobian (see “The Importance of a Correct Jacobian Matrix” on page 382 of the
COMSOL Multiphysics User’s Guide) and the assembly is somewhat faster than for
the coefficient and general forms.

• The general solution form generates an incorrect Jacobian if the model has
derivatives in the boundary conditions or some terms in the PDE depend on a
second-order spatial derivative. It also generates an incorrect Jacobian if some
coefficient or term in the PDE or boundary conditions depends on a coupling
variable.
A D V A N C E D S O L V E R S E T T I N G S | 529

530 | C H A P T E R
• The general solution form generates an incorrect Jacobian if the model contains
time derivatives in other places than multiplying the da or ea coefficients, or in the
weak or dweak edit fields.

• The coefficient solution form is more restricted than the general form. In addition
to the disadvantages of the general form, this solution form results in an incorrect
Jacobian if some of the coefficients depend on the solution. Therefore use the
coefficient form only for linear single-physics or uncoupled models.

Note that not all solution forms might be available, depending on the formulation of
the equations in the application modes in use. For instance, it is not possible to solve
the nonlinear Navier-Stokes equations in coefficient form.

Manual Control of Reassembly

It is important for the efficiency of the time-stepping algorithm to assemble the time-
independent matrices only once. The solver automatically detects the coefficients in
your equations that are time dependent and reassembles only those quantities. The
nonlinear and parametric solvers also follow this logic (with the parameter playing the
role of time).

If the Jacobian is incorrect (see “The Importance of a Correct Jacobian Matrix” on
page 382 of the COMSOL Multiphysics User’s Guide), the automatic detection can
fail, which means that you might get an incorrect solution. In this case you must either
manually control the reassembly (see below) or, better, use the weak solution form,
which you specify on the General tab. If you use periodic boundary conditions, identity
conditions, or coupling variables, the automatic detection is too sensitive, which means
that the solution you get is correct but the reassembly process might take an
unnecessarily long time. For such models, you can speed up time-stepping, by
manually specifying which matrices are constant. To do so, first select the Manual

control of reassembly check box and then select the check boxes in this area according
to the following guidelines:

• Select the Load constant check box if the PDE and Neumann boundary conditions
are linear with time-independent coefficients and right-hand sides. For the
discretized model, this means that the residual vector L depends linearly on U
(L = L0 − KU) and that L0, K, and the mass matrix D are constant. It is assumed
that the Jacobian matrix K is correct.

• Select the Jacobian constant check box if the Jacobian matrix K is time-independent.
You can also choose this option if you want to use the same Jacobian throughout
the time-dependent or nonlinear solver. This choice cuts down linear-system
 5 : A D V A N C E D S O L V E R TO P I C S

factorization/preconditioning time but causes more iterations because the Newton
iteration is degraded into a fixed-point iteration.

• Select the Damping (mass) constant check box if the coefficients of the first-order
time-derivative terms are time independent (often the case). In the discretized
model, this means that the damping (sometimes called mass) matrix D is constant.

• Select the Mass constant check box if the coefficients of the second-order
time-derivative terms are time independent (often the case). In the discretized
model, this means that the mass matrix E is constant.

• Select the Constraint constant check box if the Dirichlet boundary conditions
(constraints) are linear and time-independent. For the discretized model, this means
that the constraint residual M depends linearly on U (M = M0 − NU) and that M0
and N are constant. It is also assumed that the constraint Jacobian N is correct.

• Select the Constraint Jacobian constant check box if the Dirichlet boundary
conditions are linear with time-independent coefficients (not right-hand side). For
the discretized model this means that N is constant.

Scaling of Variables and Equations

If the dependent variables in your model have widely different magnitudes, the solver
might have problems with the resulting ill-conditioned matrix. For instance, in a
structural-mechanics problem the displacements can be of the order of 0.0001 m while
the stresses are 1,000,000 Pa (1 MPa). To remedy this situation, COMSOL
Multiphysics internally rescales the variables so that a well-scaled system results.

The default is automatic scaling, which works well for most models. It is based on the
magnitudes of the elements in the Jacobian and mass matrices. If you know the order
of magnitudes of the variables in advance, you can opt for manual scaling. For
instance, suppose that a problem involves two degrees of freedom, u and sigma, and
that the values of u are on the order of 10−4 and the values of sigma are approximately
106. To take this knowledge into account, in the Scaling of variables area, select Manual
from the Type of scaling list and type u 1e-4 sigma 1e6 in the Manual scaling edit field.
When you start the solvers, they internally use the rescaled degrees of freedom U = u/
1e-4 and Sigma = sigma/1e6, which both are of the order 1. The units for the values
of the degrees of freedom are the units for the corresponding quantities in the model’s
base unit system. For example, if u in the manual scaling above represents a
displacement in a model that uses SI units, its value is 10−4 m. If you provide an initial
value that gives a good estimate of the scales of your variables, another choice is to use
A D V A N C E D S O L V E R S E T T I N G S | 531

532 | C H A P T E R
initial-value based scaling by selecting Initial value based in the Type of scaling list. To
turn off scaling, select None in the Type of scaling list.

Note: The automatic scaling in COMSOL Multiphysics does not work when using
the nonlinear stationary solver and one solution component is identically zero in the
solution (the solver does not converge). In this case use Manual or None.

Even if variables are well scaled, equations can have very different scales. To overcome
this problem you can equilibrate the equations by selecting On in the Row equilibration
list (the default). To turn off equation scaling, choose Off in the Row equilibration list.
To preserve the possible symmetry of the matrix, COMSOL Multiphysics does not use
row equilibration in the following cases:

• Automatic matrix symmetry detection is used and the system matrices are symmetric

• Symmetric or Hermitian is selected in the Matrix symmetry list

• The Conjugate gradients or Geometric multigrid solver is used

• The eigenvalue solver is used.

T H E R E S C A L E D L I N E A R S Y S T E M

The rescaling of the discretized linear system (see “The Discretized Linearized Model”
on page 388 of the COMSOL Multiphysics User’s Guide) occurs before constraint
handling. Assume that the degrees of freedom Ui are expressed terms of rescaled
degrees of freedom according to the formula

where si are positive scale factors. Using a diagonal matrix S, the relation between U
and is

,

and you can write the rescaled linear system as

where

Ui
˜

Ui siUi
˜=

U
˜

U SU
˜

=

K
˜

N
˜

F

N
˜

0

U
˜

Λ
˜

L
˜

M
˜

=

 5 : A D V A N C E D S O L V E R TO P I C S

and

.

Here, R is a diagonal matrix of positive scale factors chosen such that the rows in the
matrix are of magnitude 1.

Constraint Handling

Consider the linear (scaled) system

.

The Lagrange multiplier vector Λ is typically underdetermined, and COMSOL
Multiphysics does not solve for it. Similarly, the constraint NU = M often contains the
same equation several times. To handle this problem, COMSOL Multiphysics turns to
a constraint-handling method using elimination, Lagrange multipliers, or stiff
springs. Select the desired constraint-handling method on the Advanced page of the
Solver Parameters dialog box.

E L I M I N A T I O N C O N S T R A I N T H A N D L I N G

This is the default constraint-handling method. The solver computes a solution Ud to
the constraint NU = M as well as a matrix Null, whose columns form a basis for the
null space of N. For non-ideal constraints (NF ≠ NT) then a matrix Nullf is also
computed, whose column forms a basis for the null space of NF

T. Then it obtains the
solution as U = Null Un + Ud, where Un is the solution of Ke Un = Le, where

.

For the ideal constraint case Nullf = Null, the corresponding eliminated D and E
matrices are

Λ RΛ
˜

= N
˜

F SNFR= K
˜

SKS= N
˜

RNS=

L
˜

SL M
˜

, RM= =

N
˜

K NF

N 0

U
Λ

L
M

=

Ke NullfT K Null=

Le NullfT L KUd–()=
⎩
⎪
⎨
⎪
⎧

De NullfT D Null Ee NullfTE Null=,=
A D V A N C E D S O L V E R S E T T I N G S | 533

534 | C H A P T E R
L A G R A N G E M U L T I P L I E R S C O N S T R A I N T H A N D L I N G

The linear solver computes a matrix Range, whose columns form a basis for the range
of N, and a matrix Rangef, whose columns form a basis for the range of NF

T. Then it
constrains Λ to be of the form Λ = s Rangef Λ where s is a scaling factor. This
transforms the system to

where

COMSOL Multiphysics solves this system for both U and , but it returns only U.
The corresponding D matrix is

For the ideal constraint case .

S T I F F S P R I N G S C O N S T R A I N T H A N D L I N G

This method approximates the constraint NU = M by

where κ is a suitably large constant. Eliminating Λ gives the system KsU = Ls, where

The corresponding D matrix is Ds = D.

Kl
U

Λ
ˆ Ll=

Kl
K sNFRangef

sRangeTN 0
= Ll

L

sRangeTM
=

Λ
ˆ

Dl
D 0
0 0

=

Rangef Range=

NU M 1
κ
---Λ+=

Ks K κNFN+=

Ls L κNFM+=
⎩
⎪
⎨
⎪
⎧

 5 : A D V A N C E D S O L V E R TO P I C S

S o l v e r A l g o r i t hm s

The Nonlinear Solver Algorithm

The nonlinear solver uses an affine invariant form of the damped Newton method as
described in Ref. 1. You can write the discrete form of the equations as f(U) = 0, where
f(U) is the residual vector and U is the solution vector. Starting with the initial guess
U0, the software forms the linearized model using U0 as the linearization point. It
solves the discretized form of the linearized model f'(U0) δU = −f(U0) for the Newton
step δU using the selected linear system solver (f'(U0) is the Jacobian matrix). It then
computes the new iteration U1 = U0 + λ δU, where λ () is the damping
factor. Next the modified Newton correction estimates the error E for the new
iteration U1 by solving f'(U0) E = −f(U1). If the relative error corresponding to E is
larger than the relative error in the previous iteration, the code reduces the damping
factor λ and recomputes U1. This algorithm repeats the damping-factor reduction
until the relative error is less than in the previous iteration or until the damping factor
underflows the minimum damping factor. When it has taken a successful step U1, the
algorithm proceeds with the next Newton iteration.

A value of λ = 1 results in Newton’s method, which converges quadratically if the initial
guess U0 is sufficiently close to a solution. In order to enlarge the domain of attraction,
the solver chooses the damping factors judiciously. Nevertheless, the success of a
nonlinear solver depends heavily on a carefully selected initial guess. Thus you should
spend considerable time providing the best value for U0, giving at least an order of
magnitude guess for different solution components.

C O N V E R G E N C E C R I T E R I O N

The nonlinear iterations terminate when the following convergence criterion is
satisfied: Let U be the current approximation to the true solution vector, and let E be
the estimated error in this vector. The software stops the iterations when the relative
tolerance exceeds the relative error computed as the weighted Euclidean norm

Here N is the number of degrees of freedom and Wi = max(|Ui|, Si), where Si is a scale
factor that the solver determines on the basis of the Type of scaling option selected in

0 λ 1≤≤

err 1
N
---- Ei Wi⁄()

i 1=

N
∑

2

⎝ ⎠
⎛ ⎞ 1 2⁄

=

S O L V E R A L G O R I T H M S | 535

536 | C H A P T E R
the Scaling of variables area on the Advanced page according to the following rules:

• For Automatic, Si is the average of |Uj| for all DOFs j having the same name as DOF
i times a factor equal to 10−5 if the Highly nonlinear problem check box is selected or
0.1 otherwise.

• For Manual, Si is the value for DOF i given in the Manual scaling edit field.

• For Initial value based, Si is the factor s (see below) times the average of |U0j| for all
DOFs j having the same name as DOF i, where U0 is the solution vector
corresponding to the initial value.

• For None, Wi = 1. In this case, err is an estimate for the absolute error.

Note that nonlinear solver only checks the convergence criterion if the damping factor
for the current iteration is equal to 1. Thus, the solver continues as long as the damping
factor is not equal to 1 even if the estimated error is smaller than the requested relative
tolerance.

The Augmented Lagrangian Solver Algorithm

Denoting the main components in step i of the algorithm Ui and the corresponding
augmented-Lagrangian components Vi, the following steps describe the algorithm:

1 Initialize U0 and V0, and set i = 0.

2 Solve the nonlinear problem for U = Ui+1 with Ui as initial data and with V = Vi held
fixed.

3 Solve the linear problem for V = Vi+1 with U = Ui+1 held fix.

4 If and , or i > imax, then
terminate, else set i = i + 1 and go to Step 2.

This procedure is called Uzawa iterations (or segregated iterations). The value in the
Tolerance edit field controls the tolerance δV in the convergence criterion, and you
control the other tolerance δU using the Relative tolerance edit field in the Nonlinear

settings area. The value in the Maximum number of iterations edit field controls the imax
parameter in Step 4. You can choose the linear system solver used for Step 3 in the
Solver list. The Structural Mechanics Module uses this process to solve contact
problems with the augmented-Lagrangian technique. See the Structural Mechanics
Module User’s Guide for more information.

Vi 1+ Vi– Vi 1+⁄ δV≤ Ui 1+ Ui– Ui 1+⁄ δU≤
 5 : A D V A N C E D S O L V E R TO P I C S

The Time-Dependent Solver Algorithm

The finite element discretization of the time-dependent PDE problem is

,

which is often referred to as the method of lines. Before solving this system, the
algorithm eliminates the Lagrange multipliers Λ. If the constraints 0 = M are linear and
time independent and if the constraint force Jacobian NF is constant then the
algorithm also eliminates the constraints from the system. Otherwise it keeps the
constraints, leading to a differential-algebraic system.

In COMSOL Multiphysics, the two solvers IDA and generalized-α are available to
solve the above ODE or DAE system.

IDA was created at the Lawrence Livermore National Laboratory (see Ref. 2) and is,
in turn, a modernized implementation of the DAE solver DASPK (see Ref. 3), which
uses variable-order variable-step-size backward differentiation formulas (BDF).

Generalized-α is an implicit, second-order accurate method with a parameter,
, to control how much high frequencies are damped. With , the

method has no numerical damping. For linear problems, this corresponds to the
midpoint rule. The choice gives the maximal numerical damping; for linear
problems, the highest frequency is then annihilated in one step. The method was first
developed for the second-order equations in structural mechanics (see Ref. 4) and later
extended to first-order systems (see Ref. 5).

Because the time-stepping schemes used are implicit, a possibly nonlinear system of
equations must be solved each time step. Included in IDA is a Newton solver to solve
this nonlinear system of equations. The Newton solver, in turn, uses an arbitrary
COMSOL Multiphysics linear solver for the resulting linear systems. Alternatively, you
can use the COMSOL Multiphysics Newton solver (see “The Nonlinear Solver
Algorithm” on page 535) to solve the nonlinear system (by selecting Manual tuning of

nonlinear solver). This gives you more control of the nonlinear solution process; it is
possible to choose the nonlinear tolerance, damping factor, how often the Jacobian is
updated, and other settings such that the algorithm solves the nonlinear system more
efficiently. When you select the generalized-α time-stepping algorithm, COMSOL
Multiphysics uses the Newton solver.

The linearization of the above system used in the Newton iteration is

0 L U U
·

U
··

t, , ,() NF U t,()Λ–=

0 M U t,()=

0 ρ∞ 1≤ ≤ ρ∞ 1=

ρ∞ 0=
S O L V E R A L G O R I T H M S | 537

538 | C H A P T E R
where K = −∂L/∂U is the stiffness matrix, is the damping matrix, and
 is the mass matrix. When E = 0, D is often called the mass matrix.

When using IDA for problems with second-order time derivatives (E ≠ 0), extra
variables are internally introduced so that it is possible to form a first-order
time-derivative system (this does not happen when using generalized-α because it can
integrate second-order equations). The vector of extra variables, here Uv, comes with
the extra equation

where U denotes the vector of original variables. This procedure expands the original
ODE or DAE system to double its original size, but the linearized system is reduced
to the original size with the matrix E + σ D + σ2 K, where σ is a scalar inversely
proportional to the time step. By the added equation the original variable U is
therefore always a differential variable (index-0). The error test excludes the variable
Uv unless Consistent initialization of DAE systems is set to On, in which case the
differential Uv-variables are included in the error test and the Error estimation strategy
applies to the algebraic Uv-variables.

The Eigenvalue Solver Algorithm

Finite element discretization leads to the generalized eigenvalue system

where the solver evaluates E, D, K, N and NF for the solution vector U0, λ denotes
the eigenvalue, and λ0 is the linearization point. If E = 0, it is a linear eigenvalue
problem; if E is nonzero, it is a quadratic eigenvalue problem. To solve the quadratic
eigenvalue problem, COMSOL Multiphysics reformulates it as a linear eigenvalue
problem. After constraint handling, it is possible to write the system in the form Ax =
λBx.

More general eigenvalue problems sometimes arise when boundary conditions or
material properties are nonlinear functions of the eigenvalue. These cases can be
handled as a series of quadratic eigenvalue problems. COMSOL Multiphysics treats

EV
··

DV
·

KV+ + L NFΛ–=

NV M=

D ∂L ∂U
·

⁄–=

E ∂L ∂U
··

⁄–=

U
·

Uv=

λ λ0–()2EU λ λ0–()DU– KU NFΛ+ + 0=

NU 0=
 5 : A D V A N C E D S O L V E R TO P I C S

general dependences on the eigenvalue by assembling a quadratic approximation
around the eigenvalue linearization point λ0. Normally, iteratively updating the
linearization point leads to rapid convergence.

Finding the eigenvalues closest to the shift σ is equivalent to computing the largest
eigenvalues of the matrix C = (A − σB)−1B. To do this, the solver uses the ARPACK
FORTRAN routines for large-scale eigenvalue problems (Ref. 6). This code is based
on a variant of the Arnoldi algorithm called the implicitly restarted Arnoldi method
(IRAM). The ARPACK routines must perform several matrix-vector multiplications
Cv, which they accomplish by solving the linear system (A − σB)x = Bv using one of
the linear system solvers.

The Parametric Solver Algorithm

The parametric solver performs a loop around the usual stationary solver in which it
estimates the initial guess using the solution for the previous parameter value. If the
nonlinear solver does not converge and you are solving for a single parameter, it tries
a smaller parameter step; COMSOL Multiphysics determines the size of this step on
the basis of the convergence speed of the Newton iteration using step-size selection
criteria based on work in Ref. 7.

The Stationary Segregated Solver Algorithm

C O N V E R G E N C E C R I T E R I O N

When termination of the segregated solver is based on the estimated error, it
terminates if, for all the groups j, the error estimate is smaller than the corresponding
tolerance,

,

where the error estimate in segregated iteration k is

.

The number tolj is taken from the Relative tolerance edit field for the corresponding
group settings for the Stationary segregated solver on the General page of the Solver

Parameters dialog box. Furthermore,

errj k, tolj<

errj k, max ej k,
N ej k,

S
(,)=
S O L V E R A L G O R I T H M S | 539

540 | C H A P T E R
is an estimate of the largest damped Newton error. Here l is taken for all iterations in
all substeps solving for the group j, αl is the damping factor, ∆U l, j, k is the Newton
increment vector, and Nj is the number of DOFs. The weight factor Wj

i is described
below. Moreover,

,

is the relative increment over one complete iteration k. In this expression, Uj,k is the
segregated solution vector for the group j, and Wj

i = max(|Uj
i|, Si), where Si is a scale

factor that the solver determines from the settings in the Scaling of variables area on the
Advanced page.

The following choices are available in the Type of scaling list:

• For Automatic, Si is the factor 0.1 times the average of |Um| for all DOFs m having
the same name as DOF i.

• For Manual, Si is the value for DOF i given in the Manual scaling edit field.

• For Initial value based, Si is the factor 0.1 times the average of |U0m| for all DOFs
m having the same name as DOF i, where U0 is the solution vector corresponding
to the initial value.

• For None, Wi = 1.

The Adaptive Solver Algorithm

T H E L 2 N O R M E S T I M A T E

The L2 norm error estimate relies on an assumption of a strong stability estimate for
the PDE problem (satisfied, for example, for Poisson’s equation over a domain with a
smooth boundary). From such an assumption, it is possible to show that there is a
constant C, such that the L2 norm of the error, el, in the lth equation satisfies

where ρl is the residual in the lth equation and ql is the stability estimate derivative
order. The adaptive solver algorithm uses the following L2-norm error indicator:

ej k,
N maxl 1 αl–() 1

Nj
------ ∆Ul j k, ,()i

Wj
i

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

Nj∑
2 1 2⁄

=

ej k,
S 1

Nj
------ Uj k, Uj k, 1–

–()i

Wj
i

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

Nj∑
2 1 2⁄

=

el C h
qlρl≤
 5 : A D V A N C E D S O L V E R TO P I C S

with the default value ql = 2. This formula also introduces the scaling factors sl for the
residual with the default value sl = 1.The local error indicator for a mesh element is

where A is the area (volume, length) of the mesh element, and τl is the absolute value
of the lth equation residual (one number per mesh element).

