
Intel® Math Kernel
Library

Reference Manual

Document Number: 630813-021US

World Wide Web: http://developer.intel.com

http://developer.intel.com/software/products/perflib/index.htm

ii

Legal Information

Version Version Information Date

-001 Original Issue. 11/94

-002 Added functions crotg, zrotg. Documented versions of functions ?her2k, ?symm, ?syrk, and ?syr2k
not previously described. Pagination revised.

5/95

-003 Changed the title; former title: “Intel BLAS Library for the Pentium® Processor Reference Manual.”
Added functions ?rotm, ?rotmg and updated Appendix C.

1/96

-004 Documents Intel® Math Kernel library (Intel® MKL) release 2.0 with the parallelism capability. Infor-
mation on parallelism has been added in Chapter 1 and in section “BLAS Level 3 Routines” in Chap-
ter 2.

11/96

-005 Two-dimensional FFTs have been added. C interface has been added to both one- and two-dimen-
sional FFTs.

8/97

-006 Documents Intel Math Kernel Library release 2.1. Sparse BLAS section has been added in Chapter
2.

1/98

-007 Documents Intel Math Kernel Library release 3.0. Descriptions of LAPACK routines (Chapters 4 and
5) and CBLAS interface (Appendix C) have been added. Quick Reference has been excluded from
the manual; MKL 3.0 Quick Reference is now available in HTML format.

1/99

-008 Documents Intel Math Kernel Library release 3.2. Description of FFT routines have been revised. In
Chapters 4 and 5 NAG names for LAPACK routines have been excluded.

6/99

-009 New LAPACK routines for eigenvalue problems have been added in chapter 5. 11/99

-010 Documents Intel Math Kernel Library release 4.0. Chapter 6 describing the VML functions has been
added.

06/00

-011 Documents Intel Math Kernel Library release 5.1. LAPACK section has been extended to include
the full list of computational and driver routines.

04/01

-6001 Documents Intel Math Kernel Library release 6.0 beta. New DFT interface and Vector Statistical
Library functions have been added.

07/02

-6002 Documents Intel Math Kernel Library 6.0 beta update. DFT functions description has been updated.
CBLAS interface description was extended.

12/02

-6003 Documents Intel Math Kernel Library 6.0 gold. DFT functions have been updated. Auxiliary LAPACK
routines’ descriptions were added to the manual.

03/03

-6004 Documents Intel Math Kernel Library release 6.1. 07/03

-6005 Documents Intel Math Kernel Library release 7.0 beta. Includes ScaLAPACK and sparse solver
descriptions.

11/03

-017 Documents Intel MKL and Intel® Cluster MKL release 7.0 gold. Auxiliary ScaLAPACK and alterna-
tive sparse solver interface were added.

04/04

-018 Documents Intel MKL and Intel Cluster MKL release 8.0 beta. Sparse BLAS and DFTI sections
were extended. New functionality was added: Sparse BLAS, Cluster DFTI, iterative sparse solver,
multiple-precision arithmetic, interval linear solver, and convolution/correlation. Fortran95 interface
to LAPACK functions was added.

03/05

-019 Documents Intel MKL and Intel Cluster MKL release 8.0 gold. Fortran95 interface to BLAS and
Sparse BLAS functions has been added.

08/05

The information in this manual is subject to change without notice and Intel Corporation assumes no responsibility or liability for any
errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. This doc-
ument and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. The infor-
mation in this document is provided in connection with Intel products and should not be construed as a commitment by Intel Corporation.

EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIA-
BILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PUR-
POSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facil-
ity applications.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The software described in this document may contain software defects which may cause the product to deviate from published specifica-
tions. Current characterized software defects are available on request.

Intel, the Intel logo, Intel SpeedStep, Intel NetBurst, Intel NetStructure, MMX, Intel386, Intel486, Celeron, Intel Centrino, Intel Xeon,
Intel XScale, Itanium, Pentium, Pentium II Xeon, Pentium III Xeon, Pentium M, and VTune are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 1994-2006, Intel Corporation.

Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Chapters 4 and 5 include derivative work portions that have been copyrighted:
© 1991, 1992, and 1998 by The Numerical Algorithms Group, Ltd.

-020 Documents Intel MKL and Intel Cluster MKL release 8.0.2. PARDISO functionality description has
been extended with indefinite symmetric matrices pivoting.

03/06

-021 Documents Intel MKL and Intel Cluster MKL release 8.1 gold. Chapter 13 on Trigonometric Trans-
form functions has been added. Information on specific features of Fortran-95 implementation for
LAPACK routines has been reflected the relevant subsection in Chapter 3 and a new Appendix E.

03/06

Version Version Information Date

iv

Contents

Chapter 1 Overview
About This Software .. 1-1

Technical Support ... 1-2
BLAS Routines ... 1-3
Sparse BLAS Routines... 1-3
LAPACK Routines... 1-3
ScaLAPACK Routines... 1-4
Sparse Solver Routines.. 1-4
VML Functions.. 1-4
VSL Functions .. 1-5
Fourier Transform Functions... 1-5
Interval Solver Routines ... 1-5
Trigonomatric Tranform Routines.. 1-5
GMP Arithmetic Functions.. 1-6
Performance Enhancements .. 1-6
Parallelism .. 1-6
Platforms Supported... 1-7

About This Manual .. 1-7
Audience for This Manual ... 1-8
Manual Organization .. 1-8
Notational Conventions ... 1-9

Routine Name Shorthand .. 1-9
Font Conventions ... 1-10

v

Intel ® Math Kernel Library Reference Manual

Chapter 2 BLAS and Sparse BLAS Routines
BLAS Routines and Functions... 2-2

Routine Naming Conventions .. 2-2
Fortran-95 Interface Conventions ... 2-3
Matrix Storage Schemes .. 2-5
BLAS Level 1 Routines and Functions ... 2-5

?asum .. 2-6
?axpy .. 2-7
?copy .. 2-9
?dot ... 2-11
?sdot ... 2-12
?dotc ... 2-14
?dotu ... 2-15
?nrm2 ... 2-16
?rot ... 2-18
?rotg ... 2-20
?rotm .. 2-21
?rotmg .. 2-23
?scal .. 2-25
?swap ... 2-27
i?amax .. 2-28
i?amin ... 2-29
dcabs1 ... 2-31

BLAS Level 2 Routines ... 2-32
?gbmv ... 2-33
?gemv ... 2-37
?ger ... 2-40
?gerc ... 2-42
?geru .. 2-44
?hbmv ... 2-46
?hemv ... 2-49
?her ... 2-51
?her2 .. 2-53
?hpmv .. 2-56

Contents

vi

?hpr ... 2-59
?hpr2 ... 2-61
?sbmv .. 2-64
?spmv ... 2-67
?spr ... 2-69
?spr2 ... 2-71
?symv .. 2-74
?syr ... 2-76
?syr2 .. 2-78
?tbmv .. 2-81
?tbsv ... 2-84
?tpmv ... 2-87
?tpsv ... 2-90
?trmv ... 2-92
?trsv .. 2-95

BLAS Level 3 Routines ... 2-98
Symmetric Multiprocessing Version of Intel® MKL......................... 2-98

?gemm .. 2-99
?hemm .. 2-102
?herk ... 2-106
?her2k ... 2-109
?symm ... 2-112
?syrk .. 2-116
?syr2k ... 2-119
?trmm ... 2-123
?trsm .. 2-126

Sparse BLAS Level 1 Routines and Functions 2-130
Vector Arguments ... 2-130
Naming Conventions .. 2-130
Routines and Data Types ... 2-131
BLAS Level 1 Routines That Can Work With Sparse Vectors 2-131

?axpyi ... 2-132
?doti ... 2-134
?dotci .. 2-135

vii

Intel ® Math Kernel Library Reference Manual

?dotui ... 2-137
?gthr ... 2-138
?gthrz ... 2-140
?roti .. 2-141
?sctr .. 2-143

Sparse BLAS Level 2 and Level 3 ... 2-145
Naming Conventions in Sparse BLAS Level 2 and Level 3 2-145
Sparse Matrix Data Structures.. 2-146
Routines and Supported Operations .. 2-146

Routines with Standard Interface ... 2-147
Routines with Simplified Interface .. 2-147

Interface Consideration... 2-148
Differences Between Intel MKL and NIST Interfaces 2-148
Simplified Interfaces... 2-150
Operations with Partial Matrices .. 2-151
Restrictions for Triangular Solver Routines 2-152

Sparse BLAS Level 2 and Level 3 Routines. 2-152
mkl_dcsrmv ... 2-154
mkl_dcsrgemv ... 2-157
mkl_dcsrsymv .. 2-159
mkl_dcscmv ... 2-161
mkl_dcoomv .. 2-164
mkl_dcoogemv .. 2-166
mkl_dcoosymv ... 2-168
mkl_ddiamv ... 2-170
mkl_ddiagemv ... 2-173
mkl_ddiasymv .. 2-175
mkl_dskymv ... 2-177
mkl_dcsrsv ... 2-179
mkl_dcsrtrsv .. 2-182
mkl_dcscsv .. 2-184
mkl_dcoosv .. 2-186
mkl_dcootrsv ... 2-189
mkl_ddiasv ... 2-191

Contents

viii

mkl_ddiatrsv ... 2-193
mkl_dskysv .. 2-196
mkl_dcsrmm .. 2-198
mkl_dcscmm .. 2-201
mkl_dcoomm ... 2-203
mkl_ddiamm .. 2-206
mkl_dskymm .. 2-209
mkl_dcsrsm .. 2-211
mkl_dcscsm ... 2-214
mkl_dcoosm ... 2-217
mkl_ddiasm .. 2-219
mkl_dskysm ... 2-222

Chapter 3 LAPACK Routines: Linear Equations
Routine Naming Conventions ... 3-2
Fortran-95 Interface Conventions .. 3-3

MKL Fortran-95 Interfaces for LAPACK Routines vs.
Netlib Implementation ... 3-5

Matrix Storage Schemes ... 3-7
Mathematical Notation ... 3-7
Error Analysis .. 3-8
Computational Routines .. 3-9

Routines for Matrix Factorization ... 3-11
?getrf ... 3-11
?gbtrf ... 3-13
?gttrf ... 3-16
?potrf ... 3-18
?pptrf ... 3-20
?pbtrf ... 3-22
?pttrf .. 3-25
?sytrf ... 3-26
?hetrf ... 3-30
?sptrf ... 3-33
?hptrf ... 3-36

ix

Intel ® Math Kernel Library Reference Manual

Routines for Solving Systems of Linear Equations 3-39
?getrs .. 3-39
?gbtrs .. 3-41
?gttrs .. 3-44
?potrs .. 3-47
?pptrs ... 3-49
?pbtrs ... 3-52
?pttrs .. 3-55
?sytrs .. 3-57
?hetrs .. 3-59
?sptrs .. 3-62
?hptrs .. 3-64
?trtrs .. 3-67
?tptrs .. 3-69
?tbtrs ... 3-72

Routines for Estimating the Condition Number................................... 3-76
?gecon .. 3-76
?gbcon .. 3-78
?gtcon .. 3-81
?pocon .. 3-84
?ppcon .. 3-86
?pbcon .. 3-89
?ptcon ... 3-91
?sycon .. 3-93
?hecon .. 3-96
?spcon .. 3-98
?hpcon .. 3-100
?trcon .. 3-102
?tpcon ... 3-105
?tbcon ... 3-107

Refining the Solution and Estimating Its Error 3-110
?gerfs .. 3-110
?gbrfs .. 3-113
?gtrfs ... 3-117

Contents

x

?porfs .. 3-120
?pprfs .. 3-123
?pbrfs .. 3-126
?ptrfs .. 3-130
?syrfs .. 3-133
?herfs .. 3-136
?sprfs .. 3-139
?hprfs .. 3-142
?trrfs .. 3-145
?tprfs ... 3-148
?tbrfs ... 3-151

Routines for Matrix Inversion... 3-155
?getri .. 3-155
?potri .. 3-157
?pptri .. 3-159
?sytri .. 3-161
?hetri .. 3-163
?sptri .. 3-165
?hptri .. 3-167
?trtri ... 3-169
?tptri .. 3-172

Routines for Matrix Equilibration ... 3-174
?geequ ... 3-174
?gbequ ... 3-176
?poequ .. 3-179
?ppequ ... 3-181
?pbequ ... 3-183

Driver Routines .. 3-186
?gesv .. 3-187
?gesvx .. 3-189
?gbsv ... 3-195
?gbsvx .. 3-198
?gtsv ... 3-205
?gtsvx ... 3-207

xi

Intel ® Math Kernel Library Reference Manual

?posv .. 3-212
?posvx .. 3-214
?ppsv ... 3-219
?ppsvx ... 3-221
?pbsv .. 3-227
?pbsvx ... 3-229
?ptsv .. 3-235
?ptsvx ... 3-237
?sysv .. 3-241
?sysvx ... 3-244
?hesv .. 3-249
?hesvx .. 3-252
?spsv ... 3-256
?spsvx ... 3-259
?hpsv ... 3-263
?hpsvx ... 3-266

Chapter 4 LAPACK Routines: Least Squares and Eigenvalue Problems
Routine Naming Conventions ... 4-3
Matrix Storage Schemes ... 4-4
Mathematical Notation... 4-5
Computational Routines .. 4-6

Orthogonal Factorizations ... 4-6
?geqrf ... 4-8
?geqpf ... 4-11
?geqp3 .. 4-14
?orgqr ... 4-17
?ormqr ... 4-20
?ungqr .. 4-23
?unmqr ... 4-26
?gelqf .. 4-29
?orglq .. 4-32
?ormlq .. 4-35
?unglq .. 4-38

Contents

xii

?unmlq .. 4-41
?geqlf .. 4-44
?orgql .. 4-47
?ungql ... 4-49
?ormql ... 4-51
?unmql ... 4-54
?gerqf .. 4-57
?orgrq ... 4-60
?ungrq ... 4-62
?ormrq .. 4-64
?unmrq ... 4-67
?tzrzf .. 4-70
?ormrz ... 4-73
?unmrz .. 4-76
?ggqrf .. 4-79
?ggrqf .. 4-83

Singular Value Decomposition .. 4-87
?gebrd ... 4-89
?gbbrd ... 4-93
?orgbr .. 4-97
?ormbr .. 4-100
?ungbr ... 4-104
?unmbr ... 4-108
?bdsqr ... 4-112
?bdsdc .. 4-117

Symmetric Eigenvalue Problems .. 4-121
?sytrd .. 4-125
?orgtr .. 4-128
?ormtr ... 4-130
?hetrd .. 4-133
?ungtr .. 4-136
?unmtr .. 4-138
?sptrd .. 4-141
?opgtr .. 4-143

xiii

Intel ® Math Kernel Library Reference Manual

?opmtr .. 4-145
?hptrd ... 4-148
?upgtr ... 4-151
?upmtr .. 4-153
?sbtrd .. 4-156
?hbtrd ... 4-159
?sterf ... 4-162
?steqr .. 4-164
?stedc ... 4-168
?stegr .. 4-172
?pteqr .. 4-178
?stebz .. 4-182
?stein ... 4-186
?disna ... 4-189

Generalized Symmetric-Definite Eigenvalue Problems 4-191
?sygst ... 4-192
?hegst ... 4-195
?spgst ... 4-198
?hpgst ... 4-201
?sbgst ... 4-204
?hbgst ... 4-207
?pbstf .. 4-210

Nonsymmetric Eigenvalue Problems ... 4-212
?gehrd ... 4-216
?orghr ... 4-219
?ormhr .. 4-222
?unghr .. 4-225
?unmhr ... 4-228
?gebal ... 4-231
?gebak .. 4-234
?hseqr ... 4-237
?hsein ... 4-242
?trevc .. 4-248
?trsna .. 4-253

Contents

xiv

?trexc .. 4-259
?trsen .. 4-262
?trsyl ... 4-267

Generalized Nonsymmetric Eigenvalue Problems 4-270
?gghrd .. 4-271
?ggbal .. 4-275
?ggbak ... 4-278
?hgeqz .. 4-281
?tgevc .. 4-288
?tgexc ... 4-293
?tgsen .. 4-297
?tgsyl ... 4-304
?tgsna .. 4-309

Generalized Singular Value Decomposition...................................... 4-314
?ggsvp ... 4-314
?tgsja ... 4-319

Driver Routines ... 4-326
Linear Least Squares (LLS) Problems .. 4-326

?gels .. 4-327
?gelsy .. 4-331
?gelss .. 4-336
?gelsd .. 4-340

Generalized LLS Problems ... 4-345
?gglse .. 4-345
?ggglm ... 4-348

Symmetric Eigenproblems .. 4-351
?syev .. 4-352
?heev ... 4-355
?syevd .. 4-358
?heevd ... 4-361
?syevx .. 4-365
?heevx ... 4-370
?syevr .. 4-375
?heevr .. 4-381

xv

Intel ® Math Kernel Library Reference Manual

?spev ... 4-387
?hpev ... 4-390
?spevd .. 4-393
?hpevd .. 4-397
?spevx ... 4-401
?hpevx ... 4-405
?sbev ... 4-410
?hbev ... 4-413
?sbevd ... 4-416
?hbevd ... 4-420
?sbevx ... 4-424
?hbevx ... 4-429
?stev .. 4-434
?stevd ... 4-436
?stevx .. 4-440
?stevr ... 4-444

Nonsymmetric Eigenproblems.. 4-449
?gees .. 4-449
?geesx ... 4-455
?geev ... 4-461
?geevx ... 4-466

Singular Value Decomposition .. 4-473
?gesvd .. 4-473
?gesdd ... 4-479
?ggsvd ... 4-484

Generalized Symmetric Definite Eigenproblems 4-490
?sygv ... 4-491
?hegv ... 4-494
?sygvd ... 4-498
?hegvd ... 4-502
?sygvx ... 4-506
?hegvx ... 4-512
?spgv ... 4-518
?hpgv ... 4-521

Contents

xvi

?spgvd ... 4-524
?hpgvd ... 4-528
?spgvx ... 4-532
?hpgvx ... 4-537
?sbgv ... 4-542
?hbgv ... 4-545
?sbgvd ... 4-548
?hbgvd ... 4-552
?sbgvx ... 4-556
?hbgvx ... 4-561

Generalized Nonsymmetric Eigenproblems...................................... 4-566
?gges ... 4-566
?ggesx ... 4-573
?ggev ... 4-581
?ggevx ... 4-586

Chapter 5 LAPACK Auxiliary and Utility Routines
Auxiliary Routines .. 5-1

?lacgv .. 5-11
?lacrm ... 5-12
?lacrt ... 5-13
?laesy ... 5-14
?rot .. 5-16
?spmv ... 5-17
?spr ... 5-19
?symv ... 5-20
?syr ... 5-22
i?max1 ... 5-24
?sum1 ... 5-25
?gbtf2 .. 5-26
?gebd2 .. 5-27
?gehd2 .. 5-29
?gelq2 ... 5-32
?geql2 ... 5-33

xvii

Intel ® Math Kernel Library Reference Manual

?geqr2 .. 5-35
?gerq2 .. 5-37
?gesc2 .. 5-38
?getc2 ... 5-40
?getf2 .. 5-41
?gtts2 ... 5-42
?labrd ... 5-44
?lacon ... 5-47
?lacpy ... 5-48
?ladiv .. 5-50
?lae2 ... 5-51
?laebz ... 5-52
?laed0 ... 5-57
?laed1 ... 5-59
?laed2 ... 5-61
?laed3 ... 5-64
?laed4 ... 5-66
?laed5 ... 5-68
?laed6 ... 5-69
?laed7 ... 5-71
?laed8 ... 5-74
?laed9 ... 5-78
?laeda ... 5-80
?laein .. 5-82
?laev2 ... 5-85
?laexc ... 5-86
?lag2 .. 5-88
?lags2 .. 5-90
?lagtf ... 5-92
?lagtm ... 5-94
?lagts .. 5-96
?lagv2 ... 5-98
?lahqr .. 5-100
?lahrd .. 5-102

Contents

xviii

?laic1 ... 5-105
?laln2 ... 5-107
?lals0 .. 5-110
?lalsa ... 5-114
?lalsd ... 5-118
?lamrg .. 5-120
?langb .. 5-121
?lange .. 5-123
?langt .. 5-125
?lanhs .. 5-126
?lansb .. 5-127
?lanhb .. 5-129
?lansp .. 5-131
?lanhp .. 5-133
?lanst/?lanht ... 5-134
?lansy ... 5-136
?lanhe ... 5-137
?lantb .. 5-139
?lantp .. 5-141
?lantr ... 5-143
?lanv2 ... 5-145
?lapll .. 5-146
?lapmt .. 5-147
?lapy2 .. 5-148
?lapy3 .. 5-149
?laqgb ... 5-150
?laqge .. 5-152
?laqp2 ... 5-154
?laqps .. 5-155
?laqsb ... 5-158
?laqsp ... 5-160
?laqsy ... 5-161
?laqtr ... 5-163
?lar1v ... 5-166

xix

Intel ® Math Kernel Library Reference Manual

?lar2v ... 5-168
?larf .. 5-169
?larfb ... 5-171
?larfg ... 5-173
?larft ... 5-175
?larfx ... 5-178
?largv ... 5-179
?larnv ... 5-181
?larrb ... 5-182
?larre ... 5-184
?larrf .. 5-186
?larrv ... 5-188
?lartg ... 5-191
?lartv .. 5-192
?laruv ... 5-194
?larz .. 5-195
?larzb .. 5-197
?larzt ... 5-199
?las2 .. 5-202
?lascl ... 5-203
?lasd0 .. 5-205
?lasd1 .. 5-207
?lasd2 .. 5-210
?lasd3 .. 5-213
?lasd4 .. 5-216
?lasd5 .. 5-218
?lasd6 .. 5-219
?lasd7 .. 5-224
?lasd8 .. 5-228
?lasd9 .. 5-230
?lasda .. 5-232
?lasdq .. 5-236
?lasdt ... 5-238
?laset .. 5-239

Contents

xx

?lasq1 .. 5-241
?lasq2 .. 5-242
?lasq3 .. 5-243
?lasq4 .. 5-246
?lasq5 .. 5-247
?lasq6 .. 5-249
?lasr ... 5-250
?lasrt ... 5-252
?lassq ... 5-253
?lasv2 .. 5-255
?laswp ... 5-256
?lasy2 .. 5-257
?lasyf ... 5-260
?lahef ... 5-262
?latbs ... 5-265
?latdf .. 5-267
?latps ... 5-269
?latrd .. 5-271
?latrs .. 5-275
?latrz .. 5-279
?lauu2 ... 5-281
?lauum .. 5-282
?org2l/?ung2l ... 5-283
?org2r/?ung2r .. 5-285
?orgl2/?ungl2 .. 5-287
?orgr2/?ungr2 .. 5-288
?orm2l/?unm2l ... 5-290
?orm2r/?unm2r ... 5-292
?orml2/?unml2 ... 5-295
?ormr2/?unmr2 .. 5-297
?ormr3/?unmr3 .. 5-300
?pbtf2 ... 5-302
?potf2 ... 5-304
?ptts2 ... 5-306

xxi

Intel ® Math Kernel Library Reference Manual

?rscl ... 5-307
?sygs2/?hegs2 ... 5-308
?sytd2/?hetd2 .. 5-310
?sytf2 ... 5-312
?hetf2 ... 5-314
?tgex2 .. 5-316
?tgsy2 ... 5-318
?trti2 .. 5-322

Utility Functions and Routines ... 5-324
ilaenv ... 5-325
ieeeck .. 5-327
lsame ... 5-328
lsamen ... 5-329
?labad ... 5-329
?lamch .. 5-330
?lamc1 .. 5-331
?lamc2 .. 5-332
?lamc3 ... 5-333
?lamc4 ... 5-334
?lamc5 ... 5-335
second/dsecnd ... 5-336
xerbla .. 5-336

Chapter 6 ScaLAPACK Routines
Overview.. 6-2
Routine Naming Conventions ... 6-3
Computational Routines .. 6-4

Linear Equations... 6-4
Routines for Matrix Factorization .. 6-6

p?getrf .. 6-6
p?gbtrf .. 6-8
p?dbtrf .. 6-10
p?potrf .. 6-13
p?pbtrf .. 6-14

Contents

xxii

p?pttrf .. 6-17
p?dttrf .. 6-19

Routines for Solving Systems of Linear Equations 6-22
p?getrs .. 6-22
p?gbtrs .. 6-24
p?potrs .. 6-27
p?pbtrs .. 6-29
p?pttrs ... 6-31
p?dttrs ... 6-34
p?dbtrs .. 6-36
p?trtrs ... 6-39

Routines for Estimating the Condition Number 6-42
p?gecon .. 6-42
p?pocon .. 6-45
p?trcon .. 6-48

Refining the Solution and Estimating Its Error 6-51
p?gerfs .. 6-51
p?porfs .. 6-55
p?trrfs .. 6-59

Routines for Matrix Inversion... 6-64
p?getri ... 6-64
p?potri ... 6-66
p?trtri ... 6-68

Routines for Matrix Equilibration ... 6-70
p?geequ .. 6-70
p?poequ .. 6-72

Orthogonal Factorizations... 6-75
p?geqrf ... 6-75
p?geqpf ... 6-78
p?orgqr ... 6-81
p?ungqr ... 6-83
p?ormqr .. 6-85
p?unmqr ... 6-89
p?gelqf .. 6-92

xxiii

Intel ® Math Kernel Library Reference Manual

p?orglq ... 6-95
p?unglq .. 6-97
p?ormlq ... 6-99
p?unmlq .. 6-102
p?geqlf .. 6-106
p?orgql .. 6-108
p?ungql ... 6-110
p?ormql .. 6-113
p?unmql .. 6-116
p?gerqf ... 6-119
p?orgrq ... 6-122
p?ungrq .. 6-124
p?ormrq .. 6-126
p?unmrq ... 6-130
p?tzrzf ... 6-133
p?ormrz .. 6-136
p?unmrz ... 6-140
p?ggqrf ... 6-143
p?ggrqf ... 6-148

Symmetric Eigenproblems.. 6-153
p?sytrd .. 6-154
p?ormtr ... 6-158
p?hetrd ... 6-161
p?unmtr .. 6-165
p?stebz ... 6-169
p?stein .. 6-173

Nonsymmetric Eigenvalue Problems .. 6-178
p?gehrd .. 6-178
p?ormhr .. 6-182
p?unmhr ... 6-185
p?lahqr .. 6-188

Singular Value Decomposition .. 6-191
p?gebrd .. 6-191
p?ormbr .. 6-196

Contents

xxiv

p?unmbr .. 6-201
Generalized Symmetric-Definite Eigenproblems 6-206

p?sygst ... 6-206
p?hegst ... 6-208

Driver Routines .. 6-211
p?gesv ... 6-212
p?gesvx .. 6-214
p?gbsv ... 6-220
p?dbsv ... 6-223
p?dtsv ... 6-225
p?posv .. 6-228
p?posvx .. 6-230
p?pbsv .. 6-237
p?ptsv ... 6-239
p?gels ... 6-242
p?syev .. 6-246
p?syevx .. 6-249
p?heevx ... 6-256
p?gesvd ... 6-263
p?sygvx .. 6-268
p?hegvx ... 6-276

Chapter 7 ScaLAPACK Auxiliary and Utility Routines
Auxiliary Routines .. 7-1

p?lacgv ... 7-6
p?max1 ... 7-8
?combamax1 ... 7-9
p?sum1 .. 7-10
p?dbtrsv .. 7-11
p?dttrsv .. 7-15
p?gebd2 .. 7-18
p?gehd2 .. 7-23
p?gelq2 ... 7-26
p?geql2 ... 7-28

xxv

Intel ® Math Kernel Library Reference Manual

p?geqr2 .. 7-31
p?gerq2 .. 7-34
p?getf2 .. 7-36
p?labrd .. 7-38
p?lacon ... 7-43
p?laconsb .. 7-45
p?lacp2 ... 7-46
p?lacp3 ... 7-48
p?lacpy ... 7-50
p?laevswp ... 7-52
p?lahrd .. 7-54
p?laiect ... 7-57
p?lange ... 7-58
p?lanhs .. 7-61
p?lansy, p?lanhe ... 7-63
p?lantr ... 7-66
p?lapiv .. 7-68
p?laqge ... 7-71
p?laqsy ... 7-74
p?lared1d .. 7-76
p?lared2d .. 7-78
p?larf ... 7-79
p?larfb ... 7-82
p?larfc ... 7-86
p?larfg .. 7-89
p?larft .. 7-91
p?larz .. 7-94
p?larzb ... 7-98
p?larzc ... 7-102
p?larzt ... 7-106
p?lascl .. 7-110
p?laset .. 7-112
p?lasmsub .. 7-114
p?lassq ... 7-115

Contents

xxvi

p?laswp ... 7-117
p?latra ... 7-119
p?latrd ... 7-120
p?latrs .. 7-124
p?latrz .. 7-127
p?lauu2 ... 7-130
p?lauum .. 7-131
p?lawil .. 7-133
p?org2l/p?ung2l .. 7-134
p?org2r/p?ung2r ... 7-137
p?orgl2/p?ungl2 ... 7-139
p?orgr2/p?ungr2 ... 7-142
p?orm2l/p?unm2l .. 7-145
p?orm2r/p?unm2r ... 7-149
p?orml2/p?unml2 .. 7-153
p?ormr2/p?unmr2 .. 7-157
p?pbtrsv .. 7-161
p?pttrsv ... 7-165
p?potf2 .. 7-169
p?rscl .. 7-171
p?sygs2/p?hegs2 .. 7-172
p?sytd2/p?hetd2 ... 7-175
p?trti2 .. 7-179
?lamsh .. 7-180
?laref ... 7-182
?lasorte ... 7-184
?lasrt2 .. 7-186
?stein2 .. 7-187
?dbtf2 ... 7-189
?dbtrf ... 7-191
?dttrf .. 7-193
?dttrsv ... 7-194
?pttrsv ... 7-195
?steqr2 ... 7-197

xxvii

Intel ® Math Kernel Library Reference Manual

Utility Functions and Routines ... 7-200
p?labad ... 7-200
p?lachkieee .. 7-201
p?lamch ... 7-202
p?lasnbt ... 7-203
pxerbla .. 7-204

Chapter 8 Sparse Solver Routines
PARDISO - Parallel Direct Sparse Solver Interface 8-1

pardiso ... 8-3
Direct Sparse Solver (DSS) Interface Routines....................................... 8-17

Interface Description ... 8-19
Routine Options ... 8-19
User Data Arrays.. 8-20

DSS Routines ... 8-20
dss_create ... 8-20
dss_define_structure ... 8-21
dss_reorder ... 8-22
dss_factor_real,

dss_factor_complex ... 8-23
dss_solve_real,

dss_solve_complex ... 8-25
dss_delete ... 8-26
dss_statistics ... 8-27
mkl_cvt_to_null_terminated_str ... 8-30

Implementation Details ... 8-31
Memory Allocation and Handles .. 8-31

Iterative Sparse Solvers based on Reverse Communication
Interface (RCI ISS) .. 8-33

Conjugate Gradient Solver (RCI CG).. 8-33
Interface Description ... 8-36

Routines Options.. 8-36
User Data Arrays.. 8-36
Common Parameters ... 8-36

Contents

xxviii

RCI CG Routines .. 8-40
dcg_init .. 8-40
dcg_check .. 8-41
dcg ... 8-42
dcg_get .. 8-44

Implementation Details.. 8-45
Calling Sparse Solver Routines From C/C++... 8-46

Caveat for C Users ... 8-47

Chapter 9 Vector Mathematical Functions
Data Types and Accuracy Modes ... 9-2
Function Naming Conventions ... 9-2

Functions Interface.. 9-3
VML Mathematical Functions ... 9-3
Pack Functions ... 9-4
Unpack Functions... 9-4
Service Functions... 9-4
Input Parameters .. 9-5
Output Parameters ... 9-5

Vector Indexing Methods .. 9-6
Error Diagnostics .. 9-6
VML Mathematical Functions ... 9-7

Inv .. 9-9
Div ... 9-10
Sqrt ... 9-11
InvSqrt ... 9-12
Cbrt .. 9-13
InvCbrt ... 9-14
Pow ... 9-15
Powx ... 9-17
Exp .. 9-18
Ln .. 9-19
Log10 .. 9-20
Cos ... 9-21

xxix

Intel ® Math Kernel Library Reference Manual

Sin .. 9-22
SinCos .. 9-23
Tan .. 9-24
Acos ... 9-25
Asin ... 9-26
Atan .. 9-27
Atan2 .. 9-28
Cosh ... 9-29
Sinh .. 9-31
Tanh .. 9-32
Acosh .. 9-33
Asinh .. 9-34
Atanh .. 9-35
Erf .. 9-36
Erfc .. 9-37

VML Pack/Unpack Functions .. 9-39
Pack .. 9-39
Unpack ... 9-41

VML Service Functions .. 9-43
SetMode .. 9-44
GetMode ... 9-46
SetErrStatus ... 9-47
GetErrStatus ... 9-48
ClearErrStatus .. 9-49
SetErrorCallBack ... 9-50
GetErrorCallBack .. 9-52
ClearErrorCallBack .. 9-53

Chapter 10 Statistical Functions
Random Number Generators .. 10-1
 Conventions.. 10-2

 Mathematical Notation ... 10-2
 Naming Conventions.. 10-4

 Basic Generators .. 10-8

Contents

xxx

 BRNG Parameter Definition ... 10-10
 Random Streams ... 10-11
 Data Types ... 10-11

 Error Reporting ... 10-12
 Service Routines... 10-13

 NewStream .. 10-14
 NewStreamEx ... 10-16
 iNewAbstractStream ... 10-18
 dNewAbstractStream .. 10-20
 sNewAbstractStream .. 10-23
 DeleteStream ... 10-25
 CopyStream .. 10-26
 CopyStreamState ... 10-27
 SaveStreamF .. 10-29
 LoadStreamF .. 10-31
 LeapfrogStream .. 10-32
 SkipAheadStream ... 10-35
 GetStreamStateBrng .. 10-38
 GetNumRegBrngs .. 10-40

 Distribution Generators ... 10-41
 Continuous Distributions .. 10-42

 Uniform .. 10-42
 Gaussian ... 10-45
 GaussianMV ... 10-47
 Exponential ... 10-52
 Laplace ... 10-54
 Weibull .. 10-57
 Cauchy .. 10-59
 Rayleigh .. 10-62
 Lognormal ... 10-64
 Gumbel ... 10-67
 Gamma ... 10-69
 Beta .. 10-72

xxxi

Intel ® Math Kernel Library Reference Manual

 Discrete Distributions... 10-75
 Uniform ... 10-75
 UniformBits ... 10-77
 Bernoulli ... 10-80
 Geometric ... 10-82
 Binomial .. 10-84
 Hypergeometric .. 10-86
 Poisson ... 10-88
 PoissonV .. 10-90
 NegBinomial ... 10-92

 Advanced Service Routines ... 10-95
 Data types ... 10-95

 RegisterBrng ... 10-97
 GetBrngProperties ... 10-98

 Formats for User-Designed Generators... 10-99
 iBRng .. 10-101
 sBRng ... 10-102
 dBRng ... 10-103

Convolution and Correlation .. 10-104
 Overview.. 10-104
 Naming Conventions.. 10-105
 Data Types... 10-106
 Parameters .. 10-107
 Task Status .. 10-109

 Task Constructors... 10-109
 NewTask .. 10-110
 NewTask1D ... 10-112
 NewTaskX .. 10-114
 NewTaskX1D .. 10-117

 Task Editors .. 10-120
 SetMode .. 10-121
 SetInternalPrecision .. 10-122
 SetStart ... 10-124
 SetDecimation .. 10-125

Contents

xxxii

 Task Execution Routines... 10-127
 Exec ... 10-128
 Exec1D .. 10-130
 ExecX ... 10-132
 ExecX1D ... 10-134

 Task Destructors ... 10-136
 DeleteTask .. 10-136

 Task Copy ... 10-137
 CopyTask .. 10-137

 Usage Examples... 10-139
 Using Multiple Threads.. 10-141

 Mathematical Notation and Definitions ... 10-142
 Linear Convolution... 10-143
 Linear Correlation.. 10-143

 Data Allocation.. 10-143
 Finite Functions and Data Vectors... 10-144
 Allocation of Data Vectors ... 10-145

Chapter 11 Fourier Transform Functions
DFT Functions ... 11-1

Computing DFT... 11-3
DFT Interface .. 11-3
Status Checking Functions ... 11-5

ErrorClass .. 11-5
ErrorMessage .. 11-7

Descriptor Manipulation .. 11-8
CreateDescriptor .. 11-8
CommitDescriptor .. 11-10
CopyDescriptor .. 11-11
FreeDescriptor ... 11-12

DFT Computation.. 11-14
ComputeForward ... 11-14
ComputeBackward .. 11-16

Descriptor Configuration ... 11-18

xxxiii

Intel ® Math Kernel Library Reference Manual

SetValue .. 11-19
GetValue ... 11-21

Configuration Settings... 11-24
Precision of transform .. 11-28
Forward domain of transform ... 11-28
Transform dimension and lengths .. 11-29
Number of transforms .. 11-29
Scale .. 11-29
Placement of result .. 11-29
Packed formats .. 11-30
Storage schemes ... 11-33
Number of user threads ... 11-43
Input and output distances ... 11-43
Strides.. 11-44

Ordering.. 11-46
Transposition... 11-46

Cluster DFT Functions... 11-48
Computing Cluster DFT .. 11-49
Cluster DFT Interface.. 11-51
Descriptor Manipulation .. 11-52

CreateDescriptorDM .. 11-52
CommitDescriptorDM .. 11-54
FreeDescriptorDM ... 11-55

DFT Computation ... 11-56
ComputeForwardDM ... 11-56
ComputeBackwardDM ... 11-58
FormInputDataDM.. 11-60
FormOutputDataDM ... 11-62

Descriptor Configuration ... 11-63
SetValueDM .. 11-64
GetValueDM .. 11-66

Fast Fourier Transforms (Deprecated)... 11-69
One-dimensional FFTs .. 11-69

Data Storage Types .. 11-69

Contents

xxxiv

Data Structure Requirements ... 11-70
Complex-to-Complex One-dimensional FFTs 11-71

cfft1d/zfft1d (deprecated)... 11-72
cfft1dc/zfft1dc (deprecated) ... 11-73

Real-to-Complex One-dimensional FFTs .. 11-74
scfft1d/dzfft1d (deprecated) ... 11-75
scfft1dc/dzfft1dc (deprecated) .. 11-77

Complex-to-Real One-dimensional FFTs .. 11-78
csfft1d/zdfft1d (deprecated) .. 11-80
csfft1dc/zdfft1dc (deprecated) .. 11-81

Two-dimensional FFTs... 11-83
Complex-to-Complex Two-dimensional FFTs 11-84

cfft2d/zfft2d (deprecated).. 11-85
cfft2dc/zfft2dc (deprecated) ... 11-86

Real-to-Complex Two-dimensional FFTs 11-87
scfft2d/dzfft2d (deprecated) ... 11-88
scfft2dc/dzfft2dc (deprecated) .. 11-90

Complex-to-Real Two-dimensional FFTs 11-93
csfft2d/zdfft2d (deprecated) .. 11-94
csfft2dc/zdfft2dc (deprecated) .. 11-95

Chapter 12 Interval Linear Solvers
Routine Naming Conventions .. 12-2
Routines for Fast Solution of Interval Systems .. 12-3

?trtrs ... 12-3
?gegas .. 12-5
?gehss ... 12-7
?gekws ... 12-8
?gegss ... 12-9
?gehbs ... 12-11

Routines for Sharp Solution of Interval Systems 12-13
?gepps ... 12-13

Routines for Inverting Interval Matrices ... 12-16
?trtri ... 12-16

xxxv

Intel ® Math Kernel Library Reference Manual

?geszi .. 12-17
Routines for Checking Properties of Interval Matrices 12-19

?gerbr .. 12-19
?gesvr .. 12-20

Auxiliary and Utility Routines ... 12-23
?gemip ... 12-23

Chapter 13 Trigonometric Transform Routines
Transforms Implemented ... 13-1
Sequence of Invoking TT Routines.. 13-2
Interface Description.. 13-5

Routine Options .. 13-5
User Data Arrays .. 13-5
TT Routines .. 13-6

?_init_trig_transform... 13-6
?_commit_trig_transform.. 13-7
?_forward_trig_transform ... 13-10
?_backward_trig_transform .. 13-12
free_trig_transform ... 13-14

Common Parameters.. 13-15
Caveat on Parameter Modifications .. 13-18

Implementation Details .. 13-18
C-specific Header File .. 13-19
Fortran-Specific Header file .. 13-19
Calling Trigonometric Transform Routines from Fortran-90 13-22

Appendix A Linear Solvers Basics
Sparse Linear Systems ... A-1

Matrix Fundamentals .. A-2
Direct Method ... A-3

Fill-In and Reordering of Sparse Matrices A-4
Sparse Matrix Storage Formats.. A-8

Storage Formats for the PARDISO Solver A-8
Sparse Storage Formats for Sparse BLAS Levels 2-3 A-11

Contents

xxxvi

CSR Format .. A-11
CSC Format .. A-13
Coordinate Format .. A-14
Diagonal Storage Scheme .. A-15
Skyline Storage Scheme ... A-16

Interval Linear Systems .. A-17
Intervals ... A-17
Interval vectors and matrices ... A-18

Interval Linear Systems... A-19
Preconditioning .. A-22
Inverting interval matrices .. A-22

Appendix B Routine and Function Arguments
Vector Arguments in BLAS .. B-1
Vector Arguments in VML .. B-3

Positive Increment Indexing... B-3
Index Vector Indexing .. B-3
Mask Vector Indexing .. B-3

Matrix Arguments .. B-4

Appendix C Code Examples
BLAS Code Examples .. C-1
PARDISO Code Examples.. C-7

Examples for Sparse Symmetric Linear Systems C-7
Example Results for Symmetric Systems C-7

Examples for Sparse Unsymmetric Linear Systems C-17
Example Results for Unsymmetric Systems C-17

Direct Sparse Solver Code Examples... C-27
Example Results for Symmetric Systems C-27

Iterative Sparse Solver Code Example ... C-35
Example of Use RCI (Preconditioned) Conjugate Gradient Solver C-35

DFT Code Examples .. C-40
Examples for DFT Functions.. C-40
Examples of Using Multi-Threading for DFT Computation................. C-49

xxxvii

Intel ® Math Kernel Library Reference Manual

Examples for Cluster DFT Functions ... C-54
C Implementation .. C-55
Fortran Implementation ... C-69

Interval Linear Solvers Code Examples ... C-81
Trigonometric Transforms Code Examples... C-90

Appendix D CBLAS Interface to the BLAS
CBLAS Arguments .. D-1

Enumerated Types .. D-2
Level 1 CBLAS .. D-3
Level 2 CBLAS .. D-5
Level 3 CBLAS .. D-12
Sparse CBLAS .. D-16

Appendix E Specific Features of Fortran-95 Interfaces for LAPACK Routines
Interfaces Identical to Netlib.. E-2
Interfaces with Replaced Argument Names.. E-4
Modified Netlib Interfaces .. E-5
Interfaces Absent From Netlib... E-7
Interfaces of New Functionality... E-12

Glossary

Bibliography

Index

1-1

Overview 1
The Intel® Math Kernel Library (Intel® MKL) provides Fortran routines and functions that
perform a wide variety of operations on vectors and matrices including sparse matrices and
interval matrices. The library also includes discrete Fourier transform routines, as well as vector
mathematical and vector statistical functions with Fortran and C interfaces.

The version of the library named Intel® Cluster MKL is a superset of Intel MKL and includes also
ScaLAPACK software and Cluster DFT software for solving respective computational problems
on distributed-memory parallel computers.

The Intel MKL enhances performance of the application programs that use it because the library
has been optimized for latest generations of Intel® processors.
This chapter introduces the Intel Math Kernel Library and provides information about the
organization of this manual.

About This Software
The Intel Math Kernel Library includes the following groups of routines:

• Basic Linear Algebra Subprograms (BLAS):
− vector operations
− matrix-vector operations
− matrix-matrix operations

• Sparse BLAS Level 1, 2, and 3 (basic operations on sparse vectors and matrices)

• LAPACK routines for solving systems of linear equations

• LAPACK routines for solving least-squares problems, eigenvalue and singular value
problems, and Sylvester’s equations

• Auxiliary and utility LAPACK routines

1-2

1 Intel® Math Kernel Library Reference Manual

• ScaLAPACK computational, driver and auxiliary routines (for Intel Cluster MKL only)

• Direct and Iterative Sparse Solver routines

• Vector Mathematical Library (VML) functions for computing core mathematical functions on
vector arguments (with Fortran and C interfaces)

• Vector Statistical Library (VSL): functions for generating vectors of pseudorandom numbers
with different types of statistical distributions and for performing convolution and correlation
computations

• General Discrete Fourier Transform Functions (DFT) and a subset of Fast Fourier transform
routines (FFT) with Fortran and C interfaces

• Cluster DFT functions (for Intel Cluster MKL only)

• Real Discrete Trigonometric Transform routines

• Interval Solver routines for solving systems of interval linear equations

• GMP arithmetic functions.

For specific issues on using the library, please refer to the MKL Release Notes.

Technical Support

Intel MKL provides a product web site that offers timely and comprehensive product information,
including product features, white papers, and technical articles. For the latest information, check:
http://developer.intel.com/software/products/

Intel also provides a support web site that contains a rich repository of self help information,
including getting started tips, known product issues, product errata, license information, user
forums, and more (visit http://support.intel.com/support/).

Registering your product entitles you to one year of technical support and product updates through
Intel® Premier Support. Intel Premier Support is an interactive issue management and
communication web site providing these services:

• Submit issues and review their status.

• Download product updates anytime of the day.

To register your product, contact Intel, or seek product support, please visit:
http://www.intel.com/software/products/support

http://developer.intel.com/software/products/perflib/index.htm
http://support.intel.com/support/performancetools/libraries/mkl
http://developer.intel.com/software/products/support

Overview 1

1-3

BLAS Routines

BLAS routines and functions are divided into the following groups according to the operations
they perform:

• BLAS Level 1 Routines and Functions perform operations of both addition and reduction on
vectors of data. Typical operations include scaling and dot products.

• BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector
multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems.

• BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix
multiplication, rank-k update, and solution of triangular systems.

Starting from release 8.0, Intel MKL also supports Fortran-95 interface to BLAS routines.

Sparse BLAS Routines

Sparse BLAS Level 1 Routines and Functions and Sparse BLAS Level 2 and Level 3 routines and
functions operate on sparse vectors and matrices. These routines perform vector operations similar
to BLAS Level 1, 2, and 3 routines. Sparse BLAS routines take advantage of vector and matrix
sparsity: they allow you to store only non-zero elements of vectors and matrices. Intel MKL also
supports Fortran-95 interface to Sparse BLAS routines.

LAPACK Routines

The Intel Math Kernel Library covers the full set of the LAPACK computational, driver, auxiliary
and utility routines.

The original versions of LAPACK from which that part of Intel MKL was derived can be obtained
from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai,
C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen.

The LAPACK routines can be divided into the following groups according to the operations they
perform:

• Routines for solving systems of linear equations, factoring and inverting matrices, and
estimating condition numbers (see Chapter 3).

• Routines for solving least-squares problems, eigenvalue and singular value problems, and
Sylvester’s equations (see Chapter 4).

1-4

1 Intel® Math Kernel Library Reference Manual

• Auxiliary and utility routines used to perform certain subtasks, common low-level
computation or related tasks (see Chapter 5).

Starting from release 8.0, Intel MKL also supports Fortran-95 interface to LAPACK
computational and driver routines. This interface provides an opportunity for simplified calls of
LAPACK routines with fewer required arguments.

ScaLAPACK Routines

ScaLAPACK package (included with Intel Cluster MKL only, see Chapter 6 and Chapter 7) runs
on distributed-memory architectures and includes routines for solving systems of linear equations,
solving linear least-squares problems, eigenvalue and singular value problems, as well as
performing a number of related computational tasks.

The original versions of ScaLAPACK from which that part of Intel Cluster MKL was derived can
be obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are
L. Blackford, J. Choi, A.Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S.
Hammarling, G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley.

Intel Cluster MKL version of ScaLAPACK is optimized for Intel processors and uses MPICH
version of MPI as well as Intel MPI.

Sparse Solver Routines

Direct sparse solver routines in Intel MKL (see Chapter 8) solve symmetric and
symmetrically-structured sparse matrices with real or complex coefficients. For symmetric
matrices, these Intel MKL subroutines can solve both positive definite and indefinite systems.
Intel MKL includes the PARDISO* sparse solver interface as well as an alternative set of user
callable direct sparse solver routines.

Intel MKL provides also an iterative sparse solver (see Chapter 8) that uses sparse BLAS level 2
and 3 routines and works with different sparse data formats.

VML Functions

Vector Mathematical Library (VML) functions (see Chapter 9) include a set of highly optimized
implementations of certain computationally expensive core mathematical functions (power,
trigonometric, exponential, hyperbolic etc.) that operate on real vector arguments.

Overview 1

1-5

VSL Functions

Vector Statistical Library (VSL) contains two sets of functions (see Chapter 10). The first set
includes a collection of pseudo- and quasi-random number generator subroutines implementing
basic continuous and discrete distributions. To provide best performance, VSL subroutines use
calls to highly optimized Basic Random Number Generators and the library of vector
mathematical functions, VML. The second set includes a collection of routines that implement a
wide variety of convolution and correlation operations.

Fourier Transform Functions

The Intel MKL multidimensional Discrete Fourier Transform functions with mixed radix support
(see Chapter 11) provide uniformity of DFT computation and combine functionality with ease of
use. Both Fortran and C interface specification are given. There is also a cluster version of DFT
functions which runs on distributed-memory architectures and is provided with Intel Cluster MKL
package.

For compatibility with previous versions, Intel MKL provides also a set of simplified one- and
two-dimensional Fast Fourier Transform functions that support powers of 2 transform size. These
FFT functions are deprecated and neither their features nor performance match those of the DFTs,
mentioned above.

Since only DFT and Cluster DFT functions continue to be developed and optimized, use only
these functions instead of FFTs in your application.

Interval Solver Routines

Interval Solver routines included into Intel MKL (see Chapter 12) can be used to solve interval
systems of linear equations and related problems.

Trigonomatric Tranform Routines

Intel MKL supports the Real Discrete Trigonometric Transforms interface referred to as TT
interface (see Chapter 13). The interface implements a group of routines used to compute sine,
cosine, and staggered cosine transforms. TT interface provides much flexibility of use: you can
either adjust routines to your particular needs at the cost of manual tuning routine parameters or
call routines with default parameter values. Current Intel MKL implementation of TT interface
helps to solve Partial Differential Equations and contains routines used for Fast Poisson and
similar solvers.

1-6

1 Intel® Math Kernel Library Reference Manual

GMP Arithmetic Functions

Intel MKL implementation of GMP arithmetic functions includes arbitrary precision arithmetic
operations on integer numbers. The interfaces of such functions fully match the GNU Multiple
Precision (GMP) Arithmetic Library. For specifications of these functions, please see
http://www.swox.com/gmp/manual/Integer-Functions.html.

Performance Enhancements

The Intel Math Kernel Library has been optimized by exploiting both processor and system
features and capabilities. Special care has been given to those routines that most profit from
cache-management techniques. These especially include matrix-matrix operation routines such as
dgemm().

In addition, code optimization techniques have been applied to minimize dependencies of
scheduling integer and floating-point units on the results within the processor.

The major optimization techniques used throughout the library include:

• Loop unrolling to minimize loop management costs.

• Blocking of data to improve data reuse opportunities.

• Copying to reduce chances of data eviction from cache.

• Data prefetching to help hide memory latency.

• Multiple simultaneous operations (for example, dot products in dgemm) to eliminate stalls due
to arithmetic unit pipelines.

• Use of hardware features such as the SIMD arithmetic units, where appropriate.

These are techniques from which the arithmetic code benefits the most.

Parallelism

In addition to the performance enhancements discussed above, the Intel MKL offers performance
gains through parallelism provided by the symmetric multiprocessing performance (SMP) feature.
You can obtain improvements from SMP in the following ways:

• One way is based on user-managed threads in the program and further distribution of the
operations over the threads based on data decomposition, domain decomposition, control
decomposition, or some other parallelizing technique. Each thread can use any of the Intel
MKL functions because the library has been designed to be thread-safe.

Overview 1

1-7

• Another method is to use the FFT and BLAS level 3 routines. They have been parallelized and
require no alterations of your application to gain the performance enhancements of
multiprocessing. Performance using multiple processors on the level 3 BLAS shows excellent
scaling. Since the threads are called and managed within the library, the application does not
need to be recompiled thread-safe (see also Fortran-95 Interface Conventions in Chapter 2).

• Yet another method is to use tuned LAPACK routines. Currently these include the single- and
double precision flavors of routines for QR factorization of general matrices, triangular
factorization of general and symmetric positive-definite matrices, solving systems of
equations with such matrices, as well as solving symmetric eigenvalue problems.

For instructions on setting the number of available processors for the BLAS level 3 and LAPACK
routines, see the Intel MKL Technical User Notes.

Platforms Supported

The Intel Math Kernel Library includes Fortran routines and functions optimized for Intel®
processor-based computers running operating systems that support multiprocessing. In addition to
the Fortran interface, the Intel MKL includes a C-language interface for the Discrete Fourier
transform functions, as well as for the Vector Mathematical Library and Vector Statistical Library
functions.
For hardware and software requirements to use Intel MKL, see MKL Release Notes.

About This Manual
This manual describes the routines and functions of the Intel MKL and Intel Cluster MKL.
Each reference section describes a routine group typically consisting of routines used with four
basic data types: single-precision real, double-precision real, single-precision complex, and
double-precision complex.

Each routine group is introduced by its name, a short description of its purpose, and the calling
sequence, or syntax, for each type of data with which each routine of the group is used. The
following sections are also included:

Description Describes the operation performed by routines of the group based on one
or more equations. The data types of the arguments are defined in
general terms for the group.

Input Parameters Defines the data type for each parameter on entry, for example:

a REAL for saxpy
 DOUBLE PRECISION for daxpy

1-8

1 Intel® Math Kernel Library Reference Manual

Output Parameters Lists resultant parameters on exit.

Audience for This Manual

The manual addresses programmers proficient in computational mathematics and assumes a
working knowledge of the principles and vocabulary of linear algebra, mathematical statistics, and
Fourier transforms.

Manual Organization

The manual contains the following chapters and appendixes:

Chapter 1 Overview. Introduces the Intel Math Kernel Library software, provides
information on manual organization, and explains notational conventions.

Chapter 2 BLAS and Sparse BLAS Routines. Provides descriptions of BLAS and Sparse
BLAS functions and routines.

Chapter 3 LAPACK Routines: Linear Equations. Provides descriptions of LAPACK
routines for solving systems of linear equations and performing a number of
related computational tasks: triangular factorization, matrix inversion,
estimating the condition number of matrices.

Chapter 4 LAPACK Routines: Least Squares and Eigenvalue Problems. Provides
descriptions of LAPACK routines for solving least-squares problems, standard
and generalized eigenvalue problems, singular value problems, and Sylvester’s
equations.

Chapter 5 LAPACK Auxiliary and Utility Routines. Describes auxiliary and utility
LAPACK routines that perform certain subtasks or common low-level
computation.

Chapter 6 ScaLAPACK Routines. Describes ScaLAPACK computational and driver
routines (software included with Intel Cluster MKL only).

Chapter 7 ScaLAPACK Auxiliary and Utility Routines. Describes ScaLAPACK auxiliary
routines (software included with Intel Cluster MKL only).

Chapter 8 Sparse Solver Routines. Describes direct sparse solver routines that solve
symmetric and symmetrically-structured sparse matrices. Also describes the
iterative sparse solver routines.

Chapter 9 Vector Mathematical Functions. Provides descriptions of VML functions for
computing elementary mathematical functions on vector arguments.

Overview 1

1-9

Chapter 10 Statistical Functions. Provides descriptions of VSL functions for generating
vectors of pseudorandom numbers and for performing convolution and
correlation operations.

Chapter 11 Fourier Transform Functions. Describes multidimensional functions for
computing the Discrete Fourier Transform. Gives also the description of
cluster DFT functions (software included with Intel Cluster MKL only) and
simplified Fast Fourier Transform (FFT) functions. The FFT functions have
been deprecated in Intel MKL and are retained only for legacy reasons. DFT
functions should be used instead.

Chapter 12 Interval Linear Solvers. Describes routines that can be used to solve interval
systems of linear equations and related problems.

Chapter 13 Trigonometric Transform Routines. Describes routines that can be used to
compute sine, cosine, and staggered cosine transforms, and that are helpful in
solving Partial Differential Equations and in Fast Poisson and similar solvers.

Appendix A Linear Solvers Basics. Briefly describes the basic definitions and approaches
used in linear algebra for solving systems of linear equations. Also describes
sparse data storage formats, as well as basic concepts of interval arithmetic.

Appendix B Routine and Function Arguments. Describes the major arguments of the BLAS
routines and VML functions: vector and matrix arguments.

Appendix C Code Examples. Provides code examples of calling various Intel MKL
functions and routines (BLAS, PARDISO, Direct and Iterative Sparse Solver, DFT,
Cluster DFT, Interval Linear Solvers, Trigonometric Transforms).

Appendix D CBLAS Interface to the BLAS. Provides the C interface to the BLAS.

Appendix E Specific Features of Fortran-95 Interfaces for LAPACK Routines. Provides the
features of Intel MKL Fortran-95 interfaces for LAPACK routines in
comparison with Netlib implementation.

The manual also includes a Bibliography, Glossary and an Index.

Notational Conventions

This manual uses the following notational conventions:

• Routine name shorthand (?ungqr instead of cungqr/zungqr).

• Font conventions used for distinction between the text and the code.

1-10

1 Intel® Math Kernel Library Reference Manual

Routine Name Shorthand

For shorthand, character codes are represented by a question mark “?” in names of routine groups.
The question mark is used to indicate any or all possible varieties of a function; for example:

Font Conventions

The following font conventions are used:

?swap Refers to all four data types of the vector-vector ?swap routine: sswap,
dswap, cswap, and zswap.

UPPERCASE COURIER Data type used in the discussion of input and output
parameters for Fortran interface. For example,
CHARACTER*1.

lowercase courier Code examples:
a(k+i,j) = matrix(i,j)

and data types for C interface, for example, const
float*.

lowercase courier mixed
with UpperCase courier

Function names for C interface,
for example, vmlSetMode.

lowercase courier italic Variables in arguments and parameters discussion. For
example, incx.

* Used as a multiplication symbol in code examples and
equations and where required by the Fortran syntax.

2-1

BLAS and Sparse BLAS
Routines 2

This chapter contains descriptions of the BLAS and Sparse BLAS routines of the Intel® Math
Kernel Library. The routine descriptions are arranged in several sections according to the BLAS
level of operation:

• BLAS Level 1 Routines and Functions (vector-vector operations)

• BLAS Level 2 Routines (matrix-vector operations)

• BLAS Level 3 Routines (matrix-matrix operations)

• Sparse BLAS Level 1 Routines and Functions (vector-vector operations).

• Sparse BLAS Level 2 and Level 3 (matrix-vector and matrix-matrix operations).

Each section presents the routine and function group descriptions in alphabetical order by routine
or function group name; for example, the ?asum group, the ?axpy group. The question mark in
the group name corresponds to different character codes indicating the data type (s, d, c, and z or
their combination); see Routine Naming Conventions on the next page.

When BLAS or Sparse BLAS routines encounter an error, they call the error reporting routine
xerbla. To be able to view error reports, you must include xerbla in your code. A copy of the
source code for xerbla is included in the library.

In BLAS Level 1 groups i?amax and i?amin, an “i” is placed before the character code and
corresponds to the index of an element in the vector. These groups are placed in the end of the
BLAS Level 1 section.

2-2

2 Intel® Math Kernel Library Reference Manual

BLAS Routines and Functions

Routine Naming Conventions

BLAS routine names have the following structure:

 <character code> <name> <mod> ()

The <character code> is a character that indicates the data type:

s real, single precision
c complex, single precision
d real, double precision
z complex, double precision

Some routines and functions can have combined character codes, such as
sc or dz. For example, the function scasum uses a complex input array and returns a real value.

The <name> field, in BLAS level 1, indicates the operation type. For example, the BLAS level 1
routines ?dot, ?rot, ?swap compute a vector dot product, vector rotation, and vector swap,
respectively.

In BLAS level 2 and 3, <name> reflects the matrix argument type:

ge general matrix
gb general band matrix
sy symmetric matrix
sp symmetric matrix (packed storage)
sb symmetric band matrix
he Hermitian matrix
hp Hermitian matrix (packed storage)
hb Hermitian band matrix
tr triangular matrix
tp triangular matrix (packed storage)
tb triangular band matrix.

The <mod> field, if present, provides additional details of the operation.
BLAS level 1 names can have the following characters in the <mod> field:

c conjugated vector
u unconjugated vector
g Givens rotation.

BLAS level 2 names can have the following characters in the <mod> field:

BLAS and Sparse BLAS Routines 2

2-3

mv matrix-vector product
sv solving a system of linear equations with matrix-vector operations
r rank-1 update of a matrix
r2 rank-2 update of a matrix.

BLAS level 3 names can have the following characters in the <mod> field:
mm matrix-matrix product
sm solving a system of linear equations with matrix-matrix operations
rk rank-k update of a matrix
r2k rank-2k update of a matrix.

The examples below illustrate how to interpret BLAS routine names:

ddot <d> <dot>: double-precision real vector-vector dot product

cdotc <c> <dot> <c>: complex vector-vector dot product, conjugated

scasum <sc> <asum>: sum of magnitudes of vector elements, single precision real
output and single precision complex input

cdotu <c> <dot> <u>: vector-vector dot product, unconjugated, complex

sgemv <s> <ge> <mv>: matrix-vector product, general matrix, single precision

ztrmm <z> <tr> <mm>: matrix-matrix product, triangular matrix, double-precision
complex.

Sparse BLAS naming conventions are similar to those of BLAS level 1.
For more information, see “Naming Conventions”.

Fortran-95 Interface Conventions

Fortran-95 interface to BLAS and Sparse BLAS Level 1 routines is implemented through
wrappers that call respective Fortran-77 routines. This interface uses such features of Fortran-95 as
assumed-shape arrays and optional arguments to provide simplified calls to BLAS and Sparse
BLAS Level 1 routines with fewer arguments.

The main conventions that are used in Fortran-95 interface are as follows:

2-4

2 Intel® Math Kernel Library Reference Manual

• The names of arguments used in Fortran-95 call are typically the same as for the respective
generic (Fortran-77) interface. However, to reduce the number of argument names used in the
library, the following identity settings of formal argument names were made:

Note that these name changes of formal arguments have no impact on program semantics and
follow the conventions of unification names.

• Input arguments such as array dimensions are not required in Fortran-95 and are skipped from
the calling sequence. Array dimensions are reconstructed from the user data that must exactly
follow the required array shape.
Also, an argument can be skipped if its value is completely defined by the presence or
absence of another argument in the calling sequence, and the restored value is the only
meaningful value for the skipped argument.

• Arguments incx and incy are skipped. In all cases their values are assumed to be 1. One can
obtain the effect of the values of incx and incy not being equal to 1 by using corresponding
Fortran-95 feature: index incrementing may be directly established in actual arguments. Other
possibility to obtain this effect is to use Fortran-77 call.

• Some generic arguments are declared as optional in Fortran-95 interface and may or may not
be present in the calling sequence. An argument can be declared optional if it satisfies one of
the following conditions:

1. If an input argument can take only a few possible values, it can be declared as optional.
The default value of such argument is typically set as the first value in the list and all
exceptions to this rule are explicitly stated in the routine description.

2. If an input argument has a natural default value, it can be declared as optional. The
default value of such optional argument is set to its natural default value.

• Optional arguments are given in square brackets in Fortran-95 call syntax.

The concrete rules used for reconstructing the values of omitted optional parameters are specific
for each routine and are detailed in the respective “Fortran-95 Notes“ subsection given at the end
of routine specification section. If this subsection is omitted, the Fortran-95 interface for the given
routine does not differ from the corresponding Fortran-77 interface.

Note that this interface is not implemented in the current version of Sparse BLAS Level 2 and
Level 3 routines. Fortran-95 interfaces for each these routines is given in the “Interfaces -
Fortran-95“ subsection at the end of the respective routine specification section.

Generic Argument
Name

Fortran-95 Argument
Name

ap a

BLAS and Sparse BLAS Routines 2

2-5

Matrix Storage Schemes

Matrix arguments of BLAS routines can use the following storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element aij
stored in the array element a(i,j).

• Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more
compactly: the upper or lower triangle of the matrix is packed by columns in a
one-dimensional array.

• Band storage: a band matrix is stored compactly in a two-dimensional array: columns of the
matrix are stored in the corresponding columns of the array, and diagonals of the matrix are
stored in rows of the array.

For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.

BLAS Level 1 Routines and Functions

BLAS Level 1 includes routines and functions, which perform vector-vector operations. Table 2-1
lists the BLAS Level 1 routine and function groups and the data types associated with them.

Table 2-1 BLAS Level 1 Routine Groups and Their Data Types

Routine or
Function
Group Data Types Description

?asum s, d, sc, dz Sum of vector magnitudes (functions)

?axpy s, d, c, z Scalar-vector product (routines)

?copy s, d, c, z Copy vector (routines)

?dot s, d Dot product (functions)

?sdot sd, d Dot product with extended precision
(functions)

?dotc c, z Dot product conjugated (functions)

?dotu c, z Dot product unconjugated (functions)

?nrm2 s, d, sc, dz Vector 2-norm (Euclidean norm) a normal
or null vector (functions)

?rot s, d, cs, zd Plane rotation of points (routines)

?rotg s, d, c, z Givens rotation of points (routines)

?rotm s, d Modified plane rotation of points

?rotmg s, d Givens modified plane rotation of points

?scal s, d, c, z, cs, zd Vector scaling (routines)

2-6

2 Intel® Math Kernel Library Reference Manual

?asum
Computes the sum of magnitudes of the vector elements.

Syntax

Fortran 77:

res = sasum(n, x, incx)

res = scasum(n, x, incx)

res = dasum(n, x, incx)

res = dzasum(n, x, incx)

Fortran 95:

res = asum(x)

Description

Given a vector x, ?asum functions compute the sum of the magnitudes of its elements or, for
complex vectors, the sum of magnitudes of the elements’ real parts plus magnitudes of their
imaginary parts:

res = |Rex(1)| + |Imx(1)| + |Rex(2)| + |Imx(2)|+ ... + |Rex(n)| + |Imx(n)|

where x is a vector of order n.

?swap s, d, c, z Vector-vector swap (routines)

i?amax s, d, c, z Vector maximum value, absolute largest
element of a vector, where i is an index
to this value in the vector array (functions)

i?amin s, d, c, z Vector minimum value, absolute smallest
element of a vector, where i is an index
to this value in the vector array (functions)

dcabs1 d Absolute value of a double complex
number z.

Table 2-1 BLAS Level 1 Routine Groups and Their Data Types

Routine or
Function
Group Data Types Description

BLAS and Sparse BLAS Routines 2

2-7

Input Parameters

n INTEGER. Specifies the order of vector x.

x REAL for sasum
DOUBLE PRECISION for dasum
COMPLEX for scasum
DOUBLE COMPLEX for dzasum

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

res REAL for sasum
DOUBLE PRECISION for dasum
REAL for scasum
DOUBLE PRECISION for dzasum

Contains the sum of magnitudes of all elements’ real parts plus magnitudes of
their imaginary parts.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine asum interface are the following:

x Holds the array of size (n).

?axpy
Computes a vector-scalar product and adds the result
to a vector.

Syntax

Fortran 77:

call saxpy(n, a, x, incx, y, incy)

2-8

2 Intel® Math Kernel Library Reference Manual

call daxpy(n, a, x, incx, y, incy)

call caxpy(n, a, x, incx, y, incy)

call zaxpy(n, a, x, incx, y, incy)

Fortran 95:

call axpy(x, y [,a])

Description

The ?axpy routines perform a vector-vector operation defined as

y := a*x + y

where:

a is a scalar

x and y are vectors of order n.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

a REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Specifies the scalar a.

x REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

y REAL for saxpy
DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

BLAS and Sparse BLAS Routines 2

2-9

Output Parameters

y Contains the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine axpy interface are the following:

x Holds the array of size (n).

y Holds the array of size (n).

a The default value is 1.

?copy
Copies vector to another vector.

Syntax

Fortran 77:

call scopy(n, x, incx, y, incy)

call dcopy(n, x, incx, y, incy)

call ccopy(n, x, incx, y, incy)

call zcopy(n, x, incx, y, incy)

Fortran 95:

call copy(x, y)

Description

The ?copy routines perform a vector-vector operation defined as

y = x

where x and y are vectors.

2-10

2 Intel® Math Kernel Library Reference Manual

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for scopy
DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

y REAL for scopy
DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

y Contains a copy of the vector x if n is positive. Otherwise, parameters are
unaltered.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine copy interface are the following:

x Holds the vector of length (n).

y Holds the vector of length (n).

BLAS and Sparse BLAS Routines 2

2-11

?dot
Computes a vector-vector dot product.

Syntax

Fortran 77:

res = sdot(n, x, incx, y, incy)

res = ddot(n, x, incx, y, incy)

Fortran 95:

res = dot(x, y)

Description

The ?dot functions perform a vector-vector reduction operation defined as

,

where x and y are vectors.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for sdot
DOUBLE PRECISION for ddot

Array, DIMENSION at least (1+(n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

y REAL for sdot
DOUBLE PRECISION for ddot

Array, DIMENSION at least (1+(n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

res REAL for sdot
DOUBLE PRECISION for ddot

res x∗y()∑=

2-12

2 Intel® Math Kernel Library Reference Manual

Contains the result of the dot product of x and y, if n is positive. Otherwise,
res contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine dot interface are the following:

x Holds the vector of length (n).

y Holds the vector of length (n).

?sdot
Computes a vector-vector dot product with extended
precision.

Syntax

Fortran 77:

res = sdsdot(n, sb, sx, incx, sy, incy)

res = dsdot(n, sx, incx, sy, incy)

Fortran 95:

res = sdot(sx, sy)

res = sdot(sx, sy, sb)

Description

The ?sdot functions compute the inner product of two vectors with extended precision. Both
functions use extended precision accumulation of the intermediate results, but the function
sdsdot outputs the final result in single precision, whereas the function dsdot outputs the
double precision result. The function sdsdot also adds scalar value sb to the inner product.

Input Parameters

N INTEGER. Specifies the number of elements in the input vectors sX and sY.

BLAS and Sparse BLAS Routines 2

2-13

sb REAL. Single precision scalar to be added to inner product (for the function
sdsdot only).

sX, sy REAL. Arrays, DIMENSION at least (1+(n-1)*abs(incx)) and
(1+(n-1)*abs(incy)), respectively. Contain the input single precision
vectors.

incx INTEGER. Specifies the increment for the elements of sx.

incy INTEGER. Specifies the increment for the elements of sy.

Output Parameters

res REAL for sdsdot
DOUBLE PRECISION for dsdot

Contains the result of the dot product of sx and sy (with sb added for
sdsdot), if n is positive. Otherwise, res contains sb for sdsdot and 0 for
dsdot.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine sdot interface are the following:

sx Holds the vector of length (n).

sy Holds the vector of length (n).

NOTE. Note that scalar parameter sb is declared as a required parameter
in Fortran-95 interface for the function sdot to distinguish between function
flavors that output final result in different precision.

2-14

2 Intel® Math Kernel Library Reference Manual

?dotc
Computes a dot product of a conjugated vector with
another vector.

Syntax

Fortran 77:

res = cdotc(n, x, incx, y, incy)

res = zdotc(n, x, incx, y, incy)

Fortran 95:

res = dotc(x, y)

Description

The ?dotc functions perform a vector-vector operation defined as

,

where x and y are n-element vectors.

Input Parameters

 n INTEGER. Specifies the order of vectors x and y.

 x COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

 y COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

 incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

res COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

res conjg x()∗y()∑=

BLAS and Sparse BLAS Routines 2

2-15

Contains the result of the dot product of the conjugated x and unconjugated y,
if n is positive. Otherwise, res contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine dotc interface are the following:

x Holds the vector of length (n).

y Holds the vector of length (n).

?dotu
Computes a vector-vector dot product.

Syntax

Fortran 77:

res = cdotu(n, x, incx, y, incy)

res = zdotu(n, x, incx, y, incy)

Fortran 95:

res = dotu(x, y)

Description

The ?dotu functions perform a vector-vector reduction operation defined as ,

where x and y are n-element complex vectors.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

res x∗y()∑=

2-16

2 Intel® Math Kernel Library Reference Manual

incx INTEGER. Specifies the increment for the elements of x.

y COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

res COMPLEX for cdotu
DOUBLE COMPLEX for zdotu

Contains the result of the dot product of x and y, if n is positive. Otherwise,
res contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine dotu interface are the following:

x Holds the vector of length (n).

y Holds the vector of length (n).

?nrm2
Computes the Euclidean norm of a vector.

Syntax

Fortran 77:

res = snrm2(n, x, incx)

res = dnrm2(n, x, incx)

res = scnrm2(n, x, incx)

res = dznrm2(n, x, incx)

BLAS and Sparse BLAS Routines 2

2-17

Fortran 95:

res = nrm2(x)

Description

The ?nrm2 functions perform a vector reduction operation defined as

res = ||x||,

where:

x is a vector

res is a value containing the Euclidean norm of the elements of x.

Input Parameters

 n INTEGER. Specifies the order of vector x.

 x REAL for snrm2
DOUBLE PRECISION for dnrm2
COMPLEX for scnrm2
DOUBLE COMPLEX for dznrm2

Array, DIMENSION at least (1 + (n-1)*abs (incx)).

 incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

res REAL for snrm2
DOUBLE PRECISION for dnrm2
REAL for scnrm2
DOUBLE PRECISION for dznrm2

Contains the Euclidean norm of the vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine nrm2 interface are the following:

x Holds the vector of length (n).

2-18

2 Intel® Math Kernel Library Reference Manual

?rot
Performs rotation of points in the plane.

Syntax

Fortran 77:

call srot(n, x, incx, y, incy, c, s)

call drot(n, x, incx, y, incy, c, s)

call csrot(n, x, incx, y, incy, c, s)

call zdrot(n, x, incx, y, incy, c, s)

Fortran 95:

call rot(x, y [,c] [,s])

Description

Given two complex vectors x and y, each vector element of these vectors is replaced as follows:

x(i) = c*x(i) + s*y(i)

y(i) = c*y(i) - s*x(i)

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for srot
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

y REAL for srot
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

BLAS and Sparse BLAS Routines 2

2-19

incy INTEGER. Specifies the increment for the elements of y.

c REAL for srot
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot

A scalar.

s REAL for srot
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot

A scalar.

Output Parameters

x Each element is replaced by c*x + s*y.

y Each element is replaced by c*y - s*x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine rot interface are the following:

x Holds the vector of length (n).

y Holds the vector of length (n).

c The default value is 1.

s The default value is 1.

2-20

2 Intel® Math Kernel Library Reference Manual

?rotg
Computes the parameters for a Givens rotation.

Syntax

Fortran 77:

call srotg(a, b, c, s)

call drotg(a, b, c, s)

call crotg(a, b, c, s)

call zrotg(a, b, c, s)

Fortran 95:

call rotg(a, b, c, s)

Description

Given the cartesian coordinates (a, b) of a point p, these routines return the parameters a, b, c,
and s associated with the Givens rotation that zeros the y-coordinate of the point.

See a more accurate LAPACK version ?lartg.

Input Parameters

a REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Provides the x-coordinate of the point p.

b REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Provides the y-coordinate of the point p.

Output Parameters

a Contains the parameter r associated with the Givens rotation.

BLAS and Sparse BLAS Routines 2

2-21

b Contains the parameter z associated with the Givens rotation.

c REAL for srotg
DOUBLE PRECISION for drotg
REAL for crotg
DOUBLE PRECISION for zrotg

Contains the parameter c associated with the Givens rotation.

s REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg

Contains the parameter s associated with the Givens rotation.

?rotm
Performs rotation of points in the modified plane.

Syntax

Fortran 77:

call srotm(n, x, incx, y, incy, param)

call drotm(n, x, incx, y, incy, param)

Fortran 95:

call rotm(x, y [,param])

Description

Given two complex vectors x and y, each vector element of these vectors is replaced as follows:

x(i) = H*x(i) + H*y(i)

y(i) = H*y(i) - H*x(i)

where:

 H is a modified Givens transformation matrix whose values are stored in the param(2) through
param(5) array. See discussion on the param argument.

2-22

2 Intel® Math Kernel Library Reference Manual

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

y REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

param REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION 5.

The elements of the param array are:

param(1) contains a switch, flag.
param(2-5) contain h11, h21, h12, and h22, respectively, the components of
the array H.

Depending on the values of flag, the components of H are set as follows:

flag = -1.: H =

flag = 0.: H =

flag = 1.: H =

flag = -2.: H =

In the above cases, the matrix entries of 1., -1., and 0. are assumed based on
the last three values of flag and are not actually loaded into the param vector.

h11 h12

h21 h22

1. h12

h21 1.

h11 1.

1.– h22

1. 0.

0. 1.

BLAS and Sparse BLAS Routines 2

2-23

Output Parameters

x Each element is replaced by h11*x + h12*y.

y Each element is replaced by h21*x + h22*y.

H Givens transformation matrix updated.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine rotm interface are the following:

x Holds the vector of length (n).

y Holds the vector of length (n).

param The default value for param(1) is -2.

?rotmg
Computes the modified parameters for a Givens
rotation.

Syntax

Fortran 77:

call srotmg(d1, d2, x1, y1, param)

call drotmg(d1, d2, x1, y1, param)

Fortran 95:

call rotmg(x1, y1, param [,d1] [d2])

Description

Given cartesian coordinates (x1, y1) of an input vector, these routines compute the components of
a modified Givens transformation matrix H that zeros the y-component of the resulting vector:

2-24

2 Intel® Math Kernel Library Reference Manual

Input Parameters

d1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the updated scaling factor for the x-coordinate of the input vector
(sqrt(d1)x1).

d2 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the updated scaling factor for the y-coordinate of the input vector
(sqrt(d2)y1).

x1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the rotated x-coordinate of the input vector.

y1 REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the y-coordinate of the input vector.

Output Parameters

param REAL for srotmg
DOUBLE PRECISION for drotmg
Array, DIMENSION 5.

The elements of the param array are:

param(1) contains a switch, flag.
param(2-5) contain h11, h21, h12, and h22, respectively, the components of
the array H.

Depending on the values of flag, the components of H are set as follows:

flag = -1.: H =

flag = 0.: H =

flag = 1.: H =

x

0
H x1

y1
=

h11 h12

h21 h22

1. h12

h21 1.

h11 1.

1.– h22

BLAS and Sparse BLAS Routines 2

2-25

flag = -2.: H =

In the above cases, the matrix entries of 1., -1., and 0. are assumed based on the
last three values of flag and are not actually loaded into the param vector.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine rotmg interface are the following:

d1 The default value is 1.

d2 The default value is 1.

?scal
Computes a vector by a scalar product.

Syntax

Fortran 77:

call sscal(n, a, x, incx)

call dscal(n, a, x, incx)

call cscal(n, a, x, incx)

call zscal(n, a, x, incx)

call csscal(n, a, x, incx)

call zdscal(n, a, x, incx)

Fortran 95:

call scal(x, a)

Description

 The ?scal routines perform a vector-vector operation defined as

x = a*x

1. 0.

0. 1.

2-26

2 Intel® Math Kernel Library Reference Manual

where:

a is a scalar, x is an n-element vector.

Input Parameters

n INTEGER. Specifies the order of vector x.

a REAL for sscal and csscal
DOUBLE PRECISION for dscal and zdscal
COMPLEX for cscal
DOUBLE COMPLEX for zscal

Specifies the scalar a.

x REAL for sscal
DOUBLE PRECISION for dscal
COMPLEX for cscal and csscal
DOUBLE COMPLEX for zscal and csscal

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

x Overwritten by the updated vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine scal interface are the following:

x Holds the vector of length (n).

NOTE. Note that scalar parameter a is declared as a required parameter in
Fortran-95 interface for the routine scal to distinguish between routine
flavors that operate on different data types.

BLAS and Sparse BLAS Routines 2

2-27

?swap
Swaps a vector with another vector.

Syntax

Fortran 77:

call sswap(n, x, incx, y, incy)

call dswap(n, x, incx, y, incy)

call cswap(n, x, incx, y, incy)

call zswap(n, x, incx, y, incy)

Fortran 95:

call swap(x, y)

Description

Given the two complex vectors x and y, the ?swap routines return vectors y and x swapped, each
replacing the other.

Input Parameters

n INTEGER. Specifies the order of vectors x and y.

x REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap

Array, DIMENSION at least (1 + (n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

y REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap

Array, DIMENSION at least (1 + (n-1)*abs(incy)).

incy INTEGER. Specifies the increment for the elements of y.

2-28

2 Intel® Math Kernel Library Reference Manual

Output Parameters

x Contains the resultant vector x.

y Contains the resultant vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine swap interface are the following:

x Holds the vector of length (n).

y Holds the vector of length (n).

i?amax
Finds the element of a vector that has the largest
absolute value.

Syntax

Fortran 77:

index = isamax(n, x, incx)

index = idamax(n, x, incx)

index = icamax(n, x, incx)

index = izamax(n, x, incx)

Fortran 95:

index = iamax(x)

Description

Given a vector x, the i?amax functions return the position of the vector element x(i) that has the
largest absolute value or, for complex flavors, the position of the element with the largest sum
 |Re x(i)| + |Im x(i)|.

If n is not positive, 0 is returned.

BLAS and Sparse BLAS Routines 2

2-29

If more than one vector element is found with the same largest absolute value, the index of the first
one encountered is returned.

Input Parameters

n INTEGER. Specifies the order of the vector x.

x REAL for isamax
DOUBLE PRECISION for idamax
COMPLEX for icamax
DOUBLE COMPLEX for izamax

Array, DIMENSION at least (1+(n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

index INTEGER. Contains the position of vector element x that has the largest
absolute value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine amax interface are the following:

x Holds the vector of length (n).

i?amin
Finds the element of a vector that has the smallest
absolute value.

Syntax

Fortran 77:

index = isamin(n, x, incx)

index = idamin(n, x, incx)

index = icamin(n, x, incx)

2-30

2 Intel® Math Kernel Library Reference Manual

index = izamin(n, x, incx)

Fortran 95:

index = iamin(x)

Description

Given a vector x, the i?amin functions return the position of the vector element x(i) that has the
smallest absolute value or, for complex flavors, the position of the element with the smallest sum
|Rex(i)| + |Imx(i)|.

If n is not positive, 0 is returned.

If more than one vector element is found with the same smallest absolute value, the index of the
first one encountered is returned.

Input Parameters

n INTEGER. On entry, n specifies the order of the vector x.

x REAL for isamin
DOUBLE PRECISION for idamin
COMPLEX for icamin
DOUBLE COMPLEX for izamin

Array, DIMENSION at least (1+(n-1)*abs(incx)).

incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

index INTEGER. Contains the position of vector element x that has the smallest
absolute value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine amin interface are the following:

x Holds the vector of length (n).

BLAS and Sparse BLAS Routines 2

2-31

dcabs1
Computes absolute value of double complex number.

Syntax

Fortran 77:

res = dcabs1(z)

Fortran 95:

res = dcabs1(z)

Description

The dcabs1 is an auxiliary routine for a few BLAS Level 1 routines. This function performs an
operation defined as

res = |Re(z)| + |Im(z)|,

where z is a scalar and res is a value containing the absolute value of a double complex number z.

Input Parameters

z DOUBLE COMPLEX scalar.

Output Parameters

res DOUBLE PRECISION.Contains the absolute value of a double complex number
z.

2-32

2 Intel® Math Kernel Library Reference Manual

BLAS Level 2 Routines

This section describes BLAS Level 2 routines, which perform matrix-vector operations. Table 2-2
lists the BLAS Level 2 routine groups and the data types associated with them.

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types

Routine
Groups

Data
Types Description

?gbmv s, d, c, z Matrix-vector product using a general band
matrix

?gemv s, d, c, z Matrix-vector product using a general matrix

?ger s, d Rank-1 update of a general matrix

?gerc c, z Rank-1 update of a conjugated general matrix

?geru c, z Rank-1 update of a general matrix,
unconjugated

?hbmv c, z Matrix-vector product using a Hermitian band
matrix

?hemv c, z Matrix-vector product using a Hermitian matrix

?her c, z Rank-1 update of a Hermitian matrix

?her2 c, z Rank-2 update of a Hermitian matrix

?hpmv c, z Matrix-vector product using a Hermitian packed
matrix

?hpr c, z Rank-1 update of a Hermitian packed matrix

?hpr2 c, z Rank-2 update of a Hermitian packed matrix

?sbmv s, d Matrix-vector product using symmetric band
matrix

?spmv s, d Matrix-vector product using a symmetric packed
matrix

?spr s, d Rank-1 update of a symmetric packed matrix

?spr2 s, d Rank-2 update of a symmetric packed matrix

?symv s, d Matrix-vector product using a symmetric matrix

?syr s, d Rank-1 update of a symmetric matrix

?syr2 s, d Rank-2 update of a symmetric matrix

?tbmv s, d, c, z Matrix-vector product using a triangular band
matrix

?tbsv s, d, c, z Linear solution of a triangular band matrix

BLAS and Sparse BLAS Routines 2

2-33

?gbmv
Computes a matrix-vector product using
a general band matrix

Syntax

Fortran 77:

call sgbmv(trans, m, n, kl, ku, alpha, a, lda, x, inxc, beta, y, incy)

call dgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)

call cgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)

call zgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call gbmv(a, x, y [,kl] [,m] [,alpha] [,beta] [,trans])

Description

The ?gbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y

or

y := alpha*a'*x + beta*y,

or

y := alpha*conjg(a')*x + beta*y,

where:

?tpmv s, d, c, z Matrix-vector product using a triangular packed
matrix

?tpsv s, d, c, z Linear solution of a triangular packed matrix

?trmv s, d, c, z Matrix-vector product using a triangular matrix

?trsv s, d, c, z Linear solution of a triangular matrix

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types (continued)

Routine
Groups

Data
Types Description

2-34

2 Intel® Math Kernel Library Reference Manual

alpha and beta are scalars,

x and y are vectors,

a is an m-by-n band matrix, with kl sub-diagonals and ku super-diagonals.

Input Parameters

trans CHARACTER*1. Specifies the operation to be performed, as follows:

m INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

kl INTEGER. Specifies the number of sub-diagonals of the matrix a. The value of
kl must satisfy 0 ≤ kl.

ku INTEGER. Specifies the number of super-diagonals of the matrix a. The value
of ku must satisfy 0 ≤ ku.

alpha REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Specifies the scalar alpha.

a REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Array, DIMENSION (lda, n). Before entry, the leading (kl + ku + 1) by n
part of the array a must contain the matrix of coefficients. This matrix must be
supplied column-by-column, with the leading diagonal of the matrix in row
(ku + 1) of the array, the first super-diagonal starting at position 2 in row ku,

trans value Operation to be Performed

N or n y:= alpha*a*x + beta*y

T or t y:= alpha*a'*x + beta*y

C or c y:= alpha*conjg(a')*x +beta*y

BLAS and Sparse BLAS Routines 2

2-35

the first sub-diagonal starting at position 1 in row (ku + 2), and so on.
Elements in the array a that do not correspond to elements in the band matrix
(such as the top left ku by ku triangle) are not referenced.