T H E F U N C T I O N A L E S T I M A T E

The functional-based estimate relies on adjoint solution error estimation. Instead of
approximating the error of the solution, the adaptive solver uses the approximation of
the error of a certain error functional (Ref. 8). Under rather general assumptions, it is
possible to show that the error e (of a functional) can be estimated as

where el* and ρl are the error in the dual or adjoint solution to, and the residual for,
the lth equation, respectively. The adaptive solver algorithm uses the following error
indicator for a mesh element:

where A is the area (volume, length) of the mesh element, and τl is the absolute value
of the lth equation residual (one number per mesh element). Here wl is an estimate of
the adjoint solution error for the lth equation. This error is estimated in one of two
ways. For both methods the sensitivity solver finds the discrete adjoint solution. If only
Lagrange element basis functions are used, the solver uses the ppr technique to
compute wl as an element average of |pprint(ul*) − ul*|. Here ul* is the current
computed adjoint solution for the lth equation. If not only Lagrange-element basis
functions are used, then wl = hDl where Dl is an element average of . The global
error printed in the solver log is the sum of the error indicator for all the mesh
elements.

sl
2–

l
∑ h

2ql

ρl
2 Ad

Ω
∫⎝ ⎠
⎜ ⎟
⎛ ⎞

1
2

sl
2–

l
∑ h

2ql

τl
2A

e el∗ ρl

l
∑≤

wlτlA
l
∑

ul∗∇
S O L V E R A L G O R I T H M S | 541

542 | C H A P T E R
T H E R E S I D U A L M E T H O D S

The residual methods Weak and Coefficient compute τl in rather different ways.

The Coefficient residual method uses an explicit strong form of the PDE to compute
the equation residual τl on each mesh element. This method evaluates the PDE
residual at the center of each element takes normal flux jumps to neighboring elements
into account. However, it does not take residual contributions from equations
formulated with the Weak solution form into account. Neither does it add terms in the
Weak edit fields, and constraint forces do not contribute to the residual. Because there
is no compelling reason to use the Coefficient residual method, you should therefore
avoid selecting it. It is provided for backward compatibility only.

The Weak residual method (the default) uses an auxiliary mesh case to estimate the
residualτl. This method automatically generates the mesh case by increasing the order
of the shape functions used (by one) for the problem considered, while using the same
mesh. The solution is mapped to this auxiliary mesh case and the discrete residual
vector L is assembled. The equation residualτl for a mesh element is computed by:

• Finding how the lth field variable (dependent variable) is coupled to the degrees of
freedom

• Taking an average per element for the corresponding components of L.

Due to the extra residual assembly work, the Weak residual method is somewhat slower
than the Coefficient residual method. On the other hand, the Weak method is more
general; for example, it supports vector elements. It also takes boundary fluxes into
account. Degrees of freedom that are constrained do not contribute to the residual.

The adaptive solver performs the following iterative algorithm (Ref. 9):

1 Solve the problem on the existing mesh using the stationary or eigenvalue solver.

2 Evaluate the residual of the PDE on all mesh elements.

3 Estimate the error in the solution on all mesh elements. The computed error
estimate is really just an error indicator because the estimate involves an unknown
constant (C above).

4 Terminate execution if it has made the requested number of refinements or if it has
exceeded the maximum number of elements.

5 Refine a subset of the elements based on the sizes of the local error indicators.

6 Repeat from Step 1.
 5 : A D V A N C E D S O L V E R TO P I C S

The Sensitivity Solver Algorithm

When you enable sensitivity analysis, the stationary solvers compute—in addition to
the basic forward solution—the sensitivity of a functional

 (5-1)

with respect to the sensitivity variables p. The forward solution up is a solution to the
parameterized discrete forward problem

 (5-2)

where Λp are the constraint Lagrange multipliers, or (generalized) reaction forces,
corresponding to the constraints M. Note that it is assumed that Q does not explicitly
depend on Λp.

To compute the sensitivity of Q with respect to p, first apply the chain rule:

 (5-3)

In this expression, the sensitivity of the solution with respect to the sensitivity variables,
∂u/∂p, is still an unknown quantity. Therefore, differentiate the forward problem,
Equation 5-2, formally with respect to p:

Here, K = −∂L/∂u and N = −∂M/∂u as usual. Assuming that the constraint force
Jacobian NF is independent of p, that is, ∂NF/∂p = 0, you can write the above relations
in matrix form

 (5-4)

solve for the sensitivities ∂up/∂p and ∂Λp/∂p, and plug them back into Equation 5-3:

 (5-5)

Q Q up p,()=

L up p,() NFΛp= M up p,() 0=

pd
dQ

p∂
∂Q

u∂
∂Q

p∂
∂u

+=

K
p∂

∂up NF p∂
∂Λp+

p∂
∂L

p∂
∂NFΛp+= N

p∂
∂up

p∂
∂M

=

J p∂
∂up

p∂
∂Λp
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

p∂
∂L

p∂
∂M
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

= J K NF

N 0
=

pd
dQ

p∂
∂Q

u∂
∂Q

0⎝ ⎠
⎜ ⎟
⎛ ⎞

T

J 1– p∂
∂L

p∂
∂M
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+=
S O L V E R A L G O R I T H M S | 543

544 | C H A P T E R
This formula gives dQ/dp explicitly in terms of known quantities, but in practice, it is
too expensive to actually invert the matrix J.

If the number of individual sensitivity variables, pj, is small, Equation 5-4 can be solved
for each right-hand side [∂L/∂pj ∂Μ/∂pj]

T and the solution inserted into Equation 5-3.
This is the forward method, which in addition to the sensitivity dQ/dp returns the
sensitivity of the solution, ∂up/∂p. Note that the matrix J is in fact the same matrix as
in the last linearization of the forward problem. The forward method therefore
requires one additional back-substitution for each sensitivity variable.

If there are many sensitivity variables and the sensitivity of the solution itself, ∂up/∂p,
is not required, the adjoint method is more efficient. It is based on using auxiliary
variables u* and L*, known as the adjoint solution, to rewrite Equation 5-5:

On this form, only one linear system of equations must be solved regardless of the
number of sensitivity variables, followed by a simple scalar product for each variable.
Obviously, this is much faster than the forward method if the number of variables is
large. Note that the system matrix which must be factorized is the transpose of the last
linearization of the forward problem. If J is symmetric or Hermitian, this makes no
difference compared to the forward method and all direct solvers can reuse the
factorization. In the general case, however, UMFPACK is more efficient than the
others since it can reuse the factorization of J to perform back-substitution on J−T.

References

1. P. Deuflhard, “A modified Newton method for the solution of ill-conditioned
systems of nonlinear equations with application to multiple shooting,” Numer. Math.,
vol. 22, pp. 289–315, 1974.

2. A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker,
and C.S. Woodward, “SUNDIALS: Suite of Nonlinear and Differential/Algebraic
Equation Solvers,” ACM T. Math. Software, vol. 31, p. 363, 2005.

pd
dQ

p∂
∂Q u∗

Λ∗⎝ ⎠
⎛ ⎞

T p∂
∂L

p∂
∂M
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+=

JT u∗
Λ∗⎝ ⎠
⎛ ⎞ u∂

∂Q

0⎝ ⎠
⎜ ⎟
⎛ ⎞

=

 5 : A D V A N C E D S O L V E R TO P I C S

3. P.N. Brown, A.C. Hindmarsh, and L.R. Petzold, “Using Krylov methods in the
solution of large-scale differential-algebraic systems,” SIAM J. Sci. Comput., vol. 15,
pp. 1467–1488, 1994.

4. J. Chung, G.M. Hulbert, “A time integration algorithm for structural dynamics
with improved numerical dissipation: The generalized-α method,” J. Appl. Mech.,
vol. 60, pp. 371–375, 1993.

5. K.E. Jansen, C.H. Whiting, G.M. Hulbert, “A generalized-α method for
integrating the filtered Navier–Stokes equations with a stabilized finite element
method,” Comput. Methods Appl. Mech. Engrg., vol. 190, pp. 305–319, 2000.

6. The ARPACK Arnoldi package, http://www.caam.rice.edu/software/ARPACK.

7. P. Deuflhard, “A Stepsize Control for Continuation Methods and its Special
Application to Multiple Shooting Techniques,” Numer. Math., vol. 33, pp. 115–146,
1979.

8. R. Rannacher, “A feed-back approach to error control in finite element methods:
Basic analysis and examples,” East-West J. Numer. Math, vol. 4, pp. 237–264, 1996.

9. R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive
Mesh-Refinement Techniques, Teubner Verlag and J. Wiley, Stuttgart, 1996.

10. http://www.netlib.org/ode.
S O L V E R A L G O R I T H M S | 545

546 | C H A P T E R
L i n e a r S y s t em So l v e r s

The UMFPACK Direct Solver

UMFPACK is the default linear system solver in most application modes. It solves
general systems of the form Ax = b using the nonsymmetric-pattern multifrontal
method and direct LU factorization of the sparse matrix A. It employs the COLAMD
and AMD approximate minimum degree preordering algorithms to permute the
columns so that the fill-in is minimized. The code, written in C, uses level-3 BLAS
(Basic Linear Algebra Subprograms) for optimal performance. COMSOL Multiphysics
uses UMFPACK version 4.2 written by Timothy A. Davis (Ref. 1).

In the Linear System Solver Settings dialog box you can set the memory-allocation
factor, a positive number (default = 0.7). The solver makes a rough estimate of the
required memory before performing the calculations. The memory-allocation factor
dictates how much memory COMSOL Multiphysics should allocate. A value of 0.7
results in using 70% of the estimate. A low allocation factor saves memory, but the
simulation might then run much slower.

If you select the Check tolerances check box, COMSOL Multiphysics estimates and
checks the error after the solution phase. For information about the error estimate see
the section “Convergence Criteria” on page 552. By default the error estimate is
turned off for UMFPACK.

You can also set the pivot threshold, a number between 0 and 1 (default = 0.1). The
solver permutes rows for stability. In any given column the algorithm accepts an entry
as a pivot element if its absolute value is greater than or equal to the pivot threshold
times the largest absolute value in the column. A low pivot threshold means less fill-in
and thus saves memory. If the default setting leads to poor accuracy in the linear
solution, try to increase the pivot threshold from the default to, for example, 1 (which
means that the linear solver always applies partial pivoting). This action can lead to a
more stable solution process and a more accurate solution of the linear systems.

When using UMFPACK as a preconditioner, you can also provide a drop tolerance in
the range 0 to 1. A value of 0.01 means that it drops matrix entries smaller than 1% of
the maximum value in each column of the LU factors. Doing so reduces the size of the
factors and reduces memory requirements. However, the dropping occurs only when
writing the LU factors, and it does not affect the rest of the factorization process. In
 5 : A D V A N C E D S O L V E R TO P I C S

contrast, in the Incomplete LU preconditioner the element dropping affects the rest
of the factorization process, which leads to a more memory-efficient preconditioner.

The SPOOLES Direct Solver

The SPOOLES solver works on general systems of the form Ax = b using the
multifrontal method and direct LU factorization of the sparse matrix A. When the
matrix A is symmetric or Hermitian, the solver uses an LDLT version of the algorithm,
which saves half the memory. SPOOLES uses several preordering algorithms to
permute the columns and thereby minimize the fill-in. SPOOLES is multithreaded on
platforms that support multithreading. The code is written in C. COMSOL
Multiphysics uses SPOOLES version 2.2 developed by Cleve Ashcraft and
collaborators (Ref. 2).

In the Linear System Solver Settings dialog box you choose among the following
preordering algorithms:

• Minimum degree

• Nested dissection (the default algorithm)

• Multisection

• The best of nested dissection and multisection

If you select the Check tolerances check box, COMSOL Multiphysics estimates and
checks the error after the solution phase. For information about the error estimate see
the section “Convergence Criteria” on page 552. By default the error estimate is
turned off for SPOOLES.

You can also specify a pivot threshold in the range of 0 to 1 (default = 0.1). When using
SPOOLES as a preconditioner, you can provide a drop tolerance in the range of 0 to
1 (see “The UMFPACK Direct Solver” on page 546).

The PARDISO Direct Solver

The parallel sparse direct linear solver PARDISO works on general systems of the form
Ax = b. In order to improve sequential and parallel sparse numerical factorization
performance, the solver algorithms are based on a Level-3 BLAS update, and they
exploit pipelining parallelism with a combination of left-looking and right-looking
supernode techniques. The code is written in C and Fortran. COMSOL Multiphysics
uses the PARDISO version developed by Olaf Schenk and collaborators (Ref. 3),
which is included with Intel MKL (Intel Math Kernel Library).
L I N E A R S Y S T E M S O L V E R S | 547

548 | C H A P T E R
In the Linear System Solver Settings dialog box you choose among the following
preordering algorithms:

• Minimum degree

• Nested dissection (the default algorithm)

You can also specify if the solver should use a maximum weight matching strategy by
choosing row preordering on (default) or off. For symmetric matrices there is a choice
between using 2-by-2 Bunch-Kaufmann pivoting (default) or not. In the case of
positive definite matrices (see “Which Models Are Positive Definite?” on page 433 of
the COMSOL Multiphysics User’s Guide) you do not need row preordering and
2-by-2 Bunch-Kaufmann pivoting. The solution time is usually reduced if you deselect
these features.

To avoid pivoting, PARDISO uses a pivot perturbation strategy that tests the
magnitude of the potential pivot against a constant threshold of

, where P and PMPS are permutation matrices, Dr and Dc
are diagonal scaling matrices, and is the infinity norm (maximum norm). If the
solver encounters a tiny pivot during elimination, it sets it to

. You can specify the pivot threshold ε. The
perturbation strategy is not as robust as ordinary pivoting. In order to improve the
solution PARDISO uses iterative refinements.

PARDISO also includes out-of-core capabilities. The PARDISO out-of-core solver
stores the LU factors on the hard drive. This minimizes the internal memory usage.
The price is longer solution times because it takes longer time to read and write to disk
than using the internal memory. You can specify the temporary directory where
PARDISO stores the LU factors using the -tmpdir switch; see page 53 of the
COMSOL Multiphysics Installation and Operations Guide for further details. The
LU factors are stored as blocks on the hard drive. The In core memory option controls
the maximum amount of internal memory (in megabytes) allowed for the blocks. If a
block is too large to fit into the maximum allowed internal memory you get an
out-of-memory error. In that case you must increase the amount of internal memory
that you enter in the In core memory edit field. The default value is 512 MB.

COMSOL Multiphysics can optionally estimate and check the error after the solution
phase. You control this option through the Check tolerances list. For the Automatic
selection, error checking is at least done for problems where pivot perturbation or
iterative improvement has been used. For information about the error estimate, see the
section “Convergence Criteria” on page 552. By default the error checking is enabled
(On). You can disable the check by instead selecting Off.

ε α PPMPSDrADcP ∞=

. ∞

sign lii()ε PPMPSDrADcP ∞
 5 : A D V A N C E D S O L V E R TO P I C S

For information about running COMSOL Multiphysics using parallelism, see
“Shared-Memory Parallel COMSOL” on page 68 in the COMSOL Installation and
Operations Guide.

Note: PARDISO is available on Linux, Windows, and Intel Mac. On Sun and
PowerPC Mac, COMSOL Multiphysics uses SPOOLES instead.

The TAUCS Cholesky Direct Solver

The TAUCS Cholesky direct solver handles systems of the form Ax = b, where A is a
positive definite symmetric sparse matrix (see “Which Models Are Positive Definite?”
on page 433 of the COMSOL Multiphysics User’s Guide) using a multifrontal
supernodal Cholesky factorization. It employs the multiple minimum degree
reordering algorithm to permute the rows and columns and thus minimize the fill-in.
Written in C, it uses level-3 BLAS for maximum performance. COMSOL Multiphysics
uses TAUCS version 2.2 written by Sivan Toledo and collaborators (Ref. 4).

Due to the algorithm’s recursive nature, it can run out of stack space for large models.
If this happens, you can increase the value of the STACKSIZE parameter in the
appropriate COMSOL startup script. For PC/Windows set the STACKSIZE parameter
in the \bin\comsol.opts file, located in the COMSOL installation directory; for
UNIX/Linux/Mac OS X set the STACKSIZE parameter in the /bin/comsol
command, located in the COMSOL installation directory. The default value is 2m (2
MB). For example, if you edit the script and double the value of STACKSIZE to 4m (4
MB), the maximum recursion depth for the algorithm also doubles. Continue
doubling the value of STACKSIZE until the TAUCS algorithm is successful.

Note: To use the TAUCS Cholesky and LDLT solvers, you must select Symmetric or
Hermitian in the Matrix symmetry list in the Solver Parameters dialog box.

The TAUCS LDLT Direct Solver

This linear system solver handles real symmetric or Hermitian matrices. It has no
parameters to set. You can use the direct LDLT (TAUCS) solver as an alternative to
the SPOOLES symmetric solver.
L I N E A R S Y S T E M S O L V E R S | 549

550 | C H A P T E R
The GMRES Iterative Solver

This linear system solver uses the restarted GMRES (generalized minimum residual)
method (see Ref. 5 and Ref. 6). This is an iterative method for general linear systems
of the form Ax = b. For fast convergence it is important to use an appropriate
preconditioner (see “Selecting a Preconditioner” on page 429 of the COMSOL
Multiphysics User’s Guide).

The value in the Number of iterations before restart edit field in the Linear System Solver

Settings dialog box specifies the number of iterations the solver performs until it
restarts (the default is 50). There is no guarantee that a restarted GMRES will
converge for a small restart value. A larger restart value increases the robustness of the
interactive procedure, but it also increases memory use and computational time. For
large problems, the computational cost is often very large to produce a preconditioner
of such a high quality that the termination criteria are fulfilled for a small number of
iterations and for a small restart value. For those problems it is often advantageous to
set up a preconditioner with a somewhat lesser quality and instead increase the restart
value or iterate more steps. Doing so typically increases the condition number for the
preconditioned system, so an increase in the error-estimate factor might be needed as
well.

Two slightly different versions of GMRES are available in COMSOL Multiphysics.
The difference between these two versions is whether left or right preconditioning is
used (see “The Preconditioned Linear System” on page 435 of the COMSOL
Multiphysics User’s Guide). Select the preconditioning type from the Preconditioning

list. The default choice is left preconditioning. Normally, the two versions of GMRES
have similar convergence behavior (see Ref. 7). If the preconditioner is ill-conditioned
there could, however, be differences in the behavior.

For information about the convergence criterion used by GMRES and the Relative

tolerance and Factor in error estimate edit fields, see “Convergence Criteria” on page
552.

If the solver does not converge, it terminates with an error message when it reaches the
value in the Maximum number of iterations edit field (default = 10,000).

The FGMRES Iterative Solver

This solver uses the restarted FGMRES (flexible generalized minimum residual)
method (see Ref. 8). The solver is a variant of the GMRES solver that can handle a
wider class of preconditioners in a robust way. You can, for example, use any iterative
 5 : A D V A N C E D S O L V E R TO P I C S

solver as preconditioner for FGMRES. The downside with the method is that it uses
twice as much memory as GMRES for the same value in the Number of iterations before

restart edit field. FGMRES uses right preconditioning and therefore has the same
convergence criterion as right-preconditioned GMRES. If FGMRES is used together
with a constant preconditioner such as, for example, the Incomplete LU
preconditioner, then the FGMRES solver is identical to the right preconditioned
GMRES solver.

For information about the convergence criterion used by FGMRES and the Relative

tolerance and Factor in error estimate edit fields, see “Convergence Criteria” on page
552.

The Conjugate Gradients Iterative Solver

This solver uses the conjugate gradients iterative method (see Ref. 5, Ref. 9, and Ref.
10). It is an iterative method for linear systems of the form Ax = b where the matrix A
is positive definite and (Hermitian) symmetric (see “Which Models Are Positive
Definite?” on page 433 of the COMSOL Multiphysics User’s Guide). Sometimes the
solver also works when the matrix is not positive definite, especially if it is close to
positive definite. This solver uses less memory and is often faster than the GMRES
solver, but it applies to a restricted set of models.

For fast convergence it is important to use an appropriate preconditioner (see
“Selecting a Preconditioner” on page 429 of the COMSOL Multiphysics User’s
Guide), which should be positive definite and (Hermitian) symmetric.

Select the preconditioning type from the Preconditioning list. The default choice is left
preconditioning. For the Conjugate gradient method this choice only affects the
convergence criterion and not the algorithm itself. For information about the
convergence criterion and the Relative tolerance and Factor in error estimate edit fields,
see “Convergence Criteria” on page 552.

The BiCGStab Iterative Solver

This solver uses the biconjugate gradient stabilized iterative method (see Ref. 5 and
Ref. 11) for solving general linear systems of the form Ax = b. The required memory
and the computational time for one iteration with BiCGStab is constant; that is, the
time and memory requirement does not increase with the number of iterations as it
does for GMRES. BiCGStab uses approximately the same amount of memory as
L I N E A R S Y S T E M S O L V E R S | 551

552 | C H A P T E R
GMRES uses for two iterations. Therefore, BiCGStab typically uses less memory than
GMRES.

The convergence behavior of BiCGStab is often more irregular than that of GMRES.
Intermediate residuals may even be orders of magnitude larger than the initial residual,
which can affect the numerical accuracy as well as the rate of convergence. The
iterations are restarted with the current solution as initial guess if the algorithm detects
poor accuracy in the residual or the risk for stagnation.