The following program segment transfers a band matrix from conventional full
matrix storage to band storage:
 do 20, j = 1, n
 k = ku + 1 - j
 do 10, i = max(1, j-ku), min(m, j+kl)
 a(k+i, j) = matrix(i,j)

 10 continue
 20 continue

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least (kl + ku + 1).

x REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)) when trans = 'N' or
'n' and at least (1 + (m - 1)*abs(incx)) otherwise. Before entry, the
incremented array x must contain the vector x.

incx INTEGER. Specifies the increment for the elements of x. incx must not be
zero.

beta REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Specifies the scalar beta. When beta is supplied as zero, then y need not be set
on input.

y REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Array, DIMENSION at least (1 + (m - 1)*abs(incy)) when trans = 'N' or
'n' and at least
(1 + (n - 1)*abs(incy)) otherwise. Before entry, the incremented array y
must contain the vector y.

2-36

2 Intel® Math Kernel Library Reference Manual

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

y Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gbmv interface are the following:

a Holds the array A of size (kl+ku+1,n).

x Holds the vector of length (rx) where
rx = n if trans = 'N',
rx = m otherwise.

y Holds the vector of length (ry) where
ry = m if trans = 'N',
ry = n otherwise.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

kl If omitted, assumed kl = ku.

ku Restored as ku = lda-kl-1.

m If omitted, assumed m = n.

alpha The default value is 1.

beta The default value is 1.

BLAS and Sparse BLAS Routines 2

2-37

?gemv
Computes a matrix-vector product
using a general matrix

Syntax

Fortran 77:

call sgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

call dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

call cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

call zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call gemv(a, x, y [,alpha] [,beta] [,trans])

Description

The ?gemv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

or

y := alpha*a'*x + beta*y,

or

y := alpha*conjg(a')*x + beta*y,

where:

alpha and beta are scalars,

x and y are vectors,

a is an m-by-n matrix.

2-38

2 Intel® Math Kernel Library Reference Manual

Input Parameters

trans CHARACTER*1. Specifies the operation to be performed, as follows:

 m INTEGER. Specifies the number of rows of the matrix a. m must be at least
zero.

 n INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

alpha REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Specifies the scalar alpha.

a REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Array, DIMENSION (lda, n). Before entry, the leading m-by-n part of the
array a must contain the matrix of coefficients.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1, m).

x REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Array, DIMENSION at least (1+(n-1)*abs(incx)) when trans = 'N' or
'n' and at least (1+(m - 1)*abs(incx)) otherwise. Before entry, the
incremented array x must contain the vector x.

 incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

trans value Operation to be Performed

N or n y:= alpha*a*x + beta*y

T or t y:= alpha*a'*x + beta*y

C or c y:= alpha*conjg(a')*x +beta*y

BLAS and Sparse BLAS Routines 2

2-39

beta REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Specifies the scalar beta. When beta is supplied as zero, then y need not be
set on input.

 y REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv

Array, DIMENSION at least (1 + (m - 1)*abs(incy)) when trans = 'N' or
'n' and at least (1 + (n - 1)*abs(incy)) otherwise. Before entry with
beta non-zero, the incremented array y must contain the vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

y Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gemv interface are the following:

a Holds the matrix A of size (m,n).

x Holds the vector of length (rx) where
rx = n if trans = 'N',
rx = m otherwise.

y Holds the vector of length (ry) where
ry = m if trans = 'N',
ry = n otherwise.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

alpha The default value is 1.

beta The default value is 1.

2-40

2 Intel® Math Kernel Library Reference Manual

?ger
Performs a rank-1 update of a general matrix.

Syntax

Fortran 77:

call sger(m, n, alpha, x, incx, y, incy, a, lda)

call dger(m, n, alpha, x, incx, y, incy, a, lda)

Fortran 95:

call ger(a, x, y [,alpha])

Description

The ?ger routines perform a matrix-vector operation defined as

a := alpha*x*y' + a,

where:

alpha is a scalar,

x is an m-element vector,

y is an n-element vector,

a is an m-by-n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

alpha REAL for sger
DOUBLE PRECISION for dger

Specifies the scalar alpha.

x REAL for sger
DOUBLE PRECISION for dger

BLAS and Sparse BLAS Routines 2

2-41

Array, DIMENSION at least (1 + (m - 1)*abs(incx)). Before entry, the
incremented array x must contain the m-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

y REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

a REAL for sger
DOUBLE PRECISION for dger

Array, DIMENSION (lda, n). Before entry, the leading m-by-n part of the
array a must contain the matrix of coefficients.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1, m).

Output Parameters

a Overwritten by the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine ger interface are the following:

a Holds the matrix A of size (m,n).

x Holds the vector of length (m).

y Holds the vector of length (n).

alpha The default value is 1.

2-42

2 Intel® Math Kernel Library Reference Manual

?gerc
Performs a rank-1 update (conjugated)
of a general matrix.

Syntax

Fortran 77:

call cgerc(m, n, alpha, x, incx, y, incy, a, lda)

call zgerc(m, n, alpha, x, incx, y, incy, a, lda)

Fortran 95:

call gerc(a, x, y [,alpha])

Description

The ?gerc routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + a,

where:

alpha is a scalar,

x is an m-element vector,

y is an n-element vector,

a is an m-by-n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

alpha SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc

Specifies the scalar alpha.

BLAS and Sparse BLAS Routines 2

2-43

x SINGLE PRECISION COMPLEX for cgerc
DOUBLE PRECISION COMPLEX for zgerc

Array, DIMENSION at least (1 + (m - 1)*abs(incx)). Before entry, the
incremented array x must contain the m-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

y COMPLEX for cgerc
DOUBLE COMPLEX for zgerc

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

a COMPLEX for cgerc
DOUBLE COMPLEX for zgerc

Array, DIMENSION (lda, n). Before entry, the leading m-by-n part of the
array a must contain the matrix of coefficients.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1, m).

Output Parameters

a Overwritten by the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gerc interface are the following:

a Holds the matrix A of size (m,n).

x Holds the vector of length (m).

y Holds the vector of length (n).

alpha The default value is 1.

2-44

2 Intel® Math Kernel Library Reference Manual

?geru
Performs a rank-1 update (unconjugated) of a general
matrix.

Syntax

Fortran 77:

call cgeru(m, n, alpha, x, incx, y, incy, a, lda)

call zgeru(m, n, alpha, x, incx, y, incy, a, lda)

Fortran 95:

call geru(a, x, y [,alpha])

Description

The ?geru routines perform a matrix-vector operation defined as

a:= alpha*x*y' + a,

where:

alpha is a scalar,

x is an m-element vector,

y is an n-element vector,

a is an m-by-n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrix a. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix a. The value of n
must be at least zero.

alpha COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Specifies the scalar alpha.

BLAS and Sparse BLAS Routines 2

2-45

x COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION at least (1 + (m - 1)*abs(incx)). Before entry, the
incremented array x must contain the m-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

y COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

a COMPLEX for cgeru
DOUBLE COMPLEX for zgeru

Array, DIMENSION (lda, n). Before entry, the leading m-by-n part of the
array a must contain the matrix of coefficients.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1, m).

Output Parameters

a Overwritten by the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine geru interface are the following:

a Holds the matrix A of size (m,n).

x Holds the vector of length (m).

y Holds the vector of length (n).

alpha The default value is 1.

2-46

2 Intel® Math Kernel Library Reference Manual

?hbmv
Computes a matrix-vector product using a Hermitian
band matrix.

Syntax

Fortran 77:

call chbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

call zhbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call hbmv(a, x, y [,uplo] [,alpha] [,beta])

Description

The ?hbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars,

x and y are n-element vectors,

a is an n-by-n Hermitian band matrix, with k super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
band matrix a is being supplied, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is being
supplied.

L or l The lower triangular part of matrix a is being
supplied.

BLAS and Sparse BLAS Routines 2

2-47

k INTEGER. Specifies the number of super-diagonals of the matrix a. The value
of k must satisfy 0 ≤ k.

alpha COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Specifies the scalar alpha.

a COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the Hermitian matrix. The matrix must be
supplied column-by-column, with the leading diagonal of the matrix in row (k
+ 1) of the array, the first super-diagonal starting at position 2 in row k, and so
on. The top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a
Hermitian band matrix from conventional full matrix storage to band storage:
do 20, j = 1, n
 m = k + 1 - j
 do 10, i = max(1, j - k), j

 a(m + i, j) = matrix(i, j)
 10 continue
20 continue

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower triangular band part of
the Hermitian matrix, supplied column-by-column, with the leading diagonal
of the matrix in row 1 of the array, the first sub-diagonal starting at position 1
in row 2, and so on. The bottom right k by k triangle of the array a is not
referenced.

The following program segment transfers the lower triangular part of a
Hermitian band matrix from conventional full matrix storage to band storage:
do 20, j = 1, n

 m = 1 - j
 do 10, i = j, min(n, j + k)
 a(m + i, j) = matrix(i, j)

 10 continue
20 continue

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

2-48

2 Intel® Math Kernel Library Reference Manual

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least (k + 1).

x COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

beta COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Specifies the scalar beta.

y COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

y Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hbmv interface are the following:

a Holds the array A of size (k+1,n).

x Holds the vector of length (n).

y Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

beta The default value is 1.

BLAS and Sparse BLAS Routines 2

2-49

?hemv
Computes a matrix-vector product
using a Hermitian matrix.

Syntax

Fortran 77:

call chemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

call zhemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call hemv(a, x, y [,uplo] [,alpha] [,beta])

Description

The ?hemv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars,

x and y are n-element vectors,

a is an n-by-n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

2-50

2 Intel® Math Kernel Library Reference Manual

alpha COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Specifies the scalar alpha.

a COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of a is not referenced. Before entry with
uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array a
must contain the lower triangular part of the Hermitian matrix and the strictly
upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1, n).

x COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

beta COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Specifies the scalar beta. When beta is supplied as zero then y need not be
set on input.

y COMPLEX for chemv
DOUBLE COMPLEX for zhemv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

BLAS and Sparse BLAS Routines 2

2-51

Output Parameters

y Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hemv interface are the following:

a Holds the matrix A of size (n,n).

x Holds the vector of length (n).

y Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

beta The default value is 1.

?her
Performs a rank-1 update of a Hermitian matrix.

Syntax

Fortran 77:

call cher(uplo, n, alpha, x, incx, a, lda)

call zher(uplo, n, alpha, x, incx, a, lda)

Fortran 95:

call her(a, x [,uplo] [,alpha])

Description

The ?her routines perform a matrix-vector operation defined as

a := alpha*x*conjg(x') + a,

where:

2-52

2 Intel® Math Kernel Library Reference Manual

alpha is a real scalar,

x is an n-element vector,

a is an n-by-n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

alpha REAL for cher
DOUBLE PRECISION for zher

Specifies the scalar alpha.

x COMPLEX for cher
DOUBLE COMPLEX for zher

Array, dimension at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

a COMPLEX for cher
DOUBLE COMPLEX for zher

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part
of the array a must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of a is not referenced.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

BLAS and Sparse BLAS Routines 2

2-53

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1, n).

Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine her interface are the following:

a Holds the matrix A of size (n,n).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

?her2
Performs a rank-2 update of a Hermitian matrix.

Syntax

Fortran 77:

call cher2(uplo, n, alpha, x, incx, y, incy, a, lda)

call zher2(uplo, n, alpha, x, incx, y, incy, a, lda)

2-54

2 Intel® Math Kernel Library Reference Manual

Fortran 95:

call her2(a, x, y [,uplo] [,alpha])

Description

The ?her2 routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,

where:

alpha is a scalar’

x and y are n-element vectors’

a is an n-by-n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

alpha COMPLEX for cher2
DOUBLE COMPLEX for zher2

Specifies the scalar alpha.

x COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

BLAS and Sparse BLAS Routines 2

2-55

y COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

a COMPLEX for cher2
DOUBLE COMPLEX for zher2

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part
of the array a must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1, n).

Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine her2 interface are the following:

a Holds the matrix A of size (n,n).

2-56

2 Intel® Math Kernel Library Reference Manual

x Holds the vector of length (n).

y Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

?hpmv
Computes a matrix-vector product using a Hermitian
packed matrix.

Syntax

Fortran 77:

call chpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

call zhpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

Fortran 95:

call hpmv(a, x, y [,uplo] [,alpha] [,beta])

Description

The ?hpmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars,

x and y are n-element vectors,

a is an n-by-n Hermitian matrix, supplied in packed form.

BLAS and Sparse BLAS Routines 2

2-57

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

alpha COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Specifies the scalar alpha.

ap COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular part of the Hermitian
matrix packed sequentially, column-by-column, so that ap(1) contains a(1,
1), ap(2) and ap(3) contain a(1, 2) and a(2, 2) respectively, and so on.
Before entry with uplo = 'L' or 'l', the array ap must contain the lower
triangular part of the Hermitian matrix packed sequentially,
column-by-column, so that ap(1) contains a(1, 1), ap(2) and ap(3)
contain a(2, 1) and a(3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

x COMPLEX for chpmv
DOUBLE PRECISION COMPLEX for zhpmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

beta COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

2-58

2 Intel® Math Kernel Library Reference Manual

Specifies the scalar beta. When beta is supplied as zero then y need not be
set on input.

y COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

y Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hpmv interface are the following:

a Holds the array A of size (n*(n+1)/2).

x Holds the vector of length (n).

y Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

beta The default value is 1.

BLAS and Sparse BLAS Routines 2

2-59

?hpr
Performs a rank-1 update of a Hermitian packed
matrix.

Syntax

Fortran 77:

call chpr(uplo, n, alpha, x, incx, ap)

call zhpr(uplo, n, alpha, x, incx, ap)

Fortran 95:

call hpr(a, x [,uplo] [,alpha])

Description

The ?hpr routines perform a matrix-vector operation defined as

a := alpha*x*conjg(x') + a,

where:

alpha is a real scalar,

x is an n-element vector,

a is an n-by-n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

 n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

2-60

2 Intel® Math Kernel Library Reference Manual

alpha REAL for chpr
DOUBLE PRECISION for zhpr

Specifies the scalar alpha.

x COMPLEX for chpr
DOUBLE COMPLEX for zhpr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. incx must not be
zero.

ap COMPLEX for chpr
DOUBLE COMPLEX for zhpr

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular part of the Hermitian
matrix packed sequentially, column-by-column, so that ap(1) contains a(1,
1), ap(2) and ap(3) contain a(1, 2) and a(2, 2) respectively, and so on.

Before entry with uplo = 'L' or 'l', the array ap must contain the lower
triangular part of the Hermitian matrix packed sequentially,
column-by-column, so that ap(1) contains a(1, 1), ap(2) and ap(3)
contain a(2, 1) and a(3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hpr interface are the following:

BLAS and Sparse BLAS Routines 2

2-61

a Holds the array A of size (n*(n+1)/2).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

?hpr2
Performs a rank-2 update of a Hermitian packed
matrix.

Syntax

Fortran 77:

call chpr2(uplo, n, alpha, x, incx, y, incy, ap)

call zhpr2(uplo, n, alpha, x, incx, y, incy, ap)

Fortran 95:

call hpr2(a, x, y [,uplo] [,alpha])

Description

The ?hpr2 routines perform a matrix-vector operation defined as

a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,

where:

alpha is a scalar,

x and y are n-element vectors,

a is an n-by-n Hermitian matrix, supplied in packed form.

2-62

2 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

alpha COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Specifies the scalar alpha.

x COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, dimension at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

y COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

ap COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular part of the Hermitian
matrix packed sequentially, column-by-column, so that ap(1) contains a(1,
1), ap(2) and ap(3) contain a(1, 2) and a(2, 2) respectively, and so on.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

BLAS and Sparse BLAS Routines 2

2-63

Before entry with uplo = 'L' or 'l', the array ap must contain the lower
triangular part of the Hermitian matrix packed sequentially,
column-by-column, so that ap(1) contains a(1, 1), ap(2) and ap(3)
contain a(2, 1) and a(3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed
to be zero.

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements need are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hpr2 interface are the following:

a Holds the array A of size (n*(n+1)/2).

x Holds the vector of length (n).

y Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

2-64

2 Intel® Math Kernel Library Reference Manual

?sbmv
Computes a matrix-vector product using a symmetric
band matrix.

Syntax

Fortran 77:

call ssbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

call dsbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call sbmv(a, x, y [,uplo] [,alpha] [,beta])

Description

The ?sbmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars,

x and y are n-element vectors,

a is an n-by-n symmetric band matrix, with k super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
band matrix a is being supplied, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

k INTEGER. Specifies the number of super-diagonals of the matrix a. The value
of k must satisfy 0 ≤ k.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied.

L or l The lower triangular part of matrix a is supplied.

BLAS and Sparse BLAS Routines 2

2-65

alpha REAL for ssbmv
DOUBLE PRECISION for dsbmv

Specifies the scalar alpha.

a REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the symmetric matrix, supplied
column-by-column, with the leading diagonal of the matrix in row (k + 1) of
the array, the first super-diagonal starting at position 2 in row k, and so on. The
top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a
symmetric band matrix from conventional full matrix storage to band storage:

do 20, j = 1, n
 m = k + 1 - j
 do 10, i = max(1, j - k), j
 a(m + i, j) = matrix(i, j)
 10 continue
20 continue

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower triangular band part of
the symmetric matrix, supplied column-by-column, with the leading diagonal
of the matrix in row 1 of the array, the first sub-diagonal starting at position 1
in row 2, and so on. The bottom right k by k triangle of the array a is not
referenced.

The following program segment transfers the lower triangular part of a
symmetric band matrix from conventional full matrix storage to band storage:

do 20, j = 1, n
 m = 1 - j
 do 10, i = j, min(n, j + k)
 a(m + i, j) = matrix(i, j)
 10 continue
20 continue

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least (k + 1).

x REAL for ssbmv
DOUBLE PRECISION for dsbmv

2-66

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

beta REAL for ssbmv
DOUBLE PRECISION for dsbmv

Specifies the scalar beta.

y REAL for ssbmv
DOUBLE PRECISION for dsbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

y Overwritten by the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine sbmv interface are the following:

a Holds the array A of size (k+1,n).

x Holds the vector of length (n).

y Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

beta The default value is 1.

BLAS and Sparse BLAS Routines 2

2-67

?spmv
Computes a matrix-vector product
using a symmetric packed matrix.

Syntax

Fortran 77:

call sspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

call dspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

Fortran 95:

call spmv(a, x, y [,uplo] [,alpha] [,beta])

Description

The ?spmv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars,

x and y are n-element vectors,

a is an n-by-n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

2-68

2 Intel® Math Kernel Library Reference Manual

alpha REAL for sspmv
DOUBLE PRECISION for dspmv

Specifies the scalar alpha.

ap REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that ap(1) contains a(1,
1), ap(2) and ap(3) contain a(1, 2) and a(2, 2) respectively, and so on.
Before entry with uplo = 'L' or 'l', the array ap must contain the lower
triangular part of the symmetric matrix packed sequentially,
column-by-column, so that ap(1) contains a(1, 1), ap(2) and ap(3)
contain a(2, 1) and a(3, 1) respectively, and so on.

x REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

beta REAL for sspmv
DOUBLE PRECISION for dspmv

Specifies the scalar beta. When beta is supplied as zero, then y need not be
set on input.

y REAL for sspmv
DOUBLE PRECISION for dspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

y Overwritten by the updated vector y.

BLAS and Sparse BLAS Routines 2

2-69

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine spmv interface are the following:

a Holds the array A of size (n*(n+1)/2).

x Holds the vector of length (n).

y Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

beta The default value is 1.

?spr
Performs a rank-1 update
of a symmetric packed matrix.

Syntax

Fortran 77:

call sspr(uplo, n, alpha, x, incx, ap)

call dspr(uplo, n, alpha, x, incx, ap)

Fortran 95:

call spr(a, x [,uplo] [,alpha])

Description

The ?spr routines perform a matrix-vector operation defined as

a:= alpha*x*x' + a,

where:

alpha is a real scalar,

2-70

2 Intel® Math Kernel Library Reference Manual

x is an n-element vector,

a is an n-by-n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

alpha REAL for sspr
DOUBLE PRECISION for dspr

Specifies the scalar alpha.

x REAL for sspr
DOUBLE PRECISION for dspr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

ap REAL for sspr
DOUBLE PRECISION for dspr

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that ap(1) contains
a(1,1), ap(2) and ap(3) contain a(1, 2) and a(2,2) respectively, and so
on.

Before entry with uplo = 'L' or 'l', the array ap must contain the lower
triangular part of the symmetric matrix packed sequentially,
column-by-column, so that ap(1) contains a(1,1), ap(2)and
ap(3)contain a(2,1) and a(3,1) respectively, and so on.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

BLAS and Sparse BLAS Routines 2

2-71

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the
updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine spr interface are the following:

a Holds the array A of size (n*(n+1)/2).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

?spr2
Performs a rank-2 update
of a symmetric packed matrix.

Syntax

Fortran 77:

call sspr2(uplo, n, alpha, x, incx, y, incy, ap)

call dspr2(uplo, n, alpha, x, incx, y, incy, ap)

Fortran 95:

call spr2(a, x, y [,uplo] [,alpha])

Description

The ?spr2 routines perform a matrix-vector operation defined as

a:= alpha*x*y' + alpha*y*x' + a,

2-72

2 Intel® Math Kernel Library Reference Manual

where:

alpha is a scalar,

x and y are n-element vectors,

a is an n-by-n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
matrix a is supplied in the packed array ap, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

alpha REAL for sspr2
DOUBLE PRECISION for dspr2

Specifies the scalar alpha.

x REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

y REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

BLAS and Sparse BLAS Routines 2

2-73

ap REAL for sspr2
DOUBLE PRECISION for dspr2

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that ap(1) contains
a(1,1), ap(2) and ap(3) contain a(1,2) and a(2,2) respectively, and so
on.

Before entry with uplo = 'L' or 'l', the array ap must contain the lower
triangular part of the symmetric matrix packed sequentially,
column-by-column, so that ap(1) contains a(1,1), ap(2) and ap(3)
contain a(2,1) and a(3,1) respectively, and so on.

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the
updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine spr2 interface are the following:

a Holds the array A of size (n*(n+1)/2).

x Holds the vector of length (n).

y Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

2-74

2 Intel® Math Kernel Library Reference Manual

?symv
Computes a matrix-vector product
for a symmetric matrix.

Syntax

Fortran 77:

call ssymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

call dsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

Fortran 95:

call symv(a, x, y [,uplo] [,alpha] [,beta])

Description

The ?symv routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are scalars,

x and y are n-element vectors,

a is an n-by-n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

BLAS and Sparse BLAS Routines 2

2-75

alpha REAL for ssymv
DOUBLE PRECISION for dsymv

Specifies the scalar alpha.

a REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of a is not referenced. Before entry with
uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array a
must contain the lower triangular part of the symmetric matrix and the strictly
upper triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1,n).

x REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

beta REAL for ssymv
DOUBLE PRECISION for dsymv

Specifies the scalar beta. When beta is supplied as zero, then y need not be
set on input.

y REAL for ssymv
DOUBLE PRECISION for dsymv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

y Overwritten by the updated vector y.

2-76

2 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine symv interface are the following:

a Holds the matrix A of size (n,n).

x Holds the vector of length (n).

y Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

beta The default value is 1.

?syr
Performs a rank-1 update of a symmetric matrix.

Syntax

Fortran 77:

call ssyr(uplo, n, alpha, x, incx, a, lda)

call dsyr(uplo, n, alpha, x, incx, a, lda)

Fortran 95:

call syr(a, x [,uplo] [,alpha])

Description

The ?syr routines perform a matrix-vector operation defined as

a := alpha*x*x' + a,

where:

alpha is a real scalar,

x is an n-element vector,

BLAS and Sparse BLAS Routines 2

2-77

a is an n-by-n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

alpha REAL for ssyr
DOUBLE PRECISION for dsyr

Specifies the scalar alpha.

x REAL for ssyr
DOUBLE PRECISION for dsyr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

a REAL for ssyr
DOUBLE PRECISION for dsyr

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part
of the array a must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1,n).

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

2-78

2 Intel® Math Kernel Library Reference Manual

Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine syr interface are the following:

a Holds the matrix A of size (n,n).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

?syr2
Performs a rank-2 update of symmetric matrix.

Syntax

Fortran 77:

call ssyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

call dsyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

Fortran 95:

call syr2(a, x, y [,uplo] [,alpha])

Description

The ?syr2 routines perform a matrix-vector operation defined as

a := alpha*x*y' + alpha*y*x' + a,

BLAS and Sparse BLAS Routines 2

2-79

where:

alpha is a scalar,

x and y are n-element vectors,

a is an n-by-n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array a is to be referenced, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

alpha REAL for ssyr2
DOUBLE PRECISION for dsyr2

Specifies the scalar alpha.

x REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

y REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry, the
incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

2-80

2 Intel® Math Kernel Library Reference Manual

a REAL for ssyr2
DOUBLE PRECISION for dsyr2

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part
of the array a must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1,n).

Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten
by the lower triangular part of the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine syr2 interface are the following:

a Holds the matrix A of size (n,n).

x Holds the vector of length (n).

y Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

BLAS and Sparse BLAS Routines 2

2-81

?tbmv
Computes a matrix-vector product
using a triangular band matrix.

Syntax

Fortran 77:

call stbmv(uplo, trans, diag, n, k, a, lda, x, incx)

call dtbmv(uplo, trans, diag, n, k, a, lda, x, incx)

call ctbmv(uplo, trans, diag, n, k, a, lda, x, incx)

call ztbmv(uplo, trans, diag, n, k, a, lda, x, incx)

Fortran 95:

call tbmv(a, x [,uplo] [,trans] [,diag])

Description

The ?tbmv routines perform one of the matrix-vector operations defined as

x := a*x, or x := a'*x, or x := conjg(a')*x,

where:

x is an n-element vector,

a is an n-by-n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

2-82

2 Intel® Math Kernel Library Reference Manual

trans CHARACTER*1. Specifies the operation to be performed, as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

k INTEGER. On entry with uplo = 'U' or 'u', k specifies the number of
super-diagonals of the matrix a. On entry with uplo = 'L' or 'l', k specifies
the number of sub-diagonals of the matrix a. The value of k must satisfy 0 ≤ k.

a REAL for stbmv
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for ztbmv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the matrix of coefficients, supplied
column-by-column, with the leading diagonal of the matrix in row (k + 1) of
the array, the first super-diagonal starting at position 2 in row k, and so on. The
top left k by k triangle of the array a is not referenced. The following program
segment transfers an upper triangular band matrix from conventional full
matrix storage to band storage:
do 20, j = 1, n
 m = k + 1 - j

 do 10, i = max(1, j - k), j
 a(m + i, j) = matrix(i, j)
 10 continue

 20 continue

trans value Operation to be Performed

N or n x := a*x

T or t x := a'*x

C or c x := conjg(a')*x

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS and Sparse BLAS Routines 2

2-83

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower triangular band part of
the matrix of coefficients, supplied column-by-column, with the leading
diagonal of the matrix in row1 of the array, the first sub-diagonal starting at
position 1 in row 2, and so on. The bottom right k by k triangle of the array a is
not referenced. The following program segment transfers a lower triangular
band matrix from conventional full matrix storage to band storage:

 do 20, j = 1, n
 m = 1 - j

 do 10, i = j, min(n, j + k)
 a(m + i, j) = matrix (i, j)
 10 continue

20 continue

 Note that when diag = 'U' or 'u', the elements of the array a corresponding
to the diagonal elements of the matrix are not referenced, but are assumed to be
unity.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least (k + 1).

x REAL for stbmv
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for ztbmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

x Overwritten with the transformed vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine tbmv interface are the following:

2-84

2 Intel® Math Kernel Library Reference Manual

a Holds the array A of size (k+1,n).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

?tbsv
Solves a system of linear equations whose coefficients
are in a triangular band matrix.

Syntax

Fortran 77:

call stbsv(uplo, trans, diag, n, k, a, lda, x, incx)

call dtbsv(uplo, trans, diag, n, k, a, lda, x, incx)

call ctbsv(uplo, trans, diag, n, k, a, lda, x, incx)

call ztbsv(uplo, trans, diag, n, k, a, lda, x, incx)

Fortran 95:

call tbsv(a, x [,uplo] [,trans] [,diag])

Description

The ?tbsv routines solve one of the following systems of equations:

a*x = b, or a'*x = b, or conjg(a')*x = b,

where:

b and x are n-element vectors,

a is an n-by-n unit, or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals.

The routine does not test for singularity or near-singularity. Such tests must be performed before
calling this routine.

BLAS and Sparse BLAS Routines 2

2-85

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed, as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

k INTEGER. On entry with uplo = 'U' or 'u', k specifies the number of
super-diagonals of the matrix a. On entry with uplo = 'L' or 'l', k specifies
the number of sub-diagonals of the matrix a. The value of k must satisfy 0 ≤ k.

a REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading (k + 1) by n part of the array a must contain
the upper triangular band part of the matrix of coefficients, supplied
column-by-column, with the leading diagonal of the matrix in row (k + 1) of
the array, the first super-diagonal starting at position 2 in row k, and so on. The
top left k by k triangle of the array a is not referenced.

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation to be Performed

N or n a*x = b

T or t a'*x = b

C or c conjg(a')*x = b

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

2-86

2 Intel® Math Kernel Library Reference Manual

The following program segment transfers an upper triangular band matrix from
conventional full matrix storage to band storage:

do 20, j = 1, n
 m = k + 1 - j
 do 10, i = max(1, j - k), j
 a(m + i, j) = matrix (i, j)
 10 continue
20 continue

Before entry with uplo = 'L' or 'l', the leading
(k + 1) by n part of the array a must contain the lower triangular band part of
the matrix of coefficients, supplied column-by-column, with the leading
diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at
position 1 in row 2, and so on. The bottom right k by k triangle of the array a is
not referenced.

The following program segment transfers a lower triangular band matrix from
conventional full matrix storage to band storage:

do 20, j = 1, n
 m = 1 - j
 do 10, i = j, min(n, j + k)
 a(m + i, j) = matrix (i, j)
 10 continue
20 continue

When diag = 'U' or 'u', the elements of the array a corresponding to the
diagonal elements of the matrix are not referenced, but are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least (k + 1).

x REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element right-hand side vector b.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

x Overwritten with the solution vector x.

BLAS and Sparse BLAS Routines 2

2-87

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine tbsv interface are the following:

a Holds the array A of size (k+1,n).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

?tpmv
Computes a matrix-vector product
using a triangular packed matrix.

Syntax

Fortran 77:

call stpmv(uplo, trans, diag, n, ap, x, incx)

call dtpmv(uplo, trans, diag, n, ap, x, incx)

call ctpmv(uplo, trans, diag, n, ap, x, incx)

call ztpmv(uplo, trans, diag, n, ap, x, incx)

Fortran 95:

call tpmv(a, x [,uplo] [,trans] [,diag])

Description

The ?tpmv routines perform one of the matrix-vector operations defined as

x := a*x, or x := a'*x, or x := conjg(a')*x,

where:

2-88

2 Intel® Math Kernel Library Reference Manual

x is an n-element vector,

a is an n-by-n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed, as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

ap REAL for stpmv
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular matrix packed
sequentially, column-by-column, so that ap(1) contains a(1,1), ap(2) and
ap(3) contain a(1,2) and a(2,2) respectively, and so on. Before entry with
uplo = 'L' or 'l', the array ap must contain the lower triangular matrix
packed sequentially, column-by-column, so that ap(1) contains a(1,1),

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n x := a*x

T or t x := a'*x

C or c x := conjg(a')*x

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS and Sparse BLAS Routines 2

2-89

ap(2) and ap(3) contain a(2,1) and a(3,1) respectively, and so on. When
diag = 'U' or 'u', the diagonal elements of a are not referenced, but are
assumed to be unity.

x REAL for stpmv
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

x Overwritten with the transformed vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine tpmv interface are the following:

a Holds the array A of size (n*(n+1)/2).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

2-90

2 Intel® Math Kernel Library Reference Manual

?tpsv
Solves a system of linear equations whose coefficients
are in a triangular packed matrix.

Syntax

Fortran 77:

call stpsv(uplo, trans, diag, n, ap, x, incx)

call dtpsv(uplo, trans, diag, n, ap, x, incx)

call ctpsv(uplo, trans, diag, n, ap, x, incx)

call ztpsv(uplo, trans, diag, n, ap, x, incx)

Fortran 95:

call tpsv(a, x [,uplo] [,trans] [,diag])

Description

The ?tpsv routines solve one of the following systems of equations

a*x = b, or a'*x = b, or conjg(a')*x = b,

where:

b and x are n-element vectors,

a is an n-by-n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

This routine does not test for singularity or near-singularity. Such tests must be performed before
calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

BLAS and Sparse BLAS Routines 2

2-91

trans CHARACTER*1. Specifies the operation to be performed, as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

ap REAL for stpsv
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for ztpsv

Array, DIMENSION at least ((n*(n + 1))/2). Before entry with uplo = 'U'
or 'u', the array ap must contain the upper triangular matrix packed
sequentially, column-by-column, so that ap(1) contains a(1, 1), ap(2) and
ap(3) contain a(1, 2) and a(2, 2) respectively, and so on. Before entry
with uplo = 'L' or 'l', the array ap must contain the lower triangular matrix
packed sequentially, column-by-column, so that ap(1) contains a(1, 1),
ap(2) and ap(3) contain a(2, 1) and a(3, 1) respectively, and so on. When
diag = 'U' or 'u', the diagonal elements of a are not referenced, but are
assumed to be unity.

x REAL for stpsv
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for ztpsv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element right-hand side vector b.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

trans value Operation To Be Performed

N or n a*x = b

T or t a'*x = b

C or c conjg(a')*x = b

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

2-92

2 Intel® Math Kernel Library Reference Manual

Output Parameters

x Overwritten with the solution vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine tpsv interface are the following:

a Holds the array A of size (n*(n+1)/2).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

?trmv
Computes a matrix-vector product
using a triangular matrix.

Syntax

Fortran 77:

call strmv(uplo, trans, diag, n, a, lda, x, incx)

call dtrmv(uplo, trans, diag, n, a, lda, x, incx)

call ctrmv(uplo, trans, diag, n, a, lda, x, incx)

call ztrmv(uplo, trans, diag, n, a, lda, x, incx)

Fortran 95:

call trmv(a, x [,uplo] [,trans] [,diag])

Description

The ?trmv routines perform one of the following matrix-vector operations defined as

BLAS and Sparse BLAS Routines 2

2-93

x := a*x or x := a'*x or x := conjg(a')*x,

where:

x is an n-element vector,

a is an n-by-n unit, or non-unit, upper or lower triangular matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed, as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

a REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv

 Array, DIMENSION (lda,n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular matrix and the strictly lower triangular part

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n x := a*x

T or t x := a'*x

C or c x := conjg(a')*x

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

2-94

2 Intel® Math Kernel Library Reference Manual

of a is not referenced. Before entry with uplo = 'L' or 'l', the leading
n-by-n lower triangular part of the array a must contain the lower triangular
matrix and the strictly upper triangular part of a is not referenced. When
diag = 'U' or 'u', the diagonal elements of a are not referenced either, but
are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1, n).

x REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
DOUBLE COMPLEX for ztrmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

x Overwritten with the transformed vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine trmv interface are the following:

a Holds the matrix A of size (n,n).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

BLAS and Sparse BLAS Routines 2

2-95

?trsv
Solves a system of linear equations whose coefficients
are in a triangular matrix.

Syntax

Fortran 77:

call strsv(uplo, trans, diag, n, a, lda, x, incx)

call dtrsv(uplo, trans, diag, n, a, lda, x, incx)

call ctrsv(uplo, trans, diag, n, a, lda, x, incx)

call ztrsv(uplo, trans, diag, n, a, lda, x, incx)

Fortran 95:

call trsv(a, x [,uplo] [,trans] [,diag])

Description

The ?trsv routines solve one of the systems of equations:

a*x = b or a'*x = b, or conjg(a')*x = b,

where:

b and x are n-element vectors,

a is an n-by-n unit, or non-unit, upper or lower triangular matrix.

The routine does not test for singularity or near-singularity. Such tests must be performed before
calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper or lower triangular
matrix, as follows:

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

2-96

2 Intel® Math Kernel Library Reference Manual

trans CHARACTER*1. Specifies the operation to be performed, as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

n INTEGER. Specifies the order of the matrix a. The value of n must be at least
zero.

a REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv

Array, DIMENSION (lda,n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a
must contain the upper triangular matrix and the strictly lower triangular part
of a is not referenced. Before entry with uplo = 'L' or 'l', the leading
n-by-n lower triangular part of the array a must contain the lower triangular
matrix and the strictly upper triangular part of a is not referenced. When diag
= 'U' or 'u', the diagonal elements of a are not referenced either, but are
assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1, n).

x REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry, the
incremented array x must contain the n-element right-hand side vector b.

trans value Operation To Be Performed

N or n a*x = b

T or t a'*x = b

C or c conjg(a')*x = b

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS and Sparse BLAS Routines 2

2-97

incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.

Output Parameters

x Overwritten with the solution vector x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine trsv interface are the following:

a Holds the matrix A of size (n,n).

x Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

2-98

2 Intel® Math Kernel Library Reference Manual

BLAS Level 3 Routines

BLAS Level 3 routines perform matrix-matrix operations. Table 2-3 lists the BLAS Level 3
routine groups and the data types associated with them.

Symmetric Multiprocessing Version of Intel® MKL

Many applications spend considerable time for executing BLAS level 3 routines. This time can be
scaled by the number of processors available on the system through using the symmetric
multiprocessing (SMP) feature built into the Intel MKL Library. The performance enhancements
based on the parallel use of the processors are available without any programming effort on your
part.

To enhance performance, the library uses the following methods:

• The operation of BLAS level 3 matrix-matrix functions permits to restructure the code in a
way which increases the localization of data reference, enhances cache memory use, and
reduces the dependency on the memory bus.

• Once the code has been effectively blocked as described above, one of the matrices is
distributed across the processors to be multiplied by the second matrix. Such distribution
ensures effective cache management which reduces the dependency on the memory bus
performance and brings good scaling results.

Table 2-3 BLAS Level 3 Routine Groups and Their Data Types

Routine
Group

Data
Types Description

?gemm s, d, c, z Matrix-matrix product of general matrices

?hemm c, z Matrix-matrix product of Hermitian matrices

?herk c, z Rank-k update of Hermitian matrices

?her2k c, z Rank-2k update of Hermitian matrices

?symm s, d, c, z Matrix-matrix product of symmetric matrices

?syrk s, d, c, z Rank-k update of symmetric matrices

?syr2k s, d, c, z Rank-2k update of symmetric matrices

?trmm s, d, c, z Matrix-matrix product of triangular matrices

?trsm s, d, c, z Linear matrix-matrix solution for triangular
matrices

BLAS and Sparse BLAS Routines 2

2-99

?gemm
Computes a scalar-matrix-matrix product and adds the
result to a scalar-matrix product.

Syntax

Fortran 77:

call sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

Fortran 95:

call gemm(a, b, c [,transa] [,transb] [,alpha] [,beta])

Description

The ?gemm routines perform a matrix-matrix operation with general matrices. The operation is
defined as

c := alpha*op(a)*op(b) + beta*c,

where:

op(x) is one of op(x) = x or op(x) = x' or op(x) = conjg(x'),

alpha and beta are scalars,

a, b and c are matrices:

op(a) is an m-by-k matrix,

op(b) is a n-by-k matrix,

c is an m-by-n matrix.

2-100

2 Intel® Math Kernel Library Reference Manual

Input Parameters

transa CHARACTER*1. Specifies the form of op(a) to be used in the matrix
multiplication as follows:

transb CHARACTER*1. Specifies the form of op(b) to be used in the matrix
multiplication as follows:

m INTEGER. Specifies the number of rows of the matrix op(a) and of the matrix
c. The value of m must be at least zero.

n INTEGER. Specifies the number of columns of the matrix op(b) and the
number of columns of the matrix c. The value of n must be at least zero.

k INTEGER. Specifies the number of columns of the matrix op(a) and the
number of rows of the matrix op(b). The value of k must be at least zero.

alpha REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Specifies the scalar alpha.

a REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

transa value Form of op(a)

N or n op(a) = a

T or t op(a) = a'

C or c op(a) = conjg(a')

transb value Form of op(b)

N or n op(b) = b

T or t op(b) = b'

C or c op(b) = conjg(b')

BLAS and Sparse BLAS Routines 2

2-101

Array, DIMENSION (lda, ka), where ka is k when transa = 'N' or 'n',
and is m otherwise. Before entry with transa = 'N' or 'n', the leading
m-by-k part of the array a must contain the matrix a, otherwise the leading
k-by-m part of the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When transa = 'N' or 'n', then lda must be at least
max(1, m), otherwise lda must be at least max(1, k).

b REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Array, DIMENSION (ldb, kb), where kb is n when transb = 'N' or 'n',
and is k otherwise. Before entry with transb = 'N' or 'n', the leading n-by-k
part of the array b must contain the matrix b, otherwise the leading n-by-k part
of the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. When transb = 'N' or 'n', then ldb must be at least max(1,
k), otherwise ldb must be at least max(1, n).

beta REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Specifies the scalar beta. When beta is supplied as zero, then c need not be
set on input.

c REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm

Array, DIMENSION (ldc, n). Before entry, the leading m-by-n part of the
array c must contain the matrix c, except when beta is zero, in which case c
need not be set on entry.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program. The value of ldc must be at least max(1, m).

Output Parameters

c Overwritten by the m-by-n matrix (alpha*op(a)*op(b) + beta*c).

2-102

2 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gemm interface are the following:

a Holds the matrix A of size (ma,ka) where
ka = k if transa = 'N',
ka = m otherwise,
ma = m if transa = 'N',
ma = k otherwise.

b Holds the matrix B of size (mb,kb) where
kb = n if transb = 'N',
kb = k otherwise,
mb = k if transb = 'N',
mb = n otherwise.

c Holds the matrix C of size (m,n).

transa Must be 'N', 'C', or 'T'. The default value is 'N'.

transb Must be 'N', 'C', or 'T'. The default value is 'N'.

alpha The default value is 1.

beta The default value is 1.

?hemm
Computes a scalar-matrix-matrix product (either one of
the matrices is Hermitian) and adds the result to
scalar-matrix product.

Syntax

Fortran 77:

call chemm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

call zhemm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

BLAS and Sparse BLAS Routines 2

2-103

Fortran 95:

call hemm(a, b, c [,side] [,uplo] [,alpha] [,beta])

Description

The ?hemm routines perform a matrix-matrix operation using Hermitian matrices. The operation is
defined as

c := alpha*a*b + beta*c

or

c := alpha*b*a + beta*c,

where:

alpha and beta are scalars,

a is an Hermitian matrix,

b and c are m-by-n matrices.

Input Parameters

side CHARACTER*1. Specifies whether the Hermitian matrix a appears on the left or
right in the operation as follows:

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
Hermitian matrix a is to be referenced as follows:

m INTEGER. Specifies the number of rows of the matrix c. The value of m must
be at least zero.

side value Operation To Be Performed

L or l c := alpha*a*b + beta*c

R or r c := alpha*b*a + beta*c

uplo value Part of Matrix a To Be Referenced

U or u Only the upper triangular part of the Hermitian
matrix is to be referenced.

L or l Only the lower triangular part of the Hermitian
matrix is to be referenced.

2-104

2 Intel® Math Kernel Library Reference Manual

n INTEGER. Specifies the number of columns of the matrix c. The value of n
must be at least zero.

alpha COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Specifies the scalar alpha.

a COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (lda,ka), where ka is m when side = 'L' or 'l' and is
n otherwise. Before entry with side = 'L' or 'l', the m-by-m part of the
array a must contain the Hermitian matrix, such that when
uplo = 'U' or 'u', the leading m-by-m upper triangular part of the array a
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of a is not referenced, and when uplo = 'L' or 'l', the
leading m-by-m lower triangular part of the array a must contain the lower
triangular part of the Hermitian matrix, and the strictly upper triangular part of
a is not referenced. Before entry with side = 'R' or 'r', the n-by-n part of
the array a must contain the Hermitian matrix, such that when uplo = 'U' or
'u', the leading n-by-n upper triangular part of the array a must contain the
upper triangular part of the Hermitian matrix and the strictly lower triangular
part of a is not referenced, and when uplo = 'L' or 'l', the leading n-by-n
lower triangular part of the array a must contain the lower triangular part of the
Hermitian matrix, and the strictly upper triangular part of a is not referenced.
The imaginary parts of the diagonal elements need not be set, they are assumed
to be zero.

lda INTEGER. Specifies the first dimension of a as declared in the calling (sub)
program. When side = 'L' or 'l' then lda must be at least max(1, m),
otherwise lda must be at least max(1,n).

b COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (ldb,n). Before entry, the leading m-by-n part of the
array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of ldb must be at least max(1, m).

BLAS and Sparse BLAS Routines 2

2-105

beta COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Specifies the scalar beta. When beta is supplied as zero, then c need not be
set on input.

c COMPLEX for chemm
DOUBLE COMPLEX for zhemm

Array, DIMENSION (c, n). Before entry, the leading m-by-n part of the array
c must contain the matrix c, except when beta is zero, in which case c need
not be set on entry.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program. The value of ldc must be at least max(1,m).

Output Parameters

c Overwritten by the m-by-n updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine hemm interface are the following:

a Holds the matrix A of size (k,k) where
k = m if side = 'L',
k = n otherwise.

b Holds the matrix B of size (m,n).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

beta The default value is 1.

2-106

2 Intel® Math Kernel Library Reference Manual

?herk
Performs a rank-n update of a Hermitian matrix.

Syntax

Fortran 77:

call cherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

call zherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

Fortran 95:

call herk(a, c [,uplo] [,trans] [,alpha] [,beta])

Description

The ?herk routines perform a matrix-matrix operation using Hermitian matrices. The operation is
defined as

c := alpha*a*conjg(a') + beta*c,

or

c := alpha*conjg(a')*a + beta*c,

where:

alpha and beta are real scalars,

c is an n-by-n Hermitian matrix,

a is an n-by-k matrix in the first case and a n-by-k matrix in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of C is to be
referenced.

L or l Only the lower triangular part of C is to be
referenced.

BLAS and Sparse BLAS Routines 2

2-107

trans CHARACTER*1. Specifies the operation to be performed as follows:

n INTEGER. Specifies the order of the matrix c. The value of n must be at least
zero.

k INTEGER. With trans = 'N' or 'n', k specifies the number of columns of the
matrix a, and with
trans = 'C' or 'c', k specifies the number of rows of the matrix a. The value
of k must be at least zero.

alpha REAL for cherk
DOUBLE PRECISION for zherk

Specifies the scalar alpha.

a COMPLEX for cherk
DOUBLE COMPLEX for zherk

Array, DIMENSION (lda, ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k part
of the array a must contain the matrix a, otherwise the leading n-by-k part of
the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then lda must be at least max(1,
n), otherwise lda must be at least max(1, k).

beta REAL for cherk
DOUBLE PRECISION for zherk

Specifies the scalar beta.

c COMPLEX for cherk
DOUBLE COMPLEX for zherk

Array, DIMENSION (ldc,n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array c
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of c is not referenced.

trans value Operation to be Performed

N or n c:= alpha*a*conjg(a')+beta*c

C or c c:= alpha*conjg(a')*a+beta*c

2-108

2 Intel® Math Kernel Library Reference Manual

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part
of the array c must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of c is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed
to be zero.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program. The value of ldc must be at least max(1, n).

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine herk interface are the following:

a Holds the matrix A of size (ma,ka) where
ka = k if transa = 'N',
ka = n otherwise,
ma = n if transa = 'N',
ma = k otherwise.

c Holds the matrix C of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N' or 'C'. The default value is 'N'.

alpha The default value is 1.

beta The default value is 1.

BLAS and Sparse BLAS Routines 2

2-109

?her2k
Performs a rank-2k update of a Hermitian matrix.

Syntax

Fortran 77:

call cher2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call zher2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

Fortran 95:

call her2k(a, b, c [,uplo] [,trans] [,alpha] [,beta])

Description

The ?her2k routines perform a rank-2k matrix-matrix operation using Hermitian matrices. The
operation is defined as

c := alpha*a*conjg(b') + conjg(alpha)*b*conjg(a') + beta*c,

or

c := alpha*conjg(b')*a + conjg(alpha)*conjg(a')*b + beta*c,

where:

alpha is a scalar and beta is a real scalar,

c is an n-by-n Hermitian matrix,

a and b are n-by-k matrices in the first case and n-by-k matrices in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of C is to be
referenced.

L or l Only the lower triangular part of C is to be
referenced.

2-110

2 Intel® Math Kernel Library Reference Manual

trans CHARACTER*1. Specifies the operation to be performed as follows:

n INTEGER. Specifies the order of the matrix c. The value of n must be at least
zero.

k INTEGER. With trans = 'N' or 'n', k specifies the number of columns of the
matrix a, and with
trans = 'C' or 'c', k specifies the number of rows of the matrix a. The value
of k must be at least zero.

alpha COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Specifies the scalar alpha.

a COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (lda, ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k part
of the array a must contain the matrix a, otherwise the leading n-by-k part of
the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then lda must be at least max(1,
n), otherwise lda must be at least max(1, k).

beta REAL for cher2k
DOUBLE PRECISION for zher2k

Specifies the scalar beta.

b COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (ldb, kb), where kb is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k part
of the array b must contain the matrix b, otherwise the leading n-by-k part of
the array b must contain the matrix b.

trans value Operation to be Performed

N or n c:=alpha*a*conjg(b')
 +alpha*b*conjg(a') +beta*c

C or c c:=alpha*conjg(a')*b
 +alpha*conjg(b')*a+beta*c

BLAS and Sparse BLAS Routines 2

2-111

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. When trans = 'N' or 'n', then ldb must be at least max(1,
n), otherwise ldb must be at least max(1, k).

c COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

Array, DIMENSION (ldc,n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array c
must contain the upper triangular part of the Hermitian matrix and the strictly
lower triangular part of c is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part
of the array c must contain the lower triangular part of the Hermitian matrix
and the strictly upper triangular part of c is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed
to be zero.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program. The value of ldc must be at least max(1, n).

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine her2k interface are the following:

a Holds the matrix A of size (ma,ka) where
ka = k if trans = 'N',
ka = n otherwise,
ma = n if trans = 'N',
ma = k otherwise.

2-112

2 Intel® Math Kernel Library Reference Manual

b Holds the matrix B of size (mb,kb) where
kb = k if trans = 'N',
kb = n otherwise,
mb = n if trans = 'N',
mb = k otherwise.

c Holds the matrix C of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N' or 'C'. The default value is 'N'.

alpha The default value is 1.

beta The default value is 1.

?symm
Performs a scalar-matrix-matrix product (one matrix
operand is symmetric) and adds the result to a
scalar-matrix product.

Syntax

Fortran 77:

call ssymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

call dsymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

call csymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

call zsymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

Fortran 95:

call symm(a, b, c [,side] [,uplo] [,alpha] [,beta])

Description

The ?symm routines perform a matrix-matrix operation using symmetric matrices. The operation is
defined as

C := alpha*A*B + beta*C,

or

BLAS and Sparse BLAS Routines 2

2-113

c := alpha*b*a + beta*c,

where:

alpha and beta are scalars,

a is a symmetric matrix,

b and c are m-by-n matrices.

Input Parameters

side CHARACTER*1. Specifies whether the symmetric matrix a appears on the left
or right in the operation as follows:

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
symmetric matrix a is to be referenced as follows:

m INTEGER. Specifies the number of rows of the matrix c. The value of m must
be at least zero.

n INTEGER. Specifies the number of columns of the matrix c. The value of n
must be at least zero.

alpha REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Specifies the scalar alpha.

side value Operation to be Performed

L or l c := alpha*a*b + beta*c

R or r c := alpha*b*a + beta*c

uplo value Part of Array a To Be Referenced

U or u Only the upper triangular part of the symmetric
matrix is to be referenced.

L or l Only the lower triangular part of the symmetric
matrix is to be referenced.

2-114

2 Intel® Math Kernel Library Reference Manual

a REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Array, DIMENSION (lda, ka), where ka is m when side = 'L' or 'l' and is
n otherwise. Before entry with side = 'L' or 'l', the m-by-m part of the
array a must contain the symmetric matrix, such that when uplo = 'U' or
'u', the leading m-by-m upper triangular part of the array a must contain the
upper triangular part of the symmetric matrix and the strictly lower triangular
part of a is not referenced, and when uplo = 'L' or 'l', the leading m-by-m
lower triangular part of the array a must contain the lower triangular part of the
symmetric matrix and the strictly upper triangular part of a is not referenced.

Before entry with side = 'R' or 'r', the n-by-n part of the array a must
contain the symmetric matrix, such that when uplo = 'U' or 'u', the leading
n-by-n upper triangular part of the array a must contain the upper triangular
part of the symmetric matrix and the strictly lower triangular part of a is not
referenced, and when uplo = 'L' or 'l', the leading n-by-n lower triangular
part of the array a must contain the lower triangular part of the symmetric
matrix and the strictly upper triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When side = 'L' or 'l' then lda must be at least max(1, m),
otherwise lda must be at least max(1, n).

b REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Array, DIMENSION (ldb,n). Before entry, the leading m-by-n part of the
array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of ldb must be at least max(1, m).

beta REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Specifies the scalar beta. When beta is supplied as zero, then c need not be
set on input.

BLAS and Sparse BLAS Routines 2

2-115

 c REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm

Array, DIMENSION (ldc,n). Before entry, the leading m-by-n part of the
array c must contain the matrix c, except when beta is zero, in which case c
need not be set on entry.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program. The value of ldc must be at least max(1, m).

Output Parameters

c Overwritten by the m-by-n updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine symm interface are the following:

a Holds the matrix A of size (k,k) where
k = m if side = 'L',
k = n otherwise.

b Holds the matrix B of size (m,n).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

uplo Must be 'U' or 'L'. The default value is 'U'.

alpha The default value is 1.

beta The default value is 1.

2-116

2 Intel® Math Kernel Library Reference Manual

?syrk
Performs a rank-n update of a symmetric matrix.

Syntax

Fortran 77:

call ssyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

call dsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

call csyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

call zsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

Fortran 95:

call syrk(a, c [,uplo] [,trans] [,alpha] [,beta])

Description

The ?syrk routines perform a matrix-matrix operation using symmetric matrices. The operation is
defined as

c := alpha*a*a' + beta*c,

or

c := alpha*a'*a + beta*c,

where:

alpha and beta are scalars,

c is an n-by-n symmetric matrix,

a is an n-by-k matrix in the first case and a n-by-k matrix in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of c is to be
referenced.

BLAS and Sparse BLAS Routines 2

2-117

trans CHARACTER*1. Specifies the operation to be performed as follows:

n INTEGER. Specifies the order of the matrix c. The value of n must be at least
zero.

k INTEGER. On entry with trans = 'N' or 'n', k specifies the number of
columns of the matrix a, and on entry with trans = 'T' or 't' or 'C' or 'c',
k specifies the number of rows of the matrix a. The value of k must be at least
zero.

alpha REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Specifies the scalar alpha.

a REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Array, DIMENSION (lda,ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k part
of the array a must contain the matrix a, otherwise the leading n-by-k part of
the array a must contain the matrix a.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then lda must be at least
max(1,n), otherwise lda must be at least max(1, k).

L or l Only the lower triangular part of c is to be
referenced.

trans value Operation to be Performed

N or n c:= alpha*a*a' + beta*c

T or t c:= alpha*a'*a + beta*c

C or c c:= alpha*a'*a + beta*c

uplo value Part of Array c To Be Referenced

2-118

2 Intel® Math Kernel Library Reference Manual

beta REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Specifies the scalar beta.

c REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Array, DIMENSION (ldc,n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array c
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of c is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part
of the array c must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of c is not referenced.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program. The value of ldc must be at least max(1, n).

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine syrk interface are the following:

a Holds the matrix A of size (ma,ka) where
ka = k if transa = 'N',
ka = n otherwise,
ma = n if transa = 'N',
ma = k otherwise.

BLAS and Sparse BLAS Routines 2

2-119

c Holds the matrix C of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

alpha The default value is 1.

beta The default value is 1.

?syr2k
Performs a rank-2k update of a symmetric matrix.

Syntax

Fortran 77:

call ssyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call dsyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call csyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

call zsyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

Fortran 95:

call syr2k(a, b, c [,uplo] [,trans] [,alpha] [,beta])

Description

The ?syr2k routines perform a rank-2k matrix-matrix operation using symmetric matrices. The
operation is defined as

c := alpha*a*b' + alpha*b*a' + beta*c,

or

c := alpha*a'*b + alpha*b'*a + beta*c,

where:

alpha and beta are scalars,

c is an n-by-n symmetric matrix,

a and b are n-by-k matrices in the first case and n-by-k matrices in the second case.

2-120

2 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array c is to be referenced as follows:

trans CHARACTER*1. Specifies the operation to be performed as follows:

n INTEGER. Specifies the order of the matrix c. The value of n must be at least
zero.

k INTEGER. On entry with trans = 'N' or 'n', k specifies the number of
columns of the matrices a and b, and on entry with trans = 'T' or 't' or
'C' or 'c', k specifies the number of rows of the matrices a and b. The value
of k must be at least zero.

alpha REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Specifies the scalar alpha.

a REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (lda,ka), where ka is k when trans = 'N' or 'n', and
is n otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k part
of the array a must contain the matrix a, otherwise the leading n-by-k part of
the array a must contain the matrix a.

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of c is to be
referenced.

L or l Only the lower triangular part of c is to be
referenced.

trans value Operation to be Performed

N or n c:= alpha*a*b'+alpha*b*a'+beta*c

T or t c:= alpha*a'*b+alpha*b'*a+beta*c

C or c c:= alpha*a'*b+alpha*b'*a+beta*c

BLAS and Sparse BLAS Routines 2

2-121

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then lda must be at least
max(1,n), otherwise lda must be at least max(1, k).

b REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (ldb, kb) where kb is k when trans = 'N' or 'n' and
is 'n' otherwise. Before entry with trans = 'N' or 'n', the leading n-by-k
part of the array b must contain the matrix b, otherwise the leading n-by-k part
of the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When trans = 'N' or 'n', then ldb must be at least
max(1,n), otherwise ldb must be at least max(1, k).

beta REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Specifies the scalar beta.

c REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (ldc,n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array c
must contain the upper triangular part of the symmetric matrix and the strictly
lower triangular part of c is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part
of the array c must contain the lower triangular part of the symmetric matrix
and the strictly upper triangular part of c is not referenced.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program. The value of ldc must be at least max(1, n).

Output Parameters

c With uplo = 'U' or 'u', the upper triangular part of the array c is overwritten
by the upper triangular part of the updated matrix.

2-122

2 Intel® Math Kernel Library Reference Manual

With uplo = 'L' or 'l', the lower triangular part of the array c is overwritten
by the lower triangular part of the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine syr2k interface are the following:

a Holds the matrix A of size (ma,ka) where
ka = k if trans = 'N',
ka = n otherwise,
ma = n if trans = 'N',
ma = k otherwise.

b Holds the matrix B of size (mb,kb) where
kb = k if trans = 'N',
kb = n otherwise,
mb = n if trans = 'N',
mb = k otherwise.

c Holds the matrix C of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

alpha The default value is 1.

beta The default value is 1.

BLAS and Sparse BLAS Routines 2

2-123

?trmm
Computes a scalar-matrix-matrix product (one matrix
operand is triangular).

Syntax

Fortran 77:

call strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call dtrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

Fortran 95:

call trmm(a, b [,side] [,uplo] [,transa] [,diag] [,alpha])

Description

The ?trmm routines perform a matrix-matrix operation using triangular matrices. The operation is
defined as

b := alpha*op(a)*b

or

B := alpha*B*op(A)

where:

alpha is a scalar,

b is an m-by-n matrix,

a is a unit, or non-unit, upper or lower triangular matrix

op(a) is one of op(a) = a or op(a) = a' or op(a) = conjg(a').

2-124

2 Intel® Math Kernel Library Reference Manual

Input Parameters

side CHARACTER*1. Specifies whether op(a) multiplies b from the left or right in
the operation as follows:

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix as follows:

transa CHARACTER*1. Specifies the form of op(a) to be used in the matrix
multiplication as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular as follows:

m INTEGER. Specifies the number of rows of b. The value of m must be at least
zero.

n INTEGER. Specifies the number of columns of b. The value of n must be at
least zero.

alpha REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm

side value Operation To Be Performed

L or l b := alpha*op(a)*b

R or r b := alpha*b*op(a)

uplo value Matrix a

U or u Matrix a is an upper triangular matrix.

L or l Matrix a is a lower triangular matrix.

transa value Form of op(a)

N or n op(a) = a

T or t op(a) = a'

C or c op(a) = conjg(a')

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS and Sparse BLAS Routines 2

2-125

Specifies the scalar alpha. When alpha is zero, then a is not referenced and b
need not be set before entry.

a REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm

Array, DIMENSION (lda,k), where k is m when
side = 'L' or 'l' and is n when side = 'R' or 'r'. Before entry with uplo
= 'U' or 'u', the leading
k by k upper triangular part of the array a must contain the upper triangular
matrix and the strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading k by k lower triangular part
of the array a must contain the lower triangular matrix and the strictly upper
triangular part of a is not referenced. When diag = 'U' or 'u', the diagonal
elements of a are not referenced either, but are assumed to be unity.

 lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When side = 'L' or 'l', then lda must be at least max(1,
m), when side = 'R' or 'r', then lda must be at least max(1, n).

 b REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm

Array, DIMENSION (ldb,n). Before entry, the leading
m-by-n part of the array b must contain the matrix b.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of ldb must be at least max(1, m).

Output Parameters

b Overwritten by the transformed matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine trmm interface are the following:

2-126

2 Intel® Math Kernel Library Reference Manual

a Holds the matrix A of size (k,k) where
k = m if side = 'L',
k = n otherwise.

b Holds the matrix B of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

uplo Must be 'U' or 'L'. The default value is 'U'.

transa Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

alpha The default value is 1.

?trsm
Solves a matrix equation (one matrix operand is
triangular).

Syntax

Fortran 77:

call strsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call dtrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

call ztrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

Fortran 95:

call trsm(a, b [,side] [,uplo] [,transa] [,diag] [,alpha])

Description

The ?trsm routines solve one of the following matrix equations:

op(a)*x = alpha*b,

or

x*op(a) = alpha*b,

where:

BLAS and Sparse BLAS Routines 2

2-127

alpha is a scalar,

x and b are m-by-n matrices,

a is a unit, or non-unit, upper or lower triangular matrix

op(a) is one of op(a) = a or op(a) = a' or
op(a) = conjg(a').

The matrix x is overwritten on b.

Input Parameters

side CHARACTER*1. Specifies whether op(a) appears on the left or right of x for
the operation to be performed as follows:

uplo CHARACTER*1. Specifies whether the matrix a is an upper or lower triangular
matrix as follows:

transa CHARACTER*1. Specifies the form of op(a) to be used in the matrix
multiplication as follows:

diag CHARACTER*1. Specifies whether or not a is unit triangular as follows:

side value Operation To Be Performed

L or l op(a)*x = alpha*b

R or r x*op(a) = alpha*b

uplo value Matrix a

U or u Matrix a is an upper triangular matrix.

L or l Matrix a is a lower triangular matrix.

transa value Form of op(a)

N or n op(a) = a

T or t op(a) = a'

C or c op(a) = conjg(a')

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

2-128

2 Intel® Math Kernel Library Reference Manual

m INTEGER. Specifies the number of rows of b. The value of m must be at least
zero.

n INTEGER. Specifies the number of columns of b. The value of n must be at
least zero.

alpha REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm

Specifies the scalar alpha. When alpha is zero, then a is not referenced and b
need not be set before entry.

a REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm

Array, DIMENSION (lda, k), where k is m when
side = 'L' or 'l' and is n when side = 'R' or 'r'. Before entry with uplo
= 'U' or 'u', the leading k by k upper triangular part of the array a must
contain the upper triangular matrix and the strictly lower triangular part of a is
not referenced.

Before entry with uplo = 'L' or 'l', the leading k by k lower triangular part
of the array a must contain the lower triangular matrix and the strictly upper
triangular part of a is not referenced. When diag = 'U' or 'u', the diagonal
elements of a are not referenced either, but are assumed to be unity.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. When side = 'L' or 'l', then lda must be at least max(1,
m), when side = 'R' or 'r', then lda must be at least max(1, n).

b REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm

Array, DIMENSION (ldb,n). Before entry, the leading m-by-n part of the
array b must contain the right-hand side matrix b.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program. The value of ldb must be at least max(1, m).

BLAS and Sparse BLAS Routines 2

2-129

Output Parameters

b Overwritten by the solution matrix x.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine trsm interface are the following:

a Holds the matrix A of size (k,k) where
k = m if side = 'L',
k = n otherwise.

b Holds the matrix B of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

uplo Must be 'U' or 'L'. The default value is 'U'.

transa Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

alpha The default value is 1.

2-130

2 Intel® Math Kernel Library Reference Manual

Sparse BLAS Level 1 Routines and Functions
This section describes Sparse BLAS Level 1, an extension of BLAS Level 1 included in Intel®
Math Kernel Library beginning with Intel MKL release 2.1. Sparse BLAS Level 1 is a group of
routines and functions that perform a number of common vector operations on sparse vectors
stored in compressed form.

Sparse vectors are those in which the majority of elements are zeros. Sparse BLAS routines and
functions are specially implemented to take advantage of vector sparsity. This allows you to
achieve large savings in computer time and memory. If nz is the number of non-zero vector
elements, the computer time taken by Sparse BLAS operations will be O(nz).

Vector Arguments

Compressed sparse vectors. Let a be a vector stored in an array, and assume that the only
non-zero elements of a are the following:

 a(k1), a(k2), a(k3) . . . a(knz),

where nz is the total number of non-zero elements in a.

In Sparse BLAS, this vector can be represented in compressed form by two FORTRAN arrays, x
(values) and indx (indices). Each array has nz elements:

 x(1)=a(k1), x(2)=a(k2), . . . x(nz)=a(knz),

 indx(1)=k1, indx(2)=k2, . . . indx(nz)=knz.

Thus, a sparse vector is fully determined by the triple (nz, x, indx). If you pass a negative or zero
value of nz to Sparse BLAS, the subroutines do not modify any arrays or variables.

Full-storage vectors. Sparse BLAS routines can also use a vector argument fully stored in a
single FORTRAN array (a full-storage vector). If y is a full-storage vector, its elements must be
stored contiguously: the first element in y(1), the second in y(2), and so on. This corresponds to
an increment incy = 1 in BLAS Level 1. No increment value for full-storage vectors is passed as
an argument to Sparse BLAS routines or functions.

Naming Conventions

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes that determine the data
type involved: s and d for single- and double- precision real; c and z for single- and
double-precision complex respectively.

BLAS and Sparse BLAS Routines 2

2-131

If a Sparse BLAS routine is an extension of a “dense” one, the subprogram name is formed by
appending the suffix i (standing for indexed) to the name of the corresponding “dense”
subprogram. For example, the Sparse BLAS routine saxpyi corresponds to the BLAS routine
saxpy, and the Sparse BLAS function cdotci corresponds to the BLAS function cdotc.

Routines and Data Types

Routines and data types supported in the Intel MKL implementation of Sparse BLAS are listed in
Table 2-4.

BLAS Level 1 Routines That Can Work With Sparse Vectors

The following BLAS Level 1 routines will give correct results when you pass to them a
compressed-form array x (with the increment incx = 1):
 ?asum sum of absolute values of vector elements
 ?copy copying a vector
 ?nrm2 Euclidean norm of a vector
 ?scal scaling a vector
 i?amax index of the element with the largest absolute value or,
 for complex flavors, the largest sum |Rex(i)| + |Imx(i)|.
 i?amin index of the element with the smallest absolute value or,
 for complex flavors, the smallest sum |Rex(i)| + |Imx(i)|.

Table 2-4 Sparse BLAS Routines and Their Data Types

Routine/
Function

Data
Types Description

?axpyi s, d, c, z Scalar-vector product plus vector (routines)

?doti s, d Dot product (functions)

?dotci c, z Complex dot product conjugated (functions)

?dotui c, z Complex dot product unconjugated (functions)

?gthr s, d, c, z Gathering a full-storage sparse vector into
compressed form: nz, x, indx (routines)

?gthrz s, d, c, z Gathering a full-storage sparse vector into
compressed form and assigning zeros to
gathered elements in the full-storage vector
(routines)

?roti s, d Givens rotation (routines)

?sctr s, d, c, z Scattering a vector from compressed form to
full-storage form (routines)

2-132

2 Intel® Math Kernel Library Reference Manual

The result i returned by i?amax and i?amin should be interpreted as index in the
compressed-form array, so that the largest (smallest) value is x(i); the corresponding index in
full-storage array is indx(i).

You can also call ?rotg to compute the parameters of Givens rotation and then pass these
parameters to the Sparse BLAS routines ?roti.

?axpyi
Adds a scalar multiple of compressed sparse vector to a
full-storage vector.

Syntax

Fortran 77:

call saxpyi(nz, a, x, indx, y)

call daxpyi(nz, a, x, indx, y)

call caxpyi(nz, a, x, indx, y)

call zaxpyi(nz, a, x, indx, y)

Fortran 95:

call axpyi(x, indx, y [,a])

Description

The ?axpyi routines perform a vector-vector operation defined as

y := a*x + y

where:

a is a scalar,

(nz, x, indx) is a sparse vector stored in compressed form,

y is a vector in full storage form.

The ?axpyi routines reference or modify only the elements of y whose indices are listed in the
array indx. The values in indx must be distinct.

BLAS and Sparse BLAS Routines 2

2-133

Input Parameters

nz INTEGER. The number of elements in x and indx .

a REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi

Specifies the scalar a.

x REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.

Array, DIMENSION at least nz.

y REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi

Array, DIMENSION at least maxi (indx(i)).

Output Parameters

y Contains the updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine axpyi interface are the following:

x Holds the vector of length (nz).

indx Holds the vector of length (nz).

y Holds the vector of length (nz).

a The default value is 1.

2-134

2 Intel® Math Kernel Library Reference Manual

?doti
Computes the dot product of a compressed sparse real
vector by a full-storage real vector.

Syntax

Fortran 77:

res = sdoti(nz, x, indx, y)

res = ddoti(nz, x, indx, y)

Fortran 95:

res = doti(x, indx, y)

Description

The ?doti functions return the dot product of x and y defined as

x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+ x(nz)*y(indx(nz))

where the triple (nz, x, indx) defines a sparse real vector stored in compressed form, and y is a
real vector in full storage form. The functions reference only the elements of y whose indices are
listed in the array indx. The values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx .

x REAL for sdoti
DOUBLE PRECISION for ddoti
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y REAL for sdoti
DOUBLE PRECISION for ddoti
Array, DIMENSION at least maxi (indx(i)).

BLAS and Sparse BLAS Routines 2

2-135

Output Parameters

res REAL for sdoti
DOUBLE PRECISION for ddoti

Contains the dot product of x and y, if nz is positive. Otherwise, res contains
0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine doti interface are the following:

x Holds the vector of length (nz).

indx Holds the vector of length (nz).

y Holds the vector of length (nz).

?dotci
Computes the conjugated dot product of a compressed
sparse complex vector with a full-storage complex
vector.

Syntax

Fortran 77:

res = cdotci(nz, x, indx, y)

res = zdotci(nz, x, indx, y)

Fortran 95:

res = dotci(x, indx, y)

Description

The ?dotci functions return the dot product of x and y defined as

conjg(x(1))*y(indx(1)) + ... + conjg(x(nz))*y(indx(nz))

2-136

2 Intel® Math Kernel Library Reference Manual

where the triple (nz, x, indx) defines a sparse complex vector stored in compressed form, and y
is a real vector in full storage form. The functions reference only the elements of y whose indices
are listed in the array indx. The values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx .

x COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

 y COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

res COMPLEX for cdotci
DOUBLE COMPLEX for zdotci

Contains the conjugated dot product of x and y,
if nz is positive. Otherwise, res contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine dotci interface are the following:

x Holds the vector of length (nz).

indx Holds the vector of length (nz).

y Holds the vector of length (nz).

BLAS and Sparse BLAS Routines 2

2-137

?dotui
Computes the dot product of a compressed sparse
complex vector by a full-storage complex vector.

Syntax

Fortran 77:

res = cdotui(nz, x, indx, y)

res = zdotui(nz, x, indx, y)

Fortran 95:

res = dotui(x, indx, y)

Description

The ?dotui functions return the dot product of x and y defined as

x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+ x(nz)*y(indx(nz))

where the triple (nz, x, indx) defines a sparse complex vector stored in compressed form, and y
is a real vector in full storage form. The functions reference only the elements of y whose indices
are listed in the array indx. The values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx .

x COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, DIMENSION at least maxi (indx(i)).

2-138

2 Intel® Math Kernel Library Reference Manual

Output Parameters

res COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Contains the dot product of x and y, if nz is positive. Otherwise, res
contains 0.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine dotui interface are the following:

x Holds the vector of length (nz).

indx Holds the vector of length (nz).

y Holds the vector of length (nz).

?gthr
Gathers a full-storage sparse vector’s elements into
compressed form.

Syntax

Fortran 77:

call sgthr(nz, y, x, indx)

call dgthr(nz, y, x, indx)

call cgthr(nz, y, x, indx)

call zgthr(nz, y, x, indx)

Fortran 95:

res = gthr(x, indx, y)

BLAS and Sparse BLAS Routines 2

2-139

Description

The ?gthr routines gather the specified elements of a full-storage sparse vector y into
compressed form (nz, x, indx). The routines reference only the elements of y whose indices are
listed in the array indx:

x(i) = y(indx(i)), for i=1,2,...nz.

Input Parameters

nz INTEGER. The number of elements of y to be gathered.

indx INTEGER. Specifies indices of elements to be gathered.
Array, DIMENSION at least nz.

y REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

x REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, DIMENSION at least nz.

Contains the vector converted to the compressed form.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gthr interface are the following:

x Holds the vector of length (nz).

indx Holds the vector of length (nz).

y Holds the vector of length (nz).

2-140

2 Intel® Math Kernel Library Reference Manual

?gthrz
Gathers a sparse vector’s elements into compressed form,
replacing them by zeros.

Syntax

Fortran 77:

call sgthrz(nz, y, x, indx)

call dgthrz(nz, y, x, indx)

call cgthrz(nz, y, x, indx)

call zgthrz(nz, y, x, indx)

Fortran 95:

res = gthrz(x, indx, y)

Description

The ?gthrz routines gather the elements with indices specified by the array indx from a
full-storage vector y into compressed form (nz, x, indx) and overwrite the gathered elements of
y by zeros. Other elements of y are not referenced or modified (see also ?gthr).

Input Parameters

nz INTEGER. The number of elements of y to be gathered.

indx INTEGER. Specifies indices of elements to be gathered.Array, DIMENSION at
least nz.

y REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least maxi (indx(i)).

Output Parameters

x REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz

BLAS and Sparse BLAS Routines 2

2-141

DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least nz.
Contains the vector converted to the compressed form.

y The updated vector y.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine gthrz interface are the following:

x Holds the vector of length (nz).

indx Holds the vector of length (nz).

y Holds the vector of length (nz).

?roti
Applies Givens rotation to sparse vectors one of which is
in compressed form.

Syntax

Fortran 77:

call sroti(nz, x, indx, y, c, s)

call droti(nz, x, indx, y, c, s)

Fortran 95:

call roti(x, indx, y [,c] [,s])

Description

The ?roti routines apply the Givens rotation to elements of two real vectors, x (in compressed
form nz, x, indx) and y (in full storage form):

x(i) = c*x(i) + s*y(indx(i))
y(indx(i)) = c*y(indx(i)) - s*x(i)

2-142

2 Intel® Math Kernel Library Reference Manual

The routines reference only the elements of y whose indices are listed in the array indx. The
values in indx must be distinct.

Input Parameters

nz INTEGER. The number of elements in x and indx.

x REAL for sroti
DOUBLE PRECISION for droti
Array, DIMENSION at least nz.

indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.

y REAL for sroti
DOUBLE PRECISION for droti
Array, DIMENSION at least maxi (indx(i)).

c A scalar: REAL for sroti
 DOUBLE PRECISION for droti.

s A scalar: REAL for sroti
 DOUBLE PRECISION for droti.

Output Parameters

x and y The updated arrays.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine roti interface are the following:

x Holds the vector of length (nz).

indx Holds the vector of length (nz).

y Holds the vector of length (nz).

c The default value is 1.

s The default value is 1.

BLAS and Sparse BLAS Routines 2

2-143

?sctr
Converts compressed sparse vectors into full storage
form.

Syntax

Fortran 77:

call ssctr(nz, x, indx, y)

call dsctr(nz, x, indx, y)

call csctr(nz, x, indx, y)

call zsctr(nz, x, indx, y)

Fortran 95:

call sctr(x, indx, y)

Description

The ?sctr routines scatter the elements of the compressed sparse vector (nz, x, indx) to a
full-storage vector y. The routines modify only the elements of y whose indices are listed in the
array indx:
y(indx(i)) = x(i), for i=1,2,...nz.

Input Parameters

nz INTEGER. The number of elements of x to be scattered.

indx INTEGER. Specifies indices of elements to be scattered.Array, DIMENSION at
least nz.

x REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least nz.
Contains the vector to be converted to full-storage form.

2-144

2 Intel® Math Kernel Library Reference Manual

Output Parameters

y REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least maxi (indx(i)).
Contains the vector y with updated elements.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their Fortran77
counterparts. For general conventions applied to skip redundant or reconstructible arguments, see
Fortran-95 Interface Conventions.

Specific details for the routine sctr interface are the following:

x Holds the vector of length (nz).

indx Holds the vector of length (nz).

y Holds the vector of length (nz).

BLAS and Sparse BLAS Routines 2

2-145

Sparse BLAS Level 2 and Level 3
This section describes Sparse BLAS Level 2 and Level 3 included in Intel® Math Kernel Library.
Sparse BLAS Level 2 is a group of routines and functions that perform operations on a sparse
matrix and dense vectors. Sparse BLAS Level 3 is a group of routines and functions that perform
operations on a sparse matrix and a dense matrices.

Sparse matrix is a matrix in which the majority of elements are zeros. Intel MKL sparse BLAS
routines and functions are specially implemented to take advantage of matrix sparsity. This allows
to achieve large savings in computer time and memory. The sparse BLAS routines can be
considered as building blocks for “Iterative Sparse Solvers based on Reverse Communication
Interface (RCI ISS)” in Chapter 8 of the manual.

Naming Conventions in Sparse BLAS Level 2 and Level 3

Each Sparse BLAS routine has a six- or eight-characters base name preceding with the prefix
mkl_. The routines with standard interfaces have six-characters base names, the routines with
simplified interfaces have eight-characters base names in accordance with the templates:

mkl_<character code> <data> <operation>()

mkl_<character code> <data> <mtype> <operation>()

The <character code> is a character that indicates the data type:

s real, single precision
c complex, single precision
d real, double precision
z complex, double precision

The <data> field indicates the data structure of the sparse matrix (see section “Sparse Matrix
Data Structures”):

coo coordinate format
csr compressed sparse row format and its variations
csc compressed sparse column format and its variations
dia diagonal format
sky skyline storage format

NOTE. Current version of the Intel MKL Sparse BLAS supports only real
data with double precision.

2-146

2 Intel® Math Kernel Library Reference Manual

The <operation> field indicates the type of operation.

mv matrix-vector product (Level 2)
mm matrix-matrix product (Level 3)
sm solving a single triangular system (Level 2)
sm solving triangular systems with multiple right-hand sides (Level 3)

An optional field <mtype> indicates a matrix type and used in the routines with simplified
interfaces:

ge sparse representation of a general matrix
sy sparse representation of the upper or lower triangle of a symmetric matrix
tr sparse representation of a triangular matrix

Sparse Matrix Data Structures

In the current version of Intel MKL sparse BLAS Level 2 and Level 3 the following point entry
[Duff86] sparse matrix data structures are supported:

• compressed sparse row format (CSR) and its variation;

• compressed sparse column format (CSC);

• coordinate format;

• diagonal format;

• skyline storage format.

For more information on matrix storage schemes, see Sparse Storage Formats for Sparse BLAS
Levels 2-3 in the Appendix A.

Routines and Supported Operations

This section describes two main types of routines and supported operations. The following
notations are used here:

A - is a sparse matrix;
B and C - are dense matrices;
D - is a diagonal scaling matrix;
x and y - are dense vectors;
alpha and beta - are scalars;

BLAS and Sparse BLAS Routines 2

2-147

op(A) is one of the possible operations:
op(A) = A;
op(A) = A’ - transpose of A;
op(A) = conj(A’) - conjugated transpose of A.

Complete list of all routines is given in the Table 2-9.

Routines with Standard Interface

Intel MKL Sparse BLAS routines support the following operations:

Level 2.

• computing a sparse matrix-dense vector product:

y := alpha*op(A)*x + beta*y

• solving a single triangular system:

y := alpha*inv(op(A))*x

 Level 3.

• computing a sparse matrix-dense matrix product:

C := alpha*op(A)*B + beta*C

• solving a sparse triangular system with multiple right-hand sides:

C := alpha*inv(op(A))*B

These routines have native interface that differs from the interface used in the NIST Sparse BLAS
library [Rem05]. Detailed consideration of these differences can be found in the section “Interface
Consideration”.

Routines with Simplified Interface

Some software packages and libraries (PARDISO package used in the Intel MKL, Sparskit 2
[Saad94], Compaq Extended Math Library (CXML)[CXML01]) use different (early) variation of
the CSR format and support only level 2 operations with simplified interfaces. Intel MKL provides
a set of level 2 routines with similar simplified interfaces. Each of these routines operates on a
matrix of the fixed type. The following operations are supported:

y := op(A)*x (general and symmetric matrices)

y := inv(op(A))*x (triangular matrices)

Matrix type is indicated by the field <mtype> in the routine name (see section “Naming
Conventions in Sparse BLAS Level 2 and Level 3”).

2-148

2 Intel® Math Kernel Library Reference Manual

The detail consideration of interfaces for these routines is given in the “Interface Consideration”
section.

These routines can operate only with three sparse data storage formats, specifically:

CSR format in variation accepted in PARDISO and CXML;

DIA format accepted in CXML;

COO format.

Note that routines in both groups described above use the same computational kernel routines that
work with certain internal data structures.

Interface Consideration

Differences Between Intel MKL and NIST Interfaces

The Intel MKL Sparse BLAS Level 3 routines have the following interfaces:

mkl_xyyymm(transa, m, n, k, alpha, matdescra, arg(A), b, ldb, beta,
c, ldc), for matrix-matrix product;

mkl_xyyysm(transa, m, n, alpha, matdescra, arg(A), b, ldb, c, ldc), for
triangular solvers with multiple right-hand sides.

The analogous NIST Sparse BLAS (NSB) library routines have the following interfaces:

xyyymm(transa, m, n, k, alpha, descra, arg(A), b, ldb, beta, c, ldc,
work, lwork), for matrix-matrix product;

xyyysm(transa, m, n, unitd, dv, alpha, descra, arg(A), b, ldb, beta,
c, ldc, work, lwork), for triangular solvers with multiple right-hand sides.

Some similar arguments are used in both libraries. The argument transa indicates how to operate
with the matrix and is slightly different in the NSB library (see Table 2-5). The arguments m and k
are the number of rows and column in the matrix A, respectively, n is the number of columns in the
matrix C. The arguments alpha and beta are scalar alpha and beta respectively. (beta is not
used in the Intel MKL triangular solvers.) The arguments b and c are rectangular arrays with the
first dimension ldb and ldc, respectively.The symbol arg(A) denotes the list of arguments that
describe the sparse representation of A.

Table 2-5 Parameter transa

MKL interface NSB interface Operation

data type CHARACTER*1 INTEGER

value N or n 0 op(A) = A

BLAS and Sparse BLAS Routines 2

2-149

The argument matdescra describes the relevant characteristics of the matrix A. It corresponds to
the argument descra from NSB library (see Table 2-6 for more details).

Note that matdescra has some specifics in the Intel MKL routines.
In particular, for routines that perform matrix-matrix and matrix-vector multiplication, they are as
follows:

for general matrices (matdescra(1)=’G’), values of matdescra(2) and matdescra(3)
are ignored;

for skew-symmetrical matrices (matdescra(1)=’A’), values of matdescra(3) are
ignored;

for diagonal matrices (matdescra(1)=’D’), values of matdescra(2) are ignored;

 T or t 1 op(A) = A’

 C or c 2 op(A) = A’

Table 2-6 Possible Values of the Parameter matdescra (descra)

MKL interface NSB interface Matrix characteristics

data type CHARACTER INTEGER

1st element matdescra(1) descra(1) matrix structure

value G 0 general

S 1 symmetric (A=A’)

H 2 Hermitian (A=conjg(A’))

T 3 triangular

A 4 skew(anti)-symmetric (A=-A’)

D 5 diagonal

2nd element matdescra(2) descra(2) upper/lower triangular indicator

value L 1 lower

U 2 upper

3rd element matdescra(3) descra(3) main diagonal type

value N 0 non-unit

U 1 unit

Table 2-5 Parameter transa (continued)

MKL interface NSB interface Operation

2-150

2 Intel® Math Kernel Library Reference Manual

if matdescra(1) is not set to ’G’ or ’T’, and matdescra(2) and matdescra(3) are not
defined, then the following default values are assigned: matdescra(2)=’L’ and
matdescra(3)=’N’;

matdescra(1)=’G’ is not supported for the routines operating with the skyline storage
format.

For triangular solvers if matdescra(1)=’D’, then matdescra(2) is ignored.

For triangular solvers Intel MKL supports only matdescra(1)=T,D;

For both multiplication routines and triangular solvers when matdescra(3)=’U’, and the sparse
matrix is not in the skyline format, then non-zero diagonal elements can be stored in the sparse
representation even if they are non-unit; when the sparse matrix is in the skyline format, the
diagonal elements must be stored in the sparse representation even if they are zero.

The current version of NSB library supports only descra(1) for matrix-matrix multiplication;
descra(2), descra(3) are supported for triangular solvers only if descra(1)=3.

The argument work is a work array, and lwork is its dimension. These arguments are not used in
the Intel MKL.