In contrast to GMRES and conjugate gradients, BiCGStab uses two matrix-vector
multiplications each iteration. This also requires two preconditioning steps in each
iteration. Also, when using left preconditioned BiCGStab, an additional
preconditioning step is required each iteration. That is, left preconditioned BiCGStab
requires a total of three preconditioning steps in each iteration.

Select the preconditioning type from the Preconditioning list. The default choice is right
preconditioning, since left preconditioning requires an additional preconditioning step
in each iteration. For information about the convergence criterion and the Relative

tolerance and Factor in error estimate edit fields, see “Convergence Criteria” on page
552.

Convergence Criteria

When you use an iterative solver COMSOL Multiphysics estimates the error of the
solution while solving. Once the error estimate is small enough, as determined by the
convergence criterion

 (5-6)

the software terminates the computations and returns a solution. When you use a
direct solver COMSOL Multiphysics can optionally make a check (Error check), to
determine if the above convergence criterion is fulfilled after the solution step. If the
error criterion is not met, the solution process is stopped an error message is given.

The definitions of M for the various solvers are:

• For UMFPACK, PARDISO, and SPOOLES, M = LU, where L and U are the LU
factors computed by the solver.

• When using left-preconditioning with the iterative solvers GMRES, Conjugate
Gradients, and BiCGStab, M is the preconditioner matrix.

• For the remaining iterative solvers, M is the identity matrix.

ρ M 1– b Ax–() tol M 1– b⋅<
 5 : A D V A N C E D S O L V E R TO P I C S

The convergence criterion 5-6 states that the iterations terminate when the relative
(preconditioned) residual times the factor ρ is less than a tolerance tol. You can set the
factor ρ in the Factor in error estimate edit field (default = 400). For solvers where M
is equal to the identity matrix, the iterations can sometimes terminate too early with
an incorrect solution if the system matrix A is ill-conditioned. For solvers where M is
not equal to the identity matrix, the iterations can sometimes terminate too early if M
is a poor preconditioner. If the iterations terminate too early due to an ill-conditioned
system matrix or a poor preconditioner, increase the factor ρ to a number of the order
of the condition number for the matrix M−1A. Note that if ρ is greater than the
condition number for the matrix M−1A, the convergence criterion implies that the
relative error is less than tol: |x − A−1b| < tol ·|A−1b|.

L I N E A R S Y S T E M T O L E R A N C E

For the Stationary linear solver and the Stationary segregated solver, the tolerance tol
in the convergence criterion 5-6 is the value specified in the Relative tolerance edit field
in the Linear System Solver Settings dialog box.

For the Stationary nonlinear solver, tol is adaptive and based on the maximum of the
number entered in the Relative tolerance edit field in the Linear System Solver Settings
dialog box and the number entered in the Relative tolerance edit field on the Stationary
page of the Solver Parameters dialog box. During the nonlinear iterations tol can,
however, be larger or smaller than this number.

For the Parametric solvers, tol is used in the same way as for the corresponding
Stationary solver.

When using the Time dependent solver and the Time dependent segregated solver, tol is
the maximum of the number in the Relative tolerance edit field in the Linear System

Solver Settings dialog box and the number in the Relative tolerance edit field on the
General page of the Solver Parameters dialog box.

When using the Eigenvalue solver together with an iterative method, tol is the number
in the Relative tolerance edit field in the Linear System Solver Settings dialog box. When
using a direct method, tol is the number in the Relative tolerance edit field in the Linear

System Solver Settings dialog box without any safety factor.

For the main components of the Augmented Lagrangian solver, tol is used in the same
way as for the Stationary solver. For the Augmentation components the error check for
the direct solvers is disabled.
L I N E A R S Y S T E M S O L V E R S | 553

554 | C H A P T E R
References

1. http://www.cise.ufl.edu/research/sparse/umfpack.

2. http://www.netlib.org/linalg/spooles

3. http://www.pardiso-project.org/

4. http://www.tau.ac.il/~stoledo/taucs

5. Greenbaum, A., “Iterative Methods for Linear Systems,” Frontiers in Applied
Mathematics, 17, SIAM, 1997.

6. Y. Saad and M.H. Schultz, “GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput., vol. 7, pp. 856–
869, 1986.

7. Y. Saad, Iterative Methods for Sparse Linear Systems, Boston, 1996.

8. Y. Saad, “A flexible inner-outer preconditioned GMRES algorithm,” SIAM J. Sci.
Statist. Comput., vol. 14, pp. 461–469, 1993.

9. M.R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear
systems,” J. Res. Nat. Bur. Standards, 49, pp. 409–435, 1952.

10. C. Lanczos, “Solutions of linear equations by minimized iterations,” J. Res. Nat.
Bur. Standards, vol. 49, pp. 33–53, 1952.

11. H.A. Van Der Vorst, “A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput., vol. 13, pp.
631–644, 1992.
 5 : A D V A N C E D S O L V E R TO P I C S

P r e c ond i t i o n e r s f o r t h e I t e r a t i v e
S o l v e r s

The Incomplete LU Preconditioner

The Incomplete LU preconditioner performs an incomplete LU factorization of the
system matrix A. That is, it drops small elements during the column-oriented Gaussian
elimination (see Ref. 1 and Ref. 2). Thus it saves memory, and the resulting factors L
and U are approximate. The resulting preconditioner is an approximation to A. The
preconditioner supports threshold drop, fill-ratio drop, and threshold pivoting. It can
optionally respect the nonzero pattern in the original matrix. The preconditioner
accepts matrices in symmetric and Hermitian format but expands these to full storage
before factorization.

In the Linear System Solver Settings dialog you can select a drop rule (see the following
section) from the Drop using list. Depending on the selected drop rule, you can specify
a Drop tolerance or a Fill ratio. You can also control the drop tolerance on the General
tab of the Solver Parameters dialog box either numerically (by supplying a number
between 0 and 1) or using the Memory efficiency/Precond. quality slider. A smaller drop
tolerance means that the preconditioner drops fewer elements and so the
preconditioner becomes more accurate. This leads to fewer iterations in the iterative
solver, but on the other hand memory requirements and preconditioning time
increases. A larger drop tolerance means that the preconditioner drops more elements
and so memory use and preconditioning time decrease. In this case, however, the
preconditioner becomes less accurate, which leads to more iterations in the iterative
solver, or, if the drop tolerance is too high, to no convergence at all. Often it is most
efficient to use as high a drop tolerance as possible, that is, choose it so that the iterative
solver barely converges.

You can also set the Pivot threshold, a number between 0 and 1 (default = 1). The solver
permutes rows for stability. In any given column, if the absolute value of the diagonal
element is less than the pivot threshold times the largest absolute value in the column,
it permutes rows such that the largest element is on the diagonal. Thus the default
value 1 means that it uses partial pivoting.

Once the approximate factors L and U have been computed, you can use the
incomplete LU factorization as an iterative preconditioner/smoother (see “The
SSOR, SOR, SORU, and Diagonal Scaling (Jacobi) Algorithms” on page 566). Here,
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 555

556 | C H A P T E R
M = (LU)/ω, where ω is a relaxation factor, and L and U are the approximate factors.
When using incomplete LU factorization as a preconditioner or smoother, it performs
a fixed number of sweeps as dictated by the value in the Number of iterations edit field
in the Linear System Solver Settings dialog box (default = 1).

Specify ω in the Relaxation factor (omega) edit field (default = 1).

S E L E C T I N G A D R O P R U L E

The Incomplete LU preconditioner uses either the threshold drop rule (the default) or
the fill-ratio drop rule. The preconditioner drops (neglects) an element during the
elimination phase if its absolute value is smaller than the Euclidean norm of the entire
column times a drop tolerance. In contrast, the fill-ratio drop rule limits the number
of nonzeros in the incomplete factors L and U, and it keeps the largest absolute values.
The number of values it keeps depends on the number of nonzeros in the
corresponding column of the original matrix times a fill-ratio factor. There are two
exceptions to these drop rules:

• The preconditioner never drops diagonal elements.

• The preconditioner optionally drops nonzeros in positions where the original matrix
is nonzero. The default is to keep these nonzeros. To make the preconditioner drop
them, clear the Respect pattern check box in the settings for the Incomplete LU
preconditioner.

The primary problem with setting up a preconditioner is the tradeoff between
resources (computer time and memory) and the preconditioner’s quality. The
computational cost of setting up a preconditioner with the Incomplete LU
preconditioner is at least proportional to the number of nonzeros in the produced
factors L and U. An advantage of using the fill-ratio drop rule is that you can estimate
and limit the cost beforehand; the main disadvantage is that the quality of the
preconditioner is typically not as good as using the threshold drop rule with a drop
tolerance resulting in the same number of nonzeros. However, with the threshold drop
rule there is no good way of estimating resource requirements beforehand.
Furthermore, there is no general formula for these drop rules that gives a drop
tolerance or fill ratio that guarantees fast convergence for a certain iterative method.
Therefore, it is often necessary to rely on experiments and experience for this difficult
and, from a performance point of view, crucial choice.
 5 : A D V A N C E D S O L V E R TO P I C S

The TAUCS Incomplete Cholesky Preconditioner

This TAUCS incomplete Cholesky preconditioner is applicable to models where the
system matrix is (Hermitian) symmetric positive definite (see “Which Models Are
Positive Definite?” on page 433 of the COMSOL Multiphysics User’s Guide). It
performs an incomplete Cholesky factorization L LT of the system matrix A. The
resulting preconditioner M = L LT is an approximation to A. The code, written in C,
uses a column-based left-looking approach with row lists. COMSOL Multiphysics uses
TAUCS version 2.2 written by Sivan Toledo and collaborators (see http://
www.tau.ac.il/~stoledo/taucs).

In the Linear System Solver Settings dialog box you can specify a value for the drop
tolerance and select an option for a modified Cholesky factor. You can also control the
drop tolerance on the General tab of Solver Parameters dialog box either numerically
(giving a number between 0 and 1) or using the Memory efficiency/Precond. quality
slider. The preconditioner drops elements from the L matrix if they are smaller than
the drop tolerance times the norm of the corresponding column of L, provided that
they are not on the diagonal and not in the nonzero pattern of A (see “The Incomplete
LU Preconditioner” on page 555 for details on the implications of changing the drop
tolerance). If you select the Modified Cholesky check box (which is not the default state)
the preconditioner modifies the factor L so that the row sums of L LT are equal to the
row sums of the input matrix.

Note: To use the incomplete Cholesky preconditioner you must select Symmetric or
Hermitian in the Matrix symmetry list in the Solver Parameters dialog box.

The Geometric Multigrid Solver/Preconditioner

The Geometric multigrid solver or preconditioner is a fast and memory-efficient
iterative method for elliptic and parabolic models (see “Elliptic and Parabolic Models”
on page 434 of the COMSOL Multiphysics User’s Guide). It performs one or several
cycles of the geometric multigrid method. The classical multigrid algorithm uses one
or several auxiliary meshes that are coarser than the original (fine) mesh. The idea is to
perform just a fraction of the computations on the fine mesh. Instead, it performs
computations on the coarser meshes when possible, which leads to fewer operations.
The size of the extra memory used for the coarser meshes and associated matrices is
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 557

558 | C H A P T E R
comparable to the size of the original data. This leads to an iterative algorithm that is
both fast and memory efficient. See Ref. 3 for more information.

COMSOL Multiphysics uses a hierarchy of multigrid levels where each corresponds
to a mesh and a choice of shape functions. Thus, in addition to coarsening the mesh it
is possible to construct a new “coarser” level by lowering the order of the shape
functions. The number of degrees of freedom decreases when you go to a coarser
multigrid level. The meshes for the different levels can be constructed either
“manually” or automatically. The automatic version applies a coarsening algorithm to
the fine mesh, which leads to meshes that are not aligned to each other. There is also
an option to generate the finer meshes from the coarsest mesh by successive mesh
refinements, which leads to aligned (nested) meshes. The manual option can be useful
when you have a quadrilateral, hexahedral, or prism mesh, or when you for some other
reason wish to control details in the meshes.

To describe the multigrid algorithm, assume that you have N + 1 multigrid levels
numbered from 0 to N, where 0 is the finest level (the level for which you seek the
solution). To solve the linear system A0x = b (corresponding to level 0), the algorithm
must reform the system matrices A1, …, AN for the coarse multigrid levels. It must also
compute the prolongation matrices Pi that map a solution x vector on level i to the
corresponding solution vector Pi x on the next finer level i − 1.

The prolongation matrices are constructed using plain interpolation from one
multigrid level to the other. The system matrices for the coarse levels can be
constructed in two ways:

• By assembling Ai on the mesh of level i (the default method).

• By projection from the finer level: Ai = Pi
TAi−1Pi. This is also called the Galerkin

method. It typically leads to more nonzero elements in the system matrix Ai, but
the convergence can be faster than in the default method.

The following algorithm describes one multigrid cycle:

1 The input to the algorithm is some initial guess x0 to the solution of the system
A0x = b.

2 Starting with x0, apply a few iterations of a presmoother to the linear system A0x = b,
yielding a more accurate iterate x0s. Typically the presmoother is some simple
iterative algorithm such as SOR, but you also chose an arbitrary iterative solver.

3 Compute the residual r0 = b − A0 x0s. The presmoother “smooths” the residual so
the oscillations in r have such a long wavelength that they are well resolved on the
 5 : A D V A N C E D S O L V E R TO P I C S

next coarser level (1). Therefore, project the residual onto level 1 by applying the
transpose of the prolongation: r1 = P1

Tr0.

4 If N = 1 use the coarse solver to solve the system A1x1 = r1. The coarse solver is
typically a direct solver such as UMFPACK. The number of degrees of freedom on
level 1 is less than for level 0, which means that solving A1x1 = r1 is less expensive.
If instead N > 1, solve the system A1x1 = r1 (approximately) by recursively applying
one cycle of the multigrid algorithm for levels 1, 2, …, N. In both cases the obtained
solution x1 is called the coarse grid correction.

5 Map the coarse grid correction to level 0 using the prolongation matrix:
x0c = x0s + P1x1.

6 Starting with x0c, apply a few iterations of a postsmoother to the linear system
A0x = b, yielding a more accurate iterate x0mg. The default postsmoother is SORU
(the version of SOR using the upper triangle of the matrix). The iterate x0mg is the
output of the multigrid cycle.

The cycle just described is called the V-cycle. The recursive call in Step 4 (when N > 1)
is a also a V-cycle. For the W-cycle and the F-cycle, the Steps 1–6 above are the same
but with the twist that the recursive call in Step 4 is substituted with two multigrid calls
for the coarser levels. For the W-cycle these two calls are recursive calls, they are
W-cycle calls. For the F-cycle the first call is a W-cycle and the second a V-cycle.

For only two multigrid levels (N = 1) these cycles are the same because the algorithm
uses the coarse solver in Step 4. Also note that the amount of work on the finest level
is the same for the different cycles. Normally the V-cycle is sufficient, but the W-cycle
and the F-cycle can be useful for more difficult problems.

When using multigrid as a preconditioner, the action of this preconditioner is obtained
by applying a fixed number of multigrid cycles. When using multigrid as a solver, the
multigrid cycle repeats until it reaches convergence.

When using multigrid as a preconditioner for the conjugate gradients method for a
symmetric matrix A, the preconditioning matrix M should also be symmetric. This
requirement is fulfilled if the matrices M (see “The SSOR, SOR, SORU, and Diagonal
Scaling (Jacobi) Algorithms” on page 566) associated with the presmoother and the
postsmoother are transposes of each other. For instance, this is the case if the
presmoother is SOR and the postsmoother is SORU, and if the same number of
smoothing steps is used. This combination with two smoothing steps is the default.
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 559

560 | C H A P T E R
N O T E S O N T H E E F F I C I E N C Y O F S M O O T H E R S

COMSOL Multiphysics performs smoothing on all but the coarsest multigrid level. A
smoother should be computationally cheap and be effective at reducing the part of the
error that has a high spatial frequency on the mesh to which it is applied. Therefore,
the applying a smoother on several meshes with a hierarchy of mesh sizes results in a
more efficient solver than if the smoother were applied only on the finest mesh.

The efficiency of the multigrid method with simple iterations as a smoother (such as
the Jacobi and SOR iteration) hinges on the ellipticity of the underlying mathematical
problem. For Helmholtz problems originating from an equation

or

the obtained linear problem is indefinite for large frequencies ω. For these problems, a
simple iteration amplifies smooth eigenmodes if the mesh is too coarse and makes these
methods unsuitable as smoothers. To determine when to use a simple iteration, apply
the Nyquist criterion

which says that the mesh must have at least two mesh elements per wavelength. Thus,
when using the Geometric multigrid solver for these type of problems, you should
ensure that this criterion is fulfilled on the coarsest mesh if simple iterations is used as
a smoother. In situations where the criterion is not fulfilled on coarse meshes GMRES
can be a suitable smoother (Ref. 6).

C O N S T R U C T I N G A M U L T I G R I D H I E R A R C H Y

The multigrid hierarchy can be constructed either automatically or manually. To select
which method to use, go to the General page of the Solver Parameters dialog box and
click the Settings button. This action opens the Linear System Solver Settings dialog box.

∇ 1
a
--- u∇⎝ ⎠
⎛ ⎞⋅– ω2u– f=

1
a
--- E∇×⎝ ⎠
⎛ ⎞∇× ω2E– F=

hmax
λ
2
---< π

ω a
------------=
 5 : A D V A N C E D S O L V E R TO P I C S

If you use multigrid as a preconditioner, select Preconditioner in the list to the left,
otherwise select Linear system solver.

Preconditioner settings for the Geometric multigrid solver.

In the Hierarchy generation method list you can select among the following methods:

• Lower element order first (all) (default). In this method, the coarse levels are
constructed automatically from the finest level by lowering the shape-function
orders in steps of one. When a given shape function order cannot be decreased
more, the mesh is instead coarsened by the factor given in the Mesh coarsening factor
edit field (default = 2). The coarsened mesh is constructed by generating a new mesh
of the geometry such that the element edge size at any location is approximately
equal to the mesh coarsening factor times the element edge size in the old mesh.
This procedure repeats until the number of multigrid levels (including the finest
level) equals the Number of levels (default = 2).

• Lower element order first (any). In this method, the coarse levels are constructed
automatically from the finest level by lowering the shape-function orders in steps of
one. When none of the given shape function orders can be decreased more, the
mesh is instead coarsened by the factor given in the Mesh coarsening factor edit field
(default = 2). The coarsened mesh is constructed by generating a new mesh of the
geometry such that the element edge size at any location is approximately equal to
the mesh coarsening factor times the element edge size in the old mesh. This
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 561

562 | C H A P T E R
procedure repeats until the number of multigrid levels (including the finest level)
equals the Number of levels (default = 2).

• Coarse mesh and lower order. The coarse levels are constructed automatically from
the finest level by coarsening the mesh and lowering the order of the shape functions
at the same time. More precisely, the first coarse level is constructed by coarsening
the mesh by a factor given in the Mesh coarsening factor edit field (default = 2) and
lowering the shape function orders by 1. If some of the shape function orders cannot
be decreased, only the mesh coarsening is done. This procedure repeats until the
number of multigrid levels (including the finest level) equals the Number of levels
(default = 2).

• Coarse mesh. The coarse levels are constructed automatically from the finest level by
coarsening the mesh by the factor given in the Mesh coarsening factor edit field
(default = 2). This procedure repeats until the number of multigrid levels (including
the finest level) equals the Number of levels (default = 2).

• Refine mesh. In this method, the current mesh is refined multiple times until the
number of multigrid levels (including the finest level) equals the Number of levels
(default = 2). Thus the given mesh becomes the coarsest multigrid level, and the
solution is delivered for a refined mesh. When you use the Refine mesh method, the
software automatically selects the Keep generated mesh cases check box because the
refined mesh is needed in postprocessing. You can also make a selection from the
Refinement method list. Selecting Regular (the default) refines the elements in a
regular pattern, whereas Longest refines only the longest element edge. For 3D
models, we recommend the Longest method because it produces fewer mesh
elements. The Longest method is not available for 1D models.

• Manual. When you select this method, the Manual page shows a list of all available
mesh cases. The term mesh case refers to a mesh together with the choice of shape
functions (and corresponding integration orders and constraint-point orders). You
can construct new ones by going to the Mesh menu and choosing Mesh Cases, which
opens the Mesh Case Settings dialog box where you add and delete them. Each mesh
case is identified by a nonnegative number. Existing mesh cases appear at the bottom
of the Mesh menu, where the current mesh case is also indicated. The current mesh
case also appears in the status bar. The mesh, shape functions, integration orders,
and constraint-point orders are specific to the mesh case. To change those settings
for a mesh case, first make that mesh case the current one by selecting it in the list
on the Mesh menu. Then modify any desired settings, for instance changing mesh
parameters and generating a new mesh, or changing the shape functions in the
 5 : A D V A N C E D S O L V E R TO P I C S

Subdomain Settings dialog box. For more information, see “Mesh Cases” on page
373 of the COMSOL Multiphysics User’s Guide.