The arguments unitd and dv are used only in NSB triangular solvers. First of them indicates
whether or not the diagonal matrix D is unitary. If unitd=1, D is the identity matrix. The linear
array dv contains the diagonal scaling matrix D if the argument unitd = 2 (the rows of A are
scaled) or unitd = 3 (the columns of A are scaled)

Simplified Interfaces

The Intel MKL Sparse BLAS Level 2 routines with simplified interfaces have the following
interfaces:

mkl_xyyygemv(transa, m, arg(A), x, y), matrix-vector product for general sparse
matrices;

mkl_xyyysymv(uplo, transa, m, arg(A), x, y), matrix-vector product for
symmetrical sparse matrix;

mkl_xyyytrsv(uplo, transa, diag, m, arg(A), x, y) solution of the systems of
equations with a sparse triangular matrix.

The argument transa indicates how to operate with the matrix (see Table 2-5). The argument
uplo specifies whether an upper or low triangle of the sparse matrix will be considered. The
argument diag specifies whether A is a unit triangular or not. The arguments m is the number of

BLAS and Sparse BLAS Routines 2

2-151

rows in the matrix A. The arg(A) denotes the list of arguments that describe the sparse
representation of A. The array x contains the input vector, and the array y contains the result of the
performed operation.

Note that all routines for matrix-vector multiplication are able to extract triangles and/or a main
diagonal from a sparse representation of the matrix A.

Operations with Partial Matrices

One of the distinctive feature of the Intel MKL Sparse BLAS routines is a possibility to perform
operations only on certain parts (triangles and main diagonal) of the input sparse matrix specifying
the parameter matdescra. Assume that the sparse matrix A can be decomposed as

 A = L + D + U

where L is the strict lower triangle of A, U is the strict upper triangle of A, D is the main diagonal.

Table 2-7 shows correspondence between the output matrix for matrix-matrix multiplication
routines and values of matdescra for real sparse matrix A. Analogous correspondence exists for
matrix-vector multiplication routines.

Table 2-7 Correspondence Between Output Matrix and Values of matdescra (Routines for
Matrix-Matrix Multiplication)

matdescra(1) matdescra(2) matdescra(3) Output Matrix

G ignored ignored alpha*op(A)*B + beta*C

S or H L N alpha*op(L+D+L’)*B + beta*C

S or H L U alpha*op(L+I+L’)*B + beta*C

S or H U N alpha*op(U’+D+U)*B + beta*C

S or H U U alpha*op(U’+I+U)*B + beta*C

T L U alpha*op(L+I)*B + beta*C

T L N alpha*op(L+D)*B + beta*C

T U U alpha*op(U+I)*B + beta*C

T U N alpha*op(U+D)*B + beta*C

A L ignored alpha*op(L-L’)*B + beta*C

A U ignored alpha*op(U-U’)*B + beta*C

D ignored N alpha*D*B + beta*C

D ignored U alpha*B + beta*C

2-152

2 Intel® Math Kernel Library Reference Manual

Table 2-8 shows correspondence between the output matrix for triangular solvers and values of
matdescra for real sparse matrix A.

Restrictions for Triangular Solver Routines

There are important restrictions for all Intel MKL triangular solvers, specifically:

Column indices for the compressed sparse row format must be sorted in increasing order for
each row;

Row indices for the compressed sparse column format must be sorted in increasing order for
each column;

For the diagonal format, elements of the array containing the diagonal numbers of the
non-zero diagonals of a sparse matrix must be sorted in increasing order.

Sparse BLAS Level 2 and Level 3 Routines.

Table 2-9 lists the sparse BLAS Level 2 and Level 3 routines described in more detail later in this
section.

Table 2-8 Correspondence Between Output Matrix and Values of matdescra (Triangular
Solvers)

matdescra(1) matdescra(2) matdescra(3) Output Matrix

T L N alpha*inv(op(L+D))*B

T L U alpha*inv(op(L+I))*B

T U N alpha*inv(op(U+D))*B

T U U alpha*inv(op(U+I))*B

D ignored N alpha*inv(D)*B

D ignored U alpha*B

Table 2-9 Sparse BLAS Level 2 and Level 3 Routines

Routine/Function Description

 Level 2

mkl_dcsrmv Computes matrix - vector product of a sparse matrix stored in the
CSR format.

mkl_dcsrgemv Computes matrix - vector product of a sparse general matrix stored
in the CSR format (PARDISO variation)

mkl_dcsrsymv Computes matrix - vector product of a sparse symmetrical matrix
stored in the CSR format (PARDISO variation)

BLAS and Sparse BLAS Routines 2

2-153

mkl_dcscmv Computes matrix - vector product for a sparse matrix in CSC format.

mkl_dcoomv Computes matrix - vector product for a sparse matrix in the
coordinate format.

mkl_dcoogemv Computes matrix - vector product of a sparse general matrix stored
in the coordinate format.

mkl_dcoosymv Computes matrix - vector product of a sparse symmetrical matrix
stored in the coordinate format.

mkl_ddiamv Computes matrix - vector product of a sparse matrix stored in the
diagonal format.

mkl_ddiagemv Computes matrix - vector product of a sparse general matrix stored
in the diagonal format.

mkl_ddiasymv Computes matrix - vector product of a sparse symmetrical matrix
stored in the diagonal format.

mkl_dskymv Computes matrix - vector product for a sparse matrix in the skyline
storage format.

mkl_dcsrsv Solves a system of linear equations for a sparse matrix in the CSR
format.

mkl_dcsrtrsv Triangular solvers with simplified interface for a sparse matrix in the
CSR format (PARDISO variation).

mkl_dcscsv Solves a system of linear equations for a sparse matrix in the
compressed sparse column format.

mkl_dcoosv Solves a system of linear equations for a sparse matrix in the
coordinate format.

mkl_dcootrsv Triangular solvers with simplified interface for a sparse matrix in the
coordinate format.

mkl_ddiasv Solves a system of linear equations for a sparse matrix in the
diagonal format.

mkl_ddiatrsv Triangular solvers with simplified interface for a sparse matrix in the
diagonal format.

mkl_dskysv Solves a system of linear equations for a sparse matrix in the
skyline format.

 Level 3

mkl_dcsrmm Computes matrix - matrix product of a sparse matrix stored in the
compressed sparse row format

mkl_dcscmm Computes matrix - matrix product of a sparse matrix stored in the
compressed sparse column format

Table 2-9 Sparse BLAS Level 2 and Level 3 Routines (continued)

Routine/Function Description

2-154

2 Intel® Math Kernel Library Reference Manual

mkl_dcsrmv
Computes matrix - vector product of a sparse matrix
stored in the CSR format.

Syntax

Fortran:

call mkl_dcsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre,
x, beta, y)

C:

mkl_dcsrmv(&transa, &m, &k, &alpha, matdescra, val, indx, pntrb, pntre,
x, &beta, y);

mkl_dcoomm Computes matrix - matrix product of a sparse matrix stored in the
coordinate format.

mkl_ddiamm Computes matrix - matrix product of a sparse matrix stored in the
diagonal format.

mkl_dskymm Computes matrix - matrix product of a sparse matrix stored in the
skyline storage format.

mkl_dcsrsm Solves a system of linear matrix equations for a sparse matrix in the
CSR format.

mkl_dcscsm Solves a system of linear matrix equations for a sparse matrix in the
CSC format.

mkl_dcoosm Solves a system of linear matrix equations for a sparse matrix in the
coordinate format.

mkl_ddiasm Solves a system of linear matrix equations for a sparse matrix in the
diagonal format.

mkl_dskysm Solves a system of linear matrix equations for a sparse matrix
stored in the skyline storage format.

Table 2-9 Sparse BLAS Level 2 and Level 3 Routines (continued)

Routine/Function Description

BLAS and Sparse BLAS Routines 2

2-155

Description

The mkl_dcsrmv routine performs a matrix-vector operation defined as

y := alpha*A*x + beta*y

or

y := alpha*A’*x + beta*y,

where:
alpha and beta are scalars,
x and y are vectors,
A is an m-by-k sparse matrix in the CSR format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-vector product is computed as
y := alpha*A*x + beta*y

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
y := alpha*A’*x + beta*y,

m INTEGER. Number of rows of the matrix A.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing non-zero elements of the matrix A. Its length is
pntre(m) - pntrb(1). Refer to values array description in CSR Format
for more details.

indx INTEGER. Array containing the column indices for each non-zero element of
the matrix A. Its length is equal to length of the val array. Refer to columns
array description in CSR Format for more details.

2-156

2 Intel® Math Kernel Library Reference Manual

pntrb INTEGER. Array of length m, contains row indices, such that pntrb(i) -
pntrb(1)+1 is the first index of row i in the arrays val and indx. Refer to
pointerB array description in CSR Format for more details.

pntre INTEGER. Array of length m, contains row indices, such that pntre(i) -
pntrb(1) is the last index of row i in the arrays val and indx. Refer to
pointerE array description in CSR Format for more details.

x REAL*8. Array, DIMENSION at least k if transa = 'N' or 'n' and at least m
otherwise. Before entry, the array x must contain the vector x.

beta REAL*8. Specifies the scalar beta.

y REAL*8. Array, DIMENSION at least m if transa = 'N' or 'n' and at least k
otherwise. Before entry, the array y must contain the vector y.

Output Parameters

y Overwritten by the updated vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb,
pntre, x, beta, y)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL*8 alpha, beta
 REAL*8 val(*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb,
pntre, x, beta, y)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, k
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: indx(*), pntrb(*), pntre(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha, beta
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

BLAS and Sparse BLAS Routines 2

2-157

C:

void mkl_dcsrmv(char *transa, int *m, int *k, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double
*x, double *beta, double *y);

mkl_dcsrgemv
Computes matrix - vector product of a sparse general
matrix stored in the CSR format (PARDISO variation).

Syntax

Fortran:

call mkl_dcsrgemv(transa, m, a, ia, ja, x, y)

C:

mkl_dcsrgemv(&transa, &m, a, ia, ja, x, y);

Description

The mkl_dcsrgemv routine performs a matrix-vector operation defined as

y := A*x

or

y := A’*x,

where:
x and y are vectors,
A is an m-by-m sparse square matrix in the CSR format (PARDISO variation), A' is the transpose
of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-vector product is computed as
y := A*x

2-158

2 Intel® Math Kernel Library Reference Manual

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
y := A’*x,

m INTEGER. Number of rows of the matrix A.

a REAL*8. Array containing non-zero elements of the matrix A. Its length is
equal to the number of non-zero elements in the matrix A. Refer to values
array description in Sparse Matrix Storage Formats for more details

ia INTEGER. Array of length m + 1, containing indices of elements in the array a,
such that ia(i) is the index in the array a of the first non-zero element from
the row i. The value of the last element ia(m + 1)-1 is equal to the number of
non-zeros plus one. Refer to rowIndex array description in Sparse Matrix
Storage Formats for more details.

ja REAL*8. Array containing the column indices for each non-zero element of the
matrix A. Its length is equal to the length of the array a. Refer to columns
array description in Sparse Matrix Storage Formats for more details.

x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

y REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the
vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcsrgemv(transa, m, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m
 INTEGER ia(*), ja(*)
 REAL*8 a(*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcsrgemv(transa, m, a, ia, ja, x, y)
 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m
 INTEGER, INTENT(IN) :: ia(*), ja(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: a(*), x(*)
 REAL(KIND(1.0D0)), INTENT(OUT) :: y(*)

BLAS and Sparse BLAS Routines 2

2-159

C:

void mkl_dcsrgemv(char *transa, int *m, double *a, int *ia, int *ja,
double *x, double *y);

mkl_dcsrsymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the CSR format
(PARDISO variation).

Syntax

Fortran:

call mkl_dcsrsymv(uplo, m, a, ia, ja, x, y)

C:

mkl_dcsrsymv(&uplo, &m, a, ia, ja, x, y);

Description

The mkl_dcsrsymv routine performs a matrix-vector operation defined as

y := A*x

or

y := A’*x,

where:
x and y are vectors,
A is an upper or lower triangle of the symmetrical sparse matrix in the CSR format (PARDISO
variation), A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

2-160

2 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1. Specifies whether the upper or low triangle of the matrix A is
considered.

If uplo = ’U’ or ’u’, the upper triangle of the matrix A is used.

If uplo = ’L’ or ’l’, the low triangle of the matrix A is used.

m INTEGER. Number of rows of the matrix A.

a REAL*8. Array containing non-zero elements of the matrix A. Its length is
equal to the number of non-zero elements in the matrix A. Refer to values
array description in Sparse Matrix Storage Formats for more details

ia INTEGER. Array of length m + 1, containing indices of elements in the array a,
such that ia(i) is the index in the array a of the first non-zero element from
the row i. The value of the last element ia(m + 1)-1 is equal to the number of
non-zeros plus one. Refer to rowIndex array description in Sparse Matrix
Storage Formats for more details.

ja REAL*8. Array containing the column indices for each non-zero element of the
matrix A. Its length is equal to the length of the array a. Refer to columns
array description in Sparse Matrix Storage Formats for more details.

x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

y REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the
vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 REAL*8 a(*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER(LEN=1), INTENT(IN):: uplo
 INTEGER, INTENT(IN) :: m
 INTEGER, INTENT(IN) :: ia(*), ja(*)

BLAS and Sparse BLAS Routines 2

2-161

 REAL(KIND(1.0D0)), INTENT(IN) :: a(*), x(*)
 REAL(KIND(1.0D0)), INTENT(OUT) :: y(*)

C:

void mkl_dcsrsymv(char *uplo, int *m, double *a, int *ia, int *ja, double
*x, double *y);

mkl_dcscmv
Computes matrix - vector product for a sparse matrix in
the compressed sparse column format.

Syntax

Fortran:

call mkl_dcscmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre,
x, beta, y)

C:

mkl_dcscmv(&transa, &m, &k, &alpha, matdescra, val, indx, pntrb, pntre,
x, &beta, y);

Description

The mkl_dcscmv routine performs a matrix-vector operation defined as

y := alpha*A*x + beta*y

or

y := alpha*A’*x + beta*y,

where:
alpha and beta are scalars,
x and y are vectors,
A is an m-by-k sparse matrix in compressed sparse column format, A' is the transpose of A.

2-162

2 Intel® Math Kernel Library Reference Manual

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-vector product is computed as
y := alpha*A*x + beta*y

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
y := alpha*A’*x + beta*y,

m INTEGER. Number of rows of the matrix A.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing non-zero elements of the matrix A. Its length is
pntre(k) - pntrb(1). Refer to values array description in CSC Format
for more details.

indx INTEGER. Array containing the row indices for each non-zero element of the
matrix A. Its length is equal to length of the val array. Refer to rows array
description in CSC Format for more details.

pntrb INTEGER. Array of length k, contains row indices, such that pntrb(i) -
pntrb(1)+1 is the starting index of column i in the arrays val and indx.
Refer to pointerB array description in CSC Format for more details.

pntre INTEGER. Array of length k, contains row indices, such that pntre(i) -
pntrb(1) is the last index of column i in the arrays val and indx. Refer to
pointerE array description in CSC Format for more details.

x REAL*8. Array, DIMENSION at least k if transa = 'N' or 'n' and at least m
otherwise. Before entry, the array x must contain the vector x.

beta REAL*8. Specifies the scalar beta.

y REAL*8. Array, DIMENSION at least m if transa = 'N' or 'n' and at least k
otherwise. Before entry, the array y must contain the vector y.

BLAS and Sparse BLAS Routines 2

2-163

Output Parameters

y Overwritten by the updated vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcscmv(transa, m, k, alpha, matdescra, val, indx, pntrb,
pntre, x, beta, y)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL*8 alpha, beta
 REAL*8 val(*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcscmv(transa, m, k, alpha, matdescra, val, indx, pntrb,
pntre, x, beta, y)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, k
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: indx(*), pntrb(*), pntre(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha, beta
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_dcscmv(char *transa, int *m, int *k, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double
*x, double *beta, double *y);

2-164

2 Intel® Math Kernel Library Reference Manual

mkl_dcoomv
Computes matrix - vector product for a sparse matrix in
the coordinate format.

Syntax

Fortran:

call mkl_dcoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz,
x, beta, y)

C:

mkl_dcoomv(&transa, &m, &k, &alpha, matdescra, val, rowind, colind, &nnz,
x, &beta, y);

Description

The mkl_dcoomv routine performs a matrix-vector operation defined as

y := alpha*A*x + beta*y

or

y := alpha*A’*x + beta*y,

where:
alpha and beta are scalars,
x and y are vectors,
A is an m-by-k sparse matrix in compressed coordinate format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-vector product is computed as
y := alpha*A*x + beta*y

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
y := alpha*A’*x + beta*y,

BLAS and Sparse BLAS Routines 2

2-165

m INTEGER. Number of rows of the matrix A.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array of length nnz, contains non-zero elements of the matrix A in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

rowind INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix A. Refer to rows array description in Coordinate Format
for more details.

colind INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

nnz INTEGER. Specifies the number of non-zero element of the matrix A. Refer to
nnz description in Coordinate Format for more details.

x REAL*8. Array, DIMENSION at least k if transa = 'N' or 'n' and at least m
otherwise. Before entry, the array x must contain the vector x.

beta REAL*8. Specifies the scalar beta.

y REAL*8. Array, DIMENSION at least m if transa = 'N' or 'n' and at least k
otherwise. Before entry, the array y must contain the vector y.

Output Parameters

y Overwritten by the updated vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcoomv(transa, m, k, alpha, matdescra, val, rowind,
colind, nnz, x, beta, y)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, nnz
 INTEGER rowind(*), colind(*)
 REAL*8 alpha, beta

2-166

2 Intel® Math Kernel Library Reference Manual

 REAL*8 val(*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcoomv(transa, m, k, alpha, matdescra, val, rowind,
colind, nnz, x, beta, y)

 CHARACTER(LEN=1), INTENT(IN) :: transa
 INTEGER, INTENT(IN) :: m, k, nnz
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: rowind(*), colind(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha, beta
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_dcoomv(char *transa, int *m, int *k, double *alpha, char
*matdescra, double *val, int *rowind, int *colind, int *nnz, double
*x, double *beta, double *y);

mkl_dcoogemv
Computes matrix - vector product of a sparse general
matrix stored in the coordinate format.

Syntax

Fortran:

call mkl_dcoogemv(transa, m, val, rowind, colind, nnz, x, y)

C:

mkl_dcoogemv(&transa, &m, val, rowind, colind, &nnz, x, y);

Description

The mkl_dcoogemv routine performs a matrix-vector operation defined as

y := A*x

or

y := A’*x,

where:

BLAS and Sparse BLAS Routines 2

2-167

x and y are vectors,
A is an m-by-m sparse square matrix in the coordinate format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-vector product is computed as
y := A*x

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
y := A’*x,

m INTEGER. Number of rows of the matrix A.

val REAL*8. Array of length nnz, contains non-zero elements of the matrix A in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

rowind INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix A. Refer to rows array description in Coordinate Format
for more details.

colind INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

nnz INTEGER. Specifies the number of non-zero element of the matrix A. Refer to
nnz description in Coordinate Format for more details.

x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

y REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the
vector y.

2-168

2 Intel® Math Kernel Library Reference Manual

Interfaces

Fortran 77:

SUBROUTINE mkl_dcoogemv(transa, m, val, rowind, colind, nnz, x, y)

 CHARACTER*1 transa
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 REAL*8 val(*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcoogemv(transa, m, val, rowind, colind, nnz, x, y)

 CHARACTER(LEN=1), INTENT(IN) :: transa
 INTEGER, INTENT(IN) :: m, nnz
 INTEGER, INTENT(IN) :: rowind(*), colind(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_dcoogemv(char *transa, int *m, double *val, int *rowind, int
*colind, int *nnz, double *x, double *y);

mkl_dcoosymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the coordinate format.

Syntax

Fortran:

call mkl_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)

C:

mkl_dcoosymv(&uplo, &m, val, rowind, colind, &nnz, x, y);

Description

The mkl_dcoosymv routine performs a matrix-vector operation defined as

y := A*x

BLAS and Sparse BLAS Routines 2

2-169

or

y := A’*x,

where:
x and y are vectors,
A is an upper or lower triangle of the symmetrical sparse matrix in the coordinate format, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

uplo CHARACTER*1. Specifies whether the upper or low triangle of the matrix A is
considered.

If uplo = ’U’ or ’u’, the upper triangle of the matrix A is used.

If uplo = ’L’ or ’l’, the low triangle of the matrix A is used.

m INTEGER. Number of rows of the matrix A.

val REAL*8. Array of length nnz, contains non-zero elements of the matrix A in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

rowind INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix A. Refer to rows array description in Coordinate Format
for more details.

colind INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

nnz INTEGER. Specifies the number of non-zero element of the matrix A. Refer to
nnz description in Coordinate Format for more details.

x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

y REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the
vector y.

2-170

2 Intel® Math Kernel Library Reference Manual

Interfaces

Fortran 77:

SUBROUTINE mkl_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)

 CHARACTER*1 uplo
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 REAL*8 val(*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)

 CHARACTER(LEN=1), INTENT(IN) :: uplo
 INTEGER, INTENT(IN) :: m, nnz
 INTEGER, INTENT(IN) :: rowind(*), colind(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_dcoosymv(char *uplo, int *m, double *val, int *rowind, int
*colind, int *nnz, double *x, double *y);

mkl_ddiamv
Computes matrix - vector product for a sparse matrix in
the diagonal format.

Syntax

Fortran:

call mkl_ddiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag,
x, beta, y)

C:

mkl_ddiamv(&transa, &m, &k, &alpha, matdescra, val, &lval, idiag, &ndiag,
x, &beta, y);

Description

The mkl_ddiamv routine performs a matrix-vector operation defined as

BLAS and Sparse BLAS Routines 2

2-171

y := alpha*A*x + beta*y

or

y := alpha*A’*x + beta*y,

where:
alpha and beta are scalars,
x and y are vectors,
A is an m-by-k sparse matrix stored in the diagonal format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-vector product is computed as
y := alpha*A*x + beta*y

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
y := alpha*A’*x + beta*y,

m INTEGER. Number of rows of the matrix A.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Two-dimensional array of size lval by ndiag, contains non-zero
diagonals of the matrix A. Refer to values array description in Diagonal
Storage Scheme for more details.

lval INTEGER. Leading dimension of val, . Refer to lval
description in Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix A. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix A.

lval min m k,()≥

2-172

2 Intel® Math Kernel Library Reference Manual

x REAL*8. Array, DIMENSION at least k if transa = 'N' or 'n' and at least m
otherwise. Before entry, the array x must contain the vector x.

beta REAL*8. Specifies the scalar beta.

y REAL*8. Array, DIMENSION at least m if transa = 'N' or 'n' and at least k
otherwise. Before entry, the array y must contain the vector y.

Output Parameters

y Overwritten by the updated vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_ddiamv(transa, m, k, alpha, matdescra, val, lval, idiag,
ndiag, x, beta, y)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, lval, ndiag
 INTEGER idiag(*)
 REAL*8 alpha, beta
 REAL*8 val(lval,*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_ddiamv(transa, m, k, alpha, matdescra, val, lval, idiag,
ndiag, x, beta, y)

 CHARACTER(LEN=1), INTENT(IN) :: transa
 INTEGER, INTENT(IN) :: m, k, lval, ndiag
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: idiag(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha, beta
 REAL(KIND(1.0D0)), INTENT(IN) :: val(lval,*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_ddiamv(char *transa, int *m, int *k, double *alpha, char
*matdescra, double *val, int *lval, int *idiag, int *ndiag, double
*x, double *beta, double *y);

BLAS and Sparse BLAS Routines 2

2-173

mkl_ddiagemv
Computes matrix - vector product of a sparse general
matrix stored in the diagonal format.

Syntax

Fortran:

call mkl_ddiagemv(transa, m, val, lval, idiag, ndiag, x, y)

C:

mkl_ddiagemv(&transa, &m, val, &lval, idiag, &ndiag, x, y);

Description

The mkl_ddiagemv routine performs a matrix-vector operation defined as

y := A*x

or

y := A’*x,

where:
x and y are vectors,
A is an m-by-m sparse square matrix in the diagonal storage format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-vector product is computed as
y := A*x

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
y := A’*x,

m INTEGER. Number of rows of the matrix A.

2-174

2 Intel® Math Kernel Library Reference Manual

val REAL*8. Two-dimensional array of size lval by ndiag, contains non-zero
diagonals of the matrix A. Refer to values array description in Diagonal
Storage Scheme for more details.

lval INTEGER. Leading dimension of val, . Refer to lval description in
Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix A. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix A.

x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

y REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the
vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_ddiagemv(transa, m, val, lval, idiag, ndiag, x, y)

 CHARACTER*1 transa
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 REAL*8 val(lval,*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_ddiagemv(transa, m, val, lval, idiag, ndiag, x, y)

 CHARACTER(LEN=1), INTENT(IN) :: transa
 INTEGER, INTENT(IN) :: m, lval, ndiag
 INTEGER, INTENT(IN) :: idiag(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: val(lval,*), x(*)
 REAL(KIND(1.0D0)), INTENT(OUT) :: y(*)

C:

void mkl_ddiagemv(char *transa, int *m, double *val, int *lval, int
*idiag, int *ndiag, double *x, double *y);

lval m≥

BLAS and Sparse BLAS Routines 2

2-175

mkl_ddiasymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the diagonal format.

Syntax

Fortran:

call mkl_ddiasymv(uplo, m, val, lval, idiag, ndiag, x, y)

C:

mkl_ddiasymv(&uplo, &m, val, &lval, idiag, &ndiag, x, y);

Description

The mkl_ddiasymv routine performs a matrix-vector operation defined as

y := A*x

or

y := A’*x,

where:
x and y are vectors,
A is an upper or lower triangle of the symmetrical sparse matrix, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

uplo CHARACTER*1. Specifies whether the upper or low triangle of the matrix A is
considered.

If uplo = ’U’ or ’u’, the upper triangle of the matrix A is used.

If uplo = ’L’ or ’l’, the low triangle of the matrix A is used.

m INTEGER. Number of rows of the matrix A.

val REAL*8. Two-dimensional array of size lval by ndiag, contains non-zero
diagonals of the matrix A. Refer to values array description in Diagonal
Storage Scheme for more details.

2-176

2 Intel® Math Kernel Library Reference Manual

lval INTEGER. Leading dimension of val, . Refer to lval description in
Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix A. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix A.

x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

y REAL*8. Array, DIMENSION at least m. On exit, the array y must contain the
vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_ddiasymv(uplo, m, val, lval, idiag, ndiag, x, y)

 CHARACTER*1 uplo
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 REAL*8 val(lval,*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_ddiasymv(uplo, m, val, lval, idiag, ndiag, x, y)

 CHARACTER(LEN=1), INTENT(IN) :: uplo
 INTEGER, INTENT(IN) :: m, lval, ndiag
 INTEGER, INTENT(IN) :: idiag(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: val(lval,*), x(*)
 REAL(KIND(1.0D0)), INTENT(OUT) :: y(*)

C:

void mkl_ddiasymv(char *uplo, int *m, double *val, int *lval, int
*idiag, int *ndiag, double *x, double *y);

lval m≥

BLAS and Sparse BLAS Routines 2

2-177

mkl_dskymv
Computes matrix - vector product for a sparse matrix in
the skyline storage format.

Syntax

Fortran:

call mkl_dskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)

C:

mkl_dskymv(&transa, &m, &k, &alpha, matdescra, val, pntr, x, &beta, y);

Description

The mkl_dskymv routine performs a matrix-vector operation defined as

y := alpha*A*x + beta*y

or

y := alpha*A’*x + beta*y,

where:
alpha and beta are scalars,
x and y are vectors,
A is an m-by-k sparse matrix stored using the skyline storage scheme, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-vector product is computed as
y := alpha*A*x + beta*y

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
y := alpha*A’*x + beta*y,

m INTEGER. Number of rows of the matrix A.

2-178

2 Intel® Math Kernel Library Reference Manual

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing the set of elements of the matrix A in the skyline
profile form.

If matdescrsa(2)= ’L’, then val contains elements from the low triangle
of the matrix A.
If matdescrsa(2)= ’U’, then val contains elements from the upper triangle
of the matrix A.

Refer to values array description in Skyline Storage Scheme for more details.

pntr INTEGER. Array of length (m+1) for lower triangle, and (k+1) for upper
triangle. It contains the indices specifying in the val the positions of the first
element in each row (column) of the matrix A. Refer to pointers array
description in Skyline Storage Scheme for more details.

x REAL*8. Array, DIMENSION at least k if transa = 'N' or 'n' and at least m
otherwise. Before entry, the array x must contain the vector x.

beta REAL*8. Specifies the scalar beta.

y REAL*8. Array, DIMENSION at least m if transa = 'N' or 'n' and at least k
otherwise. Before entry, the array y must contain the vector y.

Output Parameters

y Overwritten by the updated vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_dskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta,
y)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER pntr(*)
 REAL*8 alpha, beta
 REAL*8 val(*), x(*), y(*)

BLAS and Sparse BLAS Routines 2

2-179

Fortran 95:

SUBROUTINE mkl_dskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta,
y)

 CHARACTER(LEN=1), INTENT(IN) :: transa
 INTEGER, INTENT(IN) :: m, k
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: pntr(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha, beta
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_dskymv (char *transa, int *m, int *k, double *alpha, char
*matdescra, double *val, int *pntr, double *x, double *beta, double
*y);

mkl_dcsrsv
Solves a system of linear equations for a sparse matrix
in the CSR format.

Syntax

Fortran:

call mkl_dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)

C:

mkl_dcsrsv(&transa, &m, &alpha, matdescra, val, indx, pntrb, pntre, x, y);

Description

The mkl_dcsrsv routine solves a system of linear equations with matrix-vector operations for a
sparse matrix in the CSR format:

y := alpha*inv(A)*x

or

y := alpha*inv(A’)*x,

where:

2-180

2 Intel® Math Kernel Library Reference Manual

alpha is scalar,
x and y are vectors,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, y := alpha*inv(A)*x

If transa= ’T’ or ’t’ or ’C’or ’c’, y := alpha*inv(A’)*x,

m INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing non-zero elements of the matrix A. Its length is
pntre(m) - pntrb(1). Refer to values array description in CSR Format
for more details.

indx INTEGER. Array containing the column indices for each non-zero element of
the matrix A. Its length is equal to length of the val array. Refer to columns
array description in CSR Format for more details.

pntrb INTEGER. Array of length m, contains row indices, such that pntrb(i) -
pntrb(1)+1 is the starting index of row i in the arrays val and indx. Refer to
pointerB array description in CSR Format for more details.

pntre INTEGER. Array of length m, contains row indices, such that pntre(i) -
pntrb(1) is the last index of row i in the arrays val and indx. Refer to
pointerE array description in CSR Format for more details.

x REAL*8. Array, DIMENSION at least m. Before entry, the array x must contain
the vector x. The elements are accessed with unit increment.

y REAL*8. Array, DIMENSION at least m. Before entry, the array y must contain
the vector y. The elements are accessed with unit increment.

BLAS and Sparse BLAS Routines 2

2-181

Output Parameters

y Contains solution vector x.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb,
pntre, x, y)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL*8 alpha
 REAL*8 val(*)
 REAL*8 x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb,
pntre, x, y)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: indx(*), pntrb(*), pntre(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_dcsrsv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *indx, int *pntrb, int *pntre, double *x, double
*y);

2-182

2 Intel® Math Kernel Library Reference Manual

mkl_dcsrtrsv
Triangular solvers with simplified interface for a sparse
matrix in the CSR format (PARDISO variation).

Syntax

Fortran:

call mkl_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)

C:

mkl_dcsrtrsv(&uplo, &transa, &diag, &m, a, ia, ja, x, y);

Description

The mkl_dcsrtrsv routine solves a system of linear equations with matrix-vector operations for
a sparse matrix stored in the CSR format accepted in PARDISO:

A*y = x

or

A’*y = x,

where:
x and y are vectors,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

uplo CHARACTER*1. Specifies whether the upper or low triangle of the matrix A is
considered.

If uplo = ’U’ or ’u’, the upper triangle of the matrix A is used.

If uplo = ’L’ or ’l’, the low triangle of the matrix A is used.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, A*y = x

BLAS and Sparse BLAS Routines 2

2-183

If transa= ’T’ or ’t’ or ’C’or ’c’, A’*y = x,

diag CHARACTER*1. Specifies whether A is a unit triangular or not.

If diag = ’U’ or ’u’, A is assumed to be a unit triangular.

If diag = ’N’ or ’n’, A is not assumed to be a unit triangular.

m INTEGER. Number of rows of the matrix A.

a REAL*8. Array containing non-zero elements of the matrix A. Its length is
equal to the number of non-zero elements in the matrix A. Refer to values
array description in Sparse Matrix Storage Formats for more details

ia INTEGER. Array of length m + 1, containing indices of elements in the array a,
such that ia(i) is the index in the array a of the first non-zero element from
the row i. The value of the last element ia(m + 1)-1 is equal to the number of
non-zeros plus one. Refer to rowIndex array description in Sparse Matrix
Storage Formats for more details.

ja REAL*8. Array containing the column indices for each non-zero element of the
matrix A. Its length is equal to the length of the array a. Refer to columns
array description in Sparse Matrix Storage Formats for more details.

x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

y REAL*8. Array, DIMENSION at least m. Contains the vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m
 INTEGER ia(*), ja(*)
 REAL*8 a(*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
 CHARACTER(LEN=1), INTENT(IN):: uplo, transa, diag
 INTEGER, INTENT(IN) :: m
 INTEGER, INTENT(IN) :: ia(*), ja(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: a(*), x(*)

2-184

2 Intel® Math Kernel Library Reference Manual

 REAL(KIND(1.0D0)), INTENT(OUT) :: y(*)

C:

void mkl_dcsrtrsv(char *uplo, char *transa, char *diag, int *m, double *a,
int *ia, int *ja, double *x, double *y);

mkl_dcscsv
Solves a system of linear equations for a sparse matrix
in the CSC format.

Syntax

Fortran:

call mkl_dcscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)

C:

mkl_dcscsv(&transa, &m, &alpha, matdescra, val, indx, pntrb, pntre, x, y);

Description

The mkl_dcsrsv routine solves a system of linear equations with matrix-vector operations for a
sparse matrix in the CSC format:

y := alpha*inv(A)*x

or

y := alpha*inv(A’)*x,

where:
alpha is scalar,
x and y are vectors,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

BLAS and Sparse BLAS Routines 2

2-185

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, y := alpha*inv(A)*x

If transa= ’T’ or ’t’ or ’C’or ’c’, y := alpha*inv(A’)*x,

m INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing non-zero elements of the matrix A. Its length is
pntre(m) - pntrb(1). Refer to values array description in CSC Format
for more details.

indx INTEGER. Array containing the column indices for each non-zero element of
the matrix A. Its length is equal to length of the val array. Refer to columns
array description in CSC Format for more details.

pntrb INTEGER. Array of length m, contains row indices, such that pntrb(i) -
pntrb(1)+1 is the starting index of row i in the arrays val and indx. Refer to
pointerB array description in CSC Format for more details.

pntre INTEGER. Array of length m, contains row indices, such that pntre(i) -
pntrb(1) is the last index of row i in the arrays val and indx. Refer to
pointerE array description in CSC Format for more details.

x REAL*8. Array, DIMENSION at least m. Before entry, the array x must contain
the vector x. The elements are accessed with unit increment.

y REAL*8. Array, DIMENSION at least m. Before entry, the array y must contain
the vector y. The elements are accessed with unit increment.

Output Parameters

y Contains the solution vector x.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcscsv(transa, m, alpha, matdescra, val, indx, pntrb,
pntre, x, y)

 CHARACTER*1 transa
 CHARACTER matdescra(*)

2-186

2 Intel® Math Kernel Library Reference Manual

 INTEGER m
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL*8 alpha
 REAL*8 val(*)
 REAL*8 x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcscsv(transa, m, alpha, matdescra, val, indx, pntrb,
pntre, x, y)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: indx(*), pntrb(*), pntre(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_dcscsv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *indx, int *pntrb, int *pntre, double *x, double
*y);

mkl_dcoosv
Solves a system of linear equations for a sparse matrix
in the coordinate format.

Syntax

Fortran:

call mkl_dcoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x,
y)

C:

mkl_dcoosv(&transa, &m, &alpha, matdescra, val, rowind, colind, &nnz, x,
y);

BLAS and Sparse BLAS Routines 2

2-187

Description

The mkl_dcoosv routine solves a system of linear equations with matrix-vector operations for a
sparse matrix in the coordinate format:

y := alpha*inv(A)*x

or

y := alpha*inv(A’)*x,

where:
alpha is scalar,
x and y are vectors,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, y := alpha*inv(A)*x

If transa= ’T’ or ’t’ or ’C’or ’c’, y := alpha*inv(A’)*x,

m INTEGER. Number of rows of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array of length nnz, contains non-zero elements of the matrix A in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

rowind INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix A. Refer to rows array description in Coordinate Format
for more details.

colind INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

2-188

2 Intel® Math Kernel Library Reference Manual

nnz INTEGER. Specifies the number of non-zero element of the matrix A. Refer to
nnz description in Coordinate Format for more details.

x REAL*8. Array, DIMENSION at least m. Before entry, the array x must contain
the vector x. The elements are accessed with unit increment.

y REAL*8. Array, DIMENSION at least m. Before entry, the array y must contain
the vector y. The elements are accessed with unit increment.

Output Parameters

y Contains solution vector x.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcoosv(transa, m, alpha, matdescra, val, rowind, colind,
nnz, x, y)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 REAL*8 alpha
 REAL*8 val(*)
 REAL*8 x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcoosv(transa, m, alpha, matdescra, val, rowind, colind,
nnz, x, y)

 CHARACTER(LEN=1), INTENT(IN) :: transa
 INTEGER, INTENT(IN) :: m, nnz
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: rowind(*), colind(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_dcoosv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *rowind, int *colind, int *nnz, double *x, double *y);

BLAS and Sparse BLAS Routines 2

2-189

mkl_dcootrsv
Triangular solvers with simplified interface for a sparse
matrix in the coordinate format.

Syntax

Fortran:

call mkl_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)

C:

mkl_dcootrsv(&uplo, &transa, &diag, &m, val, rowind, colind, &nnz, x, y);

Description

The mkl_dcootrsv routine solves a system of linear equations with matrix-vector operations for
a sparse matrix stored in the coordinate format:

A*y = x

or

A’*y = x,

where:
x and y are vectors,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

uplo CHARACTER*1. Specifies whether the upper or low triangle of the matrix A is
considered.

If uplo = ’U’ or ’u’, the upper triangle of the matrix A is used.

If uplo = ’L’ or ’l’, the low triangle of the matrix A is used.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, A*y = x

2-190

2 Intel® Math Kernel Library Reference Manual

If transa= ’T’ or ’t’ or ’C’or ’c’, A’*y = x,

diag CHARACTER*1. Specifies whether or not A is a unit triangular or not.

If diag = ’U’ or ’u’, A is assumed to be a unit triangular.

If diag = ’N’ or ’n’, A is not assumed to be a unit triangular.

m INTEGER. Number of rows of the matrix A.

val REAL*8. Array of length nnz, contains non-zero elements of the matrix A in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

rowind INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix A. Refer to rows array description in Coordinate Format
for more details.

colind INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

nnz INTEGER. Specifies the number of non-zero element of the matrix A. Refer to
nnz description in Coordinate Format for more details.

x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

y REAL*8. Array, DIMENSION at least m. Contains the vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz,
x, y)

 CHARACTER*1 uplo, transa, diag
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 REAL*8 val(*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz,
x, y)

 CHARACTER(LEN=1), INTENT(IN) :: uplo, transa, diag

BLAS and Sparse BLAS Routines 2

2-191

 INTEGER, INTENT(IN) :: m, nnz
 INTEGER, INTENT(IN) :: rowind(*), colind(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_dcootrsv(char *uplo, char *transa, char *diag, int *m, double
*alpha, char *matdescra, double *val, int *rowind, int *colind, int
*nnz, double *x, double *y);

mkl_ddiasv
Solves a system of linear equations for a sparse matrix
in the diagonal format.

Syntax

Fortran:

call mkl_ddiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)

C:

mkl_ddiasv(&transa, &m, &alpha, matdescra, val, &lval, idiag, &ndiag, x, y);

Description

The mkl_ddiasv routine solves a system of linear equations with matrix-vector operations for a
sparse matrix stored in the diagonal format:

y := alpha*inv(A)*x

or

y := alpha*inv(A’)*x,

where:
alpha is scalar,
x and y are vectors,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

2-192

2 Intel® Math Kernel Library Reference Manual

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, y := alpha*inv(A)*x

If transa= ’T’ or ’t’ or ’C’or ’c’, y := alpha*inv(A’)*x,

m INTEGER. Number of rows of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Two-dimensional array of size lval by ndiag, contains non-zero
diagonals of the matrix A. Refer to values array description in Diagonal
Storage Scheme for more details.

lval INTEGER. Leading dimension of val, . Refer to lval description
in Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix A. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix A.

x REAL*8. Array, DIMENSION at least m. Before entry, the array x must contain
the vector x. The elements are accessed with unit increment.

y REAL*8. Array, DIMENSION at least m. Before entry, the array y must contain
the vector y. The elements are accessed with unit increment.

Output Parameters

y Contains solution vector x.

Interfaces

Fortran 77:

SUBROUTINE mkl_ddiasv(transa, m, alpha, matdescra, val, lval, idiag,
ndiag, x, y)

lval m≥

BLAS and Sparse BLAS Routines 2

2-193

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, lval, ndiag
 INTEGER indiag(*)
 REAL*8 alpha
 REAL*8 val(lval,*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_ddiasv(transa, m, alpha, matdescra, val, lval, idiag,
ndiag, x, y)

 CHARACTER(LEN=1), INTENT(IN) :: transa
 INTEGER, INTENT(IN) :: m, lval, ndiag
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: indiag(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha
 REAL(KIND(1.0D0)), INTENT(IN) :: val(lval,*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_ddiasv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *lval, int *idiag, int *ndiag, double *x, double *y);

mkl_ddiatrsv
Triangular solvers with simplified interface for a sparse
matrix in the diagonal format.

Syntax

Fortran:

call mkl_ddiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)

C:

mkl_ddiatrsv(&uplo, &transa, &diag, &m, val, &lval, idiag, &ndiag, x, y);

Description

The mkl_ddiatrsv routine solves a system of linear equations with matrix-vector operations for
a sparse matrix stored in the diagonal:

2-194

2 Intel® Math Kernel Library Reference Manual

A*y = x

or

A’*y = x,

where:
x and y are vectors,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

uplo CHARACTER*1. Specifies whether the upper or low triangle of the matrix A is
considered.

If uplo = ’U’ or ’u’, the upper triangle of the matrix A is used.

If uplo = ’L’ or ’l’, the low triangle of the matrix A is used.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, A*y = x

If transa= ’T’ or ’t’ or ’C’or ’c’, A’*y = x,

diag CHARACTER*1. Specifies whether A is a unit triangular or not.

If diag = ’U’ or ’u’, A is assumed to be a unit triangular.

If diag = ’N’ or ’n’, A is not assumed to be a unit triangular.

m INTEGER. Number of rows of the matrix A.

val REAL*8. Two-dimensional array of size lval by ndiag, contains non-zero
diagonals of the matrix A. Refer to values array description in Diagonal
Storage Schemefor more details.

lval INTEGER. Leading dimension of val, . Refer to lval description in
Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix A. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix A.

lval m≥

BLAS and Sparse BLAS Routines 2

2-195

x REAL*8. Array, DIMENSION is m. Before entry, the array x must contain the
vector x.

Output Parameters

y REAL*8. Array, DIMENSION at least m. Contains the vector y.

Interfaces

Fortran 77:

SUBROUTINE mkl_ddiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag,
x, y)

 CHARACTER*1 uplo, transa, diag
 INTEGER m, lval, ndiag
 INTEGER indiag(*)
 REAL*8 val(lval,*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_ddiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag,
x, y)

 CHARACTER(LEN=1), INTENT(IN) :: uplo, transa, diag
 INTEGER, INTENT(IN) :: m, lval, ndiag
 INTEGER, INTENT(IN) :: indiag(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha
 REAL(KIND(1.0D0)), INTENT(IN) :: val(lval,*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_ddiatrsv(char *uplo, char *transa, char *diag, int *m, double
*val, int *lval, int *idiag, int *ndiag, double *x, double *y);

2-196

2 Intel® Math Kernel Library Reference Manual

mkl_dskysv
Solves a system of linear equations for a sparse matrix
in the skyline format.

Syntax

Fortran:

call mkl_dskysv(transa, m, alpha, matdescra, val, pntr, x, y)

C:

mkl_dskysv(&transa, &m, &alpha, matdescra, val, pntr, x, y);

Description

The mkl_dskysv routine solves a system of linear equations with matrix-vector operations for a
sparse matrix in the skyline storage format:

y := alpha*inv(A)*x

or

y := alpha*inv(A’)*x,

where:
alpha is scalar,
x and y are vectors,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, y := alpha*inv(A)*x

If transa= ’T’ or ’t’ or ’C’or ’c’, y := alpha*inv(A’)*x,

m INTEGER. Number of rows of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

BLAS and Sparse BLAS Routines 2

2-197

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing the set of elements of the matrix A in the skyline
profile form.

If matdescrsa(2)= ’L’, then val contains elements from the low triangle
of the matrix A.
If matdescrsa(2)= ’U’, then val contains elements from the upper triangle
of the matrix A.

Refer to values array description in Skyline Storage Scheme for more details.

pntr INTEGER. Array of length (m+1) for lower triangle, and (k+1) for upper
triangle. It contains the indices specifying in the val the positions of the first
element in each row (column) of the matrix A. Refer to pointers array
description in Diagonal Storage Scheme for more details.

x REAL*8. Array, DIMENSION at least m. Before entry, the array x must contain
the vector x. The elements are accessed with unit increment.

y REAL*8. Array, DIMENSION at least m. Before entry, the array y must contain
the vector y. The elements are accessed with unit increment.

Output Parameters

y Contains solution vector x.

Interfaces

Fortran 77:

SUBROUTINE mkl_dskysv(transa, m, alpha, matdescra, val, pntr, x, y)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m
 INTEGER pntr(*)
 REAL*8 alpha
 REAL*8 val(*), x(*), y(*)

Fortran 95:

SUBROUTINE mkl_dskysv(transa, m, alpha, matdescra, val, pntr, x, y)

 CHARACTER(LEN=1), INTENT(IN) :: transa
 INTEGER, INTENT(IN) :: m
 CHARACTER, INTENT(IN) :: matdescra(*)

2-198

2 Intel® Math Kernel Library Reference Manual

 INTEGER, INTENT(IN) :: pntr(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), x(*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: y(*)

C:

void mkl_dskysv(char *transa, int *m, double *alpha, char *matdescra,
double *val, int *pntr, double *x, double *y);

mkl_dcsrmm
Computes matrix - matrix product of a sparse matrix
stored in the CSR format.

Syntax

Fortran:

call mkl_dcsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb,
pntre, b, ldb, beta, c, ldc)

C:

mkl_dcsrmm(&transa, &m, &n, &k, &alpha, matdescra, val, indx, pntrb,
pntre, b, &ldb, &beta, c, &ldc);

Description

The mkl_dcsrmm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*A’*B + beta*C,

where:
alpha and beta are scalars,
B and C are dense matrices,
A is an m-by-k sparse matrix in compressed sparse row format, A' is the transpose of A.

BLAS and Sparse BLAS Routines 2

2-199

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-matrix product is computed as
C := alpha*A*B + beta*C

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
C := alpha*A’*B + beta*C,

m INTEGER. Number of rows of the matrix A.

n INTEGER. Number of columns of the matrix C.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing non-zero elements of the matrix A. Its length is
pntre(m) - pntrb(1). Refer to values array description in CSR Format
for more details.

indx INTEGER. Array containing the column indices for each non-zero element of
the matrix A. Its length is equal to length of the val array. Refer to columns
array description in CSR Format for more details.

pntrb INTEGER. Array of length m, contains row indices, such that pntrb(i) -
pntrb(1)+1 is the starting index of row i in the arrays val and indx. Refer to
pointerB array description in CSR Format for more details.

pntre INTEGER. Array of length m, contains row indices, such that pntre(i) -
pntrb(1) is the last index of row i in the arrays val and indx. Refer to
pointerE array description in CSR Format for more details.

b REAL*8. Array, DIMENSION (ldb, n). Before entry with transa = 'N' or
'n', the leading n-by-k part of the array b must contain the matrix B,
otherwise the leading m-by-n part of the array b must contain the matrix B.

2-200

2 Intel® Math Kernel Library Reference Manual

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

beta REAL*8. Specifies the scalar beta.

c REAL*8. Array, DIMENSION (ldc, n). Before entry, the leading m-by-n part
of the array c must contain the matrix C, otherwise the leading n-by-k part of
the array c must contain the matrix C.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A’*B +
beta*C).

Interfaces

Fortran 77:

SUBROUTINE mkl_dcsrmm(transa, m, n, k, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, beta, c, ldc)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL*8 alpha, beta
 REAL*8 val(*), b(ldb,*), c(ldc,*)

Fortran 95:

SUBROUTINE mkl_dcsrmm(transa, m, n, k, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, beta, c, ldc)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, n, k, ldb, ldc
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: indx(*), pntrb(*), pntre(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha, beta
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl_dcsrmm(char *transa, int *m, int *n, int *k, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double
*b, int *ldb, double *beta, double *c, int *ldc,);

BLAS and Sparse BLAS Routines 2

2-201

mkl_dcscmm
Computes matrix-matrix product of a sparse matrix
stored in the CSC format.

Syntax

Fortran:

call mkl_dcscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb,
pntre, b, ldb, beta, c, ldc)

C:

mkl_dcscmm(&transa, &m, &n, &k, &alpha, matdescra, val, indx, pntrb,
pntre, b, &ldb, &beta, c, &ldc);

Description

The mkl_dcscmm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*A’*B + beta*C,

where:
alpha and beta are scalars,
B and C are dense matrices,
A is an m-by-k sparse matrix in compressed sparse column format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-matrix product is computed as
C := alpha*A*B + beta*C

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
C := alpha*A’*B + beta*C,

2-202

2 Intel® Math Kernel Library Reference Manual

m INTEGER. Number of rows of the matrix A.

n INTEGER. Number of columns of the matrix C.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing non-zero elements of the matrix A. Its length is
pntre(k) - pntrb(1). Refer to values array description in CSC Format
for more details.

indx INTEGER. Array containing the row indices for each non-zero element of the
matrix A. Its length is equal to length of the val array. Refer to rows array
description in CSC Format for more details.

pntrb INTEGER. Array of length k, contains row indices, such that pntrb(i) -
pntrb(1)+1 is the starting index of column i in the arrays val and indx.
Refer to pointerB array description in CSC Format for more details.

pntre INTEGER. Array of length k, contains row indices, such that pntre(i) -
pntrb(1) is the last index of column i in the arrays val and indx. Refer to
pointerE array description in CSC Format for more details.

b REAL*8. Array, DIMENSION (ldb, n). Before entry with transa = 'N' or
'n', the leading n-by-k part of the array b must contain the matrix B,
otherwise the leading m-by-n part of the array b must contain the matrix B.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

beta REAL*8. Specifies the scalar beta.

c REAL*8. Array, DIMENSION (ldc, n). Before entry, the leading m-by-n part
of the array c must contain the matrix C, otherwise the leading n-by-k part of
the array c must contain the matrix C.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A’*B +
beta*C).

BLAS and Sparse BLAS Routines 2

2-203

Interfaces

Fortran 77:

SUBROUTINE mkl_dcscmm(transa, m, n, k, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, beta, c, ldc)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc
 INTEGER indx(*), pntrb(k), pntre(k)
 REAL*8 alpha, beta
 REAL*8 val(*), b(ldb,*), c(ldc,*)

Fortran 95:

SUBROUTINE mkl_dcscmm(transa, m, n, k, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, beta, c, ldc)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, n, k, ldb, ldc
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: indx(*), pntrb(*), pntre(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha, beta
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl_dcscmm(char *transa, int *m, int *n, int *k, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double
*b, int *ldb, double *beta, double *c, int *ldc);

mkl_dcoomm
Computes matrix-matrix product of a sparse matrix
stored in the coordinate format.

Syntax

Fortran:

call mkl_dcoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind,
nnz, b, ldb, beta, c, ldc)

2-204

2 Intel® Math Kernel Library Reference Manual

C:

mkl_dcoomm(&transa, &m, &n, &k, &alpha, matdescra, val, rowind, colind,
&nnz, b, &ldb, &beta, c, &ldc);

Description

The mkl_dcoomm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*A’*B + beta*C,

where:
alpha and beta are scalars,
B and C are dense matrices,
A is an m-by-k sparse matrix in the coordinate format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-matrix product is computed as
C := alpha*A*B + beta*C

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
C := alpha*A’*B + beta*C,

m INTEGER. Number of rows of the matrix A.

n INTEGER. Number of columns of the matrix C.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array of length nnz, contains non-zero elements of the matrix A in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

BLAS and Sparse BLAS Routines 2

2-205

rowind INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix A. Refer to rows array description in Coordinate Format
for more details.

colind INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

nnz INTEGER. Specifies the number of non-zero element of the matrix A. Refer to
nnz description in Coordinate Format for more details.

b REAL*8. Array, DIMENSION (ldb, n). Before entry with transa = 'N' or
'n', the leading n-by-k part of the array b must contain the matrix B,
otherwise the leading m-by-n part of the array b must contain the matrix B.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

beta REAL*8. Specifies the scalar beta.

c REAL*8. Array, DIMENSION (ldc, n). Before entry, the leading m-by-n part
of the array c must contain the matrix C, otherwise the leading n-by-k part of
the array c must contain the matrix C.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A’*B +
beta*C).

Interfaces

Fortran 77:

SUBROUTINE mkl_dcoomm(transa, m, n, k, alpha, matdescra, val, rowind,
colind, nnz, b, ldb, beta, c, ldc)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc, nnz
 INTEGER rowind(*), colind(*)
 REAL*8 alpha, beta
 REAL*8 val(*), b(ldb,*), c(ldc,*)

2-206

2 Intel® Math Kernel Library Reference Manual

Fortran 95:

SUBROUTINE mkl_dcoomm(transa, m, n, k, alpha, matdescra, val, rowind,
colind, nnz, b, ldb, beta, c, ldc)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, n, k, ldb, ldc, nnz
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: rowind(*), colind(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha, beta
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl_dcoomm(char *transa, int *m, int *n, int *k, double *alpha, char
*matdescra, double *val, int *rowind, int *colind, int *nnz, double
*b, int *ldb, double *beta, double *c, int *ldc);

mkl_ddiamm
Computes matrix-matrix product of a sparse matrix
stored in the diagonal format.

Syntax

Fortran:

call mkl_ddiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, beta, c, ldc)

C:

mkl_ddiamm(&transa, &m, &n, &k, &alpha, matdescra, val, &lval, idiag,
&ndiag, b, &ldb, &beta, c, &ldc);

Description

The mkl_ddiamm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*A’*B + beta*C,

where:

BLAS and Sparse BLAS Routines 2

2-207

alpha and beta are scalars,
B and C are dense matrices,
A is an m-by-k sparse matrix in the diagonal format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-matrix product is computed as
C := alpha*A*B + beta*C

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
C := alpha*A’*B + beta*C,

m INTEGER. Number of rows of the matrix A.

n INTEGER. Number of columns of the matrix C.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Two-dimensional array of size lval by ndiag, contains non-zero
diagonals of the matrix A. Refer to values array description in Diagonal
Storage Scheme for more details.

lval INTEGER. Leading dimension of val, . Refer to lval
description in Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix A. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix A.

b REAL*8. Array, DIMENSION (ldb, n). Before entry with transa = 'N' or
'n', the leading n-by-k part of the array b must contain the matrix B,
otherwise the leading m-by-n part of the array b must contain the matrix B.

lval min m k,()≥

2-208

2 Intel® Math Kernel Library Reference Manual

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

beta REAL*8. Specifies the scalar beta.

c REAL*8. Array, DIMENSION (ldc, n). Before entry, the leading m-by-n part
of the array c must contain the matrix C, otherwise the leading n-by-k part of
the array c must contain the matrix C.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A’*B +
beta*C).

Interfaces

Fortran 77:

SUBROUTINE mkl_ddiamm(transa, m, n, k, alpha, matdescra, val, lval,
idiag, ndiag, b, ldb, beta, c, ldc)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc, lval, ndiag
 INTEGER idiag(*)
 REAL*8 alpha, beta
 REAL*8 val(lval,*), b(ldb,*), c(ldc,*)

Fortran 95:

SUBROUTINE mkl_ddiamm(transa, m, n, k, alpha, matdescra, val, lval,
idiag, ndiag, b, ldb, beta, c, ldc)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, n, k, lval, ndiag, ldb, ldc
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: idiag(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha, beta
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl_ddiamm(char *transa, int *m, int *n, int *k, double *alpha, char
*matdescra, double *val, int *lval, int *idiag, int *ndiag, double
*b, int *ldb, double *beta, double *c, int *ldc);

BLAS and Sparse BLAS Routines 2

2-209

mkl_dskymm
Computes matrix-matrix product of a sparse matrix
stored using the skyline storage scheme.

Syntax

Fortran:

call mkl_dskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, ldb,
beta, c, ldc)

C:

mkl_dskymm(&transa, &m, &n, &k, &alpha, matdescra, val, pntr, b, &ldb,
&beta, c, &ldc);

Description

The mkl_dskymm routine performs a matrix-matrix operation defined as

C := alpha*A*B + beta*C

or

C := alpha*A’*B + beta*C,

where:
alpha and beta are scalars,
B and C are dense matrices,
A is an m-by-k sparse matrix in the skyline storage format, A' is the transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-matrix product is computed as
C := alpha*A*B + beta*C

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
C := alpha*A’*B + beta*C,

2-210

2 Intel® Math Kernel Library Reference Manual

m INTEGER. Number of rows of the matrix A.

n INTEGER. Number of columns of the matrix C.

k INTEGER. Number of columns of the matrix A.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing the set of elements of the matrix A in the skyline
profile form.

If matdescrsa(2)= ’L’, then val contains elements from the low triangle
of the matrix A.
If matdescrsa(2)= ’U’, then val contains elements from the upper triangle
of the matrix A.

Refer to values array description in Diagonal Storage Scheme for more
details.

pntr INTEGER. Array of length (m+1) for lower triangle, and (k+1) for upper
triangle. It contains the indices specifying in the val the positions of the first
element in each row (column) of the matrix A. Refer to pointers array
description in Diagonal Storage Scheme for more details.

b REAL*8. Array, DIMENSION (ldb, n). Before entry with transa = 'N' or
'n', the leading n-by-k part of the array b must contain the matrix B,
otherwise the leading m-by-n part of the array b must contain the matrix B.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

beta REAL*8. Specifies the scalar beta.

c REAL*8. Array, DIMENSION (ldc, n). Before entry, the leading m-by-n part
of the array c must contain the matrix C, otherwise the leading n-by-k part of
the array c must contain the matrix C.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c Overwritten by the matrix (alpha*A*B + beta*C) or (alpha*A’*B +
beta*C).

BLAS and Sparse BLAS Routines 2

2-211

Interfaces

Fortran 77:

SUBROUTINE mkl_dskymm(transa, m, n, k, alpha, matdescra, val, pntr, b,
ldb, beta, c, ldc)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc
 INTEGER pntr(*)
 REAL*8 alpha, beta
 REAL*8 val(*), b(ldb,*), c(ldc,*)

Fortran 95:

SUBROUTINE mkl_dskymm(transa, m, n, k, alpha, matdescra, val, pntr, b,
ldb, beta, c, ldc)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, n, k, ldb, ldc
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: pntr(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha, beta
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl_dskymm(char *transa, int *m, int *n, int *k, double *alpha, char
*matdescra, double *val, int *pntr, double *b, int *ldb, double
*beta, double *c, int *ldc);

mkl_dcsrsm
Solves a system of linear matrix equations for a sparse
matrix in the CSR format.

Syntax

Fortran:

call mkl_dcsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre,
b, ldb, c, ldc)

2-212

2 Intel® Math Kernel Library Reference Manual

C:

mkl_dcsrsm(&transa, &m, &n, &alpha, matdescra, val, indx, pntrb, pntre,
b, &ldb, c, &ldc);

Description

The mkl_dcsrsm routine solves a system of linear equations with matrix-matrix operations for a
sparse matrix in the CSR format:

C := alpha*inv(A)*B

or

C := alpha*inv(A’)*B,

where:
alpha is scalar,
B and C are dense matrices,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-matrix product is computed as
C := alpha*inv(A)*B

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
C := alpha*inv(A’)*B,

m INTEGER. Number of columns of the matrix A.

n INTEGER. Number of columns of the matrix C.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

BLAS and Sparse BLAS Routines 2

2-213

val REAL*8. Array containing non-zero elements of the matrix A. Its length is
pntre(m) - pntrb(1). Refer to values array description in CSR Format
for more details.

indx INTEGER. Array containing the column indices for each non-zero element of
the matrix A. Its length is equal to length of the val array. Refer to columns
array description in CSR Format for more details.

pntrb INTEGER. Array of length m, contains row indices, such that pntrb(i) -
pntrb(1)+1 is the starting index of row i in the arrays val and indx. Refer to
pointerB array description in CSR Format for more details.

pntre INTEGER. Array of length m, contains row indices, such that pntre(i) -
pntrb(1) is the last index of row i in the arrays val and indx. Refer to
pointerE array description in CSR Format for more details.

b REAL*8. Array, DIMENSION (ldb, n). Before entry the leading m-by-n part of
the array b must contain the matrix B.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c REAL*8. Array, DIMENSION (ldc, n). The leading m-by-n part of the array c
contains the output matrix C.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb,
pntre, b, ldb, c, ldc)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL*8 alpha
 REAL*8 val(*), b(ldb,*), c(ldc,*)

2-214

2 Intel® Math Kernel Library Reference Manual

Fortran 95:

SUBROUTINE mkl_dcsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb,
pntre, b, ldb, c, ldc)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, n, ldb, ldc
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: indx(*), pntrb(*), pntre(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl_dcsrsm(char *transa, int *m, int *n, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double
*b, int *ldb, double *c, int *ldc);

mkl_dcscsm
Solves a system of linear matrix equations for a sparse
matrix in the CSC format.

Syntax

Fortran:

call mkl_dcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre,
b, ldb, c, ldc)

C:

mkl_dcscsm(&transa, &m, &n, &alpha, matdescra, val, indx, pntrb, pntre,
b, &ldb, c, &ldc);

Description

The mkl_dcscsm routine solves a system of linear equations with matrix-matrix operations for a
sparse matrix in the CSC format:

C := alpha*inv(A)*B

or

C := alpha*inv(A’)*B,

BLAS and Sparse BLAS Routines 2

2-215

where:
alpha is scalar,
B and C are dense matrices,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-matrix product is computed as
C := alpha*inv(A)*B

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
C := alpha*inv(A’)*B,

m INTEGER. Number of columns of the matrix A.

n INTEGER. Number of columns of the matrix C.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing non-zero elements of the matrix A. Its length is
pntre(m) - pntrb(1). Refer to values array description in CSC Format
for more details.

indx INTEGER. Array containing the row indices for each non-zero element of the
matrix A. Its length is equal to length of the val array. Refer to rows array
description in CSC Format for more details.

pntrb INTEGER. Array of length k, contains row indices, such that pntrb(i) -
pntrb(1)+1 is the starting index of column i in the arrays val and indx.
Refer to pointerB array description in CSC Format for more details.

pntre INTEGER. Array of length k, contains row indices, such that pntre(i) -
pntrb(1) is the last index of column i in the arrays val and indx. Refer to
pointerE array description in CSC Format for more details.

2-216

2 Intel® Math Kernel Library Reference Manual

b REAL*8. Array, DIMENSION (ldb, n). Before entry the leading m-by-n part
of the array b must contain the matrix B.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c REAL*8. Array, DIMENSION (ldc, n). The leading m-by-n part of the array c
contains the output matrix C.

Interfaces

Fortran 77:

SUBROUTINE mkl_dcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb,
pntre, b, ldb, c, ldc)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL*8 alpha
 REAL*8 val(*), b(ldb,*), c(ldc,*)

Fortran 95:

SUBROUTINE mkl_dcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb,
pntre, b, ldb, c, ldc)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, n, ldb, ldc
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: indx(*), pntrb(*), pntre(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl_dcscsm(char *transa, int *m, int *n, double *alpha, char
*matdescra, double *val, int *indx, int *pntrb, int *pntre, double
*b, int *ldb, double *c, int *ldc);

BLAS and Sparse BLAS Routines 2

2-217

mkl_dcoosm
Solves a system of linear matrix equations for a sparse
matrix in the coordinate format.

Syntax

Fortran:

call mkl_dcoosm(transa, m, n, alpha, matdescra, val, rowind, colind,
nnz, b, ldb, c, ldc)

C:

mkl_dcoosm(&transa, &m, &n, &alpha, matdescra, val, rowind, colind,
&nnz, b, &ldb, c, &ldc);

Description

The mkl_dcoosm routine solves a system of linear equations with matrix-matrix operations for a
sparse matrix in the coordinate format:

C := alpha*inv(A)*B

or

C := alpha*inv(A’)*B,

where:
alpha is scalar,
B and C are dense matrices,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-matrix product is computed as
C := alpha*inv(A)*B

2-218

2 Intel® Math Kernel Library Reference Manual

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
C := alpha*inv(A’)*B,

m INTEGER. Number of rows of the matrix A.

n INTEGER. Number of columns of the matrix C.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array of length nnz, contains non-zero elements of the matrix A in
the arbitrary order. Refer to values array description in Coordinate Format for
more details.

rowind INTEGER. Array of length nnz, contains the row indices for each non-zero
element of the matrix A. Refer to rows array description in Coordinate Format
for more details.

colind INTEGER. Array of length nnz, contains the column indices for each non-zero
element of the matrix A. Refer to columns array description in Coordinate
Format for more details.

nnz INTEGER. Specifies the number of non-zero element of the matrix A. Refer to
nnz description in Coordinate Format for more details.

b REAL*8. Array, DIMENSION (ldb, n). Before entry the leading m-by-n part
of the array b must contain the matrix B.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c REAL*8. Array, DIMENSION (ldc, n). The leading m-by-n part of the array c
contains the output matrix C.

BLAS and Sparse BLAS Routines 2

2-219

Interfaces

Fortran 77:

SUBROUTINE mkl_dcoosm(transa, m, n, alpha, matdescra, val, rowind,
colind, nnz, b, ldb, c, ldc)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc, nnz
 INTEGER rowind(*), colind(*)
 REAL*8 alpha
 REAL*8 val(*), b(ldb,*), c(ldc,*)

Fortran 95:

SUBROUTINE mkl_dcoosm(transa, m, n, alpha, matdescra, val, rowind,
colind, nnz, b, ldb, c, ldc)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, n, ldb, ldc, nnz
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: rowind(*), colind(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl_dcoosm(char *transa, int *m, int *n, double *alpha, char
*matdescra, double *val, int *rowind, int *colind, int *nnz, double
*b, int *ldb, double *c, int *ldc);

mkl_ddiasm
Solves a system of linear matrix equations for a sparse
matrix in the diagonal format.

Syntax

Fortran:

call mkl_ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag, ndiag,
b, ldb, c, ldc)

2-220

2 Intel® Math Kernel Library Reference Manual

C:

mkl_ddiasm(&transa, &m, &n, &alpha, matdescra, val, &lval, idiag, &ndiag,
b, &ldb, c, &ldc);

Description

The mkl_ddiasm routine solves a system of linear equations with matrix-matrix operations for a
sparse matrix in the diagonal format:

C := alpha*inv(A)*B

or

C := alpha*inv(A’)*B,

where:
alpha is scalar,
B and C are dense matrices,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-matrix product is computed as
C := alpha*inv(A)*B

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
C := alpha*inv(A’)*B,

m INTEGER. Number of rows of the matrix A.

n INTEGER. Number of columns of the matrix C.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

BLAS and Sparse BLAS Routines 2

2-221

val REAL*8. Two-dimensional array of size lval by ndiag, contains non-zero
diagonals of the matrix A. Refer to values array description in Diagonal
Storage Scheme for more details.

lval INTEGER. Leading dimension of val, . Refer to lval description in
Diagonal Storage Scheme for more details.

idiag INTEGER. Array of length ndiag, contains the distances between main
diagonal and each non-zero diagonals in the matrix A. Refer to distance
array description in Diagonal Storage Scheme for more details.

ndiag INTEGER. Specifies the number of non-zero diagonals of the matrix A.

b REAL*8. Array, DIMENSION (ldb, n). Before entry the leading m-by-n part
of the array b must contain the matrix B.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c REAL*8. Array, DIMENSION (ldc, n). The leading m-by-n part of the array c
contains the matrix C.

Interfaces

Fortran 77:

SUBROUTINE mkl_ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, c, ldc)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc, lval, ndiag
 INTEGER idiag(*)
 REAL*8 alpha
 REAL*8 val(lval,*), b(ldb,*), c(ldc,*)

Fortran 95:

SUBROUTINE mkl_ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, c, ldc)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, n, lval, ndiag, ldb, ldc
 CHARACTER, INTENT(IN) :: matdescra(*)

lval m≥

2-222

2 Intel® Math Kernel Library Reference Manual

 INTEGER, INTENT(IN) :: idiag(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl_ddiasm(char *transa, int *m, int *n, double *alpha, char
*matdescra, double *val, int *lval, int *idiag, int *ndiag, double
*b, int *ldb, double *c, int *ldc);

mkl_dskysm
Solves a system of linear matrix equations for a sparse
matrix stored using the skyline storage scheme.

Syntax

Fortran:

call mkl_dskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c,
ldc)

C:

mkl_dskysm(&transa, &m, &n, &alpha, matdescra, val, pntr, b, &ldb, c,
&ldc);

Description

The mkl_dskysm routine solves a system of linear equations with matrix-matrix operations for a
sparse matrix in the skyline storage format:

C := alpha*inv(A)*B

or

C := alpha*inv(A’)*B,

where:
alpha is scalar,
B and C are dense matrices,
A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, A' is the
transpose of A.

BLAS and Sparse BLAS Routines 2

2-223

Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data
types that refer here to the Fortran 77 standard types. Data types specific to the different interfaces
are described in the section “Interfaces” below.

transa CHARACTER*1. Specifies the operation to be performed.

If transa= ’N’ or ’n’, the matrix-matrix product is computed as
C := alpha*inv(A)*B

If transa= ’T’ or ’t’ or ’C’or ’c’, the matrix-vector product is
computed as
C := alpha*inv(A’)*B,

m INTEGER. Number of rows of the matrix A.

n INTEGER. Number of columns of the matrix C.

alpha REAL*8. Specifies the scalar alpha.

matdescra CHARACTER. Array of six elements, specifies properties of the matrix used for
operation. Only first three array elements are used, their possible values are
given in the Table 2-6.

val REAL*8. Array containing the set of elements of the matrix A in the skyline
profile form.

If matdescrsa(2)= ’L’, then val contains elements from the low triangle
of the matrix A.
If matdescrsa(2)= ’U’, then val contains elements from the upper triangle
of the matrix A.

Refer to values array description in Diagonal Storage Scheme for more
details.

pntr INTEGER. Array of length (m+1). It contains the indices specifying in the val
the positions of the first non-zero element of each i-row (column) of the
matrix A such that pointers(i)-pointers(1)+1. Refer to pointers
array description in Diagonal Storage Scheme for more details.

b REAL*8. Array, DIMENSION (ldb, n). Before entry the leading m-by-n part
of the array b must contain the matrix B.

ldb INTEGER. Specifies the first dimension of b as declared in the calling
(sub)program.

2-224

2 Intel® Math Kernel Library Reference Manual

ldc INTEGER. Specifies the first dimension of c as declared in the calling
(sub)program.

Output Parameters

c REAL*8. Array, DIMENSION (ldc, n). The leading m-by-n part of the array c
contains the matrix C.

Interfaces

Fortran 77:

SUBROUTINE mkl_dskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb,
c, ldc)

 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc
 INTEGER pntr(*)
 REAL*8 alpha
 REAL*8 val(*), b(ldb,*), c(ldc,*)

Fortran 95:

SUBROUTINE mkl_dskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb,
c, ldc)

 CHARACTER(LEN=1), INTENT(IN):: transa
 INTEGER, INTENT(IN) :: m, n, ldb, ldc
 CHARACTER, INTENT(IN) :: matdescra(*)
 INTEGER, INTENT(IN) :: pntr(*)
 REAL(KIND(1.0D0)), INTENT(IN) :: alpha
 REAL(KIND(1.0D0)), INTENT(IN) :: val(*), b(ldb,*)
 REAL(KIND(1.0D0)), INTENT(INOUT) :: c(ldc,*)

C:

void mkl_dskysm(char *transa, int *m, int *n, double *alpha, char
*matdescra, double *val, int *pntr, double *b, int *ldb, double *c,
int *ldc,);

3-1

LAPACK Routines:
Linear Equations 3

This chapter describes the Intel® Math Kernel Library implementation of routines from the
LAPACK package that are used for solving systems of linear equations and performing a number
of related computational tasks. The library includes LAPACK routines for both real and complex
data.
Routines are supported for systems of equations with the following types of matrices:

• general
• banded
• symmetric or Hermitian positive-definite (both full and packed storage)
• symmetric or Hermitian positive-definite banded
• symmetric or Hermitian indefinite (both full and packed storage)
• symmetric or Hermitian indefinite banded
• triangular (both full and packed storage)
• triangular banded
• tridiagonal.

For each of the above matrix types, the library includes routines for performing the following
computations:

— factoring the matrix (except for triangular matrices)

— equilibrating the matrix

— solving a system of linear equations

— estimating the condition number of a matrix

— refining the solution of linear equations and computing its error bounds

— inverting the matrix.

To solve a particular problem, you can either call two or more computational routines or call a
corresponding driver routine that combines several tasks in one call, such as ?gesv for factoring
and solving. Thus, to solve a system of linear equations with a general matrix, you can first call

3-2

3 Intel® Math Kernel Library Reference Manual

?getrf (LU factorization) and then ?getrs (computing the solution). Then, you might wish to
call ?gerfs to refine the solution and get the error bounds. Alternatively, you can just use the
driver routine ?gesvx which performs all these tasks in one call.

Starting from release 8.0, Intel MKL along with Fortran-77 interface to LAPACK computational
and driver routines supports also Fortran-95 interface which uses simplified routine calls with
shorter argument lists. The calling sequence for Fortran-95 interface is given in the syntax section
of the routine description immediately after Fortran-77 calls.

Routine Naming Conventions
For each routine introduced in this chapter, when calling it from the Fortran-77 program you can
use the LAPACK name.

LAPACK names are listed in Table 3-1 and Table 3-2, and have the structure ?yyzzz or
?yyzz, which is described below.

The initial symbol ? indicates the data type:

s real, single precisionc complex, single precision

d real, double precisionz complex, double precision

The second and third letters yy indicate the matrix type and storage scheme:
ge general
gb general band
gt general tridiagonal
po symmetric or Hermitian positive-definite
pp symmetric or Hermitian positive-definite (packed storage)
pb symmetric or Hermitian positive-definite band
pt symmetric or Hermitian positive-definite tridiagonal
sy symmetric indefinite
sp symmetric indefinite (packed storage)
he Hermitian indefinite
hp Hermitian indefinite (packed storage)
tr triangular

WARNING. LAPACK routines expect that input matrices do not contain
INF or NaN values. When input data is inappropriate for LAPACK, problems
may arise, including possible hangs.

LAPACK Routines: Linear Equations 3

3-3

tp triangular (packed storage)
tb triangular band

For computational routines, the last three letters zzz indicate the computation performed:
trf form a triangular matrix factorization
trs solve the linear system with a factored matrix
con estimate the matrix condition number
rfs refine the solution and compute error bounds
tri compute the inverse matrix using the factorization
equ equilibrate a matrix.

For example, the routine sgetrf performs the triangular factorization of general real matrices in
single precision; the corresponding routine for complex matrices is cgetrf.

For driver routines, the names can end either with -sv (meaning a simple driver), or with -svx
(meaning an expert driver).

Names of the LAPACK computational and driver routines for Fortran-95 interface in Intel MKL
are the same as Fortran-77 names but without the first letter that indicates the data type. For
example, the name of the routine that performs triangular factorization of general real matrices in
Fortran-95 interface is getrf. Handling of different data types is done through defining a specific
internal parameter referring to a module block with named constants for single and double
precision.

Fortran-95 Interface Conventions
Fortran-95 interface to LAPACK is implemented through wrappers that call respective Fortran-77
routines. This interface uses such features of Fortran-95 as assumed-shape arrays and optional
arguments to provide simplified calls to LAPACK routines with fewer arguments.

The main conventions that are used in Fortran-95 interface are as follows:

• The names of arguments used in Fortran-95 call are typically the same as for the respective
generic (Fortran-77) interface. However, to reduce the number of argument names used in the
library, the following identity settings of formal argument names were made:

Generic Argument
Name

Fortran-95 Argument
Name

ap a

ab a

afb af

3-4

3 Intel® Math Kernel Library Reference Manual

Note that these name changes of formal arguments have no impact on program semantics and
follow the unification conventions.

• Input arguments such as array dimensions are not required in Fortran-95 and are skipped from
the calling sequence. Array dimensions are reconstructed from the user data that must exactly
follow the required array shape.
Another type of generic arguments that are skipped in Fortran-95 interface are arguments that
represent workspace arrays (such as work, rwork, and so on). The only exception are cases
when workspace arrays return significant information on output.
Also, an argument can be skipped if its value is completely defined by the presence or
absence of another argument in the calling sequence, and the restored value is the only
meaningful value for the skipped argument.

• Some generic arguments are declared as optional in Fortran-95 interface and may or may not
be present in the calling sequence. An argument can be declared optional if it satisfies one of
the following conditions:

1. If the argument value is completely defined by the presence or absence of another
argument in the calling sequence, it can be declared as optional. The difference from the
skipped argument in this case is that the optional argument can have some meaningful
values that are distinct from the value reconstructed by default.
For example, if some argument (like jobz) can take only two values and one of these
values directly implies the use of another argument, then the value of jobz can be
uniquely reconstructed from the actual presence or absence of this second argument, and
jobz can be omitted.

2. If an input argument can take only a few possible values, it can be declared as optional.
The default value of such argument is typically set as the first value in the list and all
exceptions to this rule are explicitly stated in the routine description.

3. If an input argument has a natural default value, it can be declared as optional. The
default value of such optional argument is set to its natural default value.

• Argument info is declared as optional in Fortran-95 interface. If it is present in the calling
sequence, the value assigned to info is interpreted as follows:

afp af

bp b

bb b

selctg select

Generic Argument
Name

Fortran-95 Argument
Name

LAPACK Routines: Linear Equations 3

3-5

1. If this value is more than -1000, its meaning is the same as in Fortran-77 routine.

2. If this value is equal to -1000, it means that there is not enough work memory.

3. If this value is equal to -1001, incompatible arguments are presented in the calling
sequence.

• Optional arguments are given in square brackets in Fortran-95 call syntax.

The concrete rules used for reconstructing the values of omitted optional parameters are specific
for each routine and are detailed in the respective “Fortran-95 Notes“ subsection given at the end
of routine specification section.

MKL Fortran-95 Interfaces for LAPACK Routines vs. Netlib Implementation

The following list presents general digressions of Intel MKL LAPACK-95 implementation from
Netlib analog:

• Names of interfaces do not contain LA_ prefix.

• An optional array argument always has the target attribute.

• Functionality of MKL LAPACK-95 wrapper is close to FORTRAN-77 original
implementation in getrf, gbtrf, and potrf interfaces.

• If jobz argument value specifies presence or absence of z argument, then z is always
declared as optional and jobz is restored depending on whether z is present or not. It is not
always the case in Netlib version (see “Modified Netlib Interfaces” in Appendix E).

• To avoid double error checking, processing of info parameter is limited to checking of
allocated memory and disarranging of optional parameters;

• If an argument that is present in the list of arguments completely defines another argument,
the latter is always declared as optional.

An application that uses Netlib LAPACK interfaces can be transformed to work with Intel MKL
interfaces on meeting two conditions:

a. The application is correct, that is, unambiguous, compiler-independent, and contains no
errors.

b. Each routine name denotes only one specific routine. If any routine name in the
application coincides with a name of the original Netlib routine (for example, after
removing LA_ prefix) but denotes a routine different from that Netlib original routine,
this name should be modified through context replacement.

3-6

3 Intel® Math Kernel Library Reference Manual

Transformations of the user application are required in the following four cases (see Appendix ,
“Specific Features of Fortran-95 Interfaces for LAPACK routines” for specific differences of
individual interfaces):

1. When using Netlib routines that differ from the Intel MKL routines only by the LA_
prefix or in the array attribute target. The only transformation required in this case is
context name replacement. See “Interfaces Identical to Netlib” in Appendix E for details.

2. When using Netlib routines that differ from the Intel MKL routines by the LA_ prefix, the
array attribute target, and the names of formal arguments. In the case of positional
passing of arguments, no additional transformation except context name replacement is
required. In the case of the key passing of arguments, in addition to the context name
replacement the names of mismatching keys should also be modified. See “Interfaces
with Replaced Argument Names” in Appendix E for details.

3. When using Netlib routines that differ from the Intel MKL routines by the LA_ prefix, the
array attribute target, sequence of the arguments, arguments missing in MKL but
present in Netlib and, vice versa, present in MKL but missing in Netlib. All of the
transformations specified in 2 and 3 should be accompanied with steps to remove the
differences in sequence and range of the arguments. See “Modified Netlib Interfaces” in
Appendix E for details.

4. When using interfaces getrf, gbtrf, and potrf interfaces, that is, new functionality
implemented in MKL but unavailable in Netlib source. To overcome the differences,
build the desired functionality explicitly with MKL means or create a new subroutine
with the new functionality, using specific MKL interfaces corresponding to LAPACK-77
routines. The latter routines can be called directly but it is preferable to use new MKL
interfaces. See “Interfaces Absent From Netlib” and “Interfaces of New Functionality” in
Appendix E for details.
Note that if the transformed application calls getrf, gbtrf or potrf without
controlling arguments rcond and norm, just context replacement is enough in modifying
the calls into MKL interfaces, as described in point 1 above. Netlib functionality is
preserved in such cases.

5. When using Netlib auxiliary routines. In this case, call a corresponding subroutine
directly, using MKL LAPACK-77 interfaces.

The user application can be transformed as follows:

1. Make sure conditions a. and b. are met.

2. Select Netlib LAPACK-95 calls. For each call do the following:

• Select the case of digression and do the required transformations.

LAPACK Routines: Linear Equations 3

3-7

• Revise results to eliminate unneeded code or data, which may appear after several
identical calls.

3. Make sure the transformations are correct and complete.

Matrix Storage Schemes
LAPACK routines use the following matrix storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element aij
stored in the array element a(i,j).

• Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more
compactly: the upper or lower triangle of the matrix is packed by columns in a
one-dimensional array.

• Band storage: an m-by-n band matrix with kl sub-diagonals and ku super-diagonals is stored
compactly in a two-dimensional array ab with kl+ku+1 rows and n columns. Columns of the
matrix are stored in the corresponding columns of the array, and diagonals of the matrix are
stored in rows of the array.

In Chapters 4 and 5, arrays that hold matrices in packed storage have names ending in p; arrays
with matrices in band storage have names ending in b.

For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.

Mathematical Notation
Descriptions of LAPACK routines use the following notation:

Ax = b A system of linear equations with an n-by-n matrix A = {aij}, a
right-hand side vector b = {bi}, and an unknown vector x = {xi}.

AX = B A set of systems with a common matrix A and multiple right-hand sides.
The columns of B are individual right-hand sides, and the columns of X
are the corresponding solutions.

|x| the vector with elements |xi| (absolute values of xi).

|A| the matrix with elements |aij| (absolute values of aij).

||x||∞ = maxi |xi| The infinity-norm of the vector x.

||A||∞ = maxi Σj |aij| The infinity-norm of the matrix A.

||A||1 = maxj Σi |aij| The one-norm of the matrix A. ||A||1 = ||AT||∞ = ||AH||∞

κ(A) = ||A|| ||A−1|| The condition number of the matrix A.

3-8

3 Intel® Math Kernel Library Reference Manual

Error Analysis
In practice, most computations are performed with rounding errors. Besides, you often need to
solve a system Ax = b where the data (the elements of A and b) are not known exactly. Therefore,
it’s important to understand how the data errors and rounding errors can affect the solution x.

Data perturbations. If x is the exact solution of Ax = b, and x + δx is the exact solution of a
perturbed problem (A + δA)x = (b + δb), then

In other words, relative errors in A or b may be amplified in the solution vector x by a factor κ(A) =
||A|| ||A−1|| called the condition number of A.

Rounding errors have the same effect as relative perturbations c(n)ε in the original data. Here ε
is the machine precision, and c(n) is a modest function of the matrix order n. The corresponding
solution error is
||δx||/||x|| ≤ c(n)κ(A)ε. (The value of c(n) is seldom greater than 10n.)

Thus, if your matrix A is ill-conditioned (that is, its condition number κ(A) is very large), then the
error in the solution x is also large; you may even encounter a complete loss of precision.
LAPACK provides routines that allow you to estimate κ(A) (see Routines for Estimating the
Condition Number) and also give you a more precise estimate for the actual solution error (see
Refining the Solution and Estimating Its Error).

δx
x

---------- κ A() δA
A

----------- δb
b

-----------+ 
  , where κ A()≤ A A 1– .=

LAPACK Routines: Linear Equations 3

3-9

Computational Routines
Table 3-1 lists the LAPACKcomputational routines (Fortran-77 interface) for factorizing,
equilibrating, and inverting real matrices, estimating their condition numbers, solving systems of
equations with real matrices, refining the solution, and estimating its error. Table 3-2 lists similar
routines for complex matrices.

For both the tables, respective routine names are given without the first symbol (see Routine
Naming Conventions).

In this table ? denotes s (single precision) or d (double precision) for Fortran-77 interface.

Table 3-1 Computational Routines for Systems of Equations with Real Matrices

Matrix type,
storage scheme

Factorize
matrix

Equilibrate
matrix

Solve
system

Condition
number

Estimate
error

Invert
matrix

general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri

general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs

general
tridiagonal

?gttrf ?gttrs ?gtcon ?gtrfs

symmetric
positive-definite

?potrf ?poequ ?potrs ?pocon ?porfs ?potri

symmetric
positive-definite,
packed storage

?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri

symmetric
positive-definite,
band

?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

symmetric
positive-definite,
tridiagonal

?pttrf ?pttrs ?ptcon ?ptrfs

symmetric
indefinite

?sytrf ?sytrs ?sycon ?syrfs ?sytri

symmetric
indefinite,
packed storage

?sptrf ?sptrs ?spcon ?sprfs ?sptri

triangular ?trtrs ?trcon ?trrfs ?trtri

triangular,
packed storage

?tptrs ?tpcon ?tprfs ?tptri

triangular band ?tbtrs ?tbcon ?tbrfs

3-10

3 Intel® Math Kernel Library Reference Manual

In this table ? stands for c (single precision complex) or z (double precision complex) for
Fortran-77 interface.