When you have defined some mesh cases, go to the settings for Geometric multigrid
in the Linear System Solver Settings dialog box. On the Manual page you can choose
for each mesh case whether it should be used in the multigrid hierarchy (if so, select
the Use check box) and whether the system matrix should be assembled on this level
(if so, select the Assemble check box). By default the hierarchy includes all mesh
cases, and matrices are assembled on the coarse levels. The solver sorts the multigrid
levels according to decreasing number of degrees of freedom. The solution is
delivered for the finest of the selected mesh cases, and that mesh case is made current
when the solver returns.

If you select the Assemble on all levels check box on the Automatic page, the solver
assembles the system matrices on the coarse levels (the default). Otherwise the coarse
level matrices are formed using the Galerkin projection method.

When using the automatic hierarchy generation methods, the default behavior is that
the solver deletes the coarse levels when it finishes. If you want to inspect them, select
the Keep generated mesh cases check box, which makes the generated levels appear as
new mesh cases. When this happens, the hierarchy generation method changes to the
manual method. This means that the solver reuses the generated mesh cases the next
time you solve, which saves some work.

The automatic hierarchy generation methods operate only on the geometries specified
in the Use hierarchy in geometries edit field, where you provide a space-separated list of
positive numbers. The mesh coarsening and shape function changes are applied only
to these geometries.

Note: The automatic hierarchy generation methods construct coarsened meshes
consisting of isotropic triangles or tetrahedra. If the original mesh contains
quadrilaterals, hexahedrons, or prisms, or if it is anisotropic, you get better results by
constructing the coarse meshes manually.

C O N T R O L L I N G T H E A S S E M B L Y O N C O A R S E L E V E L S

There is a variable defined with the name gmg_level that takes the values 0 on the level
where the solution is sought and increases with one for each level that is used in the
hierarchy (that is, gmg_level=1,2, ..., and so on). When assembling the matrices on
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 563

564 | C H A P T E R
the coarse levels, this variable can be used in equations, for example to add extra
artificial stabilization only for the coarse levels.

S E T T I N G S F O R T H E M U L T I G R I D S O L V E R / P R E C O N D I T I O N E R

Apart from settings controlling the multigrid hierarchy, you can specify the following
settings in the Linear System Solver Settings dialog box. If multigrid is used as a
preconditioner, you can specify the number of iterations (default = 2). This gives the
number of times the multigrid cycle is performed each time the preconditioner is
applied.

If you use multigrid as a linear system solver, you can instead specify a relative
tolerance, a factor in error estimate, and a maximum number of iterations. For
information about the convergence criterion used by multigrid and the Relative

tolerance and Factor in error estimate edit fields, see “Convergence Criteria” on page
552. The tolerance in the convergence criterion is determined by the nonlinear
stationary solver or the time-dependent solver. When using the linear stationary solver
or the eigenvalue solver, you can adjust the tolerance in the Relative tolerance edit field
(default = 10−6).

If the solver does not converge, it terminates with an error message when it reaches the
value in the Maximum number of iterations edit field (default = 10,000).

You can also select the type of multigrid cycle: V-cycle, W-cycle, or F-cycle.

S E T T I N G S F O R T H E S M O O T H E R S

To control the settings for the presmoother, select one in the list on the left side of the
Linear System Solver Settings dialog box. In the Presmoother list you can select among
the following smoothers: SOR (default), SORU, SSOR, SOR vector, SORU vector,
SSOR vector, SOR gauge, SORU gauge, SSOR gauge, Jacobi, Vanka, Incomplete LU,
GMRES, FGMRES, Conjugate gradients, BiCGStab, and Algebraic multigrid.
Change settings for the selection in the Presmoother area (see the sections on the
specific smoothers in the following sections). For instance, it is possible to control the
number of smoothing iterations here.

You control settings for the postsmoother in a similar fashion. The default
postsmoother is SORU (the version of SOR using the upper triangle of the matrix).

When solving an electromagnetics model using vector elements for a PDE involving
the curl-curl operator, you should select the SOR vector presmoother and the SORU
vector postsmoother.
 5 : A D V A N C E D S O L V E R TO P I C S

When solving fluid-dynamics problems using the incompressible Navier-Stokes
equations or when using weak constraints, an algebraic saddle-point problem results.
Such problems often have zeros on the diagonal of the system matrix, which makes the
standard smoothers fail. Use the Vanka smoother (or Incomplete LU) in that case.

S E T T I N G S F O R T H E C O A R S E S O L V E R

To control the settings for the coarse solver, select its name in the list to the left in the
Linear System Solver Settings area. In the Coarse solver list you can choose from the
following: UMFPACK, SPOOLES, PARDISO, TAUCS Cholesky (if Symmetric is
selected), GMRES, FGMRES, Conjugate gradients, BiCGStab, Algebraic multigrid,
SSOR, SOR, SORU, SSOR vector, SSOR gauge, and Jacobi. Normally choose a direct
solver (UMFPACK, SPOOLES, PARDISO, or TAUCS Cholesky). Make any desired
modifications to the settings in the Coarse solver area (refer to the sections on the
specific linear system solvers).

When an iterative solver is used as coarse solver you can choose whether to solve using
a tolerance (default) or to perform a fixed number of iterations. Choose either Use

tolerance or Fixed number of iterations in the Termination list. Note that some default
values for an iterative solver, when used as a coarse solver, are different from the default
values when the solver is used as a linear system solver, preconditioner, or smoother.
The edit fields that have different default values are: Relative tolerance (default = 0.1),
Factor in error estimate (default = 1), Maximum number of iterations (default = 500),
and Number of iterations (default = 10).

The Algebraic Multigrid Solver/Preconditioner

The algebraic multigrid solver or preconditioner performs one or several cycles of the
algebraic multigrid method. This is similar to the geometric multigrid algorithm (see
“The Geometric Multigrid Solver/Preconditioner” on page 557), the difference being
that it constructs the multigrid levels directly from the finest-level system matrix A0.
That is, it constructs the prolongations Pi from A0 without using auxiliary meshes. It
constructs the coarse level matrices Ai from A0 with the Galerkin projection method.
The advantage is that you need not bother about the coarse multigrid levels. The
disadvantages are twofold:

• Algebraic multigrid does not work well for vector-valued PDEs in COMSOL’s
implementation. That is, it handles only scalar PDEs.

• COMSOL’s implementation does not support complex-valued system matrices.
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 565

566 | C H A P T E R
In the Linear System Solver Settings dialog box you can control the automatic
construction of the multigrid hierarchy with the Maximum number of levels, Max DOFs

at coarsest level, and Quality of multigrid hierarchy edit fields. Coarse levels are added
until the number of DOFs at the coarsest level is less than the max DOFs at coarsest
level (default = 5000) or until it has reached the maximum number of levels, including
the finest level (default = 6). In the Quality of multigrid hierarchy edit field specify an
integer value between 1 and 10 (default = 3) to make a tradeoff between memory
requirements and preconditioner quality. For instance, if the linear solver does not
converge or if it uses too many iterations, try a higher value to increase the accuracy in
each iteration, meaning fewer iterations. In contrast, if the algebraic multigrid
algorithm runs into memory problems, try a lower value to use less memory. When
using algebraic multigrid as a preconditioner, it is also possible to set the value for the
quality of the multigrid hierarchy in the Linear system solver area on the General tab of
Solver Parameters dialog box either numerically or by using the Memory efficiency/

Preconditioner quality slider.

The remaining settings for the algebraic multigrid solver/preconditioner and its
smoothers and coarse solver are identical to those for the Geometric multigrid solver
(see “The Geometric Multigrid Solver/Preconditioner” on page 557).

The SSOR, SOR, SORU, and Diagonal Scaling (Jacobi) Algorithms

These simple and memory-efficient solvers/preconditioners/smoothers are based on
classical iteration methods for solving a linear system of the form A x = b. Given a
relaxation factor ω (usually between 0 and 2), a sweep of the Jacobi (diagonal scaling)
method transforms an initial guess x0 to an improved approximation
x1 = x0 + M−1(b − Ax0), where M = D/ω, and D is the diagonal part of A.

The SOR (successive over-relaxation) method uses the same formula with M = L + D/
ω, where L is the strictly lower triangular part of A. When ω = 1 (the default), the
Gauss-Seidel method is obtained. In the SORU method, M = U + D/ω, where U is the
strictly upper triangular part of A. The SOR and SORU methods use a more accurate
approximation of the matrix, which leads to fewer iterations but slightly more work per
iteration than in the Jacobi method.

The SSOR (symmetric successive over-relaxation) method is one SOR sweep followed
by a SORU sweep. The output x1 for an input x0 also comes from the above formula
but with
 5 : A D V A N C E D S O L V E R TO P I C S

.

When A is symmetric, the SSOR method has the advantage that M is symmetric.
Symmetry of the preconditioner matrix is necessary when using the conjugate
gradients iterative method. In such cases, the SSOR preconditioner is preferable to the
SOR preconditioner.

By default a blocked version of the SOR algorithms is used. It is optimized for parallel
computations. In this case M is constructed from a column permuted version of A.

When these algorithms run as linear system solvers, they perform sweeps until they
have established convergence or they have reached the maximal number of iteration.
You control this aspect with the parameters in the Relative tolerance, Factor in error

estimate, and Maximum number of iterations edit fields in the same way as for the other
iterative solvers (see for instance “Settings for the Multigrid Solver/Preconditioner”
on page 564 of the COMSOL Multiphysics User’s Guide and “Convergence Criteria”
on page 552 of this Reference Guide).

When the algorithms run as preconditioners or smoothers, they perform a fixed
number of sweeps as dictated by the value in the Number of iterations edit field in the
Linear System Solver Settings dialog box (default = 2).

Specify ω in the Relaxation factor (omega) edit field (default = 1).

The SSOR Vector, SOR Vector, and SORU Vector Algorithms

These preconditioners/smoothers are intended for problems involving the
curl-curl operator and where you use vector elements. The vector elements are
available primarily for electromagnetic-wave simulations in the RF Module. The
algorithm is an implementation of the concepts in Ref. 9 and Ref. 4. The algorithm
applies SOR iterations on the main linear equation Ax = b but also makes SOR
iterations on a projected linear equation TTAT y = TTb. Here the projection matrix, T,
is the discrete gradient operator, which takes values of a scalar field in the mesh vertices
and computes the vector-element representation of its gradient. Loosely speaking, the
argument for using this projection is the following: For example, let the linear equation
Ax = b represent the discretization of a PDE problem originating from the vector
Helmholtz equation

M ω
2 ω–
------------- L D

ω
----+⎝ ⎠

⎛ ⎞D 1– U D
ω
----+⎝ ⎠

⎛ ⎞=

a .∇×()∇×

a E∇×()∇× cE+ F=
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 567

568 | C H A P T E R
for the unknown vector field E, where a and c are scalars, and F is some right-hand
side vector. Standard preconditioners/smoothers cannot smooth the error in the null
space of the operator . This null space is the range of the gradient operator.
This algorithm adds a correction to the standard SOR smoothed
solution (or residual), where it computes from SOR iterations on a projected
problem. The projected problem is obtained by taking the divergence (or discretely
−TT) of the Helmholtz equation and plugging in the correction. You then obtain (for
clarity, boundary constraints are disregarded)

,

which, if c is definite (strictly positive or strictly negative), is a standard elliptic type of
equation for the scalar field .

When using this algorithm as a smoother for the multigrid solver/preconditioner, it is
important—for the correct discrete properties of the projected problem—to generate
nested meshes. Also note that it does assembly on all mesh levels (controlled by the
multigrid Assemble check box). You can generate nested meshes through manual mesh
refinements or do so automatically by going to the Linear System Solver Settings dialog
box and selecting Refine mesh from the Hierarchy generation method list.

The projection matrix T is computed in such a way that non-vector shape functions are
disregarded, and therefore you can use it in a multiphysics setting. It can also handle
contributions from different geometries. Non-vector shape function variables are not
affected by the correction from the projected system, and the effects on them are
therefore the same as when you apply the standard SOR algorithm (see above).

The parameter in the Number of iterations edit field in the Presmoother (or
Postsmoother) area controls the number of main iterations (default = 2). For each main
iteration, the algorithm makes a number of SOR iterations for the projected equation
system; set that number (default = 1) in the Number of secondary iterations edit field.

In more detail, to preserve symmetry as a preconditioner and also when used as
symmetric pre- and postsmoother in a multigrid setting, the SOR iterations are done
in the following order:

• In each main iteration, the SOR vector version of this algorithm makes one SOR
iteration on the main system followed by a number of secondary SOR iterations on
the projected system.

a .∇×()∇×
E E φ∇+→

φ

∇ c φ∇()⋅– ∇ F⋅–=

φ

 5 : A D V A N C E D S O L V E R TO P I C S

• In each main iteration, the SORU vector version first makes a number of secondary
SORU iterations on the projected system followed by one SORU iteration on the
main system.

• In each main iteration, the SSOR vector version makes one SOR iteration on the
main system followed by a number of secondary SSOR iterations on the projected
system and then one SORU iteration on the main system.

You specify the relaxation factor ω in the Relaxation factor (omega) edit field (default =
1). It applies to all the different types of SOR iterations in this algorithm.

The SSOR Gauge, SOR Gauge, and SORU Gauge Algorithms

These preconditioners/smoothers are primarily intended for 3D magnetostatic
problems in the AC/DC Module discretized with vector elements. The smoothers are
basically SOR smoothers with some added functionality.

Magnetostatic problems are often formulated in terms of a magnetic vector potential.
The solution of problems formulated with such a potential is in general not unique.
Infinitely many vector potentials result in the same magnetic field, which typically is
the quantity of interest. A finite element discretization of such a problem results in a
singular linear system of equations, Ax = b. Despite being singular, these systems can
be solved using iterative solvers, provided that the right hand side of the discretized
problem is the range of the matrix A. For discretized magnetostatic problems, the
range of A consists of all divergence free vectors. Even if the right side of the
mathematical problem is divergence free, the right side of the finite element
discretization might not be numerically divergence free. To ensure that b is in the
range of A, SOR gauge performs a divergence cleaning of the right side by using the
matrices T and TT; see “The SSOR Vector, SOR Vector, and SORU Vector
Algorithms” on page 451. To this end, the system TTTψ = −TTb is first solved. Adding
Tψ to b will then make the numerical divergence of the right side small.

As in the case of SOR the blocked version is used by default. It performs better when
running on a parallel machine.

In addition to the initial divergence cleaning, SOR gauge also performs a number of
cleaning iterations in each linear solver iteration. You can control the number of such
divergence cleaning iterations in the Number of secondary iterations edit field in the
Linear System Solver area. The default number of secondary iterations is 1. In the
Variables edit field you can specify which vector degrees of freedom to include in the
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 569

570 | C H A P T E R
divergence cleaning (this applies both to the initial and secondary cleaning iterations).
By default, all vector degrees of freedom are included in the divergence cleaning.

The settings Number of iterations and Relaxation factor (omega) work in the same way
as for the usual SOR smoothers; see “The SSOR, SOR, SORU, and Diagonal Scaling
(Jacobi) Algorithms” on page 450.

The Vanka Algorithm

This preconditioner/smoother is intended for, but not restricted to, problems
involving the Navier-Stokes equations. Formally it applies to saddle-point problems. A
saddle-point problem is a problem where the (equilibrium) solution is neither a
maximum nor a minimum. The corresponding linear system matrix is indefinite, and
often it has zeros on the diagonal. This is the case for the Navier-Stokes equations but
also for problems formulated with weak constraints.

The algorithm is a local smoother/preconditioner of Vanka type. It is based on the
ideas in Ref. 5, Ref. 10, and Ref. 11. It is possible to describe it as a block SOR method,
where the local coupling of the degrees of freedom (DOFs) determines the blocks. The
important idea in this algorithm is to use the Lagrange multiplier variable (or set of
variables) to form the blocks. For illustration purposes, consider the Navier-Stokes
equations. For these equations the pressure variable plays the role of Lagrange
multiplier. The linearized equations on discrete form has the following structure:

where U and P are the velocity and pressure degrees of freedom, respectively. The
algorithm loops over the Lagrange multiplier variable DOFs, here the pressure DOFs
Pj, and finds the direct connectivity to this DOF. To do so, the algorithm locates the
nonzero entries in the matrix column corresponding to Pj. The row indices of the
nonzero entries defines the DOFs Uk, and the software forms a local block matrix
based on this connectivity:

One Vanka update loops over all Pj and updates

A U
P

S DT

D 0

U
P

F
G

= =

Aj
Sj Dj

T

Dj 0
=

 5 : A D V A N C E D S O L V E R TO P I C S

where the (.)j denotes the restriction of a vector to the rows corresponding to the block
j. ω is a relaxation parameter. The algorithm does not form the inverses of the block
matrices explicitly. Instead, it computes the Vanka update either with a LAPACK direct
solver subroutine call or by a GMRES iterative method subroutine call. The GMRES
method is the restarted GMRES without preconditioning. The algorithm relies on that
it is possible to invert the submatrices Aj. If it is not possible, the algorithm gives an
error message. Note that a zero on the diagonal of A or Aj is not necessarily a problem
for this updating strategy.

Note: If you use the Vanka algorithm as preconditioner, or as smoother to a
multigrid preconditioner when either of GMRES, Conjugate gradients, or BiCGStab
is used as the linear system solver, you should use the Direct option in the Solver list in
order to get a stationary preconditioner. The GMRES option can be useful if you use
the FGMRES method as linear system solver since it can handle preconditioners that
are not stationary. The GMRES option can also be useful if you use the Vanka algorithm
as smoother to a multigrid solver because GMRES can be a bit faster than the direct
solver.

In general, the Vanka update does not necessarily update all DOFs. This is, for
example, the case for problems with weak constraints, where only a small subset of the
problem’s DOFs are directly coupled to the Lagrange multipliers for the constraints.
Another example is the Navier-Stokes equations (or similar types of equations) coupled
to other equations, but where the coupling is not directly through the pressure
variable. This is, for example, the case with the k-ε turbulence model. The Vanka
algorithm automatically detects DOFs that are not updated by the above Vanka
updating procedure and performs, for each Vanka update, a number of SSOR sweeps
for these DOFs. This part of the algorithm is denoted the SSOR update. The SSOR
update only works for a submatrix that has a nonzero diagonal. Just as the SOR and
Jacobi preconditioner algorithms, this algorithm gives an error message if it finds zeros
on the diagonal for the DOFs in the SSOR update.

A blocked version that works on a permuted version of the system matrix is used by
default, as in the case of SOR. It is especially suited for parallel computations.

Uj

Pj

Uj

Pj

ωAj
1– F

G
A U

P
–

⎝ ⎠
⎜ ⎟
⎛ ⎞

j

+←
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 571

572 | C H A P T E R
Control the number of Vanka updates and consecutive SSOR updates by the
parameter in the Number of iterations edit field in the Linear System Settings dialog box.
For the Vanka update, control the Lagrange variables used for the local block
definitions by the Variables edit field, and control the type of solver used for the block
inverse operation by the Solver list. If you choose GMRES, then you can control the
convergence tolerance and the number of iterations before restart by the parameters in
the Tolerance and Number of iterations before restart edit fields, respectively. Control
the Vanka update relaxation parameter ω by the parameter in the Relaxation factor edit
field. For the SSOR update, control the number of SSOR sweeps by the parameter in
the Number of secondary iterations edit field and control the SSOR relaxation factor,
used in these sweeps, with the parameter in the Relaxation factor edit field.

References

1. J.R. Gilbert and S. Toledo, “An Assessment of Incomplete-LU Preconditioners for
Nonsymmetric Linear Systems,” Informatica, vol. 24, pp. 409–425, 2000.

2. Y. Saad, ILUT: A dual threshold incomplete LU factorization, Report
umsi-92-38, Computer Science Department, University of Minnesota, available from
http://www-users.cs.umn.edu/~saad.

3. W. Hackbusch, Multi-grid Methods and Applications, Springer-Verlag, Berlin,
1985.

4. R. Beck and R. Hiptmair, “Multilevel solution of the time-harmonic Maxwell’s
equations based on edge elements,” Int. J. Num. Meth. Engr., vol. 45, pp. 901–920,
1999.

5. S. Vanka, “Block-implicit multigrid calculation of two-dimensional recirculating
flows,” Computer methods in Applied Mechanics and Engineering, vol. 59, no. 1,
pp. 29–48, 1986.

6. H.C. Elman and others, “A Multigrid method enhanced by Krylov subspace
iteration for discrete Helmholtz equations,” SIAM J. Sci. Comp., vol. 23, pp. 1291–
1315, 2001.

COMSOL’s implementations of the algebraic multigrid solver and preconditioner are
based on the following references:

7. K. Stüben, Algebraic Multigrid (AMG): An introduction with Applications,
GMD Report 70, GMD, 1999.
 5 : A D V A N C E D S O L V E R TO P I C S

8. C. Wagner, Introduction to Algebraic Multigrid, Course notes, University of
Heidelberg, 1999.

9. R. Hiptmair, “Multigrid method for Maxwell’s equations,” SIAM J. Numer. Anal.,
vol. 36, pp. 204–225, 1999.

10. V. John and G. Matthies, “Higher-order finite element discretization in a
benchmark problem for incompressible flows,” Int. J. Numer. Meth. Fluids, vol. 37,
pp. 885–903, 2001.

11. V. John, “Higher-order finite element methods and multigrid solvers in a
benchmark problem for the 3D Navier-Stokes equations,” Int. J. Numer. Meth.
Fluids, vol. 40, pp. 775–798, 2002.
P R E C O N D I T I O N E R S F O R T H E I T E R A T I V E S O L V E R S | 573

574 | C H A P T E R
Op t im i z a t i o n S o l v e r P r op e r t i e s

This section provides detailed explanations of the properties that control the behavior
of SNOPT—the optimization solver that comes with the Optimization Lab, which is
avaliable as an optional add-on to COMSOL Multiphysics.

When solving multiphysics optimization problems using the Optimization application
mode, some of the properties listed in this section can be controlled through
components in the COMSOL Multiphysics graphical user interface while others, the
advanced properties, always take their default values. To find out which properties you
can modify in the graphical user interface, see the section “Solver Settings” on page
321 in Chapter 11, “Optimization,” of the COMSOL Multiphysics Modeling Guide.

Modifying the value of an advanced property requires calling the optimization solver
from the MATLAB command line using the femoptim command. A list of all available
optimization solver properties also appears in the “Command Reference” entry for
femoptim on page 149 of this manual.

Note: In the following sections, ε represents the machine precision (available as eps
in MATLAB) and is approximately equal to 2.2·10−16.

Cendiff

Central difference interval
Type: numeric
Default: ε1/3 ≈ 6.0·10−6

When some problem derivatives are unknown, the solver uses the central difference
interval near an optimal solution to obtain more accurate (but more expensive)
estimates of gradients. Twice as many function evaluations are required compared to
forward differencing. If r is the central difference interval, the interval used for the jth
variable is hj = r(1 + |xj|). The resulting derivative estimates should be accurate to
O(r2), unless the functions are badly scaled.
 5 : A D V A N C E D S O L V E R TO P I C S

Checkfreq

Check frequency
Type: integer
Default = 60

Every ith iteration after the most recent basis factorization, the solver makes a
numerical test to see if the current solution x satisfies the general linear constraints
(including linearized nonlinear constraints, if any). The constraints are of the form
Ax − s = b where s is the set of slack variables. To perform the numerical test, the solver
computes the residual vector r = b − Ax + s. If the largest component of r is judged to
be too large, the current basis is refactorized and the basic variables are recomputed to
satisfy the general constraints more accurately.

checkfreq = 1 is useful for debugging purposes, but otherwise this option should
not be needed.

Diffint

Difference interval
Type: numeric
Default: ε1/2 ≈ 1.5·10−8

This property alters the interval that the solver uses to estimate gradients by forward
differences in the following circumstances:

• In the initial (“cheap”) phase of verifying the problem derivatives

• For verifying the problem derivatives

• For estimating missing derivatives

In all cases, the solver estimates a derivative with respect to xj by perturbing that
component of x to the value xj + h1(1 + |xj|), where h1 is the difference interval, and
then evaluating the goal function at the perturbed point.

The resulting gradient estimates should be accurate to O(h1) unless the functions are
badly scaled. Judicious alteration of the difference interval can sometimes lead to
greater accuracy.
O P T I M I Z A T I O N S O L V E R P R O P E R T I E S | 575

576 | C H A P T E R
Elasticw

Elastic weight
Type: numeric
Default: 1.0 for linear and quadratic problems, 1.0·104 for nonlinear problems

This property determines the initial weight associated with the elastic QP problem. For
more details, see the SNOPT User’s Guide. In general, in Elastic mode, if the original
problem has a feasible solution and the elastic weight is sufficiently large, a feasible
point is eventually obtained for the perturbed constraints and optimization can
continue.

Expfreq

Expand frequency
Type: integer
Default: 10,000

This option is part of the internal procedure designed to make progress even on highly
degenerate problems.

For linear models, the strategy is to force a positive step at every (minor) iteration at
the expense of violating the bounds on the variables by a small amount. Suppose that
the expand frequency is i and the feasibility tolerance (property feastol) is δ. Over a
period of i iterations, the tolerance the solver actually uses increases from 0.5δ to δ (in
steps of 0.5δ/i).

For nonlinear models, the same procedure is used for iterations in which there is only
one superbasic variable. (Cycling can occur only when the current solution is at a
vertex of the feasible region.) Thus, zero steps are allowed if there is more than one
superbasic variable, but otherwise positive steps are enforced.

Increasing i helps reduce the number of slightly infeasible nonbasic variables (most of
which are eliminated during a resetting procedure). However, it also diminishes the
freedom to choose a large pivot element (see pivtol on page 586).

Facfreq

Factorization frequency
Type: integer
Default: 100 for linear problems, 50 for quadratic or nonlinear problems
 5 : A D V A N C E D S O L V E R TO P I C S

At most k basis changes occur between factorizations of the basis matrix, where k is
the factorization frequency.

With linear programs, the basis factors are usually updated every iteration. The default
k is reasonable for typical problems. Higher values to k = 100 might be more efficient
on problems that are extremely sparse and well scaled.

When the objective function is nonlinear or quadratic, fewer basis updates occur as an
optimum is approached. The number of iterations between basis factorizations
therefore increases. During these iterations a test is made regularly (according to the
check frequency, Checkfreq) to ensure that the general constraints are satisfied. If
necessary the basis is refactorized before the limit of k updates is reached.

Feastol

Feasibility tolerance
Type: numeric
Default: 1.0·10−6

The solver tries to ensure that all bound and linear constraints are eventually satisfied
to within the feasibility tolerance t. (Feasibility with respect to nonlinear constraints is
instead judged by the major feasibility tolerance, majfeastol.)

If the bounds and linear constraints cannot be satisfied to within t, the problem is
declared infeasible. Let sInf be the corresponding sum of infeasibilities. If sInf is quite
small, it might be appropriate to raise t by a factor of 10 or 100. Otherwise you should
suspect some error in the data.

Nonlinear functions are evaluated only at points that satisfy the bound and linear
constraints. If there are regions where a function is undefined, every attempt should
be made to eliminate these regions from the problem. For example, if

, it is essential to place lower bounds on both variables. If
t = 10−6, the bounds x1 ≥ 10−5 and x2 ≥ 10−4 might be appropriate. (The log
singularity is more serious. In general, keep x as far away from singularities as possible.)

If scaleopt (see page 589) is 1, feasibility is defined in terms of the scaled problem
(because it is then more likely to be meaningful).

In practice, the solver uses t as a feasibility tolerance for satisfying the bound and linear
constraints in each QP subproblem. If the sum of infeasibilities cannot be reduced to
zero, the QP subproblem is declared infeasible. The solver is then in the Elastic mode
thereafter (with only the linearized nonlinear constraints defined to be elastic).

f x() x1 xlog 2+=
O P T I M I Z A T I O N S O L V E R P R O P E R T I E S | 577

578 | C H A P T E R
Funcprec

Function precision
Type: numeric
Default: ε0.8 ≈ 3.8·10−11

The relative function precision is intended to be a measure of the relative accuracy with
which the nonlinear functions can be computed. For example, if f(x) is computed as
1000.56789 for some relevant x and if the first 6 significant digits are known to be
correct, the appropriate value for the function precision would be 10−6. (Ideally the
functions should have a magnitude of order 1. If all functions are substantially less than
1 in magnitude, the function precision should be the absolute precision. For example,
if f(x) = 1.23456789·10−4 at some point and if the first 6 significant digits are known
to be correct, the appropriate precision would be 10−10.)

The default value is appropriate for simple analytic functions.

In some cases the function values are the result of extensive computations, possibly
involving an iterative procedure that can provide rather few digits of precision at
reasonable cost. Specifying an appropriate function precision might lead to savings by
allowing the line search procedure to terminate when the difference between function
values along the search direction becomes as small as the absolute error in the values.

Hessdim

Hessian dimension
Type: numeric
Default: min{1000, n1 + 1}, where n1 is the number of nonlinear variables.

Let r be the value given by the hessdim property. This specifies that an r-by-r
triangular matrix R is to be available for use by the Cholesky QP solver (to define the
reduced Hessian according to RTR = ZTHZ). See the SNOPT User’s Guide for
further details.

Hessfreq

Hessian frequency
Type: numeric
Default: 999,999

If the hessmem property is set to 'full' and hessfreq BFGS updates have already
been carried out, the Hessian approximation is reset to the identity matrix. (For certain
 5 : A D V A N C E D S O L V E R TO P I C S

problems occasional resets might improve convergence, but in general they should not
be necessary.) hessmem set to 'full' and hessfreq set to 20 have a similar effect to
hessmem set to 'limited' and hessupd set to 20 (except that the latter retains the
current diagonal during resets).

Hessmem

Hessian memory
Type: string 'full' or 'limited'
Default: 'full' if the number of nonlinear variables . When the QP problem
solver is set to conjugate-gradient, the default is always 'limited'.

This option selects the method for storing and updating the approximate Hessian.
(The solver uses a quasi-Newton approximation to the Hessian of the Lagrangian. A
BFGS update is applied after each major iteration.)

If Hessian full memory is specified, the approximate Hessian is treated as a dense
matrix and the BFGS updates are applied explicitly. This option is most efficient when
the number of nonlinear variables is not too large (say, less than 75). In this case, the
storage requirement is fixed and you can expect 1-step Q-superlinear convergence to
the solution.

Hessian limited memory should be used on problems where the number of nonlinear
variables is very large. In this case a limited-memory procedure stores a fixed number
of BFGS update vectors and a diagonal Hessian approximation.

Hessupd

Hessian updates
Type: integer
Default: 10

If hessmem is set to limited memory and hessupd BFGS updates have already been
carried out, all but the diagonal elements of the accumulated updates are discarded and
the updating process starts again. Broadly speaking, the more updates stored, the
better the quality of the approximate Hessian. However, the more vectors stored, the
greater the cost of each QP iteration. The default value is likely to give a robust
algorithm without significant expense, but faster convergence can sometimes be
obtained with significantly fewer updates (for example, hessupd = 5).

is 75≤
O P T I M I Z A T I O N S O L V E R P R O P E R T I E S | 579

580 | C H A P T E R
Infbound

Infinite bound size
Type: positive numeric
Default: 1.0·1020

Defines the “infinite” bound in the definition of the problem constraints. Any upper
bound greater than or equal to this bound is regarded as plus infinity (and similarly for
a lower bound less than or equal to -infbound).

Itlim

Iterations limit
Type: nonnegative integer
Default: 500

This is the number of minor iterations for the optimality phase of the QP subproblem.
If itlim is exceeded, then all nonbasic QP variables that have not yet moved are frozen
at their current values and the reduced QP is solved to optimality.

Note that more than itlim minor iterations might be necessary to solve the reduced
QP to optimality. These extra iterations are necessary to ensure that the terminated
point gives a suitable direction for the line search.

Note that totitlim (total iterations limit; see page 590) defines an independent
absolute limit on the total number of minor iterations (summed over all QP
subproblems).

Linesearch

Linesearch method
Type: string 'derivative' or 'nonderivative'
Default: 'derivative

At each major iteration a line search is used to improve the merit function. A
derivative linesearch uses safeguarded cubic interpolation and requires both
function and gradient values to compute estimates of the step. If some analytic
derivatives are not provided or a nonderivative linesearch is specified, the solver
employs a line search based upon safeguarded quadratic interpolation, which does not
require gradient evaluations.
 5 : A D V A N C E D S O L V E R TO P I C S

A nonderivative line search can be slightly less robust on difficult problems, and we
recommend use of the default if the functions and derivatives can be computed at
approximately the same cost. If the gradients are very expensive relative to the
functions, a nonderivative line search might give a significant decrease in computation
time.

Linestol

Linesearch tolerance
Type: numeric
Default: 0.9

This parameter controls the accuracy with which a step length is located along the
direction of search during each iteration. At the start of each line search, the solver
identifies a target directional derivative for the merit function. This parameter
determines the accuracy to which this target value is approximated.

linestol must be a real value in the range 0 to 1. The default value of 0.9 requests
just moderate accuracy in the line search. If the nonlinear functions are cheap to
evaluate, a more accurate search might be appropriate; try a linestol value of 0.1,
0.01 or 0.001. The number of major iterations might decrease.

If the nonlinear functions are expensive to evaluate, a less accurate search might be
appropriate. If all gradients are known, try linestol = 0.99. (The number of major
iterations might increase, but the total number of function evaluations could decrease
enough to compensate.)

If not all gradients are known, a moderately accurate search remains appropriate. Each
search requires only one to five function values (typically), but many function calls are
then needed to estimate missing gradients for the next iteration.

Majfeastol

Major feasibility tolerance
Type: numeric
Default: 1.0·10−6

This parameter specifies how accurately the nonlinear constraints should be satisfied.
The default value of 1.0·10−6 is appropriate when the linear and nonlinear constraints
contain data to roughly that accuracy.
O P T I M I Z A T I O N S O L V E R P R O P E R T I E S | 581

582 | C H A P T E R
Let rowerr be the maximum nonlinear constraint violation, normalized by the size of
the solution. It is required to satisfy

where violi is the violation of the ith nonlinear constraint. If some of the problem
functions are known to be of low accuracy, a larger major feasibility tolerance might be
appropriate.

Majitlim

Major iterations limit
Type: numeric
Default: max(1000, m), where m is the number of general constraints.

This is the maximum number of major iterations allowed. It is intended to guard
against an excessive number of linearizations of the constraints.

Majprintfreq

Print frequency
Type: integer
Default: 100

When printing to file, print frequency k indicates that one line of the iteration log will
be printed every kth (minor) iteration.

Majprintlevel

Major print level
Type: integer
Default: 00001

Controls the amount of output to the print file for the major iterations.

rowerr max
i

violi x 1+()⁄ majfeastol≤=
 5 : A D V A N C E D S O L V E R TO P I C S

In general, the value being specified may be thought of as a binary number of the form
JFDXbs, where each letter stands for a digit that is either 0 or 1 as follows:

To obtain output of any of the items JFDXbs, set the corresponding digit to 1,
otherwise to 0. Majprintlevel 1 gives normal output for linear and nonlinear
problems, and Majprintlevel 11 gives addition details of the Jacobian factorization
that commences each major iteration.

If J = 1, the Jacobian matrix will be output column-wise at the start of each major
iteration. Column j will be preceded by the value of the corresponding variable xj and
a key to indicate whether the variable is basic, superbasic or nonbasic. (Hence if J = 1,
there is no reason to specify X = 1 unless the objective contains more nonlinear
variables than the Jacobian.) A typical line of output is:

3 1.250000D+01 BS 1 1.00000E+00 4 2.00000E+00

which would mean that x3 is basic at value 12.5, and the third column of the Jacobian
has elements of 1.0 and 2.0 in rows 1 and 4.

Major print level 0 suppresses most output, except for error messages.

Majsteplim

Major step limit
Type: numeric
Default: 2.0

TABLE 5-1: MAJOR PRINT LEVEL OPTIONS, JFDXBS

LETTER DESCRIPTION

s A single line that gives a summary of each major iteration. (This entry in
JFDXbs is not strictly binary because the summary line is printed
whenever JFDXbs ≥ 1).

b BASIS statistics, i.e., information relating to the basis matrix whenever it
is refactorized. (This output is always provided if JFDXbs ≥ 10).

X xk, the nonlinear variables involved in the objective function or the
constraints.

D πk, the dual variables for the nonlinear constraints.

F F(xk), the values of the nonlinear constraint functions.

J J(xk), the Jacobian matrix.
O P T I M I Z A T I O N S O L V E R P R O P E R T I E S | 583

584 | C H A P T E R
This parameter limits the change in x during a line search. It applies to all nonlinear
problems once the solver has found a “feasible solution” or “feasible subproblem.”

• A line search determines a step α over the range , where β is 1 if there are
nonlinear constraints, or the step to the nearest upper or lower bound on x if all the
constraints are linear. Normally, the first step length tried is α1 = min(1, β).

• In some cases, such as f(x) = aebx or f(x) = axb, even a moderate change in the
components of x can lead to floating-point overflow. The parameter majsteplim is
therefore used to define a limit (where p is the search direction
and r the value of majsteplim), and the first evaluation of f(x) is at the potentially
smaller step length .

• Wherever possible, use upper and lower bounds on x to prevent evaluation of
nonlinear functions at meaningless points. The major step limit provides an
additional safeguard. The default value majsteplim = 2.0 should not affect
progress on well-behaved problems, but setting it to 0.1 or 0.01 might be helpful
when rapidly varying functions are present. A “good” starting point might be
required. An important application is to the class of nonlinear least-squares
problems.

• In cases where several local optima exist, specifying a small value for majsteplim
could help locate an optimum near the starting point.

Maximize

Maximize objective
Type: string 'on' or 'off'
Default: 'off'

Setting this property to on causes the objective to be maximized instead of minimized.

Opttol

Optimality tolerance
Type: numeric
Default: 1.0·10−6

This is the major optimality tolerance and specifies the final accuracy of the dual
variables. On successful termination, the solver computes a solution (x, s, π) such that

0 α β≤<

β r 1 x+() p⁄=

α1 min 1 β β,(,)=

maxComp max
j

Compj π⁄ opttol≤=
 5 : A D V A N C E D S O L V E R TO P I C S

where Compj is an estimate of the complementarity slackness for variable j. The values
Compj are computed from the final QP solution using the reduced gradients
dj = gj − πT aj, as above. Hence you have

See the SNOPT User’s Guide for further details.

Newsuplim

New superbasics limit
Type: integer
Default: 99

This option causes early termination of the QP subproblems if the number of free
variables has increased significantly since the first feasible point. If the number of new
superbasics is greater than newsuplim, the nonbasic variables that have not yet moved
are frozen and the resulting smaller QP is solved to optimality.

Parprice

Partial price
Type: integer
Default: 10 for linear problems, 1 for quadratic or linear problems

This parameter is recommended for large problems that have significantly more
variables than constraints. It reduces the work required for each “pricing” operation
(when a nonbasic variable is selected to become superbasic).

When the partial price is 1, all columns of the constraint matrix (A − I) are searched.
Otherwise, A and I are partitioned to give the partial price i roughly equal segments
Aj, Ij (j = 1 to i). If the previous pricing search was successful on Aj, Ij, the next search
begins on the segments Aj+1, Ij+1. (All subscripts here are modulo i.)

If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to become
superbasic. If nothing is found, the search continues on the next segments Aj+2, Ij+2,
and so on.

Compj

dj min xj lj– 1{ , } if dj 0≥

dj– min uj xj– 1{ , } if dj 0<⎩
⎨
⎧

=

O P T I M I Z A T I O N S O L V E R P R O P E R T I E S | 585

586 | C H A P T E R
Partial price t (or t/2 or t/3) might be appropriate for time-stage models having t time
periods.

Pivtol

Pivot tolerance
Type: numeric
Default: 3.7·10−11

During solution of QP subproblems, the solver uses the pivot tolerance to prevent
columns entering the basis if they would cause the basis to become almost singular.

When x changes to x + α p for some search direction p, a “ratio test” is used to
determine which component of x first reaches an upper or lower bound. The
corresponding element of p is called the pivot element.

Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than the pivot tolerance.

It is common for two or more variables to reach a bound at essentially the same time.
In such cases, the (minor) feasibility tolerance (say t) provides some freedom to
maximize the pivot element and thereby improve numerical stability. Excessively small
values of t should therefore not be specified.

To a lesser extent, the expand frequency (property expfreq) also provides some
freedom to maximize the pivot element. Excessively large values of expfreq should
therefore not be specified.

Print

Print information about the solver progress and solution to file
Type: string
Default: empty

When the print option is activated, the following information is output to the file
during the solution process. All printed lines are less than 131 characters.

• An estimate of the working storage needed and the amount available.

• Some statistics about the problem being solved.

• The storage available for the LU factors of the basis matrix.

• A summary of the scaling procedure, if scaleopt > 0.
 5 : A D V A N C E D S O L V E R TO P I C S

• Notes about the initial basis.

• The iteration log.

• Basis factorization statistics.

• The exit condition and some statistics about the solution obtained.

• The printed solution, if requested.

For a more detailed overview of the various sections of the print files, see the SNOPT
User’s Guide.

Printfreq

Print frequency
Type: integer
Default: 100

When printing to file, print frequency k indicates that one line of the iteration log will
be printed every kth (minor) iteration.

Printlevel

Print level
Type: integer
Default: 1

Controls the amount of output to the print file for the (minor) iterations.

Proxmeth

Proximal point method
Type: 1 or 2
Default: 1

TABLE 5-2: PRINT LEVEL OPTIONS

VALUE DESCRIPTION

0 No output except for error messages.

≥1 A single line of output each minor iteration (controlled by Printfreq)

≥10 Basis factorization statistics generated during the periodic
refactorization of the basis (see Facfreq). For nonlinear problems, the
statistics for the first factorization each major iteration are controlled
by the Majprintlevel.
O P T I M I Z A T I O N S O L V E R P R O P E R T I E S | 587

588 | C H A P T E R
proxmeth set to 1 or 2 specifies minimization of ||x − x0||1 or , respectively,
when the starting point x0 is changed to satisfy the linear constraints (where x0 refers
to nonlinear variables).

Qpsolver

QP problem solver
Type: string 'cholesky', 'cg', or 'qn'
Default: 'cholesky'

Specifies the active-set algorithm used to solve the QP problem, or in the nonlinear
case, the QP subproblem.