Table 3-2 Computational Routines for Systems of Equations with Complex Matrices

Matrix type,
storage scheme

Factorize
matrix

Equilibrate
matrix

Solve
system

Condition
number

Estimate
error

Invert
matrix

general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri

general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs

general
tridiagonal

?gttrf ?gttrs ?gtcon ?gtrfs

Hermitian
positive-definite

?potrf ?poequ ?potrs ?pocon ?porfs ?potri

Hermitian
positive-definite,
packed storage

?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri

Hermitian
positive-definite,
band

?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

Hermitian
positive-definite,
tridiagonal

?pttrf ?pttrs ?ptcon ?ptrfs

Hermitian
indefinite

?hetrf ?hetrs ?hecon ?herfs ?hetri

symmetric
indefinite

?sytrf ?sytrs ?sycon ?syrfs ?sytri

Hermitian
indefinite,
packed storage

?hptrf ?hptrs ?hpcon ?hprfs ?hptri

symmetric
indefinite,
packed storage

?sptrf ?sptrs ?spcon ?sprfs ?sptri

triangular ?trtrs ?trcon ?trrfs ?trtri

triangular,
packed storage

?tptrs ?tpcon ?tprfs ?tptri

triangular band ?tbtrs ?tbcon ?tbrfs

LAPACK Routines: Linear Equations 3

3-11

Routines for Matrix Factorization

This section describes the LAPACK routines for matrix factorization. The following factorizations
are supported:

• LU factorization

• Cholesky factorization of real symmetric positive-definite matrices

• Cholesky factorization of Hermitian positive-definite matrices

• Bunch-Kaufman factorization of real and complex symmetric matrices

• Bunch-Kaufman factorization of Hermitian matrices.

You can compute the LU factorization using full and band storage of matrices; the Cholesky
factorization using full, packed, and band storage; and the Bunch-Kaufman factorization using full
and packed storage.

?getrf
Computes the LU factorization
of a general m-by-n matrix.

Syntax

Fortran 77:

call sgetrf(m, n, a, lda, ipiv, info)

call dgetrf(m, n, a, lda, ipiv, info)

call cgetrf(m, n, a, lda, ipiv, info)

call zgetrf(m, n, a, lda, ipiv, info)

Fortran 95:

call getrf(a [,ipiv] [,info])

Description

The routine forms the LU factorization of a general m-by-n matrix A as
A PLU,=

3-12

3 Intel® Math Kernel Library Reference Manual

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower
trapezoidal if m > n) and U is upper triangular (upper trapezoidal if m < n). Usually A is square
(m = n), and both L and U are triangular. The routine uses partial pivoting, with row interchanges.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a REAL for sgetrf
DOUBLE PRECISION for dgetrf
COMPLEX for cgetrf
DOUBLE COMPLEX for zgetrf.
Array, DIMENSION (lda,*). Contains the matrix A.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a.

Output Parameters

a Overwritten by L and U. The unit diagonal elements of L are not stored.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: row i was interchanged with row ipiv(i).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed, but U is
exactly singular. Division by 0 will occur if you use the factor U for
solving a system of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine getrf interface are the following:

a Holds the matrix A of size (m,n).

ipiv Holds the vector of length min(m,n).

LAPACK Routines: Linear Equations 3

3-13

Application Notes

The computed L and U are the exact factors of a perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

The approximate number of floating-point operations for real flavors is

 (2/3)n3 if m = n,

 (1/3)n2(3m-n) if m > n,

 (1/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.

After calling this routine with m = n, you can call the following:

?getrs to solve AX = B or ATX = B or AHX = B;

?gecon to estimate the condition number of A;

?getri to compute the inverse of A.

?gbtrf
Computes the LU factorization
of a general m-by-n band matrix.

Syntax

Fortran 77:

call sgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)

call dgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)

call cgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)

call zgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)

Fortran 95:

call gbtrf(a [,kl] [,m] [,ipiv] [,info])

E c min m n,()()ε P L U≤

3-14

3 Intel® Math Kernel Library Reference Manual

Description

The routine forms the LU factorization of a general m-by-n band matrix A with kl non-zero
sub-diagonals and ku non-zero super-diagonals. Usually A is square (m = n), and then

where P is a permutation matrix; L is lower triangular with unit diagonal elements and at most kl
non-zero elements in each column; U is an upper triangular band matrix with kl + ku
super-diagonals. The routine uses partial pivoting, with row interchanges (which creates the
additional kl super-diagonals in U).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the band of A (ku ≥
0).

ab REAL for sgbtrf
DOUBLE PRECISION for dgbtrf
COMPLEX for cgbtrf
DOUBLE COMPLEX for zgbtrf.
Array, DIMENSION (ldab,*).
The array ab contains the matrix A in band storage
(see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ 2kl + ku +1)

Output Parameters

ab Overwritten by L and U. The diagonal and kl + ku super-diagonals of
U are stored in the first 1 + kl + ku rows of ab. The multipliers used to
form L are stored in the next kl rows.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: row i was interchanged with row ipiv(i).

A PLU=

LAPACK Routines: Linear Equations 3

3-15

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed, but U is
exactly singular. Division by 0 will occur if you use the factor U for
solving a system of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbtrf interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size
(2*kl+ku+1,n).

ipiv Holds the vector of length min(m,n).

kl If omitted, assumed kl = ku.

ku Restored as ku = lda-2*kl-1.

m If omitted, assumed m = n.

Application Notes

The computed L and U are the exact factors of a perturbed matrix A + E, where

c(k) is a modest linear function of k, and ε is the machine precision.

The total number of floating-point operations for real flavors varies between approximately
2n(ku+1)kl and 2n(kl+ku+1)kl. The number of operations for complex flavors is 4 times
greater. All these estimates assume that kl and ku are much less than min(m,n).

After calling this routine with m = n, you can call the following:

?gbtrs to solve AX = B or ATX = B or AHX = B;

?gbcon to estimate the condition number of A.

E c kl ku 1+ +()ε P L U≤

3-16

3 Intel® Math Kernel Library Reference Manual

?gttrf
Computes the LU factorization of a tridiagonal matrix.

Syntax

Fortran 77:

call sgttrf(n, dl, d, du, du2, ipiv, info)

call dgttrf(n, dl, d, du, du2, ipiv, info)

call cgttrf(n, dl, d, du, du2, ipiv, info)

call zgttrf(n, dl, d, du, du2, ipiv, info)

Fortran 95:

call gttrf(dl, d, du, du2 [,ipiv] [,info])

Description

The routine computes the LU factorization of a real or complex tridiagonal matrix A in the form

where P is a permutation matrix; L is lower bidiagonal with unit diagonal elements; and U is an
upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.
The routine uses elimination with partial pivoting and row interchanges .

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

dl, d, du REAL for sgttrf
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Arrays containing elements of A.
The array dl of dimension (n - 1) contains the sub-diagonal elements of
A.
The array d of dimension n contains the diagonal elements of A.
The array du of dimension (n - 1) contains the super-diagonal elements
of A.

A PLU,=

LAPACK Routines: Linear Equations 3

3-17

Output Parameters

dl Overwritten by the (n-1) multipliers that define the matrix L from the LU
factorization of A.

d Overwritten by the n diagonal elements of the upper triangular matrix U
from the LU factorization of A.

du Overwritten by the (n-1) elements of the first super-diagonal of U.

du2 REAL for sgttrf
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Array, dimension (n-2). On exit, du2 contains (n-2) elements of the
second super-diagonal of U.

ipiv INTEGER.
Array, dimension (n).
The pivot indices: row i was interchanged with row ipiv(i).

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed, but U is
exactly singular. Division by zero will occur if you use the factor U for
solving a system of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gttrf interface are the following:

dl Holds the vector of length (n-1).

d Holds the vectror of length (n).

du Holds the vector of length (n-1).

du2 Holds the vector of length (n-2).

ipiv Holds the vector of length (n).

3-18

3 Intel® Math Kernel Library Reference Manual

Application Notes

?gbtrs to solve AX = B or ATX = B or AHX = B;

?gbcon to estimate the condition number of A.

?potrf
Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite matrix.

Syntax

Fortran 77:

call spotrf(uplo, n, a, lda, info)

call dpotrf(uplo, n, a, lda, info)

call cpotrf(uplo, n, a, lda, info)

call zpotrf(uplo, n, a, lda, info)

Fortran 95:

call potrf(a [,uplo] [,info])

Description

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex
data, Hermitian positive-definite matrix A:

 A = UHU if uplo='U'

 A = LLH if uplo='L',

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

LAPACK Routines: Linear Equations 3

3-19

If uplo = 'U', the array a stores the upper triangular part of the matrix
A, and A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).

a REAL for spotrf
DOUBLE PRECISION for dpotrf
COMPLEX for cpotrf
DOUBLE COMPLEX for zpotrf.
Array, DIMENSION (lda,*).
The array a contains either the upper or the lower triangular part of the
matrix A (see uplo).
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a.

Output Parameters

a The upper or lower triangular part of a is overwritten by the Cholesky
factor U or L, as specified by uplo.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself)
is not positive-definite, and the factorization could not be completed.
This may indicate an error in forming the matrix A.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine potrf interface are the following:

a Holds the matrix A of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

3-20

3 Intel® Math Kernel Library Reference Manual

Application Notes

If uplo = 'U', the computed factor U is the exact factor of a perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors or (4/3)n3
for complex flavors.

After calling this routine, you can call the following:

?potrs to solve AX = B;

?pocon to estimate the condition number of A;

?potri to compute the inverse of A.

?pptrf
Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite matrix using
packed storage.

Syntax

Fortran 77:

call spptrf(uplo, n, ap, info)

call dpptrf(uplo, n, ap, info)

call cpptrf(uplo, n, ap, info)

call zpptrf(uplo, n, ap, info)

Fortran 95:

call pptrf(a [,uplo] [,info])

Description

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex
data, Hermitian positive-definite packed matrix A:

E c n()ε UH U eij c n()ε aiiajj≤,≤

LAPACK Routines: Linear Equations 3

3-21

 A = UHU if uplo='U'

 A = LLH if uplo='L'

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is packed in the
array ap, and how A is factored:

If uplo = 'U', the array ap stores the upper triangular part of the matrix
A, and A is factored as UHU.
If uplo = 'L', the array ap stores the lower triangular part of the matrix
A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).

ap REAL for spptrf
DOUBLE PRECISION for dpptrf
COMPLEX for cpptrf
DOUBLE COMPLEX for zpptrf.
Array, DIMENSION at least max(1,n(n+1)/2).
The array ap contains either the upper or the lower triangular part of the
matrix A (as specified by uplo) in packed storage (see Matrix Storage
Schemes).

Output Parameters

ap The upper or lower triangular part of A in packed storage is overwritten
by the Cholesky factor U or L, as specified by uplo.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself)
is not positive-definite, and the factorization could not be completed.
This may indicate an error in forming the matrix A.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

3-22

3 Intel® Math Kernel Library Reference Manual

Specific details for the routine pptrf interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

If uplo = 'U', the computed factor U is the exact factor of a perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors and (4/3)n3
for complex flavors.

After calling this routine, you can call the following:

?pptrs to solve AX = B;

?ppcon to estimate the condition number of A;

?pptri to compute the inverse of A.

?pbtrf
Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite band matrix.

Syntax

Fortran 77:

call spbtrf(uplo, n, kd, ab, ldab, info)

call dpbtrf(uplo, n, kd, ab, ldab, info)

call cpbtrf(uplo, n, kd, ab, ldab, info)

call zpbtrf(uplo, n, kd, ab, ldab, info)

Fortran 95:

call pbtrf(a [,uplo] [,info])

E c n()ε UH U eij c n()ε aiiajj≤,≤

LAPACK Routines: Linear Equations 3

3-23

Description

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex
data, Hermitian positive-definite band matrix A:

 A = UHU if uplo='U'

 A = LLH if uplo='L'

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored in the
array ab, and how A is factored:

If uplo = 'U', the array ab stores the upper triangular part of the matrix
A, and A is factored as UHU.
If uplo = 'L', the array ab stores the lower triangular part of the matrix
A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the
matrix A (kd ≥ 0).

ab REAL for spbtrf
DOUBLE PRECISION for dpbtrf
COMPLEX for cpbtrf
DOUBLE COMPLEX for zpbtrf.
Array, DIMENSION (ldab,*).
The array ap contains either the upper or the lower triangular part of the
matrix A (as specified by uplo) in band storage (see Matrix Storage
Schemes).
The second dimension of ab must be at least max(1, n).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ kd +1)

Output Parameters

ap The upper or lower triangular part of A (in band storage) is overwritten
by the Cholesky factor U or L, as specified by uplo.

3-24

3 Intel® Math Kernel Library Reference Manual

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself)
is not positive-definite, and the factorization could not be completed.
This may indicate an error in forming the matrix A.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbtrf interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

If uplo = 'U', the computed factor U is the exact factor of a perturbed matrix A + E, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

The total number of floating-point operations for real flavors is approximately n(kd+1)2. The
number of operations for complex flavors is 4 times greater. All these estimates assume that kd is
much less than n.

After calling this routine, you can call the following:

?pbtrs to solve AX = B;

?pbcon to estimate the condition number of A;

E c kd 1+()ε UH U eij c kd 1+()ε aiiajj≤,≤

LAPACK Routines: Linear Equations 3

3-25

?pttrf
Computes the factorization of
a symmetric (Hermitian) positive-definite tridiagonal
matrix.

Syntax

Fortran 77:

call spttrf(n, d, e, info)

call dpttrf(n, d, e, info)

call cpttrf(n, d, e, info)

call zpttrf(n, d, e, info)

Fortran 95:

call pttrf(d, e [,info])

Description

This routine forms the factorization of a symmetric positive-definite or, for complex data,
Hermitian positive-definite tridiagonal matrix A:

 A = LDLH , where D is diagonal and L is unit lower bidiagonal. The factorization may also be
regarded as having the form A = UHDU , where D is unit upper bidiagonal.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

d REAL for spttrf, cpttrf
DOUBLE PRECISION for dpttrf, zpttrf.
Array, dimension (n). Contains the diagonal elements of A.

e REAL for spttrf
DOUBLE PRECISION for dpttrf
COMPLEX for cpttrf
DOUBLE COMPLEX for zpttrf.
Array, dimension (n - 1). Contains the sub-diagonal elements of A.

3-26

3 Intel® Math Kernel Library Reference Manual

Output Parameters

d Overwritten by the n diagonal elements of the diagonal matrix D from
the LDLH factorization of A.

e Overwritten by the (n - 1) off-diagonal elements of the unit bidiagonal
factor L or U from the factorization of A.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself)
is not positive-definite; if i < n , the factorization could not be
completed, while if i = n , the factorization was completed, but
d (n) = 0 .

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pttrf interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n-1).

?sytrf
Computes the Bunch-Kaufman factorization of a
symmetric matrix.

Syntax

Fortran 77:

call ssytrf(uplo, n, a, lda, ipiv, work, lwork, info)

call dsytrf(uplo, n, a, lda, ipiv, work, lwork, info)

call csytrf(uplo, n, a, lda, ipiv, work, lwork, info)

call zsytrf(uplo, n, a, lda, ipiv, work, lwork, info)

LAPACK Routines: Linear Equations 3

3-27

Fortran 95:

call sytrf(a [,uplo] [,ipiv] [,info])

Description

This routine forms the Bunch-Kaufman factorization of a symmetric matrix:

 if uplo='U', A = PUDUTPT

 if uplo='L', A = PLDLTPT

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of
D.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array a stores the upper triangular part of the matrix
A, and A is factored as PUDUTPT.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A; A is factored as PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).

a REAL for ssytrf
DOUBLE PRECISION for dsytrf
COMPLEX for csytrf
DOUBLE COMPLEX for zsytrf.
Array, DIMENSION (lda,*).
The array a contains either the upper or the lower triangular part of the
matrix A (see uplo).
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

work Same type as a. Workspace array of dimension lwork

lwork INTEGER. The size of the work array (lwork ≥ n).

3-28

3 Intel® Math Kernel Library Reference Manual

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a The upper or lower triangular part of a is overwritten by details of the
block-diagonal matrix D and the multipliers used to obtain the factor U
(or L).

work(1) If info=0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block structure of D.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and
column of A was interchanged with the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular. Division by 0 will occur if you use D for solving a
system of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sytrf interface are the following:

LAPACK Routines: Linear Equations 3

3-29

a Holds the matrix A of size (n,n).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L) are stored explicitly in
the corresponding elements of the array a.

If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix A + E,
where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors or (4/3)n3
for complex flavors.

After calling this routine, you can call the following:

?sytrs to solve AX = B;

?sycon to estimate the condition number of A;

?sytri to compute the inverse of A.

E c n()ε P U D UT PT≤

3-30

3 Intel® Math Kernel Library Reference Manual

?hetrf
Computes the Bunch-Kaufman factorization of a
complex Hermitian matrix.

Syntax

Fortran 77:

call chetrf(uplo, n, a, lda, ipiv, work, lwork, info)

call zhetrf(uplo, n, a, lda, ipiv, work, lwork, info)

Fortran 95:

call hetrf(a [,uplo] [,ipiv] [,info])

Description

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix:

 if uplo='U', A = PUDUHPT

 if uplo='L', A = PLDLHPT

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of
D.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array a stores the upper triangular part of the matrix
A, and A is factored as PUDUHPT.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A; A is factored as PLDLHPT.

n INTEGER. The order of matrix A (n ≥ 0).

LAPACK Routines: Linear Equations 3

3-31

a COMPLEX for chetrf
DOUBLE COMPLEX for zhetrf.
Array, DIMENSION (lda,*).
The array a contains either the upper or the lower triangular part of the
matrix A (see uplo).
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

work Same type as a. Workspace array of dimension lwork

lwork INTEGER. The size of the work array (lwork ≥ n)

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a The upper or lower triangular part of a is overwritten by details of the
block-diagonal matrix D and the multipliers used to obtain the factor U
(or L).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block structure of D.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and
column of A was interchanged with the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

3-32

3 Intel® Math Kernel Library Reference Manual

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular. Division by 0 will occur if you use D for solving a
system of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hetrf interface are the following:

a Holds the matrix A of size (n,n).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

This routine is suitable for Hermitian matrices that are not known to be positive-definite. If A is in
fact positive-definite, the routine does not perform interchanges, and no 2-by-2 diagonal blocks
occur in D.

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L) are stored explicitly in
the corresponding elements of the array a.

If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix A + E,
where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

E c n()ε P U D UT PT≤

LAPACK Routines: Linear Equations 3

3-33

The total number of floating-point operations is approximately (4/3)n3.

After calling this routine, you can call the following:

?hetrs to solve AX = B;

?hecon to estimate the condition number of A;

?hetri to compute the inverse of A.

?sptrf
Computes the Bunch-Kaufman factorization of a
symmetric matrix using packed storage.

Syntax

Fortran 77:

call ssptrf(uplo, n, ap, ipiv, info)

call dsptrf(uplo, n, ap, ipiv, info)

call csptrf(uplo, n, ap, ipiv, info)

call zsptrf(uplo, n, ap, ipiv, info)

Fortran 95:

call sptrf(a [,uplo] [,ipiv] [,info])

Description

This routine forms the Bunch-Kaufman factorization of a symmetric matrix A using packed
storage:

 if uplo='U', A = PUDUTPT

 if uplo='L', A = PLDLTPT

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U
and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

3-34

3 Intel® Math Kernel Library Reference Manual

Indicates whether the upper or lower triangular part of A is packed in the
array ap and how A is factored:

If uplo = 'U', the array ap stores the upper triangular part of the matrix
A, and A is factored as PUDUTPT.
If uplo = 'L', the array ap stores the lower triangular part of the matrix
A; A is factored as PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).

ap REAL for ssptrf
DOUBLE PRECISION for dsptrf
COMPLEX for csptrf
DOUBLE COMPLEX for zsptrf.
Array, DIMENSION at least max(1,n(n+1)/2).
The array ap contains either the upper or the lower triangular part of the
matrix A (as specified by uplo) in packed storage (see Matrix Storage
Schemes).

Output Parameters

ap The upper or lower triangle of A (as specified by uplo) is overwritten by
details of the block-diagonal matrix D and the multipliers used to obtain
the factor U (or L).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block structure of D.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and
column of A was interchanged with the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular. Division by 0 will occur if you use D for solving a
system of linear equations.

LAPACK Routines: Linear Equations 3

3-35

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sptrf interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L overwrite elements of the corresponding columns of the matrix A,
but additional row interchanges are required to recover U or L explicitly (which is seldom
necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L) are stored explicitly in
packed form.

If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix A + E,
where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (1/3)n3 for real flavors or (4/3)n3
for complex flavors.

After calling this routine, you can call the following:

?sptrs to solve AX = B;

?spcon to estimate the condition number of A;

?sptri to compute the inverse of A.

E c n()ε P U D UT PT≤

3-36

3 Intel® Math Kernel Library Reference Manual

?hptrf
Computes the Bunch-Kaufman factorization of a
complex Hermitian matrix using packed storage.

Syntax

Fortran 77:

call chptrf(uplo, n, ap, ipiv, info)

call zhptrf(uplo, n, ap, ipiv, info)

Fortran 95:

call hptrf(a [,uplo] [,ipiv] [,info])

Description

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix using packed storage:

 if uplo='U', A = PUDUHPT

 if uplo='L', A = PLDLHPT

where A is the input matrix, P is a permutation matrix, U and L are upper and lower triangular
matrices with unit diagonal, and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of
D.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is packed and
how A is factored:

If uplo = 'U', the array ap stores the upper triangular part of the matrix
A, and A is factored as PUDUHPT.
If uplo = 'L', the array ap stores the lower triangular part of the matrix
A; A is factored as PLDLHPT.

n INTEGER. The order of matrix A (n ≥ 0).

LAPACK Routines: Linear Equations 3

3-37

ap COMPLEX for chptrf
DOUBLE COMPLEX for zhptrf.
Array, DIMENSION at least max(1,n(n+1)/2).
The array ap contains either the upper or the lower triangular part of the
matrix A (as specified by uplo) in packed storage (see Matrix Storage
Schemes).

Output Parameters

ap The upper or lower triangle of A (as specified by uplo) is overwritten
by details of the block-diagonal matrix D and the multipliers used to
obtain the factor U (or L).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block structure of D.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and
column of A was interchanged with the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular. Division by 0 will occur if you use D for solving a
system of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hptrf interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

ipiv Holds the vector of length (n).

3-38

3 Intel® Math Kernel Library Reference Manual

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The
remaining elements of U and L are stored in the corresponding columns of the array a, but
additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If ipiv(i) = i for all i =1...n, then all off-diagonal elements of U (L) are stored explicitly in
the corresponding elements of the array a.

If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix A + E,
where

c(n) is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo = 'L'.

The total number of floating-point operations is approximately (4/3)n3.

After calling this routine, you can call the following:

?hptrs to solve AX = B;

?hpcon to estimate the condition number of A;

?hptri to compute the inverse of A.

E c n()ε P U D UT PT≤

LAPACK Routines: Linear Equations 3

3-39

Routines for Solving Systems of Linear Equations

This section describes the LAPACK routines for solving systems of linear equations. Before
calling most of these routines, you need to factorize the matrix of your system of equations (see
Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if
your system of equations has a triangular matrix.

?getrs
Solves a system of linear equations with an LU-factored
square matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call sgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call dgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call cgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call zgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)

Fortran 95:

call getrs(a, ipiv, b [,trans] [,info])

Description

This routine solves for X the following systems of linear equations:

AX = B if trans='N',

ATX = B if trans='T',

AHX = B if trans='C' (for complex matrices only).

Before calling this routine, you must call ?getrf to compute the LU factorization of A.

Input Parameters

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then AX = B is solved for X.

3-40

3 Intel® Math Kernel Library Reference Manual

If trans = 'T', then ATX = B is solved for X.

If trans = 'C', then AHX = B is solved for X.

n INTEGER. The order of A; the number of rows in B (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, b REAL for sgetrs
DOUBLE PRECISION for dgetrs
COMPLEX for cgetrs
DOUBLE COMPLEX for zgetrs.
Arrays: a(lda,*), b(ldb,*).

The array a contains the matrix A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

The second dimension of a must be at least max(1,n), the second
dimension of b at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?getrf.

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine getrs interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

LAPACK Routines: Linear Equations 3

3-41

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH might or
might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is 2n2 for
real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞ (A), call ?gecon.
To refine the solution and estimate the error, call ?gerfs.

?gbtrs
Solves a system of linear equations with an LU-factored
band matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call sgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call dgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call cgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call zgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

E c n()ε P L U≤

x x0– ∞
x ∞

--------------------- c n() cond A x(,)ε≤

3-42

3 Intel® Math Kernel Library Reference Manual

Fortran 95:

call gbtrs(a, b, ipiv, [,kl] [,trans] [,info])

Description

This routine solves for X the following systems of linear equations:

AX = B if trans='N',

ATX = B if trans='T',

AHX = B if trans='C' (for complex matrices only).

Here A is an LU-factored general band matrix of order n with kl non-zero sub-diagonals and ku
non-zero super-diagonals. Before calling this routine, you must call ?gbtrf to compute the LU
factorization of A.

Input Parameters

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

n INTEGER. The order of A; the number of rows in B (n ≥ 0).

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the band of A (ku ≥
0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab, b REAL for sgbtrs
DOUBLE PRECISION for dgbtrs
COMPLEX for cgbtrs
DOUBLE COMPLEX for zgbtrs.
Arrays: ab(ldab,*), b(ldb,*).

The array ab contains the matrix A in band storage (see Matrix Storage
Schemes).

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ 2kl + ku +1).

LAPACK Routines: Linear Equations 3

3-43

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gbtrf.

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbtrs interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size
(2*kl+ku+1,n).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length min(m,n).

kl If omitted, assumed kl=ku.

ku Restored as lda-2*kl-1.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (A + E)x = b, where

c(k) is a modest linear function of k, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

E c kl ku 1+ +()ε P L U≤

x x0– ∞
x ∞

--------------------- c kl ku 1+ +() cond A x(,)ε≤

3-44

3 Intel® Math Kernel Library Reference Manual

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH might or
might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector is 2n(ku +
2kl) for real flavors. The number of operations for complex flavors is 4 times greater. All these
estimates assume that kl and ku are much less than min(m,n).

To estimate the condition number κ∞ (A), call ?gbcon.
To refine the solution and estimate the error, call ?gbrfs.

?gttrs
Solves a system of linear equations with a tridiagonal
matrix using the LU factorization computed by ?gttrf.

Syntax

Fortran 77:

call sgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call dgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call cgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call zgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

Fortran 95:

call gttrs(dl, d, du, du2, b, ipiv [,trans] [,info])

Description

This routine solves for X the following systems of linear equations with multiple right hand sides:

AX = B if trans='N',

ATX = B if trans='T',

AHX = B if trans='C' (for complex matrices only).

Before calling this routine, you must call ?gttrf to compute the LU factorization of A.

LAPACK Routines: Linear Equations 3

3-45

Input Parameters

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then AX = B is solved for X.

If trans = 'T', then ATX = B is solved for X.

If trans = 'C', then AHX = B is solved for X.

n INTEGER. The order of A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides, i.e., the number of columns
in B (nrhs ≥ 0).

dl,d,du,du2,b REAL for sgttrs
DOUBLE PRECISION for dgttrs
COMPLEX for cgttrs
DOUBLE COMPLEX for zgttrf.
Arrays: dl(n - 1), d(n), du(n - 1), du2(n - 2), b(ldb,nrhs).
The array dl contains the (n - 1) multipliers that define the matrix L
from the LU factorization of A.
The array d contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
The array du contains the (n - 1) elements of the first super-diagonal of
U.
The array du2 contains the (n - 2) elements of the second
super-diagonal of U.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

ldb INTEGER. The leading dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION (n).
The ipiv array, as returned by ?gttrf.

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

3-46

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gttrs interface are the following:

dl Holds the vector of length (n-1).

d Holds the vector of length (n).

du Holds the vector of length (n-1).

du2 Holds the vector of length (n-2).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH might or
might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is 2n2 for
real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞ (A), call ?gecon.
To refine the solution and estimate the error, call ?gerfs.

E c n()ε P L U≤

x x0– ∞
x ∞

--------------------- c n() cond A x(,)ε≤

LAPACK Routines: Linear Equations 3

3-47

?potrs
Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite matrix.

Syntax

Fortran 77:

call spotrs(uplo, n, nrhs, a, lda, b, ldb, info)

call dpotrs(uplo, n, nrhs, a, lda, b, ldb, info)

call cpotrs(uplo, n, nrhs, a, lda, b, ldb, info)

call zpotrs(uplo, n, nrhs, a, lda, b, ldb, info)

Fortran 95:

call potrs(a, b [,uplo] [,info])

Description

This routine solves for X the system of linear equations AX = B with a symmetric positive-definite
or, for complex data, Hermitian positive-definite matrix A, given the Cholesky factorization of A:

 A = UHU if uplo ='U'

 A = LLH if uplo ='L'

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?potrf to compute the Cholesky factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the factor U of the Cholesky
factorization A = UHU.
If uplo = 'L', the array a stores the factor L of the Cholesky
factorization A = LLH.

3-48

3 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, b REAL for spotrs
DOUBLE PRECISION for dpotrs
COMPLEX for cpotrs
DOUBLE COMPLEX for zpotrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

The second dimension of a must be at least max(1,n), the second
dimension of b at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine potrs interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact solution of a
perturbed system of equations (A + E)x = b, where
c(n) is a modest linear function of n, and ε is the machine precision.

LAPACK Routines: Linear Equations 3

3-49

A similar estimate holds for uplo = 'L'.
If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞ (A).
The approximate number of floating-point operations for one right-hand side vector b is 2n2 for
real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞ (A), call ?pocon.
To refine the solution and estimate the error, call ?porfs.

?pptrs
Solves a system of linear equations with a packed
Cholesky-factored symmetric (Hermitian)
positive-definite matrix.

Syntax

Fortran 77:

call spptrs(uplo, n, nrhs, ap, b, ldb, info)

call dpptrs(uplo, n, nrhs, ap, b, ldb, info)

call cpptrs(uplo, n, nrhs, ap, b, ldb, info)

call zpptrs(uplo, n, nrhs, ap, b, ldb, info)

Fortran 95:

E c n()ε UH U≤

x x0– ∞
x ∞

--------------------- c n() cond A x,()ε≤

3-50

3 Intel® Math Kernel Library Reference Manual

call pptrs(a, b [,uplo] [,info])

Description

This routine solves for X the system of linear equations AX = B with a packed symmetric
positive-definite or, for complex data, Hermitian positive-definite matrix A, given the Cholesky
factorization of A:

 A = UHU if uplo ='U'

 A = LLH if uplo ='L'

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pptrf to compute the Cholesky factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo ='U', the array a stores the packed factor U of the Cholesky
factorization A = UHU.
If uplo ='L', the array a stores the packed factor L of the Cholesky
factorization A = LLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap, b REAL for spptrs
DOUBLE PRECISION for dpptrs
COMPLEX for cpptrs
DOUBLE COMPLEX for zpptrs.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must be
at least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

LAPACK Routines: Linear Equations 3

3-51

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pptrs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.

A similar estimate holds for uplo = 'L'.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

E c n()ε UH U≤

x x0– ∞
x ∞

--------------------- c n() cond A x,()ε≤

3-52

3 Intel® Math Kernel Library Reference Manual

The approximate number of floating-point operations for one right-hand side vector b is 2n2 for
real flavors and 8n2 for complex flavors.

To estimate the condition number κ∞(A), call ?ppcon.
To refine the solution and estimate the error, call ?pprfs.

?pbtrs
Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite band matrix.

Syntax

Fortran 77:

call spbtrs(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call dpbtrs(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call cpbtrs(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call zpbtrs(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

Fortran 95:

call pbtrs(a, b [,uplo] [,info])

Description

This routine solves for X the system of linear equations AX = B with a symmetric positive-definite
or, for complex data, Hermitian positive-definite band matrix A, given the Cholesky factorization
of A:

 A = UHU if uplo='U'

 A = LLH if uplo='L'

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pbtrf to compute the Cholesky factorization of A in
the band storage form.

LAPACK Routines: Linear Equations 3

3-53

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the factor U of the factorization A =
UHU in the band storage form.
If uplo = 'L', the array a stores the factor L of the factorization A =
LLH in the band storage form.

n INTEGER. The order of matrix A (n ≥ 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the
matrix A (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab, b REAL for spbtrs
DOUBLE PRECISION for dpbtrs
COMPLEX for cpbtrs
DOUBLE COMPLEX for zpbtrs.
Arrays: ab(ldab,*), b(ldb,*).

The array ab contains the Cholesky factor, as returned by the
factorization routine, in band storage form.

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ kd +1).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

3-54

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbtrs interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

b Holds the matrix B of size (n,nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes
For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (A + E)x = b, where

c(k) is a modest linear function of k, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The approximate number of floating-point operations for one right-hand side vector is 4n*kd for
real flavors and 16n*kd for complex flavors.

To estimate the condition number κ∞ (A), call ?pbcon.
To refine the solution and estimate the error, call ?pbrfs.

E c kd 1+()ε P UH U or E c kd 1+()ε P LH L≤ ≤

x x0– ∞
x ∞

--------------------- c kd 1+() cond A x,()ε≤

LAPACK Routines: Linear Equations 3

3-55

?pttrs
Solves a system of linear equations with a symmetric
(Hermitian) positive-definite tridiagonal matrix using
the factorization computed by ?pttrf.

Syntax

Fortran 77:

call spttrs(n, nrhs, d, e, b, ldb, info)

call dpttrs(n, nrhs, d, e, b, ldb, info)

call cpttrs(uplo, n, nrhs, d, e, b, ldb, info)

call zpttrs(uplo, n, nrhs, d, e, b, ldb, info)

Fortran 95:

call pttrs(d, e, b [,info])

call pttrs(d, e, b [,uplo] [,info])

Description

This routine solves for X a system of linear equations AX = B with a symmetric (Hermitian)
positive-definite tridiagonal matrix A.
Before calling this routine, you must call ?pttrf to compute the LDLH or UHDU factorization
of A.

Input Parameters

uplo CHARACTER*1. Used for cpttrs/zpttrs only.
Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the
tridiagonal matrix A is stored and how A is factored:
If uplo = 'U', the array e stores the superdiagonal of A, and A is
factored as UHDU;
If uplo = 'L', the array e stores the subdiagonal of A, and A is factored
as LDLH.

n INTEGER. The order of A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides, i.e., the number of columns
of the matrix B (nrhs ≥ 0).

3-56

3 Intel® Math Kernel Library Reference Manual

d REAL for spttrs, cpttrs
DOUBLE PRECISION for dpttrs, zpttrs.
Array, dimension (n). Contains the diagonal elements of the diagonal
matrix D from the factorization computed by ?pttrf.

e, b REAL for spttrs
DOUBLE PRECISION for dpttrs
COMPLEX for cpttrs
DOUBLE COMPLEX for zpttrs.
Arrays: e(n - 1), b(ldb,nrhs).
The array e contains the (n - 1) off-diagonal elements of the unit
bidiagonal factor U or L from the factorization computed by ?pttrf
(see uplo).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

ldb INTEGER. The leading dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pttrsf interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n-1).

b Holds the matrix B of size (n,nrhs).

uplo Used in complex flavors only. Must be 'U' or 'L'. The default value is 'U'.

LAPACK Routines: Linear Equations 3

3-57

?sytrs
Solves a system of linear equations with a UDU- or
LDL-factored symmetric matrix.

Syntax

Fortran 77:

call ssytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call dsytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call csytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call zsytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

Fortran 95:

call sytrs(a, b, ipiv [,uplo] [,info])

Description

This routine solves for X the system of linear equations AX = B with a symmetric matrix A, given
the Bunch-Kaufman factorization of A:

 if uplo='U', A = PUDUTPT

 if uplo='L', A = PLDLTPT

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor U
(or L) and the array ipiv returned by the factorization routine ?sytrf.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A = PUDUTPT.
If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).

3-58

3 Intel® Math Kernel Library Reference Manual

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sytrf.

a, b REAL for ssytrs
DOUBLE PRECISION for dsytrs
COMPLEX for csytrs
DOUBLE COMPLEX for zsytrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand
sides for the system of equations.

The second dimension of a must be at least max(1,n), the second
dimension of b at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sytrs interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

LAPACK Routines: Linear Equations 3

3-59

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately 2n2
for real flavors or 8n2 for complex flavors.

To estimate the condition number κ∞ (A), call ?sycon.
To refine the solution and estimate the error, call ?syrfs.

?hetrs
Solves a system of linear equations with a UDU- or
LDL-factored Hermitian matrix.

Syntax

Fortran 77:

call chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call zhetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

Fortran 95:

call hetrs(a, b, ipiv [,uplo] [,info])

E c n()ε P U D UT PT or E c n()ε P L D LT PT ≤≤

x x0– ∞
x ∞

--------------------- c n() cond A x,()ε≤

3-60

3 Intel® Math Kernel Library Reference Manual

Description

This routine solves for X the system of linear equations AX = B with a Hermitian matrix A, given
the Bunch-Kaufman factorization of A:

 if uplo ='U', A = PUDUHPT

 if uplo ='L', A = PLDLHPT

where P is a permutation matrix, U and L are upper and lower triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor U
(or L) and the array ipiv returned by the factorization routine ?hetrf.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A = PUDUHPT.

If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = PLDLHPT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.

a, b COMPLEX for chetrs.
DOUBLE COMPLEX for zhetrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand
sides for the system of equations.

The second dimension of a must be at least max(1,n), the second
dimension of b at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

LAPACK Routines: Linear Equations 3

3-61

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hetrs interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately 8n2.

To estimate the condition number κ∞ (A), call ?hecon.
To refine the solution and estimate the error, call ?herfs.

E c n()ε P U D UH PT or E c n()ε P L D LH PT ≤≤

x x0– ∞
x ∞

--------------------- c n() cond A x,()ε≤

3-62

3 Intel® Math Kernel Library Reference Manual

?sptrs
Solves a system of linear equations with a UDU- or
LDL-factored symmetric matrix using packed storage.

Syntax

Fortran 77:

call ssptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call dsptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call csptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zsptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

Fortran 95:

call sptrs(a, b, ipiv [,uplo] [,info])

Description

This routine solves for X the system of linear equations AX = B with a symmetric matrix A, given
the Bunch-Kaufman factorization of A:

 if uplo='U', A = PUDUTPT

 if uplo='L', A = PLDLTPT

where P is a permutation matrix, U and L are upper and lower packed triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B. You must supply the factor U (or L) and the
array ipiv returned by the factorization routine ?sptrf.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the packed factor U of the
factorization
A = PUDUTPT.
If uplo = 'L', the array ap stores the packed factor L of the
factorization
A = PLDLTPT.

LAPACK Routines: Linear Equations 3

3-63

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.

ap, b REAL for ssptrs
DOUBLE PRECISION for dsptrs
COMPLEX for csptrs
DOUBLE COMPLEX for zsptrs.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand
sides for the system of equations. The second dimension of b must be at
least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sptrs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

3-64

3 Intel® Math Kernel Library Reference Manual

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately 2n2
for real flavors or 8n2 for complex flavors.

To estimate the condition number κ∞ (A), call ?spcon.
To refine the solution and estimate the error, call ?sprfs.

?hptrs
Solves a system of linear equations with a UDU- or
LDL-factored Hermitian matrix using packed storage.

Syntax

Fortran 77:

call chptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zhptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)

Fortran 95:

call hptrs(a, b, ipiv [,uplo] [,info])

E c n()ε P U D UT PT or E c n()ε P L D LT PT ≤≤

x x0– ∞
x ∞

--------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations 3

3-65

Description

This routine solves for X the system of linear equations AX = B with a Hermitian matrix A, given
the Bunch-Kaufman factorization of A:

 if uplo='U', A = PUDUHPT

 if uplo='L', A = PLDLHPT

where P is a permutation matrix, U and L are upper and lower packed triangular matrices with unit
diagonal, and D is a symmetric block-diagonal matrix. The system is solved with multiple
right-hand sides stored in the columns of the matrix B.

You must supply to this routine the arrays ap (containing U or L) and ipiv in the form returned
by the factorization routine ?hptrf.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the packed factor U of the
factorization
A = PUDUHPT.
If uplo = 'L', the array ap stores the packed factor L of the
factorization
A = PLDLHPT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hptrf.

ap, b COMPLEX for chptrs.
DOUBLE COMPLEX for zhptrs.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand
sides for the system of equations. The second dimension of b must be at
least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

3-66

3 Intel® Math Kernel Library Reference Manual

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hptrs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (A + E)x = b, where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A).

The total number of floating-point operations for one right-hand side vector is approximately 8n2
for complex flavors.

To estimate the condition number κ∞ (A), call ?hpcon.
To refine the solution and estimate the error, call ?hprfs.

E c n()ε P U D UH PT or E c n()ε P L D LH PT ≤≤

x x0– ∞
x ∞

--------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations 3

3-67

?trtrs
Solves a system of linear equations with a triangular
matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call strtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call dtrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call ctrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call ztrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

Fortran 95:

call trtrs(a, b [,uplo] [,trans] [,diag] [,info])

Description

This routine solves for X the following systems of linear equations with a triangular matrix A, with
multiple right-hand sides stored in B:

AX = B if trans='N',

ATX = B if trans='T',

AHX = B if trans='C' (for complex matrices only).

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

If trans = 'N', then AX = B is solved for X.

If trans = 'T', then ATX = B is solved for X.

If trans = 'C', then AHX = B is solved for X.

3-68

3 Intel® Math Kernel Library Reference Manual

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements of A are
assumed to be 1 and not referenced in the array a.

n INTEGER. The order of A; the number of rows in B (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, b REAL for strtrs
DOUBLE PRECISION for dtrtrs
COMPLEX for ctrtrs
DOUBLE COMPLEX for ztrtrs.
Arrays: a(lda,*), b(ldb,*).

The array a contains the matrix A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

The second dimension of a must be at least max(1,n), the second
dimension of b at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trtrs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the matrix A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

LAPACK Routines: Linear Equations 3

3-69

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.
If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A,x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller than κ∞(A); the condition number of AT and AH might or
might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is n2 for real
flavors and 4n2 for complex flavors.

To estimate the condition number κ∞ (A), call ?trcon.
To estimate the error in the solution, call ?trrfs.

?tptrs
Solves a system of linear equations with a packed
triangular matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call stptrs(uplo, trans, diag, n, nrhs, ap, b, ldb, info)

call dtptrs(uplo, trans, diag, n, nrhs, ap, b, ldb, info)

call ctptrs(uplo, trans, diag, n, nrhs, ap, b, ldb, info)

call ztptrs(uplo, trans, diag, n, nrhs, ap, b, ldb, info)

E c n()ε A≤

x x0– ∞
x ∞

--------------------- c n() cond A x,()ε, provided c n() cond A x,()ε 1<≤

3-70

3 Intel® Math Kernel Library Reference Manual

Fortran 95:

call tptrs(a, b [,uplo] [,trans] [,diag] [,info])

Description

This routine solves for X the following systems of linear equations with a packed triangular matrix
A, with multiple right-hand sides stored in B:

AX = B if trans='N',

ATX = B if trans='T',

AHX = B if trans='C' (for complex matrices only).

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

If trans = 'N', then AX = B is solved for X.

If trans = 'T', then ATX = B is solved for X.

If trans = 'C', then AHX = B is solved for X.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements are assumed
to be 1 and not referenced in the array ap.

n INTEGER. The order of A; the number of rows in B (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap, b REAL for stptrs
DOUBLE PRECISION for dtptrs
COMPLEX for ctptrs
DOUBLE COMPLEX for ztptrs.
Arrays: ap(*), b(ldb,*)

LAPACK Routines: Linear Equations 3

3-71

The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the matrix A in packed storage
(see Matrix Storage Schemes).

The array b contains the matrix B whose columns are the right-hand
sides for the system of equations. The second dimension of b must be at
least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tptrs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A, x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

E c n()ε A≤

3-72

3 Intel® Math Kernel Library Reference Manual

Note that cond(A, x) can be much smaller than κ∞(A); the condition number of AT and AH might or
might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is n2 for real
flavors and 4n2 for complex flavors.

To estimate the condition number κ∞ (A), call ?tpcon.
To estimate the error in the solution, call ?tprfs.

?tbtrs
Solves a system of linear equations with a band
triangular matrix, with multiple right-hand sides.

Syntax

Fortran 77:

call stbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call dtbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call ctbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call ztbtrs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

Fortran 95:

call tbtrs(a, b [,uplo] [,trans] [,diag] [,info])

Description

This routine solves for X the following systems of linear equations with a band triangular matrix A,
with multiple right-hand sides stored in B:

AX = B if trans='N',

ATX = B if trans='T',

AHX = B if trans='C' (for complex matrices only).

x x0– ∞
x ∞

--------------------- c n() cond A x,()ε, provided c n() cond A x,()ε 1<≤

LAPACK Routines: Linear Equations 3

3-73

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

If trans = 'N', then AX = B is solved for X.

If trans = 'T', then ATX = B is solved for X.

If trans = 'C', then AHX = B is solved for X.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements are assumed
to be 1 and not referenced in the array ab.

n INTEGER. The order of A; the number of rows in B (n ≥ 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the
matrix A (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab, b REAL for stbtrs
DOUBLE PRECISION for dtbtrs
COMPLEX for ctbtrs
DOUBLE COMPLEX for ztbtrs.
Arrays: ab(ldab,*), b(ldb,*).

The array ab contains the matrix A in band storage form.

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

The second dimension of ab must be at least max(1, n),
the second dimension of b at least max(1, nrhs).

ldab INTEGER. The first dimension of ab; ldab ≥ kd + 1.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

3-74

3 Intel® Math Kernel Library Reference Manual

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tbtrs interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n)

b Holds the matrix B of size (n,nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of
equations (A + E)x = b where

c(n) is a modest linear function of n, and ε is the machine precision.
If x0 is the true solution, the computed solution x satisfies this error bound:

where cond(A, x) = || |A-1| |A| |x| ||∞ / ||x||∞ ≤ ||A-1||∞ ||A||∞ = κ∞(A).

Note that cond(A, x) can be much smaller than κ∞(A); the condition number of AT and AH might or
might not be equal to κ∞(A).

The approximate number of floating-point operations for one right-hand side vector b is 2n*kd
for real flavors and 8n*kd for complex flavors.

E c n()ε A≤

x x0– ∞
x ∞

--------------------- c n() cond A x,()ε, provided c n() cond A x,()ε 1<≤

LAPACK Routines: Linear Equations 3

3-75

To estimate the condition number κ∞ (A), call ?tbcon.
To estimate the error in the solution, call ?tbrfs.

3-76

3 Intel® Math Kernel Library Reference Manual

Routines for Estimating the Condition Number

This section describes the LAPACK routines for estimating the condition number of a matrix. The
condition number is used for analyzing the errors in the solution of a system of linear equations
(see Error Analysis). Since the condition number may be arbitrarily large when the matrix is
nearly singular, the routines actually compute the reciprocal condition number.

?gecon
Estimates the reciprocal of the condition number of a
general matrix in either the 1-norm or the
infinity-norm.

Syntax

Fortran 77:

call sgecon(norm, n, a, lda, anorm, rcond, work, iwork, info)

call dgecon(norm, n, a, lda, anorm, rcond, work, iwork, info)

call cgecon(norm, n, a, lda, anorm, rcond, work, rwork, info)

call zgecon(norm, n, a, lda, anorm, rcond, work, rwork, info)

Fortran 95:

call gecon(a, anorm, rcond [,norm] [,info])

Description

This routine estimates the reciprocal of the condition number of a general matrix A in either the
1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = ||A||∞ ||A−1||∞ = κ1 (AT) = κ1 (AH) .

Before calling this routine:

• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)

• call ?getrf to compute the LU factorization of A.

LAPACK Routines: Linear Equations 3

3-77

Input Parameters

norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).

If norm = 'I', then the routine estimates κ∞ (A).

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for sgecon
DOUBLE PRECISION for dgecon
COMPLEX for cgecon
DOUBLE COMPLEX for zgecon.
Arrays: a(lda,*), work(*).

The array a contains the LU-factored matrix A, as returned by ?getrf.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 4*n) for real flavors
and max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgecon
DOUBLE PRECISION for zgecon
Workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

3-78

3 Intel® Math Kernel Library Reference Manual

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gecon interface are the following:

a Holds the matrix A of size (n,n).

norm Must be '1', 'O', or 'I'. The default value is '1'.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems
of linear equations Ax = b or AHx = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n2 floating-point operations for real flavors and 8n2 for complex
flavors.

?gbcon
Estimates the reciprocal of the condition number of a
band matrix in either the 1-norm or the infinity-norm.

Syntax

Fortran 77:

call sgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info)

call dgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info)

call cgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info)

call zgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info)

Fortran 95:

call gbcon(a, ipiv, anorm, rcond [,kl] [,norm] [,info])

LAPACK Routines: Linear Equations 3

3-79

Description

This routine estimates the reciprocal of the condition number of a general band matrix A in either
the 1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = ||A||∞ ||A−1||∞ = κ1 (AT) = κ1 (AH) .

Before calling this routine:

• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?gbtrf to compute the LU factorization of A.

Input Parameters

norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).
If norm = 'I', then the routine estimates κ∞ (A).

n INTEGER. The order of the matrix A (n ≥ 0).

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the band of A (ku ≥
0).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ 2kl + ku +1).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gbtrf.

ab, work REAL for sgbcon
DOUBLE PRECISION for dgbcon
COMPLEX for cgbcon
DOUBLE COMPLEX for zgbcon.

Arrays: ab(ldab,*), work(*).

The array ab contains the factored band matrix A,
as returned by ?gbtrf.

The second dimension of ab must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

3-80

3 Intel® Math Kernel Library Reference Manual

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgbcon
DOUBLE PRECISION for zgbcon
Workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbcon interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size
(2*kl+ku+1,n).

ipiv Holds the vector of length (n).

norm Must be '1', 'O', or 'I'. The default value is '1'.

kl If omitted, assumed kl = ku.

ku Restored as ku = lda-2*kl-1.

LAPACK Routines: Linear Equations 3

3-81

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems
of linear equations Ax = b or AHx = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n(ku + 2kl) floating-point operations for real flavors and 8n(ku
+ 2kl) for complex flavors.

?gtcon
Estimates the reciprocal of the condition number of a
tridiagonal matrix using the factorization computed by
?gttrf.

Syntax

Fortran 77:

call sgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info)

call dgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info)

call cgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info)

call zgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info)

Fortran 95:

call gtcon(dl, d, du, du2, ipiv, anorm, rcond [,norm] [,info])

Description

This routine estimates the reciprocal of the condition number of a real or complex tridiagonal
matrix A in either the 1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1
 κ∞ (A) = ||A||∞ ||A−1||∞

An estimate is obtained for ||A−1||, and the reciprocal of the condition number is computed as
rcond = 1 / (||A|| ||A−1||).

Before calling this routine:

• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?gttrf to compute the LU factorization of A.

3-82

3 Intel® Math Kernel Library Reference Manual

Input Parameters

norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).

If norm = 'I', then the routine estimates κ∞ (A).

n INTEGER. The order of the matrix A (n ≥ 0).

dl,d,du,du2 REAL for sgtcon
DOUBLE PRECISION for dgtcon
COMPLEX for cgtcon
DOUBLE COMPLEX for zgtcon.
Arrays: dl(n - 1), d(n), du(n - 1), du2(n - 2).
The array dl contains the (n - 1) multipliers that define the matrix L
from the LU factorization of A as computed by ?gttrf.
The array d contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
The array du contains the (n - 1) elements of the first super-diagonal of
U.
The array du2 contains the (n - 2) elements of the second
super-diagonal of U.

ipiv INTEGER.
Array, DIMENSION (n).
The array of pivot indices, as returned by ?gttrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

work REAL for sgtcon
DOUBLE PRECISION for dgtcon
COMPLEX for cgtcon
DOUBLE COMPLEX for zgtcon.
Workspace array, DIMENSION (2*n).

iwork INTEGER.
Workspace array, DIMENSION (n).
Used for real flavors only.

LAPACK Routines: Linear Equations 3

3-83

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gtcon interface are the following:

dl Holds the vector of length (n-1).

d Holds the vector of length (n).

du Holds the vector of length (n-1).

du2 Holds the vector of length (n-2).

ipiv Holds the vector of length (n).

norm Must be '1', 'O', or 'I'. The default value is '1'.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n2 floating-point operations for real flavors and 8n2 for complex flavors.

3-84

3 Intel® Math Kernel Library Reference Manual

?pocon
Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite matrix.

Syntax

Fortran 77:

call spocon(uplo, n, a, lda, anorm, rcond, work, iwork, info)

call dpocon(uplo, n, a, lda, anorm, rcond, work, iwork, info)

call cpocon(uplo, n, a, lda, anorm, rcond, work, rwork, info)

call zpocon(uplo, n, a, lda, anorm, rcond, work, rwork, info)

Fortran 95:

call pocon(a, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian)
positive-definite matrix A:

 κ1(A) = ||A||1 ||A−1||1 (since A is symmetric or Hermitian, κ∞(A) = κ1(A)).
Before calling this routine:
• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?potrf to compute the Cholesky factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A = UHU.

If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

LAPACK Routines: Linear Equations 3

3-85

a, work REAL for spocon
DOUBLE PRECISION for dpocon
COMPLEX for cpocon
DOUBLE COMPLEX for zpocon.
Arrays: a(lda,*), work(*).

The array a contains the factored matrix A, as returned by ?potrf.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpocon
DOUBLE PRECISION for zpocon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

3-86

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pocon interface are the following:

a Holds the matrix A of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n2 floating-point operations for real flavors and 8n2 for complex flavors.

?ppcon
Estimates the reciprocal of the condition number of a
packed symmetric (Hermitian) positive-definite matrix.

Syntax

Fortran 77:

call sppcon(uplo, n, ap, anorm, rcond, work, iwork, info)

call dppcon(uplo, n, ap, anorm, rcond, work, iwork, info)

call cppcon(uplo, n, ap, anorm, rcond, work, rwork, info)

call zppcon(uplo, n, ap, anorm, rcond, work, rwork, info)

Fortran 95:

call ppcon(a, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a packed symmetric (Hermitian)
positive-definite matrix A:

LAPACK Routines: Linear Equations 3

3-87

 κ1(A) = ||A||1 ||A−1||1 (since A is symmetric or Hermitian, κ∞(A) = κ1(A)).
Before calling this routine:
• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?pptrf to compute the Cholesky factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the upper triangular factor U of the
factorization A = UHU.

If uplo = 'L', the array ap stores the lower triangular factor L of the
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

ap, work REAL for sppcon
DOUBLE PRECISION for dppcon
COMPLEX for cppcon
DOUBLE COMPLEX for zppcon.
Arrays: ap(*), work(*).

The array ap contains the packed factored matrix A, as returned by
?pptrf.
The dimension of ap must be at least max(1,n(n+1)/2).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cppcon
DOUBLE PRECISION for zppcon
Workspace array, DIMENSION at least max(1, n).

3-88

3 Intel® Math Kernel Library Reference Manual

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ppcon interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n2 floating-point operations for real flavors and 8n2 for complex flavors.

LAPACK Routines: Linear Equations 3

3-89

?pbcon
Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite band matrix.

Syntax

Fortran 77:

call spbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)

call dpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)

call cpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

call zpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

Fortran 95:

call pbcon(a, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian)
positive-definite band matrix A:
 κ1(A) = ||A||1 ||A−1||1 (since A is symmetric or Hermitian, κ∞ (A) = κ1(A)).
Before calling this routine:

• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?pbtrf to compute the Cholesky factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ab stores the upper triangular factor U of the
Cholesky factorization A = UHU.
If uplo = 'L', the array ab stores the lower triangular factor L of the
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the
matrix A (kd ≥ 0).

3-90

3 Intel® Math Kernel Library Reference Manual

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ kd +1).

ab, work REAL for spbcon
DOUBLE PRECISION for dpbcon
COMPLEX for cpbcon
DOUBLE COMPLEX for zpbcon.

Arrays: ab(ldab,*), work(*).

The array ab contains the factored matrix A in band form, as returned
by ?pbtrf.
The second dimension of ab must be at least max(1, n),
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpbcon
DOUBLE PRECISION for zpbcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Linear Equations 3

3-91

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbcon interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
4n(kd + 1) floating-point operations for real flavors and 16n(kd + 1) for complex flavors.

?ptcon
Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite tridiagonal
matrix.

Syntax

Fortran 77:

call sptcon(n, d, e, anorm, rcond, work, info)

call dptcon(n, d, e, anorm, rcond, work, info)

call cptcon(n, d, e, anorm, rcond, work, info)

call zptcon(n, d, e, anorm, rcond, work, info)

Fortran 95:

call ptcon(d, e, anorm, rcond [,info])

3-92

3 Intel® Math Kernel Library Reference Manual

Description

This routine computes the reciprocal of the condition number (in the 1-norm) of a real symmetric
or complex Hermitian positive-definite tridiagonal matrix using the factorization A = LDLH or A
= UHDU computed by ?pttrf :

 κ1(A) = ||A||1 ||A−1||1 (since A is symmetric or Hermitian, κ∞ (A) = κ1(A)).

The norm ||A−1|| is computed by a direct method, and the reciprocal of the condition number is
computed as rcond = 1 / (||A|| ||A−1||).
Before calling this routine:
• compute anorm as ||A||1 = maxj Σi |aij|
• call ?pttrf to compute the factorization of A.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

d, work REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Arrays, dimension (n).

The array d contains the n diagonal elements of the diagonal matrix D
from the factorization of A, as computed by ?pttrf ;

work is a workspace array.

e REAL for sptcon
DOUBLE PRECISION for dptcon
COMPLEX for cptcon
DOUBLE COMPLEX for zptcon.
Array, DIMENSION (n - 1).
Contains off-diagonal elements of the unit bidiagonal factor U or L from
the factorization computed by ?pttrf .

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The 1- norm of the original matrix A (see Description).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular

LAPACK Routines: Linear Equations 3

3-93

(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned or
even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gtcon interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n-1).

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
4n(kd + 1) floating-point operations for real flavors and 16n(kd + 1) for complex flavors.

?sycon
Estimates the reciprocal of the condition number of a
symmetric matrix.

Syntax

Fortran 77:

call ssycon(uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

call dsycon(uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

call csycon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)

3-94

3 Intel® Math Kernel Library Reference Manual

call zsycon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)

Fortran 95:

call sycon(a, ipiv, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a symmetric matrix A:

 κ1(A) = ||A||1 ||A−1||1 (since A is symmetric, κ∞(A) = κ1(A)).

Before calling this routine:
• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?sytrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A = PUDUTPT.
If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).

a, work REAL for ssycon
DOUBLE PRECISION for dsycon
COMPLEX for csycon
DOUBLE COMPLEX for zsycon.
Arrays: a(lda,*), work(*).

The array a contains the factored matrix A, as returned by ?sytrf.
The second dimension of a must be at least max(1,n).

The array work is a workspace for the routine.

The dimension of work must be at least max(1, 2*n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?sytrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

LAPACK Routines: Linear Equations 3

3-95

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned or
even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sycon interface are the following:

a Holds the matrix A of size (n,n).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ.
A call to this routine involves solving a number of systems of linear equations Ax = b; the number
is usually 4 or 5 and never more than 11. Each solution requires approximately 2n2 floating-point
operations for real flavors and 8n2 for complex flavors.

3-96

3 Intel® Math Kernel Library Reference Manual

?hecon
Estimates the reciprocal of the condition number of a
Hermitian matrix.

Syntax

Fortran 77:

call checon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)

call zhecon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)

Fortran 95:

call hecon(a, ipiv, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a Hermitian matrix A:

 κ1(A) = ||A||1 ||A−1||1 (since A is Hermitian, κ∞(A) = κ1(A)).

Before calling this routine:
• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?hetrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A = PUDUHPT.

If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = PLDLHPT.

n INTEGER. The order of matrix A (n ≥ 0).

a, work COMPLEX for checon
DOUBLE COMPLEX for zhecon.
Arrays: a(lda,*), work(*).

The array a contains the factored matrix A, as returned by ?hetrf.
The second dimension of a must be at least max(1,n).

LAPACK Routines: Linear Equations 3

3-97

The array work is a workspace for the routine.

The dimension of work must be at least max(1, 2*n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?hetrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned or
even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hecon interface are the following:

a Holds the matrix A of size (n,n).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

3-98

3 Intel® Math Kernel Library Reference Manual

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 5 and never more than 11. Each solution requires approximately 8n2
floating-point operations.

?spcon
Estimates the reciprocal of the condition number of a
packed symmetric matrix.

Syntax

Fortran 77:

call sspcon(uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)

call dspcon(uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)

call cspcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

call zspcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

Fortran 95:

call spcon(a, ipiv, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a packed symmetric matrix A:

 κ1(A) = ||A||1 ||A−1||1 (since A is symmetric, κ∞(A) = κ1(A)).

Before calling this routine:
• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?sptrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed upper triangular factor U

LAPACK Routines: Linear Equations 3

3-99

of the factorization A = PUDUTPT.
If uplo = 'L', the array ap stores the packed lower triangular factor L
of the factorization A = PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).

ap, work REAL for sspcon
DOUBLE PRECISION for dspcon
COMPLEX for cspcon
DOUBLE COMPLEX for zspcon.
Arrays: ap(*), work(*).

The array ap contains the packed factored matrix A, as returned by
?sptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

The array work is a workspace for the routine.

The dimension of work must be at least max(1, 2*n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?sptrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned or
even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

3-100

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spcon interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n2 floating-point operations for real flavors and 8n2 for complex flavors.

?hpcon
Estimates the reciprocal of the condition number of a
packed Hermitian matrix.

Syntax

Fortran 77:

call chpcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

call zhpcon(uplo, n, ap, ipiv, anorm, rcond, work, info)

Fortran 95:

call hpcon(a, ipiv, anorm, rcond [,uplo] [,info])

Description

This routine estimates the reciprocal of the condition number of a Hermitian matrix A:

 κ1(A) = ||A||1 ||A−1||1 (since A is Hermitian, κ∞(A) = κ1(A)).

LAPACK Routines: Linear Equations 3

3-101

Before calling this routine:
• compute anorm (either ||A||1 = maxj Σi |aij| or ||A||∞ = maxi Σj |aij|)
• call ?hptrf to compute the factorization of A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the packed upper triangular factor U
of the factorization A = PUDUTPT.

If uplo = 'L', the array ap stores the packed lower triangular factor L
of the factorization A = PLDLTPT.

n INTEGER. The order of matrix A (n ≥ 0).

ap, work COMPLEX for chpcon
DOUBLE COMPLEX for zhpcon.
Arrays: ap(*), work(*).

The array ap contains the packed factored matrix A, as returned by
?hptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

The array work is a workspace for the routine.
The dimension of work must be at least max(1, 2*n).

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The array ipiv, as returned by ?hptrf.

anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned or
even singular.

3-102

3 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbcon interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

ipiv Holds the vector of length (n).

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 5 and never more than 11. Each solution requires approximately 8n2
floating-point operations.

?trcon
Estimates the reciprocal of the condition number of a
triangular matrix.

Syntax

Fortran 77:

call strcon(norm, uplo, diag, N, a, lda, rcond, work, iwork, info)

call dtrcon(norm, uplo, diag, N, a, lda, rcond, work, iwork, info)

call ctrcon(norm, uplo, diag, N, a, lda, rcond, work, rwork, info)

call ztrcon(norm, uplo, diag, N, a, lda, rcond, work, rwork, info)

Fortran 95:

call trcon(a, rcond [,uplo] [,diag] [,norm] [,info])

LAPACK Routines: Linear Equations 3

3-103

Description

This routine estimates the reciprocal of the condition number of a triangular matrix A in either the
1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = ||A||∞ ||A−1||∞ = κ1 (AT) = κ1 (AH) .

Input Parameters

norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).

If norm = 'I', then the routine estimates κ∞ (A).

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:

If uplo = 'U', the array a stores the upper triangle of A, other array
elements are not referenced.

If uplo = 'L', the array a stores the lower triangle of A, other array
elements are not referenced.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements are assumed
to be 1 and not referenced in the array a.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for strcon
DOUBLE PRECISION for dtrcon
COMPLEX for ctrcon
DOUBLE COMPLEX for ztrcon.
Arrays: a(lda,*), work(*).

The array a contains the matrix A.
The second dimension of a must be at least max(1,n).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

3-104

3 Intel® Math Kernel Library Reference Manual

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctrcon
DOUBLE PRECISION for ztrcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned or
even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trcon interface are the following:

a Holds the matrix A of size (n,n).

norm Must be '1', 'O', or 'I'. The default value is '1'.

uplo Must be 'U' or 'L'. The default value is 'U'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
n2 floating-point operations for real flavors and 4n2 operations for complex flavors.

LAPACK Routines: Linear Equations 3

3-105

?tpcon
Estimates the reciprocal of the condition number of a
packed triangular matrix.

Syntax

Fortran 77:

call stpcon(norm, uplo, diag, n, ap, rcond, work, iwork, info)

call dtpcon(norm, uplo, diag, n, ap, rcond, work, iwork, info)

call ctpcon(norm, uplo, diag, n, ap, rcond, work, rwork, info)

call ztpcon(norm, uplo, diag, n, ap, rcond, work, rwork, info)

Fortran 95:

call tpcon(a, rcond [,uplo] [,diag] [,norm] [,info])

Description

This routine estimates the reciprocal of the condition number of a packed triangular matrix A in
either the 1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = ||A||∞ ||A−1||∞ = κ1 (AT) = κ1 (AH) .

Input Parameters

norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).

If norm = 'I', then the routine estimates κ∞ (A).

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:

If uplo = 'U', the array ap stores the upper triangle of A in packed
form.

If uplo = 'L', the array ap stores the lower triangle of A in packed
form.

diag CHARACTER*1. Must be 'N' or 'U'.

3-106

3 Intel® Math Kernel Library Reference Manual

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements are assumed
to be 1 and not referenced in the array ap.

n INTEGER. The order of the matrix A (n ≥ 0).

ap, work REAL for stpcon
DOUBLE PRECISION for dtpcon
COMPLEX for ctpcon
DOUBLE COMPLEX for ztpcon.
Arrays: ap(*), work(*).

The array ap contains the packed matrix A.
The dimension of ap must be at least max(1,n(n+1)/2).
The array work is a workspace for the routine.

The dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctpcon
DOUBLE PRECISION for ztpcon
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Linear Equations 3

3-107

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tpcon interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

norm Must be '1', 'O', or 'I'. The default value is '1'.

uplo Must be 'U' or 'L'. The default value is 'U'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
n2 floating-point operations for real flavors and 4n2 operations for complex flavors.

?tbcon
Estimates the reciprocal of the condition number of a
triangular band matrix.

Syntax

Fortran 77:

call stbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)

call dtbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)

call ctbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info)

call ztbcon(norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info)

Fortran 95:

call tbcon(a, rcond [,uplo] [,diag] [,norm] [,info])

3-108

3 Intel® Math Kernel Library Reference Manual

Description

This routine estimates the reciprocal of the condition number of a triangular band matrix A in
either the 1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = ||A||∞ ||A−1||∞ = κ1 (AT) = κ1 (AH) .

Input Parameters

norm CHARACTER*1. Must be '1' or 'O' or 'I'.

If norm = '1' or 'O', then the routine estimates κ1(A).

If norm = 'I', then the routine estimates κ∞ (A).

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:
If uplo = 'U', the array ap stores the upper triangle of A in packed
form.
If uplo = 'L', the array ap stores the lower triangle of A in packed
form.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements are assumed
to be 1 and not referenced in the array ab.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the
matrix A (kd ≥ 0).

ab, work REAL for stbcon
DOUBLE PRECISION for dtbcon
COMPLEX for ctbcon
DOUBLE COMPLEX for ztbcon.
Arrays: ab(ldab,*), work(*).

The array ab contains the band matrix A.
The second dimension of ab must be at least max(1,n)).
The array work is a workspace for the routine.
The dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

LAPACK Routines: Linear Equations 3

3-109

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ kd +1).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctbcon
DOUBLE PRECISION for ztbcon.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets
rcond = 0 if the estimate underflows; in this case the matrix is singular
(to working precision). However, anytime rcond is small compared to
1.0, for the working precision, the matrix may be poorly conditioned or
even singular.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tbcon interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

norm Must be '1', 'O', or 'I'. The default value is '1'.

uplo Must be 'U' or 'L'. The default value is 'U'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in
practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations

3-110

3 Intel® Math Kernel Library Reference Manual

Ax = b; the number is usually 4 or 5 and never more than 11. Each solution requires approximately
2n(kd + 1) floating-point operations for real flavors and 8n(kd + 1) operations for complex
flavors.

Refining the Solution and Estimating Its Error

This section describes the LAPACK routines for refining the computed solution of a system of
linear equations and estimating the solution error. You can call these routines after factorizing the
matrix of the system of equations and computing the solution (see Routines for Matrix
Factorization and Routines for Solving Systems of Linear Equations).

?gerfs
Refines the solution of a system of linear equations with
a general matrix and estimates its error.

Syntax

Fortran 77:

call sgerfs(trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call dgerfs(trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call cgerfs(trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

call zgerfs(trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

Fortran 95:

call gerfs(a, af, ipiv, b, x [,trans] [,ferr] [,berr] [,info])

LAPACK Routines: Linear Equations 3

3-111

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B
or ATX = B or AHX = B with a general matrix A, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error β. This error is the
smallest relative perturbation in elements of A and b such that x is the exact solution of the
perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?getrf
• call the solver routine ?getrs.

Input Parameters

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', the system has the form AX = B.

If trans = 'T', the system has the form ATX = B.

If trans = 'C', the system has the form AHX = B.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a,af,b,x,work REAL for sgerfs
DOUBLE PRECISION for dgerfs
COMPLEX for cgerfs
DOUBLE COMPLEX for zgerfs.

Arrays:

a(lda,*) contains the original matrix A, as supplied
to ?getrf.

af(ldaf,*) contains the factored matrix A, as returned by ?getrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

3-112

3 Intel® Math Kernel Library Reference Manual

work (*) is a workspace array.

The second dimension of a and af must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of
work must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?getrf.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgerfs
DOUBLE PRECISION for zgerfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gerfs interface are the following:

LAPACK Routines: Linear Equations 3

3-113

a Holds the matrix A of size (n,n).

af Holds the matrix AF of size (n,n).

ipiv Holds the vector of length (n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2
floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition,
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and
never more than 11. Each solution requires approximately 2n2 floating-point operations for real
flavors or 8n2 for complex flavors.

?gbrfs
Refines the solution of a system of linear equations with
a general band matrix and estimates its error.

Syntax

Fortran 77:

call sgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx,
ferr, berr, work, iwork, info)

call dgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx,
ferr, berr, work, iwork, info)

3-114

3 Intel® Math Kernel Library Reference Manual

call cgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx,
ferr, berr, work, rwork, info)

call zgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx,
ferr, berr, work, rwork, info)

Fortran 95:

call gbrfs(a, af, ipiv, b, x [,kl] [,trans] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B
or ATX = B or AHX = B with a band matrix A, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error β. This error is the
smallest relative perturbation in elements of A and b such that x is the exact solution of the
perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?gbtrf

• call the solver routine ?gbtrs.

Input Parameters

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', the system has the form AX = B.

If trans = 'T', the system has the form ATX = B.

If trans = 'C', the system has the form AHX = B.

n INTEGER. The order of the matrix A (n ≥ 0).

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the band of A (ku ≥
0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

LAPACK Routines: Linear Equations 3

3-115

ab,afb,b,x,work REAL for sgbrfs
DOUBLE PRECISION for dgbrfs
COMPLEX for cgbrfs
DOUBLE COMPLEX for zgbrfs.

Arrays:

ab(ldab,*) contains the original band matrix A, as supplied to
?gbtrf, but stored in rows from 1 to kl + ku + 1.

afb(ldafb,*) contains the factored band matrix A, as returned by
?gbtrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of ab and afb must be at least max(1,n); the
second dimension of b and x must be at least max(1,nrhs); the
dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

ldab INTEGER. The first dimension of ab.

ldafb INTEGER. The first dimension of afb .

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gbtrf.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cgbrfs
DOUBLE PRECISION for zgbrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.

3-116

3 Intel® Math Kernel Library Reference Manual

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info =0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbrfs interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size
(kl+ku+1,n).

af Stands for argument afb in Fortran 77 interface. Holds the array AF of size
(2*kl*ku+1,n).

ipiv Holds the vector of length (n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

kl If omitted, assumed kl = ku.

ku Restored as ku = lda-kl-1.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n(kl + ku)
floating-point operations (for real flavors) or 16n(kl + ku) operations (for complex flavors). In
addition, each step of iterative refinement involves 2n(4kl + 3ku) operations (for real flavors) or
8n(4kl + 3ku) operations (for complex flavors); the number of iterations may range from 1 to 5.

LAPACK Routines: Linear Equations 3

3-117

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 2n2
floating-point operations for real flavors or 8n2 for complex flavors.

?gtrfs
Refines the solution of a system of linear equations with
a tridiagonal matrix and estimates its error.

Syntax

Fortran 77:

call sgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
ferr, berr, work, iwork, info)

call dgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
ferr, berr, work, iwork, info)

call cgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
ferr, berr, work, rwork, info)

call zgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
ferr, berr, work, rwork, info)

Fortran 95:

call gtrfs(dl, d, du, dlf, df, duf, du2, ipiv, b, x [,trans] [,ferr] [,berr]
[,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B
or ATX = B or AHX = B with a tridiagonal matrix A, with multiple right-hand sides. For each
computed solution vector x, the routine computes the component-wise backward error β. This
error is the smallest relative perturbation in elements of A and b such that x is the exact solution of
the perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

3-118

3 Intel® Math Kernel Library Reference Manual

• call the factorization routine ?gttrf
• call the solver routine ?gttrs.

Input Parameters

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', the system has the form AX = B.

If trans = 'T', the system has the form ATX = B.

If trans = 'C', the system has the form AHX = B.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides , i.e., the number of columns
of the matrix B (nrhs ≥ 0).

dl,d,du,dlf,df,

duf,du2,b,x,work REAL for sgtrfs
DOUBLE PRECISION for dgtrfs
COMPLEX for cgtrfs
DOUBLE COMPLEX for zgtrfs.

Arrays:

dl, dimension (n - 1), contains the subdiagonal elements of A.

d, dimension (n), contains the diagonal elements of A.

du, dimension (n - 1), contains the superdiagonal elements of A.

dlf, dimension (n - 1), contains the (n - 1) multipliers that define the
matrix L from the LU factorization of A as computed by ?gttrf.

df, dimension (n), contains the n diagonal elements of the upper
triangular matrix U from the LU factorization of A.

duf, dimension (n - 1), contains the (n - 1) elements of the first
super-diagonal of U.

du2, dimension (n - 2), contains the (n - 2) elements of the second
super-diagonal of U.

b(ldb,nrhs) contains the right-hand side matrix B.

x(ldx,nrhs) contains the solution matrix X, as computed by ?gttrs.

LAPACK Routines: Linear Equations 3

3-119

work (*) is a workspace array;
 the dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?gttrf.

iwork INTEGER.
Workspace array, DIMENSION (n). Used for real flavors only.

rwork REAL for cgtrfs
DOUBLE PRECISION for zgtrfs.
Workspace array, DIMENSION (n). Used for complex flavors only.

Output Parameters

x The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gtrfs interface are the following:

dl Holds the vector of length (n-1).

d Holds the vector of length (n).

du Holds the vector of length (n-1).

dlf Holds the vector of length (n-1).

3-120

3 Intel® Math Kernel Library Reference Manual

df Holds the vector of length (n).

duf Holds the vector of length (n-1).

du2 Holds the vector of length (n-2).

ipiv Holds the vector of length (n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

?porfs
Refines the solution of a system of linear equations with
a symmetric (Hermitian) positive-definite matrix and
estimates its error.

Syntax

Fortran 77:

call sporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work,
iwork, info)

call dporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work,
iwork, info)

call cporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

call zporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

Fortran 95:

call porfs(a, af, b, x [,uplo] [,ferr] [,berr] [,info])

LAPACK Routines: Linear Equations 3

3-121

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B
with a symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides. For each
computed solution vector x, the routine computes the component-wise backward error β. This
error is the smallest relative perturbation in elements of A and b such that x is the exact solution of
the perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?potrf
• call the solver routine ?potrs.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array af stores the factor U of the Cholesky
factorization A = UHU.
If uplo = 'L', the array af stores the factor L of the Cholesky
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a,af,b,x,work REAL for sporfs
DOUBLE PRECISION for dporfs
COMPLEX for cporfs
DOUBLE COMPLEX for zporfs.

Arrays:

a(lda,*) contains the original matrix A, as supplied
to ?potrf.

af(ldaf,*) contains the factored matrix A, as returned by ?potrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

3-122

3 Intel® Math Kernel Library Reference Manual

work (*) is a workspace array.

The second dimension of a and af must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of
work must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cporfs
DOUBLE PRECISION for zporfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine porfs interface are the following:

a Holds the matrix A of size (n,n).

af Holds the matrix AF of size (n,n).

b Holds the matrix B of size (n,nrhs).

LAPACK Routines: Linear Equations 3

3-123

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2
floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition,
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and
never more than 11. Each solution requires approximately 2n2 floating-point operations for real
flavors or 8n2 for complex flavors.

?pprfs
Refines the solution of a system of linear equations with
a packed symmetric (Hermitian) positive-definite
matrix and estimates its error.

Syntax

Fortran 77:

call spprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, iwork,
info)

call dpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, iwork,
info)

call cpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork,
info)

call zpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork,
info)

3-124

3 Intel® Math Kernel Library Reference Manual

Fortran 95:

call pprfs(a, af, b, x [,uplo] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B
with a packed symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides.
For each computed solution vector x, the routine computes the component-wise backward error β.
This error is the smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pptrf
• call the solver routine ?pptrs.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array afp stores the packed factor U of the Cholesky
factorization A = UHU.
If uplo = 'L', the array afp stores the packed factor L of the Cholesky
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap,afp,b,x,work REAL for spprfs
DOUBLE PRECISION for dpprfs
COMPLEX for cpprfs
DOUBLE COMPLEX for zpprfs.

Arrays:

ap(*) contains the original packed matrix A, as supplied to ?pptrf.

afp(*) contains the factored packed matrix A, as returned by ?pptrf.

b(ldb,*) contains the right-hand side matrix B.

LAPACK Routines: Linear Equations 3

3-125

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2);
the second dimension of b and x must be at least max(1,nrhs); the
dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpprfs
DOUBLE PRECISION for zpprfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pprfs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

af Stands for argument apf in Fortran 77 interface. Holds the array AF of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

3-126

3 Intel® Math Kernel Library Reference Manual

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2
floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition,
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately
2n2 floating-point operations for real flavors or 8n2 for complex flavors.

?pbrfs
Refines the solution of a system of linear equations with
a band symmetric (Hermitian) positive-definite matrix
and estimates its error.

Syntax

Fortran 77:

call spbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call dpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call cpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

call zpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

LAPACK Routines: Linear Equations 3

3-127

Fortran 95:

call pbrfs(a, af, b, x [,uplo] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B
with a symmetric (Hermitian) positive definite band matrix A, with multiple right-hand sides. For
each computed solution vector x, the routine computes the component-wise backward error β.
This error is the smallest relative perturbation in elements of A and b such that x is the exact
solution of the perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pbtrf

• call the solver routine ?pbtrs.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array afb stores the factor U of the Cholesky
factorization A = UHU.
If uplo = 'L', the array afb stores the factor L of the Cholesky
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the
matrix A (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab,afb,b,x,work REAL for spbrfs
DOUBLE PRECISION for dpbrfs
COMPLEX for cpbrfs
DOUBLE COMPLEX for zpbrfs.

Arrays:

3-128

3 Intel® Math Kernel Library Reference Manual

ab(ldab,*) contains the original band matrix A, as supplied to
?pbtrf.

afb(ldafb,*) contains the factored band matrix A, as returned by
?pbtrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of ab and afb must be at least max(1,n); the
second dimension of b and x must be at least max(1,nrhs); the
dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

ldab INTEGER. The first dimension of ab; ldab ≥ kd + 1.

ldafb INTEGER. The first dimension of afb; ldafb ≥ kd + 1.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cpbrfs
DOUBLE PRECISION for zpbrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info =0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Linear Equations 3

3-129

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbrfs interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

af Stands for argument afb in Fortran 77 interface. Holds the array AF of size
(kd+1,n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 8n*kd
floating-point operations (for real flavors) or 32n*kd operations (for complex flavors). In
addition, each step of iterative refinement involves 12n*kd operations (for real flavors) or 48n*kd
operations (for complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 4n*kd
floating-point operations for real flavors or 16n*kd for complex flavors.

3-130

3 Intel® Math Kernel Library Reference Manual

?ptrfs
Refines the solution of a system of linear equations with
a symmetric (Hermitian) positive-definite tridiagonal
matrix and estimates its error.

Syntax

Fortran 77:

call sptrfs(n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)

call dptrfs(n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)

call cptrfs(uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

call cptrfs(uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

Fortran 95:

call ptrfs(d, df, e, ef, b, x [,ferr] [,berr] [,info])

call ptrfs(d, df, e, ef, b, x [,uplo] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B
with a symmetric (Hermitian) positive definite tridiagonal matrix A, with multiple right-hand
sides. For each computed solution vector x, the routine computes the component-wise backward
error β. This error is the smallest relative perturbation in elements of A and b such that x is the
exact solution of the perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?pttrf
• call the solver routine ?pttrs.

LAPACK Routines: Linear Equations 3

3-131

Input Parameters

uplo CHARACTER*1. Used for complex flavors only.
Must be 'U' or 'L'.

Specifies whether the superdiagonal or the subdiagonal of the
tridiagonal matrix A is stored and how A is factored:
If uplo = 'U', the array e stores the superdiagonal of A, and A is
factored as UHDU;
If uplo = 'L', the array e stores the subdiagonal of A, and A is factored
as LDLH.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

d,df,rwork REAL for single precision flavors
DOUBLE PRECISION for double precision flavors
Arrays: d(n), df(n), rwork(n).
The array d contains the n diagonal elements of the tridiagonal matrix
A.
The array df contains the n diagonal elements of the diagonal matrix D
from the factorization of A as computed by ?pttrf.
The array rwork is a workspace array used for complex flavors only.

e,ef,b,x,work REAL for sptrfs
DOUBLE PRECISION for dptrfs
COMPLEX for cptrfs
DOUBLE COMPLEX for zptrfs.
Arrays: e(n - 1), ef(n - 1), b(ldb,nrhs), x(ldx,nrhs),
work(*).
The array e contains the (n - 1) off-diagonal elements of the
tridiagonal matrix A (see uplo).
The array ef contains the (n - 1) off-diagonal elements of the unit
bidiagonal factor U or L from the factorization computed by ?pttrf
(see uplo).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

The array x contains the solution matrix X as computed by ?pttrs.
The array work is a workspace array. The dimension of work must be
at least 2*n for real flavors, and at least n for complex flavors.

ldb INTEGER. The leading dimension of b; ldb ≥ max(1, n).

3-132

3 Intel® Math Kernel Library Reference Manual

ldx INTEGER. The leading dimension of x; ldx ≥ max(1, n).

Output Parameters

x The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ptrfs interface are the following:

d Holds the vector of length (n).

df Holds the vector of length (n).

e Holds the vector of length (n-1).

ef Holds the vector of length (n-1).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Used in complex flavors only. Must be 'U' or 'L'. The default value is 'U'.

LAPACK Routines: Linear Equations 3

3-133

?syrfs
Refines the solution of a system of linear equations with
a symmetric matrix and estimates its error.

Syntax

Fortran 77:

call ssyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call dsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call csyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

call zsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

Fortran 95:

call syrfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B
with a symmetric full-storage matrix A, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error β. This error is the
smallest relative perturbation in elements of A and b such that x is the exact solution of the
perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?sytrf
• call the solver routine ?sytrs.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

3-134

3 Intel® Math Kernel Library Reference Manual

Indicates how the input matrix A has been factored:

If uplo = 'U', the array af stores the Bunch-Kaufman factorization A =
PUDUTPT.
If uplo = 'L', the array af stores the Bunch-Kaufman factorization A
= PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a,af,b,x,work REAL for ssyrfs
DOUBLE PRECISION for dsyrfs
COMPLEX for csyrfs
DOUBLE COMPLEX for zsyrfs.

Arrays:

a(lda,*) contains the original matrix A, as supplied
to ?sytrf.

af(ldaf,*) contains the factored matrix A, as returned by ?sytrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of
work must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sytrf.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

LAPACK Routines: Linear Equations 3

3-135

rwork REAL for csyrfs
DOUBLE PRECISION for zsyrfs.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine syrfs interface are the following:

a Holds the matrix A of size (n,n).

af Holds the matrix AF of size (n,n).

ipiv Holds the vector of length (n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

3-136

3 Intel® Math Kernel Library Reference Manual

For each right-hand side, computation of the backward error involves a minimum of 4n2
floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition,
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5. Estimating the forward error
involves solving a number of systems of linear equations Ax = b; the number is usually 4 or 5 and
never more than 11. Each solution requires approximately 2n2 floating-point operations for real
flavors or 8n2 for complex flavors.

?herfs
Refines the solution of a system of linear equations with
a complex Hermitian matrix and estimates its error.

Syntax

Fortran 77:

call cherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

call zherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

Fortran 95:

call herfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B
with a complex Hermitian full-storage matrix A, with multiple right-hand sides. For each
computed solution vector x, the routine computes the component-wise backward error β. This
error is the smallest relative perturbation in elements of A and b such that x is the exact solution of
the perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?hetrf
• call the solver routine ?hetrs.

LAPACK Routines: Linear Equations 3

3-137

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array af stores the Bunch-Kaufman factorization A =
PUDUHPT.
If uplo = 'L', the array af stores the Bunch-Kaufman factorization A
= PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a,af,b,x,work COMPLEX for cherfs
DOUBLE COMPLEX for zherfs.

Arrays:

a(lda,*) contains the original matrix A, as supplied
to ?hetrf.

af(ldaf,*) contains the factored matrix A, as returned by ?hetrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a and af must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of
work must be at least max(1, 2*n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.

rwork REAL for cherfs
DOUBLE PRECISION for zherfs.
Workspace array, DIMENSION at least max(1, n).

3-138

3 Intel® Math Kernel Library Reference Manual

Output Parameters

x The refined solution matrix X.

ferr, berr REAL for cherfs
DOUBLE PRECISION for zherfs.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine herfs interface are the following:

a Holds the matrix A of size (n,n).

af Holds the matrix AF of size (n,n).

ipiv Holds the vector of length (n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 16n2
operations. In addition, each step of iterative refinement involves 24n2 operations; the number of
iterations may range from 1 to 5.

LAPACK Routines: Linear Equations 3

3-139

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 8n2
floating-point operations.

The real counterpart of this routine is ssyrfs / dsyrfs.

?sprfs
Refines the solution of a system of linear equations with
a packed symmetric matrix and estimates the solution
error.

Syntax

Fortran 77:

call ssprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info)

call dsprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info)

call csprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

call zsprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

Fortran 95:

call sprfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B
with a packed symmetric matrix A, with multiple right-hand sides. For each computed solution
vector x, the routine computes the component-wise backward error β. This error is the smallest
relative perturbation in elements of A and b such that x is the exact solution of the perturbed
system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

3-140

3 Intel® Math Kernel Library Reference Manual

Before calling this routine:

• call the factorization routine ?sptrf
• call the solver routine ?sptrs.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array afp stores the packed Bunch-Kaufman
factorization A = PUDUTPT.
If uplo = 'L', the array afp stores the packed Bunch-Kaufman
factorization A = PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap,afp,b,x,work REAL for ssprfs
DOUBLE PRECISION for dsprfs
COMPLEX for csprfs
DOUBLE COMPLEX for zsprfs.