'cholesky' holds the full Cholesky factor R of the reduced Hessian ZTHZ. As the
QP iterations proceed, the dimension of R changes with the number of superbasic
variables. If the number of superbasic variables increases beyond the value of reduced
Hessian dimension (property Hessdim), the reduced Hessian cannot be stored and the
solver switches to qpsolver = 'cg'.

The Cholesky solver is reactivated if the number of superbasics stabilizes at a value less
than the reduced Hessian dimension.

'qn' solves the QP subproblem using a quasi-Newton method. In this case, R is the
factor of a quasi-Newton approximate Hessian.

'cg' uses an active-set method similar to 'qn' but uses the conjugate-gradient
method to solve all systems involving the reduced Hessian.

The Cholesky QP solver is the most robust but might require a significant amount of
computation if the number of superbasics is large.

The quasi-Newton QP solver does not require the computation of the exact R at the
start of each QP and might be appropriate when the number of superbasics is large but
each QP subproblem requires relatively few minor iterations.

The conjugate-gradient QP solver is appropriate for problems with large numbers of
degrees of freedom (many superbasic variables). The Hessian memory option
'hessmem' is defaulted to 'limited' when this solver is used.

1
2
--- x x0– 2

2

 5 : A D V A N C E D S O L V E R TO P I C S

Scaleopt

Scale option
Type: integers 0, 1, or 2
Default: 1

Three scale options are available:

Scaletol

Scale tolerance
Type: numeric
Default: 0.9

Scale tolerance affects how many passes might be needed through the constraint
matrix. On each pass, the scaling procedure computes the ratio of the largest and
smallest nonzero coefficients in each column:

If maxj ρj is less than scaletol times its previous value, another scaling pass is
performed to adjust the row and column scales. Raising the scale tolerance from 0.9
to 0.99 (for instance) usually increases the number of scaling passes through A. At
most 10 passes are made.

TABLE 5-3: SCALE OPTIONS

SCALEOPT DESCRIPTION

0 No scaling. This is recommended if it is known that x and the constraint
matrix (and Jacobian) never have very large elements (say, larger than
1000).

1 Linear constraints and variables are scaled by an iterative procedure
that attempts to make the matrix coefficients as close as possible to 1.0.
This sometimes improves the performance of the solution procedures.

2 All constraints and variables are scaled by the iterative procedure. Also,
an additional scaling is performed that takes into account columns of
(A − I) that are fixed or have positive lower bounds or negative upper
bounds. If nonlinear constraints are present, the scales depend on the
Jacobian at the first point that satisfies the linear constraints. Scale
option 2 should therefore be used only if a good starting point is
provided and the problem is not highly nonlinear.

ρj max
i

aij min
i

aij⁄() aij 0≠()=
O P T I M I Z A T I O N S O L V E R P R O P E R T I E S | 589

590 | C H A P T E R
Suplim

Superbasics limit
Type: integer
Default: n1 + 1, where n1 is the number of nonlinear variables

This parameter places a limit on the storage allocated for superbasic variables. Ideally,
suplim should be set slightly larger than the “number of degrees of freedom”
expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of
freedom. (The number of variables lying strictly between their bounds is no more than
m, the number of general constraints.) The default value of suplim is therefore 1.

The number of degrees of freedom is often called the “number of independent
variables.”

For quadratic problems, suplim normally need not be greater than the number of
leading nonzero columns of H. For many problems, suplim might be considerably
smaller than that, which saves storage if the number of leading nonzero columns is very
large.

For nonlinear problems, suplim normally need not be greater than n1 + 1, where n1
is the number of nonlinear variables. For many problems it might be considerably
smaller than n1. This saves storage if n1 is very large.

Totitlim

Total iterations limit
Type: numerical
Default: max{10000, 20m}, where m is the number of general constraints

This is the maximum number of minor iterations allowed (that is, iterations of the
simplex method or the QP algorithm), summed over all major iterations.

Verify

Verification level
Type: integers −1, 0, 1, 2, or 3
Default: 0
 5 : A D V A N C E D S O L V E R TO P I C S

This option refers to finite-difference checks on the derivatives computed by
user-provided routines. Derivatives are checked at the first point that satisfies all
bounds and linear constraints.

Verify level 3 is intended mainly for use when developing a new function routine.
Missing derivatives are not checked, so they result in no overhead.

Viollim

Violation limit
Type: numeric
Default: 10

This keyword defines an absolute limit on the magnitude of the maximum constraint
violation after the line search. On completion of the line search, the new iterate xk+1
satisfies the condition

where x0 is the point at which the nonlinear constraints are first evaluated, and vi(x) is
the ith nonlinear constraint violation vi(x) = max(0, li − fi(x), fi(x) − ui), where li and
ui are the lower and upper bounds, respectively.

The effect of this violation limit is to restrict the iterates to lie in an expanded feasible
region whose size depends on the magnitude of τ. This makes it possible to keep the
iterates within a region where the objective is expected to be well defined and bounded
below. If the objective is bounded below for all values of the variables, then τ can be
any large positive value.

TABLE 5-4: THE VERIFY OPTION

VERIFY DESCRIPTION

-1 Derivative checking is disabled.

0 Only a “cheap” test is performed, requiring 2 calls to user functions.

1 Individual objective gradients are checked (with a more reliable test).

2 Individual columns of the problem Jacobian are checked.

3 Options 2 and 1 both occur (in that order).

vixk 1+ τ max ≤ 1 vi x0(){ , }
O P T I M I Z A T I O N S O L V E R P R O P E R T I E S | 591

592 | C H A P T E R
 5 : A D V A N C E D S O L V E R TO P I C S

 6
T h e C O M S O L M u l t i p h y s i c s F i l e s
This chapter describes the COMSOL Multiphysics files in binary format and text
format.
 593

594 | C H A P T E R
Ove r v i ew

A COMSOL Multiphysics file is used to store COMSOL Multiphysics data. The
format is suitable for exchange of mesh or CAD data between COMSOL Multiphysics
and other software systems. It is possible to save a COMSOL Multiphysics file in a text
file format, using the extension .mphtxt, or a binary file format, using the extension
.mphbin. The file formats contain the same data in the same order.

File Structure

The COMSOL Multiphysics file format has a global version number, so that it is
possible to revise the whole structure. The first entry in each file is the file format,
indicated by two integers. The first integer is the major file version and the second is
referred to as the minor file version. For the current version, the first two entries in a
file is 0 1.

The following sections describe the file structure of the supported version.

F I L E VE R S I O N 0 . 1

After the file version, the file contains three groups of data:

• A number of tags stored as strings, which gives an identification for each record
stored in the file.

• A number of types, which are strings that can be used in serializing the object. The
tag should be used as an indication of the contents of the file, but can also be an
empty string.

• The records containing the serialized data in the file.

Example When using flsave to save a COMSOL Multiphysics mesh, the tag equals
the variable name (m1), the type is set to obj (but this is not used), and the record
contains the serialization of the mesh object, including point coordinates and element
data of the mesh. See “Examples” on page 629 for more examples of COMSOL
Multiphysics text files.

Created by COMSOL Multiphysics Fri Aug 26 14:19:54 2005

Major & minor version
0 1
######### Tags
1 # number of tags
 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

2 m1

######## Types
1 # number of types
3 obj

######## Records

A planar face object

0 0 1
4 Mesh # class
...

Records

The record contains the serialization data in the file and additional information on how
to process the serialized data. It also has a version number.

The record is a wrapper for serializable types stored in the file. The reason for having
this wrapper is to be able to use a version number, so that the serialization can be
revised in the future while maintaining backward compatibility.

The following sections describe the format of the supported version:

R E C O R D VE R S I O N 0

This record is a wrapper for serializable types stored in the file. The following table
contains the attributes of the records:

Serialization type 1 indicates that the following field is a subtype to Serializable.
COMSOL Multiphysics uses type equal to 0 internally, but such files are only used for
temporary purposes.

ENTITY/OBJECT VARIABLE DESCRIPTION

Integer Version

Integer Not used

Integer type Serialization type, 1 for Serializable

Serializable obj If type equals 1, this field follows
O V E R V I E W | 595

596 | C H A P T E R
Terminology

The following data types are used in the serialization:

• Boolean refers to an 8-bit signed character which must be 0 or 1.

• Character refers to an 8-bit signed character.

• Integer refers to a 32-bit signed integer.

• Double refers to a 64-bit double.

Matrices are stored in row-major order. In this documentation we use brackets to
indicate a matrix. Hence, integer[3][4] means that 12 integers representing a
matrix are store in the file. The first three entries corresponds to the integers in the first
row of the matrix, and so on.

Text File Format

COMSOL Multiphysics text file, using the file extension .mphtxt, are text files where
values are stored as text separated by whitespace characters.

Lexical conventions:

• Strings are serialized as the length of the string followed by a space and then the
characters of the string, for example, “6 COMSOL”. This is the only place where
whitespace matters.

• The software ignores everything following a # on a line except when reading a
string. This makes it possible to store comments in the file.

Binary File Format

COMSOL Multiphysics binary file, using the extension .mphbin, are binary files with
the following data representation:

• Integers and doubles are stored in little-endian byte order.

• Strings are stored as the length of the string (integer) followed by the characters of
the string (integers).

S A V I N G A N D L O A D I N G

You can import COMSOL Multiphysics files into the COMSOL Multiphysics GUI or
load them as variables into MATLAB.
 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

To load and save COMSOL Multiphysics files in MATLAB, use the functions flsave
and flload, respectively.

To export to a COMSOL Multiphysics file from the GUI, select File>Export>Geometry

to File. There is also a corresponding import menu. Note that the multiphysics files do
not describe a complete model, so it is not possible to open them from the standard
Open File dialog box.
O V E R V I E W | 597

598 | C H A P T E R
S e r i a l i z a b l e T y p e s
Attribute on page 599

BezierCurve on page 600

BezierMfd on page 601

BezierSurf on page 602

BezierTri on page 603

BSplineCurve on page 604

BSplineMfd on page 605

BSplineSurf on page 607

Ellipse on page 608

Geom0 on page 610

Geom1 on page 611

Geom2 on page 612

Geom3 on page 614

GeomFile on page 615

Manifold on page 616

Mesh on page 617

MeshCurve on page 619

MeshSurf on page 620

Plane on page 621

PolChain on page 622

Serializable on page 623

Straight on page 624

Transform on page 625

VectorDouble on page 626

VectorInt on page 627

VectorString on page 628
 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Attribute
AttributeSupported Versions 0

Subtype of Serializable

Fields The class is defined by the following fields:

Description An Attribute is a general purpose class from which different subtypes can be
derived. Each such subtype should then be serialized using the serialization of the
Attribute class, which means that all that it should add to the serialization is the
version number.

Attributes are used in COMSOL Multiphysics for internal purposes, and these
attributes are not documented. However, because Attribute has a strict
serialization structure, the serialization of these attributes is well documented.

Example This is a serialization of an attribute used internally in COMSOL Multiphysics. It is
serialized as a vector of integers.

11 AssocAttrib # class
0 0 # version
1 # nof attribute fields
9 VectorInt # class
18 3 2 2 2 1 0 1 1 1 1 1 1 0 1 1 1 1 0

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer n Number of attribute fields

Serializable[n] Each entity field is stored as a serializable
599

BezierCurve

600 | C H A P T
BezierCurveSupported Versions 0

Subtype of BezierMfd

Fields The class is defined by the following fields:

Description A rational Bézier curve is a parameterized curve of the form

where the functions

are the Bernstein basis functions of degree p, bi = (x1, …, xn) are the control
vertices of the n-dimensional space, and wi are the weights, which should always be
positive real numbers to get a properly defined rational Bézier curve. A rational
Bézier curve has a direction defined by the parameter t.

Example The following illustrates a linear Bézier curve.

11 BezierCurve # class
0 0 # version
2 # sdim
0 2 1 # transformation
1 0 # degrees
2 # number of control points
control point coords and weights
0 0 1
1 1 1

See also BSplineCurve

ENTITY/OBJECT DESCRIPTION

integer Version

BezierMfd Parent class containing common data

b t()

biwiBi
p t()

i 0=

p

∑

wiBi
p t()

i 0=

p

∑
-------------------------------------- 0 t 1≤ ≤,=

Bi
p t()

p
i⎝ ⎠

⎛ ⎞ ti 1 t–()p i–
=

E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

BezierMfd
BezierMfdSupported Versions 0

Subtype of Manifold

Fields The class is defined by the following fields:

Description The BezierMfd type is the abstract base class for the different type of Bézier surfaces
and curves that are supported. These can all be represented in using the generalized
equation

where B are functions as described in the respective entry, and b are the control
point coordinates in P and w are the weights stored in the last column of P.

See also BSplineMfd

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation class

integer m Degree in first parameter

integer n Degree in second parameter

integer k Number of control points

double[k][d+1] P Matrix of control points with the weights in the last
column

S s t,()

bi j, wi j, B s t,()
j 0=

n

∑
i 0=

m

∑

wi j, B s t,()
j 0=

n

∑
i 0=

m

∑

-- =
601

BezierSurf

602 | C H A P T
BezierSurfSupported Versions 0

Subtype of BezierMfd

Fields The class is defined by the following fields:

Description A rectangular rational Bézier patch of degree p-by-q is described by

where and are the Bernstein basis functions of degree p and q, respectively,
as described in the entry of BezierCurve. This surface description is called
rectangular because the parameter domain is rectangular, that is, the two parameters
s and t can vary freely in given intervals.

See also BSplineSurf, BezierTri

ENTITY/
OBJECT

DESCRIPTION

integer Version

BezierMfd Parent class containing common data

S s t,()

bi j, wi j, Bi
p s()Bj

q t()
j 0=

q

∑
i 0=

p

∑

wi j, Bi
p s()Bj

q t()
j 0=

q

∑
i 0=

p

∑

---, 0 s t 1≤,≤= ,

Bi
p Bj

q

E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

BezierTri
BezierTriSupported Versions 0

Subtype of BezierMfd

Fields The class is defined by the following fields:

Description Another form of surface description is the triangular patch, also called a Bézier
triangle. A triangular rational Bézier patch is defined as

which differs from the Bézier curve description only by the use of bivariate
Bernstein polynomials instead of univariate, for the curve case. The bivariate
Bernstein polynomials of degree p are defined as

where the parameters s and t must fulfill the conditions

which form a triangular domain in the parameter space, therefore the name of this
surface description.

See also BezierSurf

ENTITY/
OBJECT

DESCRIPTION

integer Version

BezierMfd Parent class containing common data

S s t,()

bi j, wi j, Bi j,
p s t,()

i j+ p≤
∑

wi j, Bi j,
p s t,()

i j+ p≤
∑

--- 0 s t 1≤,≤,=

Bi j,
p s t,() p!

i!j! p i– j–()!
----------------------------------sitj 1 s– t–()p i– j–

= , i j+ p≤

0 s t,≤
s t 1≤+⎩

⎨
⎧

603

BSplineCurve

604 | C H A P T
BSplineCurveSupported Versions 0

Subtype of BSplineMfd

Fields The class is defined by the following fields:

Description The BSplineCurve, describes a general spline curve, using B-spline basis functions,
as defined in BSplineMfd. Splines on this form are often referred to as B-splines.

A pth-degree spline curve is defined by

where Pi are the control points., the wi are the weights and the Ni
p are the pth

degree B-spline basis functions defined in the nonperiodic and nonuniform knot
vector

For non-rational B-splines, all weights are equal to 1 and the curve can be expressed
as

See also BezierCurve

ENTITY/
OBJECT

DESCRIPTION

integer Version

BSplineMfd Parent class containing common data

C u()

Ni
p u()wiPi

i 0=

n

∑

Ni
p u()wi

i 0=

p

∑
-- a u b≤ ≤,=

U a … a up 1+ … um p– 1– b … b, , , , , , , ,{ }=

C u() Ni
p u()wiPi

i 0=

n

∑ a u b≤ ≤,=
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

BSplineMfd
BSplineMfdSupported Versions 0

Subtype of Manifold

Fields The class is defined by the following fields:

Description The BSplineMfd type is the abstract base type for BSplineCurve and
BSplineSurf, which represent general spline curves and surfaces, respectively.

They are represented using B-spline basis functions. Let U = {u0, …, um} be a
nondecreasing sequence of real numbers; U is called the knot vector and the
elements ui of U are called knots. The ith B-spline basis function of p-degree,

, is defined as

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation class

integer Dimension (1 if curve, 2 if surface)

integer p, q Degree in each dimension (1 or 2 integers)

boolean If rational equal to1

integer Number of knot vectors (1 for curves, 2 for
surfaces)

integer m1 Length of first knot vector

double[m1] U First knot vector

integer m2 Length of second knot vector (not for curves)

double[m2] V Second knot vector (not for curves)

integer n1 Number of control points in first parameter
direction

integer n2 Number of control points in second parameter
dimension

integer n3 Number of coordinates per control point

double

[n1][n2][n3]

P Matrix of coordinates where the last dimension is
increased by 1 to store the weights if the manifold is
rational

Ni
p u()
605

BSplineMfd

606 | C H A P T
A general B-spline can be described by

where

and

are the two knot vectors stored in the entry, and b and w are the control points
coordinates and weights stored in P.

For periodic splines, the first and last parameter values in the knot vectors are not
duplicated.

Ni
0 u() 1 ui u ui 1+<≤

0 otherwise⎩
⎨
⎧

=

Ni
p u()

u ui–

ui p+ ui–
------------------------Ni

p 1– u()
ui p 1+ + u–

ui p 1+ + ui 1+–
---------------------------------------Ni 1+

p 1– u()+=

S u v,()

Ni
p u()Nj

q v()wi j, bi j,
j 0=

m

∑
i 0=

n

∑

Ni
p u()Nj

q v()wi j,
j 0=

m

∑
i 0=

n

∑

-- a u b c v d≤ ≤,≤ ≤,=

U a … a up 1+ … um p– 1– b … b, , , , , , , ,{ }=

V c … c vp 1+ … vm p– 1– d … d, , , , , , , ,{ }=
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

BSplineSurf
BSplineSurfSupported Versions 0

Subtype of BSplineMfd

Fields The class is defined by the following fields:

Description The generalization of B-spline curves to surfaces is a tensor product surfaces given
by

See also BezierSurf

ENTITY/
OBJECT

DESCRIPTION

integer Version

BSplineMfd Parent class containing common data

S u v,()

Ni
p u()Nj

q v()wi j, Pi j,
j 0=

m

∑
i 0=

n

∑

Ni
p u()Nj

q v()wi j,
j 0=

m

∑
i 0=

n

∑

--- a u v, b≤ ≤,=
607

Ellipse

608 | C H A P T
EllipseSupported Versions 0

Subtype of Manifold

Fields The class is defined by the following fields:

Description This manifold defines an ellipse in the two or three dimensional space.

In 2D, an ellipse is defined by a center point center, a vector defining the major
axis M of the ellipse (including the magnitude of the major axis), the radius ratio of
the minor axis length to the major axis length rat, the direction of the ellipse, and
the parameter offset at the major axis offset.

In 3D, an ellipse is defined by a center point center, a unit vector normal to the
plane of the ellipse normal, a vector defining the major axis of the ellipse M
(including the magnitude of the major axis), the radius ratio, and the parameter
offset at the major axis offset. The direction of the ellipse is defined by the right
hand rule using the normal vector.

An ellipse is a closed curve that has a period of 2π. It is parameterized as:

point = center + M cos(t - offset) + N sin(t - offset)

where M and N are the major and minor axes respectively.

Example 7 Ellipse # class
0 0 # version
2 # sdim
0 2 1 # transformation
0 0 # center

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation class

double[d] center Center coordinate

boolean Equal to 1 if clockwise rotation (only if d==2)

double[d] normal Normal vector coordinates,

double[d] M Major axis

double rat Ratio of minor axis length to major axis length

double offset Parameter at the end of major axis

boolean Equal to 1 if ellipse is degenerated
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Ellipse
0 # reverse?
2 0 # major axis
0.5 # minor axis length / major axis length
0 # parameter value at end of major axis
0 # degenerated?
Attributes
0 # nof attributes
609

Geom0

610 | C H A P T
Geom0Supported Versions 1

Subtype of Serializable

Fields The class is defined by the following fields:

Description The type represent a 0D geometry class, as described in the entry geom0, geom1,
geom2, geom3 on page 226.

The type can be either 0 for solid or −1 for general object.

Example A solid 0D geometry object.

5 Geom0 # class
1 0 1e-010 1
0 # nof attributes

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer type Geometry type

double Relative geometry tolerance

integer p Number of points (0 or 1)

integer na Number of attributes

Attribute[na] Vector of attributes
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Geom1
Geom1Supported Versions 1

Subtype of Serializable

Fields The class is defined by the following fields:

Description The type represent a 1D geometry class, as described in the entry geom0, geom1,
geom2, geom3 on page 226.

The type can be either 0, 1, or −1 for point, solid, or general objects.

Example A solid 1D object.