Arrays:

ap(*) contains the original packed matrix A, as supplied to ?sptrf.

afp(*) contains the factored packed matrix A, as returned by ?sptrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2);
the second dimension of b and x must be at least max(1,nrhs); the
dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.

LAPACK Routines: Linear Equations 3

3-141

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for csprfs
DOUBLE PRECISION for zsprfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sprfs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

af Stands for argument afp in Fortran 77 interface. Holds the array AF of size
(n*(n+1)/2).

ipiv Holds the vector of length (n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

3-142

3 Intel® Math Kernel Library Reference Manual

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

For each right-hand side, computation of the backward error involves a minimum of 4n2
floating-point operations (for real flavors) or 16n2 operations (for complex flavors). In addition,
each step of iterative refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately
2n2 floating-point operations for real flavors or 8n2 for complex flavors.

?hprfs
Refines the solution of a system of linear equations with
a packed complex Hermitian matrix and estimates the
solution error.

Syntax

Fortran 77:

call chprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

call zhprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

Fortran 95:

call hprfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

Description

This routine performs an iterative refinement of the solution to a system of linear equations AX = B
with a packed complex Hermitian matrix A, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error β. This error is the
smallest relative perturbation in elements of A and b such that x is the exact solution of the
perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

LAPACK Routines: Linear Equations 3

3-143

Finally, the routine estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine:

• call the factorization routine ?hptrf
• call the solver routine ?hptrs.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array afp stores the packed Bunch-Kaufman
factorization A = PUDUHPT.
If uplo = 'L', the array afp stores the packed Bunch-Kaufman
factorization A = PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap,afp,b,x,work COMPLEX for chprfs
DOUBLE COMPLEX for zhprfs.

Arrays:

ap(*) contains the original packed matrix A, as supplied to ?hptrf.

afp(*) contains the factored packed matrix A, as returned by ?hptrf.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2);
the second dimension of b and x must be at least max(1,nrhs); the
dimension of work must be at least max(1, 2*n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hptrf.

3-144

3 Intel® Math Kernel Library Reference Manual

rwork REAL for chprfs
DOUBLE PRECISION for zhprfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

x The refined solution matrix X.

ferr, berr REAL for chprfs.
DOUBLE PRECISION for zhprfs.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hprfs interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

af Stands for argument afp in Fortran 77 interface. Holds the array AF of size
(n*(n+1)/2).

ipiv Holds the vector of length (n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

LAPACK Routines: Linear Equations 3

3-145

For each right-hand side, computation of the backward error involves a minimum of 16n2
operations. In addition, each step of iterative refinement involves 24n2 operations; the number of
iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations Ax = b; the
number is usually 4 or 5 and never more than 11. Each solution requires approximately 8n2
floating-point operations.

The real counterpart of this routine is ssprfs / dsprfs.

?trrfs
Estimates the error in the solution of
a system of linear equations with a triangular matrix.

Syntax

Fortran 77:

call strrfs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call dtrrfs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr,
work, iwork, info)

call ctrrfs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

call ztrrfs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr,
work, rwork, info)

Fortran 95:

call trrfs(a, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info])

Description

This routine estimates the errors in the solution to a system of linear equations AX = B or ATX = B
or AHX = B with a triangular matrix A, with multiple right-hand sides. For each computed solution
vector x, the routine computes the component-wise backward error β. This error is the smallest
relative perturbation in elements of A and b such that x is the exact solution of the perturbed
system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

3-146

3 Intel® Math Kernel Library Reference Manual

The routine also estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine, call the solver routine ?trtrs.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', the system has the form AX = B.

If trans = 'T', the system has the form ATX = B.

If trans = 'C', the system has the form AHX = B.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', then A is unit triangular: diagonal elements of A are
assumed to be 1 and not referenced in the array a.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, b, x, work REAL for strrfs
DOUBLE PRECISION for dtrrfs
COMPLEX for ctrrfs
DOUBLE COMPLEX for ztrrfs.

Arrays:

a(lda,*) contains the upper or lower triangular matrix A, as specified
by uplo.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

LAPACK Routines: Linear Equations 3

3-147

The second dimension of a must be at least max(1,n); the second
dimension of b and x must be at least max(1,nrhs); the dimension of
work must be at least max(1, 3*n) for real flavors and max(1, 2*n) for
complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctrrfs
DOUBLE PRECISION for ztrrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trrfs interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

3-148

3 Intel® Math Kernel Library Reference Manual

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution
requires approximately n2 floating-point operations for real flavors or 4n2 for complex flavors.

?tprfs
Estimates the error in the solution of
a system of linear equations with a packed triangular
matrix.

Syntax

Fortran 77:

call stprfs(uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work,
iwork, info)

call dtprfs(uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work,
iwork, info)

call ctprfs(uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

call ztprfs(uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work,
rwork, info)

Fortran 95:

call tprfs(a, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info])

LAPACK Routines: Linear Equations 3

3-149

Description

This routine estimates the errors in the solution to a system of linear equations AX = B or ATX = B
or AHX = B with a packed triangular matrix A, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error β. This error is the
smallest relative perturbation in elements of A and b such that x is the exact solution of the
perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

The routine also estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine, call the solver routine ?tptrs.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', the system has the form AX = B.

If trans = 'T', the system has the form ATX = B.

If trans = 'C', the system has the form AHX = B.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', A is not a unit triangular matrix.

If diag = 'U', A is unit triangular: diagonal elements of A are assumed
to be 1 and not referenced in the array ap.

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap, b, x, work REAL for strrfs
DOUBLE PRECISION for dtrrfs
COMPLEX for ctrrfs
DOUBLE COMPLEX for ztrrfs.

3-150

3 Intel® Math Kernel Library Reference Manual

Arrays:

ap(*) contains the upper or lower triangular matrix A, as specified by
uplo.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The dimension of ap must be at least max(1,n(n+1)/2);
the second dimension of b and x must be at least max(1,nrhs); the
dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctrrfs
DOUBLE PRECISION for ztrrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tprfs interface are the following:

LAPACK Routines: Linear Equations 3

3-151

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution
requires approximately n2 floating-point operations for real flavors or 4n2 for complex flavors.

?tbrfs
Estimates the error in the solution of
a system of linear equations with a triangular band
matrix.

Syntax

Fortran 77:

call stbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call dtbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr,
berr, work, iwork, info)

call ctbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

3-152

3 Intel® Math Kernel Library Reference Manual

call ztbrfs(uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr,
berr, work, rwork, info)

Fortran 95:

call tbrfs(a, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info])

Description

This routine estimates the errors in the solution to a system of linear equations AX = B or ATX = B
or AHX = B with a triangular band matrix A, with multiple right-hand sides. For each computed
solution vector x, the routine computes the component-wise backward error β. This error is the
smallest relative perturbation in elements of A and b such that x is the exact solution of the
perturbed system:

|δaij|/|aij| ≤ β |aij|, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

The routine also estimates the component-wise forward error in the computed solution ||x −
xe||∞/||x||∞ (here xe is the exact solution).

Before calling this routine, call the solver routine ?tbtrs.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', the system has the form AX = B.

If trans = 'T', the system has the form ATX = B.

If trans = 'C', the system has the form AHX = B.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', A is not a unit triangular matrix.

If diag = 'U', A is unit triangular: diagonal elements of A are assumed
to be 1 and not referenced in the array ab.

n INTEGER. The order of the matrix A (n ≥ 0).

LAPACK Routines: Linear Equations 3

3-153

kd INTEGER. The number of super-diagonals or sub-diagonals in the
matrix A (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab, b, x, work REAL for stbrfs
DOUBLE PRECISION for dtbrfs
COMPLEX for ctbrfs
DOUBLE COMPLEX for ztbrfs.

Arrays:

ab(ldab,*) contains the upper or lower triangular matrix A, as
specified by uplo, in band storage format.

b(ldb,*) contains the right-hand side matrix B.

x(ldx,*) contains the solution matrix X.

work (*) is a workspace array.

The second dimension of a must be at least max(1,n);
the second dimension of b and x must be at least max(1,nrhs).
The dimension of work must be at least max(1, 3*n) for real flavors
and max(1, 2*n) for complex flavors.

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ kd +1).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for ctbrfs
DOUBLE PRECISION for ztbrfs
Workspace array, DIMENSION at least max(1, n).

Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

3-154

3 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tbrfs interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the
actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear
equations Ax = b; the number of systems is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n*kd floating-point operations for real flavors or 8n*kd operations for
complex flavors.

LAPACK Routines: Linear Equations 3

3-155

Routines for Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix.
In particular, do not attempt to solve a system of equations Ax = b by first computing A−1 and then
forming the matrix-vector product x = A−1b.
Call a solver routine instead (see Routines for Solving Systems of Linear Equations); this is more
efficient and more accurate.

However, matrix inversion routines are provided for the rare occasions when an explicit inverse
matrix is needed.

?getri
Computes the inverse of an LU-factored general matrix.

Syntax

Fortran 77:

call sgetri(n, a, lda, ipiv, work, lwork, info)

call dgetri(n, a, lda, ipiv, work, lwork, info)

call cgetri(n, a, lda, ipiv, work, lwork, info)

call zgetri(n, a, lda, ipiv, work, lwork, info)

Fortran 95:

call getri(a, ipiv [,info])

Description

This routine computes the inverse (A−1) of a general matrix A.
Before calling this routine, call ?getrf to factorize A.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for sgetri
DOUBLE PRECISION for dgetri
COMPLEX for cgetri
DOUBLE COMPLEX for zgetri.
Arrays: a(lda,*), work(lwork).

3-156

3 Intel® Math Kernel Library Reference Manual

a(lda,*) contains the factorization of the matrix A, as returned by
?getrf: A = PLU.
The second dimension of a must be at least max(1,n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?getrf.

lwork INTEGER. The size of the work array (lwork ≥ n).

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.
See Application Notes below for the suggested value of lwork.

Output Parameters

a Overwritten by the n-by-n matrix A-1.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance.
Use this lwork for subsequent runs.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of the factor U is zero, U is
singular, and the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine getri interface are the following:

a Holds the matrix A of size (n,n).

ipiv Holds the vector of length (n).

LAPACK Routines: Linear Equations 3

3-157

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

The computed inverse X satisfies the following error bound:

where c(n) is a modest linear function of n; ε is the machine precision;
I denotes the identity matrix; P, L, and U are the factors of the matrix factorization A = PLU.

The total number of floating-point operations is approximately (4/3)n3 for real flavors and
(16/3)n3 for complex flavors.

?potri
Computes the inverse of a symmetric (Hermitian)
positive-definite matrix.

Syntax

Fortran 77:

call spotri(uplo, n, a, lda, info)

call dpotri(uplo, n, a, lda, info)

call cpotri(uplo, n, a, lda, info)

call zpotri(uplo, n, a, lda, info)

Fortran 95:

call potri(a [,uplo] [,info])

Description

This routine computes the inverse (A−1) of a symmetric positive definite or, for complex flavors,
Hermitian positive-definite matrix A.
Before calling this routine, call ?potrf to factorize A.

XA I– c n()ε X P L U≤

3-158

3 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the factor U of the Cholesky
factorization A = UHU.
If uplo = 'L', the array a stores the factor L of the Cholesky
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

a REAL for spotri
DOUBLE PRECISION for dpotri
COMPLEX for cpotri
DOUBLE COMPLEX for zpotri.
Array: a(lda,*).

Contains the factorization of the matrix A, as returned by ?potrf.

The second dimension of a must be at least max(1,n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

Output Parameters

a Overwritten by the n-by-n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of the Cholesky factor (and hence
the factor itself) is zero, and the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine potri interface are the following:

a Holds the matrix A of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

LAPACK Routines: Linear Equations 3

3-159

Application Notes

The computed inverse X satisfies the following error bounds:

where c(n) is a modest linear function of n, and ε is the machine precision;
I denotes the identity matrix.

The 2-norm ||A||2 of a matrix A is defined by ||A||2 = maxx·x=1(Ax · Ax)1/2, and the condition
number κ2(A) is defined by κ2(A) = ||A||2 ||A−1||2 .

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3
for complex flavors.

?pptri
Computes the inverse of a packed symmetric
(Hermitian) positive-definite matrix

Syntax

Fortran 77:

call spptri(uplo, n, ap, info)

call dpptri(uplo, n, ap, info)

call cpptri(uplo, n, ap, info)

call zpptri(uplo, n, ap, info)

Fortran 95:

call pptri(a [,uplo] [,info])

Description

This routine computes the inverse (A−1) of a symmetric positive definite or, for complex flavors,
Hermitian positive-definite matrix A in packed form. Before calling this routine, call ?pptrf to
factorize A.

XA I– 2 c n()εκ2 A() AX I– 2 c n()εκ2 A()≤,≤

3-160

3 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the packed factor U of the Cholesky
factorization A = UHU.
If uplo = 'L', the array ap stores the packed factor L of the Cholesky
factorization A = LLH.

n INTEGER. The order of the matrix A (n ≥ 0).

ap REAL for spptri
DOUBLE PRECISION for dpptri
COMPLEX for cpptri
DOUBLE COMPLEX for zpptri.
Array, DIMENSION at least max(1,n(n+1)/2).

Contains the factorization of the packed matrix A,
as returned by ?pptrf.

The dimension ap must be at least max(1,n(n+1)/2).

Output Parameters

ap Overwritten by the packed n-by-n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of the Cholesky factor (and hence
the factor itself) is zero, and the inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pptri interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

uplo Must be 'U' or 'L'. The default value is 'U'.

LAPACK Routines: Linear Equations 3

3-161

Application Notes

The computed inverse X satisfies the following error bounds:

where c(n) is a modest linear function of n, and ε is the machine precision;
I denotes the identity matrix.

The 2-norm ||A||2 of a matrix A is defined by ||A||2 = maxx·x=1(Ax · Ax)1/2, and the condition
number κ2(A) is defined by κ2(A) = ||A||2 ||A−1||2 .

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3
for complex flavors.

?sytri
Computes the inverse of a symmetric matrix.

Syntax

Fortran 77:

call ssytri(uplo, n, a, lda, ipiv, work, info)

call dsytri(uplo, n, a, lda, ipiv, work, info)

call csytri(uplo, n, a, lda, ipiv, work, info)

call zsytri(uplo, n, a, lda, ipiv, work, info)

Fortran 95:

call sytri(a, ipiv [,uplo] [,info])

Description

This routine computes the inverse (A−1) of a symmetric matrix A.
Before calling this routine, call ?sytrf to factorize A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

XA I– 2 c n()εκ2 A() AX I– 2 c n()εκ2 A()≤,≤

3-162

3 Intel® Math Kernel Library Reference Manual

If uplo = 'U', the array a stores the Bunch-Kaufman factorization A =
PUDUTPT.
If uplo = 'L', the array a stores the Bunch-Kaufman factorization A =
PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for ssytri
DOUBLE PRECISION for dsytri
COMPLEX for csytri
DOUBLE COMPLEX for zsytri.
Arrays:

a(lda,*) contains the factorization of the matrix A,
as returned by ?sytrf.
The second dimension of a must be at least max(1,n).

work(*) is a workspace array.
The dimension of work must be at least max(1,2*n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sytrf.

Output Parameters

a Overwritten by the n-by-n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info =-i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the
inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sytri interface are the following:

a Holds the matrix A of size (n,n).

LAPACK Routines: Linear Equations 3

3-163

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed inverse X satisfies the following error bounds:

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3
for complex flavors.

?hetri
Computes the inverse of a complex Hermitian matrix.

Syntax

Fortran 77:

call chetri(uplo, n, a, lda, ipiv, work, info)

call zhetri(uplo, n, a, lda, ipiv, work, info)

Fortran 95:

call hetri(a, ipiv [,uplo] [,info])

Description

This routine computes the inverse (A−1) of a complex Hermitian matrix A.
Before calling this routine, call ?hetrf to factorize A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

DUTPTXPU I– c n()ε D UT PT X P U D D 1–+()≤

DLTPTXPL I– c n()ε D LT PT X P L D D 1–+()≤

3-164

3 Intel® Math Kernel Library Reference Manual

Indicates how the input matrix A has been factored:

If uplo = 'U', the array a stores the Bunch-Kaufman factorization A =
PUDUHPT.
If uplo = 'L', the array a stores the Bunch-Kaufman factorization A =
PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work COMPLEX for chetri
DOUBLE COMPLEX for zhetri.
Arrays:

a(lda,*) contains the factorization of the matrix A,
as returned by ?hetrf.
The second dimension of a must be at least max(1,n).

work(*) is a workspace array.
The dimension of work must be at least max(1,n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.

Output Parameters

a Overwritten by the n-by-n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the
inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hetri interface are the following:

a Holds the matrix A of size (n,n).

ipiv Holds the vector of length (n).

LAPACK Routines: Linear Equations 3

3-165

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed inverse X satisfies the following error bounds:

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3
for complex flavors.

The real counterpart of this routine is ?sytri.

?sptri
Computes the inverse of a symmetric matrix using
packed storage.

Syntax

Fortran 77:

call ssptri(uplo, n, ap, ipiv, work, info)

call dsptri(uplo, n, ap, ipiv, work, info)

call csptri(uplo, n, ap, ipiv, work, info)

call zsptri(uplo, n, ap, ipiv, work, info)

Fortran 95:

call sptri(a, ipiv [,uplo] [,info])

Description

This routine computes the inverse (A−1) of a packed symmetric matrix A.
Before calling this routine, call ?sptrf to factorize A.

DUHPTXPU I– c n()ε D UH PT X P U D D 1–+()≤

DLHPTXPL I– c n()ε D LH PT X P L D D 1–+()≤

3-166

3 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the Bunch-Kaufman factorization A =
PUDUTPT.
If uplo = 'L', the array ap stores the Bunch-Kaufman factorization A =
PLDLTPT.

n INTEGER. The order of the matrix A (n ≥ 0).

ap, work REAL for ssptri
DOUBLE PRECISION for dsptri
COMPLEX for csptri
DOUBLE COMPLEX for zsptri.
Arrays:

ap(*) contains the factorization of the matrix A,
as returned by ?sptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

work(*) is a workspace array.
The dimension of work must be at least max(1,n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.

Output Parameters

ap Overwritten by the n-by-n matrix A-1 in packed form.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the
inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

LAPACK Routines: Linear Equations 3

3-167

Specific details for the routine sptri interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed inverse X satisfies the following error bounds:

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3
for complex flavors.

?hptri
Computes the inverse of a complex Hermitian matrix
using packed storage.

Syntax

Fortran 77:

call chptri(uplo, n, ap, ipiv, work, info)

call zhptri(uplo, n, ap, ipiv, work, info)

Fortran 95:

call hptri(a, ipiv [,uplo] [,info])

DUTPTXPU I– c n()ε D UT PT X P U D D 1–+()≤

DLTPTXPL I– c n()ε D LT PT X P L D D 1–+()≤

3-168

3 Intel® Math Kernel Library Reference Manual

Description

This routine computes the inverse (A−1) of a complex Hermitian matrix A using packed storage.
Before calling this routine, call ?hptrf to factorize A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:

If uplo = 'U', the array ap stores the packed Bunch-Kaufman
factorization A = PUDUHPT.
If uplo = 'L', the array ap stores the packed Bunch-Kaufman
factorization A = PLDLHPT.

n INTEGER. The order of the matrix A (n ≥ 0).

ap, work COMPLEX for chptri
DOUBLE COMPLEX for zhptri.
Arrays:

ap(*) contains the factorization of the matrix A,
as returned by ?hptrf.
The dimension of ap must be at least max(1,n(n+1)/2).

work(*) is a workspace array.
The dimension of work must be at least max(1,n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hptrf.

Output Parameters

ap Overwritten by the n-by-n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of D is zero, D is singular, and the
inversion could not be completed.

LAPACK Routines: Linear Equations 3

3-169

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hptri interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed inverse X satisfies the following error bounds:

for uplo = 'U', and

for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I
denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3
for complex flavors.

The real counterpart of this routine is ?sptri.

?trtri
Computes the inverse of a triangular matrix.

Syntax

Fortran 77:

call strtri(uplo, diag, n, a, lda, info)

call dtrtri(uplo, diag, n, a, lda, info)

DUHPTXPU I– c n()ε D UH PT X P U D D 1–+()≤

DLHPTXPL I– c n()ε D LH PT X P L D D 1–+()≤

3-170

3 Intel® Math Kernel Library Reference Manual

call ctrtri(uplo, diag, n, a, lda, info)

call ztrtri(uplo, diag, n, a, lda, info)

Fortran 95:

call trtri(a [,uplo] [,diag] [,info])

Description

This routine computes the inverse (A−1) of a triangular matrix A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', A is unit triangular: diagonal elements of A are assumed
to be 1 and not referenced in the array a.

n INTEGER. The order of the matrix A (n ≥ 0).

a REAL for strtri
DOUBLE PRECISION for dtrtri
COMPLEX for ctrtri
DOUBLE COMPLEX for ztrtri.

Array: DIMENSION (lda,*).
Contains the matrix A.
The second dimension of a must be at least max(1,n).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

Output Parameters

a Overwritten by the n-by-n matrix A-1.

LAPACK Routines: Linear Equations 3

3-171

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is zero, A is singular, and the
inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trtri interface are the following:

a Holds the matrix A of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The computed inverse X satisfies the following error bounds:

where c(n) is a modest linear function of n; ε is the machine precision;
I denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)n3 for real flavors and (4/3)n3
for complex flavors.

XA I– c n()ε X A≤

X A 1–– c n()ε A 1– A X≤

3-172

3 Intel® Math Kernel Library Reference Manual

?tptri
Computes the inverse of a triangular matrix using
packed storage.

Syntax

Fortran 77:

call stptri(uplo, diag, n, ap, info)

call dtptri(uplo, diag, n, ap, info)

call ctptri(uplo, diag, n, ap, info)

call ztptri(uplo, diag, n, ap, info)

Fortran 95:

call tptri(a [,uplo] [,diag] [,info])

Description

This routine computes the inverse (A−1) of a packed triangular matrix A.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether A is upper or lower triangular:

If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then A is not a unit triangular matrix.

If diag = 'U', A is unit triangular: diagonal elements of A are assumed
to be 1 and not referenced in the array ap.

n INTEGER. The order of the matrix A (n ≥ 0).

ap REAL for stptri
DOUBLE PRECISION for dtptri
COMPLEX for ctptri
DOUBLE COMPLEX for ztptri.

LAPACK Routines: Linear Equations 3

3-173

Array: DIMENSION at least max(1,n(n+1)/2).
Contains the packed triangular matrix A.

Output Parameters

ap Overwritten by the packed n-by-n matrix A-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is zero, A is singular, and the
inversion could not be completed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tptri interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

uplo Must be 'U' or 'L'. The default value is 'U'.

diag Must be 'N' or 'U'. The default value is 'N'.

Application Notes

The computed inverse X satisfies the following error bounds:

where c(n) is a modest linear function of n; ε is the machine precision;
I denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)n3 for real flavors and (4/3)n3
for complex flavors.

XA I– c n()ε X A≤

X A 1–– c n()ε A 1– A X≤

3-174

3 Intel® Math Kernel Library Reference Manual

Routines for Matrix Equilibration

Routines described in this section are used to compute scaling factors needed to equilibrate a
matrix. Note that these routines do not actually scale the matrices.

?geequ
Computes row and column scaling factors intended to
equilibrate a matrix and reduce its condition number.

Syntax

Fortran 77:

call sgeequ(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call dgeequ(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call cgeequ(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call zgeequ(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

Fortran 95:

call geequ(a, r, c [,rowcnd] [,colcnd] [,amax] [,info])

Description

This routine computes row and column scalings intended to equilibrate an m-by-n matrix A and
reduce its condition number. The output array r returns the row scale factors and the array c the
column scale factors. These factors are chosen to try to make the largest element in each row and
column of the matrix B with elements bij=r(i)*aij*c(j) have absolute value 1.

See ?laqge auxiliary function that uses scaling factors computed by ?geequ.

Input Parameters

m INTEGER. The number of rows of the matrix A, m ≥0.

n INTEGER. The number of columns of the matrix A,
n ≥0.

LAPACK Routines: Linear Equations 3

3-175

a REAL for sgeequ
DOUBLE PRECISION for dgeequ
COMPLEX for cgeequ
DOUBLE COMPLEX for zgeequ.

Array: DIMENSION (lda,*).
Contains the m-by-n matrix A whose equilibration factors are to be
computed.
The second dimension of a must be at least max(1,n).

lda INTEGER. The leading dimension of a; lda ≥ max(1, m).

Output Parameters

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(m), c(n).
If info = 0, or info > m, the array r contains the row scale factors of
the matrix A.
If info = 0 , the array c contains the column scale factors of the matrix
A.

rowcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > m, rowcnd contains the ratio of the smallest r(i)
to the largest r(i).

colcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, colcnd contains the ratio of the smallest c(i) to the largest
c(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i and
 i≤ m, the ith row of A is exactly zero;
 i > m, the (i-m)th column of A is exactly zero.

3-176

3 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine geequ interface are the following:

a Holds the matrix A of size (m,n).

r Holds the vector of length (m).

c Holds the vector of length (n).

Application Notes

All the components of r and c are restricted to be between SMLNUM = smallest safe number
and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the
condition number of A but works well in practice.

If rowcnd ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by r. If
colcnd ≥ 0.1 , it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?gbequ
Computes row and column scaling factors intended to
equilibrate a band matrix and reduce its condition
number.

Syntax

Fortran 77:

call sgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

call dgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

call cgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

call zgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)

Fortran 95:

call gbequ(a, r, c [,kl] [,rowcnd] [,colcnd] [,amax] [,info])

LAPACK Routines: Linear Equations 3

3-177

Description

This routine computes row and column scalings intended to equilibrate an m-by-n band matrix A
and reduce its condition number. The output array r returns the row scale factors and the array c
the column scale factors. These factors are chosen to try to make the largest element in each row
and column of the matrix B with elements bij=r(i)*aij*c(j) have absolute value 1.

See ?laqgb auxiliary function that uses scaling factors computed by ?gbequ.

Input Parameters

m INTEGER. The number of rows of the matrix A, m ≥0.

n INTEGER. The number of columns of the matrix A,
n ≥0.

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the band of A (ku ≥
0).

ab REAL for sgbequ
DOUBLE PRECISION for dgbequ
COMPLEX for cgbequ
DOUBLE COMPLEX for zgbequ.

Array, DIMENSION (ldab,*).
Contains the original band matrix A stored in rows
from 1 to kl + ku + 1.

The second dimension of ab must be at least max(1,n);

ldab INTEGER. The leading dimension of ab,
ldab ≥ kl+ku+1.

Output Parameters

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(m), c(n).
If info = 0, or info > m, the array r contains the row scale factors of
the matrix A.
If info = 0 , the array c contains the column scale factors of the matrix
A.

3-178

3 Intel® Math Kernel Library Reference Manual

rowcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > m, rowcnd contains the ratio of the smallest r(i)
to the largest r(i).

colcnd REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, colcnd contains the ratio of the smallest c(i) to the largest
c(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i and
 i≤ m, the ith row of A is exactly zero;
 i > m, the (i-m)th column of A is exactly zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbequ interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size
(kl+ku+1,n).

r Holds the vector of length (m).

c Holds the vector of length (n).

kl If omitted, assumed kl = ku.

ku Restored as ku = lda-kl-1.

Application Notes

All the components of r and c are restricted to be between SMLNUM = smallest safe number
and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the
condition number of A but works well in practice.

LAPACK Routines: Linear Equations 3

3-179

If rowcnd ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by r. If
colcnd ≥ 0.1 , it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?poequ
Computes row and column scaling factors intended to
equilibrate a symmetric (Hermitian) positive definite
matrix and reduce its condition number.

Syntax

Fortran 77:

call spoequ(n, a, lda, s, scond, amax, info)

call dpoequ(n, a, lda, s, scond, amax, info)

call cpoequ(n, a, lda, s, scond, amax, info)

call zpoequ(n, a, lda, s, scond, amax, info)

Fortran 95:

call poequ(a, s [,scond] [,amax] [,info])

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive definite matrix A and reduce its condition number (with respect to the two-norm). The
output array s returns scale factors computed as

These factors are chosen so that the scaled matrix B with elements bij=s(i)*aij*s(j) has diagonal
elements equal to 1.

This choice of s puts the condition number of B within a factor n of the smallest possible
condition number over all possible diagonal scalings.

See ?laqsy auxiliary function that uses scaling factors computed by ?poequ.

s i() 1

ai i,

---------------=

3-180

3 Intel® Math Kernel Library Reference Manual

Input Parameters

n INTEGER. The order of the matrix A, n ≥0.

a REAL for spoequ
DOUBLE PRECISION for dpoequ
COMPLEX for cpoequ
DOUBLE COMPLEX for zpoequ.

Array: DIMENSION (lda,*).
Contains the n-by-n symmetric or Hermitian positive definite matrix A
whose scaling factors are to be computed. Only diagonal elements of A
are referenced.
The second dimension of a must be at least max(1,n).

lda INTEGER. The leading dimension of a; lda ≥ max(1, m).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info = 0, the array s contains the scale factors for A.

scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, scond contains the ratio of the smallest s(i) to the largest
s(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is nonpositive.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine poequ interface are the following:

LAPACK Routines: Linear Equations 3

3-181

a Holds the matrix A of size (n,n).

s Holds the vector of length (n).

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?ppequ
Computes row and column scaling factors intended to
equilibrate a symmetric (Hermitian) positive definite
matrix in packed storage and reduce its condition
number.

Syntax

Fortran 77:

call sppequ(uplo, n, ap, s, scond, amax, info)

call dppequ(uplo, n, ap, s, scond, amax, info)

call cppequ(uplo, n, ap, s, scond, amax, info)

call zppequ(uplo, n, ap, s, scond, amax, info)

Fortran 95:

call ppequ(a, s [,scond] [,amax] [,uplo] [,info])

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive definite matrix A in packed storage and reduce its condition number (with respect to the
two-norm). The output array s returns scale factors computed as

These factors are chosen so that the scaled matrix B with elements bij=s(i)*aij*s(j) has diagonal
elements equal to 1.

s i() 1

ai i,

---------------=

3-182

3 Intel® Math Kernel Library Reference Manual

This choice of s puts the condition number of B within a factor n of the smallest possible
condition number over all possible diagonal scalings.

See ?laqsp auxiliary function that uses scaling factors computed by ?ppequ.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is packed in the
array ap:

If uplo = 'U', the array ap stores the upper triangular part of the matrix
A.
If uplo = 'L', the array ap stores the lower triangular part of the matrix
A.

n INTEGER. The order of matrix A (n ≥ 0).

ap REAL for sppequ
DOUBLE PRECISION for dppequ
COMPLEX for cppequ
DOUBLE COMPLEX for zppequ.
Array, DIMENSION at least max(1,n(n+1)/2).
The array ap contains either the upper or the lower triangular part of the
matrix A (as specified by uplo) in packed storage (see Matrix Storage
Schemes).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info = 0, the array s contains the scale factors for A.

scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, scond contains the ratio of the smallest s(i) to the largest
s(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

LAPACK Routines: Linear Equations 3

3-183

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is nonpositive.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ppequ interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

s Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?pbequ
Computes row and column scaling factors intended to
equilibrate a symmetric (Hermitian) positive definite
band matrix and reduce its condition number.

Syntax

Fortran 77:

call spbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)

call dpbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)

call cpbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)

call zpbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)

3-184

3 Intel® Math Kernel Library Reference Manual

Fortran 95:

call pbequ(a, s [,scond] [,amax] [,uplo] [,info])

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian)
positive definite matrix A in packed storage and reduce its condition number (with respect to the
two-norm). The output array s returns scale factors computed as

These factors are chosen so that the scaled matrix B with elements bij=s(i)*aij*s(j) has diagonal
elements equal to 1.
This choice of s puts the condition number of B within a factor n of the smallest possible
condition number over all possible diagonal scalings.

See ?laqsb auxiliary function that uses scaling factors computed by ?pbequ.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is packed in the
array ab:
If uplo = 'U', the array ab stores the upper triangular part of the matrix
A.
If uplo = 'L', the array ab stores the lower triangular part of the matrix
A.

n INTEGER. The order of matrix A (n ≥ 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the
matrix A (kd ≥ 0).

ab REAL for spbequ
DOUBLE PRECISION for dpbequ
COMPLEX for cpbequ
DOUBLE COMPLEX for zpbequ.
Array, DIMENSION (ldab,*).
The array ap contains either the upper or the lower triangular part of the
matrix A (as specified by uplo) in band storage (see Matrix Storage
Schemes).
The second dimension of ab must be at least max(1, n).

s i() 1

ai i,

---------------=

LAPACK Routines: Linear Equations 3

3-185

ldab INTEGER. The leading dimension of the array ab.
(ldab ≥ kd +1).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
If info = 0, the array s contains the scale factors for A.

scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, scond contains the ratio of the smallest s(i) to the largest
s(i).

amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the ith diagonal element of A is nonpositive.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbequ interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

s Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by s.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

3-186

3 Intel® Math Kernel Library Reference Manual

Driver Routines
Table 3-3 lists the LAPACK driver routines for solving systems of linear equations with real or
complex matrices.

In this table ? stands for s (single precision real), d (double precision real),
c (single precision complex), or z (double precision complex).

Table 3-3 Driver Routines for Solving Systems of Linear Equations

Matrix type,
storage scheme

Simple Driver Expert Driver

general ?gesv ?gesvx

general band ?gbsv ?gbsvx

general tridiagonal ?gtsv ?gtsvx

symmetric/Hermitian
positive-definite

?posv ?posvx

symmetric/Hermitian
positive-definite,
packed storage

?ppsv ?ppsvx

symmetric/Hermitian
positive-definite,
band

?pbsv ?pbsvx

symmetric/Hermitian
positive-definite,
tridiagonal

?ptsv ?ptsvx

symmetric/Hermitian
indefinite

?sysv /?hesv ?sysvx /?hesvx

symmetric/Hermitian
indefinite,
packed storage

?spsv /?hpsv ?spsvx /?hpsvx

complex symmetric ?sysv ?sysvx

complex symmetric,
packed storage

?spsv ?spsvx

LAPACK Routines: Linear Equations 3

3-187

?gesv
Computes the solution to the system of linear equations
with a square matrix A and multiple right-hand sides.

Syntax

Fortran 77:

call sgesv(n, nrhs, a, lda, ipiv, b, ldb, info)

call dgesv(n, nrhs, a, lda, ipiv, b, ldb, info)

call cgesv(n, nrhs, a, lda, ipiv, b, ldb, info)

call zgesv(n, nrhs, a, lda, ipiv, b, ldb, info)

Fortran 95:

call gesv(a, b [,ipiv] [,info])

Description

This routine solves for X the system of linear equations AX = B, where A is an n-by-n matrix, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P L
U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The
factored form of A is then used to solve the system of equations AX = B.

Input Parameters

n INTEGER. The order of A; the number of rows in B
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

a, b REAL for sgesv
DOUBLE PRECISION for dgesv
COMPLEX for cgesv
DOUBLE COMPLEX for zgesv.
Arrays: a(lda,*), b(ldb,*).

3-188

3 Intel® Math Kernel Library Reference Manual

The array a contains the matrix A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max(1,n), the second
dimension of b at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

a Overwritten by the factors L and U from the factorization of A = P L U;
the unit diagonal elements of L are not stored .

b Overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices that define the permutation matrix P; row i of the
matrix was interchanged with row ipiv(i).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, U(i,i) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the solution could not
be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gesv interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

LAPACK Routines: Linear Equations 3

3-189

?gesvx
Computes the solution to the system of linear equations
with a square matrix A and multiple right-hand sides,
and provides error bounds on the solution.

Syntax

Fortran 77:

call sgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

call zgesvx(fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

Fortran 95:

call gesvx(a, b, x [,af] [,ipiv] [,fact] [,trans] [,equed] [,r] [,c]
[,ferr] [,berr] [,rcond] [,rpvgrw] [,info])

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations AX = B, where A is an n-by-n matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gesvx performs the following steps:

1. If fact = 'E', real scaling factors r and c are computed to equilibrate
the system:

trans = 'N': diag(r)*A*diag(c) *diag(c)-1*X = diag(r)*B

trans = 'T': (diag(r)*A*diag(c))T *diag(r)-1*X = diag(c)*B

trans = 'C': (diag(r)*A*diag(c))H *diag(r)-1*X = diag(c)*B

3-190

3 Intel® Math Kernel Library Reference Manual

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by diag(r)*A*diag(c) and B by diag(r)*B (if trans='N') or
diag(c)*B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', the LU decomposition is used to factor the matrix A (after equilibration if
fact = 'E') as A = P L U, where P is a permutation matrix, L is a unit lower triangular matrix, and
U is upper triangular.

3. If some Ui,i = 0, so that U is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans = 'N') or diag(r) (if
trans = 'T' or 'C') so that it solves the original system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on
entry, and if not, whether the matrix A should be equilibrated before it is
factored.

If fact = 'F': on entry, af and ipiv contain the factored form of A. If
equed is not 'N', the matrix A has been equilibrated with scaling factors
given by r and c.
a, af, and ipiv are not modified.

If fact = 'N', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then
copied to af and factored.

trans CHARACTER*1. Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:

LAPACK Routines: Linear Equations 3

3-191

If trans = 'N', the system has the form A X = B
(No transpose);
If trans = 'T', the system has the form AT X = B (Transpose);
If trans = 'C', the system has the form AH X = B (Conjugate
transpose);

n INTEGER. The number of linear equations; the order of the matrix A (n
≥ 0).

nrhs INTEGER. The number of right hand sides; the number of columns of the
matrices B and X (nrhs ≥ 0).

a,af,b,work REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).

The array a contains the matrix A. If fact = 'F' and equed is not 'N',
then A must have been equilibrated by the scaling factors in r and/or c.
The second dimension of a must be at least max(1,n).
The array af is an input argument if fact = 'F' . It contains the factored
form of the matrix A, i.e., the factors L and U from the factorization A =
P L U as computed by ?getrf. If equed is not 'N', then af is the
factored form of the equilibrated matrix A. The second dimension of af
must be at least max(1,n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must be
at least max(1,nrhs).

work(*) is a workspace array.
The dimension of work must be at least max(1,4*n) for real flavors, and
at least max(1,2*n) for complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .

3-192

3 Intel® Math Kernel Library Reference Manual

It contains the pivot indices from the factorization
A = P L U as computed by ?getrf; row i of the matrix was
interchanged with row ipiv(i).

equed CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact = 'F' . It specifies the form of
equilibration that was done:
If equed = 'N', no equilibration was done (always
true if fact = 'N');
If equed = 'R', row equilibration was done and A has been
premultiplied by diag(r);
If equed = 'C', column equilibration was done and A has been
postmultiplied by diag(c);
If equed = 'B', both row and column equilibration was done; A has
been replaced by diag(r)*A*diag(c).

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(n), c(n).
The array r contains the row scale factors for A, and the array c
contains the column scale factors for A. These arrays are input
arguments if fact = 'F' only; otherwise they are output arguments.
If equed = 'R' or 'B', A is multiplied on the left by diag(r); if equed =
'N' or 'C', r is not accessed.
If fact = 'F' and equed = 'R' or 'B', each element of r must be
positive.

If equed = 'C' or 'B', A is multiplied on the right by diag(c); if equed
= 'N' or 'R', c is not accessed.
If fact = 'F' and equed = 'C' or 'B', each element of c must be
positive.

ldx INTEGER. The first dimension of the output array x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors
only.

rwork REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max(1, 2*n); used in complex
flavors only.

LAPACK Routines: Linear Equations 3

3-193

Output Parameters

x REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the solution matrix X to
the original system of equations. Note that A and B are modified on exit
if equed ≠ 'N', and the solution to the equilibrated system is:
diag(c)-1*X, if trans = 'N' and equed = 'C' or 'B'; diag(r)-1*X, if
trans = 'T' or 'C' and equed = 'R' or 'B'.
The second dimension of x must be at least max(1,nrhs).

a Array a is not modified on exit if fact = 'F' or 'N', or if fact = 'E' and
equed = 'N'.
If equed ≠ 'N', A is scaled on exit as follows:
equed = 'R': A = diag(r)*A
equed = 'C': A = A*diag(c)
equed = 'B': A = diag(r)*A*diag(c)

af If fact = 'N' or 'E', then af is an output argument and on exit returns
the factors L and U from the factorization A = P L U of the original
matrix A(if fact = 'N') or of the equilibrated matrix A (if fact = 'E').
See the description of a for the form of the equilibrated matrix.

b Overwritten by diag(r)* B if trans = 'N' and
equed = 'R' or 'B';
overwritten by diag(c)*B if trans = 'T' and equed = 'C' or 'B';
not changed if equed = 'N'.

r, c These arrays are output arguments if fact ≠ 'F' .
See the description of r, c in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). The routine sets rcond =0 if the estimate
underflows; in this case the matrix is singular (to working precision).
However, anytime rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

3-194

3 Intel® Math Kernel Library Reference Manual

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

ipiv If fact = 'N' or 'E', then ipiv is an output argument and on exit
contains the pivot indices from the factorization A = P L U of the
original matrix A(if fact = 'N') or of the equilibrated matrix A (if fact
= 'E').

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input
Arguments section).

work, rwork On exit, work(1) for real flavors, or rwork(1) for complex flavors,
contains the reciprocal pivot growth factor norm(A)/norm(U). The "max
absolute element" norm is used. If work(1) for real flavors, or rwork(1)
for complex flavors is much less than 1, then the stability of the LU
factorization of the (equilibrated) matrix A could be poor. This also
means that the solution x, condition estimator rcond, and forward error
bound ferr could be unreliable. If factorization fails with
0 < info ≤ n, then work(1) for real flavors, or rwork(1) for complex
flavors contains the reciprocal pivot growth factor for the leading info
columns of A.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly singular, so the solution
and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

LAPACK Routines: Linear Equations 3

3-195

Specific details for the routine gesvx interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

af Holds the matrix AF of size (n,n).

ipiv Holds the vector of length (n).

r Holds the vector of length (n). Default value for each element is r(i) = 1.0_WP.

c Holds the vector of length (n). Default value for each element is c(i) = 1.0_WP.

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

fact Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then both
arguments af and ipiv must be present; otherwise, an error is returned.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

equed Must be 'N', 'B', 'C', or 'R'. The default value is 'N'.

rpvgrw Real value that contains the reciprocal pivot growth factor norm(A)/norm(U).

?gbsv
Computes the solution to the system of linear equations
with a band matrix A and multiple right-hand sides.

Syntax

Fortran 77:

call sgbsv(n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call dgbsv(n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call cgbsv(n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call zgbsv(n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

Fortran 95:

call gbsv(a, b [,kl] [,ipiv] [,info])

3-196

3 Intel® Math Kernel Library Reference Manual

Description

This routine solves for X the real or complex system of linear equations
 AX = B, where A is an n-by-n band matrix with kl subdiagonals and ku superdiagonals, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

The LU decomposition with partial pivoting and row interchanges is used to factor A as A = L U,
where L is a product of permutation and unit lower triangular matrices with kl subdiagonals, and
U is upper triangular with kl+ku superdiagonals. The factored form of A is then used to solve the
system of equations AX = B.

Input Parameters

n INTEGER. The order of A; the number of rows in B
(n ≥ 0).

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the band of A (ku ≥
0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

ab, b REAL for sgbsv
DOUBLE PRECISION for dgbsv
COMPLEX for cgbsv
DOUBLE COMPLEX for zgbsv.
Arrays: ab(ldab,*), b(ldb,*).
The array ab contains the matrix A in band storage
(see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ 2kl + ku +1)

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

LAPACK Routines: Linear Equations 3

3-197

Output Parameters

ab Overwritten by L and U. The diagonal and kl + ku super-diagonals of
U are stored in the first 1 + kl + ku rows of ab. The multipliers used to
form L are stored in the next kl rows.

b Overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices: row i was interchanged with row ipiv(i).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, U(i,i) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the solution could not
be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbsv interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size
(2*kl+ku+1,n).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

kl If omitted, assumed kl = ku.

ku Restored as ku = lda-2*kl-1.

3-198

3 Intel® Math Kernel Library Reference Manual

?gbsvx
Computes the solution to the real or complex system of
linear equations with a band matrix A and multiple
right-hand sides, and provides error bounds on the
solution.

Syntax

Fortran 77:

call sgbsvx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dgbsvx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cgbsvx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

call zgbsvx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

Fortran 95:

call gbsvx (a, b, x [,kl] [,af] [,ipiv] [,fact] [,trans] [,equed] [,r]
[,c] [,ferr] [,berr] [,rcond] [,rpvgrw] [,info])

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations AX = B, ATX = B, or AHX = B, where A is a band matrix of order n with kl
subdiagonals and ku superdiagonals, the columns of matrix B are individual right-hand sides, and
the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gbsvx performs the following steps:

1. If fact = 'E', real scaling factors r and c are computed to equilibrate
the system:

trans = 'N': diag(r)*A*diag(c) *diag(c)-1*X = diag(r)*B

trans = 'T': (diag(r)*A*diag(c))T *diag(r)-1*X = diag(c)*B

LAPACK Routines: Linear Equations 3

3-199

trans = 'C': (diag(r)*A*diag(c))H *diag(r)-1*X = diag(c)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by diag(r)*A*diag(c) and B by diag(r)*B (if trans='N') or
diag(c)*B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', the LU decomposition is used to factor the matrix A (after equilibration if
fact = 'E') as A = L U, where L is a product of permutation and unit lower triangular matrices
with kl subdiagonals, and U is upper triangular with kl+ku superdiagonals.

3. If some Ui,i = 0, so that U is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans = 'N') or diag(r) (if
trans = 'T' or 'C') so that it solves the original system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on
entry, and if not, whether the matrix A should be equilibrated before it is
factored.

If fact = 'F': on entry, afb and ipiv contain the factored form of A.
If equed is not 'N', the matrix A has been equilibrated with scaling
factors given by r and c.
ab, afb, and ipiv are not modified.

If fact = 'N', the matrix A will be copied to afb and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then
copied to afb and factored.

trans CHARACTER*1. Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:

3-200

3 Intel® Math Kernel Library Reference Manual

If trans = 'N', the system has the form A X = B
(No transpose);
If trans = 'T', the system has the form AT X = B (Transpose);
If trans = 'C', the system has the form AH X = B (Conjugate
transpose);

n INTEGER. The number of linear equations; the order of the matrix A (n
≥ 0).

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the band of A (ku ≥
0).

nrhs INTEGER. The number of right hand sides; the number of columns of the
matrices B and X (nrhs ≥ 0).

ab,afb,b,work REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).

The array ab contains the matrix A in band storage
(see Matrix Storage Schemes).
The second dimension of ab must be at least max(1, n).
 If fact = 'F' and equed is not 'N', then A must have been equilibrated
by the scaling factors in r and/or c.

 The array afb is an input argument if fact = 'F' .
The second dimension of afb must be at least max(1,n).
It contains the factored form of the matrix A, i.e., the factors L and U
from the factorization A = L U as computed by ?gbtrf. U is stored as an
upper triangular band matrix with kl + ku super-diagonals in the first
1 + kl + ku rows of afb. The multipliers used during the factorization
are stored in the next kl rows.
If equed is not 'N', then afb is the factored form of the equilibrated
matrix A.

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must be
at least max(1,nrhs).

LAPACK Routines: Linear Equations 3

3-201

work(*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and
at least max(1,2*n) for complex flavors.

ldab INTEGER. The first dimension of ab; ldab ≥ kl+ku+1.

ldafb INTEGER. The first dimension of afb;
ldafb ≥ 2*kl+ku+1.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .
It contains the pivot indices from the factorization
A = L U as computed by ?gbtrf; row i of the matrix was interchanged
with row ipiv(i).

equed CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact = 'F' . It specifies the form of
equilibration that was done:
If equed = 'N', no equilibration was done (always
true if fact = 'N');
If equed = 'R', row equilibration was done and A has been
premultiplied by diag(r);
If equed = 'C', column equilibration was done and A has been
postmultiplied by diag(c);
If equed = 'B', both row and column equilibration was done; A has
been replaced by diag(r)*A*diag(c).

r, c REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: r(n), c(n).
The array r contains the row scale factors for A, and the array c
contains the column scale factors for A. These arrays are input
arguments if fact = 'F' only; otherwise they are output arguments.
If equed = 'R' or 'B', A is multiplied on the left by diag(r); if equed =
'N' or 'C', r is not accessed.
If fact = 'F' and equed = 'R' or 'B', each element of r must be
positive.
If equed = 'C' or 'B', A is multiplied on the right by diag(c); if equed
= 'N' or 'R', c is not accessed.
If fact = 'F' and equed = 'C' or 'B', each element of c must be
positive.

3-202

3 Intel® Math Kernel Library Reference Manual

ldx INTEGER. The first dimension of the output array x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors
only.

rwork REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

Output Parameters

x REAL for sgbsvx
DOUBLE PRECISION for dgbsvx
COMPLEX for cgbsvx
DOUBLE COMPLEX for zgbsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the solution matrix X to
the original system of equations. Note that A and B are modified on exit
if equed ≠ 'N', and the solution to the equilibrated system is:
diag(c)-1*X, if trans = 'N' and equed = 'C' or 'B'; diag(r)-1*X, if
trans = 'T' or 'C' and equed = 'R' or 'B'.
The second dimension of x must be at least max(1,nrhs).

ab Array ab is not modified on exit if fact = 'F' or 'N', or if fact = 'E' and
equed = 'N'.
If equed ≠ 'N', A is scaled on exit as follows:
equed = 'R': A = diag(r)*A
equed = 'C': A = A*diag(c)
equed = 'B': A = diag(r)*A*diag(c)

afb If fact = 'N' or 'E', then afb is an output argument and on exit returns
details of the LU factorization of the original matrix A(if fact = 'N') or
of the equilibrated matrix A (if fact = 'E'). See the description of ab for
the form of the equilibrated matrix.

b Overwritten by diag(r)*b if trans = 'N' and
equed = 'R' or 'B';
overwritten by diag(c)*b if trans = 'T' and equed = 'C' or 'B';
not changed if equed = 'N'.

r, c These arrays are output arguments if fact ≠ 'F' .
See the description of r, c in Input Arguments section.

LAPACK Routines: Linear Equations 3

3-203

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done).
If rcond is less than the machine precision (in particular, if rcond = 0),
the matrix is singular to working precision. This condition is indicated
by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

ipiv If fact = 'N' or 'E', then ipiv is an output argument and on exit
contains the pivot indices from the factorization A = L U of the original
matrix A
(if fact = 'N') or of the equilibrated matrix A (if fact = 'E').

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input
Arguments section).

work, rwork On exit, work(1) for real flavors, or rwork(1) for complex flavors,
contains the reciprocal pivot growth factor norm(A)/norm(U). The "max
absolute element" norm is used. If work(1) for real flavors, or rwork(1)
for complex flavors is much less than 1, then the stability of the LU
factorization of the (equilibrated) matrix A could be poor. This also
means that the solution x, condition estimator rcond, and forward error
bound ferr could be unreliable. If factorization fails with
0 < info ≤ n, then work(1) for real flavors, or rwork(1) for complex
flavors contains the reciprocal pivot growth factor for the leading info
columns of A.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then U(i,i) is exactly zero. The factorization
has been completed, but the factor U is exactly singular, so the solution
and error bounds could not be computed; rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working

3-204

3 Intel® Math Kernel Library Reference Manual

precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbsvx interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size
(kl+ku+1,n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

af Stands for argument ab in Fortran 77 interface. Holds the array AF of size
(2*kl+ku+1,n).

ipiv Holds the vector of length (n).

r Holds the vector of length (n). Default value for each element is
r(i) = 1.0_WP.

c Holds the vector of length (n). Default value for each element is
c(i) = 1.0_WP.

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

equed Must be 'N', 'B', 'C', or 'R'. The default value is 'N'.

fact Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then both
arguments af and ipiv must be present; otherwise, an error is returned.

rpvgrw Real value that contains the reciprocal pivot growth factor norm(A)/norm(U).

kl If omitted, assumed kl = ku.

ku Restored as ku = lda-kl-1.

LAPACK Routines: Linear Equations 3

3-205

?gtsv
Computes the solution to the system of linear equations
with a tridiagonal matrix A and multiple right-hand
sides.

Syntax

Fortran 77:

call sgtsv(n, nrhs, dl, d, du, b, ldb, info)

call dgtsv(n, nrhs, dl, d, du, b, ldb, info)

call cgtsv(n, nrhs, dl, d, du, b, ldb, info)

call zgtsv(n, nrhs, dl, d, du, b, ldb, info)

Fortran 95:

call gtsv(dl, d, du, b [,info])

Description

This routine solves for X the system of linear equations AX = B, where A is an n-by-n tridiagonal
matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.
The routine uses Gaussian elimination with partial pivoting.

Note that the equation ATX = B may be solved by interchanging the order of the arguments du
and dl.

Input Parameters

n INTEGER. The order of A; the number of rows in B
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

dl, d, du, b REAL for sgtsv
DOUBLE PRECISION for dgtsv
COMPLEX for cgtsv
DOUBLE COMPLEX for zgtsv.
Arrays: dl(n - 1), d(n), du(n - 1), b(ldb,*).
The array dl contains the (n - 1) subdiagonal elements of A.

3-206

3 Intel® Math Kernel Library Reference Manual

The array d contains the diagonal elements of A.
The array du contains the (n - 1) superdiagonal elements of A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

dl Overwritten by the (n-2) elements of the second superdiagonal of the
upper triangular matrix U from the LU factorization of A. These
elements are stored in dl(1), ... , dl(n-2).

d Overwritten by the n diagonal elements of U.

du Overwritten by the (n-1) elements of the first superdiagonal of U.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, U(i,i) is exactly zero, and the solution has not been
computed. The factorization has not been completed unless i = n.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gtsv interface are the following:

dl Holds the vector of length (n-1).

d Holds the vector of length (n).

dl Holds the vector of length (n-1).

b Holds the matrix B of size (n,nrhs).

LAPACK Routines: Linear Equations 3

3-207

?gtsvx
Computes the solution to the real or complex system of
linear equations with a tridiagonal matrix A and
multiple right-hand sides, and provides error bounds on
the solution.

Syntax

Fortran 77:

call sgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

call zgtsvx(fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

Fortran 95:

call gtsvx (dl, d, du, b, x [,dlf] [,df] [,duf] [,du2] [,ipiv] [,fact]
[,trans] [,ferr] [,berr] [,rcond] [,info])

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations AX = B, ATX = B, or AHX = B, where A is a tridiagonal matrix of order n, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?gtsvx performs the following steps:

1. If fact = 'N', the LU decomposition is used to factor the matrix A as
A = LU, where L is a product of permutation and unit lower bidiagonal matrices and U is an upper
triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.

3-208

3 Intel® Math Kernel Library Reference Manual

2. If some Ui,i = 0, so that U is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been
supplied on entry.

If fact = 'F': on entry, dlf, df, duf, du2, and ipiv contain the
factored form of A; arrays dl, d, du, dlf, df, duf, du2, and ipiv
will not be modified.

If fact = 'N', the matrix A will be copied to dlf, df, and duf and
factored.

trans CHARACTER*1. Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:

If trans = 'N', the system has the form A X = B
(No transpose);
If trans = 'T', the system has the form AT X = B (Transpose);
If trans = 'C', the system has the form AH X = B (Conjugate
transpose);

n INTEGER. The number of linear equations; the order of the matrix A (n
≥ 0).

nrhs INTEGER. The number of right hand sides; the number of columns of the
matrices B and X (nrhs ≥ 0).

dl,d,du,dlf,df,

duf,du2,b,x,work REAL for sgtsvx
DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx
DOUBLE COMPLEX for zgtsvx.

Arrays:

LAPACK Routines: Linear Equations 3

3-209

dl, dimension (n - 1), contains the subdiagonal elements of A.

d, dimension (n), contains the diagonal elements of A.

du, dimension (n - 1), contains the superdiagonal elements of A.

dlf, dimension (n - 1). If fact = 'F' , then dlf is an input argument
and on entry contains the (n - 1) multipliers that define the matrix L
from the LU factorization of A as computed by ?gttrf.

df, dimension (n). If fact = 'F' , then df is an input argument and on
entry contains the n diagonal elements of the upper triangular matrix U
from the LU factorization of A.

duf, dimension (n - 1). If fact = 'F' , then duf is an input argument
and on entry contains the (n - 1) elements of the first super-diagonal of
U.

du2, dimension (n - 2). If fact = 'F' , then du2 is an input argument
and on entry contains the (n - 2) elements of the second super-diagonal
of U.

b(ldb,*) contains the right-hand side matrix B. The second dimension
of b must be at least max(1,nrhs).

x(ldx,*) contains the solution matrix X. The second dimension of x
must be at least max(1,nrhs).

work (*) is a workspace array;
 the dimension of work must be at least max(1, 3*n) for real flavors and
max(1, 2*n) for complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The first dimension of x; ldx ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n). If fact = 'F' , then ipiv is an
input argument and on entry contains the pivot indices, as returned by
?gttrf.

iwork INTEGER.
Workspace array, DIMENSION (n). Used for real flavors only.

rwork REAL for cgtsvx
DOUBLE PRECISION for zgtsvx.
Workspace array, DIMENSION (n). Used for complex flavors only.

3-210

3 Intel® Math Kernel Library Reference Manual

Output Parameters

x REAL for sgtsvx
DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx
DOUBLE COMPLEX for zgtsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the solution matrix X.
The second dimension of x must be at least max(1,nrhs).

dlf If fact = 'N' , then dlf is an output argument and on exit contains the
(n - 1) multipliers that define the matrix L from the LU factorization of
A.

df If fact = 'N' , then df is an output argument and on exit contains the n
diagonal elements of the upper triangular matrix U from the LU
factorization of A.

duf If fact = 'N' , then duf is an output argument and on exit contains the
(n - 1) elements of the first super-diagonal of U.

du2 If fact = 'N' , then du2 is an output argument and on exit contains the
(n - 2) elements of the second super-diagonal of U.

ipiv The array ipiv is an output argument if fact = 'N' and, on exit, contains
the pivot indices from the factorization
A = L U ; row i of the matrix was interchanged with row ipiv(i). The
value of ipiv(i) will always be either i or i+1; ipiv(i)=i indicates a
row interchange was not required.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A.
If rcond is less than the machine precision (in particular, if rcond = 0),
the matrix is singular to working precision. This condition is indicated
by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then U(i,i) is exactly zero. The factorization

LAPACK Routines: Linear Equations 3

3-211

has not been completed unless i = n, but the factor U is exactly
singular, so the solution and error bounds could not be computed;
rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gtsvx interface are the following:

dl Holds the vector of length (n-1).

d Holds the vector of length (n).

du Holds the vector of length (n-1).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

dlf Holds the vector of length (n-1).

df Holds the vector of length (n).

duf Holds the vector of length (n-1).

du2 Holds the vector of length (n-2).

ipiv Holds the vector of length (n).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

fact Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then the arguments
dlf, df, duf, du2, and ipiv must be present; otherwise, an error is returned.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

3-212

3 Intel® Math Kernel Library Reference Manual

?posv
Computes the solution to the system of linear equations
with a symmetric or Hermitian positive definite matrix
A and multiple right-hand sides.

Syntax

Fortran 77:

call sposv(uplo, n, nrhs, a, lda, b, ldb, info)

call dposv(uplo, n, nrhs, a, lda, b, ldb, info)

call cposv(uplo, n, nrhs, a, lda, b, ldb, info)

call zposv(uplo, n, nrhs, a, lda, b, ldb, info)

Fortran 95:

call posv(a, b [,uplo] [,info])

Description

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric/Hermitian positive definite matrix, the columns of
matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as A = UHU if uplo ='U'

 or A = LLH if uplo ='L', where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of equations AX = B.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array a stores the upper triangular part of the matrix
A, and A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).

LAPACK Routines: Linear Equations 3

3-213

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

a, b REAL for sposv
DOUBLE PRECISION for dposv
COMPLEX for cposv
DOUBLE COMPLEX for zposv.
Arrays: a(lda,*), b(ldb,*).
The array a contains either the upper or the lower triangular part of the
matrix A (see uplo).
The second dimension of a must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of b must be at least max(1,nrhs).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

a If info=0, the upper or lower triangular part of a is overwritten by the
Cholesky factor U or L, as specified by uplo.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself)
is not positive definite, so the factorization could not be completed, and
the solution has not been computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine posv interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

3-214

3 Intel® Math Kernel Library Reference Manual

?posvx
Uses the Cholesky factorization to compute the solution
to the system of linear equations with a symmetric or
Hermitian positive definite matrix A, and provides error
bounds on the solution.

Syntax

Fortran 77:

call sposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,
ldx, rcond, ferr, berr, work, iwork, info)

call dposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,
ldx, rcond, ferr, berr, work, iwork, info)

call cposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,
ldx, rcond, ferr, berr, work, rwork, info)

call zposvx(fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,
ldx, rcond, ferr, berr, work, rwork, info)

Fortran 95:

call posvx (a, b, x [,uplo] [,af] [,fact] [,equed] [,s] [,ferr] [,berr]
[,rcond] [,info])

Description

This routine uses the Cholesky factorization A=UHU or A=LLH to compute the solution to a real
or complex system of linear equations AX = B, where A is a n-by-n real symmetric/Hermitian
positive definite matrix, the columns of matrix B are individual right-hand sides, and the columns
of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?posvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate
the system:

 diag(s)*A*diag(s) *diag(s)-1*X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

LAPACK Routines: Linear Equations 3

3-215

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after
equilibration if fact = 'E') as

A = UH U, if uplo = ‘U’, or
A = L LH , if uplo = ‘L’,
where U is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with info
= i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If
the reciprocal of the condition number is less than machine precision, info = n + 1 is returned as
a warning, but the routine still goes on to solve for X and compute error bounds as described
below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original
system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on
entry, and if not, whether the matrix A should be equilibrated before it is
factored.

If fact = 'F': on entry, af contains the factored form of A. If equed =
'Y', the matrix A has been equilibrated with scaling factors given by s.
a and af will not be modified.

If fact = 'N', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then
copied to af and factored.

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array a stores the upper triangular part of the matrix
A, and A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A; A is factored as LLH.

3-216

3 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

a,af,b,work REAL for sposvx
DOUBLE PRECISION for dposvx
COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).

The array a contains the matrix Aas specified by uplo. If fact = 'F' and
equed = 'Y', then A must have been equilibrated by the scaling factors in
s, and a must contain the equilibrated matrix diag(s)*A*diag(s). The
second dimension of a must be at least max(1,n).

The array af is an input argument if fact = 'F' .
It contains the triangular factor U or L from the Cholesky factorization
of A in the same storage format as A. If equed is not 'N', then af is the
factored form of the equilibrated matrix diag(s)*A*diag(s). The second
dimension of af must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must be
at least max(1,nrhs).

work(*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and
at least max(1,2*n) for complex flavors.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

equed CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact = 'F' . It specifies the form of
equilibration that was done:
If equed = 'N', no equilibration was done (always
true if fact = 'N');
If equed = 'Y', equilibration was done and A has been replaced by
diag(s)*A*diag(s).

LAPACK Routines: Linear Equations 3

3-217

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
The array s contains the scale factors for A. This array is an input
argument if fact = 'F' only; otherwise it is an output argument.
If equed = 'N' , s is not accessed.
If fact = 'F' and equed = 'Y', each element of s must be positive.

ldx INTEGER. The first dimension of the output array x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors
only.

rwork REAL for cposvx;
DOUBLE PRECISION for zposvx.
Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

 Output Parameters

x REAL for sposvx
DOUBLE PRECISION for dposvx
COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the solution matrix X to
the original system of equations. Note that if equed = 'Y', A and B are
modified on exit, and the solution to the equilibrated system is
diag(s)-1*X.
The second dimension of x must be at least max(1,nrhs).

a Array a is not modified on exit if fact = 'F' or 'N', or if fact = 'E' and
equed = 'N'.
If fact = 'E' and equed = 'Y', A is overwritten by diag(s)*A*diag(s)

af If fact = 'N' or 'E', then af is an output argument and on exit returns
the triangular factor U or L from the Cholesky factorization A=UHU or
A=LLH of the original matrix A (if fact = 'N'), or of the equilibrated
matrix A
 (if fact = 'E'). See the description of a for the form of the equilibrated
matrix.

3-218

3 Intel® Math Kernel Library Reference Manual

b Overwritten by diag(s)*B , if equed = 'Y';
not changed if equed = 'N'.

s This array is an output argument if fact ≠ 'F' .
See the description of s in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision.
This condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input
Arguments section).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i (and hence the
matrix A itself) is not positive definite, so the factorization could not be
completed, and the solution and error bounds could not be computed;
rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine posvx interface are the following:

a Holds the matrix A of size (n,n).

LAPACK Routines: Linear Equations 3

3-219

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

af Holds the matrix AF of size (n,n).

s Holds the vector of length (n). Default value for each element is
s(i) = 1.0_WP.

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

fact Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then af must be
present; otherwise, an error is returned.

equed Must be 'N' or 'Y'. The default value is 'N'.

?ppsv
Computes the solution to the system of linear equations
with a symmetric (Hermitian) positive definite packed
matrix A and multiple right-hand sides.

Syntax

Fortran 77:

call sppsv(uplo, n, nrhs, ap, b, ldb, info)

call dppsv(uplo, n, nrhs, ap, b, ldb, info)

call cppsv(uplo, n, nrhs, ap, b, ldb, info)

call zppsv(uplo, n, nrhs, ap, b, ldb, info)

Fortran 95:

call ppsv(a, b [,uplo] [,info])

3-220

3 Intel® Math Kernel Library Reference Manual

Description

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n real symmetric/Hermitian positive definite matrix stored in packed
format, the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.

The Cholesky decomposition is used to factor A as A = UHU if uplo ='U'

 or A = LLH if uplo ='L', where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of equations AX = B.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array a stores the upper triangular part of the matrix
A, and A is factored as UHU.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

ap, b REAL for sppsv
DOUBLE PRECISION for dppsv
COMPLEX for cppsv
DOUBLE COMPLEX for zppsv.
Arrays: ap(*), b(ldb,*).
The array ap contains either the upper or the lower triangular part of the
matrix A (as specified by uplo) in packed storage (see Matrix Storage
Schemes).
The dimension of ap must be at least max(1,n(n+1)/2).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

LAPACK Routines: Linear Equations 3

3-221

Output Parameters

ap If info=0, the upper or lower triangular part of A in packed storage is
overwritten by the Cholesky factor U or L, as specified by uplo.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself)
is not positive definite, so the factorization could not be completed, and
the solution has not been computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ppsv interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

?ppsvx
Uses the Cholesky factorization to compute the solution
to the system of linear equations with a symmetric
(Hermitian) positive definite packed matrix A, and
provides error bounds on the solution.

Syntax

Fortran 77:

call sppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call dppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

3-222

3 Intel® Math Kernel Library Reference Manual

call cppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

call zppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

Fortran 95:

call ppsvx (a, b, x [,uplo] [,af] [,fact] [,equed] [,s] [,ferr] [,berr]
[,rcond] [,info])

Description

This routine uses the Cholesky factorization A=UHU or A=LLH to compute the solution to a real
or complex system of linear equations AX = B, where A is a n-by-n symmetric or Hermitian
positive definite matrix stored in packed format, the columns of matrix B are individual right-hand
sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?ppsvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate
the system:

 diag(s)*A*diag(s) *diag(s)-1*X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after
equilibration if fact = 'E') as

A = UH U, if uplo = ‘U’, or
A = L LH , if uplo = ‘L’,
where U is an upper triangular matrix and L is a lower triangular matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with
info = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine precision, info = n + 1 is
returned as a warning, but the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

LAPACK Routines: Linear Equations 3

3-223

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original
system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on
entry, and if not, whether the matrix A should be equilibrated before it is
factored.

If fact = 'F': on entry, afp contains the factored form of A. If equed
= 'Y', the matrix A has been equilibrated with scaling factors given by
s.
ap and afp will not be modified.

If fact = 'N', the matrix A will be copied to afp and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then
copied to afp and factored.

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array ap stores the upper triangular part of the matrix
A, and A is factored as UHU.
If uplo = 'L', the array ap stores the lower triangular part of the matrix
A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

ap,afp,b,work REAL for sppsvx
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
DOUBLE COMPLEX for zppsvx.
Arrays: ap(*), afp(*), b(ldb,*), work (*).

The array ap contains the upper or lower triangle of the original
symmetric/Hermitian matrix A in packed storage (see Matrix Storage
Schemes). In case when fact = 'F' and equed = 'Y', ap must contain the
equilibrated matrix diag(s)*A*diag(s).

3-224

3 Intel® Math Kernel Library Reference Manual

The array afp is an input argument if fact = 'F' and contains the
triangular factor U or L from the Cholesky factorization of A in the
same storage format as A. If equed is not 'N', then afp is the factored
form of the equilibrated matrix A.

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2);
the second dimension of b must be at least max(1,nrhs); the dimension
of work must be at least max(1, 3*n) for real flavors and max(1, 2*n)
for complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

equed CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact = 'F' . It specifies the form of
equilibration that was done:
If equed = 'N', no equilibration was done (always true if fact = 'N');
If equed = 'Y', equilibration was done and A has been replaced by
diag(s)*A*diag(s).

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
The array s contains the scale factors for A. This array is an input
argument if fact = 'F' only; otherwise it is an output argument.
If equed = 'N' , s is not accessed.
If fact = 'F' and equed = 'Y', each element of s must be positive.

ldx INTEGER. The first dimension of the output array x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors
only.

rwork REAL for cppsvx;
DOUBLE PRECISION for zppsvx.
Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

LAPACK Routines: Linear Equations 3

3-225

 Output Parameters

x REAL for sppsvx
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
DOUBLE COMPLEX for zppsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the solution matrix X to
the original system of equations. Note that if equed ='Y', A and B are
modified on exit, and the solution to the equilibrated system is
diag(s)-1*X.
The second dimension of x must be at least max(1,nrhs).

ap Array ap is not modified on exit if fact = 'F' or 'N', or if fact = 'E' and
equed = 'N'.
If fact = 'E' and equed = 'Y', A is overwritten by diag(s)*A*diag(s)

afp If fact = 'N' or 'E', then afp is an output argument and on exit returns
the triangular factor U or L from the Cholesky factorization A=UHU or
A=LLH of the original matrix A(if fact = 'N'), or of the equilibrated
matrix A
(if fact = 'E'). See the description of ap for the form of the equilibrated
matrix.

b Overwritten by diag(s)*B , if equed = 'Y';
not changed if equed = 'N'.

s This array is an output argument if fact ≠ 'F' .
See the description of s in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision.
This condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

3-226

3 Intel® Math Kernel Library Reference Manual

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input
Arguments section).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i (and hence the
matrix A itself) is not positive definite, so the factorization could not be
completed, and the solution and error bounds could not be computed;
rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ppsvx interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

af Stands for argument afp in Fortran 77 interface. Holds the matrix AF of size
(n*(n+1)/2).

s Holds the vector of length (n). Default value for each element is
s(i) = 1.0_WP.

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

fact Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then af must be
present; otherwise, an error is returned.

equed Must be 'N' or 'Y'. The default value is 'N'.

LAPACK Routines: Linear Equations 3

3-227

?pbsv
Computes the solution to the system of linear equations
with a symmetric or Hermitian positive definite band
matrix A and multiple right-hand sides.

Syntax

Fortran 77:

call spbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call dpbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call cpbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call zpbsv(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

Fortran 95:

call pbsv(a, b [,uplo] [,info])

Description

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric/Hermitian positive definite band matrix, the columns of
matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The Cholesky decomposition is used to factor A as A = UHU if uplo ='U'

 or A = LLH if uplo ='L', where U is an upper triangular band matrix and L is a lower triangular
band matrix, with the same number of superdiagonals or subdiagonals as A. The factored form of
A is then used to solve the system of equations AX = B.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored in the
array ab, and how A is factored:

If uplo = 'U', the array ab stores the upper triangular part of the matrix
A, and A is factored as UHU.
If uplo = 'L', the array ab stores the lower triangular part of the matrix
A; A is factored as LLH.

3-228

3 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of matrix A (n ≥ 0).

kd INTEGER. The number of superdiagonals of the
matrix A if uplo = 'U', or the number of subdiagonals if uplo = 'L'
(kd ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

ab, b REAL for spbsv
DOUBLE PRECISION for dpbsv
COMPLEX for cpbsv
DOUBLE COMPLEX for zpbsv.
Arrays: ab(ldab, *), b(ldb,*).
The array ab contains either the upper or the lower triangular part of the
matrix A (as specified by uplo) in band storage (see Matrix Storage
Schemes).
The second dimension of ab must be at least max(1, n). The array b
contains the matrix B whose columns are the right-hand sides for the
systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ kd +1)

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

ab The upper or lower triangular part of A (in band storage) is overwritten
by the Cholesky factor U or L, as specified by uplo, in the same storage
format as A.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself)
is not positive definite, so the factorization could not be completed, and
the solution has not been computed.

LAPACK Routines: Linear Equations 3

3-229

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbsv interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

b Holds the matrix B of size (n,nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

?pbsvx
Uses the Cholesky factorization to compute the solution
to the system of linear equations with a symmetric
(Hermitian) positive definite band matrix A, and
provides error bounds on the solution.

Syntax

Fortran 77:

call spbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call zpbsvx(fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

Fortran 95:

call pbsvx(a, b, x [,uplo] [,af] [,fact] [,equed] [,s] [,ferr] [,berr]
[,rcond] [,info])

3-230

3 Intel® Math Kernel Library Reference Manual

Description

This routine uses the Cholesky factorization A=UHU or A=LLH to compute the solution to a real
or complex system of linear equations AX = B, where A is a n-by-n symmetric or Hermitian
positive definite band matrix, the columns of matrix B are individual right-hand sides, and the
columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?pbsvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate
the system:

 diag(s)*A*diag(s) *diag(s)-1*X = diag(s)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by diag(s)*A*diag(s) and B by diag(s)*B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after
equilibration if fact = 'E') as

A = UH U, if uplo = ‘U’, or
A = L LH , if uplo = ‘L’,
where U is an upper triangular band matrix and L is a lower triangular band matrix.

3. If the leading i-by-i principal minor is not positive definite, then the routine returns with
info = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine precision, info = n + 1 is
returned as a warning, but the routine still goes on to solve for X and compute error bounds as
described below.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original
system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.

LAPACK Routines: Linear Equations 3

3-231

Specifies whether or not the factored form of the matrix A is supplied on
entry, and if not, whether the matrix A should be equilibrated before it is
factored.

If fact = 'F': on entry, afb contains the factored form of A. If equed
= 'Y', the matrix A has been equilibrated with scaling factors given by
s.
ab and afb will not be modified.

If fact = 'N', the matrix A will be copied to afb and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then
copied to afb and factored.

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array ab stores the upper triangular part of the matrix
A, and A is factored as UHU.
If uplo = 'L', the array ab stores the lower triangular part of the matrix
A; A is factored as LLH.

n INTEGER. The order of matrix A (n ≥ 0).

kd INTEGER. The number of super-diagonals or sub-diagonals in the
matrix A (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

ab,afb,b,work REAL for spbsvx
DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Arrays: ab(ldab,*), afb(ldab,*), b(ldb,*), work(*).

The array ab contains the upper or lower triangle of the matrix A in band
storage (see Matrix Storage Schemes).
 If fact = 'F' and equed = 'Y', then ab must contain the equilibrated
matrix diag(s)*A*diag(s). The second dimension of ab must be at least
max(1, n).

3-232

3 Intel® Math Kernel Library Reference Manual

 The array afb is an input argument if fact = 'F' .
It contains the triangular factor U or L from the Cholesky factorization
of the band matrix A in the same storage format as A. If equed = 'Y',
then afb is the factored form of the equilibrated matrix A.
 The second dimension of afb must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must be
at least max(1,nrhs).

work(*) is a workspace array.
The dimension of work must be at least max(1,3*n) for real flavors, and
at least max(1,2*n) for complex flavors.

ldab INTEGER. The first dimension of ab; ldab ≥ kd+1.

ldafb INTEGER. The first dimension of afb; ldafb ≥ kd+1.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

equed CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact = 'F' . It specifies the form of
equilibration that was done:
If equed = 'N', no equilibration was done (always
true if fact = 'N');
If equed = 'Y', equilibration was done and A has been replaced by
diag(s)*A*diag(s).

s REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
The array s contains the scale factors for A. This array is an input
argument if fact = 'F' only; otherwise it is an output argument.
If equed = 'N' , s is not accessed.
If fact = 'F' and equed = 'Y', each element of s must be positive.

ldx INTEGER. The first dimension of the output array x; ldx ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors
only.

rwork REAL for cpbsvx;
DOUBLE PRECISION for zpbsvx.
Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

LAPACK Routines: Linear Equations 3

3-233

 Output Parameters

x REAL for spbsvx
DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the solution matrix X to
the original system of equations. Note that if equed ='Y', A and B are
modified on exit, and the solution to the equilibrated system is
diag(s)-1*X.
The second dimension of x must be at least max(1,nrhs).

ab On exit, if fact = 'E' and equed = 'Y', A is overwritten by
diag(s)*A*diag(s)

afb If fact = 'N' or 'E', then afb is an output argument and on exit returns
the triangular factor U or L from the Cholesky factorization A=UHU or
A=LLH of the original matrix A(if fact = 'N'), or of the equilibrated
matrix A
 (if fact = 'E'). See the description of ab for the form of the equilibrated
matrix.

b Overwritten by diag(s)*B , if equed = 'Y';
not changed if equed = 'N'.

s This array is an output argument if fact ≠ 'F' .
See the description of s in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision.
This condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

3-234

3 Intel® Math Kernel Library Reference Manual

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input
Arguments section).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i (and hence the
matrix A itself) is not positive definite, so the factorization could not be
completed, and the solution and error bounds could not be computed;
rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbsvx interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

af Stands for argument afb in Fortran 77 interface. Holds the array AF of size
(kd+1,n).

s Holds the vector of length (n). Default value for each element is
s(i) = 1.0_WP.

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

fact Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then af must be
present; otherwise, an error is returned.

equed Must be 'N' or 'Y'. The default value is 'N'.

LAPACK Routines: Linear Equations 3

3-235

?ptsv
Computes the solution to the system of linear equations
with a symmetric or Hermitian positive definite
tridiagonal matrix A and multiple right-hand sides.

Syntax

Fortran 77:

call sptsv(n, nrhs, d, e, b, ldb, info)

call dptsv(n, nrhs, d, e, b, ldb, info)

call cptsv(n, nrhs, d, e, b, ldb, info)

call zptsv(n, nrhs, d, e, b, ldb, info)

Fortran 95:

call ptsv(d, e, b [,info])

Description

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric/Hermitian positive definite tridiagonal matrix, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

A is factored as A = L D LH , and the factored form of A is then used to solve the system of
equations AX = B.

Input Parameters

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

d REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Array, dimension at least max(1, n). Contains the diagonal elements of
the tridiagonal matrix A.

3-236

3 Intel® Math Kernel Library Reference Manual

e, b REAL for sptsv
DOUBLE PRECISION for dptsv
COMPLEX for cptsv
DOUBLE COMPLEX for zptsv.
Arrays: e(n - 1) , b(ldb,*).
The array e contains the (n - 1) subdiagonal elements
of A.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

d Overwritten by the n diagonal elements of the diagonal matrix D from
the LDLH factorization of A.

e Overwritten by the (n - 1) subdiagonal elements of the unit bidiagonal
factor L from the factorization of A.

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix A itself)
is not positive definite, and the solution has not been computed. The
factorization has not been completed unless i = n.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ptsv interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n-1).

b Holds the matrix B of size (n,nrhs).

LAPACK Routines: Linear Equations 3

3-237

?ptsvx
Uses the factorization A=LDLH to compute
the solution to the system of linear equations with a
symmetric (Hermitian) positive definite tridiagonal
matrix A, and provides error bounds on the solution.

Syntax

Fortran 77:

call sptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,
berr, work, info)

call dptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,
berr, work, info)

call cptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,
berr, work, rwork, info)

call zptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,
berr, work, rwork, info)

Fortran 95:

call ptsvx(d, e, b, x [,df] [,ef] [,fact] [,ferr] [,berr] [,rcond]
[,info])

Description

This routine uses the Cholesky factorization A=L D LH to compute the solution to a real or
complex system of linear equations AX = B, where A is a n-by-n symmetric or Hermitian
positive definite tridiagonal matrix, the columns of matrix B are individual right-hand sides, and
the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?ptsvx performs the following steps:

1. If fact = 'N', the matrix A is factored as A = L D LH, where L is a unit lower bidiagonal matrix
and D is diagonal. The factorization can also be regarded as having the form A = UH D U.

3-238

3 Intel® Math Kernel Library Reference Manual

2. If the leading i-by-i principal minor is not positive definite, then the routine returns with
info = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine precision, info = n + 1 is
returned as a warning, but the routine still goes on to solve for X and compute error bounds as
described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A is supplied on
entry.

If fact = 'F': on entry, df and ef contain the factored form of A.
Arrays d, e, df, and ef will not be modified.

If fact = 'N', the matrix A will be copied to df and ef and factored.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

d,df,rwork REAL for single precision flavors
DOUBLE PRECISION for double precision flavors
Arrays: d(n), df(n), rwork(n).
The array d contains the n diagonal elements of the tridiagonal matrix
A.

The array df is an input argument if fact = 'F' and on entry contains
the n diagonal elements of the diagonal matrix D from the L D LH

factorization of A.

The array rwork is a workspace array used for complex flavors only.

e,ef,b,work REAL for sptsvx
DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx
DOUBLE COMPLEX for zptsvx.

LAPACK Routines: Linear Equations 3

3-239

Arrays: e(n - 1), ef(n - 1), b(ldb,*), work(*).
The array e contains the (n - 1) subdiagonal elements of the tridiagonal
matrix A.

The array ef is an input argument if fact = 'F' and on entry contains
the
(n - 1) subdiagonal elements of the unit bidiagonal factor L from the L
D LH factorization of A.

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

The array work is a workspace array. The dimension of work must be
at least 2*n for real flavors, and at least n for complex flavors.

ldb INTEGER. The leading dimension of b; ldb ≥ max(1, n).

ldx INTEGER. The leading dimension of x; ldx ≥ max(1, n).

 Output Parameters

x REAL for sptsvx
DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx
DOUBLE COMPLEX for zptsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the solution matrix X to
the system of equations. The second dimension of x must be at least
max(1,nrhs).

df, ef These arrays are output arguments if fact = 'N' .
See the description of df, ef in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision.
This condition is indicated by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

3-240

3 Intel® Math Kernel Library Reference Manual

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, the leading minor of order i (and hence the
matrix A itself) is not positive definite, so the factorization could not be
completed, and the solution and error bounds could not be computed;
rcond = 0 is returned.
If info = i, and i = n +1, then U is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ptsvx interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n-1).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

df Holds the vector of length (n).

ef Holds the vector of length (n-1).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

fact Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both arguments
af and ipiv must be present; otherwise, an error is returned.

LAPACK Routines: Linear Equations 3

3-241

?sysv
Computes the solution to the system of linear equations
with a real or complex symmetric matrix A and multiple
right-hand sides.

Syntax

Fortran 77:

call ssysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call dsysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call csysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call zsysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

Fortran 95:

call sysv(a, b [,uplo] [,ipiv] [,info])

Description

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as A = U D UT or
A = L D LT , where U (or L) is a product of permutation and unit upper (lower) triangular matrices,
and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array a stores the upper triangular part of the matrix
A, and A is factored as UDUT.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A; A is factored as LDLT.

3-242

3 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

a, b, work REAL for ssysv
DOUBLE PRECISION for dsysv
COMPLEX for csysv
DOUBLE COMPLEX for zsysv.
Arrays: a(lda,*), b(ldb,*), work(lwork).
The array a contains either the upper or the lower triangular part of the
symmetric matrix A (see uplo).
The second dimension of a must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of b must be at least max(1,nrhs).
work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

lwork INTEGER. The size of the work array (lwork ≥ 1)

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla. See Application Notes below for details and for the
suggested value of lwork.

Output Parameters

a If info = 0, a is overwritten by the block-diagonal matrix D and the
multipliers used to obtain the factor U (or L) from the factorization of A
as computed by ?sytrf.

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block structure of D, as
determined by ?sytrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row
and column of A was interchanged with the kth row and column.

LAPACK Routines: Linear Equations 3

3-243

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

work(1) If info=0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular, so the solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sysv interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use lwork =-1 for the first run. In this case, a
workspace query is assumed; the routine only calculates the optimal size of the work array, returns
this value as the first entry work(1) of the work array , and no error message related to lwork is
issued by xerbla. On exit, examine work(1) and use this value for subsequent runs.

3-244

3 Intel® Math Kernel Library Reference Manual

?sysvx
Uses the diagonal pivoting factorization to compute the
solution to the system of linear equations with a real or
complex symmetric matrix A, and provides error
bounds on the solution.

Syntax

Fortran 77:

call ssysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, iwork, info)

call dsysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, iwork, info)

call csysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

call zsysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

Fortran 95:

call sysvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond]
[,info])

Description

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex
system of linear equations AX = B, where A is a n-by-n symmetric matrix, the columns of matrix
B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?sysvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorization is A = U D UT or A = L D LT, where U (or L) is a product of permutation and unit
upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2
diagonal blocks.

LAPACK Routines: Linear Equations 3

3-245

2. If some di,i = 0, so that D is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been
supplied on entry.

If fact = 'F': on entry, af and ipiv contain the factored form of A.
Arrays a, af, and ipiv will not be modified.

If fact = 'N', the matrix A will be copied to af and factored.

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array a stores the upper triangular part of the
symmetric matrix A, and A is factored
as UDUT.
If uplo = 'L', the array a stores the lower triangular part of the
symmetric matrix A; A is factored as LDLT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

a,af,b,work REAL for ssysvx
DOUBLE PRECISION for dsysvx
COMPLEX for csysvx
DOUBLE COMPLEX for zsysvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).

The array a contains either the upper or the lower triangular part of the
symmetric matrix A (see uplo).
The second dimension of a must be at least max(1,n).

3-246

3 Intel® Math Kernel Library Reference Manual

The array af is an input argument if fact = 'F' . It contains he block
diagonal matrix D and the multipliers used to obtain the factor U or L
from the factorization A = U D UT or A = L D LT as computed by
?sytrf.
The second dimension of af must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must be
at least max(1,nrhs).

work(*) is a workspace array of dimension (lwork).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .
It contains details of the interchanges and the block structure of D, as
determined by ?sytrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row
and column of A was interchanged with the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

ldx INTEGER. The leading dimension of the output array x; ldx ≥ max(1,
n).

lwork INTEGER. The size of the work array .
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla. See Application Notes below for details and for the
suggested value of lwork.

LAPACK Routines: Linear Equations 3

3-247

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors
only.

rwork REAL for csysvx;
DOUBLE PRECISION for zsysvx.
Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

 Output Parameters

x REAL for ssysvx
DOUBLE PRECISION for dsysvx
COMPLEX for csysvx
DOUBLE COMPLEX for zsysvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the solution matrix X to
the system of equations. The second dimension of x must be at least
max(1,nrhs).

af, ipiv These arrays are output arguments if fact = 'N' .
See the description of af, ipiv in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A. If
rcond is less than the machine precision (in particular, if rcond = 0),
the matrix is singular to working precision. This condition is indicated
by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

work(1) If info=0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The factorization has
been completed, but the block diagonal matrix D is exactly singular, so
the solution and error bounds could not be computed; rcond = 0 is

3-248

3 Intel® Math Kernel Library Reference Manual

returned.
If info = i, and i = n +1, then D is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sysvx interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

af Holds the matrix AF of size (n,n).

ipiv Holds the vector of length (n).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

fact Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both arguments
af and ipiv must be present; otherwise, an error is returned.

Application Notes

For real flavors, lwork must be at least 3*n, and for complex flavors at least 2*n. For better
performance, try using lwork = n*blocksize, where blocksize is the optimal block size for
?sytrf.

If you are in doubt how much workspace to supply, use lwork =-1 for the first run. In this case, a
workspace query is assumed; the routine only calculates the optimal size of the work array, returns
this value as the first entry work(1) of the work array , and no error message related to lwork is
issued by xerbla. On exit, examine work(1) and use this value for subsequent runs.

LAPACK Routines: Linear Equations 3

3-249

?hesv
Computes the solution to the system of linear equations
with a Hermitian matrix A and multiple right-hand
sides.

Syntax

Fortran 77:

call chesv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call zhesv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

Fortran 95:

call hesv(a, b [,uplo] [,ipiv] [,info])

Description

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric matrix, the columns of matrix B are individual
right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as A = U D UH or
A = L D LH , where U (or L) is a product of permutation and unit upper (lower) triangular matrices,
and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array a stores the upper triangular part of the matrix
A, and A is factored as UDUH.
If uplo = 'L', the array a stores the lower triangular part of the matrix
A; A is factored as LDLH.

n INTEGER. The order of matrix A (n ≥ 0).

3-250

3 Intel® Math Kernel Library Reference Manual

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

a, b, work COMPLEX for chesv
DOUBLE COMPLEX for zhesv.
Arrays: a(lda,*), b(ldb,*), work(lwork).
The array a contains either the upper or the lower triangular part of the
Hermitian matrix A (see uplo).
The second dimension of a must be at least max(1, n).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of b must be at least max(1,nrhs).
work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

lwork INTEGER. The size of the work array (lwork ≥ 1).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla. See Application Notes below for details and for the
suggested value of lwork.

Output Parameters

a If info = 0, a is overwritten by the block-diagonal matrix D and the
multipliers used to obtain the factor U (or L) from the factorization of A
as computed by ?hetrf.

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block structure of D, as
determined by ?hetrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row
and column of A was interchanged with the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

LAPACK Routines: Linear Equations 3

3-251

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

work(1) If info=0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular, so the solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hesv interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use lwork =-1 for the first run. In this case, a
workspace query is assumed; the routine only calculates the optimal size of the work array, returns
this value as the first entry work(1) of the work array , and no error message related to lwork is
issued by xerbla. On exit, examine work(1) and use this value for subsequent runs.

3-252

3 Intel® Math Kernel Library Reference Manual

?hesvx
Uses the diagonal pivoting factorization to compute
the solution to the complex system of linear equations
with a Hermitian matrix A, and provides error bounds
on the solution.

Syntax

Fortran 77:

call chesvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

call zhesvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, lwork, rwork, info)

Fortran 95:

call hesvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond]
[,info])

Description

This routine uses the diagonal pivoting factorization to compute the solution to a complex system
of linear equations AX = B, where A is an n-by-n Hermitian matrix, the columns of matrix B are
individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?hesvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorization is A = U D UH or A = L D LH, where U (or L) is a product of permutation and unit
upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2
diagonal blocks.

2. If some di,i = 0, so that D is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

LAPACK Routines: Linear Equations 3

3-253

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been
supplied on entry.

If fact = 'F': on entry, af and ipiv contain the factored form of A.
Arrays a, af, and ipiv are not modified.

If fact = 'N', the matrix A is copied to af and factored.

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array a stores the upper triangular part of the
Hermitian matrix A, and A is factored as UDUH.
If uplo = 'L', the array a stores the lower triangular part of the
Hermitian matrix A; A is factored as LDLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

a,af,b,work COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).

The array a contains either the upper or the lower triangular part of the
Hermitian matrix A (see uplo).
The second dimension of a must be at least max(1,n).

The array af is an input argument if fact = 'F' . It contains he block
diagonal matrix D and the multipliers used to obtain the factor U or L
from the factorization A = U D UH or A = L D LH as computed by
?hetrf.
The second dimension of af must be at least max(1,n).

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations. The second dimension of b must be
at least max(1,nrhs).

3-254

3 Intel® Math Kernel Library Reference Manual

work(*) is a workspace array of dimension (lwork).

lda INTEGER. The first dimension of a; lda ≥ max(1, n).

ldaf INTEGER. The first dimension of af; ldaf ≥ max(1, n).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .
It contains details of the interchanges and the block structure of D, as
determined by ?hetrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row
and column of A was interchanged with the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

ldx INTEGER. The leading dimension of the output array x; ldx ≥ max(1,
n).

lwork INTEGER. The size of the work array .
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla. See Application Notes below for details and for the
suggested value of lwork.

rwork REAL for chesvx;
DOUBLE PRECISION for zhesvx.
Workspace array, DIMENSION at least max(1, n).

 Output Parameters

x COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Array, DIMENSION (ldx,*).

LAPACK Routines: Linear Equations 3

3-255

If info = 0 or info = n + 1, the array x contains the solution matrix X
to the system of equations. The second dimension of x must be at least
max(1,nrhs).

af, ipiv These arrays are output arguments if fact = 'N' .
See the description of af, ipiv in Input Arguments section.

rcond REAL for chesvx;
DOUBLE PRECISION for zhesvx.
An estimate of the reciprocal condition number of the matrix A. If
rcond is less than the machine precision (in particular, if rcond = 0),
the matrix is singular to working precision. This condition is indicated
by a return code of info > 0.

ferr, berr REAL for chesvx;
DOUBLE PRECISION for zhesvx.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

work(1) If info=0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The factorization has
been completed, but the block diagonal matrix D is exactly singular, so
the solution and error bounds could not be computed; rcond = 0 is
returned.
If info = i, and i = n +1, then D is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hesvx interface are the following:

a Holds the matrix A of size (n,n).

3-256

3 Intel® Math Kernel Library Reference Manual

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

af Holds the matrix AF of size (n,n).

ipiv Holds the vector of length (n).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

fact Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both arguments
af and ipiv must be present; otherwise, an error is returned.

Application Notes

The value of lwork must be at least 2*n. For better performance, try using lwork = n*blocksize,
where blocksize is the optimal block size for ?hetrf.

If you are in doubt how much workspace to supply, use lwork =-1 for the first run. In this case, a
workspace query is assumed; the routine only calculates the optimal size of the work array, returns
this value as the first entry work(1) of the work array , and no error message related to lwork is
issued by xerbla. On exit, examine work(1) and use this value for subsequent runs.

?spsv
Computes the solution to the system of linear equations
with a real or complex symmetric matrix A stored in
packed format, and multiple right-hand sides.

Syntax

Fortran 77:

call sspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call dspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call cspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

LAPACK Routines: Linear Equations 3

3-257

Fortran 95:

call spsv(a, b [,uplo] [,ipiv] [,info])

Description

This routine solves for X the real or complex system of linear equations
AX = B, where A is an n-by-n symmetric matrix stored in packed format, the columns of matrix B
are individual right-hand sides, and the columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as A = U D UT or A = L D LT , where U (or L)
is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and
block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array ap stores the upper triangular part of the matrix
A, and A is factored as UDUT.
If uplo = 'L', the array ap stores the lower triangular part of the matrix
A;
A is factored as LDLT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

ap, b REAL for sspsv
DOUBLE PRECISION for dspsv
COMPLEX for cspsv
DOUBLE COMPLEX for zspsv.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1, n(n+1)/2).
The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of b must be at least max(1, nrhs).

3-258

3 Intel® Math Kernel Library Reference Manual

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

ap The block-diagonal matrix D and the multipliers used to obtain the
factor U
(or L) from the factorization of A as computed by ?sptrf, stored as a
packed triangular matrix in the same storage format as A.

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block structure of D, as
determined by ?sptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and
column of A was interchanged with the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular, so the solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spsv interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

LAPACK Routines: Linear Equations 3

3-259

uplo Must be 'U' or 'L'. The default value is 'U'.

?spsvx
Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with a real
or complex symmetric matrix A stored in packed
format, and provides error bounds on the solution.

Syntax

Fortran 77:

call sspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
ferr, berr, work, iwork, info)

call dspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
ferr, berr, work, iwork, info)

call cspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

call zspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

Fortran 95:

call spsvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond]
[,info])

Description

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex
system of linear equations AX = B, where A is a n-by-n symmetric matrix stored in packed
format, the columns of matrix B are individual right-hand sides, and the columns of X are the
corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?spsvx performs the following steps:

3-260

3 Intel® Math Kernel Library Reference Manual

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorization is A = U D UT or A = L D LT, where U (or L) is a product of permutation and unit
upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2
diagonal blocks.

2. If some di,i = 0, so that D is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been
supplied on entry.

If fact = 'F': on entry, afp and ipiv contain the factored form of A.
Arrays ap, afp, and ipiv will not be modified.

If fact = 'N', the matrix A will be copied to afp and factored.

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array ap stores the upper triangular part of the
symmetric matrix A, and A is factored as UDUT.
If uplo = 'L', the array ap stores the lower triangular part of the
symmetric matrix A; A is factored as LDLT.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

ap,afp,b,work REAL for sspsvx
DOUBLE PRECISION for dspsvx
COMPLEX for cspsvx
DOUBLE COMPLEX for zspsvx.
Arrays: ap(*), afp(*), b(ldb,*), work (*).

LAPACK Routines: Linear Equations 3

3-261

The array ap contains the upper or lower triangle of the symmetric
matrix A in packed storage (see Matrix Storage Schemes).

The array afp is an input argument if fact = 'F' . It contains the block
diagonal matrix D and the multipliers used to obtain the factor U or L
from the factorization
 A = U D UT or A = L D LT as computed by ?sptrf, in the same
storage format as A.

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

work (*) is a workspace array.

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2);
the second dimension of b must be at least max(1,nrhs); the dimension
of work must be at least max(1, 3*n) for real flavors and max(1, 2*n)
for complex flavors.

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .
It contains details of the interchanges and the block structure of D, as
determined by ?sptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row
and column of A was interchanged with the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

ldx INTEGER. The leading dimension of the output array x; ldx ≥ max(1,
n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n); used in real flavors
only.

3-262

3 Intel® Math Kernel Library Reference Manual

rwork REAL for cspsvx;
DOUBLE PRECISION for zspsvx.
Workspace array, DIMENSION at least max(1, n); used in complex
flavors only.

 Output Parameters

x REAL for sspsvx
DOUBLE PRECISION for dspsvx
COMPLEX for cspsvx
DOUBLE COMPLEX for zspsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the solution matrix X to
the system of equations. The second dimension of x must be at least
max(1,nrhs).

afp, ipiv These arrays are output arguments if fact = 'N' .
See the description of afp, ipiv in Input Arguments section.

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A. If
rcond is less than the machine precision (in particular, if rcond = 0),
the matrix is singular to working precision. This condition is indicated
by a return code of info > 0.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The factorization has
been completed, but the block diagonal matrix D is exactly singular, so
the solution and error bounds could not be computed; rcond = 0 is
returned.
If info = i, and i = n +1, then D is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

LAPACK Routines: Linear Equations 3

3-263

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spsvx interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

af Stands for argument afp in Fortran 77 interface. Holds the array AF of size
(n*(n+1)/2).

ipiv Holds the vector of length (n).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

uplo Must be 'U' or 'L'. The default value is 'U'.

fact Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both arguments
af and ipiv must be present; otherwise, an error is returned.

?hpsv
Computes the solution to the system of linear equations
with a Hermitian matrix A stored in packed format, and
multiple right-hand sides.

Syntax

Fortran 77:

call chpsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zhpsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)

Fortran 95:

call hpsv(a, b [,uplo] [,ipiv] [,info])

3-264

3 Intel® Math Kernel Library Reference Manual

Description

This routine solves for X the system of linear equations AX = B, where A is an n-by-n Hermitian
matrix stored in packed format, the columns of matrix B are individual right-hand sides, and the
columns of X are the corresponding solutions.

The diagonal pivoting method is used to factor A as A = U D UH or A = L D LH , where U (or L)
is a product of permutation and unit upper (lower) triangular matrices, and D is Hermitian and
block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of A is then used to solve the system of equations AX = B.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array ap stores the upper triangular part of the matrix
A, and A is factored as UDUH.
If uplo = 'L', the array ap stores the lower triangular part of the matrix
A; A is factored as LDLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

ap, b COMPLEX for chpsv
DOUBLE COMPLEX for zhpsv.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor U or L, as specified by uplo, in packed
storage (see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.
The second dimension of b must be at least max(1,nrhs).

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

Output Parameters

ap The block-diagonal matrix D and the multipliers used to obtain the
factor U (or L) from the factorization of A as computed by ?hptrf,
stored as a packed triangular matrix in the same storage format as A.

LAPACK Routines: Linear Equations 3

3-265

b If info = 0, b is overwritten by the solution matrix X.

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
Contains details of the interchanges and the block structure of D, as
determined by ?hptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 block, and the ith row and
column of A was interchanged with the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, dii is 0. The factorization has been completed, but D is
exactly singular, so the solution could not be computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpsv interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

ipiv Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

3-266

3 Intel® Math Kernel Library Reference Manual

?hpsvx
Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with a
Hermitian matrix A stored in packed format, and
provides error bounds on the solution.

Syntax

Fortran 77:

call chpsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

call zhpsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

Fortran 95:

call hpsvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond]
[,info])

Description

This routine uses the diagonal pivoting factorization to compute the solution to a complex system
of linear equations AX = B, where A is a n-by-n Hermitian matrix stored in packed format, the
columns of matrix B are individual right-hand sides, and the columns of X are the corresponding
solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?hpsvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A. The form of the
factorization is A = U D UH or A = L D LH, where U (or L) is a product of permutation and unit
upper (lower) triangular matrices, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2
diagonal blocks.

2. If some di,i = 0, so that D is exactly singular, then the routine returns with info = i.
Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, info = n + 1 is returned as a
warning, but the routine still goes on to solve for X and compute error bounds as described below.

3. The system of equations is solved for X using the factored form of A.

LAPACK Routines: Linear Equations 3

3-267

4. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been
supplied on entry.

If fact = 'F': on entry, afp and ipiv contain the factored form of A.
Arrays ap, afp, and ipiv will not be modified.

If fact = 'N', the matrix A will be copied to afp and factored.

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of A is stored and
how A is factored:

If uplo = 'U', the array ap stores the upper triangular part of the
Hermitian matrix A, and A is factored
as UDUH.
If uplo = 'L', the array ap stores the lower triangular part of the
Hermitian matrix A; A is factored as LDLH.

n INTEGER. The order of matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

ap,afp,b,work COMPLEX for chpsvx
DOUBLE COMPLEX for zhpsvx.
Arrays: ap(*), afp(*), b(ldb,*), work (*).

The array ap contains the upper or lower triangle of the Hermitian
matrix A in packed storage (see Matrix Storage Schemes).

The array afp is an input argument if fact = 'F' . It contains the block
diagonal matrix D and the multipliers used to obtain the factor U or L
from the factorization
 A = U D UH or A = L D LH as computed by ?hptrf, in the same
storage format as A.

The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

work (*) is a workspace array.

3-268

3 Intel® Math Kernel Library Reference Manual

The dimension of arrays ap and afp must be at least max(1,n(n+1)/2);
the second dimension of b must be at least max(1,nrhs); the dimension
of work must be at least max(1, 2*n) .

ldb INTEGER. The first dimension of b; ldb ≥ max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The array ipiv is an input argument if fact = 'F' .
It contains details of the interchanges and the block structure of D, as
determined by ?hptrf.
If ipiv(i) = k > 0, then dii is a 1-by-1 diagonal block, and the ith row
and column of A was interchanged with the kth row and column.

If uplo = 'U' and ipiv(i) =ipiv(i-1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i-1, and (i-1)th row and column of A
was interchanged with the mth row and column.

If uplo = 'L' and ipiv(i) =ipiv(i+1) = -m < 0, then D has a 2-by-2
block in rows/columns i and i+1, and (i+1)th row and column of A
was interchanged with the mth row and column.

ldx INTEGER. The leading dimension of the output array x; ldx ≥ max(1,
n).

rwork REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
Workspace array, DIMENSION at least max(1, n).

 Output Parameters

x COMPLEX for chpsvx
DOUBLE COMPLEX for zhpsvx.
Array, DIMENSION (ldx,*).

If info = 0 or info = n+1, the array x contains the solution matrix X to
the system of equations. The second dimension of x must be at least
max(1,nrhs).

afp, ipiv These arrays are output arguments if fact = 'N' .
See the description of afp, ipiv in Input Arguments section.

rcond REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
An estimate of the reciprocal condition number of the matrix A. If

LAPACK Routines: Linear Equations 3

3-269

rcond is less than the machine precision (in particular, if rcond = 0),
the matrix is singular to working precision. This condition is indicated
by a return code of info > 0.

ferr, berr REAL for chpsvx;
DOUBLE PRECISION for zhpsvx.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and relative backward errors, respectively, for each solution
vector.

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n, then dii is exactly zero. The factorization has
been completed, but the block diagonal matrix D is exactly singular, so
the solution and error bounds could not be computed; rcond = 0 is
returned.
If info = i, and i = n +1, then D is nonsingular, but rcond is less
than machine precision, meaning that the matrix is singular to working
precision. Nevertheless, the solution and error bounds are computed
because there are a number of situations where the computed solution
can be more accurate than the value of rcond would suggest.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or reconstructible
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpsvx interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Holds the matrix B of size (n,nrhs).

x Holds the matrix X of size (n,nrhs).

af Stands for argument ap in Fortran 77 interface. Holds the array AF of size
(n*(n+1)/2).

ipiv Holds the vector of length (n).

ferr Holds the vector of length (nrhs).

berr Holds the vector of length (nrhs).

3-270

3 Intel® Math Kernel Library Reference Manual

uplo Must be 'U' or 'L'. The default value is 'U'.

fact Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both arguments
af and ipiv must be present; otherwise, an error is returned.

4-1

LAPACK Routines:
Least Squares and
Eigenvalue Problems 4

This chapter describes the Intel® Math Kernel Library implementation of routines from the
LAPACK package that are used for solving linear least-squares problems, eigenvalue and singular
value problems, as well as performing a number of related computational tasks.

Sections in this chapter include descriptions of LAPACK computational routines and driver
routines. For full reference on LAPACK routines and related information see [LUG].

Least-Squares Problems. A typical least-squares problem is as follows: given a matrix A and a
vector b, find the vector x that minimizes the sum of squares Σi ((Ax)i - bi)

2 or, equivalently, find
the vector x that minimizes the 2-norm ||Ax − b||2.

In the most usual case, A is an m-by-n matrix with m ≥ n and rank(A) = n. This problem is also
referred to as finding the least-squares solution to an overdetermined system of linear equations
(here we have more equations than unknowns). To solve this problem, you can use the QR
factorization of the matrix A (see QR Factorization).

If m < n and rank(A) = m, there exist an infinite number of solutions x which exactly satisfy Ax = b,
and thus minimize the norm ||Ax − b||2. In this case it is often useful to find the unique solution that
minimizes ||x||2. This problem is referred to as finding the minimum-norm solution to an
underdetermined system of linear equations (here we have more unknowns than equations). To
solve this problem, you can use the LQ factorization of the matrix A (see LQ Factorization).

In the general case you may have a rank-deficient least-squares problem, with rank(A) < min(m,
n): find the minimum-norm least-squares solution that minimizes both ||x||2 and ||Ax − b||2. In this
case (or when the rank of A is in doubt) you can use the QR factorization with pivoting or singular
value decomposition (see Singular Value Decomposition).

Eigenvalue Problems. The eigenvalue problems (from German eigen “own”) are stated as
follows: given a matrix A, find the eigenvalues λ and the corresponding eigenvectors z that satisfy
the equation
 Az = λz (right eigenvectors z)

4-2

4 Intel® Math Kernel Library Reference Manual

or the equation
 zHA = λzH (left eigenvectors z).

If A is a real symmetric or complex Hermitian matrix, the above two equations are equivalent, and
the problem is called a symmetric eigenvalue problem. Routines for solving this type of problems
are described in the section Symmetric Eigenvalue Problems .

Routines for solving eigenvalue problems with nonsymmetric or non-Hermitian matrices are
described in the section Nonsymmetric Eigenvalue Problems .

The library also includes routines that handle generalized symmetric-definite eigenvalue problems:
find the eigenvalues λ and the corresponding eigenvectors x that satisfy one of the following
equations:

 Az = λBz, ABz = λz, or BAz = λz,

where A is symmetric or Hermitian, and B is symmetric positive-definite or Hermitian
positive-definite. Routines for reducing these problems to standard symmetric eigenvalue
problems are described in the section Generalized Symmetric-Definite Eigenvalue Problems .

To solve a particular problem, you usually call several computational routines. Sometimes you
need to combine the routines of this chapter with other LAPACK routines described in Chapter 3
as well as with BLAS routines described in Chapter 2.

For example, to solve a set of least-squares problems minimizing ||Ax − b||2 for all columns b of a
given matrix B (where A and B are real matrices), you can call ?geqrf to form the factorization A
= QR, then call ?ormqr to compute C = QHB, and finally call the BLAS routine ?trsm to solve for
X the system of equations RX = C.

Another way is to call an appropriate driver routine that performs several tasks in one call. For
example, to solve the least-squares problem the driver routine ?gels can be used.

Starting from release 8.0, Intel MKL along with Fortran-77 interface to LAPACK computational
and driver routines supports also Fortran-95 interface which uses simplified routine calls with
shorter argument lists. The calling sequence for Fortran-95 interface is given in the syntax section
of the routine description immediately after Fortran-77 calls.

WARNING. LAPACK routines expect that input matrices do not contain
INF or NaN values. When input data is inappropriate for LAPACK, problems
may arise, including possible hangs.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-3

Routine Naming Conventions
For each routine in this chapter, when calling it from the Fortran-77 program you can use the
LAPACK name.

LAPACK names have the structure xyyzzz, which is described below.

The initial letter x indicates the data type:
s real, single precisionc complex, single precision
d real, double precisionz complex, double precision

The second and third letters yy indicate the matrix type and storage scheme:
bd bidiagonal matrix
ge general matrix
gb general band matrix
hs upper Hessenberg matrix
or (real) orthogonal matrix
op (real) orthogonal matrix (packed storage)
un (complex) unitary matrix
up (complex) unitary matrix (packed storage)
pt symmetric or Hermitian positive-definite tridiagonal matrix
sy symmetric matrix
sp symmetric matrix (packed storage)
sb (real) symmetric band matrix
st (real) symmetric tridiagonal matrix
he Hermitian matrix
hp Hermitian matrix (packed storage)
hb (complex) Hermitian band matrix
tr triangular or quasi-triangular matrix.

The last three letters zzz indicate the computation performed, for example:
qrf form the QR factorization
lqf form the LQ factorization.

Thus, the routine sgeqrf forms the QR factorization of general real matrices in single precision;
the corresponding routine for complex matrices is cgeqrf.

Names of the LAPACK computational and driver routines for Fortran-95 interface in Intel MKL
are the same as Fortran-77 names but without the first letter that indicates the data type. For
example, the name of the routine that forms the QR factorization of general real matrices in

4-4

4 Intel® Math Kernel Library Reference Manual

Fortran-95 interface is geqrf. Handling of different data types is done through defining a specific
internal parameter referring to a module block with named constants for single and double
precision.

For details on the design of Fortran-95 interface for LAPACK computational and driver routines in
Intel MKL and for the general information on how the optional arguments are reconstructed, see
Fortran-95 Interface Conventions in chapter 3.

Matrix Storage Schemes
LAPACK routines use the following matrix storage schemes:

• Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element aij
stored in the array element a(i,j).

• Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more
compactly: the upper or lower triangle of the matrix is packed by columns in a
one-dimensional array.

• Band storage: an m-by-n band matrix with kl sub-diagonals and ku super-diagonals is stored
compactly in a two-dimensional array ab with kl+ku+1 rows and n columns. Columns of the
matrix are stored in the corresponding columns of the array, and diagonals of the matrix are
stored in rows of the array.

In Chapters 3 and 4, arrays that hold matrices in packed storage have names ending in p; arrays
with matrices in band storage have names ending in b.
For more information on matrix storage schemes, see “Matrix Arguments” in Appendix B.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-5

Mathematical Notation
In addition to the mathematical notation used in previous chapters, descriptions of routines in this
chapter use the following notation:

λi Eigenvalues of the matrix A (for the definition of eigenvalues, see
Eigenvalue Problems).

σi Singular values of the matrix A. They are equal to square roots of the
eigenvalues of AHA. (For more information, see Singular Value
Decomposition).

||x||2 The 2-norm of the vector x: ||x||2 = (Σi |xi|2)1/2 = ||x||E .

||A||2 The 2-norm (or spectral norm) of the matrix A.

||A||2 = maxi σi , ||A||22 = max|x|=1(Ax ·Ax).

||A||E The Euclidean norm of the matrix A: ||A||E2 = Σi Σj |aij|2 (for vectors, the
Euclidean norm and the 2-norm are equal: ||x||E = ||x||2).

q(x, y) The acute angle between vectors x and y:

cos q(x, y) = |x · y| / (||x||2 ||y||2).

4-6

4 Intel® Math Kernel Library Reference Manual

Computational Routines
In the sections that follow, the descriptions of LAPACK computational routines are given. These
routines perform distinct computational tasks that can be used for:

Orthogonal Factorizations
Singular Value Decomposition
Symmetric Eigenvalue Problems
Generalized Symmetric-Definite Eigenvalue Problems
Nonsymmetric Eigenvalue Problems
Generalized Nonsymmetric Eigenvalue Problems
Generalized Singular Value Decomposition

See also the respective driver routines.

Orthogonal Factorizations
This section describes the LAPACK routines for the QR (RQ) and LQ (QL) factorization of
matrices. Routines for the RZ factorization as well as for generalized QR and RQ factorizations are
also included.

QR Factorization. Assume that A is an m-by-n matrix to be factored.

If m ≥ n, the QR factorization is given by

where R is an n-by-n upper triangular matrix with real diagonal elements, and Q is an m-by-m
orthogonal (or unitary) matrix.

You can use the QR factorization for solving the following least-squares problem: minimize ||Ax −
b||2 where A is a full-rank m-by-n matrix (m ≥ n). After factoring the matrix, compute the solution
x by solving Rx = (Q1)T b.

If m < n, the QR factorization is given by

where R is trapezoidal, R1 is upper triangular and R2 is rectangular.

The LAPACK routines do not form the matrix Q explicitly. Instead, Q is represented as a product
of min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

A Q R
0 
  Q1 Q2,() R

0 
  ,= =

A QR Q R1R2()= =

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-7

LQ Factorization. LQ factorization of an m-by-n matrix A is as follows. If m ≤ n,

where L is an m-by-m lower triangular matrix with real diagonal elements, and Q is an n-by-n
orthogonal (or unitary) matrix.

If m > n, the LQ factorization is

where L1 is an n-by-n lower triangular matrix, L2 is rectangular, and Q is an n-by-n orthogonal (or
unitary) matrix.

You can use the LQ factorization to find the minimum-norm solution of an underdetermined
system of linear equations Ax = b where A is an m-by-n matrix of rank m (m < n). After factoring
the matrix, compute the solution vector x as follows: solve Ly = b for y, and then compute x =
(Q1)H y.

Table 4-1 lists LAPACK routines (Fortran-77 interface) that perform orthogonal factorization of
matrices. Respective routine names in Fortran-95 interface are without the first symbol (see
Routine Naming Conventions).

Table 4-1 Computational Routines for Orthogonal Factorization

Matrix type, factorization
Factorize
without pivoting

Factorize
with pivoting

Generate
matrix Q

Apply
matrix Q

general matrices,
QR factorization

?geqrf ?geqpf
?geqp3

?orgqr
 ?ungqr

?ormqr
?unmqr

general matrices,
RQ factorization

?gerqf ?orgrq
?ungrq

?ormrq
?unmrq

general matrices,
LQ factorization

?gelqf ?orglq
?unglq

?ormlq
?unmlq

general matrices,
QL factorization

?geqlf ?orgql
?ungql

?ormql
?unmql

trapezoidal matrices,
RZ factorization

?tzrzf ?ormrz
?unmrz

pair of matrices, generalized
QR factorization

?ggqrf

pair of matrices, generalized
RQ factorization

?ggrqf

A L 0,()Q L 0,() Q1

Q2 
  LQ1= = =

A
L1

L2 
 Q=

4-8

4 Intel® Math Kernel Library Reference Manual

?geqrf
Computes the QR factorization of a general m-by-n
matrix.

Syntax

Fortran 77:

call sgeqrf(m, n, a, lda, tau, work, lwork, info)

call dgeqrf(m, n, a, lda, tau, work, lwork, info)

call cgeqrf(m, n, a, lda, tau, work, lwork, info)

call zgeqrf(m, n, a, lda, tau, work, lwork, info)

Fortran 95:

call geqrf(a [,tau] [,info])

Description

The routine forms the QR factorization of a general m-by-n matrix A
(see Orthogonal Factorizations). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeqrf
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-9

lwork INTEGER. The size of the work array (lwork ≥ n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the factorization data as follows:

If m ≥ n, the elements below the diagonal are overwritten by the details
of the unitary matrix Q, and the upper triangle is overwritten by the
corresponding elements of the upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by the details of
the unitary matrix Q, and the remaining elements are overwritten by the
corresponding elements of the m-by-n upper trapezoidal matrix R.

tau REAL for sgeqrf
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Array, DIMENSION at least max (1, min(m, n)).
Contains additional information on the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine geqrf interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length min(m,n)

4-10

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

The computed factorization is the exact factorization of a matrix A + E, where
||E||2 = O(ε) ||A||2.

The approximate number of floating-point operations for real flavors is

 (4/3)n3 if m = n,

 (2/3)n2(3m-n) if m > n,

 (2/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.

To solve a set of least-squares problems minimizing ||Ax − b||2 for all columns b of a given matrix
B, you can call the following:

?geqrf (this routine) to factorize A = QR;

?ormqr to compute C = QTB (for real matrices);

?unmqr to compute C = QHB (for complex matrices);

?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the least-squares solution vectors x.)

To compute the elements of Q explicitly, call

?orgqr (for real matrices)

?ungqr (for complex matrices).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-11

?geqpf
Computes the QR factorization of a general m-by-n
matrix with pivoting.

Syntax

Fortran 77:

call sgeqpf(m, n, a, lda, jpvt, tau, work, info)

call dgeqpf(m, n, a, lda, jpvt, tau, work, info)

call cgeqpf(m, n, a, lda, jpvt, tau, work, rwork, info)

call zgeqpf(m, n, a, lda, jpvt, tau, work, rwork, info)

Fortran 95:

call geqpf(a, jpvt [,tau] [,info])

Description

This routine is deprecated and has been replaced by routine ?geqp3.

The routine ?geqpf forms the QR factorization of a general m-by-n matrix A with column
pivoting: AP = QR (see Orthogonal Factorizations). Here P denotes an n-by-n permutation matrix.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeqpf
DOUBLE PRECISION for dgeqpf
COMPLEX for cgeqpf
DOUBLE COMPLEX for zgeqpf.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.

4-12

4 Intel® Math Kernel Library Reference Manual

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; must be at least max(1, 3∗n).

jpvt INTEGER. Array, DIMENSION at least max(1, n).

On entry, if jpvt(i)> 0, the ith column of A is moved to the beginning
of AP before the computation, and fixed in place during the
computation.
If jpvt(i) = 0, the ith column of A is a free column (that is, it may be
interchanged during the computation with any other free column).

rwork REAL for cgeqpf
DOUBLE PRECISION for zgeqpf.
A workspace array, DIMENSION at least max(1, 2*n).

Output Parameters

a Overwritten by the factorization data as follows:

If m ≥ n, the elements below the diagonal are overwritten by the details
of the unitary (orthogonal) matrix Q, and the upper triangle is
overwritten by the corresponding elements of the upper triangular matrix
R.

If m < n, the strictly lower triangular part is overwritten by the details of
the matrix Q, and the remaining elements are overwritten by the
corresponding elements of the m-by-n upper trapezoidal matrix R.

tau REAL for sgeqpf
DOUBLE PRECISION for dgeqpf
COMPLEX for cgeqpf
DOUBLE COMPLEX for zgeqpf.
Array, DIMENSION at least max (1, min(m, n)).
Contains additional information on the matrix Q.

jpvt Overwritten by details of the permutation matrix P in the factorization
AP = QR. More precisely, the columns of AP are the columns of A in the
following order:
jpvt(1), jpvt(2), ..., jpvt(n).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-13

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine geqpf interface are the following:

a Holds the matrix A of size (m,n).

jpvt Holds the vector of length (n).

tau Holds the vector of length min(m,n)

Application Notes

The computed factorization is the exact factorization of a matrix A + E, where ||E||2 = O(ε) ||A||2.

The approximate number of floating-point operations for real flavors is

 (4/3)n3 if m = n,

 (2/3)n2(3m-n) if m > n,

 (2/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.

To solve a set of least-squares problems minimizing ||Ax − b||2 for all columns b of a given matrix
B, you can call the following:

?geqpf (this routine) to factorize AP = QR;

?ormqr to compute C = QTB (for real matrices);

?unmqr to compute C = QHB (for complex matrices);

?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the permuted least-squares solution vectors x; the output
array jpvt specifies the permutation order.)

To compute the elements of Q explicitly, call

?orgqr (for real matrices)

?ungqr (for complex matrices).

4-14

4 Intel® Math Kernel Library Reference Manual

?geqp3
Computes the QR factorization of a general m-by-n
matrix with column pivoting using Level 3 BLAS.

Syntax

Fortran 77:

call sgeqp3(m, n, a, lda, jpvt, tau, work, lwork, info)

call dgeqp3(m, n, a, lda, jpvt, tau, work, lwork, info)

call cgeqp3(m, n, a, lda, jpvt, tau, work, lwork, rwork, info)

call zgeqp3(m, n, a, lda, jpvt, tau, work, lwork, rwork, info)

Fortran 95:

call geqp3(a, jpvt [,tau] [,info])

Description

The routine forms the QR factorization of a general m-by-n matrix A with column pivoting:
AP = QR (see Orthogonal Factorizations) using Level 3 BLAS. Here P denotes an n-by-n
permutation matrix.
Use this routine instead of ?geqpf for better performance.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m,
n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeqp3
DOUBLE PRECISION for dgeqp3
COMPLEX for cgeqp3
DOUBLE COMPLEX for zgeqp3.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-15

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; must be at least max(1, 3∗n+1)
for real flavors, and at least max(1, n+1) for complex flavors.

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

jpvt INTEGER. Array, DIMENSION at least max(1, n).

On entry, if jpvt(i)≠ 0, the ith column of A is moved to the beginning
of AP before the computation, and fixed in place during the
computation.
If jpvt(i) = 0, the ith column of A is a free column (that is, it may be
interchanged during the computation with any other free column).

rwork REAL for cgeqp3
DOUBLE PRECISION for zgeqp3.
A workspace array, DIMENSION at least max(1, 2*n). Used in complex
flavors only.

Output Parameters

a Overwritten by the factorization data as follows:

If m ≥ n, the elements below the diagonal are overwritten by the details
of the unitary (orthogonal) matrix Q, and the upper triangle is
overwritten by the corresponding elements of the upper triangular matrix
R.

If m < n, the strictly lower triangular part is overwritten by the details of
the matrix Q, and the remaining elements are overwritten by the
corresponding elements of the m-by-n upper trapezoidal matrix R.

tau REAL for sgeqp3
DOUBLE PRECISION for dgeqp3
COMPLEX for cgeqp3
DOUBLE COMPLEX for zgeqp3.
Array, DIMENSION at least max (1, min(m, n)).
Contains scalar factors of the elementary reflectors for the matrix Q.

4-16

4 Intel® Math Kernel Library Reference Manual

jpvt Overwritten by details of the permutation matrix P in the factorization
AP = QR. More precisely, the columns of AP are the columns of A in the
following order:
jpvt(1), jpvt(2), ..., jpvt(n).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine geqp3 interface are the following:

a Holds the matrix A of size (m,n).

jpvt Holds the vector of length (n).

tau Holds the vector of length min(m,n)

Application Notes

To solve a set of least-squares problems minimizing ||Ax − b||2 for all columns b of a given matrix
B, you can call the following:

?geqp3 (this routine) to factorize AP = QR;

?ormqr to compute C = QTB (for real matrices);

?unmqr to compute C = QHB (for complex matrices);

?trsm (a BLAS routine) to solve RX = C.

(The columns of the computed X are the permuted least-squares solution vectors x; the output
array jpvt specifies the permutation order.)

To compute the elements of Q explicitly, call

?orgqr (for real matrices)

?ungqr (for complex matrices).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-17

?orgqr
Generates the real orthogonal matrix Q of the QR
factorization formed by ?geqrf.

Syntax

Fortran 77:

call sorgqr(m, n, k, a, lda, tau, work, lwork, info)

call dorgqr(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call orgqr(a, tau [,info])

Description

The routine generates the whole or part of m-by-m orthogonal matrix Q of the QR factorization
formed by the routines sgeqrf/dgeqrf or sgeqpf/dgeqpf. Use this routine after a call to
sgeqrf/dgeqrf or sgeqpf/dgeqpf.

Usually Q is determined from the QR factorization of an m by p matrix A with m ≥ p. To compute
the whole matrix Q, use:

call ?orgqr(m, m, p, a, lda, tau, work, lwork, info)

To compute the leading p columns of Q (which form an orthonormal basis in the space spanned by
the columns of A):

call ?orgqr(m, p, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the QR factorization of A’s leading k columns:

call ?orgqr(m, m, k, a, lda, tau, work, lwork, info)

To compute the leading k columns of Qk (which form an orthonormal basis in the space spanned
by A’s leading k columns):

call ?orgqr(m, k, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The order of the orthogonal matrix Q (m ≥ 0).

n INTEGER. The number of columns of Q to be computed (0 ≤ n ≤ m).

4-18

4 Intel® Math Kernel Library Reference Manual

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q (0 ≤ k ≤ n).

a, tau, work REAL for sorgqr
DOUBLE PRECISION for dorgqr
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgeqrf / dgeqrf or
sgeqpf / dgeqpf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array (lwork ≥ n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by n leading columns of the m-by-m orthogonal matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine orgqr interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length (k)

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-19

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly orthogonal matrix by a matrix E
such that ||E||2 = O(ε) ||A||2, where ε is the machine precision.

The total number of floating-point operations is approximately
4*m*n*k - 2*(m + n)*k2 + (4/3)*k3.
If n = k, the number is approximately (2/3)*n2*(3m - n).

The complex counterpart of this routine is ?ungqr.

4-20

4 Intel® Math Kernel Library Reference Manual

?ormqr
Multiplies a real matrix by the orthogonal matrix Q of the
QR factorization formed by ?geqrf or ?geqpf.

Syntax

Fortran 77:

call sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormqr(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a real matrix C by Q or QT, where Q is the orthogonal matrix Q of the QR
factorization formed by the routines sgeqrf/dgeqrf or sgeqpf/dgeqpf.

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QTC, CQ, or CQT (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
0 ≤ k ≤ m if side ='L';
0 ≤ k ≤ n if side ='R'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-21

a,work,tau,c REAL for sgeqrf
DOUBLE PRECISION for dgeqrf.
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgeqrf / dgeqrf or
sgeqpf / dgeqpf.
The second dimension of a must be at least max(1, k).
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a. Constraints:
lda ≥ max(1, m) if side ='L';
lda ≥ max(1, n) if side ='R'.

ldc INTEGER. The first dimension of c. Constraint:
ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

4-22

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ormqr interface are the following:

a Holds the matrix A of size (r,k).
r = m if side = 'L'.
r = n if side = 'R'.

tau Holds the vector of length (k).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'T'. The default value is 'N'.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this
value for subsequent runs.

The complex counterpart of this routine is ?unmqr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-23

?ungqr
Generates the complex unitary matrix Q of the QR
factorization formed by ?geqrf.

Syntax

Fortran 77:

call cungqr(m, n, k, a, lda, tau, work, lwork, info)

call zungqr(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call ungqr(a, tau [,info])

Description

The routine generates the whole or part of m-by-m unitary matrix Q of the QR factorization
formed by the routines cgeqrf/zgeqrf or cgeqpf/zgeqpf. Use this routine after a call to
cgeqrf/zgeqrf or cgeqpf/zgeqpf.

Usually Q is determined from the QR factorization of an m by p matrix A with m ≥ p. To compute
the whole matrix Q, use:

call ?ungqr(m, m, p, a, lda, tau, work, lwork, info)

To compute the leading p columns of Q (which form an orthonormal basis in the space spanned by
the columns of A):

call ?ungqr(m, p, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the QR factorization of A’s leading k columns:

call ?ungqr(m, m, k, a, lda, tau, work, lwork, info)

To compute the leading k columns of Qk (which form an orthonormal basis in the space spanned
by A’s leading k columns):

call ?ungqr(m, k, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The order of the unitary matrix Q (m ≥ 0).

n INTEGER. The number of columns of Q to be computed (0 ≤ n ≤ m).

4-24

4 Intel® Math Kernel Library Reference Manual

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q (0 ≤ k ≤ n).

a, tau, work COMPLEX for cungqr
DOUBLE COMPLEX for zungqr
Arrays:
a(lda,*) and tau(*) are the arrays returned by cgeqrf/zgeqrf or
cgeqpf/zgeqpf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array (lwork ≥ n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by n leading columns of the m-by-m unitary matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ungqr interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length (k).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-25

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly unitary matrix by a matrix E such that ||E||2 = O(ε) ||A||2
where ε is the machine precision.

The total number of floating-point operations is approximately
16*m*n*k - 8*(m + n)*k2 + (16/3)*k3.
If n = k, the number is approximately (8/3)*n2*(3m - n).

The real counterpart of this routine is ?orgqr.

4-26

4 Intel® Math Kernel Library Reference Manual

?unmqr
Multiplies a complex matrix by the unitary matrix Q of the
QR factorization formed by ?geqrf.

Syntax

Fortran 77:

call cunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call zunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmqr(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a rectangular complex matrix C by Q or QH, where Q is the unitary matrix
Q of the QR factorization formed by the routines cgeqrf/zgeqrf or cgeqpf/zgeqpf.

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QHC, CQ, or CQH (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
0 ≤ k ≤ m if side ='L';
0 ≤ k ≤ n if side ='R'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-27

a,work,tau,c COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Arrays:
a(lda,*) and tau(*) are the arrays returned by cgeqrf / zgeqrf or
cgeqpf / zgeqpf.
The second dimension of a must be at least max(1, k).
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a. Constraints:
lda ≥ max(1, m) if side ='L';
lda ≥ max(1, n) if side ='R'.

ldc INTEGER. The first dimension of c. Constraint:
ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

4-28

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine unmqr interface are the following:

a Holds the matrix A of size (r,k).
r = m if side = 'L'.
r = n if side = 'R'.

tau Holds the vector of length (k).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'C'. The default value is 'N'.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if
side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this
value for subsequent runs.

The real counterpart of this routine is ?ormqr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-29

?gelqf
Computes the LQ factorization of a general m-by-n
matrix.

Syntax

Fortran 77:

call sgelqf(m, n, a, lda, tau, work, lwork, info)

call dgelqf(m, n, a, lda, tau, work, lwork, info)

call cgelqf(m, n, a, lda, tau, work, lwork, info)

call zgelqf(m, n, a, lda, tau, work, lwork, info)

Fortran 95:

call gelqf(a [,tau] [,info])

Description

The routine forms the LQ factorization of a general m-by-n matrix A
(see Orthogonal Factorizations). No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product
of min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgelqf
DOUBLE PRECISION for dgelqf
COMPLEX for cgelqf
DOUBLE COMPLEX for zgelqf.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

4-30

4 Intel® Math Kernel Library Reference Manual

lwork INTEGER. The size of the work array; at least max(1, m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the factorization data as follows:

If m ≤ n, the elements above the diagonal are overwritten by the details
of the unitary (orthogonal) matrix Q, and the lower triangle is
overwritten by the corresponding elements of the lower triangular matrix
L.

If m > n, the strictly upper triangular part is overwritten by the details of
the matrix Q, and the remaining elements are overwritten by the
corresponding elements of the m-by-n lower trapezoidal matrix L.

tau REAL for sgelqf
DOUBLE PRECISION for dgelqf
COMPLEX for cgelqf
DOUBLE COMPLEX for zgelqf.
Array, DIMENSION at least max(1, min(m, n)).
Contains additional information on the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gelqf interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length min(m,n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-31

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

The computed factorization is the exact factorization of a matrix A + E, where ||E||2 = O(ε) ||A||2.

The approximate number of floating-point operations for real flavors is

 (4/3)n3 if m = n,

 (2/3)n2(3m-n) if m > n,

 (2/3)m2(3n-m) if m < n.

The number of operations for complex flavors is 4 times greater.

To find the minimum-norm solution of an underdetermined least-squares problem minimizing
||Ax − b||2 for all columns b of a given matrix B, you can call the following:

?gelqf (this routine) to factorize A = LQ;

?trsm (a BLAS routine) to solve LY = B for Y;

?ormlq to compute X = (Q1)TY (for real matrices);

?unmlq to compute X = (Q1)HY (for complex matrices).

The columns of the computed X are the minimum-norm solution vectors x. Here A is an m-by-n
matrix with m < n; Q1 denotes the first m columns of Q.

To compute the elements of Q explicitly, call

?orglq (for real matrices)

?unglq (for complex matrices).

4-32

4 Intel® Math Kernel Library Reference Manual

?orglq
Generates the real orthogonal matrix Q of the LQ
factorization formed by ?gelqf.

Syntax

Fortran 77:

call sorglq(m, n, k, a, lda, tau, work, lwork, info)

call dorglq(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call orglq(a, tau [,info])

Description

The routine generates the whole or part of n-by-n orthogonal matrix Q of the LQ factorization
formed by the routines sgelqf/dgelqf. Use this routine after a call to sgelqf/dgelqf.

Usually Q is determined from the LQ factorization of an p-by-n matrix A with n ≥ p. To compute
the whole matrix Q, use:

call ?orglq(n, n, p, a, lda, tau, work, lwork, info)

To compute the leading p rows of Q, which form an orthonormal basis in the space spanned by the
rows of A, use:

call ?orglq(p, n, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the LQ factorization of A’s leading k rows, use:

call ?orglq(n, n, k, a, lda, tau, work, lwork, info)

To compute the leading k rows of Qk, which form an orthonormal basis in the space spanned by
A’s leading k rows, use:

call ?orgqr(k, n, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The number of rows of Q to be computed
(0 ≤ m ≤ n).

n INTEGER. The order of the orthogonal matrix Q (n ≥ m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-33

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q (0 ≤ k ≤ m).

a, tau, work REAL for sorglq
DOUBLE PRECISION for dorglq
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgelqf/dgelqf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by m leading rows of the n-by-n orthogonal matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine orglq interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length (k).

4-34

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly orthogonal matrix by a matrix E
such that ||E||2 = O(ε) ||A||2 , where ε is the machine precision.

The total number of floating-point operations is approximately
4*m*n*k - 2*(m + n)*k2 + (4/3)*k3.
If m = k, the number is approximately (2/3)*m2*(3n - m).

The complex counterpart of this routine is ?unglq.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-35

?ormlq
Multiplies a real matrix by the orthogonal matrix Q of the
LQ factorization formed by ?gelqf.

Syntax

Fortran 77:

call sormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormlq(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a real m-by-n matrix C by Q or QT, where Q is the orthogonal matrix Q of
the LQ factorization formed by the routine sgelqf/dgelqf.

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QTC, CQ, or CQT (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
0 ≤ k ≤ m if side ='L';
0 ≤ k ≤ n if side ='R'.

4-36

4 Intel® Math Kernel Library Reference Manual

a,work,tau,c REAL for sormlq
DOUBLE PRECISION for dormlq.
Arrays:
a(lda,*) and tau(*) are arrays returned by ?gelqf.
The second dimension of a must be:
at least max(1, m) if side ='L';
at least max(1, n) if side ='R'.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k).

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-37

Specific details for the routine ormlq interface are the following:

a Holds the matrix A of size (k,m).

tau Holds the vector of length (k).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'T'. The default value is 'N'.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize
(if side ='R'), where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this
value for subsequent runs.

The complex counterpart of this routine is ?unmlq.

4-38

4 Intel® Math Kernel Library Reference Manual

?unglq
Generates the complex unitary matrix Q of the LQ
factorization formed by ?gelqf.

Syntax

Fortran 77:

call cunglq(m, n, k, a, lda, tau, work, lwork, info)

call zunglq(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call unglq(a, tau [,info])

Description

The routine generates the whole or part of n-by-n unitary matrix Q of the LQ factorization formed
by the routines cgelqf/zgelqf. Use this routine after a call to cgelqf/zgelqf.

Usually Q is determined from the LQ factorization of an p-by-n matrix A with n ≥ p. To compute
the whole matrix Q, use:

call ?unglq(n, n, p, a, lda, tau, work, lwork, info)

To compute the leading p rows of Q, which form an orthonormal basis in the space spanned by the
rows of A, use:

call ?unglq(p, n, p, a, lda, tau, work, lwork, info)

To compute the matrix Qk of the LQ factorization of A’s leading k rows, use:

call ?unglq(n, n, k, a, lda, tau, work, lwork, info)

To compute the leading k rows of Qk, which form an orthonormal basis in the space spanned by
A’s leading k rows, use:

call ?ungqr(k, n, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The number of rows of Q to be computed
(0 ≤ m ≤ n).

n INTEGER. The order of the unitary matrix Q (n ≥ m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-39

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q (0 ≤ k ≤ m).

a, tau, work COMPLEX for cunglq
DOUBLE COMPLEX for zunglq
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgelqf/dgelqf.
The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by m leading rows of the n-by-n unitary matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine unglq interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length (k).

4-40

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork = m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The computed Q differs from an exactly unitary matrix by a matrix E such that ||E||2 = O(ε) ||A||2
where ε is the machine precision.

The total number of floating-point operations is approximately
16*m*n*k - 8*(m + n)*k2 + (16/3)*k3.
If m = k, the number is approximately (8/3)*m2*(3n - m) .

The real counterpart of this routine is ?orglq.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-41

?unmlq
Multiplies a complex matrix by the unitary matrix Q of the
LQ factorization formed by ?gelqf.

Syntax

Fortran 77:

call cunmlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call zunmlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmlq(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a real m-by-n matrix C by Q or QH, where Q is the unitary matrix Q of the
LQ factorization formed by the routine cgelqf/zgelqf.

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QHC, CQ, or CQH (overwriting the result on C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
0 ≤ k ≤ m if side ='L';
0 ≤ k ≤ n if side ='R'.

4-42

4 Intel® Math Kernel Library Reference Manual

a,work,tau,c COMPLEX for cunmlq
DOUBLE COMPLEX for zunmlq.
Arrays:
a(lda,*) and tau(*) are arrays returned by ?gelqf.
The second dimension of a must be:
at least max(1, m) if side ='L';
at least max(1, n) if side ='R'.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k).

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-43

Specific details for the routine unmlq interface are the following:

a Holds the matrix A of size (k,m).

tau Holds the vector of length (k).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'C'. The default value is 'N'.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize
(if side ='R'), where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this
value for subsequent runs.

The real counterpart of this routine is ?ormlq.

4-44

4 Intel® Math Kernel Library Reference Manual

?geqlf
Computes the QL factorization of a general m-by-n
matrix.

Syntax

Fortran 77:

call sgeqlf(m, n, a, lda, tau, work, lwork, info)

call dgeqlf(m, n, a, lda, tau, work, lwork, info)

call cgeqlf(m, n, a, lda, tau, work, lwork, info)

call zgeqlf(m, n, a, lda, tau, work, lwork, info)

Fortran 95:

call geqlf(a [,tau] [,info])

Description

The routine forms the QL factorization of a general m-by-n matrix A.
No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeqlf
DOUBLE PRECISION for dgeqlf
COMPLEX for cgeqlf
DOUBLE COMPLEX for zgeqlf.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-45

lwork INTEGER. The size of the work array; at least max(1, n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten on exit by the factorization data as follows:

if m ≥ n, the lower triangle of the subarray
a(m-n+1:m, 1:n) contains the n-by-n lower triangular matrix L;
if m ≤ n, the elements on and below the (n-m)th superdiagonal contain the
m-by-n lower trapezoidal matrix L;
in both cases, the remaining elements, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary reflectors.

tau REAL for sgeqlf
DOUBLE PRECISION for dgeqlf
COMPLEX for cgeqlf
DOUBLE COMPLEX for zgeqlf.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors for the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine geqlf interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length min(m,n).

4-46

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

Related routines include:

?orgql to generate matrix Q (for real matrices)

?ungql to generate matrix Q (for complex matrices)

?ormql to apply matrix Q (for real matrices)

?unmql to apply matrix Q (for complex matrices).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-47

?orgql
Generates the real matrix Q of the QL factorization formed
by ?geqlf.

Syntax

Fortran 77:

call sorgql(m, n, k, a, lda, tau, work, lwork, info)

call dorgql(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call orgql(a, tau [,info])

Description

The routine generates an m-by-n real matrix Q with orthonormal columns, which is defined as the
last n columns of a product of k elementary reflectors Hi of order m : Q = Hk ⋅⋅⋅ H2H1 as returned
by the routines sgeqlf/dgeqlf . Use this routine after a call to sgeqlf/dgeqlf.

Input Parameters

m INTEGER. The number of rows of the matrix Q
(m ≥ 0).

n INTEGER. The number of columns of the matrix Q
(m ≥ n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q (n ≥ k ≥ 0).

a, tau, work REAL for sorgql
DOUBLE PRECISION for dorgql
Arrays: a(lda,*), tau(*), work(lwork).

On entry, the (n - k + i)th column of a must contain the vector which
defines the elementary reflector Hi, for i = 1,2,...,k, as returned by
sgeqlf/dgeqlf in the last k columns of its array argument a;
tau(i) must contain the scalar factor of the elementary reflector Hi, as
returned by sgeqlf/dgeqlf;

4-48

4 Intel® Math Kernel Library Reference Manual

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine orgql interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length (k).

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The complex counterpart of this routine is ?ungql.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-49

?ungql
Generates the complex matrix Q of the QL factorization
formed by ?geqlf.

Syntax

Fortran 77:

call cungql(m, n, k, a, lda, tau, work, lwork, info)

call zungql(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call ungql(a, tau [,info])

Description

The routine generates an m-by-n complex matrix Q with orthonormal columns, which is defined
as the last n columns of a product of k elementary reflectors Hi of order m : Q = Hk ⋅⋅⋅ H2 H1 as
returned by the routines cgeqlf/zgeqlf . Use this routine after a call to cgeqlf/zgeqlf.

Input Parameters

m INTEGER. The number of rows of the matrix Q
(m ≥ 0).

n INTEGER. The number of columns of the matrix Q
(m ≥ n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q (n ≥ k ≥ 0).

a, tau, work COMPLEX for cungql
DOUBLE COMPLEX for zungql
Arrays: a(lda,*), tau(*), work(lwork).

On entry, the (n - k + i)th column of a must contain the vector which
defines the elementary reflector Hi, for i = 1,2,...,k, as returned by
cgeqlf/zgeqlf in the last k columns of its array argument a;
tau(i) must contain the scalar factor of the elementary reflector Hi, as
returned by cgeqlf/zgeqlf;

4-50

4 Intel® Math Kernel Library Reference Manual

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ungql interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length (k).

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The real counterpart of this routine is ?orgql.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-51

?ormql
Multiplies a real matrix by the orthogonal matrix Q of the
QL factorization formed by ?geqlf.

Syntax

Fortran 77:

call sormql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call dormql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormql(a, tau, c [,side] [,trans] [,info])

Description

This routine multiplies a real m-by-n matrix C by Q or QT, where Q is the orthogonal matrix Q of
the QL factorization formed by the routine sgeqlf/dgeqlf .

Depending on the parameters side and trans, the routine ?ormql can form one of the matrix
products QC, QTC, CQ, or CQT (overwriting the result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
0 ≤ k ≤ m if side ='L';
0 ≤ k ≤ n if side ='R'.

4-52

4 Intel® Math Kernel Library Reference Manual

a,tau,c,work REAL for sormql
DOUBLE PRECISION for dormql.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).

On entry, the ith column of a must contain the vector which defines the
elementary reflector Hi, for i = 1,2,...,k, as returned by sgeqlf/dgeqlf
in the last k columns of its array argument a.
The second dimension of a must be at least max(1, k).

tau(i) must contain the scalar factor of the elementary reflector Hi, as
returned by sgeqlf/dgeqlf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a;

 if side ='L', lda ≥ max(1, m);
 if side ='R', lda ≥ max(1, n) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-53

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ormql interface are the following:

a Holds the matrix A of size (r,k).
r = m if side = 'L'.
r = n if side = 'R'.

tau Holds the vector of length (k).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'T'. The default value is 'N'.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if
side ='R'), where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this
value for subsequent runs.

The complex counterpart of this routine is ?unmql.

4-54

4 Intel® Math Kernel Library Reference Manual

?unmql
Multiplies a complex matrix by the unitary matrix Q of the
QL factorization formed by ?geqlf.

Syntax

Fortran 77:

call cunmql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call zunmql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmql(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is the unitary matrix Q of
the QL factorization formed by the routine cgeqlf/zgeqlf .

Depending on the parameters side and trans, the routine ?unmql can form one of the matrix
products QC, QHC, CQ, or CQH (overwriting the result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
0 ≤ k ≤ m if side ='L';
0 ≤ k ≤ n if side ='R'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-55

a,tau,c,work COMPLEX for cunmql
DOUBLE COMPLEX for zunmql.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).

On entry, the ith column of a must contain the vector which defines the
elementary reflector Hi, for i = 1,2,...,k, as returned by cgeqlf/zgeqlf
in the last k columns of its array argument a.
The second dimension of a must be at least max(1, k).

tau(i) must contain the scalar factor of the elementary reflector Hi, as
returned by cgeqlf/zgeqlf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a;

 if side ='L', lda ≥ max(1, m);
 if side ='R', lda ≥ max(1, n) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

4-56

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine unmql interface are the following:

a Holds the matrix A of size (r,k).
r = m if side = 'L'.
r = n if side = 'R'.

tau Holds the vector of length (k).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'L'. The default value is 'L'.

trans Must be 'N' or 'C'. The default value is 'N'.

Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if
side ='R'), where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this
value for subsequent runs.

The real counterpart of this routine is ?ormql.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-57

?gerqf
Computes the RQ factorization of a general m-by-n
matrix.

Syntax

Fortran 77:

call sgerqf(m, n, a, lda, tau, work, lwork, info)

call dgerqf(m, n, a, lda, tau, work, lwork, info)

call cgerqf(m, n, a, lda, tau, work, lwork, info)

call zgerqf(m, n, a, lda, tau, work, lwork, info)

Fortran 95:

call gerqf(a [,tau] [,info])

Description

The routine forms the RQ factorization of a general m-by-n matrix A. No pivoting is performed.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgerqf
DOUBLE PRECISION for dgerqf
COMPLEX for cgerqf
DOUBLE COMPLEX for zgerqf.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

4-58

4 Intel® Math Kernel Library Reference Manual

lwork INTEGER. The size of the work array;
lwork ≥ max(1, m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten on exit by the factorization data as follows:
if m ≤ n, the upper triangle of the subarray
a(1:m, n-m+1:n) contains the m-by-m upper triangular matrix R;
if m ≥ n, the elements on and above the (m-n)th subdiagonal contain the
m-by-n upper trapezoidal matrix R;
in both cases, the remaining elements, with the array tau, represent the
orthogonal/unitary matrix Q as a product of min(m,n) elementary
reflectors.

tau REAL for sgerqf
DOUBLE PRECISION for dgerqf
COMPLEX for cgerqf
DOUBLE COMPLEX for zgerqf.
Array, DIMENSION at least max (1, min(m, n)).
Contains scalar factors of the elementary reflectors for the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gerqf interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length min(m,n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-59

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

Related routines include:

?orgrq to generate matrix Q (for real matrices)

?ungrq to generate matrix Q (for complex matrices)

?ormrq to apply matrix Q (for real matrices)

?unmrq to apply matrix Q (for complex matrices).

4-60

4 Intel® Math Kernel Library Reference Manual

?orgrq
Generates the real matrix Q of the RQ factorization formed
by ?gerqf.

Syntax

Fortran 77:

call sorgrq(m, n, k, a, lda, tau, work, lwork, info)

call dorgrq(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call orgrq(a, tau [,info])

Description

The routine generates an m-by-n real matrix Q with orthonormal rows, which is defined as the last
m rows of a product of k elementary reflectors Hi of order n : Q = H1 H2 ⋅⋅⋅ Hk as returned by the
routines sgerqf/dgerqf. Use this routine after a call to sgerqf/dgerqf.

Input Parameters

m INTEGER. The number of rows of the matrix Q
(m ≥ 0).

n INTEGER. The number of columns of the matrix Q
(n ≥ m).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q (m ≥ k ≥ 0).

a, tau, work REAL for sorgrq
DOUBLE PRECISION for dorgrq
Arrays: a(lda,*), tau(*), work(lwork).

On entry, the (m - k + i)th row of a must contain the vector which
defines the elementary reflector Hi, for i = 1,2,...,k, as returned by
sgerqf/dgerqf in the last k rows of its array argument a;
tau(i) must contain the scalar factor of the elementary reflector Hi, as
returned by sgerqf/dgerqf;

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-61

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine orgrq interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length (k).

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The complex counterpart of this routine is ?ungrq.

4-62

4 Intel® Math Kernel Library Reference Manual

?ungrq
Generates the complex matrix Q of the RQ factorization
formed by ?gerqf.

Syntax

Fortran 77:

call cungrq(m, n, k, a, lda, tau, work, lwork, info)

call zungrq(m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call ungrq(a, tau [,info])

Description

The routine generates an m-by-n complex matrix Q with orthonormal rows, which is defined as
the last m rows of a product of k elementary reflectors Hi of order n : Q = H1

H H2
H ⋅⋅⋅ Hk

H
 as

returned by the routines sgerqf/dgerqf. Use this routine after a call to sgerqf/dgerqf.

Input Parameters

m INTEGER. The number of rows of the matrix Q
(m ≥ 0).

n INTEGER. The number of columns of the matrix Q
(n ≥ m).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q (m ≥ k ≥ 0).

a, tau, work REAL for cungrq
DOUBLE PRECISION for zungrq
Arrays: a(lda,*), tau(*), work(lwork).

On entry, the (m - k + i)th row of a must contain the vector which
defines the elementary reflector Hi, for i = 1,2,...,k, as returned by
sgerqf/dgerqf in the last k rows of its array argument a;
tau(i) must contain the scalar factor of the elementary reflector Hi, as
returned by sgerqf/dgerqf;

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-63

The second dimension of a must be at least max(1, n).
The dimension of tau must be at least max(1, k).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array; at least max(1, m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the m-by-n matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ungrq interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length (k).

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The real counterpart of this routine is ?orgrq.

4-64

4 Intel® Math Kernel Library Reference Manual

?ormrq
Multiplies a real matrix by the orthogonal matrix Q of the
RQ factorization formed by ?gerqf.

Syntax

Fortran 77:

call sormrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call dormrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormrq(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a real m-by-n matrix C by Q or QT, where Q is the real orthogonal matrix
defined as a product of k elementary reflectors Hi : Q = H1 H2 ⋅⋅⋅ Hk as returned by the RQ
factorization routine sgerqf/dgerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QTC, CQ, or CQT (overwriting the result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
0 ≤ k ≤ m , if side ='L';
0 ≤ k ≤ n , if side ='R'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-65

a,tau,c,work REAL for sormrq
DOUBLE PRECISION for dormrq.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).

On entry, the ith row of a must contain the vector which defines the
elementary reflector Hi, for i = 1,2,...,k, as returned by sgerqf/dgerqf
in the last k rows of its array argument a.
The second dimension of a must be at least max(1, m) if side ='L', and
at least max(1, n) if side ='R'.

tau(i) must contain the scalar factor of the elementary reflector Hi, as
returned by sgerqf/dgerqf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

4-66

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ormrq interface are the following:

a Holds the matrix A of size (k,m).

tau Holds the vector of length (k).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'T'. The default value is 'N'.

 Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if
side ='R'), where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this
value for subsequent runs.

The complex counterpart of this routine is ?unmrq.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-67

?unmrq
Multiplies a complex matrix by the unitary matrix Q of the
RQ factorization formed by ?gerqf.

Syntax

Fortran 77:

call cunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call zunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmrq(a, tau, c [,side] [,trans] [,info])

Description

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is the complex unitary
matrix defined as a product of k elementary reflectors Hi : Q = H1

H H2
H ⋅⋅⋅ Hk

H as returned by the
RQ factorization routine cgerqf/zgerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QHC, CQ, or CQH (overwriting the result over C).

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
0 ≤ k ≤ m , if side ='L';
0 ≤ k ≤ n , if side ='R'.

4-68

4 Intel® Math Kernel Library Reference Manual

a,tau,c,work COMPLEX for cunmrq
DOUBLE COMPLEX for zunmrq.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).

On entry, the ith row of a must contain the vector which defines the
elementary reflector Hi, for i = 1,2,...,k, as returned by cgerqf/zgerqf
in the last k rows of its array argument a.
The second dimension of a must be at least max(1, m) if side ='L', and
at least max(1, n) if side ='R'.

tau(i) must contain the scalar factor of the elementary reflector Hi, as
returned by cgerqf/zgerqf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-69

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine unmrq interface are the following:

a Holds the matrix A of size (k,m).

tau Holds the vector of length (k).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'C'. The default value is 'N'.

 Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if
side ='R'), where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this
value for subsequent runs.

The real counterpart of this routine is ?ormrq.

4-70

4 Intel® Math Kernel Library Reference Manual

?tzrzf
Reduces the upper trapezoidal matrix A to upper
triangular form.

Syntax

Fortran 77:

call stzrzf(m, n, a, lda, tau, work, lwork, info)

call dtzrzf(m, n, a, lda, tau, work, lwork, info)

call ctzrzf(m, n, a, lda, tau, work, lwork, info)

call ztzrzf(m, n, a, lda, tau, work, lwork, info)

Fortran 95:

call tzrzf(a [,tau] [,info])

Description

This routine reduces the m-by-n (m ≤ n) real/complex upper trapezoidal matrix A to upper
triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix A
is factored as

 A = (R 0) * Z,

where Z is an n-by-n orthogonal/unitary matrix and R is an m-by-m upper triangular matrix.

See ?larz that applies an elementary reflector returned by ?tzrzf to a general matrix.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ m).

a, work REAL for stzrzf
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Arrays: a(lda,*), work(lwork).
The leading m-by-n upper trapezoidal part of the array a contains the
matrix A to be factorized.
The second dimension of a must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-71

work is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The size of the work array;

lwork ≥ max(1, m).

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten on exit by the factorization data as follows:

the leading m-by-m upper triangular part of a contains the upper
triangular matrix R, and elements m +1 to n of the first m rows of a, with
the array tau, represent the orthogonal matrix Z as a product of m
elementary reflectors.

tau REAL for stzrzf
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Array, DIMENSION at least max (1, m).
Contains scalar factors of the elementary reflectors for the matrix Z.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tzrzf interface are the following:

4-72

4 Intel® Math Kernel Library Reference Manual

a Holds the matrix A of size (m,n).

tau Holds the vector of length (m).

Application Notes

For better performance, try using lwork =m*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.
Related routines include:

?ormrz to apply matrix Q (for real matrices)

?unmrz to apply matrix Q (for complex matrices).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-73

?ormrz
Multiplies a real matrix by the orthogonal matrix defined
from the factorization formed by ?tzrzf.

Syntax

Fortran 77:

call sormrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)

call dormrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormrz(a, tau, c, l [,side] [,trans] [,info])

Description

The routine multiplies a real m-by-n matrix C by Q or QT, where Q is the real orthogonal matrix
defined as a product of k elementary reflectors Hi : Q = H1 H2 ⋅⋅⋅ Hk as returned by the
factorization routine stzrzf/dtzrzf .

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QTC, CQ, or CQT (overwriting the result over C).

The matrix Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
0 ≤ k ≤ m , if side ='L';
0 ≤ k ≤ n , if side ='R'.

4-74

4 Intel® Math Kernel Library Reference Manual

l INTEGER.

The number of columns of the matrix A containing the meaningful part
of the Householder reflectors. Constraints:
0 ≤ l ≤ m , if side ='L';
0 ≤ l ≤ n , if side ='R'.

a,tau,c,work REAL for sormrz
DOUBLE PRECISION for dormrz.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).

On entry, the ith row of a must contain the vector which defines the
elementary reflector Hi, for i = 1,2,...,k, as returned by stzrzf/dtzrzf
in the last k rows of its array argument a.
The second dimension of a must be at least max(1, m) if side ='L', and
at least max(1, n) if side ='R'.

tau(i) must contain the scalar factor of the elementary reflector Hi, as
returned by stzrzf/dtzrzf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-75

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ormrz interface are the following:

a Holds the matrix A of size (k,m).

tau Holds the vector of length (k).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'T'. The default value is 'N'.

 Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if
side ='R'), where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this
value for subsequent runs.

The complex counterpart of this routine is ?unmrz.

4-76

4 Intel® Math Kernel Library Reference Manual

?unmrz
Multiplies a complex matrix by the unitary matrix defined
from the factorization formed by ?tzrzf.

Syntax

Fortran 77:

call cunmrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)

call zunmrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmrz(a, tau, c, l [,side] [,trans] [,info])

Description

The routine multiplies a complex m-by-n matrix C by Q or QH, where Q is the unitary matrix
defined as a product of k elementary reflectors Hi :
Q = H1

H H2
H ⋅⋅⋅ Hk

H as returned by the factorization routine ctzrzf/ztzrzf .

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QHC, CQ, or CQH (overwriting the result over C).

The matrix Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

trans CHARACTER*1. Must be either 'N' or 'C'.
If trans ='N', the routine multiplies C by Q.
If trans ='C', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

k INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
0 ≤ k ≤ m , if side ='L';
0 ≤ k ≤ n , if side ='R'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-77

l INTEGER.

The number of columns of the matrix A containing the meaningful part
of the Householder reflectors. Constraints:
0 ≤ l ≤ m , if side ='L';
0 ≤ l ≤ n , if side ='R'.

a,tau,c,work COMPLEX for cunmrz
DOUBLE COMPLEX for zunmrz.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).

On entry, the ith row of a must contain the vector which defines the
elementary reflector Hi, for i = 1,2,...,k, as returned by ctzrzf/ztzrzf
in the last k rows of its array argument a.
The second dimension of a must be at least max(1, m) if side ='L', and
at least max(1, n) if side ='R'.

tau(i) must contain the scalar factor of the elementary reflector Hi, as
returned by ctzrzf/ztzrzf.
The dimension of tau must be at least max(1, k).

c(ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, k) .

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

4-78

4 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine unmrz interface are the following:

a Holds the matrix A of size (k,m).

tau Holds the vector of length (k).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'C'. The default value is 'N'.

 Application Notes

For better performance, try using lwork = n*blocksize (if side ='L') or lwork = m*blocksize (if
side ='R'), where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this
value for subsequent runs.

The real counterpart of this routine is ?ormrz.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-79

?ggqrf
Computes the generalized QR factorization of two
matrices.

Syntax

Fortran 77:

call sggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call dggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call cggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call zggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

Fortran 95:

call ggqrf(a, b [,taua] [,taub] [,info])

Description

The routine forms the generalized QR factorization of an n-by-m matrix A and an n-by-p matrix B
as A = Q R, B = Q T Z ,
where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and R
and T assume one of the forms:

 , if n ≥ m

or

, if n < m ,

where R11 is upper triangular, and

, if n ≤ p , or

R m

n m–

=

m

R
11

0 
 
 

n m n–

R n= R11(R12)

p n– n

T n= 0(T12)

4-80

4 Intel® Math Kernel Library Reference Manual

 , if n > p

where T12 or T21 is a p-by-p upper triangular matrix.

In particular, if B is square and nonsingular, the GQR factorization of A and B implicitly gives the
QR factorization of B-1A as:

 B -1 A = ZH (T -1 R)

Input Parameters

n INTEGER. The number of rows of the matrices A and B (n ≥ 0).

m INTEGER. The number of columns in A (m ≥ 0).

p INTEGER. The number of columns in B (p ≥ 0).

a, b, work REAL for sggqrf
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, m).

b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, p).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The size of the work array; must be at least max(1, n, m, p).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

T n p–

p

=

p

T11

T21
 
 
 

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-81

Output Parameters

a, b Overwritten by the factorization data as follows:

on exit, the elements on and above the diagonal of the array a contain
the min(n,m)-by-m upper trapezoidal matrix R (R is upper triangular if n
≥ m); the elements below the diagonal, with the array taua, represent the
orthogonal/unitary matrix Q as a product of min(n,m) elementary
reflectors ;

if n ≤ p, the upper triangle of the subarray
b(1:n, p-n+1:p) contains the n-by-n upper triangular matrix T;
if n > p, the elements on and above the (n-p)th subdiagonal contain the
n-by-p upper trapezoidal matrix T; the remaining elements, with the
array taub, represent the orthogonal/unitary matrix Z as a product of
elementary reflectors.

taua, taub REAL for sggqrf
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays, DIMENSION at least max (1, min(n, m)) for taua and at least
max (1, min(n, p)) for taub.
The array taua contains the scalar factors of the elementary reflectors
which represent the orthogonal/unitary matrix Q.

The array taub contains the scalar factors of the elementary reflectors
which represent the orthogonal/unitary matrix Z.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ggqrf interface are the following:

a Holds the matrix A of size (n,m).

4-82

4 Intel® Math Kernel Library Reference Manual

b Holds the matrix B of size (n,p).

taua Holds the vector of length min(n,m).

taub Holds the vector of length min(n,p).

Application Notes

For better performance, try using
lwork ≥ max(n,m,p)*max(nb1,nb2,nb3),
 where nb1 is the optimal blocksize for the QR factorization of an n-by-m matrix, nb2 is the
optimal blocksize for the RQ factorization of an n-by-p matrix, and nb3 is the optimal blocksize
for a call of ?ormqr/?unmqr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-83

?ggrqf
Computes the generalized RQ factorization of two
matrices.

Syntax

Fortran 77:

call sggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call dggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call cggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

call zggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

Fortran 95:

call ggrqf(a, b [,taua] [,taub] [,info])

Description

The routine forms the generalized RQ factorization of an m-by-n matrix A and an p-by-n matrix B
as A = R Q, B = Z T Q ,
where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and R
and T assume one of the forms:

, if m ≤ n ,

or

 , if m > n

where R11 or R21 is upper triangular, and

n m– m

R m= 0(R12)

R m n–

n

=

n

R11

R21
 
 
 

4-84

4 Intel® Math Kernel Library Reference Manual

 , if p ≥ n

or

, if p < n ,

where T11 is upper triangular.

In particular, if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the
RQ factorization of AB-1 as:

 AB -1 = (R T -1) ZH

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

p INTEGER. The number of rows in B (p ≥ 0).

n INTEGER. The number of columns of the matrices A and B (n ≥ 0).

a, b, work REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

T n

p n–

=

n

T11

0 
 
 

p n p–

T p= T11(T12)

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-85

lwork INTEGER. The size of the work array; must be at least max(1, n, m, p).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a, b Overwritten by the factorization data as follows:

on exit, if m ≤ n, the upper triangle of the subarray
a(1:m, n-m+1:n) contains the m-by-m upper triangular matrix R;
if m > n, the elements on and above the (m-n)th subdiagonal contain the
m-by-n upper trapezoidal matrix R; the remaining elements, with the
array taua, represent the orthogonal/unitary matrix Q as a product of
elementary reflectors;
the elements on and above the diagonal of the array b contain the
min(p,n)-by-n upper trapezoidal matrix T (T is upper triangular if p ≥ n);
the elements below the diagonal, with the array taub, represent the
orthogonal/unitary matrix Z as a product of elementary reflectors.

taua, taub REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays, DIMENSION at least max (1, min(m, n)) for taua and at least
max (1, min(p, n)) for taub.
The array taua contains the scalar factors of the elementary reflectors
which represent the orthogonal/unitary matrix Q.

The array taub contains the scalar factors of the elementary reflectors
which represent the orthogonal/unitary matrix Z.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

4-86

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ggrqf interface are the following:

a Holds the matrix A of size (m,n).

b Holds the matrix A of size (p,n).

taua Holds the vector of length min(m,n).

taub Holds the vector of length min(p,n).

Application Notes

For better performance, try using
lwork ≥ max(n,m,p)*max(nb1,nb2,nb3),

 where nb1 is the optimal blocksize for the RQ factorization of an m-by-n matrix, nb2 is the
optimal blocksize for the QR factorization of an p-by-n matrix, and nb3 is the optimal blocksize
for a call of ?ormrq/?unmrq.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-87

Singular Value Decomposition
This section describes LAPACK routines for computing the singular value decomposition (SVD)
of a general m-by-n matrix A:

 A = UΣVH.

In this decomposition, U and V are unitary (for complex A) or orthogonal (for real A); Σ is an
m-by-n diagonal matrix with real diagonal elements σi:

 σ1 ≥ σ2 ≥ ... ≥ σmin(m, n) ≥ 0.

The diagonal elements σi are singular values of A. The first min(m, n) columns of the matrices U
and V are, respectively, left and right singular vectors of A. The singular values and singular
vectors satisfy

 Avi = σiui and AHui = σivi

where ui and vi are the ith columns of U and V, respectively.

To find the SVD of a general matrix A, call the LAPACK routine ?gebrd or ?gbbrd for reducing
A to a bidiagonal matrix B by a unitary (orthogonal) transformation: A = QBPH. Then call ?bdsqr,
which forms the SVD of a bidiagonal matrix: B = U1ΣV1

H.

Thus, the sought-for SVD of A is given by A = UΣVH = (QU1) Σ (V1
HPH).

Table 4-2 lists LAPACK routines (Fortran-77 interface) that perform singular value decomposition
of matrices. Respective routine names in Fortran-95 interface are without the first symbol (see
Routine Naming Conventions).

Table 4-2 Computational Routines for Singular Value Decomposition (SVD)

Operation Real matrices Complex matrices

Reduce A to a bidiagonal matrix B:
A = QBPH (full storage)

?gebrd ?gebrd

Reduce A to a bidiagonal matrix B:
A = QBPH (band storage)

?gbbrd ?gbbrd

Generate the orthogonal (unitary)
matrix Q or P

?orgbr ?ungbr

Apply the orthogonal (unitary)
matrix Q or P

?ormbr ?unmbr

Form singular value decomposition
of the bidiagonal matrix B:
B = U ΣVH

?bdsqr
?bdsdc

?bdsqr

4-88

4 Intel® Math Kernel Library Reference Manual

Figure 4-1 presents a decision tree that helps you choose the right sequence of routines for SVD,
depending on whether you need singular values only or singular vectors as well, whether A is real
or complex, and so on.

You can use the SVD to find a minimum-norm solution to a (possibly) rank-deficient least-squares
problem of minimizing ||Ax − b||2. The effective rank k of the matrix A can be determined as the
number of singular values which exceed a suitable threshold. The minimum-norm solution is

 x = Vk(Σk)−1c ,

where Σk is the leading k by k submatrix of Σ, the matrix Vk consists of the first k columns of V =
PV1, and the vector c consists of the first k elements of UHb = U1

HQHb.

Figure 4-1 Decision Tree: Singular Value Decomposition

Is A a complex
matrix?

Are singular
values only
required?

Is A banded?

?GBBRD
?BDSQR ?GEBRD

?UNGBR
?BDSQR

yes

no

yes

no

no yes
?GEBRD ?BDSQR

Is A bidiagonal?
yes

?BDSQR

Is A banded?
?GBBRD
?BDSQR

yes

no

Are singular
values only
required?

?GEBRD
?BDSQR

yes

no

?GEBRD
?ORGBR
?BDSQR

no

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-89

?gebrd
Reduces a general matrix to bidiagonal form.

Syntax

Fortran 77:

call sgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call dgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call cgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call zgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)

Fortran 95:

call gebrd(a [,d] [,e] [,tauq] [,taup] [,info])

Description

The routine reduces a general m-by-n matrix A to a bidiagonal matrix B by an orthogonal (unitary)
transformation.

If m ≥ n, the reduction is given by

where B1 is an n-by-n upper diagonal matrix, Q and P are orthogonal or, for a complex A, unitary
matrices; Q1 consists of the first n columns of Q.

If m < n, the reduction is given by

where B1 is an m-by-m lower diagonal matrix, Q and P are orthogonal or, for a complex A, unitary
matrices; P1 consists of the first m rows of P.

The routine does not form the matrices Q and P explicitly, but represents them as products of
elementary reflectors. Routines are provided to work with the matrices Q and P in this
representation:

If the matrix A is real,

• to compute Q and P explicitly, call ?orgbr.
• to multiply a general matrix by Q or P, call ?ormbr.

If the matrix A is complex,

A QBPH Q
B1

0 
 PH Q1B1P

H,= = =

A QBPH Q B10()PH Q1B1P1
H,= = =

4-90

4 Intel® Math Kernel Library Reference Manual

• to compute Q and P explicitly, call ?ungbr.
• to multiply a general matrix by Q or P, call ?unmbr.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.

Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

lwork INTEGER. The dimension of work; at least max(1, m, n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a If m ≥ n, the diagonal and first super-diagonal of a are overwritten by the
upper bidiagonal matrix B. Elements below the diagonal are overwritten
by details of Q, and the remaining elements are overwritten by details of
P.

If m < n, the diagonal and first sub-diagonal of a are overwritten by the
lower bidiagonal matrix B. Elements above the diagonal are overwritten
by details of P, and the remaining elements are overwritten by details of
Q.

d REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION
at least max(1, min(m, n)).
Contains the diagonal elements of B.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-91

e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION
at least max(1, min(m, n) − 1).
Contains the off-diagonal elements of B.

tauq,taup REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays, DIMENSION at least max (1, min(m, n)).
Contain further details of the matrices Q and P.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gebrd interface are the following:

a Holds the matrix A of size (m,n).

d Holds the vector of length min(m,n).

e Holds the vector of length min(m,n)-1.

tauq Holds the vector of length min(m,n).

taup Holds the vector of length min(m,n).

Application Notes

For better performance, try using lwork = (m + n)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

4-92

4 Intel® Math Kernel Library Reference Manual

The computed matrices Q, B, and P satisfy QBPH = A + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and
ε is the machine precision.

The approximate number of floating-point operations for real flavors is
(4/3)*n2*(3*m − n) for m ≥ n,
(4/3)*m2*(3*n − m) for m < n.
The number of operations for complex flavors is four times greater.

If n is much less than m, it can be more efficient to first form the QR factorization of A by calling
?geqrf and then reduce the factor R to bidiagonal form. This requires approximately
2*n2*(m + n) floating-point operations.

If m is much less than n, it can be more efficient to first form the LQ factorization of A by calling
?gelqf and then reduce the factor L to bidiagonal form. This requires approximately
2*m2*(m + n) floating-point operations.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-93

?gbbrd
Reduces a general band matrix to bidiagonal form.

Syntax

Fortran 77:

call sgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
 ldpt, c, ldc, work, info)

call dgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
 ldpt, c, ldc, work, info)

call cgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
 ldpt, c, ldc, work, rwork, info)

call zgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
 ldpt, c, ldc, work, rwork, info)

Fortran 95:

call gbbrd(a [,c] [,d] [,e] [,q] [,pt] [,kl] [,m] [,info])

Description

This routine reduces an m-by-n band matrix A to upper bidiagonal matrix B: A = QBPH. Here the
matrices Q and P are orthogonal (for real A) or unitary (for complex A). They are determined as
products of Givens rotation matrices, and may be formed explicitly by the routine if required. The
routine can also update a matrix C as follows: C = QHC.

Input Parameters

vect CHARACTER*1. Must be 'N' or 'Q' or 'P' or 'B'.
If vect = 'N', neither Q nor PH is generated.
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PH.
If vect = 'B', the routine generates both Q and PH.

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

ncc INTEGER. The number of columns in C (ncc ≥ 0).

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0).

4-94

4 Intel® Math Kernel Library Reference Manual

ku INTEGER. The number of super-diagonals within
the band of A (ku ≥ 0).

ab,c,work REAL for sgbbrd
DOUBLE PRECISION for dgbbrd
COMPLEX for cgbbrd
DOUBLE COMPLEX for zgbbrd.
Arrays:
ab(ldab,*) contains the matrix A in band storage
(see Matrix Storage Schemes).
The second dimension of a must be at least max(1, n).

c(ldc,*) contains an m-by-ncc matrix C.
If ncc = 0, the array c is not referenced. The second dimension of c
must be at least max(1, ncc).

work(*) is a workspace array.
The dimension of work must be at least 2*max(m, n) for real flavors, or
max(m, n) for complex flavors.

ldab INTEGER. The first dimension of the array ab
(ldab ≥ kl + ku + 1).

ldq INTEGER. The first dimension of the output array q.
ldq ≥ max(1, m) if vect = 'Q' or 'B',
ldq ≥ 1 otherwise.

ldpt INTEGER. The first dimension of the output array pt.
ldpt ≥ max(1, n) if vect = 'P' or 'B',
ldpt ≥ 1 otherwise.

ldc INTEGER. The first dimension of the array c.
ldc ≥ max(1, m) if ncc > 0; ldc ≥ 1 if ncc = 0.

rwork REAL for cgbbrd
DOUBLE PRECISION for zgbbrd.
A workspace array, DIMENSION at least max(m, n).

Output Parameters

ab Overwritten by values generated during the reduction.

d REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION
at least max(1, min(m, n)).
Contains the diagonal elements of the matrix B.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-95

e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION
at least max(1, min(m, n) − 1).
Contains the off-diagonal elements of B.

q, pt REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays:

q(ldq,*) contains the output m-by-m matrix Q.
The second dimension of q must be at least max(1, m).

p(ldpt,*) contains the output n-by-n matrix PH.
The second dimension of pt must be at least max(1, n).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gbbrd interface are the following:

a Stands for argument ab in Fortran 77 interface . Holds the array A of size
(kl+ku+1,n).

c Holds the matrix C of size (m,ncc).

d Holds the vector of length min(m,n).

e Holds the vector of length min(m,n)-1.

q Holds the matrix Q of size (m,m).

pt Holds the matrix PT of size (n,n).

m If omitted, assumed m = n.

kl If omitted, assumed kl = ku.

ku Restored as ku = lda-kl-1.