5 Geom1 # class
1 # version
1 # type
1e-010 # gtol
3 # number of vertices
Vertex coordinates
0
1
3
Vertex up/down
1 0
2 1
0 2
Attributes
0 # nof attributes

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer type Geometry type

double Geometry tolerance

integer nv Number of vertices

double[nv] vtx Vector of vertex coordinates

integer[nv][2] ud Matrix of integers giving subdomains on up and
down side of each vertex
611

Geom2

612 | C H A P T
Geom2Supported Versions 1

Subtype of Serializable

Fields The class is defined by the following fields:

Description The type represent a 2D geometry class, as described in the entry geom0, geom1,
geom2, geom3 on page 226.

The type can be either 0, 1, 2, or −1 for point, curve, solid or general objects.

Example 5 Geom2 # class
1 # version
1 # type
1e-010 # gtol
0.0001 # resTol
2 # number of vertices
Vertices
X Y sub tol
0 0 -1 NAN
1 2.2999999999999998 -1 NAN

1 # number of edges
Edges
vtx1 vtx2 s1 s2 up down mfd tol
1 2 0 1 0 0 1 NAN
1 # number of manifolds
11 BezierCurve # class
0 0 # version
2 # sdim
0 2 1 # transformation

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer Type

double Relative geometry tolerance

integer nv Number of vertices

integers/doubles
[nv][4]

vertex Matrix of vertex data

integer ne Number of edges

integers/doubles
[ne][8]

edge Matrix of edge data

integer nc Number of curves

Manifold[nc] curve An array of Manifold objects
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Geom2
1 0 # degrees
2 # number of control points
0 0 1
1 2.2999999999999998 1
0 # nof attributes
613

Geom3

614 | C H A P T
Geom3Supported Versions 1

Subtype of Serializable

Fields The class is defined by the following fields:

Description The type represent a 3D geometry class, as described in the entry geom0, geom1,
geom2, geom3 on page 226.

The type can be either 0, 1, 2, 3, or −1 for point, curve, shell, solid, or general
objects.

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer type Type

double Relative geometry tolerance

double Relative resolution tolerance

integer nv Number of vertices

integers/doubles
[nv][5]

vertex Matrix of vertex data

integer npv Number of parameter vertices

integers/doubles
[npv][6]

pvertex Matrix of parameter vertex data

integer ne Number of edges

integers/doubles
[ne][7]

edge Matrix of edge data

integer npe Number of parameter edges

integers/doubles
[nep][10]

pedge Matrix of parameter edge data

integer nf Number of faces

integers/doubles
[nf][4]

face Matrix of face data

integer nm Number of 3D manifolds, curves and surfaces

Manifold[nmfd] mfd Vector of manifolds

integer npc Number of parameter curves

Manifold[npc] pcurve Vector of parameter curves
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

GeomFile
GeomFileSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description This curve represent a trimmed part of a boundary described by a geometry M-file.
The boundary index, and start and end parameters of the trimming parts are store
din the curve entry. For details on Geometry M-files, see the entry geomfile on
page 248.

Example A curve representation using the cardg.m Geometry M-file.

8 GeomFile # class
0 0 # version
2 # sdim
0 2 1 # transformation
5 cardg # filename
1 # boundary number
1.5707963267948966 3.1415926535897931 # parameter range

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

string M-file name

integer Boundary number in M-file

double Start parameter value

double End parameter value
615

Manifold

616 | C H A P T
ManifoldSupported Versions 0

Subtype of Serializable

Fields This is an abstract class with no fields.

Description A manifold is the common supertype for curve and surface types. It is used by the
geometry types.

See also Geom0, Geom1, Geom2, Geom3
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Mesh
MeshSupported Versions 1

Subtype of Serializable

Fields The class is defined by the following fields:

Description This type represent a mesh that can be used by COMSOL Multiphysics. The entries
p, elem, par, dom, and ud are all described in the reference entry femmesh on page
136. However, the domain numbering for points, edges, and boundaries must start
from 0 when defining a mesh through a COMSOL Multiphysics mesh file.

Example The following displays a mesh with triangular elements on a unit square. Neither
point or edge elements are present.

4 Mesh # class
2 # sdim
5 # number of mesh points
0 # lowest mesh point index
Mesh point coordinates on unit square

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer d Space dimension (if equal to 0 no more fields)

integer np Number of mesh points

integer Lowest mesh point index

double[d][np] p Mesh points

integer nt Number of element types (fives the number of
repeats of the following fields)

string Element type

integer nep Number of nodes per element

integer ne Number of elements

integer[ne][nep] elem Matrix of point indices for each element.

integer ner Number of parameter values per element

integer nr Number of parameter sets

double[nr][ner] par Matrix of parameter values

integer ndom Number of domain values

integer[ndom] dom Vector of domain labels for each element.

integer nud Number of up/down boundary relations

integer[nud] ud Matrix of integers stating subdomain number on
up and down side of the boundary
617

Mesh

618 | C H A P T
0 0
1 0
1 1
0 1
0.5 0.5
1 # number of element types
3 tri # type name
3 # number of nodes per element
4 # number of elements
Elements, 4 triangular elements
0 1 4
3 0 4
2 3 4
1 2 4
6 # number of parameter values per element
0 # number of parameters
4 # number of domains
Domains
1
1
2
2
0 # number of up/down pairs
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

MeshCurve
MeshCurveSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description Mesh structures can also be used to define manifolds. Because meshes contain a
number of nodes and, in the case of COMSOL Multiphysics, corresponding
parameter values, a good geometric representation can be obtained using a suitable
interpolation method for evaluating the values of the manifolds and its derivatives
on parameter values that are inside the intervals between the given nodes. Mesh
curves are handled by cubic spline interpolation.

The matrix p and the vector par corresponds to the structures corresponding
structures in an edge mesh representation. For the MeshCurve, they serve as the
interpolation data to obtain intcurve.

See also BSplineCurve

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer Space dimension

Transform Transformation

integer np Number of points

double[np][d] p Matrix of point coordinates

double[np] par Vector of point parameters

Manifold intcurve Interpolating curve
619

MeshSurf

620 | C H A P T
MeshSurfSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description Mesh structures for surface meshes can be used to make a geometric definition of
unstructured data. Since a mesh type in COMSOL Multiphysics have coordinates as
well as parameter values for each element, interpolation can be employed to create
smooth surfaces.

A quadratic interpolation is used to define a parametric surface from a surface mesh.

The matrix p of coordinates and the triangles elem with indices into p are used as
the interpolation data.

See also Mesh

ENTITY/OBJECT VARIABLE DESCRIPTION

integer Version

integer Space dimension

Transform Transformation

integer nv Number of vertices

double[nv][3] p Matrix of mesh vertex coordinates

double[nv][2] Matrix of mesh vertex parameters

integer nt Number of triangles

integers[nv][3] elem Matrix of vertex indices for each element
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Plane
PlaneSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description This manifold defines a plane in the three dimensional space. It is represented by a
point, a unit vector normal to the plane, and the vector of the u derivative.

A plane is open in both parameter directions and neither periodic nor singular at any
point. It is parameterized as:

pos = p + u*b + v*(n x b)

Example 5 Plane # class
0 0 # version
3 # sdim
0 3 1 # transformation
1.3 0.80000000000000004 1.6000000000000001 # root point
-6.1257422745431001e-017 0 1 # normal
-1 0 -6.1257422745431001e-017 # derivatives
0 # degenerated?

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation

double[d] p The point in the plane with parameter value (0,0)

double[d] n Normal vector

double[d] b Direction of first parameter axis
621

PolChain

622 | C H A P T
PolChainSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description Polygon chains are piece wise linear curves, that are used as approximations of
curves in the decomposition algorithm. They have an implicit parameter
representation, that is, [(i − 1)(p − 1), i(p − 1)] on the ith interval in a polygon chain
with p points. This is not a suitable representation because the derivatives may vary
substantially along the curve.

See also MeshCurve

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation

integer n1 First dimension of matrix of point coordinates
(equal to d)

integer n2 Second dimension of matrix point coordinates,
number of points

doubles pol n1-by-n2 matrix of point coordinates
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Serializable
SerializableSupported Versions 0

Subtype of

Fields This is the abstract base type of all other types. It has no fields.

Description Serializable is the abstract base type. It is used to indicate that a field can contain all
supported types, as is the case for the Attribute type.

See also Attribute
623

Straight

624 | C H A P T
StraightSupported Versions 1

Subtype of Manifold

Fields The class is defined by the following fields:

Description This manifold defines an infinite straight line in the two or three dimensional space.
It is represented by a point and a unit vector specifying the direction. A straight also
has a scale factor for the parameterization, so the parameter values can be made
invariant under transformation. If not specified the value of this parameter is set to
1.0.

A straight line is an open curve that is not periodic. It is parameterized as:

pos = root + u*pscale*dir

where u is the parameter.

Example 8 Straight # class
0 0 # version
3 # sdim
0 3 1 # transformation
1.3 0.8 0.0 # root point
-1 0 0 # direction
1 # parameter scale

See also Plane

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer Version

integer d Space dimension

Transform Transformation

double[d] root The point from which the ray starts

double[d] dir The direction in which the ray points

double pscale Parameter scale
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Transform
TransformSupported Versions 1

Subtype of Serializable

Fields The class is

Description The transformation class is defined by the transformation matrix, that operates as a
pre-multiplier on column vectors containing homogeneous coordinates thus

where the conventional 3D coordinates are

The matrix thus consists of

where R is a nonsingular transformation matrix, containing the rotation, reflection,
non-uniform scaling, and shearing components; T is a translation vector; and S is a
global scaling factor greater than zero.

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer d Space dimension

boolean 1 if transformation is a unit transformation, 0
otherwise. If the value is 1, no more fields are present

double
[d+1][d+1]

M Values in transformation matrix

boolean 1 if determinant is positive, 0 otherwise

boolean 1 if matrix is isotropic, 0 otherwise

x' y' z' s' M x y z s '⋅=

x
s

y
s

z
s
--

R

Tx

Ty

Tz

0 0 0 S
625

VectorDouble

626 | C H A P T
VectorDoubleSupported Versions

Subtype of Serializable

Fields The class is defined by the following fields:

Description This is just a wrapper for a vector of doubles, that can be used to store fields in the
Attribute class.

See also Attribute

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer n Number of elements

double[n] d Elements
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

VectorInt
VectorIntSupported Versions

Subtype of Serializable

Fields The class is defined by the following fields:

Description This is just a wrapper for a vector of integers, that can be used to store fields in the
Attribute class.

See also Attribute

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer n Number of elements

integer[n] d Elements
627

VectorString

628 | C H A P T
VectorStringSupported Versions

Subtype of Serializable

Fields The class is defined by the following fields:

Description This is just a wrapper for a vector of strings, that can be used to store fields in the
Attribute class.

See also Attribute

ENTITY/
OBJECT

VARIABLE DESCRIPTION

integer n Number of elements

string[n] d Elements
E R 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Examp l e s

To illustrate the use of the serialization format, some text files are listed in this session.

A Mesh with Mixed Element Types

A file containing a 3D mesh with 2nd order tetrahedral, prism and block elements.
Some rows in the file are removed and replaced by an ellipsis(...).

Created by COMSOL Multiphysics Fri Aug 26 12:43:42 2005

Major & minor version
0 1
1 # number of tags
Tags
7 fem35.0
1 # number of types
Types
3 obj

A mesh object

0 0 1
4 Mesh # class
3 # sdim
1503 # number of mesh points
0 # lowest mesh point index

Mesh point coordinates
0 0 0
2.5 0 0
5 0 0

...
12.5 28.333330000000004 15
12.5 30 13.125
12.5 28.333330000000004 13.125

7 # number of element types

Type #0
4 tet2 # type name

10 # number of nodes per element
318 # number of elements
Elements
926 18 13 17 971 958 61 967 66 60
11 345 918 342 950 951 1137 949 373 1129
924 164 345 5 1026 1138 384 938 385 378
E X A M P L E S | 629

630 | C H A P T E R
20 339 15 16 352 68 356 69 960 64
...
287 919 930 285 1100 1102 1152 317 1096 1098
3 227 4 8 936 28 243 35 945 36

30 # number of parameter values per element
0 # number of parameters
Parameters
318 # number of domains
Domains
1
...
1
1

0 # number of up/down pairs
Up/down

Type #1
6 prism2 # type name

18 # number of nodes per element
96 # number of elements
Elements
85 174 90 476 474 557 221 118 237 499 1171 494 1170 1172 566 496 563 597
174 225 90 474 588 557 238 237 244 494 1173 579 1172 1174 566 598 597 604
174 175 225 474 472 588 222 238 239 494 1175 489 1173 1176 579 491 598 599
...
654 528 530 404 409 408 693 692 541 703 1333 538 1332 1334 543 460 459 465
654 504 528 404 405 409 687 693 694 703 1324 520 1333 1335 538 453 460 461
504 506 528 405 410 409 523 694 536 520 1336 525 1335 1337 538 462 461 466

54 # number of parameter values per element
0 # number of parameters
Parameters

96 # number of domains
Domains
2
2
2
...
2
2

0 # number of up/down pairs
Up/down

Type #2
4 hex2 # type name

27 # number of nodes per element
36 # number of elements
Elements
 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

410 506 409 528 762 760 831 859 525 466 1337 536 538 780 1339 775 1338 1343
1340 840 1341 853 777 837 1342 865 867
506 507 528 529 760 758 859 860 526 536 1281 537 539 775 1344 770 1340 1348
1345 853 1346 854 772 865 1347 866 868
...
893 785 809 787 718 719 722 723 908 910 1446 804 815 916 1487 801 1495 1502
1499 817 1500 806 747 750 1501 751 754

81 # number of parameter values per element
0 # number of parameters
Parameters

36 # number of domains
Domains
3
3
...
3
3

0 # number of up/down pairs
Up/down

Type #3
3 vtx # type name

1 # number of nodes per element
16 # number of elements
Elements
0
4
20
...
723

0 # number of parameter values per element
0 # number of parameters
Parameters

16 # number of domains
Domains
0
1
...
14
15

0 # number of up/down pairs
Up/down

Type #4

4 edg2 # type name
E X A M P L E S | 631

632 | C H A P T E R
3 # number of nodes per element
102 # number of elements
Elements
4 9 37
9 14 50
14 19 63
...
175 174 222
174 85 221

3 # number of parameter values per element
102 # number of parameters
Parameters
0 5 2.5
5 10 7.5
10 15 12.5
...
7.5 11.25 9.375
11.25 15 13.125

102 # number of domains
Domains
0
0
...
27
27
27

0 # number of up/down pairs
Up/down

Type #5

4 tri2 # type name

6 # number of nodes per element
224 # number of elements
Elements
18 17 13 66 61 60
164 5 345 385 384 378
20 339 15 352 68 356
...
404 409 405 460 453 461
405 409 410 461 462 466

12 # number of parameter values per element
0 # number of parameters
Parameters

224 # number of domains
Domains
12
7
 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

7
...
5
5
5

224 # number of up/down pairs
Up/down
1 0
1 0
1 0
1 0
...
2 0
2 0

Type #6

5 quad2 # type name

9 # number of nodes per element
102 # number of elements
Elements
85 90 476 557 118 499 1170 566 563
85 476 174 474 499 221 1171 496 494
...
809 787 722 723 815 817 1500 806 754
718 722 719 723 750 747 1501 754 751

18 # number of parameter values per element
0 # number of parameters
Parameters

102 # number of domains
Domains
1
4
4
...
8
2

102 # number of up/down pairs
Up/down
2 0
2 0
...
3 0
3 0

A Planar Face

The following listing is a complete representation of a planar 3D face.
E X A M P L E S | 633

634 | C H A P T E R
Created by COMSOL Multiphysics Fri Aug 26 14:19:54 2005

Major & minor version
0 1
######### Tags
1 # number of tags
Tags
2 b1

######## Types
1 # number of types
Types
3 obj

######## Records

A planar face object

0 0 1
5 Geom3 # class
1 # version
2 # type
1e-010 # gtol
0.0001 # resTol
4 # number of vertices
Vertices
X Y Z sub tol
0 0 0 -1 1e-010
1 0 6.1257422745431001e-017 -1 1e-010
0 1 0 -1 1e-010
1 1 6.1257422745431001e-017 -1 1e-010
4 # number of parameter vertices
Parameter vertices
vtx s t fac mfd tol
1 0 0 -1 1 NAN
2 1 0 -1 1 NAN
3 0 1 -1 1 NAN
4 1 1 -1 1 NAN

4 # number of edges
Edges
vtx1 vtx2 s1 s2 sub mfd tol
1 2 0 1 -1 2 NAN
2 4 0 1 -1 3 NAN
4 3 0 1 -1 4 NAN
3 1 0 1 -1 5 NAN
4 # number of parameter edges
Parameter edges
edg v1 v2 s1 s2 up down mfdfac mfd tol
1 1 2 0 1 1 0 1 1 NAN
2 2 4 0 1 1 0 2 1 NAN
3 4 3 0 1 1 0 3 1 NAN
4 3 1 0 1 1 0 4 1 NAN

1 # number of faces
 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

Faces
up down mfd tol
0 0 1 NAN

5 # number of 3D manifolds
Manifold #0
5 Plane # class
0 0 # version
3 # sdim
0 3 1 # transformation
0 0 0 # root point
-6.1257422745431001e-017 0 1 # normal
1 0 6.1257422745431001e-017 # derivatives
0 # degenerated?

Manifold #1
8 Straight # class
0 0 # version
3 # sdim
0 3 1 # transformation
0 0 0 # root point
1 0 6.1257422745431001e-017 # direction
1 # parameter scale

Manifold #2
8 Straight # class
0 0 # version
3 # sdim
0 3 1 # transformation
1 0 6.1257422745431001e-017 # root point
0 1 0 # direction
1 # parameter scale

Manifold #3
8 Straight # class
0 0 # version
3 # sdim
0 3 1 # transformation
1 1 6.1257422745431001e-017 # root point
-1 0 -6.1257422745431001e-017 # direction
1 # parameter scale

Manifold #4
8 Straight # class
0 0 # version
3 # sdim
0 3 1 # transformation
0 1 0 # root point
0 -1 0 # direction
1 # parameter scale

4 # number of parameter curves
Paramerer curve #0
8 PolChain # class
0 0 # version
E X A M P L E S | 635

636 | C H A P T E R
2 # sdim
0 2 1 # transformation
2 2 0 0 1 0 # chain

Paramerer curve #1
8 PolChain # class
0 0 # version
2 # sdim
0 2 1 # transformation
2 2 1 0 1 1 # chain

Paramerer curve #2
8 PolChain # class
0 0 # version
2 # sdim
0 2 1 # transformation
2 2 1 1 0 1 # chain

Paramerer curve #3
8 PolChain # class
0 0 # version
2 # sdim
0 2 1 # transformation
2 2 0 1 0 0 # chain

Attributes
0 # nof attributes
 6 : T H E C O M S O L M U L T I P H Y S I C S F I L E S