4-96

4 Intel® Math Kernel Library Reference Manual

vect Restored based on the presence of arguments q and pt as follows:
vect = 'B', if both q and pt are present,
vect = 'Q', if q is present and pt omitted,
vect = 'P', if q is omitted and pt present,
vect = 'N', if both q and pt are omitted.

Application Notes

The computed matrices Q, B, and P satisfy QBPH = A + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and
ε is the machine precision.

If m = n, the total number of floating-point operations for real flavors is approximately the sum of:

6*n2*(kl + ku) if vect = 'N' and ncc = 0,

3*n2*ncc*(kl + ku − 1)/(kl + ku) if C is updated, and

3*n3*(kl + ku − 1)/(kl + ku) if either Q or PH is generated
(double this if both).

To estimate the number of operations for complex flavors, use the same formulas with the
coefficients 20 and 10 (instead of 6 and 3).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-97

?orgbr
Generates the real orthogonal matrix Q or PT
determined by ?gebrd.

Syntax

Fortran 77:

call sorgbr(vect, m, n, k, a, lda, tau, work, lwork, info)

call dorgbr(vect, m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call orgbr(a, tau [,vect] [,info])

Description

The routine generates the whole or part of the orthogonal matrices Q and PT formed by the
routines sgebrd/dgebrd . Use this routine after a call to sgebrd/dgebrd. All valid combinations
of arguments are described in Input parameters. In most cases you need the following:

To compute the whole m-by-m matrix Q:
call ?orgbr('Q', m, m, n, a ...)
(note that the array a must have at least m columns).

To form the n leading columns of Q if m > n:
call ?orgbr('Q', m, n, n, a ...)

To compute the whole n-by-n matrix PT:
call ?orgbr('P', n, n, m, a ...)
(note that the array a must have at least n rows).

To form the m leading rows of PT if m < n:
call ?orgbr('P', m, n, m, a ...)

Input Parameters

vect CHARACTER*1. Must be 'Q' or 'P'.
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PT.

m INTEGER. The number of required rows of Q or PT.

4-98

4 Intel® Math Kernel Library Reference Manual

n INTEGER. The number of required columns of Q or PT.

k INTEGER. One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.
For vect ='Q': k ≤ n ≤ m if m > k, or m = n if m ≤ k.
For vect ='P': k ≤ m ≤ n if n > k, or m = n if n ≤ k.

a, work REAL for sorgbr
DOUBLE PRECISION for dorgbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

tau REAL for sorgbr
DOUBLE PRECISION for dorgbr.
For vect = 'Q', the array tauq as returned by ?gebrd. For vect =
'P', the array taup as returned by ?gebrd.
The dimension of tau must be at least max(1, min(m,k))
for vect ='Q', or max(1, min(m, k)) for vect = 'P'.

lwork INTEGER. The size of the work array.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the orthogonal matrix Q or PT (or the leading rows or
columns thereof) as specified by vect, m, and n.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-99

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine orgbr interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length min(m,k) where
k = m, if vect = 'P',
k = n, if vect = 'Q'.

vect Must be 'Q' or 'P'. The default value is 'Q'.

Application Notes

For better performance, try using lwork = min(m,n)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for
the first run. On exit, examine work(1) and use this value for subsequent runs. The computed
matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2 = O(ε).

The approximate numbers of floating-point operations for the cases listed in Description are as
follows:

To form the whole of Q:

 (4/3)n(3m2 - 3m*n + n2) if m > n;

 (4/3)m3 if m ≤ n.

To form the n leading columns of Q when m > n:

 (2/3)n2(3m - n2) if m > n.

To form the whole of PT:

 (4/3)n3 if m ≥ n;

 (4/3)m(3n2 - 3m*n + m2) if m < n.

To form the m leading columns of PT when m < n:

 (2/3)n2(3m - n2) if m > n.

The complex counterpart of this routine is ?ungbr.

4-100

4 Intel® Math Kernel Library Reference Manual

?ormbr
Multiplies an arbitrary real matrix by the real
orthogonal matrix Q or PT determined by ?gebrd.

Syntax

Fortran 77:

call sormbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call dormbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormbr(a, tau, c [,vect] [,side] [,trans] [,info])

Description

Given an arbitrary real matrix C, this routine forms one of the matrix products QC, QTC, CQ, CQT,
PC, PTC, CP, or CPT, where Q and P are orthogonal matrices computed by a call to
sgebrd/dgebrd. The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or PT:
If side ='L', r = m; if side ='R', r = n.

vect CHARACTER*1. Must be 'Q' or 'P'.
If vect ='Q', then Q or QT is applied to C.
If vect ='P', then P or PT is applied to C.

side CHARACTER*1. Must be 'L' or 'R'.
If side ='L', multipliers are applied to C from the left.
If side ='R', they are applied to C from the right.

trans CHARACTER*1. Must be 'N' or 'T'.
If trans ='N', then Q or P is applied to C.
If trans ='T', then QT or PT is applied to C.

m INTEGER. The number of rows in C.

n INTEGER. The number of columns in C.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-101

k INTEGER. One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.

a, c, work REAL for sormbr
DOUBLE PRECISION for dormbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
Its second dimension must be at least max(1, min(r,k)) for vect = 'Q',
or max(1, r)) for vect = 'P'.

c(ldc,*) holds the matrix C.
Its second dimension must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a. Constraints:
lda ≥ max(1, r) if vect = 'Q';
lda ≥ max(1, min(r,k)) if vect = 'P'.

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

tau REAL for sormbr
DOUBLE PRECISION for dormbr.
Array, DIMENSION at least max (1, min(r, k)).
For vect = 'Q', the array tauq as returned by ?gebrd. For vect =
'P', the array taup as returned by ?gebrd.

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, CQT, PC, PTC, CP, or CPT, as
specified by vect, side, and trans.

4-102

4 Intel® Math Kernel Library Reference Manual

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ormbr interface are the following:

a Holds the matrix A of size (r,min(nq,k)) where
r = nq, if vect = 'Q',
r = min(nq,k), if vect = 'P',
nq = m, if side = 'L',
nq = n, if side = 'R',
k = m, if vect = 'P',
k = n, if vect = 'Q'.

tau Holds the vector of length min(nq,k).

c Holds the matrix C of size (m,n).

vect Must be 'Q' or 'P'. The default value is 'Q'.

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'T'. The default value is 'N'.

Application Notes

For better performance, try using

 lwork = n*blocksize for side ='L', or
 lwork = m*blocksize for side ='R',

where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix E such that ||E||2 = O(ε) ||C||2.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-103

The total number of floating-point operations is approximately

 2*n*k(2*m - k) if side ='L' and m ≥ k;

 2*m*k(2*n - k) if side ='R' and n ≥ k;

 2*m2*n if side ='L' and m < k;

 2*n2*m if side ='R' and n < k.

The complex counterpart of this routine is ?unmbr.

4-104

4 Intel® Math Kernel Library Reference Manual

?ungbr
Generates the complex unitary matrix Q or PH
determined by ?gebrd.

Syntax

Fortran 77:

call cungbr(vect, m, n, k, a, lda, tau, work, lwork, info)

call zungbr(vect, m, n, k, a, lda, tau, work, lwork, info)

Fortran 95:

call ungbr(a, tau [,vect] [,info])

Description

The routine generates the whole or part of the unitary matrices Q and PH formed by the routines
cgebrd/zgebrd. Use this routine after a call to cgebrd/zgebrd. All valid combinations of
arguments are described in Input Parameters; in most cases you need the following:

To compute the whole m-by-m matrix Q, use:
call ?ungbr('Q', m, m, n, a ...)
(note that the array a must have at least m columns).

To form the n leading columns of Q if m > n, use:
call ?ungbr('Q', m, n, n, a ...)

To compute the whole n-by-n matrix PH, use:
call ?ungbr('P', n, n, m, a ...)
(note that the array a must have at least n rows).

To form the m leading rows of PH if m < n, use:
call ?ungbr('P', m, n, m, a ...)

Input Parameters

vect CHARACTER*1. Must be 'Q' or 'P'.
If vect = 'Q', the routine generates the matrix Q.
If vect = 'P', the routine generates the matrix PH.

m INTEGER. The number of required rows of Q or PH.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-105

n INTEGER. The number of required columns of Q or PH.

k INTEGER. One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.
For vect ='Q': k ≤ n ≤ m if m > k, or m = n if m ≤ k.
For vect ='P': k ≤ m ≤ n if n > k, or m = n if n ≤ k.

a, work COMPLEX for cungbr
DOUBLE COMPLEX for zungbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

tau COMPLEX for cungbr
DOUBLE COMPLEX for zungbr.
For vect = 'Q', the array tauq as returned by ?gebrd. For vect =
'P', the array taup as returned by ?gebrd.
The dimension of tau must be at least max(1, min(m,k))
for vect ='Q', or max(1, min(m, k)) for vect = 'P'.

lwork INTEGER. The size of the work array.
Constraint: lwork ≥ max(1, min(m, n)).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the orthogonal matrix Q or PT (or the leading rows or
columns thereof) as specified by vect, m, and n.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

4-106

4 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ungbr interface are the following:

a Holds the matrix A of size (m,n).

tau Holds the vector of length min(m,k) where
k = m, if vect = 'P',
k = n, if vect = 'Q'.

vect Must be 'Q' or 'P'. The default value is 'Q'.

Application Notes

For better performance, try using lwork = min(m,n)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for
the first run. On exit, examine work(1) and use this value for subsequent runs. The computed
matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2 = O(ε).

The approximate numbers of floating-point operations for the cases listed in Description are as
follows:

To form the whole of Q:

 (16/3)n(3m2 - 3m*n + n2) if m > n;

 (16/3)m3 if m ≤ n.

To form the n leading columns of Q when m > n:

 (8/3)n2(3m - n2) if m > n.

To form the whole of PT:

 (16/3)n3 if m ≥ n;

 (16/3)m(3n2 - 3m*n + m2) if m < n.

To form the m leading columns of PT when m < n:

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-107

 (8/3)n2(3m - n2) if m > n.

The real counterpart of this routine is ?orgbr.

4-108

4 Intel® Math Kernel Library Reference Manual

?unmbr
Multiplies an arbitrary complex matrix by the unitary
matrix Q or P determined by ?gebrd.

Syntax

Fortran 77:

call cunmbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

call zunmbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmbr(a, tau, c [,vect] [,side] [,trans] [,info])

Description

Given an arbitrary complex matrix C, this routine forms one of the matrix products QC, QHC, CQ,
CQH, PC, PHC, CP, or CPH, where Q and P are orthogonal matrices computed by a call to
cgebrd/zgebrd. The routine overwrites the product on C.

Input Parameters

In the descriptions below, r denotes the order of Q or PH:
If side ='L', r = m; if side ='R', r = n.

vect CHARACTER*1. Must be 'Q' or 'P'.
If vect ='Q', then Q or QH is applied to C.
If vect ='P', then P or PH is applied to C.

side CHARACTER*1. Must be 'L' or 'R'.
If side ='L', multipliers are applied to C from the left.
If side ='R', they are applied to C from the right.

trans CHARACTER*1. Must be 'N' or 'C'.
If trans ='N', then Q or P is applied to C.
If trans ='C', then QH or PH is applied to C.

m INTEGER. The number of rows in C.

n INTEGER. The number of columns in C.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-109

k INTEGER. One of the dimensions of A in ?gebrd:
If vect = 'Q', the number of columns in A;
If vect = 'P', the number of rows in A.

Constraints: m ≥ 0, n ≥ 0, k ≥ 0.

a, c, work COMPLEX for cunmbr
DOUBLE COMPLEX for zunmbr.
Arrays:
a(lda,*) is the array a as returned by ?gebrd.
Its second dimension must be at least max(1, min(r,k)) for vect = 'Q',
or max(1, r)) for vect = 'P'.

c(ldc,*) holds the matrix C.
Its second dimension must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a. Constraints:
lda ≥ max(1, r) if vect = 'Q';
lda ≥ max(1, min(r,k)) if vect = 'P'.

ldc INTEGER. The first dimension of c; ldc ≥ max(1, m).

tau COMPLEX for cunmbr
DOUBLE COMPLEX for zunmbr.
Array, DIMENSION at least max (1, min(r, k)).
For vect = 'Q', the array tauq as returned by ?gebrd. For vect =
'P', the array taup as returned by ?gebrd.

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, CQH, PC, PHC, CP, or CPH,
as specified by vect, side, and trans.

4-110

4 Intel® Math Kernel Library Reference Manual

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine unmbr interface are the following:

a Holds the matrix A of size (r,min(nq,k)) where
r = nq, if vect = 'Q',
r = min(nq,k), if vect = 'P',
nq = m, if side = 'L',
nq = n, if side = 'R',
k = m, if vect = 'P',
k = n, if vect = 'Q'.

tau Holds the vector of length min(nq,k).

c Holds the matrix C of size (m,n).

vect Must be 'Q' or 'P'. The default value is 'Q'.

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'C'. The default value is 'N'.

Application Notes

For better performance, try using

 lwork = n*blocksize for side ='L', or
 lwork = m*blocksize for side ='R',

where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum
performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix E such that ||E||2 = O(ε) ||C||2.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-111

The total number of floating-point operations is approximately

 8*n*k(2*m - k) if side ='L' and m ≥ k;

 8*m*k(2*n - k) if side ='R' and n ≥ k;

 8*m2*n if side ='L' and m < k;

 8*n2*m if side ='R' and n < k.

The real counterpart of this routine is ?ormbr.

4-112

4 Intel® Math Kernel Library Reference Manual

?bdsqr
Computes the singular value decomposition of a general
matrix that has been reduced to bidiagonal form.

Syntax

Fortran 77:

call sbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
 c, ldc, work, info)

call dbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
 c, ldc, work, info)

call cbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
 c, ldc, work, info)

call zbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
 c, ldc, work, info)

Fortran 95:

call rbdsqr(d, e [,vt] [,u] [,c] [,uplo] [,info])

call bdsqr(d, e [,vt] [,u] [,c] [,uplo] [,info])

Description

This routine computes the singular values and, optionally, the right and/or left singular vectors
from the Singular Value Decomposition (SVD) of a real n-by-n (upper or lower) bidiagonal matrix
B using the implicit zero-shift QR algorithm. The SVD of B has the form B = Q *S *PH where S
is the diagonal matrix of singular values, Q is an orthogonal matrix of left singular vectors, and P
is an orthogonal matrix of right singular vectors. If left singular vectors are requested, this
subroutine actually returns U *Q instead of Q, and, if right singular vectors are requested, this
subroutine returns
PH *VT instead of PH, for given real/complex input matrices U and VT. When U and VT are the
orthogonal/unitary matrices that reduce a general matrix A to bidiagonal form: A = U *B *VT, as
computed by ?gebrd, then
 A = (U *Q) *S *(PH *VT)
is the SVD of A. Optionally, the subroutine may also compute QH *C for a given real/complex
input matrix C.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-113

See Also

?lasq1, ?lasq2, ?lasq3, ?lasq4, ?lasq5, ?lasq6 .

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', B is an upper bidiagonal matrix.
If uplo = 'L', B is a lower bidiagonal matrix.

n INTEGER. The order of the matrix B (n ≥ 0).

ncvt INTEGER. The number of columns of the matrix VT, that is, the number
of right singular vectors (ncvt ≥ 0).
Set ncvt = 0 if no right singular vectors are required.

nru INTEGER. The number of rows in U, that is, the number of left singular
vectors (nru ≥ 0).
Set nru = 0 if no left singular vectors are required.

ncc INTEGER. The number of columns in the matrix C
used for computing the product QHC (ncc ≥ 0).
Set ncc = 0 if no matrix C is supplied.

d, e, work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of B.
The dimension of d must be at least max(1, n).

e(*) contains the (n-1) off-diagonal elements of B.
The dimension of e must be at least max(1, n).
e(n) is used for workspace.

work(*) is a workspace array.
The dimension of work must be at least
max(1, 2*n) if ncvt = nru = ncc = 0;
max(1, 4*(n-1)) otherwise.

vt, u, c REAL for sbdsqr
DOUBLE PRECISION for dbdsqr
COMPLEX for cbdsqr
DOUBLE COMPLEX for zbdsqr.
Arrays:
vt(ldvt,*) contains an n-by-ncvt matrix VT.

4-114

4 Intel® Math Kernel Library Reference Manual

The second dimension of vt must be at least
max(1, ncvt).
vt is not referenced if ncvt = 0.

u(ldu,*) contains an nru by n unit matrix U.
The second dimension of u must be at least max(1, n).
u is not referenced if nru = 0.

c(ldc,*) contains the matrix C for computing the product QH *C. The
second dimension of c must be at least max(1,ncc). The array is not
referenced if ncc = 0.

ldvt INTEGER. The first dimension of vt. Constraints:
ldvt ≥ max(1, n) if ncvt > 0;
ldvt ≥ 1 if ncvt = 0.

ldu INTEGER. The first dimension of u. Constraint:
ldu ≥ max(1, nru).

ldc INTEGER. The first dimension of c. Constraints:
ldc ≥ max(1, n) if ncc > 0;
ldc ≥ 1 otherwise.

Output Parameters

d On exit, if info = 0, overwritten by the singular values in decreasing
order (see info).

e On exit, if info = 0, e is destroyed. See also info below.

c Overwritten by the product QH *C.

vt On exit, this array is overwritten by PH *VT.

u On exit, this array is overwritten by U *Q .

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the algorithm failed to converge;
i specifies how many off-diagonals did not converge.
In this case, d and e contain on exit the diagonal and off-diagonal
elements, respectively, of a bidiagonal matrix orthogonally equivalent
to B.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-115

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine bdsqr interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n).

vt Holds the matrix VT of size (n,ncvt).

u Holds the matrix U of size (nru,n).

c Holds the matrix C of size (n,ncc).

uplo Must be 'U' or 'L'. The default value is 'U'.

ncvt If argument vt is present, then ncvt is equal to the number of columns in matrix VT;
otherwise, ncvt is set to zero.

nru If argument u is present, then nru is equal to the number of rows in matrix U;
otherwise, nru is set to zero.

ncc If argument c is present, then ncc is equal to the number of columns in matrix C;
otherwise, ncc is set to zero.

Note that two variants of Fortran 95 interface for bdsqr routine are needed because of an
ambiguous choice between real and complex cases appear when vt, u, and c are omitted. Thus,
the name rbdsqr is used in real cases (single or double precision), and the name bdsqr is used in
complex cases (single or double precision).

Application Notes

Each singular value and singular vector is computed to high relative accuracy. However, the
reduction to bidiagonal form (prior to calling the routine) may decrease the relative accuracy in the
small singular values of the original matrix if its singular values vary widely in magnitude.

If σi is an exact singular value of B, and si is the corresponding computed value, then

 |si - σi| ≤ p(m, n)εσi

where p(m, n) is a modestly increasing function of m and n, and ε is the machine precision. If only
singular values are computed, they are computed more accurately than when some singular vectors
are also computed (that is, the function p(m, n) is smaller).

4-116

4 Intel® Math Kernel Library Reference Manual

If ui is the corresponding exact left singular vector of B, and wi is the corresponding computed left
singular vector, then the angle θ(ui, wi) between them is bounded as follows:

 θ(ui, wi) ≤ p(m, n)ε / mini≠j(|σi - σj|/|σi + σj|).

Here mini≠j(|σi - σj|/|σi + σj|) is the relative gap between σi and the other singular values. A
similar error bound holds for the right singular vectors.

The total number of real floating-point operations is roughly proportional to n2 if only the singular
values are computed. About 6n2*nru additional operations (12n2*nru for complex flavors) are
required to compute the left singular vectors and about 6n2*ncvt operations (12n2*ncvt for
complex flavors) to compute the right singular vectors.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-117

?bdsdc
Computes the singular value decomposition of a real
bidiagonal matrix using a divide and conquer method.

Syntax

Fortran 77:

call sbdsdc(uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,
 iwork, info)

call dbdsdc(uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,
 iwork, info)

Fortran 95:

call bdsdc(d, e [,u] [,vt] [,q] [,iq] [,uplo] [,info])

Description

This routine computes the Singular Value Decomposition (SVD) of a real n-by-n (upper or lower)
bidiagonal matrix B: B = U Σ VT, using a divide and conquer method, where Σ is a diagonal matrix
with non-negative diagonal elements (the singular values of B), and U and V are orthogonal
matrices of left and right singular vectors, respectively. ?bdsdc can be used to compute all
singular values, and optionally, singular vectors or singular vectors in compact form.

See Also

?lasd0, ?lasd1, ?lasd2, ?lasd3, ?lasd4, ?lasd5, ?lasd6, ?lasd7, ?lasd8, ?lasd9,
?lasda, ?lasdq, ?lasdt .

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', B is an upper bidiagonal matrix.
If uplo = 'L', B is a lower bidiagonal matrix.

compq CHARACTER*1. Must be 'N', 'P', or 'I'.

If compq = 'N', compute singular values only.
If compq = 'P', compute singular values and compute singular vectors
in compact form.
If compq = 'I', compute singular values and singular vectors.

4-118

4 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of the matrix B (n ≥ 0).

d, e, work REAL for sbdsdc
DOUBLE PRECISION for sbdsdc.
Arrays:

d(*) contains the n diagonal elements of the bidiagonal matrix B. The
dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of the bidiagonal matrix B. The
dimension of e must be at least max(1, n).

work(*) is a workspace array.
The dimension of work must be at least:
max(1, 4*n), if compq = 'N';
max(1, 6*n), if compq = 'P';
max(1, 3*n2+4*n), if compq = 'I'.

ldu INTEGER. The first dimension of the output array u; ldu ≥ 1. If
singular vectors are desired, then ldu ≥ max(1, n).

ldvt INTEGER. The first dimension of the output array vt; ldvt ≥ 1. If
singular vectors are desired, then ldvt ≥ max(1, n).

iwork INTEGER. Workspace array, dimension at least max(1, 8*n).

Output Parameters

d If info = 0, overwritten by the singular values of B.

e On exit, e is overwritten.

u, vt, q REAL for sbdsdc
DOUBLE PRECISION for dbdsdc.
Arrays: u(ldu,*), vt(ldvt,*), q(*).
If compq = 'I', then on exit u contains the left singular vectors of the
bidiagonal matrix B, unless info ≠ 0 (see info). For other values of
compq, u is not referenced. The second dimension of u must be at least
max(1,n).

 If compq = 'I', then on exit vt contains the right singular vectors of
the bidiagonal matrix B, unless
info ≠ 0 (see info). For other values of compq, vt is not referenced.
The second dimension of vt must be at least max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-119

If compq = 'P', then on exit, if info = 0, q and iq contain the left and
right singular vectors in a compact form. Specifically, q contains all the
REAL (for sbdsdc) or DOUBLE PRECISION (for dbdsdc) data for
singular vectors. For other values of compq , q is not referenced. See
Application notes for details.

iq INTEGER.
Array: iq(*).
If compq = 'P', then on exit, if info = 0, q and iq contain the left and
right singular vectors in a compact form. Specifically, iq contains all the
INTEGER data for singular vectors. For other values of compq , iq is not
referenced. See Application notes for details.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the algorithm failed to compute a singular value. The
update process of divide and conquer failed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine bdsdc interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n).

u Holds the matrix U of size (n,n).

vt Holds the matrix VT of size (n,n).

q Holds the vector of length (ldq), where
ldq ≥ n*(11 + 2*smlsiz + 8*int(log_2(n/(smlsiz + 1)))) and smlsiz is returned by
ilaenv and is equal to the maximum size of the subproblems at the bottom of the
computation tree (usually about 25).

compq Restored based on the presence of arguments u, vt, q, and iq as follows:
compq = 'N', if none of u, vt, q, and iq are present,
compq = 'I', if both u and vt are present. Arguments u and vt must either be both

4-120

4 Intel® Math Kernel Library Reference Manual

present or both omitted,
compq = 'P', if both q and iq are present. Arguments q and iq must either be both
present or both omitted.

Note that there will be an error condition if all of u, vt, q, and iq arguments are
present simultaneously.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-121

Symmetric Eigenvalue Problems
Symmetric eigenvalue problems are posed as follows: given an n-by-n real symmetric or complex
Hermitian matrix A, find the eigenvalues λ and the corresponding eigenvectors z that satisfy the
equation

 Az = λz. (or, equivalently, zHA = λzH).

In such eigenvalue problems, all n eigenvalues are real not only for real symmetric but also for
complex Hermitian matrices A, and there exists an orthonormal system of n eigenvectors. If A is a
symmetric or Hermitian positive-definite matrix, all eigenvalues are positive.

To solve a symmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to
tridiagonal form and then solve the eigenvalue problem with the tridiagonal matrix obtained.
LAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or
unitary) similarity transformation A = QTQH as well as for solving tridiagonal symmetric
eigenvalue problems. These routines (for Fortran-77 interface) are listed in Table 4-3.
Respective routine names in Fortran-95 interface are without the first symbol (see Routine Naming
Conventions).

There are different routines for symmetric eigenvalue problems, depending on whether you need
all eigenvectors or only some of them or eigenvalues only, whether the matrix A is positive-definite
or not, and so on.
These routines are based on three primary algorithms for computing eigenvalues and eigenvectors
of symmetric problems: the divide and conquer algorithm, the QR algorithm, and bisection
followed by inverse iteration. The divide and conquer algorithm is generally more efficient and is
recommended for computing all eigenvalues and eigenvectors.
Furthermore, to solve an eigenvalue problem using the divide and conquer algorithm, you need to
call only one routine. In general, more than one routine has to be called if the QR algorithm or
bisection followed by inverse iteration is used.

Decision tree in Figure 4-2 will help you choose the right routine or sequence of routines for
eigenvalue problems with real symmetric matrices. A similar decision tree for complex Hermitian
matrices is presented in Figure 4-3.

4-122

4 Intel® Math Kernel Library Reference Manual

Figure 4-2 Decision Tree: Real Symmetric Eigenvalue Problems

Are eigenvalues
only required?

Are all the
eigenvalues
required?

Is A tridiagonal?

Is A tridiagonal?

Is A a band
matrix?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

Are all
eigenvalues and
eigenvectors
required?

?SYTRD ?STEBZ

?SBTRD
?STEBZ

?SPTRD
?STEBZ

(?SYTRD
?STERF) or
?SYEVD

?STERF or
?STEVD

(?SBTRD
?STERF) or
?SBEVD

(?SPTRD
?STERF) or
?SPEVD

yes

no

no

no

no

no

no

no

no

yes

yes

yes

yes

yes

yes

yes

Is one triangle
of A stored as a
linear array?

Is A a band
matrix?

Is A tridiagonal?

Is A tridiagonal?

Is one triangle
of A stored as a
linear array?

Is one triangle
of A stored as a
linear array?

(?SYTRD ?ORGTR
?STEQR) or
?SYEVD

?STEQR or
?STEVD

(?SBTRD
?STEQR) or
?SBEVD

(?SPTRD
?OPGTR
?STEQR) or
?SPEVD

?STEBZ ?STEIN

?SPTRD ?STEBZ
?STEIN ?OPMTR

yes yes

yes

yes

yes

yes

no

no

no

no

no

no

?STEBZ

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-123

Figure 4-3 Decision Tree: Complex Hermitian Eigenvalue Problems

Are eigenvalues
only required?

Are all the
eigenvalues
required?

Is A a band
matrix?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

Are all
eigenvalues and
eigenvectors
required?

?HETRD ?STEBZ

?HBTRD
?STEBZ

?HPTRD
?STEBZ (?HETRD

?STERF) or
?HEEVD

(?HBTRD
?STERF) or
?HBEVD

(?HPTRD
?STERF) or
?HPEVD

yes

no

no

no

no

no

no

yes

yes

yes

yes

yes

Is one triangle
of A stored as a
linear array?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

Is one triangle
of A stored as a
linear array?

(?HETRD ?UNGTR
?STEQR) or
?HEEVD

(?HBTRD
?STEQR) or
?HBEVD

(?HPTRD
?UPGTR
?STEQR) or
?HPEVD

?HPTRD ?STEBZ
?STEIN ?UPMTR

?HETRD ?STEBZ
?STEIN ?UNMTR

yes yes

yes

yes

no

no

no

no

4-124

4 Intel® Math Kernel Library Reference Manual

Table 4-3 Computational Routines for Solving Symmetric Eigenvalue Problems

Operation Real symmetric
matrices

Complex Hermitian
matrices

Reduce to tridiagonal form
A = QTQH (full storage)

?sytrd ?hetrd

Reduce to tridiagonal form
A = QTQH (packed storage)

?sptrd ?hptrd

Reduce to tridiagonal form
A = QTQH (band storage).

?sbtrd ?hbtrd

Generate matrix Q
(full storage)

?orgtr ?ungtr

Generate matrix Q
(packed storage)

?opgtr ?upgtr

Apply matrix Q
(full storage)

?ormtr ?unmtr

Apply matrix Q
(packed storage)

?opmtr ?upmtr

Find all eigenvalues of
a tridiagonal matrix T

?sterf

Find all eigenvalues and eigenvectors
of a tridiagonal matrix T

?steqr ?stedc ?steqr ?stedc

Find all eigenvalues and eigenvectors
of a tridiagonal positive-definite
matrix T.

?pteqr ?pteqr

Find selected eigenvalues of a
tridiagonal matrix T

?stebz
?stegr

?stegr

Find selected eigenvectors of a
tridiagonal matrix T

?stein
?stegr

?stein
?stegr

Compute the reciprocal condition
numbers for the eigenvectors

?disna ?disna

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-125

?sytrd
Reduces a real symmetric matrix to tridiagonal form.

Syntax

Fortran 77:

call ssytrd(uplo, n, a, lda, d, e, tau, work, lwork, info)

call dsytrd(uplo, n, a, lda, d, e, tau, work, lwork, info)

Fortran 95:

call sytrd(a, tau [,uplo] [,info])

Description

This routine reduces a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal
similarity transformation: A = QTQT. The orthogonal matrix Q is not formed explicitly but is
represented as a product of n-1 elementary reflectors. Routines are provided for working with Q
in this representation. (They are described later in this section.)

This routine calls ?latrd to reduce a real symmetric matrix to tridiagonal form by an orthogonal
similarity transformation.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for ssytrd
DOUBLE PRECISION for dsytrd.
a(lda,*) is an array containing either upper or lower triangular part of
the matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

4-126

4 Intel® Math Kernel Library Reference Manual

lwork INTEGER. The size of the work array (lwork ≥ n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the tridiagonal matrix T and details of the orthogonal
matrix Q, as specified by uplo.

d, e, tau REAL for ssytrd
DOUBLE PRECISION for dsytrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau(*) stores further details of the orthogonal matrix Q. The dimension
of tau must be at least max(1, n-1).

work(1) If info=0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sytrd interface are the following:

a Holds the matrix A of size (n,n).

tau Holds the vector of length (n-1).

d Holds the vector of length (n).

e Holds the vector of length (n-1).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-127

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The computed matrix T is exactly similar to a matrix A + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

After calling this routine, you can call the following:

?orgtr to form the computed matrix Q explicitly

?ormtr to multiply a real matrix by Q.

The complex counterpart of this routine is ?hetrd.

4-128

4 Intel® Math Kernel Library Reference Manual

?orgtr
Generates the real orthogonal matrix Q determined by
?sytrd.

Syntax

Fortran 77:

call sorgtr(uplo, n, a, lda, tau, work, lwork, info)

call dorgtr(uplo, n, a, lda, tau, work, lwork, info)

Fortran 95:

call orgtr(a, tau [,uplo] [,info])

Description

The routine explicitly generates the n-by-n orthogonal matrix Q formed by ?sytrd when reducing
a real symmetric matrix A to tridiagonal form: A = QTQT. Use this routine after a call to ?sytrd.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sytrd.

n INTEGER. The order of the matrix Q (n ≥ 0).

a, tau, work REAL for sorgtr
DOUBLE PRECISION for dorgtr.
Arrays:
a(lda,*) is the array a as returned by ?sytrd.
The second dimension of a must be at least max(1, n).

tau(*) is the array tau as returned by ?sytrd.
The dimension of tau must be at least max(1, n-1).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array (lwork ≥ n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-129

first entry of the work array, and no error message related to lwork is
issued by xerbla.
See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the orthogonal matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine orgtr interface are the following:

a Holds the matrix A of size (n,n).

tau Holds the vector of length (n-1).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For better performance, try using lwork = (n-1)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that
||E||2 = O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

The complex counterpart of this routine is ?ungtr.

4-130

4 Intel® Math Kernel Library Reference Manual

?ormtr
Multiplies a real matrix by the real orthogonal matrix Q
determined by ?sytrd.

Syntax

Fortran 77:

call sormtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)

call dormtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call ormtr(a, tau, c [,side] [,uplo] [,trans] [,info])

Description

The routine multiplies a real matrix C by Q or QT, where Q is the orthogonal matrix Q formed by
?sytrd when reducing a real symmetric matrix A to tridiagonal form: A = QTQT. Use this routine
after a call to ?sytrd.

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QTC, CQ, or CQT (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:
If side ='L', r = m; if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sytrd.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-131

a,work,tau,c REAL for sormtr
DOUBLE PRECISION for dormtr.
a(lda,*) and tau are the arrays returned by ?sytrd.

The second dimension of a must be at least max(1, r).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, r).

ldc INTEGER. The first dimension of c; ldc ≥ max(1, n).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ormtr interface are the following:

4-132

4 Intel® Math Kernel Library Reference Manual

a Holds the matrix A of size (r,r).
r = m if side = 'L'.
r = n if side = 'R'.

tau Holds the vector of length (r-1).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N' or 'T'. The default value is 'N'.

Application Notes

For better performance, try using lwork = n*blocksize for side ='L', or
lwork = m*blocksize for side ='R', where blocksize is a machine-dependent value (typically, 16
to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On exit, examine work(1)
and use this value for subsequent runs.

The computed product differs from the exact product by a matrix E such that |
|E||2 = O(ε) ||C||2.

The total number of floating-point operations is approximately 2*m2*n if side ='L'
or 2*n2*m if side ='R'.

The complex counterpart of this routine is ?unmtr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-133

?hetrd
Reduces a complex Hermitian matrix to tridiagonal form.

Syntax

Fortran 77:

call chetrd(uplo, n, a, lda, d, e, tau, work, lwork, info)

call zhetrd(uplo, n, a, lda, d, e, tau, work, lwork, info)

Fortran 95:

call hetrd(a, tau [,uplo] [,info])

Description

This routine reduces a complex Hermitian matrix A to symmetric tridiagonal form T by a unitary
similarity transformation: A = QTQH. The unitary matrix Q is not formed explicitly but is
represented as a product of n-1 elementary reflectors. Routines are provided to work with Q in
this representation. (They are described later in this section.)

This routine calls ?latrd to reduce a complex Hermitian matrix A to Hermitian tridiagonal form
by a unitary similarity transformation.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work COMPLEX for chetrd
DOUBLE COMPLEX for zhetrd.
a(lda,*) is an array containing either upper or lower triangular part of
the matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

4-134

4 Intel® Math Kernel Library Reference Manual

lwork INTEGER. The size of the work array (lwork ≥ n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the tridiagonal matrix T and details of the unitary matrix
Q, as specified by uplo.

d, e REAL for chetrd
DOUBLE PRECISION for zhetrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau COMPLEX for chetrd
DOUBLE COMPLEX for zhetrd.
Array, DIMENSION at least max(1, n-1).
Stores further details of the unitary matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hetrd interface are the following:

a Holds the matrix A of size (n,n).

tau Holds the vector of length (n-1).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-135

d Holds the vector of length (n).

e Holds the vector of length (n-1).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For better performance, try using lwork =n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The computed matrix T is exactly similar to a matrix A + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

After calling this routine, you can call the following:

?ungtr to form the computed matrix Q explicitly

?unmtr to multiply a complex matrix by Q.

The real counterpart of this routine is ?sytrd.

4-136

4 Intel® Math Kernel Library Reference Manual

?ungtr
Generates the complex unitary matrix Q determined by
?hetrd.

Syntax

Fortran 77:

call cungtr(uplo, n, a, lda, tau, work, lwork, info)

call zungtr(uplo, n, a, lda, tau, work, lwork, info)

Fortran 95:

call ungtr(a, tau [,uplo] [,info])

Description

The routine explicitly generates the n-by-n unitary matrix Q formed by ?hetrd when reducing a
complex Hermitian matrix A to tridiagonal form: A = QTQH. Use this routine after a call to
?hetrd.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?hetrd.

n INTEGER. The order of the matrix Q (n ≥ 0).

a, tau, work COMPLEX for cungtr
DOUBLE COMPLEX for zungtr.
Arrays:
a(lda,*) is the array a as returned by ?hetrd.
The second dimension of a must be at least max(1, n).

tau(*) is the array tau as returned by ?hetrd.
The dimension of tau must be at least max(1, n-1).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-137

lwork INTEGER. The size of the work array (lwork ≥ n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the unitary matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ungtr interface are the following:

a Holds the matrix A of size (n,n).

tau Holds the vector of length (n-1).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For better performance, try using lwork = (n-1)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for
the first run. On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that
||E||2 = O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

The real counterpart of this routine is ?orgtr.

4-138

4 Intel® Math Kernel Library Reference Manual

?unmtr
Multiplies a complex matrix by the complex unitary matrix
Q determined by ?hetrd.

Syntax

Fortran 77:

call cunmtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)

call zunmtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)

Fortran 95:

call unmtr(a, tau, c [,side] [,uplo] [,trans] [,info])

Description

The routine multiplies a complex matrix C by Q or QH, where Q is the unitary matrix Q formed by
?hetrd when reducing a complex Hermitian matrix A to tridiagonal form: A = QTQH. Use this
routine after a call to ?hetrd.

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QHC, CQ, or CQH (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:
If side ='L', r = m; if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?hetrd.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-139

a,work,tau,c COMPLEX for cunmtr
DOUBLE COMPLEX for zunmtr.
a(lda,*) and tau are the arrays returned by ?hetrd.

The second dimension of a must be at least max(1, r).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; lda ≥ max(1, r).

ldc INTEGER. The first dimension of c; ldc ≥ max(1, n).

lwork INTEGER. The size of the work array. Constraints:
lwork ≥ max(1, n) if side ='L';
lwork ≥ max(1, m) if side ='R'.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH
(as specified by side and trans).

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine unmtr interface are the following:

4-140

4 Intel® Math Kernel Library Reference Manual

a Holds the matrix A of size (r,r).
r = m if side = 'L'.
r = n if side = 'R'.

tau Holds the vector of length (r-1).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N' or 'C'. The default value is 'N'.

Application Notes

For better performance, try using lwork = n*blocksize (for side ='L') or lwork = m*blocksize
(for side ='R') where blocksize is a machine-dependent value (typically, 16 to 64) required for
optimum performance of the blocked algorithm. If you are in doubt how much workspace to
supply, use a generous value of lwork for the first run. On exit, examine work(1) and use this
value for subsequent runs.

The computed product differs from the exact product by a matrix E such that
||E||2 = O(ε) ||C||2, where ε is the machine precision.

The total number of floating-point operations is approximately 8*m2*n if side ='L'
or 8*n2*m if side ='R'.

The real counterpart of this routine is ?ormtr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-141

?sptrd
Reduces a real symmetric matrix to tridiagonal form using
packed storage.

Syntax

Fortran 77:

call ssptrd(uplo, n, ap, d, e, tau, info)

call dsptrd(uplo, n, ap, d, e, tau, info)

Fortran 95:

call sptrd(a, tau [,uplo] [,info])

Description

This routine reduces a packed real symmetric matrix A to symmetric tridiagonal form T by an
orthogonal similarity transformation: A = QTQT. The orthogonal matrix Q is not formed explicitly
but is represented as a product of n-1 elementary reflectors. Routines are provided for working
with Q in this representation. (They are described later in this section.)

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo ='U', ap stores the packed upper triangle of A.
If uplo ='L', ap stores the packed lower triangle of A.

n INTEGER. The order of the matrix A (n ≥ 0).

ap REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Array, DIMENSION at least max(1,n(n+1)/2).
Contains either upper or lower triangle of A (as specified by uplo) in
packed form.

Output Parameters

ap Overwritten by the tridiagonal matrix T and details of the orthogonal
matrix Q, as specified by uplo.

4-142

4 Intel® Math Kernel Library Reference Manual

d, e, tau REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau(*) stores further details of the matrix Q.
The dimension of tau must be at least max(1, n-1).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sptrd interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

tau Holds the vector of length (n-1).

d Holds the vector of length (n).

e Holds the vector of length (n-1).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where ||E||2 = c(n)ε ||A||2, c(n) is a
modestly increasing function of n, and ε is the machine precision. The approximate number of
floating-point operations is (4/3)n3.

After calling this routine, you can call the following:

?opgtr to form the computed matrix Q explicitly

?opmtr to multiply a real matrix by Q.

The complex counterpart of this routine is ?hptrd.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-143

?opgtr
Generates the real orthogonal matrix Q determined by
?sptrd.

Syntax

Fortran 77:

call sopgtr(uplo, n, ap, tau, q, ldq, work, info)

call dopgtr(uplo, n, ap, tau, q, ldq, work, info)

Fortran 95:

call opgtr(a, tau, q [,uplo] [,info])

Description

The routine explicitly generates the n-by-n orthogonal matrix Q formed by ?sptrd when
reducing a packed real symmetric matrix A to tridiagonal form: A = QTQT. Use this routine after a
call to ?sptrd.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sptrd.

n INTEGER. The order of the matrix Q (n ≥ 0).

ap, tau REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Arrays ap and tau, as returned by ?sptrd.
The dimension of ap must be at least max(1, n(n+1)/2).
The dimension of tau must be at least max(1, n-1).

ldq INTEGER. The first dimension of the output array q;
at least max(1, n).

work REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Workspace array, DIMENSION at least max(1, n-1).

4-144

4 Intel® Math Kernel Library Reference Manual

Output Parameters

q REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Array, DIMENSION (ldq,*).
Contains the computed matrix Q.
The second dimension of q must be at least max(1, n).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine opgtr interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

tau Holds the vector of length (n-1).

q Holds the matrix Q of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that
 ||E||2 = O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

The complex counterpart of this routine is ?upgtr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-145

?opmtr
Multiplies a real matrix by the real orthogonal matrix Q
determined by ?sptrd.

Syntax

Fortran 77:

call sopmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)

call dopmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)

Fortran 95:

call opmtr(a, tau, c [,side] [,uplo] [,trans] [,info])

Description

The routine multiplies a real matrix C by Q or QT, where Q is the orthogonal matrix Q formed by
?sptrd when reducing a packed real symmetric matrix A to tridiagonal form: A = QTQT. Use this
routine after a call to ?sptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QTC, CQ, or CQT (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:
If side ='L', r = m; if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QT is applied to C from the left.
If side ='R', Q or QT is applied to C from the right.

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sptrd.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QT.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

4-146

4 Intel® Math Kernel Library Reference Manual

ap,work,tau,c REAL for sopmtr
DOUBLE PRECISION for dopmtr.
ap and tau are the arrays returned by ?sptrd.
The dimension of ap must be at least max(1, r(r+1)/2).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(*) is a workspace array.
The dimension of work must be at least
max(1, n) if side ='L';
max(1, m) if side ='R'.

ldc INTEGER. The first dimension of c; ldc ≥ max(1, n).

Output Parameters

c Overwritten by the product QC, QTC, CQ, or CQT
(as specified by side and trans).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine opmtr interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(r*(r+1)/2), where
r = m if side = 'L'.
r = n if side = 'R'.

tau Holds the vector of length (r-1).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

uplo Must be 'U' or 'L'. The default value is 'U'.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-147

Application Notes

The computed product differs from the exact product by a matrix E such that
||E||2 = O(ε) ||C||2, where ε is the machine precision.

The total number of floating-point operations is approximately 2*m2*n if side ='L'
or 2*n2*m if side ='R'.

The complex counterpart of this routine is ?upmtr.

4-148

4 Intel® Math Kernel Library Reference Manual

?hptrd
Reduces a complex Hermitian matrix to tridiagonal form
using packed storage.

Syntax

Fortran 77:

call chptrd(uplo, n, ap, d, e, tau, info)

call zhptrd(uplo, n, ap, d, e, tau, info)

Fortran 95:

call hptrd(a, tau [,uplo] [,info])

Description

This routine reduces a packed complex Hermitian matrix A to symmetric tridiagonal form T by a
unitary similarity transformation: A = QTQH. The unitary matrix Q is not formed explicitly but is
represented as a product of n-1 elementary reflectors. Routines are provided for working with Q
in this representation. They are described later in this section.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo ='U', ap stores the packed upper triangle of A.
If uplo ='L', ap stores the packed lower triangle of A.

n INTEGER. The order of the matrix A (n ≥ 0).

ap COMPLEX for chptrd
DOUBLE COMPLEX for zhptrd.
Array, DIMENSION at least max(1,n(n+1)/2).
Contains either upper or lower triangle of A (as specified by uplo) in
packed form.

Output Parameters

ap Overwritten by the tridiagonal matrix T and details of the orthogonal
matrix Q, as specified by uplo.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-149

d, e REAL for chptrd
DOUBLE PRECISION for zhptrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

tau COMPLEX for chptrd
DOUBLE COMPLEX for zhptrd.
Arrays, DIMENSION at least max(1, n-1).
Contains further details of the orthogonal matrix Q.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hptrd interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

tau Holds the vector of length (n-1).

d Holds the vector of length (n).

e Holds the vector of length (n-1).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where ||E||2 = c(n)ε ||A||2, c(n) is a
modestly increasing function of n, and ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

4-150

4 Intel® Math Kernel Library Reference Manual

After calling this routine, you can call the following:

?upgtr to form the computed matrix Q explicitly

?upmtr to multiply a complex matrix by Q.

The real counterpart of this routine is ?sptrd.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-151

?upgtr
Generates the complex unitary matrix Q determined by
?hptrd.

Syntax

Fortran 77:

call cupgtr(uplo, n, ap, tau, q, ldq, work, info)

call zupgtr(uplo, n, ap, tau, q, ldq, work, info)

Fortran 95:

call upgtr(a, tau, q [,uplo] [,info])

Description

The routine explicitly generates the n-by-n unitary matrix Q formed by ?hptrd when reducing a
packed complex Hermitian matrix A to tridiagonal form: A = QTQH. Use this routine after a call to
?hptrd.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sptrd.

n INTEGER. The order of the matrix Q (n ≥ 0).

ap, tau COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Arrays ap and tau, as returned by ?hptrd.
The dimension of ap must be at least max(1, n(n+1)/2).
The dimension of tau must be at least max(1, n-1).

ldq INTEGER. The first dimension of the output array q;
at least max(1, n).

work COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Workspace array, DIMENSION at least max(1, n-1).

4-152

4 Intel® Math Kernel Library Reference Manual

Output Parameters

q COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Array, DIMENSION (ldq,*).
Contains the computed matrix Q.
The second dimension of q must be at least max(1, n).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine upgtr interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

tau Holds the vector of length (n-1).

q Holds the matrix Q of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that ||E||2 =
O(ε), where ε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

The real counterpart of this routine is ?opgtr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-153

?upmtr
Multiplies a complex matrix by the unitary matrix Q
determined by ?hptrd.

Syntax

Fortran 77:

call cupmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)

call zupmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)

Fortran 95:

call upmtr(a, tau, c [,side] [,uplo] [,trans] [,info])

Description

The routine multiplies a complex matrix C by Q or QH, where Q is the unitary matrix Q formed by
?hptrd when reducing a packed complex Hermitian matrix A to tridiagonal form: A = QTQH. Use
this routine after a call to ?hptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products
QC, QHC, CQ, or CQH (overwriting the result on C).

Input Parameters

In the descriptions below, r denotes the order of Q:
If side ='L', r = m; if side ='R', r = n.

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L', Q or QH is applied to C from the left.
If side ='R', Q or QH is applied to C from the right.

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?hptrd.

trans CHARACTER*1. Must be either 'N' or 'T'.
If trans ='N', the routine multiplies C by Q.
If trans ='T', the routine multiplies C by QH.

m INTEGER. The number of rows in the matrix C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

4-154

4 Intel® Math Kernel Library Reference Manual

ap,tau,c,work COMPLEX for cupmtr
DOUBLE COMPLEX for zupmtr.
ap and tau are the arrays returned by ?hptrd.

The dimension of ap must be at least max(1, r(r+1)/2).
The dimension of tau must be at least max(1, r-1).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n)

work(*) is a workspace array.
The dimension of work must be at least
max(1, n) if side ='L';
max(1, m) if side ='R'.

ldc INTEGER. The first dimension of c; ldc ≥ max(1, n).

Output Parameters

c Overwritten by the product QC, QHC, CQ, or CQH
(as specified by side and trans).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine upmtr interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(r*(r+1)/2), where
r = m if side = 'L'.
r = n if side = 'R'.

tau Holds the vector of length (r-1).

c Holds the matrix C of size (m,n).

side Must be 'L' or 'R'. The default value is 'L'.

uplo Must be 'U' or 'L'.The default value is 'U'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-155

trans Must be 'N' or 'C'. The default value is 'N'.

Application Notes

The computed product differs from the exact product by a matrix E such that ||E||2 = O(ε) ||C||2,
where ε is the machine precision.

The total number of floating-point operations is approximately 8*m2*n if side ='L' or 8*n2*m
if side ='R'.

The real counterpart of this routine is ?opmtr.

4-156

4 Intel® Math Kernel Library Reference Manual

?sbtrd
Reduces a real symmetric band matrix to tridiagonal form.

Syntax

Fortran 77:

call ssbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)

call dsbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)

Fortran 95:

call sbtrd(a [,q] [,vect] [,uplo] [,info])

Description

This routine reduces a real symmetric band matrix A to symmetric tridiagonal form T by an
orthogonal similarity transformation: A = QTQT. The orthogonal matrix Q is determined as a
product of Givens rotations. If required, the routine can also form the matrix Q explicitly.

Input Parameters

vect CHARACTER*1. Must be 'V' or 'N'.

If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work REAL for ssbtrd
DOUBLE PRECISION for dsbtrd.
ab (ldab,*) is an array containing either upper or lower triangular part
of the matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-157

ldab INTEGER. The first dimension of ab; at least kd+1.

ldq INTEGER. The first dimension of q. Constraints:
 ldq ≥ max(1, n) if vect = 'V';
ldq ≥ 1 if vect = 'N'.

Output Parameters

ab On exit, the array ab is overwritten.

d, e, q REAL for ssbtrd
DOUBLE PRECISION for dsbtrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

q(ldq,*) is not referenced if vect = 'N'.
If vect ='V', q contains the n-by-n matrix Q.
The second dimension of q must be:
at least max(1, n) if vect = 'V';
at least 1 if vect = 'N'.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sbtrd interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

q Holds the matrix Q of size (n,n).

d Holds the vector of length (n).

e Holds the vector of length (n-1).

uplo Must be 'U' or 'L'. The default value is 'U'.

4-158

4 Intel® Math Kernel Library Reference Manual

vect If omitted, this argument is restored based on the presence of argument q as follows:
vect = 'V', if q is present,
vect = 'N', if q is omitted.
If present, vect must be equal to 'V' or 'U' and the argument q must also be
present.
Note that there will be an error condition if vect is present and q omitted.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where ||E||2 = c(n)ε ||A||2, c(n) is a
modestly increasing function of n, and ε is the machine precision. The computed matrix Q differs
from an exactly orthogonal matrix by a matrix E such that ||E||2 = O(ε).

The total number of floating-point operations is approximately 6n2*kd if vect ='N', with
3n3*(kd-1)/kd additional operations if vect ='V'.

The complex counterpart of this routine is ?hbtrd.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-159

?hbtrd
Reduces a complex Hermitian band matrix to tridiagonal
form.

Syntax

Fortran 77:

call chbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)

call zhbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)

Fortran 95:

call hbtrd(a [,q] [,vect] [,uplo] [,info])

Description

This routine reduces a complex Hermitian band matrix A to symmetric tridiagonal form T by a
unitary similarity transformation: A = QTQH. The unitary matrix Q is determined as a product of
Givens rotations. If required, the routine can also form the matrix Q explicitly.

Input Parameters

vect CHARACTER*1. Must be 'V' or 'N'.

If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work COMPLEX for chbtrd
DOUBLE COMPLEX for zhbtrd.
ab (ldab,*) is an array containing either upper or lower triangular part
of the matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

4-160

4 Intel® Math Kernel Library Reference Manual

work (*) is a workspace array.
The dimension of work must be at least max(1, n).

ldab INTEGER. The first dimension of ab; at least kd+1.

ldq INTEGER. The first dimension of q. Constraints:
 ldq ≥ max(1, n) if vect = 'V';
ldq ≥ 1 if vect = 'N'.

Output Parameters

ab On exit, the array ab is overwritten.

d, e REAL for chbtrd
DOUBLE PRECISION for zhbtrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

q COMPLEX for chbtrd
DOUBLE COMPLEX for zhbtrd.
Array, DIMENSION (ldq,*).
If vect ='N', q is not referenced.
If vect ='V', q contains the n-by-n matrix Q.
The second dimension of q must be:
at least max(1, n) if vect = 'V';
at least 1 if vect = 'N'.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
 Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hbtrd interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

q Holds the matrix Q of size (n,n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-161

d Holds the vector of length (n).

e Holds the vector of length (n-1).

uplo Must be 'U' or 'L'. The default value is 'U'.

vect If omitted, this argument is restored based on the presence of argument q as follows:
vect = 'V', if q is present,
vect = 'N', if q is omitted.
If present, vect must be equal to 'V' or 'U' and the argument q must also be
present.
Note that there will be an error condition if vect is present and q omitted.

Application Notes

The computed matrix T is exactly similar to a matrix A + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function of n, and ε is the machine precision. The
computed matrix Q differs from an exactly unitary matrix by a matrix E such that ||E||2 = O(ε).

The total number of floating-point operations is approximately 20n2*kd if vect ='N', with
10n3*(kd-1)/kd additional operations if vect ='V'.

The real counterpart of this routine is ?sbtrd.

4-162

4 Intel® Math Kernel Library Reference Manual

?sterf
Computes all eigenvalues of a real symmetric tridiagonal
matrix using QR algorithm.

Syntax

Fortran 77:

call ssterf(n, d, e, info)

call dsterf(n, d, e, info)

Fortran 95:

call sterf(d, e [,info])

Description

This routine computes all the eigenvalues of a real symmetric tridiagonal matrix T (which can be
obtained by reducing a symmetric or Hermitian matrix to tridiagonal form). The routine uses a
square-root-free variant of the QR algorithm.

If you need not only the eigenvalues but also the eigenvectors, call ?steqr.

Input Parameters

n INTEGER. The order of the matrix T (n ≥ 0).

d, e REAL for ssterf
DOUBLE PRECISION for dsterf.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

Output Parameters

d The n eigenvalues in ascending order, unless info > 0.
See also info.

e On exit, the array is overwritten; see info.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-163

info INTEGER.
If info = 0, the execution is successful.
If info = i, the algorithm failed to find all the eigenvalues after 30n
iterations: i off-diagonal elements have not converged to zero. On exit,
d and e contain, respectively, the diagonal and off-diagonal elements of
a tridiagonal matrix orthogonally similar to T.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sterf interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n-1).

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 = O(ε)
||T||2, where ε is the machine precision.

If λi is an exact eigenvalue, and µi is the corresponding computed value, then

 |µi - λi| ≤ c(n)ε ||T||2

where c(n) is a modestly increasing function of n.

The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about 14n2.

4-164

4 Intel® Math Kernel Library Reference Manual

?steqr
Computes all eigenvalues and eigenvectors of a
symmetric or Hermitian matrix reduced to tridiagonal
form (QR algorithm).

Syntax

Fortran 77:

call ssteqr(compz, n, d, e, z, ldz, work, info)

call dsteqr(compz, n, d, e, z, ldz, work, info)

call csteqr(compz, n, d, e, z, ldz, work, info)

call zsteqr(compz, n, d, e, z, ldz, work, info)

Fortran 95:

call rsteqr(d, e [,z] [,compz] [,info])

call steqr(d, e [,z] [,compz] [,info])

Description

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric
tridiagonal matrix T. In other words, the routine can compute the spectral factorization: T = ZΛZT.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi; Z is an orthogonal
matrix whose columns are eigenvectors. Thus,

 Tzi = λizi for i = 1, 2, ..., n.

The routine normalizes the eigenvectors so that ||zi||2 = 1.

You can also use the routine for computing the eigenvalues and eigenvectors of an arbitrary real
symmetric (or complex Hermitian) matrix A reduced to tridiagonal form T: A = QTQH. In this case,
the spectral factorization is as follows: A = QTQH = (QZ)Λ(QZ)H. Before calling ?steqr, you
must reduce A to tridiagonal form and generate the explicit matrix Q by calling the following
routines:

for real matrices for complex matrices

full storage ?sytrd,?orgtr ?hetrd,?ungtr

packed storage ?sptrd,?opgtr ?hptrd,?upgtr

band storage ?sbtrd (vect='V') ?hbtrd (vect='V')

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-165

If you need eigenvalues only, it’s more efficient to call ?sterf. If T is positive-definite, ?pteqr
can compute small eigenvalues more accurately than ?steqr.

To solve the problem by a single call, use one of the divide and conquer routines ?stevd,
?syevd, ?spevd, or ?sbevd for real symmetric matrices or ?heevd, ?hpevd, or ?hbevd for
complex Hermitian matrices.

Input Parameters

compz CHARACTER*1. Must be 'N' or 'I' or 'V'.

If compz ='N', the routine computes eigenvalues only.
If compz ='I', the routine computes the eigenvalues and eigenvectors
of the tridiagonal matrix T.
If compz ='V', the routine computes the eigenvalues and eigenvectors
of A (and the array z must contain the matrix Q on entry).

n INTEGER. The order of the matrix T (n ≥ 0).

d,e,work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz = 'N';
at least max(1, 2*n-2) if compz ='V' or 'I'.

z REAL for ssteqr
DOUBLE PRECISION for dsteqr
COMPLEX for csteqr
DOUBLE COMPLEX for zsteqr.
Array, DIMENSION (ldz, *)
If compz ='N' or 'I', z need not be set.
If vect ='V', z must contain the n-by-n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N';
at least max(1, n) if compz ='V' or 'I'.

work (lwork) is a workspace array.

4-166

4 Intel® Math Kernel Library Reference Manual

ldz INTEGER. The first dimension of z. Constraints:
ldz ≥ 1 if compz = 'N';
ldz ≥ max(1, n) if compz ='V' or 'I'.

Output Parameters

d The n eigenvalues in ascending order, unless info > 0.
See also info.

e On exit, the array is overwritten; see info.

z If info = 0, contains the n orthonormal eigenvectors, stored by
columns. (The ith column corresponds to the ith eigenvalue.)

info INTEGER.
If info = 0, the execution is successful.
If info = i, the algorithm failed to find all the eigenvalues after 30n
iterations: i off-diagonal elements have not converged to zero. On exit,
d and e contain, respectively, the diagonal and off-diagonal elements of
a tridiagonal matrix orthogonally similar to T.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine steqr interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n-1).

z Holds the matrix Z of size (n,n).

compz If omitted, this argument is restored based on the presence of argument z as follows:
compz = 'I', if z is present,
compz = 'N', if z is omitted.
If present, compz must be equal to 'I' or 'V' and the argument z must also be
present.
Note that there will be an error condition if compz is present and z omitted.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-167

Note that two variants of Fortran 95 interface for steqr routine are needed because of an
ambiguous choice between real and complex cases appear when z is omitted. Thus, the name
rsteqr is used in real cases (single or double precision), and the name steqr is used in complex
cases (single or double precision).

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 = O(ε)
||T||2, where ε is the machine precision.

If λi is an exact eigenvalue, and µi is the corresponding computed value, then

 |µi - λi| ≤ c(n)ε ||T||2

where c(n) is a modestly increasing function of n.

If zi is the corresponding exact eigenvector, and wi is the corresponding computed vector, then the
angle θ(zi, wi) between them is bounded as follows:
 θ(zi, wi) ≤ c(n)ε ||T||2 / mini≠j|λi - λj|.

The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about
 24n2 if compz = 'N';
 7n3 (for complex flavors, 14n3) if compz ='V' or 'I'.

4-168

4 Intel® Math Kernel Library Reference Manual

?stedc
Computes all eigenvalues and eigenvectors of a
symmetric tridiagonal matrix using the divide and
conquer method.

Syntax

Fortran 77:

call sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

call dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

call cstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork, info)

call zstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork, info)

Fortran 95:

call rstedc(d, e [,z] [,compz] [,info])

call stedc(d, e [,z] [,compz] [,info])

Description

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a symmetric
tridiagonal matrix using the divide and conquer method.
The eigenvectors of a full or band real symmetric or complex Hermitian matrix can also be found
if ?sytrd/?hetrd or ?sptrd/?hptrd or ?sbtrd/?hbtrd has been used to reduce this matrix
to tridiagonal form.

See Also

?laed0, ?laed1, ?laed2, ?laed3, ?laed4, ?laed5, ?laed6, ?laed7, ?laed8, ?laed9,
?laeda .

Input Parameters

compz CHARACTER*1. Must be 'N' or 'I' or 'V'.

If compz ='N', the routine computes eigenvalues only.
If compz ='I', the routine computes the eigenvalues and eigenvectors
of the tridiagonal matrix.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-169

If compz ='V', the routine computes the eigenvalues and eigenvectors
of original symmetric/Hermitian matrix. On entry, the array z must
contain the orthogonal/unitary matrix used to reduce the original matrix
to tridiagonal form.

n INTEGER. The order of the symmetric tridiagonal matrix (n ≥ 0).

d, e, rwork REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of the tridiagonal matrix. The
dimension of d must be at least max(1, n).

e(*) contains the subdiagonal elements of the tridiagonal matrix. The
dimension of e must be at least max(1, n-1).

rwork(lrwork) is a workspace array used in complex flavors only.

z, work REAL for sstedc
DOUBLE PRECISION for dstedc
COMPLEX for cstedc
DOUBLE COMPLEX for zstedc.
Arrays: z(ldz, *), work(*).
If compz ='V', then, on entry, z must contain the orthogonal/unitary
matrix used to reduce the original matrix to tridiagonal form.
The second dimension of z must be at least max(1, n).

work (lwork) is a workspace array.

ldz INTEGER. The first dimension of z. Constraints:
ldz ≥ 1 if compz = 'N';
ldz ≥ max(1, n) if compz ='V' or 'I'.

lwork INTEGER. The dimension of the array work.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.
See Application Notes for the required value of lwork.

lrwork INTEGER. The dimension of the array rwork (used for complex flavors
only).
If lrwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the rwork array, returns this value as the

4-170

4 Intel® Math Kernel Library Reference Manual

first entry of the rwork array, and no error message related to lrwork is
issued by xerbla.
See Application Notes for the required value of lrwork.

iwork INTEGER. Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork.
If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.
See Application Notes for the required value of liwork.

Output Parameters

d The n eigenvalues in ascending order, unless info ≠ 0.
See also info.

e On exit, the array is overwritten; see info.

z If info = 0, then if compz ='V', z contains the orthonormal
eigenvectors of the original symmetric/Hermitian matrix, and if compz
='I', z contains the orthonormal eigenvectors of the symmetric
tridiagonal matrix. If compz ='N', z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the optimal lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the optimal lrwork (for
complex flavors only).

iwork(1) On exit, if info = 0, then iwork(1) returns the optimal liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.If info = i, the
algorithm failed to compute an eigenvalue while working on the
submatrix lying in rows and columns i/(n+1) through mod(i, n+1).

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine stedc interface are the following:

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-171

d Holds the vector of length (n).

e Holds the vector of length (n-1).

z Holds the matrix Z of size (n,n).

compz If omitted, this argument is restored based on the presence of argument z as follows:
compz = 'I', if z is present,
compz = 'N', if z is omitted.
If present, compz must be equal to 'I' or 'V' and the argument z must also be
present.
Note that there will be an error condition if compz is present and z omitted.

Note that two variants of Fortran 95 interface for stedc routine are needed because of an
ambiguous choice between real and complex cases appear when z and work are omitted. Thus, the
name rstedc is used in real cases (single or double precision), and the name stedc is used in
complex cases (single or double precision).

Application Notes

The required size of workspace arrays must be as follows.

For sstedc/dstedc:

If compz ='N' or n ≤ 1 then lwork must be at least 1.
If compz ='V' and n > 1 then lwork must be at least
 (1 + 3n + 2n⋅lgn + 3n2), where lg(n) = smallest integer k such that 2k≥ n.

If compz ='I' and n > 1 then lwork must be at least (1 + 4n + n2).

If compz ='N' or n ≤ 1 then liwork must be at least 1.
If compz ='V' and n > 1 then liwork must be at least (6 + 6n + 5n⋅lgn).
If compz ='I' and n > 1 then liwork must be at least (3 + 5n).

For cstedc/zstedc:

If compz ='N' or'I', or n ≤ 1, lwork must be at least 1.
If compz ='V' and n > 1, lwork must be at least n2.

If compz ='N' or n ≤ 1, lrwork must be at least 1.
If compz ='V' and n > 1, lrwork must be at least
 (1 + 3n + 2n⋅lgn + 3n2), where lg(n) = smallest integer k such that 2k≥ n.

If compz ='I' and n > 1, lrwork must be at least(1 + 4n + 2n2).

The required value of liwork for complex flavors is the same as for real flavors.

4-172

4 Intel® Math Kernel Library Reference Manual

?stegr
Computes selected eigenvalues and eigenvectors of a
real symmetric tridiagonal matrix.

Syntax

Fortran 77:

call sstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
 ldz, isuppz, work, lwork, iwork, liwork, info)

call dstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
 ldz, isuppz, work, lwork, iwork, liwork, info)

call cstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
 ldz, isuppz, work, lwork, iwork, liwork, info)

call zstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
 ldz, isuppz, work, lwork, iwork, liwork, info)

Fortran 95:

call rstegr(d, e, w [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol]
[,info])

call stegr(d, e, w [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues. The eigenvalues are computed by the dqds
algorithm, while orthogonal eigenvectors are computed from various “good'' LDLT representations
(also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as
far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th
unreduced block of T:

a. Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively robust representation.

b. Compute the eigenvalues, λj, of Li Di Li
T to high relative accuracy by the dqds algorithm.

c. If there is a cluster of close eigenvalues, "choose" σi close to the cluster, and go to step a.

d. Given the approximate eigenvalue λj of Li Di Li
T, compute the corresponding

eigenvector by forming a rank-revealing twisted factorization.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-173

The desired accuracy of the output can be specified by the input parameter abstol.

See Also

?lasq2, ?lasq5, ?lasq6 .

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

n INTEGER. The order of the matrix T (n ≥ 0).

d, e, work REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e(*) contains the subdiagonal elements of T in elements 1 to n-1; e(n)
need not be set.
The dimension of e must be at least max(1, n).

work(lwork) is a workspace array.

vl, vu REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

4-174

4 Intel® Math Kernel Library Reference Manual

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
The absolute tolerance to which each eigenvalue/eigenvector is required.
If jobz = 'V', the eigenvalues and eigenvectors output have residual
norms bounded by abstol, and the dot products between different
eigenvectors are bounded by abstol. If abstol < nε||T||1, then nε||T||1
will be used in its place, where ε is the machine precision. The
eigenvalues are computed to an accuracy of ε||T||1 irrespective of
abstol. If high relative accuracy is important, set abstol to ?lamch
('Safe minimum').

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1 if jobz ='N';
ldz ≥ max(1, n) if jobz ='V'.

lwork INTEGER. The dimension of the array work,
lwork ≥ max(1, 18n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork,
lwork ≥ max(1, 10n).
If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

d, e On exit, d and e are overwritten.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-175

w REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, n).
The selected eigenvalues in ascending order, stored in w(1) to w(m).

z REAL for sstegr
DOUBLE PRECISION for dstegr
COMPLEX for cstegr
DOUBLE COMPLEX for zstegr.
Array z(ldz, *), the second dimension of z must be at least max(1, m).

 If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix T corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i). If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are supplied in the
array z ; if range ='V', the exact value of m is not known in advance
and an upper bound must be used.

isuppz INTEGER.
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices indicating the
nonzero elements in z. The i-th eigenvector is nonzero only in elements
isuppz(2i-1) through isuppz(2i).

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size
of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

If info = 1, internal error in slarre occurred,
If info = 2, internal error in ?larrv occurred.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

4-176

4 Intel® Math Kernel Library Reference Manual

Specific details for the routine stegr interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,m).

isuppz Holds the vector of length (2*m).

vl Default value for this argument is vl = - HUGE (vl) where HUGE(a) means the largest
machine number of the same precision as argument a.

vu Default value for this argument is vu = HUGE (vl) .

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this argument is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Note that two variants of Fortran 95 interface for stegr routine are needed because of an
ambiguous choice between real and complex cases appear when z is omitted. Thus, the name
rstegr is used in real cases (single or double precision), and the name stegr is used in complex
cases (single or double precision).

Application Notes

Currently ?stegr is only set up to find all the n eigenvalues and eigenvectors of T in O(n2) time,
that is, only range ='A' is supported.

Currently the routine ?stein is called when an appropriate σi cannot be chosen in step (c) above.
?stein invokes modified Gram-Schmidt when eigenvalues are close.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-177

?stegr works only on machines which follow IEEE-754 floating-point standard in their handling
of infinities and NaNs. Normal execution of ?stegr may create NaNs and infinities and hence
may abort due to a floating point exception in environments which do not conform to the
IEEE-754 standard.

4-178

4 Intel® Math Kernel Library Reference Manual

?pteqr
Computes all eigenvalues and (optionally) all eigenvectors
of a real symmetric positive-definite tridiagonal matrix.

Syntax

Fortran 77:

call spteqr(compz, n, d, e, z, ldz, work, info)

call dpteqr(compz, n, d, e, z, ldz, work, info)

call cpteqr(compz, n, d, e, z, ldz, work, info)

call zpteqr(compz, n, d, e, z, ldz, work, info)

Fortran 95:

call rpteqr(d, e [,z] [,compz] [,info])

call pteqr(d, e [,z] [,compz] [,info])

Description

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric
positive-definite tridiagonal matrix T. In other words, the routine can compute the spectral
factorization: T = ZΛZT.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi; Z is an orthogonal
matrix whose columns are eigenvectors. Thus,

 Tzi = λizi for i = 1, 2, ..., n.

(The routine normalizes the eigenvectors so that ||zi||2 = 1.)

You can also use the routine for computing the eigenvalues and eigenvectors of real symmetric (or
complex Hermitian) positive-definite matrices A reduced to tridiagonal form T: A = QTQH. In this
case, the spectral factorization is as follows: A = QTQH = (QZ)Λ(QZ)H. Before calling ?pteqr,
you must reduce A to tridiagonal form and generate the explicit matrix Q by calling the following
routines:

for real matrices for complex matrices

full storage ?sytrd,?orgtr ?hetrd,?ungtr

packed storage ?sptrd,?opgtr ?hptrd,?upgtr

band storage ?sbtrd (vect='V') ?hbtrd (vect='V')

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-179

The routine first factorizes T as LDLH where L is a unit lower bidiagonal matrix, and D is a
diagonal matrix. Then it forms the bidiagonal matrix
B = LD1/2 and calls ?bdsqr to compute the singular values of B, which are the same as the
eigenvalues of T.

Input Parameters

compz CHARACTER*1. Must be 'N' or 'I' or 'V'.

If compz ='N', the routine computes eigenvalues only.
If compz ='I', the routine computes the eigenvalues and eigenvectors
of the tridiagonal matrix T.
If compz ='V', the routine computes the eigenvalues and eigenvectors
of A (and the array z must contain the matrix Q on entry).

n INTEGER. The order of the matrix T (n ≥ 0).

d,e,work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz = 'N';
at least max(1, 4*n-4) if compz ='V' or 'I'.

z REAL for spteqr
DOUBLE PRECISION for dpteqr
COMPLEX for cpteqr
DOUBLE COMPLEX for zpteqr.
Array, DIMENSION (ldz,*)
If compz ='N' or 'I', z need not be set.
If vect ='V', z must contains the n-by-n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N';
at least max(1, n) if compz ='V' or 'I'.

ldz INTEGER. The first dimension of z. Constraints:
ldz ≥ 1 if compz = 'N';
ldz ≥ max(1, n) if compz ='V' or 'I'.

4-180

4 Intel® Math Kernel Library Reference Manual

Output Parameters

d The n eigenvalues in descending order, unless info > 0.
See also info.

e On exit, the array is overwritten.

z If info = 0, contains the n orthonormal eigenvectors, stored by
columns. (The ith column corresponds to the ith eigenvalue.)

info INTEGER.
If info = 0, the execution is successful.
If info = i, the leading minor of order i (and hence T itself) is not
positive-definite.
If info = n + i, the algorithm for computing singular values failed to
converge; i off-diagonal elements have not converged to zero.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pteqr interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n-1).

z Holds the matrix Z of size (n,n).

compz If omitted, this argument is restored based on the presence of argument z as follows:
compz = 'I', if z is present,
compz = 'N', if z is omitted.
If present, compz must be equal to 'I' or 'V' and the argument z must also be
present.
Note that there will be an error condition if compz is present and z omitted.

Note that two variants of Fortran 95 interface for pteqr routine are needed because of an
ambiguous choice between real and complex cases appear when z is omitted. Thus, the name
rpteqr is used in real cases (single or double precision), and the name pteqr is used in complex
cases (single or double precision).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-181

Application Notes

If λi is an exact eigenvalue, and µi is the corresponding computed value, then

 |µi - λi| ≤ c(n)εKλi

where c(n) is a modestly increasing function of n, ε is the machine precision, and K = ||DTD||2
||(DTD)−1||2, D is diagonal with dii = tii

-1/2.

If zi is the corresponding exact eigenvector, and wi is the corresponding computed vector, then the
angle θ(zi, wi) between them is bounded as follows:
 θ(ui, wi) ≤ c(n)εK / mini≠j(|λi - λj|/|λi + λj|).

Here mini≠j(|λi - λj|/|λi + λj|) is the relative gap between λi and the other eigenvalues.

The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about
 30n2 if compz = 'N';
 6n3 (for complex flavors, 12n3) if compz ='V' or 'I'.

4-182

4 Intel® Math Kernel Library Reference Manual

?stebz
Computes selected eigenvalues of a real symmetric
tridiagonal matrix by bisection.

Syntax

Fortran 77:

call sstebz (range, order, n, vl, vu, il, iu, abstol,
 d, e, m, nsplit, w, iblock, isplit, work, iwork, info)

call dstebz (range, order, n, vl, vu, il, iu, abstol,
 d, e, m, nsplit, w, iblock, isplit, work, iwork, info)

Fortran 95:

call stebz(d, e, m, nsplit, w, iblock, isplit [,order] [,vl] [,vu] [,il] [,iu]
[,abstol] [,info])

Description

This routine computes some (or all) of the eigenvalues of a real symmetric tridiagonal matrix T by
bisection. The routine searches for zero or negligible off-diagonal elements to see if T splits into
block-diagonal form
T = diag(T1, T2, ...). Then it performs bisection on each of the blocks Ti and returns the block index
of each computed eigenvalue, so that a subsequent call to ?stein can also take advantage of the
block structure.

See Also

?laebz.

Input Parameters

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

order CHARACTER*1. Must be 'B' or 'E'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-183

If order ='B', the eigenvalues are to be ordered from smallest to
largest within each split-off block.
If order ='E', the eigenvalues for the entire matrix are to be ordered
from smallest to largest.

n INTEGER. The order of the matrix T (n ≥ 0).

vl, vu REAL for sstebz
DOUBLE PRECISION for dstebz.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER. Constraint: 1 ≤ il ≤ iu ≤ n.
If range ='I', the routine computes eigenvalues λi such that il≤ i ≤ iu
(assuming that the eigenvalues λi are in ascending order).

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for sstebz
DOUBLE PRECISION for dstebz.
The absolute tolerance to which each eigenvalue is required. An
eigenvalue (or cluster) is considered to have converged if it lies in an
interval of width abstol. If abstol ≤ 0.0, then the tolerance is taken
as ε||T||1, where ε is the machine precision.

d, e, work REAL for sstebz
DOUBLE PRECISION for dstebz.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

work(*) is a workspace array.
The dimension of work must be at least max(1, 4n).

iwork INTEGER. Workspace.
Array, DIMENSION at least max(1, 3n).

Output Parameters

m INTEGER. The actual number of eigenvalues found.

nsplit INTEGER. The number of diagonal blocks detected in T.

4-184

4 Intel® Math Kernel Library Reference Manual

w REAL for sstebz
DOUBLE PRECISION for dstebz.
Array, DIMENSION at least max(1, n).
The computed eigenvalues, stored in w(1) to w(m).

iblock,isplit INTEGER.
Arrays, DIMENSION at least max(1, n).
A positive value iblock(i) is the block number of the eigenvalue
stored in w(i) (see also info).
The leading nsplit elements of isplit contain points at which T
splits into blocks Ti as follows:
the block T1 contains rows/columns 1 to isplit(1);
the block T2 contains rows/columns isplit(1)+1 to isplit(2), and
so on.

info INTEGER.
If info = 0, the execution is successful.
If info = 1, for range ='A' or 'V', the algorithm failed to compute
some of the required eigenvalues to the desired accuracy; iblock(i)<
0 indicates that the eigenvalue stored in w(i) failed to converge.
If info = 2, for range ='I', the algorithm failed to compute some of
the required eigenvalues. Try calling the routine again with
range ='A'.
If info = 3:
 for range ='A' or 'V', same as info = 1;
 for range ='I', same as info = 2.
If info = 4, no eigenvalues have been computed. The floating-point
arithmetic on the computer is not behaving as expected.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine stebz interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n-1).

w Holds the vector of length (n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-185

iblock Holds the vector of length (n).

isplit Holds the vector of length (n).

order Must be 'B' or 'E'. The default value is 'B'.

vl Default value for this argument is vl = - HUGE (vl) where HUGE(a) means the largest
machine number of the same precision as argument a.

vu Default value for this argument is vu = HUGE (vl) .

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this argument is abstol = 0.0_WP.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

The eigenvalues of T are computed to high relative accuracy which means that if they vary widely
in magnitude, then any small eigenvalues will be computed more accurately than, for example,
with the standard QR method. However, the reduction to tridiagonal form (prior to calling the
routine) may exclude the possibility of obtaining high relative accuracy in the small eigenvalues of
the original matrix if its eigenvalues vary widely in magnitude.

4-186

4 Intel® Math Kernel Library Reference Manual

?stein
Computes the eigenvectors corresponding to specified
eigenvalues of a real symmetric tridiagonal matrix.

Syntax

Fortran 77:

call sstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)

call dstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)

call cstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)

call zstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)

Fortran 95:

call stein(d, e, w, iblock, isplit, z [,ifailv] [,info])

Description

This routine computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding to
specified eigenvalues, by inverse iteration. It is designed to be used in particular after the specified
eigenvalues have been computed by ?stebz with order ='B', but may also be used when the
eigenvalues have been computed by other routines. If you use this routine after ?stebz, it can take
advantage of the block structure by performing inverse iteration on each block Ti separately, which
is more efficient than using the whole matrix T.

If T has been formed by reduction of a full symmetric or Hermitian matrix A to tridiagonal form,
you can transform eigenvectors of T to eigenvectors of A by calling ?ormtr or ?opmtr (for real
flavors) or by calling ?unmtr or ?upmtr (for complex flavors).

Input Parameters

n INTEGER. The order of the matrix T (n ≥ 0).

m INTEGER. The number of eigenvectors to be returned.

d, e, w REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-187

e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1, n-1).

w(*) contains the eigenvalues of T, stored in w(1)
to w(m) (as returned by ?stebz). Eigenvalues of T1 must be supplied
first, in non-decreasing order; then those of T2, again in non-decreasing
order, and so on. Constraint:
if iblock(i) = iblock(i+1), w(i) ≤ w(i+1).

The dimension of w must be at least max(1, n).

iblock,isplit INTEGER.
Arrays, DIMENSION at least max(1, n).
The arrays iblock and isplit, as returned by ?stebz with order
='B'.

If you did not call ?stebz with order ='B', set all elements of
iblock to 1, and isplit(1) to n.)

ldz INTEGER. The first dimension of the output array z; ldz ≥ max(1, n).

work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Workspace array,
DIMENSION at least max(1, 5n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

Output Parameters

z REAL for sstein
DOUBLE PRECISION for dstein
COMPLEX for cstein
DOUBLE COMPLEX for zstein.
Array, DIMENSION (ldz, *).
If info = 0, z contains the m orthonormal eigenvectors, stored by
columns. (The ith column corresponds to the ith specified eigenvalue.)

ifailv INTEGER. Array, DIMENSION at least max(1, m).
If info = i > 0, the first i elements of ifailv contain the indices of
any eigenvectors that failed to converge.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then i eigenvectors (as indicated by the parameter ifailv)

4-188

4 Intel® Math Kernel Library Reference Manual

each failed to converge in 5 iterations. The current iterates are stored in
the corresponding columns of the array z.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine stein interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n).

w Holds the vector of length (n).

iblock Holds the vector of length (n).

isplit Holds the vector of length (n).

z Holds the matrix Z of size (n,m).

ifailv Holds the vector of length (m).

Application Notes

Each computed eigenvector zi is an exact eigenvector of a matrix T + Ei, where ||Ei||2 = O(ε) ||T||2.
However, a set of eigenvectors computed by this routine may not be orthogonal to so high a degree
of accuracy as those computed by ?steqr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-189

?disna
Computes the reciprocal condition numbers for the
eigenvectors of a symmetric/ Hermitian matrix or for the left or
right singular vectors of a general matrix.

Syntax

Fortran 77:

call sdisna(job, m, n, d, sep, info)

call ddisna(job, m, n, d, sep, info)

Fortran 95:

call disna(d, sep [,job] [,minmn] [,info])

Description

This routine computes the reciprocal condition numbers for the eigenvectors of a real symmetric
or complex Hermitian matrix or for the left or right singular vectors of a general m-by-n matrix.

The reciprocal condition number is the 'gap' between the corresponding eigenvalue or singular
value and the nearest other one.

The bound on the error, measured by angle in radians, in the i-th computed vector is given by

 slamch('E') * (anorm / sep(i))

where anorm = ||A||2 = max(|d(j)|). sep(i) is not allowed to be smaller than
slamch('E')*anorm in order to limit the size of the error bound.

?disna may also be used to compute error bounds for eigenvectors of the generalized symmetric
definite eigenproblem.

Input Parameters

job CHARACTER*1. Must be 'E','L' , or 'R'.
Specifies for which problem the reciprocal condition numbers should be
computed:
job ='E': for the eigenvectors of a symmetric/Hermitian matrix;
job ='L': for the left singular vectors of a general matrix;
job ='R': for the right singular vectors of a general matrix.

4-190

4 Intel® Math Kernel Library Reference Manual

m INTEGER. The number of rows of the matrix (m ≥ 0).

n INTEGER. If job ='L', or 'R', the number of columns of the matrix (n
≥ 0). Ignored if job ='E'.

d REAL for sdisna
DOUBLE PRECISION for ddisna.
Array, dimension at least max(1,m) if job ='E', and at least max(1,
min(m,n)) if job ='L'or 'R'.
This array must contain the eigenvalues (if job ='E') or singular values
(if job ='L' or 'R') of the matrix, in either increasing or decreasing
order. If singular values, they must be non-negative.

Output Parameters

sep REAL for sdisna
DOUBLE PRECISION for ddisna.
Array, dimension at least max(1,m) if job ='E', and at least
max(1, min(m,n)) if job ='L'or 'R'.
The reciprocal condition numbers of the vectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine disna interface are the following:

d Holds the vector of length min(m,n).

sep Holds the vector of length min(m,n).

job Must be 'E', 'L', or 'R'. The default value is 'E'.

minmn Indicates which of the values m or n is smaller. Must be either 'M' or 'N', the default
is 'M'.
If job = 'E', this argument is superfluous,
If job = 'L' or 'R' , this argument is used by the routine.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-191

Generalized Symmetric-Definite Eigenvalue Problems
Generalized symmetric-definite eigenvalue problems are as follows: find the eigenvalues λ and the
corresponding eigenvectors z that satisfy one of these equations:

 Az = λBz, ABz = λz, or BAz = λz

where A is an n-by-n symmetric or Hermitian matrix, and B is an n-by-n symmetric
positive-definite or Hermitian positive-definite matrix.

In these problems, there exist n real eigenvectors corresponding to real eigenvalues (even for
complex Hermitian matrices A and B).

Routines described in this section allow you to reduce the above generalized problems to standard
symmetric eigenvalue problem Cy = λy , which you can solve by calling LAPACK routines
described earlier in this chapter (see Symmetric Eigenvalue Problems).

Different routines allow the matrices to be stored either conventionally or in packed storage. Prior
to reduction, the positive-definite matrix B must first be factorized using either ?potrf or
?pptrf.

The reduction routine for the banded matrices A and B uses a split Cholesky factorization for
which a specific routine ?pbstf is provided. This refinement halves the amount of work required
to form matrix C.

Table 4-4 lists LAPACK routines (Fortran-77 interface) that can be used to solve generalized
symmetric-definite eigenvalue problems. Respective routine names in Fortran-95 interface are
without the first symbol (see Routine Naming Conventions).

Table 4-4 Computational Routines for Reducing Generalized Eigenproblems to Standard
Problems

Matrix
type

Reduce to standard
problems
(full storage)

Reduce to standard
problems
(packed storage)

Reduce to standard
problems
(band matrices)

Factorize
band
matrix

real
symmetric
matrices

?sygst ?spgst ?sbgst ?pbstf

complex
Hermitian
matrices

?hegst / ?hpgst ?hbgst ?pbstf

4-192

4 Intel® Math Kernel Library Reference Manual

?sygst
Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form.

Syntax

Fortran 77:

call ssygst(itype, uplo, n, a, lda, b, ldb, info)

call dsygst(itype, uplo, n, a, lda, b, ldb, info)

Fortran 95:

call sygst(a, b [,itype] [,uplo] [,info])

Description

This routine reduces real symmetric-definite generalized eigenproblems

 Az = λBz, ABz = λz, or BAz = λz

to the standard form Cy = λy. Here A is a real symmetric matrix, and B is a real symmetric
positive-definite matrix. Before calling this routine, call ?potrf to compute the Cholesky
factorization: B = UTU or B = LLT.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is Az = λBz;
 for uplo = 'U': C = U-TAU-1, z = U-1y;
 for uplo = 'L': C = L-1AL-T, z = L-Ty.
If itype = 2, the generalized eigenproblem is ABz = λz;
 for uplo = 'U': C = UAUT, z = U-1y;
 for uplo = 'L': C = LTAL, z = L-Ty.
If itype = 3, the generalized eigenproblem is BAz = λz;
 for uplo = 'U': C = UAUT, z = UTy;
 for uplo = 'L': C = LTAL, z = Ly.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-193

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the array a stores the upper triangle of A; you must
supply B in the factored form B = UTU.
If uplo = 'L', the array a stores the lower triangle of A; you must
supply B in the factored form B = LLT.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b REAL for ssygst
DOUBLE PRECISION for dsygst.
Arrays:
a(lda,*) contains the upper or lower triangle of A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the Cholesky-factored matrix B:
B = UTU or B = LLT (as returned by ?potrf).
The second dimension of b must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

Output Parameters

a The upper or lower triangle of A is overwritten by the upper or lower
triangle of C, as specified by the arguments itype and uplo.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sygst interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be ‘U’ or ‘L’. The default value is ‘U’.