I N D E X

1D geometry object 226

3D mesh 312

A A matrix 28

adaption 20

adaptive solver 20

error indicator in 542

iterative algorithm for 542

adaptive solver algorithm 540

adjoint method 544

affine invariance

of rational Bézier curves 517

AL matrix 28

algebraic multigrid preconditioner 565

algebraic multigrid solver 565

Allman 117

analyzed geometry 238, 259, 267

angle 37

animation 398

arc1 26

arc2 26

Argyris 117

Argyris element 436

Argyris elements 489

Arnoldi method 539

ARPACK 539

assemble 27

assembling the stiffness matrix 506

assembly 27

block size for 527

asseminit 32

Attribute 599

augmented Lagrangian solver algorithm

536

augmented Lagrangian technique 143

B backward differentiation formulas 537

basis functions 485, 503

BE matrix 28

Bernstein basis 516, 600

Bernstein polynomials

bivariate 519, 603

univariate 519, 603

Bézier curve 44, 600

Bézier patch 124

Bézier surface

rectangular 602, 603

Bézier triangles 519, 603

binary file format 594

BLAS 546

block2 36, 39, 91, 430, 452

block3 35

Boolean operations 238

boundary coupled equation variables 305

boundary coupled shape variables 305

B-spline

basis functions 605

curve 604

surface 607

bubble element 437, 492

Bunch-Kaufmann pivoting 548

C C matrix 28

cardg 249

cardioid 249

chamfer 37

Cholesky direct solver 549

circ1 39

circ2 39

circular rounded corners 207

coarse grid correction 559

coarse solver

settings for 565

coefficient solution form 510, 529
I N D E X | 637

638 | I N D E X
coerce geometry object 235

collapsed element 141

color specification 374, 377, 386, 417

COMSOL Multiphysics file 593

exporting from GUI 597

opening 597

comsol.opts

specifying the stack size 549

cone2 42

cone3 42

conic sections 517

conjugate gradients solver 551

constr edit field 510

constraint force 513

constraint force Jacobian matrix 505

constraint handling method 526

constraint Jacobian matrix 504

constraint residual 505

constraint-handling methods 533

elimination 533

using Lagrange multipliers 534

using stiff springs 534

constraints

ideal 513

in multiphysics models 512

non-ideal 513

contact map operators 54

control polygon 516

Control System Toolbox 180

control vertices 516, 600

Convergence 539

Convergence criterion 539

corners

flattened 37

rounded 207

trimmed 37, 207

cubic Bézier curve 518

curl element 438, 494

curl-curl operators 567

curve

cusp on 518

implicit form of 517

inflection point for 518

quadratic 517

third-degree 518

curve2 44

curve3 44

curved mesh elements 486

cusp

on a curve 518

cylinder2 46

cylinder3 46

D D matrix 28, 506

DA matrix 28

DAE 196

damped Newton method 535

damping factor 535

damping matrix 506

DASSL 537

Decomposed Geometry matrix 259

degenerated element 141

degree

of rational Bézier curve 516, 520, 600

degree of freedom 218

degrees of freedom 484, 503

density element 439, 498

destination-aware integration coupling

variables 60

diagnostics 465

diagonal scaling preconditioner 566

differential algebraic equation 196

direct solvers

LDLT (TAUCS) 549

PARDISO 547

SPOOLES 547

TAUCS Cholesky 549

TAUCS LDLT 549

UMFPACK 546

Dirichlet boundary conditions

in multiphysics models 512

discontinuous element 440, 496

discretization 484

of equations 502

divergence element 441, 499

divergence elements 499

DOF. See degrees of freedom

drawgetobj 48

drawsetobj 49

drop rule

selecting for preconditioner 556

drop tolerance 546, 556

dweak edit field 510

dynamic model 158

E E matrix 28, 506

EA matrix 28

econe2 51

econe3 50

edge element 438

edge elements 494

edge segment 259

eigenvalue solver 128

eigenvalue solver algorithm 538

eigenvalues

field in solution object for 129

specifying search location for 129

using adaptive solver for 20

elemcpl 511

element coordinates 485

element syntax 70

element types

Argyris elements 489

divergence elements 499

Hermite elements 490

Lagrange elements 487

vector elements 494

elemmph 511

elevate 79

elimination constraint handling 533

elinterp 85

ellip2 91, 430, 452

ellipse 517, 608

ellipsoid2 94

ellipsoid3 93

embed 121

equation system

how COMSOL Multiphysics forms it

509

equation system form 509, 529

equilibrium solution 158

error estimate

functional-based 541

using L2 norm 540

error estimation function 22

error indicator 542

error messages 466

general 476

in assembly and extended mesh 469

in geometry modeling 466

in mesh generation 468

in solvers 473

Euclidean norm

for the relative tolerance 535

in the threshold drop rule 556

Euler step 196

extrude 122

extrusion coupling variables 57

extrusion map operators 97

F F vector 28

face segment 259

face3 124

F-cycles 559

FEM structure 192
I N D E X | 639

640 | I N D E X
FEM. See finite element method

femdiff 126

femeig 128

femlab 41

femlin 131

femmesh 136

femnlin 143

femoptim 149

femsim 157

femsol 161

femstate 180

femstatic 182

femstruct 192

femtime 193

femwave 202

FGMRES solver 550

file format

binary 594

COMSOL Multiphysics 594

text 594

file record 594, 595

fillet 207

fill-ratio drop rule 556

finite element method 484

finite element space 485, 503

finite elements 484

first fundamental matrices 261

flattened corners 37

flcompact 208

flcontour2mesh 209

fldc1hs 210

fldc2hs 210

fldsmhs 223

fldsmsign 223

fleel2 22

flform 211

flim2curve 213

flload 215

flmesh2spline 216

flngdof 218

flreport 221

flsave 594

flsmhs 210, 223

flsmsign 210, 223

fltpft 23

fltpqty 23

fltpworst 23

flux computation 389

forward method 544

Fourier transform, plotting part of 60

functional, as error estimator 22

functional-based error estimate 541

G G vector 28

GA vector 28

Gauss points 505

Gauss-point pattern 442

Gauss-Seidel method 566

gencyl2 225

gencyl3 224

general dynamic model 158

general solution form 511, 529

general static model 158

generalized minimum residual solver 550

geom0 226

geom1 226

geom2 226

geomanalyze 231

geomarray 233

geomcoerce 235

geomcomp 236

geomcsg 238

geomdel 244

geomedit 246

geometric entity 259

geometric multigrid preconditioner 557

geometric multigrid solver 557

geometric variables 523

Geometry M-file 248

geometry model 238

geometry shape order 486

geomfile 248

geomgetwrkpln 251

geominfo 259, 266

geomplot 267

geomposition 272

geomspline 273

geomsurf 275

George, P. L. 321

GMG preconditioner 557

GMG solver 557

GMRES solver 550

gporder 505

H H matrix 28

Heaviside function

smoothed 210, 223

helix geometry objects 278

helix1 278

helix2 278

helix3 278

Helmholtz’ equation 95

Helmholtz-Kirchhoff integral solutions

95

Hermite element 443

Hermite elements 490

hexahedron2 279

hexahedron3 279

highly nonlinear 145

Hnlin 145

hyperbola 517

I IDA 537

ideal constraints 504, 513

implicit form of curve 517

implicitly restarted Arnoldi method 539

import of geometry

IGES file 255

in core memory option 548

incomplete Cholesky

preconditioner 557

using TAUCS 557

incomplete LU preconditioner 555

inflection point

for cubic curves 518

initial values

for the nonlinear solver 535

Initstep 146

inline functions 83

integration coupling variables 65

destination aware 60

Intel MKL 547

invariance

of rational Bézier curves 517

isoparametric elements 486, 488

iterative solvers

conjugate gradients 551

FGMRES 550

GMRES 550

J Jacobian

matrix 506

K K matrix 28, 506

knot vector 605

knots 605

Ksp matrix 28

L L vector 28

L2 norm error estimate 540

Lagrange constraint handling 534

Lagrange element 444, 487

Lagrange multipliers 504

as field variables 507

extra term for 512

vector containing 504

Lagrange points 487
I N D E X | 641

642 | I N D E X
Lenoir method 80

lighting 155

lighting model 155

line 280

line1 280

line2 280

linear adaptive solver 20

linear elements 484, 487

linear solver 131

linearization 506

linearized dynamic simulation 158

linearized static model 159

load vector 506

local coordinates 485

loft 281

M M vector 28, 503

mass matrix 506

mesh

adaptive refinement 20

object 312

plotting 328

mesh cases

for geometric multigrid solver 562

mesh object 312

mesh refinement

2D algorithm 338

meshcopy 296

meshdel 298

meshenrich 301

meshexport 304

meshextend 305

meshimport 309

meshinit 312

meshplot 328

meshqual 335

meshrefine 337

meshsmooth 341

method of lines 537

Mindlin plate 115

mirror 349

model reduction 159

move

geometry object 350

move 350

mphbin files 596

mphtxt files, text files, file format

text 596

multigrid cycles 558

F-cycles 559

V-cycles 559

W-cycles 559

multigrid hierarchy, constructing 560

multigrid levels 558

multigrid solver 557

settings for 564

multiphysics 351

N N matrix 28

NASTRAN 309

Nédélec’s edge element 494

Newton method 535

NF matrix 28

node points 485

non-ideal constraints 513

nonlinear 145

adaptive solver 20

solver 143, 182

nonlinear solver algorithm 535

non-uniform rational basis spline. See

NURBS

null-space function 526

numerical quadrature 505

NURBS 521

curve 604

surface 607

Nyquist criterion 560

O order

of Lagrange elements 487

of quadrature formulas 505

out-of-core PARDISO solver 548

P parabola 517

parallel solver 547

parameterization

curves 521

faces 521

parametric solver 146

parametric solver algorithm 539

PARDISO direct solver 547

supported platforms 549

parts

extracting from assembly 277

patch mesh plot 328

PDE Toolbox 259

piecewise functions 105

piecewise polynomial interpolation 80

pivot perturbation strategy in PARDISO

548

pivot threshold 546

PMLs 445

point1 359

point2 359

point3 359

poly1 361

poly2 361

polygon 280, 361

polynomial Bézier curves 517

post data 378

postanim 362

postarrow 363

postarrowbnd 364

postcont 367

postcoord 368

postcrossplot 370

postdataplot 377

posteval 378

postflow 382

postglobaleval 383

postglobalplot 385

postgp 387

postint 388, 423

postinterp 391

postiso 394

postlin 395

postmovie 398

postname 116

postplot 400

postprinc 420

postprincbnd 421

postprocessing function 378

postslice 422

postsmoothers 559

settings for 564

postsurf 425

posttet 426

preconditioners

algebraic multigrid 565

diagonal scaling 566

geometric multigrid 557

incomplete Cholesky (TAUCS) 557

incomplete LU 555

SOR 566

SOR vector 567, 570

SORU 566

SORU vector 567, 570

SSOR 566

SSOR vector 567

Vanka 570

preordering algorithms 547, 548

presmoothers 558

settings for 564

projection coupling variables 62

prolongation matrices 558

pyramid2 429
I N D E X | 643

644 | I N D E X
pyramid3 428

Q Q matrix 28

quadratic elements 485, 487

quadrature formulas 505

quadric curves 517

R R matrix 28

radius of curvature 317

rational Bézier curves 516

rational Bézier patches 518

rectangular 518

reaction forces, computation and stor-

age of 189, 198

record

file 594, 595

relative tolerance

in nonlinear solver 536

relaxation factor 566

residual methods 542

residual vector 505

revolve 432

rotate 433

rounded corners 207

S saddle-point problems 570

scalar plane wave basis function 501

scale 435

scaling

of variables and equations 531

search location for eigenvalues 129

second fundamental matrices 261

second-order spatial derivative

incorrect Jacobian when using 529

segregated iterations 536

sensitivity solver algorithm 543

serendipity element 140

serializable 595

serializable objects 598

serialization

records 594, 595

tags 594

terminology 596

types 594

set formula 241

shape functions 486

sharg_2_5 436

sharg_2_5 Argyris element 489

shbub 437

shbub bubble element 492

shcurl 438, 494

shdens 439

shdisc 440

shdisc discontinuous element 497, 498

shdiv 441

shdiv divergence element 499

shgp 442

shherm Hermite element 491

shlag 443

shlag Lagrange element 487

shuwhelm scalar plane wave basis func-

tion 501

sign function 223

Simulink 157, 180

Simulink export

dynamic model 158

general dynamic model 158

general static model 158

linearized dynamic simulation 158

linearized static model 159

static model 158

Simulink structure 157

smoothed sign function 223

smoothers

efficiency of 560

settings for 564

SOR vector 567, 570

SORU vector 567, 570

SSOR vector 567

Vanka 570

sol 146

solid table 239

solid0 446

solid1 446

solid2 446

solid3 446

solsize 448

solution

storing on file 528

solution form 509, 528

automatic 509

coefficient 529

general 529

weak 529

solution matrix 129

solution object 133, 146, 161, 198

solution objects

eigenvalues in 129

solution structure 129

solution vector 503

solver errors and diagnostics 478

solvers

algebraic multigrid 565

conjugate gradients 551

FGMRES 550

geometric multigrid 557

GMRES 550

PARDISO 547

SPOOLES 547

TAUCS Cholesky 549

UMFPACK 546

SOR preconditioner 566

SOR vector preconditioner 567, 570

SOR vector smoother 567, 570

SORU vector preconditioner 567, 570

SORU vector smoother 567, 570

sphere2 450

sphere3 449

spline curve 604

spline surface 607

SPOOLES direct solver 547

SSOR preconditioner 566

SSOR update 571

SSOR vector preconditioner 567

SSOR vector smoother 567

STACKSIZE parameter 549

standard simplex 485

state-space form 180

static model 158

stationary

adaptive solver 20

linear solver 131

nonlinear solver 143, 182

stationary segregated solver algorithm

539

step function

smoothed 210, 223

stiff spring constraint handling 534

stiffness matrix 506

Stratton-Chu formula 95

subdomain 259

successive over-relaxation methods 566

sum of expression in nodes 423

summation coupling variables 67

surface object 124

symmetric successive over-relaxation

method 566

T tags

serialization 594

tangential derivative variables

for Argyris elements 490

for Bubble elements 494

for curl elements 496

for discontinuous elements 498
I N D E X | 645

646 | I N D E X
for divergence elements 501

for Hermite elements 492

for Lagrange elements 488

TAUCS Cholesky direct solver 549

TAUCS incomplete Cholesky precondi-

tioner 557

TAUCS LDLT direct solver 549

test function 503

tetrahedron2 456

tetrahedron3 456

text file format 594

The Stationary Segregated Solver Algo-

rithm 539

third-degree curve 518

threshold drop rule 556

time dependencies 198

time-dependent solver 193

time-dependent solver algorithms 537

torus2 457

torus3 457

triangular Bézier surface 603

triangular Bézier surfaces 519

trimmed curves 521

trimmed patch 125

trimmed surfaces 521

U ultraweak variational formulation 445,

501

UMFPACK direct solver 546

undefined operations 528

untrimmed patch 125

Uzawa iterations 536

V Vanka algorithm 570

Vanka preconditioner/smoother 570

Vanka update 570

variables

geometric 523

V-cycles 559

vector elements 438, 494

preconditioners for 567

smoothers for 564

vertex 259

W W-cycles 559

weak constraint 389

weak constraints 507

weak edit field 510

weak solution form 511, 529

weak terms

contribution to equation 510

weights

in control polygon 520

wireframe mesh plot 328

X xmesh 305

	CONTENTS
	Chapter 1: Command Reference
	Summary of Commands 2
	Commands Grouped by Function 7

	Chapter 2: Diagnostics
	Error Messages 466

	Chapter 3: The Finite Element Method
	Understanding the Finite Element Method 484
	What Equations Does COMSOL Multiphysics Solve? 509

	Chapter 4: Advanced Geometry Topics
	Advanced Geometry Topics 516

	Chapter 5: Advanced Solver Topics
	Advanced Solver Settings 526
	Solver Algorithms 535
	Linear System Solvers 546
	Preconditioners for the Iterative Solvers 555
	Optimization Solver Properties 574

	Chapter 6: The COMSOL Multiphysics Files
	Overview 594
	Serializable Types 598
	Examples 629

	Command Reference
	Summary of Commands
	Commands Grouped by Function
	User Interface Functions
	Solver Functions
	Geometry Functions
	Geometry Objects
	Mesh Functions
	Utility Functions
	Postprocessing Functions
	Shape Function Classes
	Element Syntax Classes
	Mathematical Functions
	Obsolete Functions in 3.5a
	Obsolete Functions in 3.5
	Obsolete Functions in 3.3
	Obsolete Functions in 3.2
	Obsolete Functions in 3.1
	Obsolete Functions in FEMLAB 3.0

	adaption
	arc1, arc2
	assemble
	asseminit
	block2, block3
	chamfer
	circ1, circ2
	comsol
	cone2, cone3
	curve2, curve3
	cylinder2, cylinder3
	drawgetobj
	drawsetobj
	econe2, econe3
	elcconstr
	elconst
	elcontact
	elcplextr
	elcplgenint
	elcplproj
	elcplscalar
	elcplsum
	elcurlconstr
	elempty
	elepspec
	eleqc
	eleqw
	elevate
	elgeom
	elgpspec
	elinline
	elinterp
	elinv
	elirradiation
	ellip1, ellip2
	ellipsoid2, ellipsoid3
	elkernel
	elmapextr
	elmesh
	elode
	elpconstr
	elpiecewise
	elplastic
	elpric
	elsconstr
	elshape
	elshell_arg2
	eluwhelm
	elvar
	embed
	extrude
	face3
	femdiff
	femeig
	femlin
	femmesh
	femmesh/get
	femnlin
	femoptim
	femplot
	femsim
	femsol
	femsolver
	femstate
	femstatic
	femstruct
	femtime
	femwave
	fillet
	flcompact
	flcontour2mesh
	flc1hs, flc2hs, fldc1hs, fldc2hs
	flform
	flim2curve
	flload
	flmesh2spline
	flngdof
	flnull
	flreport
	flsave
	flsmhs, flsmsign, fldsmhs, fldsmsign
	gencyl2, gencyl3
	geom0, geom1, geom2, geom3
	geom0/get, geom1/get, geom2/get, geom3/get
	geomanalyze
	geomarrayr
	geomcoerce
	geomcomp
	geomcsg
	geomdel
	geomedit
	geomexport
	geomfile
	geomgetwrkpln
	geomgroup
	geomimport
	geominfo
	geomobject
	geomplot
	geomposition
	geomspline
	geomsurf
	getparts
	helix1, helix2, helix3
	hexahedron2, hexahedron3
	line1, line2
	loft
	mesh2geom
	meshbndlayer
	meshcaseadd
	meshcasedel
	meshconvert
	meshcopy
	meshdel
	meshembed
	meshenrich
	meshexport
	meshextend
	meshextrude
	meshimport
	meshinit
	meshintegrate
	meshmap
	meshplot
	meshqual
	meshrefine
	meshrevolve
	meshsmooth
	meshsweep
	mirror
	move
	multiphysics
	point1, point2, point3
	poly1, poly2
	postanim
	postarrow
	postarrowbnd
	postcolormap
	postcont
	postcoord
	postcrossplot
	postdataplot
	posteval
	postflow
	postglobaleval
	postglobalplot
	postgp
	postint
	postinterp
	postiso
	postlin
	postmax
	postmin
	postmovie
	postplot
	postprinc
	postprincbnd
	postslice
	postsum
	postsurf
	posttet
	postwriteinterpfile
	pyramid2, pyramid3
	rect1, rect2
	revolve
	rotate
	scale
	sharg_2_5
	shbub
	shcurl
	shdens
	shdisc
	shdiv
	shgp
	shherm
	shlag
	shuwhelm
	solid0, solid1, solid2, solid3
	solsize
	sphere3, sphere2
	split
	square1, square2
	tangent
	tetrahedron2, tetrahedron3
	torus2, torus3
	xmeshinfo

	Diagnostics
	Error Messages
	2000-2999 Geometry Modeling
	4000-4999 Mesh Generation
	6000-6999 Assembly and Extended Mesh
	7000-7999 Solvers and Preconditioners
	9000-9999 General Errors
	Solver Error Messages

	The Finite Element Method
	Understanding the Finite Element Method
	Mesh
	Finite Elements
	Discretization of the Equations

	What Equations Does COMSOL Multiphysics Solve?
	The Equation System/Solution Forms
	The Full Equation System
	Notes on Constraints in Multiphysics Models

	Advanced Geometry Topics
	Advanced Geometry Topics
	Rational Bézier Curves
	Conic Sections
	Cubic Curves
	Rational Bézier Surfaces
	Parameterization of Curves and Surfaces
	Geometric Variables

	Advanced Solver Topics
	Advanced Solver Settings
	Constraint Handling, Null-Space Functions, and Assembly Block Size
	Settings Related to Complex-Valued Data and Undefined Operations
	Storing Solutions on File
	Solution Form
	Manual Control of Reassembly
	Scaling of Variables and Equations
	Constraint Handling

	Solver Algorithms
	The Nonlinear Solver Algorithm
	The Augmented Lagrangian Solver Algorithm
	The Time-Dependent Solver Algorithm
	The Eigenvalue Solver Algorithm
	The Parametric Solver Algorithm
	The Stationary Segregated Solver Algorithm
	The Adaptive Solver Algorithm
	The Sensitivity Solver Algorithm
	References

	Linear System Solvers
	The UMFPACK Direct Solver
	The SPOOLES Direct Solver
	The PARDISO Direct Solver
	The TAUCS Cholesky Direct Solver
	The TAUCS LDLT Direct Solver
	The GMRES Iterative Solver
	The FGMRES Iterative Solver
	The Conjugate Gradients Iterative Solver
	The BiCGStab Iterative Solver
	Convergence Criteria
	References

	Preconditioners for the Iterative Solvers
	The Incomplete LU Preconditioner
	The TAUCS Incomplete Cholesky Preconditioner
	The Geometric Multigrid Solver/Preconditioner
	The Algebraic Multigrid Solver/Preconditioner
	The SSOR, SOR, SORU, and Diagonal Scaling (Jacobi) Algorithms
	The SSOR Vector, SOR Vector, and SORU Vector Algorithms
	The SSOR Gauge, SOR Gauge, and SORU Gauge Algorithms
	The Vanka Algorithm
	References

	Optimization Solver Properties
	Cendiff
	Checkfreq
	Diffint
	Elasticw
	Expfreq
	Facfreq
	Feastol
	Funcprec
	Hessdim
	Hessfreq
	Hessmem
	Hessupd
	Infbound
	Itlim
	Linesearch
	Linestol
	Majfeastol
	Majitlim
	Majprintfreq
	Majprintlevel
	Majsteplim
	Maximize
	Opttol
	Newsuplim
	Parprice
	Pivtol
	Print
	Printfreq
	Printlevel
	Proxmeth
	Qpsolver
	Scaleopt
	Scaletol
	Suplim
	Totitlim
	Verify
	Viollim

	The COMSOL Multiphysics Files
	Overview
	File Structure
	Records
	Terminology
	Text File Format
	Binary File Format

	Serializable Types
	Attribute
	BezierCurve
	BezierMfd
	BezierSurf
	BezierTri
	BSplineCurve
	BSplineMfd
	BSplineSurf
	Ellipse
	Geom0
	Geom1
	Geom2
	Geom3
	GeomFile
	Manifold
	Mesh
	MeshCurve
	MeshSurf
	Plane
	PolChain
	Serializable
	Straight
	Transform
	VectorDouble
	VectorInt
	VectorString
	Examples
	A Mesh with Mixed Element Types
	A Planar Face

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