4-194

4 Intel® Math Kernel Library Reference Manual

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication
by B-1 (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-195

?hegst
Reduces a complex Hermitian-definite generalized
eigenvalue problem to the standard form.

Syntax

Fortran 77:

call chegst(itype, uplo, n, a, lda, b, ldb, info)

call zhegst(itype, uplo, n, a, lda, b, ldb, info)

Fortran 95:

call hegst(a, b [,itype] [,uplo] [,info])

Description

This routine reduces complex Hermitian-definite generalized eigenvalue problems

 Az = λBz, ABz = λz, or BAz = λz

to the standard form Cy = λy. Here the matrix A is complex Hermitian, and B is complex Hermitian
positive-definite. Before calling this routine, you must call ?potrf to compute the Cholesky
factorization: B = UHU or B = LLH.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is Az = λBz;
 for uplo = 'U': C = U-HAU-1, z = U-1y;
 for uplo = 'L': C = L-1AL-H, z = L-Hy.
If itype = 2, the generalized eigenproblem is ABz = λz;
 for uplo = 'U': C = UAUH, z = U-1y;
 for uplo = 'L': C = LHAL, z = L-Hy.
If itype = 3, the generalized eigenproblem is BAz = λz;
 for uplo = 'U': C = UAUH, z = UHy;
 for uplo = 'L': C = LHAL, z = Ly.

4-196

4 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the array a stores the upper triangle of A; you must
supply B in the factored form B = UHU.
If uplo = 'L', the array a stores the lower triangle of A; you must
supply B in the factored form B = LLH.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b COMPLEX for chegst
DOUBLE COMPLEX for zhegst.
Arrays:
a(lda,*) contains the upper or lower triangle of A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the Cholesky-factored matrix B:
B = UHU or B = LLH (as returned by ?potrf).
The second dimension of b must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

Output Parameters

a The upper or lower triangle of A is overwritten by the upper or lower
triangle of C, as specified by the arguments itype and uplo.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hegst interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be 'U' or 'L'. The default value is 'U'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-197

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication
by B-1 (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

4-198

4 Intel® Math Kernel Library Reference Manual

?spgst
Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form using packed
storage.

Syntax

Fortran 77:

call sspgst(itype, uplo, n, ap, bp, info)

call dspgst(itype, uplo, n, ap, bp, info)

Fortran 95:

call spgst(a, b [,itype] [,uplo] [,info])

Description

This routine reduces real symmetric-definite generalized eigenproblems

 Az = λBz, ABz = λz, or BAz = λz

to the standard form Cy = λy, using packed matrix storage. Here A is a real symmetric matrix, and
B is a real symmetric positive-definite matrix. Before calling this routine, call ?pptrf to compute
the Cholesky factorization: B = UTU or B = LLT.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is Az = λBz;
 for uplo = 'U': C = U-TAU-1, z = U-1y;
 for uplo = 'L': C = L-1AL-T, z = L-Ty.
If itype = 2, the generalized eigenproblem is ABz = λz;
 for uplo = 'U': C = UAUT, z = U-1y;
 for uplo = 'L': C = LTAL, z = L-Ty.
If itype = 3, the generalized eigenproblem is BAz = λz;
 for uplo = 'U': C = UAUT, z = UTy;
 for uplo = 'L': C = LTAL, z = Ly.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-199

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangle of A;
you must supply B in the factored form B = UTU.
If uplo = 'L', ap stores the packed lower triangle of A;
you must supply B in the factored form B = LLT.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ap, bp REAL for sspgst
DOUBLE PRECISION for dspgst.
Arrays:
ap(*) contains the packed upper or lower triangle of A.
The dimension of ap must be at least max(1, n*(n+1)/2).

bp(*) contains the packed Cholesky factor of B
(as returned by ?pptrf with the same uplo value).
The dimension of bp must be at least max(1, n*(n+1)/2).

Output Parameters

ap The upper or lower triangle of A is overwritten by the upper or lower
triangle of C, as specified by the arguments itype and uplo.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spgst interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Stands for argument bp in Fortran 77 interface. Holds the array B of size
(n*(n+1)/2).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be 'U' or 'L'. The default value is 'U'.

4-200

4 Intel® Math Kernel Library Reference Manual

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication
by B-1 (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-201

?hpgst
Reduces a complex Hermitian-definite generalized
eigenvalue problem to the standard form using packed
storage.

Syntax

Fortran 77:

call chpgst(itype, uplo, n, ap, bp, info)

call zhpgst(itype, uplo, n, ap, bp, info)

Fortran 95:

call hpgst(a, b [,itype] [,uplo] [,info])

Description

This routine reduces real symmetric-definite generalized eigenproblems

 Az = λBz, ABz = λz, or BAz = λz

to the standard form Cy = λy, using packed matrix storage. Here A is a real symmetric matrix, and
B is a real symmetric positive-definite matrix. Before calling this routine, you must call ?pptrf to
compute the Cholesky factorization: B = UHU or B = LLH.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is Az = λBz;
 for uplo = 'U': C = U-HAU-1, z = U-1y;
 for uplo = 'L': C = L-1AL-H, z = L-Hy.
If itype = 2, the generalized eigenproblem is ABz = λz;
 for uplo = 'U': C = UAUH, z = U-1y;
 for uplo = 'L': C = LHAL, z = L-Hy.
If itype = 3, the generalized eigenproblem is BAz = λz;
 for uplo = 'U': C = UAUH, z = UHy;
 for uplo = 'L': C = LHAL, z = Ly.

4-202

4 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangle of A; you must
supply B in the factored form B = UHU.
If uplo = 'L', ap stores the packed lower triangle of A; you must
supply B in the factored form B = LLH.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ap, bp COMPLEX for chpgst
DOUBLE COMPLEX for zhpgst.
Arrays:
ap(*) contains the packed upper or lower triangle of A.
The dimension of a must be at least max(1, n*(n+1)/2).

bp(*) contains the packed Cholesky factor of B
(as returned by ?pptrf with the same uplo value).
The dimension of b must be at least max(1, n*(n+1)/2).

Output Parameters

ap The upper or lower triangle of A is overwritten by the upper or lower
triangle of C, as specified by the arguments itype and uplo.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpgst interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Stands for argument bp in Fortran 77 interface. Holds the array B of size
(n*(n+1)/2).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be 'U' or 'L'. The default value is 'U'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-203

Application Notes

Forming the reduced matrix C is a stable procedure. However, it involves implicit multiplication
by B-1 (if itype = 1) or B (if itype = 2 or 3). When the routine is used as a step in the
computation of eigenvalues and eigenvectors of the original problem, there may be a significant
loss of accuracy if B is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is n3.

4-204

4 Intel® Math Kernel Library Reference Manual

?sbgst
Reduces a real symmetric-definite generalized
eigenproblem for banded matrices to the standard form
using the factorization performed by ?pbstf.

Syntax

Fortran 77:

call ssbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)

call dsbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)

Fortran 95:

call sbgst(a, b [,x] [,uplo] [,info])

Description

To reduce the real symmetric-definite generalized eigenproblem Az = λBz to the standard form
Cy = λy , where A, B and C are banded, this routine must be preceded by a call to
spbstf/dpbstf, which computes the split Cholesky factorization of the positive-definite matrix
B: B = STS. The split Cholesky factorization, compared with the ordinary Cholesky factorization,
allows the work to be approximately halved.

This routine overwrites A with C = XTAX, where X = S-1Q and Q is an orthogonal matrix chosen
(implicitly) to preserve the bandwidth of A.
The routine also has an option to allow the accumulation of X, and then, if z is an eigenvector of C,
Xz is an eigenvector of the original system.

Input Parameters

vect CHARACTER*1. Must be 'N' or 'V'.

If vect = 'N', then matrix X is not returned;
If vect = 'V', then matrix X is returned.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrices A and B (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-205

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(ka ≥ kb ≥ 0).

ab,bb,work REAL for ssbgst
DOUBLE PRECISION for dsbgst
ab (ldab,*) is an array containing either upper or lower triangular part
of the symmetric matrix A (as specified by uplo) in band storage
format. The second dimension of the array ab must be at least max(1, n).
bb (ldbb,*) is an array containing the banded split Cholesky factor of
B as specified by uplo, n and kb and returned by spbstf/dpbstf.
The second dimension of the array bb must be at least max(1, n).
work(*) is a workspace array, DIMENSION at least max(1, 2*n)

ldab INTEGER. The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be at least kb+1.

ldx The first dimension of the output array x. Constraints:
 if vect ='N' , then ldx ≥ 1;
 if vect ='V' , then ldx ≥ max(1, n).

Output Parameters

ab On exit, this array is overwritten by the upper or lower triangle of C as
specified by uplo.

x REAL for ssbgst
DOUBLE PRECISION for dsbgst
Array.
If vect ='V', then x (ldx,*) contains the n-by-n matrix X = S-1Q.
If vect ='N', then x is not referenced.
The second dimension of x must be:
at least max(1, n), if vect ='V';
at least 1, if vect ='N'.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

4-206

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sbgst interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (ka+1,n).

b Stands for argument bb in Fortran 77 interface. Holds the array B of size (kb+1,n).

x Holds the matrix X of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

vect Restored based on the presence of the argument x as follows:
vect = 'V', if x is present,
vect = 'N', if x is omitted.

Application Notes

Forming the reduced matrix C involves implicit multiplication by B-1. When the routine is used as
a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a
significant loss of accuracy if B is ill-conditioned with respect to inversion.
The total number of floating-point operations is approximately 6n2*kb, when vect ='N'.
Additional (3/2)n3*(kb/ka) operations are required when vect ='V'. All these estimates
assume that both ka and kb are much less than n.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-207

?hbgst
Reduces a complex Hermitian-definite generalized
eigenproblem for banded matrices to the standard form
using the factorization performed by ?pbstf.

Syntax

Fortran 77:

call chbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork,
info)

call zhbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork,
info)

Fortran 95:

call hbgst(a, b [,x] [,uplo] [,info])

Description

To reduce the complex Hermitian-definite generalized eigenproblem Az = λBz to the standard
form Cy = λy , where A, B and C are banded, this routine must be preceded by a call to
cpbstf/zpbstf, which computes the split Cholesky factorization of the positive-definite matrix
B: B = SHS. The split Cholesky factorization, compared with the ordinary Cholesky factorization,
allows the work to be approximately halved.

This routine overwrites A with C = XHAX, where X = S-1Q and Q is a unitary matrix chosen
(implicitly) to preserve the bandwidth of A.
The routine also has an option to allow the accumulation of X, and then, if z is an eigenvector of C,
Xz is an eigenvector of the original system.

Input Parameters

vect CHARACTER*1. Must be 'N' or 'V'.

If vect = 'N', then matrix X is not returned;
If vect = 'V', then matrix X is returned.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

4-208

4 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(ka ≥ kb ≥ 0).

ab,bb,work COMPLEX for chbgst
DOUBLE COMPLEX for zhbgst
ab (ldab,*) is an array containing either upper or lower triangular part
of the Hermitian matrix A (as specified by uplo) in band storage format.
The second dimension of the array ab must be at least max(1, n).
bb (ldbb,*) is an array containing the banded split Cholesky factor of
B as specified by uplo, n and kb and returned by cpbstf/zpbstf. The
second dimension of the array bb must be at least max(1, n).
work(*) is a workspace array, DIMENSION at least max(1, n)

ldab INTEGER. The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be at least kb+1.

ldx The first dimension of the output array x. Constraints:
 if vect ='N' , then ldx ≥ 1;
 if vect ='V' , then ldx ≥ max(1, n).

rwork REAL for chbgst
DOUBLE PRECISION for zhbgst
Workspace array, DIMENSION at least max(1, n)

Output Parameters

ab On exit, this array is overwritten by the upper or lower triangle of C as
specified by uplo.

x COMPLEX for chbgst
DOUBLE COMPLEX for zhbgst
Array.
If vect ='V', then x (ldx,*) contains the n-by-n matrix X = S-1Q.
If vect ='N', then x is not referenced.
The second dimension of x must be:
at least max(1, n), if vect ='V';
at least 1, if vect ='N'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-209

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hbgst interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (ka+1,n).

b Stands for argument bb in Fortran 77 interface. Holds the array B of size (kb+1,n).

x Holds the matrix X of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

vect Restored based on the presence of the argument x as follows:
vect = 'V', if x is present,
vect = 'N', if x is omitted.

Application Notes

Forming the reduced matrix C involves implicit multiplication by B-1. When the routine is used as
a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a
significant loss of accuracy if B is ill-conditioned with respect to inversion.
The total number of floating-point operations is approximately 20n2*kb, when vect ='N'.
Additional 5n3*(kb/ka) operations are required when vect ='V'. All these estimates assume
that both ka and kb are much less than n.

4-210

4 Intel® Math Kernel Library Reference Manual

?pbstf
Computes a split Cholesky factorization of a real
symmetric or complex Hermitian positive-definite
banded matrix used in ?sbgst/?hbgst .

Syntax

Fortran 77:

call spbstf(uplo, n, kb, bb, ldbb, info)

call dpbstf(uplo, n, kb, bb, ldbb, info)

call cpbstf(uplo, n, kb, bb, ldbb, info)

call zpbstf(uplo, n, kb, bb, ldbb, info)

Fortran 95:

call pbstf(b [,uplo] [,info])

Description

This routine computes a split Cholesky factorization of a real symmetric or complex Hermitian
positive-definite band matrix B. It is to be used in conjunction with ?sbgst/?hbgst.

The factorization has the form B = STS (or B = SHS for complex flavors), where S is a band matrix
of the same bandwidth as B and the following structure: S is upper triangular in the first (n+kb)/2
rows and lower triangular in the remaining rows.

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', bb stores the upper triangular part of B.
If uplo = 'L', bb stores the lower triangular part of B.

n INTEGER. The order of the matrix B (n ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

bb REAL for spbstf
DOUBLE PRECISION for dpbstf
COMPLEX for cpbstf
DOUBLE COMPLEX for zpbstf.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-211

bb (ldbb,*) is an array containing either upper or lower triangular part
of the matrix B (as specified by uplo) in band storage format.
The second dimension of the array bb must be at least max(1, n).

ldbb INTEGER. The first dimension of bb; must be at least kb+1.

Output Parameters

bb On exit, this array is overwritten by the elements of the split Cholesky
factor S.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the factorization could not be completed, because the
updated element bii would be the square root of a negative number;
hence the matrix B is not positive-definite.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine pbstf interface are the following:

b Stands for argument bb in Fortran 77 interface. Holds the array B of size (kb+1,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed factor S is the exact factor of a perturbed matrix B + E,
 where

c(n) is a modest linear function of n, and ε is the machine precision.

The total number of floating-point operations for real flavors is approximately n(kb+1)2. The
number of operations for complex flavors is 4 times greater. All these estimates assume that kb is
much less than n.

After calling this routine, you can call ?sbgst/?hbgst to solve the generalized eigenproblem Az
= λBz , where A and B are banded and B is positive-definite.

E c kb 1+()ε SH S eij c kb 1+()ε biibjj≤,≤

4-212

4 Intel® Math Kernel Library Reference Manual

Nonsymmetric Eigenvalue Problems
This section describes LAPACK routines for solving nonsymmetric eigenvalue problems,
computing the Schur factorization of general matrices, as well as performing a number of related
computational tasks.

A nonsymmetric eigenvalue problem is as follows: given a nonsymmetric (or non-Hermitian)
matrix A, find the eigenvalues λ and the corresponding eigenvectors z that satisfy the equation

Az = λz (right eigenvectors z)

or the equation

zHA = λzH (left eigenvectors z).

Nonsymmetric eigenvalue problems have the following properties:

• The number of eigenvectors may be less than the matrix order (but is not less than the number
of distinct eigenvalues of A).

• Eigenvalues may be complex even for a real matrix A.

• If a real nonsymmetric matrix has a complex eigenvalue a+bi corresponding to an eigenvector
z, then a-bi is also an eigenvalue.
The eigenvalue a-bi corresponds to the eigenvector whose elements are complex conjugate to
the elements of z.

To solve a nonsymmetric eigenvalue problem with LAPACK, you usually need to reduce the
matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg
matrix obtained. Table 4-5 lists LAPACK routines (Fortran-77 interface) for reducing the matrix to
the upper Hessenberg form by an orthogonal (or unitary) similarity transformation A = QHQH as
well as routines for solving eigenvalue problems with Hessenberg matrices, forming the Schur
factorization of such matrices and computing the corresponding condition numbers.
Respective routine names in Fortran-95 interface are without the first symbol (see Routine Naming
Conventions).

Decision tree in Figure 4-4 helps you choose the right routine or sequence of routines for an
eigenvalue problem with a real nonsymmetric matrix.
If you need to solve an eigenvalue problem with a complex non-Hermitian matrix, use the decision
tree shown in Figure 4-5.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-213

Table 4-5 Computational Routines for Solving Nonsymmetric Eigenvalue Problems

Operation performed Routines for real matrices Routines for complex matrices

Reduce to Hessenberg
form A = QHQH

?gehrd, ?gehrd

Generate the matrix Q ?orghr ?unghr

Apply the matrix Q ?ormhr ?unmhr

Balance matrix ?gebal ?gebal

Transform eigenvectors of
balanced matrix to those
of the original matrix

?gebak ?gebak

Find eigenvalues and
Schur factorization
(QR algorithm)

?hseqr ?hseqr

Find eigenvectors from
Hessenberg form (inverse
iteration)

?hsein ?hsein

Find eigenvectors from
Schur factorization

?trevc ?trevc

Estimate sensitivities of
eigenvalues and
eigenvectors

?trsna ?trsna

Reorder Schur
factorization

?trexc ?trexc

Reorder Schur
factorization, find the
invariant subspace and
estimate sensitivities

?trsen ?trsen

Solves Sylvester’s
equation.

?trsyl ?trsyl

4-214

4 Intel® Math Kernel Library Reference Manual

Figure 4-4 Decision Tree: Real Nonsymmetric Eigenvalue Problems

no

?HSEQR ?TREVC

Is the Schur
factorization of A
required?

Are eigenvalues
only required?

Are all eigenvectors
required?

Is A an upper
Hessenberg matrix?

Is A an upper
Hessenberg matrix?

yes
?HSEQR

yes

?GEBAL ?GEHRD
?HSEQR

no

Is A an upper
Hessenberg matrix?

yes
?HSEQR

yes

?GEBAL ?GEHRD
?ORGHR ?HSEQR
?GEBAK

no

Is A an upper
Hessenberg matrix?

?GEBAL ?GEHRD
?ORGHR ?HSEQR
?TREVC ?GEBAK

?HSEQR ?HSEIN

?GEBAL ?GEHRD
?HSEQR ?HSEIN
?ORMHR ?GEBAK

no

yes yes

no

no

yes

no

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-215

Figure 4-5 Decision Tree: Complex Non-Hermitian Eigenvalue Problems

no

?HSEQR ?TREVC

Is the Schur
factorization of A
required?

Are eigenvalues
only required?

Are all eigenvectors
required?

Is A an upper
Hessenberg matrix?

Is A an upper
Hessenberg matrix?

yes
?HSEQR

yes

?GEBAL ?GEHRD
?HSEQR

no

Is A an upper
Hessenberg matrix?

yes
?HSEQR

yes

?GEBAL ?GEHRD
?UNGHR ?HSEQR
?GEBAK

no

Is A an upper
Hessenberg matrix?

?GEBAL ?GEHRD
?UNGHR ?HSEQR
?TREVC ?GEBAK

?HSEQR ?HSEIN

?GEBAL ?GEHRD
?HSEQR ?HSEIN
?UNMHR ?GEBAK

no

yes yes

no

no

yes

no

4-216

4 Intel® Math Kernel Library Reference Manual

?gehrd
Reduces a general matrix to upper Hessenberg form.

Syntax

Fortran 77:

call sgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)

call dgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)

call cgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)

call zgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)

Fortran 95:

call gehrd(a [,tau] [,ilo] [,ihi] [,info])

Description

The routine reduces a general matrix A to upper Hessenberg form H by an orthogonal or unitary
similarity transformation A = QHQH. Here H has real subdiagonal elements.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
elementary reflectors. Routines are provided to work with Q in this representation.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

ilo, ihi INTEGER. If A has been output by ?gebal, then
ilo and ihi must contain the values returned by that routine. Otherwise
ilo = 1 and ihi = n. (If n > 0, then 1 ≤ ilo ≤ ihi ≤ n; if n = 0, ilo = 1
and ihi = 0.)

a, work REAL for sgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

work (lwork) is a workspace array.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-217

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array; at least max(1,n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the upper Hessenberg matrix H and details of the matrix
Q. The subdiagonal elements of H are real.

tau REAL for sgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Array, DIMENSION at least max (1, n-1).
Contains additional information on the matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gehrd interface are the following:

a Holds the matrix A of size (n,n).

tau Holds the vector of length (n-1).

ilo Default value for this argument is ilo = 1.

ihi Default value for this argument is ihi = n.

4-218

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try using lwork = n*blocksize, where blocksize is a machine-dependent
value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are
in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit,
examine work(1) and use this value for subsequent runs.

The computed Hessenberg matrix H is exactly similar to a nearby matrix
A + E, where ||E||2 < c(n)ε||A||2, c(n) is a modestly increasing function of n, and ε is the machine
precision.

The approximate number of floating-point operations for real flavors is
(2/3)(ihi - ilo)2(2ihi + 2ilo + 3n); for complex flavors it is 4 times greater.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-219

?orghr
Generates the real orthogonal matrix Q determined by
?gehrd.

Syntax

Fortran 77:

call sorghr(n, ilo, ihi, a, lda, tau, work, lwork, info)

call dorghr(n, ilo, ihi, a, lda, tau, work, lwork, info)

Fortran 95:

call orghr(a, tau [,ilo] [,ihi] [,info])

Description

This routine explicitly generates the orthogonal matrix Q that has been determined by a preceding
call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix A to upper
Hessenberg form H by an orthogonal similarity transformation, A = QHQT, and represents the
matrix Q as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined
by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, ilo = 1 and
ihi = n.)

The matrix Q generated by ?orghr has the structure:

where Q22 occupies rows and columns ilo to ihi.

Input Parameters

n INTEGER. The order of the matrix Q (n ≥ 0).

ilo, ihi INTEGER. These must be the same parameters ilo and ihi,
respectively, as supplied to ?gehrd. (If n > 0, then 1 ≤ ilo ≤ ihi ≤ n; if
n = 0, ilo = 1 and ihi = 0.)

Q
I 0 0

0 Q22 0

0 0 I

=

4-220

4 Intel® Math Kernel Library Reference Manual

a, tau, work REAL for sorghr
DOUBLE PRECISION for dorghr
Arrays:
a(lda,*) contains details of the vectors which define the elementary
reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, n).

tau(*) contains further details of the elementary reflectors, as returned
by ?gehrd.
The dimension of tau must be at least max (1, n-1).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array;
lwork ≥ max(1,ihi−ilo).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the n-by-n orthogonal matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine orghr interface are the following:

a Holds the matrix A of size (n,n).

tau Holds the vector of length (n-1).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-221

ilo Default value for this argument is ilo = 1.

ihi Default value for this argument is ihi = n.

Application Notes

For better performance, try using lwork =(ihi−ilo)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for
the first run. On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 = O(ε), where ε
is the machine precision.

The approximate number of floating-point operations is (4/3)(ihi−ilo)3.

The complex counterpart of this routine is ?unghr.

4-222

4 Intel® Math Kernel Library Reference Manual

?ormhr
Multiplies an arbitrary real matrix C by the real
orthogonal matrix Q determined by ?gehrd.

Syntax

Fortran 77:

call sormhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
 work, lwork, info)

call dormhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
 work, lwork, info)

Fortran 95:

call ormhr(a, tau, c [,ilo] [,ihi] [,side] [,trans] [,info])

Description

This routine multiplies a matrix C by the orthogonal matrix Q that has been determined by a
preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix A to upper
Hessenberg form H by an orthogonal similarity transformation, A = QHQT, and represents the
matrix Q as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined
by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, ilo = 1 and
ihi = n.)

With ?ormhr, you can form one of the matrix products QC, QTC, CQ, or CQT, overwriting the
result on C (which may be any real rectangular matrix).

A common application of ?ormhr is to transform a matrix V of eigenvectors of H to the matrix QV
of eigenvectors of A.

Input Parameters

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then the routine forms QC or QTC.
If side = 'R', then the routine forms CQ or CQT.

trans CHARACTER*1. Must be 'N' or 'T'.
If trans = 'N', then Q is applied to C.
If trans = 'T', then QT is applied to C.

m INTEGER. The number of rows in C (m ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-223

n INTEGER. The number of columns in C (n ≥ 0).

ilo, ihi INTEGER. These must be the same parameters ilo and ihi,
respectively, as supplied to ?gehrd.
If m > 0 and side ='L', then 1 ≤ ilo ≤ ihi ≤ m.
If m = 0 and side ='L', then ilo = 1 and ihi = 0.
If n > 0 and side ='R', then 1 ≤ ilo ≤ ihi ≤ n.
If n = 0 and side ='R', then ilo = 1 and ihi = 0.

a,tau,c,work REAL for sormhr
DOUBLE PRECISION for dormhr
Arrays:
a(lda,*) contains details of the vectors which define the elementary
reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, m) if side = 'L' and
at least max(1, n) if side = 'R'.

tau(*) contains further details of the elementary reflectors, as returned
by ?gehrd.
The dimension of tau must be at least max (1, m-1)
if side ='L' and at least max (1, n-1) if side ='R'.

c(ldc,*) contains the m by n matrix C.
The second dimension of c must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m) if side ='L'
and at least max (1, n) if side ='R'.

ldc INTEGER. The first dimension of c; at least max(1, m).

lwork INTEGER. The size of the work array.
If side ='L', lwork ≥ max(1,n).
If side ='R', lwork ≥ max(1,m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c C is overwritten by QC or QTC or CQT or CQ as specified by side and
trans.

4-224

4 Intel® Math Kernel Library Reference Manual

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ormhr interface are the following:

a Holds the matrix A of size (r,r).
r = m if side = 'L'.
r = n if side = 'R'.

tau Holds the vector of length (r-1).

c Holds the matrix C of size (m,n).

ilo Default value for this argument is ilo = 1.

ihi Default value for this argument is ihi = n.

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'T'. The default value is 'N'.

Application Notes

For better performance, lwork should be at least n*blocksize if side ='L' and at least
m*blocksize if side ='R', where blocksize is a machine-dependent value (typically, 16 to 64)
required for optimum performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On exit, examine work(1)
and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 = O(ε)||C||2,
where ε is the machine precision.

The approximate number of floating-point operations is
2n(ihi−ilo)2 if side ='L';
2m(ihi−ilo)2 if side ='R'.

The complex counterpart of this routine is ?unmhr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-225

?unghr
Generates the complex unitary matrix Q determined by
?gehrd.

Syntax

Fortran 77:

call cunghr(n, ilo, ihi, a, lda, tau, work, lwork, info)

call zunghr(n, ilo, ihi, a, lda, tau, work, lwork, info)

Fortran 95:

call unghr(a, tau [,ilo] [,ihi] [,info])

Description

This routine is intended to be used following a call to cgehrd/zgehrd, which reduces a complex
matrix A to upper Hessenberg form H by a unitary similarity transformation: A = QHQH. ?gehrd
represents the matrix Q as a product of ihi−ilo elementary reflectors. Here ilo and ihi are
values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been
balanced, ilo = 1 and ihi = n.

Use the routine ?unghr to generate Q explicitly as a square matrix. The matrix Q has the
structure:

where Q22 occupies rows and columns ilo to ihi.

Input Parameters

n INTEGER. The order of the matrix Q (n ≥ 0).

ilo, ihi INTEGER. These must be the same parameters ilo and ihi,
respectively, as supplied to ?gehrd. (If n > 0, then 1 ≤ ilo ≤ ihi ≤ n. If
n = 0, then ilo = 1 and ihi = 0.)

Q
I 0 0

0 Q22 0

0 0 I

=

4-226

4 Intel® Math Kernel Library Reference Manual

a, tau, work COMPLEX for cunghr
DOUBLE COMPLEX for zunghr.
Arrays:
a(lda,*) contains details of the vectors which define the elementary
reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, n).

tau(*) contains further details of the elementary reflectors, as returned
by ?gehrd.
The dimension of tau must be at least max (1, n-1).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

lwork INTEGER. The size of the work array;
lwork ≥ max(1, ihi−ilo).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a Overwritten by the n-by-n unitary matrix Q.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine unghr interface are the following:

a Holds the matrix A of size (n,n).

tau Holds the vector of length (n-1).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-227

ilo Default value for this argument is ilo = 1.

ihi Default value for this argument is ihi = n.

Application Notes

For better performance, try using lwork = (ihi−ilo)*blocksize, where blocksize is a
machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked
algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for
the first run. On exit, examine work(1) and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 = O(ε), where ε
is the machine precision.

The approximate number of real floating-point operations is (16/3)(ihi−ilo)3.

The real counterpart of this routine is ?orghr.

4-228

4 Intel® Math Kernel Library Reference Manual

?unmhr
Multiplies an arbitrary complex matrix C by the
complex unitary matrix Q determined by ?gehrd.

Syntax

Fortran 77:

call cunmhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
 work, lwork, info)

call zunmhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
 work, lwork, info)

Fortran 95:

call unmhr(a, tau, c [,ilo] [,ihi] [,side] [,trans] [,info])

Description

This routine multiplies a matrix C by the unitary matrix Q that has been determined by a preceding
call to cgehrd/zgehrd. (The routine ?gehrd reduces a real general matrix A to upper
Hessenberg form H by an orthogonal similarity transformation, A = QHQH, and represents the
matrix Q as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined
by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, ilo = 1 and
ihi = n.)

With ?unmhr, you can form one of the matrix products QC, QHC, CQ, or CQH, overwriting the
result on C (which may be any complex rectangular matrix). A common application of this routine
is to transform a matrix V of eigenvectors of H to the matrix QV of eigenvectors of A.

Input Parameters

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then the routine forms QC or QHC.
If side = 'R', then the routine forms CQ or CQH.

trans CHARACTER*1. Must be 'N' or 'C'.
If trans = 'N', then Q is applied to C.
If trans = 'T', then QH is applied to C.

m INTEGER. The number of rows in C (m ≥ 0).

n INTEGER. The number of columns in C (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-229

ilo, ihi INTEGER. These must be the same parameters ilo and ihi,
respectively, as supplied to ?gehrd.
If m > 0 and side ='L', then 1 ≤ ilo ≤ ihi ≤ m.
If m = 0 and side ='L', then ilo = 1 and ihi = 0.
If n > 0 and side ='R', then 1 ≤ ilo ≤ ihi ≤ n.
If n = 0 and side ='R', then ilo =1 and ihi = 0.

a,tau,c,work COMPLEX for cunmhr
DOUBLE COMPLEX for zunmhr.
Arrays:
a (lda,*) contains details of the vectors which define the elementary
reflectors, as returned by ?gehrd.
The second dimension of a must be at least max(1, m) if side = 'L' and
at least max(1, n) if side = 'R'.

tau(*) contains further details of the elementary reflectors, as returned
by ?gehrd.
The dimension of tau must be at least max (1, m-1)
if side ='L' and at least max (1, n-1) if side ='R'.

c (ldc,*) contains the m-by-n matrix C.
The second dimension of c must be at least max(1, n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m) if side ='L'
and at least max (1, n) if side = 'R'.

ldc INTEGER. The first dimension of c; at least max(1, m).

lwork INTEGER. The size of the work array.
If side = 'L', lwork ≥ max(1,n).
If side = 'R', lwork ≥ max(1,m).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

c C is overwritten by QC or QHC or CQH or CQ as specified by side and
trans.

4-230

4 Intel® Math Kernel Library Reference Manual

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine unmhr interface are the following:

a Holds the matrix A of size (r,r).
r = m if side = 'L'.
r = n if side = 'R'.

tau Holds the vector of length (r-1).

c Holds the matrix C of size (m,n).

ilo Default value for this argument is ilo = 1.

ihi Default value for this argument is ihi = n.

side Must be 'L' or 'R'. The default value is 'L'.

trans Must be 'N' or 'C'. The default value is 'N'.

Application Notes

For better performance, lwork should be at least n*blocksize if side ='L' and at least
m*blocksize if side = 'R', where blocksize is a machine-dependent value (typically, 16 to 64)
required for optimum performance of the blocked algorithm. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On exit, examine work(1)
and use this value for subsequent runs.

The computed matrix Q differs from the exact result by a matrix E such that ||E||2 = O(ε) ||C||2,
where ε is the machine precision.

The approximate number of floating-point operations is
8n(ihi−ilo)2 if side = 'L';
8m(ihi−ilo)2 if side = 'R'.

The real counterpart of this routine is ?ormhr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-231

?gebal
Balances a general matrix to improve the accuracy of
computed eigenvalues and eigenvectors.

Syntax

Fortran 77:

call sgebal(job, n, a, lda, ilo, ihi, scale, info)

call dgebal(job, n, a, lda, ilo, ihi, scale, info)

call cgebal(job, n, a, lda, ilo, ihi, scale, info)

call zgebal(job, n, a, lda, ilo, ihi, scale, info)

Fortran 95:

call gebal(a [,scale] [,ilo] [,ihi] [,job] [,info])

Description

This routine balances a matrix A by performing either or both of the following two similarity
transformations:

(1) The routine first attempts to permute A to block upper triangular form:

where P is a permutation matrix, and A′11 and A′33 are upper triangular. The diagonal elements of
A′11 and A′33 are eigenvalues of A. The rest of the eigenvalues of A are the eigenvalues of the central
diagonal block A′22, in rows and columns ilo to ihi. Subsequent operations to compute the
eigenvalues of A (or its Schur factorization) need only be applied to these rows and columns; this
can save a significant amount of work if ilo > 1 and ihi < n. If no suitable permutation exists (as
is often the case), the routine sets ilo = 1 and ihi = n, and A′22 is the whole of A.

(2) The routine applies a diagonal similarity transformation to A′, to make the rows and columns of
A′22 as close in norm as possible:

PAPT A′
A′

11 A′
12 A′

13

0 A′
22 A′

23

0 0 A′
33

= =

4-232

4 Intel® Math Kernel Library Reference Manual

This scaling can reduce the norm of the matrix (that is, ||A′′22|| < ||A′22||), and hence reduce the effect
of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

Input Parameters

job CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'.
If job ='N', then A is neither permuted nor scaled (but ilo, ihi, and
scale get their values).
If job ='P', then A is permuted but not scaled.
If job ='S', then A is scaled but not permuted.
If job ='B', then A is both scaled and permuted.

n INTEGER. The order of the matrix A (n ≥ 0).

a REAL for sgebal
DOUBLE PRECISION for dgebal
COMPLEX for cgebal
DOUBLE COMPLEX for zgebal.
Arrays:
a (lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).
a is not referenced if job ='N'.

lda INTEGER. The first dimension of a; at least max(1, n).

Output Parameters

a Overwritten by the balanced matrix (a is not referenced if job = 'N').

ilo, ihi INTEGER. The values ilo and ihi such that on exit a(i,j) is zero if i
> j and 1 ≤ j < ilo or ihi < i ≤ n. If job ='N' or 'S', then ilo = 1
and
ihi = n.

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors
Array, DIMENSION at least max(1, n).

Contains details of the permutations and scaling factors.

A″ DA′D 1–
I 0 0

0 D22 0

0 0 I

A′
11 A′

12 A′
13

0 A′
22 A′

23

0 0 A′
33

×
I 0 0

0 D22
1– 0

0 0 I

×= =

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-233

More precisely, if pj is the index of the row and column interchanged
with row and column j, and dj is the scaling factor used to balance row
and column j, then
scale(j)= pj for j = 1, 2,..., ilo-1, ihi+1,..., n;
scale(j)= dj for j = ilo, ilo + 1,..., ihi.
The order in which the interchanges are made is
n to ihi+1, then 1 to ilo-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gebal interface are the following:

a Holds the matrix A of size (n,n).

scale Holds the vector of length (n).

ilo Default value for this argument is ilo = 1.

ihi Default value for this argument is ihi = n.

job Must be 'B', 'S', 'P', or 'N'. The default value is 'B'.

Application Notes

The errors are negligible, compared with those in subsequent computations.

If the matrix A is balanced by this routine, then any eigenvectors computed subsequently are
eigenvectors of the matrix A′′ and hence you must call ?gebak to transform them back to
eigenvectors of A.

If the Schur vectors of A are required, do not call this routine with job = 'S' or 'B', because then
the balancing transformation is not orthogonal (not unitary for complex flavors). If you call this
routine with job = 'P', then any Schur vectors computed subsequently are Schur vectors of the
matrix A′′, and you need to call ?gebak (with side ='R') to transform them back to Schur
vectors of A.

The total number of floating-point operations is proportional to n2.

4-234

4 Intel® Math Kernel Library Reference Manual

?gebak
Transforms eigenvectors of a balanced matrix to those
of the original nonsymmetric matrix.

Syntax

Fortran 77:

call sgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)

call dgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)

call cgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)

call zgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)

Fortran 95:

call gebak(v, scale [,ilo] [,ihi] [,job] [,side] [,info])

Description

This routine is intended to be used after a matrix A has been balanced by
a call to ?gebal, and eigenvectors of the balanced matrix A′′22 have subsequently been computed.
For a description of balancing, see ?gebal. The balanced matrix A′′ is obtained as
A′′= DPAPTD-1, where P is a permutation matrix and D is a diagonal scaling matrix. This routine
transforms the eigenvectors as follows:
if x is a right eigenvector of A′′, then PTD-1x is a right eigenvector of A;
if x is a left eigenvector of A′′, then PTDy is a left eigenvector of A.

Input Parameters

job CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'.
The same parameter job as supplied to ?gebal.

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then left eigenvectors are transformed.
If side = 'R', then right eigenvectors are transformed.

n INTEGER. The number of rows of the matrix of eigenvectors (n ≥ 0).

ilo, ihi INTEGER. The values ilo and ihi, as returned by ?gebal.
If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, then ilo = 1 and ihi = 0.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-235

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors
Array, DIMENSION at least max(1, n).

Contains details of the permutations and/or the scaling factors used to
balance the original general matrix, as returned by ?gebal.

m INTEGER. The number of columns of the matrix of eigenvectors
(m ≥ 0).

v REAL for sgebak
DOUBLE PRECISION for dgebak
COMPLEX for cgebak
DOUBLE COMPLEX for zgebak.
Arrays:
v (ldv,*) contains the matrix of left or right eigenvectors to be
transformed.
The second dimension of v must be at least max(1, m).

ldv INTEGER. The first dimension of v; at least max(1, n).

Output Parameters

v Overwritten by the transformed eigenvectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gebak interface are the following:

v Holds the matrix V of size (n,m).

scale Holds the vector of length (n).

ilo Default value for this argument is ilo = 1.

ihi Default value for this argument is ihi = n.

job Must be 'B', 'S', 'P', or 'N'. The default value is 'B'.

4-236

4 Intel® Math Kernel Library Reference Manual

side Must be 'L' or 'R'. The default value is 'L'.

Application Notes

The errors in this routine are negligible.

The approximate number of floating-point operations is approximately proportional to m*n.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-237

?hseqr
Computes all eigenvalues and (optionally) the Schur
factorization of a matrix reduced to Hessenberg form.

Syntax

Fortran 77:

call shseqr(job, compz, n, ilo, ihi, h, ldh, wr, wi, z, ldz, work, lwork, info)

call dhseqr(job, compz, n, ilo, ihi, h, ldh, wr, wi, z, ldz, work, lwork, info)

call chseqr(job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info)

call zhseqr(job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info)

Fortran 95:

call hseqr(h, wr, wi [,ilo] [,ihi] [,z] [,job] [,compz] [,info])

call hseqr(h, w [,ilo] [,ihi] [,z] [,job] [,compz] [,info])

Description

This routine computes all the eigenvalues, and optionally the Schur factorization, of an upper
Hessenberg matrix H: H = ZTZH, where T is an upper triangular (or, for real flavors,
quasi-triangular) matrix (the Schur form of H), and Z is the unitary or orthogonal matrix whose
columns are the Schur vectors zi.

You can also use this routine to compute the Schur factorization of a general matrix A which has
been reduced to upper Hessenberg form H:
A = QHQH, where Q is unitary (orthogonal for real flavors);
A = (QZ)T(QZ)H.

In this case, after reducing A to Hessenberg form by ?gehrd, call ?orghr to form Q explicitly
and then pass Q to ?hseqr with compz ='V'.

You can also call ?gebal to balance the original matrix before reducing it to Hessenberg form by
?hseqr, so that the Hessenberg matrix H will have the structure:

4-238

4 Intel® Math Kernel Library Reference Manual

where H11 and H33 are upper triangular.

If so, only the central diagonal block H22 (in rows and columns ilo to ihi) needs to be further
reduced to Schur form (the blocks H12 and H23 are also affected). Therefore the values of ilo and
ihi can be supplied to ?hseqr directly. Also, after calling this routine you must call ?gebak to
permute the Schur vectors of the balanced matrix to those of the original matrix.

If ?gebal has not been called, however, then ilo must be set to 1 and ihi to n. Note that if the
Schur factorization of A is required, ?gebal must not be called with job ='S' or 'B', because
the balancing transformation is not unitary (for real flavors, it is not orthogonal).

?hseqr uses a multishift form of the upper Hessenberg QR algorithm. The Schur vectors are
normalized so that ||zi||2 = 1, but are determined only to within a complex factor of absolute value 1
(for the real flavors, to within a factor ±1).

Input Parameters

job CHARACTER*1. Must be 'E' or 'S'.
If job ='E', then eigenvalues only are required.
If job ='S', then the Schur form T is required.

compz CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz ='N', then no Schur vectors are computed (and the array z is
not referenced).
If compz ='I', then the Schur vectors of H are computed (and the array
z is initialized by the routine).
If compz ='V', then the Schur vectors of A are computed (and the array
z must contain the matrix Q on entry).

n INTEGER. The order of the matrix H (n ≥ 0).

ilo, ihi INTEGER. If A has been balanced by ?gebal, then ilo and ihi must
contain the values returned by ?gebal. Otherwise, ilo must be set to 1
and ihi to n.

H11 H12 H13

0 H22 H23

0 0 H33

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-239

h, z, work REAL for shseqr
DOUBLE PRECISION for dhseqr
COMPLEX for chseqr
DOUBLE COMPLEX for zhseqr.
Arrays:
h(ldh,*) The n-by-n upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).

z(ldz,*)
If compz ='V', then z must contain the matrix Q from the reduction to
Hessenberg form.
If compz ='I', then z need not be set.
If compz ='N', then z is not referenced.
The second dimension of z must be
at least max(1, n) if compz ='V' or 'I';
at least 1 if compz ='N'.

work(lwork) is a workspace array.
The dimension of work must be at least max (1, n).

ldh INTEGER. The first dimension of h; at least max(1, n).

ldz INTEGER. The first dimension of z;
If compz ='N', then ldz ≥ 1.
If compz ='V' or 'I', then ldz ≥ max(1,n).

lwork INTEGER. The dimension of the array work.
lwork ≥ max(1,n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

Output Parameters

w COMPLEX for chseqr
DOUBLE COMPLEX for zhseqr.
Array, DIMENSION at least max (1, n).
Contains the computed eigenvalues, unless info>0. The eigenvalues are
stored in the same order as on the diagonal of the Schur form T (if
computed).

4-240

4 Intel® Math Kernel Library Reference Manual

wr, wi REAL for shseqr
DOUBLE PRECISION for dhseqr
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the computed
eigenvalues, unless info > 0. Complex conjugate pairs of eigenvalues
appear consecutively with the eigenvalue having positive imaginary part
first. The eigenvalues are stored in the same order as on the diagonal of
the Schur form T (if computed).

z If compz ='V' or 'I', then z contains the unitary (orthogonal) matrix
of the required Schur vectors, unless info > 0.
If compz ='N', then z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the optimal lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info > 0, the algorithm has failed to find all the eigenvalues after a
total 30(ihi−ilo+1) iterations. If info = i, elements 1,2, ..., ilo−1
and i+1, i+2, ..., n of wr and wi contain the real and imaginary parts of
the eigenvalues which have been found.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hseqr interface are the following:

h Holds the matrix H of size (n,n).

wr Holds the vector of length (n). Used in real flavors only.

wi Holds the vector of length (n). Used in real flavors only.

w Holds the vector of length (n). Used in complex flavors only.

z Holds the matrix Z of size (n,n).

job Must be 'E' or 'S'. The default value is 'E'.

compz If omitted, this argument is restored based on the presence of argument z as follows:
compz = 'I', if z is present,
compz = 'N', if z is omitted.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-241

If present, compz must be equal to 'I' or 'V' and the argument z must also be
present.
Note that there will be an error condition if compz is present and z omitted.

Application Notes

The computed Schur factorization is the exact factorization of a nearby matrix H + E, where
||E||2 < O(ε) ||H||2/si, and ε is the machine precision.
If λi is an exact eigenvalue, and µi is the corresponding computed value, then
|λi − µi| ≤ c(n)ε ||H||2/si , where c(n) is a modestly increasing function of n, and si is the reciprocal
condition number of λi. You can compute the condition numbers si by calling ?trsna.

The total number of floating-point operations depends on how rapidly the algorithm converges;
typical numbers are as follows.

If only eigenvalues are computed: 7n3 for real flavors
25n3 for complex flavors.

If the Schur form is computed: 10n3 for real flavors
35n3 for complex flavors.

If the full Schur factorization is computed: 20n3 for real flavors
70n3 for complex flavors.

4-242

4 Intel® Math Kernel Library Reference Manual

?hsein
Computes selected eigenvectors of an upper
Hessenberg matrix that correspond to specified
eigenvalues.

Syntax

Fortran 77:

call shsein(job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,
 ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info)

call dhsein(job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,
 ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info)

call chsein(job, eigsrc, initv, select, n, h, ldh, w, vl,
 ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info)

call zhsein(job, eigsrc, initv, select, n, h, ldh, w, vl,
 ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info)

Fortran 95:

call hsein(h, wr, wi, select [,vl] [,vr] [,ifaill] [,ifailr] [,initv] [,eigsrc]
[,m] [,info])

call hsein(h, w, select [,vl] [,vr] [,ifaill] [,ifailr] [,initv] [,eigsrc] [,m]
[,info])

Description

This routine computes left and/or right eigenvectors of an upper Hessenberg matrix H,
corresponding to selected eigenvalues.

The right eigenvector x and the left eigenvector y, corresponding to an eigenvalue λ, are defined
by: Hx = λx and yHH = λyH (or HHy = λ∗y).
Here λ∗ denotes the conjugate of λ.

The eigenvectors are computed by inverse iteration. They are scaled so that, for a real eigenvector
x, max|xi| = 1, and for a complex eigenvector, max(|Rexi| + |Imxi|) = 1.

If H has been formed by reduction of a general matrix A to upper Hessenberg form, then
eigenvectors of H may be transformed to eigenvectors of A by ?ormhr or ?unmhr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-243

Input Parameters

job CHARACTER*1. Must be 'R' or 'L' or 'B'.
If job ='R', then only right eigenvectors are computed.
If job ='L', then only left eigenvectors are computed.
If job ='B', then all eigenvectors are computed.

eigsrc CHARACTER*1. Must be 'Q' or 'N'.
If eigsrc ='Q', then the eigenvalues of H were found using ?hseqr;
thus if H has any zero sub-diagonal elements (and so is block triangular),
then the j-th eigenvalue can be assumed to be an eigenvalue of the block
containing the j-th row/column. This property allows the routine to
perform inverse iteration on just one diagonal block.
If eigsrc ='N', then no such assumption is made and the routine
performs inverse iteration using the whole matrix.

initv CHARACTER*1. Must be 'N' or 'U'.
If initv ='N', then no initial estimates for the selected eigenvectors are
supplied.
If initv ='U', then initial estimates for the selected eigenvectors are
supplied in vl and/or vr.

select LOGICAL.
Array, DIMENSION at least max (1, n).
Specifies which eigenvectors are to be computed.
For real flavors:
To obtain the real eigenvector corresponding to the real eigenvalue
wr(j), set select(j) to .TRUE.
To select the complex eigenvector corresponding to the complex
eigenvalue (wr(j),wi(j)) with complex conjugate
(wr(j+1),wi(j+1)), set select(j) and/or select(j+1) to .TRUE.;
the eigenvector corresponding to the first eigenvalue in the pair is
computed.
For complex flavors:
To select the eigenvector corresponding to the eigenvalue w(j), set
select(j) to .TRUE.

n INTEGER. The order of the matrix H (n ≥ 0).

h,vl,vr,work REAL for shsein
DOUBLE PRECISION for dhsein
COMPLEX for chsein
DOUBLE COMPLEX for zhsein.

4-244

4 Intel® Math Kernel Library Reference Manual

Arrays:
h(ldh,*) The n-by-n upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).

vl(ldvl,*)
If initv ='V' and job ='L' or 'B', then vl must contain starting
vectors for inverse iteration for the left eigenvectors. Each starting vector
must be stored in the same column or columns as will be used to store
the corresponding eigenvector.
If initv ='N', then vl need not be set.
The second dimension of vl must be at least max(1, mm) if job ='L' or
'B' and at least 1 if job ='R'.
The array vl is not referenced if job ='R'.

vr(ldvr,*)
If initv ='V' and job ='R' or 'B', then vr must contain starting
vectors for inverse iteration for the right eigenvectors. Each starting
vector must be stored in the same column or columns as will be used to
store the corresponding eigenvector.
If initv ='N', then vr need not be set.
The second dimension of vr must be at least max(1, mm) if job ='R' or
'B' and at least 1 if job ='L'.
The array vr is not referenced if job ='L'.

work(*) is a workspace array.
DIMENSION at least max (1, n*(n+2)) for real flavors and at least max
(1, n*n) for complex flavors.

ldh INTEGER. The first dimension of h; at least max(1, n).

w COMPLEX for chsein
DOUBLE COMPLEX for zhsein.
Array, DIMENSION at least max (1, n).
Contains the eigenvalues of the matrix H.
If eigsrc ='Q', the array must be exactly as returned by ?hseqr.

wr, wi REAL for shsein
DOUBLE PRECISION for dhsein
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the eigenvalues of
the matrix H. Complex conjugate pairs of values must be stored in
consecutive elements of the arrays. If eigsrc ='Q', the arrays must be
exactly as returned by ?hseqr.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-245

ldvl INTEGER. The first dimension of vl.
If job ='L' or 'B', ldvl ≥ max(1,n).
If job ='R', ldvl ≥ 1.

ldvr INTEGER. The first dimension of vr.
If job ='R' or 'B', ldvr ≥ max(1,n).
If job ='L', ldvr ≥ 1.

mm INTEGER. The number of columns in vl and/or vr.
Must be at least m, the actual number of columns required (see Output
Parameters below).
For real flavors, m is obtained by counting 1 for each selected real
eigenvector and 2 for each selected complex eigenvector (see select).
For complex flavors, m is the number of selected eigenvectors (see
select). Constraint: 0 ≤ mm ≤ n.

rwork REAL for chsein
DOUBLE PRECISION for zhsein.
Array, DIMENSION at least max (1, n).

Output Parameters

select Overwritten for real flavors only. If a complex eigenvector was selected
as specified above, then select(j) is set to .TRUE. and select(j+1)
to .FALSE.

w The real parts of some elements of w may be modified, as close
eigenvalues are perturbed slightly in searching for independent
eigenvectors.

wr Some elements of wr may be modified, as close eigenvalues are
perturbed slightly in searching for independent eigenvectors.

vl, vr If job ='L' or 'B', vl contains the computed left eigenvectors (as
specified by select).
If job ='R' or 'B', vr contains the computed right eigenvectors (as
specified by select).

The eigenvectors are stored consecutively in the columns of the array, in
the same order as their eigenvalues.
For real flavors: a real eigenvector corresponding to a selected real
eigenvalue occupies one column;
a complex eigenvector corresponding to a selected complex eigenvalue
occupies two columns: the first column holds the real part and the
second column holds the imaginary part.

4-246

4 Intel® Math Kernel Library Reference Manual

m INTEGER. For real flavors: the number of columns of vl and/or vr
required to store the selected eigenvectors.
For complex flavors: the number of selected eigenvectors.

ifaill,ifailr INTEGER.
Arrays, DIMENSION at least max(1, mm) each.
ifaill(i) = 0 if the ith column of vl converged;
ifaill(i) = j > 0 if the eigenvector stored in the ith column of vl
(corresponding to the jth eigenvalue) failed to converge.
ifailr(i) = 0 if the ith column of vr converged;
ifailr(i) = j > 0 if the eigenvector stored in the ith column of vr
(corresponding to the jth eigenvalue) failed to converge.
For real flavors: if the ith and (i+1)th columns of vl contain a selected
complex eigenvector, then ifaill(i) and ifaill(i+1) are set to the
same value. A similar rule holds for vr and ifailr.

The array ifaill is not referenced if job ='R'.
The array ifailr is not referenced if job ='L'.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info > 0, then i eigenvectors (as indicated by the parameters ifaill
and/or ifailr above) failed to converge. The corresponding columns of
vl and/or vr contain no useful information.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hsein interface are the following:

h Holds the matrix H of size (n,n).

wr Holds the vector of length (n). Used in real flavors only.

wi Holds the vector of length (n). Used in real flavors only.

w Holds the vector of length (n). Used in complex flavors only.

select Holds the vector of length (n).

vl Holds the matrix VL of size (n,mm).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-247

vr Holds the matrix VR of size (n,mm).

ifaill Holds the vector of length (mm). Note that there will be an error condition if ifaill
is present and vl is omitted.

ifailr Holds the vector of length (mm). Note that there will be an error condition if ifailr
is present and vr is omitted.

initv Must be 'N' or 'U'. The default value is 'N'.

eigsrc Must be 'N' or 'Q'. The default value is 'N'.

job Restored based on the presence of arguments vl and vr as follows:
job = 'B', if both vl and vr are present,
job = 'L', if vl is present and vr omitted,
job = 'R', if vl is omitted and vr present,
Note that there will be an error condition if both vl and vr are omitted.

Application Notes

Each computed right eigenvector xi is the exact eigenvector of a nearby matrix A + Ei, such that
||Ei|| < O(ε)||A||. Hence the residual is small:
||Axi − λixi|| = O(ε)||A||.

However, eigenvectors corresponding to close or coincident eigenvalues may not accurately span
the relevant subspaces.

Similar remarks apply to computed left eigenvectors.

4-248

4 Intel® Math Kernel Library Reference Manual

?trevc
Computes selected eigenvectors of an upper (quasi-)
triangular matrix computed by ?hseqr.

Syntax

Fortran 77:

call strevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
 mm, m, work, info)

call dtrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
 mm, m, work, info)

call ctrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
 mm, m, work, rwork, info)

call ztrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
 mm, m, work, rwork, info)

Fortran 95:

call trevc(t [,howmny] [,select] [,vl] [,vr] [,m] [,info])

Description

This routine computes some or all of the right and/or left eigenvectors of an upper triangular
matrix T (or, for real flavors, an upper quasi-triangular matrix T). Matrices of this type are
produced by the Schur factorization of a general matrix: A = Q T QH, as computed by ?hseqr.

The right eigenvector x and the left eigenvector y of T corresponding to an eigenvalue w, are
defined by:
 T x = w x , yHT = w yH
where yH denotes the conjugate transpose of y.

The eigenvalues are not input to this routine, but are read directly from the diagonal blocks of T.

This routine returns the matrices X and/or Y of right and left eigenvectors of T, or the products Q X
and/or Q Y, where Q is an input matrix.
If Q is the orthogonal/unitary factor that reduces a matrix A to Schur form T, then Q X and Q Y are
the matrices of right and left eigenvectors of A.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-249

Input Parameters

side CHARACTER*1. Must be 'R' or 'L' or 'B'.
If side ='R', then only right eigenvectors are computed.
If side ='L', then only left eigenvectors are computed.
If side ='B', then all eigenvectors are computed.

howmny CHARACTER*1. Must be 'A' or 'B' or 'S'.
If howmny ='A', then all eigenvectors (as specified by side) are
computed.
If howmny ='B', then all eigenvectors (as specified by side) are
computed and backtransformed by the matrices supplied in vl and vr.
If howmny ='S', then selected eigenvectors (as specified by side and
select) are computed.

select LOGICAL.
Array, DIMENSION at least max (1, n).
If howmny='S', select specifies which eigenvectors are to be
computed.
If howmny= 'A'or 'B', select is not referenced.
For real flavors:
If ωj is a real eigenvalue, the corresponding real eigenvector is computed
if select(j) is .TRUE..
If ωj and ωj+1 are the real and imaginary parts of a complex eigenvalue,
the corresponding complex eigenvector is computed if either select(j)
or select(j+1) is .TRUE. , and on exit select(j) is set to .TRUE.and
select(j+1) is set to .FALSE..
For complex flavors:
The eigenvector corresponding to the j-th eigenvalue is computed if
select(j) is .TRUE..

n INTEGER. The order of the matrix T (n ≥ 0).

t,vl,vr,work REAL for strevc
DOUBLE PRECISION for dtrevc
COMPLEX for ctrevc
DOUBLE COMPLEX for ztrevc.
Arrays:
t(ldt,*) contains the n-by-n matrix T in Schur canonical form.
The second dimension of t must be at least max(1, n).

vl(ldvl,*)
If howmny ='B' and side ='L' or 'B', then vl must contain an n-by-n
matrix Q (usually the matrix of Schur vectors returned by ?hseqr).

4-250

4 Intel® Math Kernel Library Reference Manual

If howmny ='A' or 'S', then vl need not be set.
The second dimension of vl must be at least max(1, mm) if side ='L'
or 'B' and at least 1 if side ='R'.
The array vl is not referenced if side ='R'.

vr (ldvr,*)
If howmny ='B' and side ='R' or 'B', then vr must contain an n-by-n
matrix Q (usually the matrix of Schur vectors returned by ?hseqr). .
If howmny ='A' or 'S', then vr need not be set.
The second dimension of vr must be at least max(1, mm) if side ='R'
or 'B' and at least 1 if side ='L'.
The array vr is not referenced if side ='L'.

work(*) is a workspace array.
DIMENSION at least max (1, 3*n) for real flavors and
at least max (1, 2*n) for complex flavors.

ldt INTEGER. The first dimension of t; at least max(1, n).

ldvl INTEGER. The first dimension of vl.
If side ='L' or 'B', ldvl ≥ max(1,n).
If side ='R', ldvl ≥ 1.

ldvr INTEGER. The first dimension of vr.
If side ='R' or 'B', ldvr ≥ max(1,n).
If side ='L', ldvr ≥ 1.

mm INTEGER. The number of columns in the arrays vl and/or vr. Must be at
least m (the precise number of columns required). If howmny ='A' or
'B', m = n.
If howmny ='S': for real flavors, m is obtained by counting 1 for each
selected real eigenvector and 2 for each selected complex eigenvector;

for complex flavors, m is the number of selected eigenvectors (see
select). Constraint: 0 ≤ m ≤ n.

rwork REAL for ctrevc
DOUBLE PRECISION for ztrevc.
Workspace array, DIMENSION at least max (1, n).

Output Parameters

select If a complex eigenvector of a real matrix was selected as specified
above, then select(j) is set to .TRUE. and select(j+1) to .FALSE.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-251

vl,vr If side ='L' or 'B', vl contains the computed left eigenvectors (as
specified by howmny and select).
If side ='R' or 'B', vr contains the computed right eigenvectors (as
specified by howmny and select).

The eigenvectors are stored consecutively in the columns of the array, in
the same order as their eigenvalues.
For real flavors: corresponding to each real eigenvalue is a real
eigenvector, occupying one column; corresponding to each complex
conjugate pair of eigenvalues is a complex eigenvector, occupying two
columns; the first column holds the real part and the second column
holds the imaginary part.

m INTEGER.
For complex flavors: the number of selected eigenvectors. If howmny
='A' or 'B', m is set to n.
For real flavors: the number of columns of vl and/or vr actually used to
store the selected eigenvectors.
If howmny ='A' or 'B', m is set to n.

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trevc interface are the following:

t Holds the matrix T of size (n,n).

select Holds the vector of length (n).

vl Holds the matrix VL of size (n,mm).

vr Holds the matrix VR of size (n,mm).

side If omitted, this argument is restored based on the presence of arguments vl and vr as
follows:
side = 'B', if both vl and vr are present,
side = 'L', if vr is omitted,
side = 'R', if vl is omitted.
Note that there will be an error condition if both vl and vr are omitted.

4-252

4 Intel® Math Kernel Library Reference Manual

howmny If omitted, this argument is restored based on the presence of argument select as
follows:
howmny = 'V', if q is present,
howmny = 'N', if q is omitted.
If present, vect = 'V' or 'U' and the argument q must also be present.
Note that there will be an error condition if both select and howmny are present.

Application Notes

If xi is an exact right eigenvector and yi is the corresponding computed eigenvector, then the angle
θ(yi,xi) between them is bounded as follows: θ(yi,xi) ≤ (c(n)ε||T||2)/sepi where sepi is the reciprocal
condition number of xi. The condition number sepi may be computed by calling ?trsna.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-253

?trsna
Estimates condition numbers for specified eigenvalues and
right eigenvectors of an upper (quasi-) triangular matrix.

Syntax

Fortran 77:

call strsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
 s, sep, mm, m, work, ldwork, iwork, info)

call dtrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
 s, sep, mm, m, work, ldwork, iwork, info)

call ctrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
 s, sep, mm, m, work, ldwork, rwork, info)

call ztrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
 s, sep, mm, m, work, ldwork, rwork, info)

Fortran 95:

call trsna(t [,s] [,sep] [,vl] [,vr] [,select] [,m] [,info])

Description

This routine estimates condition numbers for specified eigenvalues and/or right eigenvectors of an
upper triangular matrix T (or, for real flavors, upper quasi-triangular matrix T in canonical Schur
form). These are the same as the condition numbers of the eigenvalues and right eigenvectors of an
original matrix A = ZTZH (with unitary or, for real flavors, orthogonal Z), from which T may have
been derived.

The routine computes the reciprocal of the condition number of an eigenvalue λi as
si = |vHu|/(||u||E||v||E), where u and v are the right and left eigenvectors of T, respectively,
corresponding to λi. This reciprocal condition number always lies between zero (ill-conditioned)
and one (well-conditioned).

An approximate error estimate for a computed eigenvalue λi is then given by ε||T||/si, where ε is the
machine precision.

4-254

4 Intel® Math Kernel Library Reference Manual

To estimate the reciprocal of the condition number of the right eigenvector corresponding to λi, the
routine first calls ?trexc to reorder the eigenvalues so that λi is in the leading position:

The reciprocal condition number of the eigenvector is then estimated as sepi, the smallest singular
value of the matrix T22 − λiI. This number ranges from zero (ill-conditioned) to very large
(well-conditioned).

An approximate error estimate for a computed right eigenvector u corresponding to λi is then
given by ε ||T||/sepi.

Input Parameters

job CHARACTER*1. Must be 'E' or 'V' or 'B'.
If job ='E', then condition numbers for eigenvalues only are
computed.
If job ='V', then condition numbers for eigenvectors only are
computed.
If job ='B', then condition numbers for both eigenvalues and
eigenvectors are computed.

howmny CHARACTER*1. Must be 'A' or 'S'.
If howmny ='A', then the condition numbers for all eigenpairs are
computed.
If howmny ='S', then condition numbers for selected eigenpairs (as
specified by select) are computed.

select LOGICAL.
Array, DIMENSION at least max (1, n) if howmny ='S' and at least 1
otherwise.
Specifies the eigenpairs for which condition numbers are to be
computed if howmny= 'S'.

For real flavors:
To select condition numbers for the eigenpair corresponding to the real
eigenvalue λj, select(j) must be set .TRUE.;
to select condition numbers for the eigenpair corresponding to a

T Q λi C
H

0 T22

Q
H

=

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-255

complex conjugate pair of eigenvalues λj and λj+1, select(j) and/or
select(j+1) must be set .TRUE.

For complex flavors:
To select condition numbers for the eigenpair corresponding to the
eigenvalue λj, select(j) must be set .TRUE.
select is not referenced if howmny ='A'.

n INTEGER. The order of the matrix T (n ≥ 0).

t,vl,vr,work REAL for strsna
DOUBLE PRECISION for dtrsna
COMPLEX for ctrsna
DOUBLE COMPLEX for ztrsna.
Arrays:
t(ldt,*) contains the n-by-n matrix T.
The second dimension of t must be at least max(1, n).

vl(ldvl,*)
If job ='E' or 'B', then vl must contain the left eigenvectors of T (or
of any matrix QTQH with Q unitary or orthogonal) corresponding to the
eigenpairs specified by howmny and select. The eigenvectors must be
stored in consecutive columns of vl, as returned by ?trevc or ?hsein.
The second dimension of vl must be
at least max(1, mm) if job ='E' or 'B' and
at least 1 if job ='V'.
The array vl is not referenced if job ='V'.

vr(ldvr,*)
If job ='E' or 'B', then vr must contain the right eigenvectors of T (or
of any matrix QTQH with Q unitary or orthogonal) corresponding to the
eigenpairs specified by howmny and select. The eigenvectors must be
stored in consecutive columns of vr, as returned by ?trevc or ?hsein.
The second dimension of vr must be
at least max(1, mm) if job ='E' or 'B' and
at least 1 if job ='V'.
The array vr is not referenced if job ='V'.

work(ldwork,*) is a workspace array.
The second dimension of work must be
at least max(1, n+1) for complex flavors and

4-256

4 Intel® Math Kernel Library Reference Manual

at least max(1, n+6) for real flavors if job ='V' or 'B';
at least 1 if job ='E'.
The array work is not referenced if job ='E'.

ldt INTEGER. The first dimension of t; at least max(1, n).

ldvl INTEGER. The first dimension of vl.
If job ='E' or 'B', ldvl≥max(1,n).
If job ='V', ldvl≥1.

ldvr INTEGER. The first dimension of vr.
If job ='E' or'B', ldvr≥max(1,n).
If job ='R', ldvr≥1.

mm INTEGER. The number of elements in the arrays s and sep, and the
number of columns in vl and vr (if used). Must be at least m (the
precise number required).
If howmny ='A', m = n;
if howmny ='S',
for real flavors m is obtained by counting 1 for each selected real
eigenvalue and 2 for each selected complex conjugate pair of
eigenvalues.
for complex flavors m is the number of selected eigenpairs (see select).
Constraint: 0 ≤ m ≤ n.

ldwork INTEGER. The first dimension of work.
If job ='V' or 'B', ldwork ≥ max(1,n).
If job ='E', ldwork ≥ 1.

rwork REAL for ctrsna, ztrsna.
Array, DIMENSION at least max (1, n).

iwork INTEGER for strsna, dtrsna.
Array, DIMENSION at least max (1, n).

Output Parameters

s REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, mm) if job ='E' or 'B' and at least 1
if job ='V'.
Contains the reciprocal condition numbers of the selected eigenvalues if
job ='E' or 'B', stored in consecutive elements of the array. Thus s(j),
sep(j) and the jth columns of vl and vr all correspond to the same
eigenpair (but not in general the jth eigenpair unless all eigenpairs have

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-257

been selected). For real flavors: for a complex conjugate pair of
eigenvalues, two consecutive elements of S are set to the same value.
The array s is not referenced if job ='V'.

sep REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, mm) if job ='V' or 'B' and at least 1
if job ='E'.
Contains the estimated reciprocal condition numbers of the selected
right eigenvectors if job ='V' or 'B', stored in consecutive elements of
the array.
For real flavors: for a complex eigenvector, two consecutive elements of
sep are set to the same value; if the eigenvalues cannot be reordered to
compute sep(j), then sep(j) is set to zero; this can only occur when the
true value would be very small anyway.
The array sep is not referenced if job ='E'.

m INTEGER.
For complex flavors: the number of selected eigenpairs. If howmny
='A', m is set to n.
For real flavors: the number of elements of s and/or sep actually used to
store the estimated condition numbers. If howmny ='A', m is set to n.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trsna interface are the following:

t Holds the matrix T of size (n,n).

s Holds the vector of length (mm).

sep Holds the vector of length (mm).

vl Holds the matrix VL of size (n,mm).

vr Holds the matrix VR of size (n,mm).

select Holds the vector of length (n).

4-258

4 Intel® Math Kernel Library Reference Manual

job Restored based on the presence of arguments s and sep as follows:
job = 'B', if both s and sep are present,
job = 'E', if s is present and sep omitted,
job = 'V', if s is omitted and sep present.

Note an error condition if both s and sep are omitted.

howmny Restored based on the presence of the argument select as follows:
howmny = 'S', if select is present,
howmny = 'A', if select is omitted.

Note that arguments s, vl, and vr must either be all present or all omitted. If this requirement is
not satisfied, there will be an error condition.

Application Notes

The computed values sepi may overestimate the true value, but seldom by a factor of more than 3.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-259

?trexc
Reorders the Schur factorization of a general matrix.

Syntax

Fortran 77:

call strexc(compq, n, t, ldt, q, ldq, ifst, ilst, work, info)

call dtrexc(compq, n, t, ldt, q, ldq, ifst, ilst, work, info)

call ctrexc(compq, n, t, ldt, q, ldq, ifst, ilst, info)

call ztrexc(compq, n, t, ldt, q, ldq, ifst, ilst, info)

Fortran 95:

call trexc(t, ifst, ilst [,q] [,info])

Description

This routine reorders the Schur factorization of a general matrix A= QTQH, so that the diagonal
element or block of T with row index ifst is moved to row ilst.

The reordered Schur form S is computed by an unitary (or, for real flavors, orthogonal) similarity
transformation: S = ZHTZ. Optionally the updated matrix P of Schur vectors is computed as
P = QZ, giving A=PSPH.

Input Parameters

compq CHARACTER*1. Must be 'V' or 'N'.
If compq ='V', then the Schur vectors (Q) are updated.
If compq ='N', then no Schur vectors are updated.

n INTEGER. The order of the matrix T (n ≥ 0).

t, q REAL for strexc
DOUBLE PRECISION for dtrexc
COMPLEX for ctrexc
DOUBLE COMPLEX for ztrexc.
Arrays:
t(ldt,*) contains the n-by-n matrix T.
The second dimension of t must be at least max(1, n).

4-260

4 Intel® Math Kernel Library Reference Manual

q(ldq,*)
If compq ='V', then q must contain Q (Schur vectors).
If compq ='N', then q is not referenced.

The second dimension of q must be at least max(1, n)
if compq ='V' and at least 1 if compq ='N'.

ldt INTEGER. The first dimension of t; at least max(1, n).

ldq INTEGER. The first dimension of q;
If compq ='N', then ldq≥1.
If compq ='V', then ldq≥max(1,n).

ifst, ilst INTEGER. 1 ≤ ifst ≤ n; 1 ≤ ilst ≤ n.
Must specify the reordering of the diagonal elements (or blocks, which
is possible for real flavors) of the matrix T. The element (or block) with
row index ifst is moved to row ilst by a sequence of exchanges
between adjacent elements (or blocks).

work REAL for strexc
DOUBLE PRECISION for dtrexc.
Array, DIMENSION at least max (1, n).

Output Parameters

t Overwritten by the updated matrix S.

q If compq ='V', q contains the updated matrix of Schur vectors.

ifst, ilst Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on entry, it is
changed to point to the first row; ilst always points to the first row of
the block in its final position (which may differ from its input value by
±1).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trexc interface are the following:

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-261

t Holds the matrix T of size (n,n).

q Holds the matrix Q of size (n,n).

compq Restored based on the presence of the argument q as follows:
compq = 'V', if q is present,
compq = 'N', if q is omitted.

Application Notes

The computed matrix S is exactly similar to a matrix T + E, where
||E||2 = O(ε) ||T||2, and ε is the machine precision.

Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in
general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the
block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for
a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become
purely real.

The values of eigenvalues however are never changed by the re-ordering.

The approximate number of floating-point operations is

for real flavors: 6n(ifst−ilst) if compq ='N';
12n(ifst−ilst) if compq ='V';

for complex flavors: 20n(ifst−ilst) if compq ='N';
40n(ifst−ilst) if compq ='V'.

4-262

4 Intel® Math Kernel Library Reference Manual

?trsen
Reorders the Schur factorization of a matrix and (optionally)
computes the reciprocal condition numbers and invariant
subspace for the selected cluster of eigenvalues.

Syntax

Fortran 77:

call strsen(job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,
 sep, work, lwork, iwork, liwork, info)

call dtrsen(job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,
 sep, work, lwork, iwork, liwork, info)

call ctrsen(job, compq, select, n, t, ldt, q, ldq, w, m, s,
 sep, work, lwork, info)

call ztrsen(job, compq, select, n, t, ldt, q, ldq, w, m, s,
 sep, work, lwork, info)

Fortran 95:

call trsen(t, select [,wr] [,wi] [,m] [,s] [,sep] [,q] [,info])

call trsen(t, select [,w] [,m] [,s] [,sep] [,q] [,info])

Description

This routine reorders the Schur factorization of a general matrix A = QTQH so that a selected
cluster of eigenvalues appears in the leading diagonal elements (or, for real flavors, diagonal
blocks) of the Schur form.
The reordered Schur form R is computed by an unitary (orthogonal) similarity transformation:
R = ZHTZ. Optionally the updated matrix P of Schur vectors is computed as P = QZ, giving
 A =PRPH.

Let

where the selected eigenvalues are precisely the eigenvalues of the leading m-by-m submatrix T11.
Let P be correspondingly partitioned as (Q1 Q2) where Q1 consists of the first m columns of Q.
Then AQ1 = Q1T11, and so the m columns of Q1 form an orthonormal basis for the invariant
subspace corresponding to the selected cluster of eigenvalues.

R
T11 T12

0 T13

=

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-263

Optionally the routine also computes estimates of the reciprocal condition numbers of the average
of the cluster of eigenvalues and of the invariant subspace.

Input Parameters

job CHARACTER*1. Must be 'N' or 'E' or 'V' or 'B'.
If job ='N', then no condition numbers are required.
If job ='E', then only the condition number for the cluster of
eigenvalues is computed.
If job ='V', then only the condition number for the invariant subspace
is computed.
If job ='B', then condition numbers for both the cluster and the
invariant subspace are computed.

compq CHARACTER*1. Must be 'V' or 'N'.
If compq ='V', then Q of the Schur vectors is updated.
If compq ='N', then no Schur vectors are updated.

select LOGICAL.
Array, DIMENSION at least max (1, n).
Specifies the eigenvalues in the selected cluster.
To select an eigenvalue λj, select(j) must be .TRUE. For real flavors:
to select a complex conjugate pair of eigenvalues λj and
λj+1(corresponding 2 by 2 diagonal block), select(j) and/or
select(j+1) must be .TRUE.; the complex conjugate λj and λj+1 must
be either both included in the cluster or both excluded.

n INTEGER. The order of the matrix T (n ≥ 0).

t, q, work REAL for strsen
DOUBLE PRECISION for dtrsen
COMPLEX for ctrsen
DOUBLE COMPLEX for ztrsen.
Arrays:
t (ldt,*) The n-by-n T.
The second dimension of t must be at least max(1, n).

q (ldq,*)
If compq ='V', then q must contain Q of Schur vectors.
If compq ='N', then q is not referenced.
The second dimension of q must be at least max(1, n) if compq ='V'
and at least 1 if compq ='N'.

4-264

4 Intel® Math Kernel Library Reference Manual

work (lwork) is a workspace array.
For complex flavors: the array work is not referenced if job ='N'.
The actual amount of workspace required cannot exceed n2/4 if job
='E' or n2/2 if job ='V' or 'B'.

ldt INTEGER. The first dimension of t; at least max(1, n).

ldq INTEGER. The first dimension of q;
If compq ='N', then ldq ≥ 1.
If compq ='V', then ldq ≥ max(1,n).

lwork INTEGER. The dimension of the array work.
If job ='V' or 'B', lwork ≥ max(1,2m(n−m)).
If job ='E', then lwork ≥ max(1,m(n−m))
If job ='N', then lwork ≥ 1 for complex flavors and lwork ≥ max(1,n)
for real flavors.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER.
iwork(liwork) is a workspace array.
The array iwork is not referenced if job ='N'or 'E'.
The actual amount of workspace required cannot exceed n2/2 if job
='V' or 'B'.

liwork INTEGER.
The dimension of the array iwork.
If job ='V' or 'B', liwork ≥ max(1,2m(n−m)).
If job ='E' or 'E', liwork ≥ 1.
If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

t Overwritten by the updated matrix R.

q If compq ='V', q contains the updated matrix of Schur vectors; the first
m columns of the Q form an orthogonal basis for the specified invariant
subspace.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-265

w COMPLEX for ctrsen
DOUBLE COMPLEX for ztrsen.
Array, DIMENSION at least max(1,n).
The recorded eigenvalues of R. The eigenvalues are stored in the same
order as on the diagonal of R.

wr, wi REAL for strsen
DOUBLE PRECISION for dtrsen
Arrays, DIMENSION at least max(1,n).
Contain the real and imaginary parts, respectively, of the reordered
eigenvalues of R. The eigenvalues are stored in the same order as on the
diagonal of R. Note that if a complex eigenvalue is sufficiently
ill-conditioned, then its value may differ significantly from its value
before reordering.

m INTEGER.
For complex flavors: the number of the specified invariant subspaces,
which is the same as the number of selected eigenvalues (see select).
For real flavors: the dimension of the specified invariant subspace. The
value of m is obtained by counting 1 for each selected real eigenvalue
and 2 for each selected complex conjugate pair of eigenvalues (see
select).

Constraint: 0 ≤ m ≤ n.

s REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
If job ='E' or 'B', s is a lower bound on the reciprocal condition
number of the average of the selected cluster of eigenvalues. If m = 0 or
n, then s = 1.
For real flavors: if info = 1, then s is set to zero.
s is not referenced if job ='N' or 'V'.

sep REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
If job ='V' or 'B', sep is the estimated reciprocal condition number of
the specified invariant subspace.
If m = 0 or n, then sep = ||T||.
For real flavors: if info = 1, then sep is set to zero.
sep is not referenced if job ='N' or 'E'.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

4-266

4 Intel® Math Kernel Library Reference Manual

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size
of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trsen interface are the following:

t Holds the matrix T of size (n,n).

select Holds the vector of length (n).

wr Holds the vector of length (n). Used in real flavors only.

wi Holds the vector of length (n). Used in real flavors only.

w Holds the vector of length (n). Used in complex flavors only.

q Holds the matrix Q of size (n,n).

compq Restored based on the presence of the argument q as follows:
compq = 'V', if q is present,
compq = 'N', if q is omitted.

job Restored based on the presence of arguments s and sep as follows:
job = 'B', if both s and sep are present,
job = 'E', if s is present and sep omitted,
job = 'V', if s is omitted and sep present,
job = 'N', if both s and sep are omitted.

Application Notes

The computed matrix R is exactly similar to a matrix T + E, where
||E||2 = O(ε)||T||2, and ε is the machine precision.
The computed s cannot underestimate the true reciprocal condition number by more than a factor
of (min(m, n-m))1/2; sep may differ from the true value by (m*n-m2)1/2. The angle between the
computed invariant subspace and the true subspace is O(ε) ||A||2/sep.
Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in
general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-267

block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for
a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become
purely real. The values of eigenvalues however are never changed by the re-ordering.

?trsyl
Solves Sylvester equation for real quasi-triangular or
complex triangular matrices.

Syntax

Fortran 77:

call strsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)

call dtrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)

call ctrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)

call ztrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)

Fortran 95:

call trsyl(a, b, c, scale [,trana] [,tranb] [,isgn] [,info])

Description

This routine solves the Sylvester matrix equation op(A)X ± Xop(B) = αC, where op(A) = A or AH,
and the matrices A and B are upper triangular (or, for real flavors, upper quasi-triangular in
canonical Schur form); α ≤ 1 is a scale factor determined by the routine to avoid overflow in X; A
is m-by-m, B is n-by-n, and C and X are both m-by-n. The matrix X is obtained by a
straightforward process of back substitution.

The equation has a unique solution if and only if αi ± βi ≠ 0, where {αi} and {βi} are the
eigenvalues of A and B, respectively, and the sign (+ or −) is the same as that used in the equation
to be solved.

Input Parameters

trana CHARACTER*1. Must be 'N' or 'T' or 'C'.
If trana = 'N', then op(A) = A.
If trana = 'T', then op(A) = AT (real flavors only).
If trana = 'C' then op(A) = AH.

4-268

4 Intel® Math Kernel Library Reference Manual

tranb CHARACTER*1. Must be 'N' or 'T' or 'C'.
If tranb = 'N', then op(B) = B.
If tranb = 'T', then op(B) = BT (real flavors only).
If tranb = 'C', then op(B) = BH.

isgn INTEGER. Indicates the form of the Sylvester equation.
If isgn = +1, op(A)X + Xop(B) = αC.
If isgn = −1, op(A)X − Xop(B) = αC.

m INTEGER. The order of A, and the number of rows in X and C (m ≥ 0).

n INTEGER. The order of B, and the number of columns in X and C (n ≥
0).

a, b, c REAL for strsyl
DOUBLE PRECISION for dtrsyl
COMPLEX for ctrsyl
DOUBLE COMPLEX for ztrsyl.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, m).

b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, n).

c(ldc,*) contains the matrix C.
The second dimension of c must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldc INTEGER. The first dimension of c; at least max(1, n).

Output Parameters

c Overwritten by the solution matrix X.

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
The value of the scale factor α.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-269

If info = 1, A and B have common or close eigenvalues perturbed
values were used to solve the equation.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine trsyl interface are the following:

a Holds the matrix A of size (m,m).

b Holds the matrix B of size (n,n).

c Holds the matrix C of size (m,n).

trana Must be 'N', 'C', or 'T'. The default value is 'N'.

tranb Must be 'N', 'C', or 'T'. The default value is 'N'.

isgn Must be +1 or -1. The default value is +1.

Application Notes

Let X be the exact, Y the corresponding computed solution, and R the residual matrix:
R = C − (AY ± YB). Then the residual is always small:

 ||R||F = O(ε) (||A||F + ||B||F) ||Y||F .

However, Y is not necessarily the exact solution of a slightly perturbed equation; in other words,
the solution is not backwards stable.

For the forward error, the following bound holds:

 ||Y − X||F ≤ ||R||F/sep(A, B)

but this may be a considerable overestimate. See [Golub96] for a definition of sep(A, B).

The approximate number of floating-point operations for real flavors is m*n*(m + n). For complex
flavors it is 4 times greater.

4-270

4 Intel® Math Kernel Library Reference Manual

Generalized Nonsymmetric Eigenvalue Problems
This section describes LAPACK routines for solving generalized nonsymmetric eigenvalue
problems, reordering the generalized Schur factorization of a pair of matrices, as well as
performing a number of related computational tasks.

A generalized nonsymmetric eigenvalue problem is as follows: given a pair of nonsymmetric (or
non-Hermitian) n-by-n matrices A and B, find the generalized eigenvalues λ and the
corresponding generalized eigenvectors x and y that satisfy the equations

Ax = λBx (right generalized eigenvectors x)

and

yHA = λyHB (left generalized eigenvectors y).

Table 4-6 lists LAPACK routines (Fortran-77 interface) used to solve the generalized
nonsymmetric eigenvalue problems and the generalized Sylvester equation.
Respective routine names in Fortran-95 interface are without the first symbol (see Routine Naming
Conventions).

Table 4-6 Computational Routines for Solving Generalized Nonsymmetric Eigenvalue
Problems

Routine
name

Operation performed

?gghrd Reduces a pair of matrices to generalized upper Hessenberg form using
orthogonal/unitary transformations.

?ggbal Balances a pair of general real or complex matrices.

?ggbak Forms the right or left eigenvectors of a generalized eigenvalue problem.

?hgeqz Implements the QZ method for finding the generalized eigenvalues of the matrix
pair (H,T).

?tgevc Computes some or all of the right and/or left generalized eigenvectors of a pair
of upper triangular matrices

?tgexc Reorders the generalized Schur decomposition of a pair of matrices (A,B) so
that one diagonal block of (A,B) moves to another row index.

?tgsen Reorders the generalized Schur decomposition of a pair of matrices (A,B) so that
a selected cluster of eigenvalues appears in the leading diagonal blocks of (A,B).

?tgsyl Solves the generalized Sylvester equation.

?tgsna Estimates reciprocal condition numbers for specified eigenvalues and/or
eigenvectors of a pair of matrices in generalized real Schur canonical form.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-271

?gghrd
Reduces a pair of matrices to generalized upper
Hessenberg form using orthogonal/unitary
transformations.

Syntax

Fortran 77:

call sgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)

call dgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)

call cgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)

call zgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)

Fortran 95:

call gghrd(a, b [,ilo] [,ihi] [,q] [,z] [,compq] [,compz] [,info])

Description

This routine reduces a pair of real/complex matrices (A,B) to generalized upper Hessenberg form
using orthogonal/unitary transformations, where A is a general matrix and B is upper triangular.
The form of the generalized eigenvalue problem is Ax = λBx, and B is typically made upper
triangular by computing its QR factorization and moving the orthogonal matrix Q to the left side
of the equation.
This routine simultaneously reduces A to a Hessenberg matrix H:
 QH A Z = H
and transforms B to another upper triangular matrix T:
 QH B Z = T
in order to reduce the problem to its standard form Hy = λTy where
y = ZH x .

The orthogonal/unitary matrices Q and Z are determined as products of Givens rotations. They
may either be formed explicitly, or they may be postmultiplied into input matrices Q1 and Z1, so
that

 Q1 A Z1
H = (Q1Q) H (Z1Z)H

 Q1 B Z1
H = (Q1Q) T (Z1Z)H

4-272

4 Intel® Math Kernel Library Reference Manual

If Q1 is the orthogonal matrix from the QR factorization of B in the original equation Ax = λBx,
then ?gghrd reduces the original problem to generalized Hessenberg form.

Input Parameters

compq CHARACTER*1. Must be 'N', 'I', or 'V'.

If compq = 'N', matrix Q is not computed.
If compq = 'I', Q is initialized to the unit matrix, and the
orthogonal/unitary matrix Q is returned;

If compq = 'V', Q must contain an orthogonal/unitary matrix Q1 on
entry, and the product Q1Q is returned.

compz CHARACTER*1. Must be 'N', 'I', or 'V'.

If compz = 'N', matrix Z is not computed.
If compz = 'I', Z is initialized to the unit matrix, and the
orthogonal/unitary matrix Z is returned;
If compz = 'V', Z must contain an orthogonal/unitary matrix Z1 on
entry, and the product Z1Z is returned.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ilo, ihi INTEGER. ilo and ihi mark the rows and columns of A which are to
be reduced. It is assumed that A is already upper triangular in rows and
columns 1:ilo-1 and ihi+1:n. Values of ilo and ihi are normally set
by a previous call to ?ggbal; otherwise they should be set to 1 and n
respectively. Constraint:
If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, then ilo = 1 and ihi = 0.

a, b, q, z REAL for sgghrd
DOUBLE PRECISION for dgghrd
COMPLEX for cgghrd
DOUBLE COMPLEX for zgghrd.
Arrays:
a(lda,*) contains the n-by-n general matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the n-by-n upper triangular matrix B.
The second dimension of b must be at least max(1, n).

q (ldq,*)
If compq ='N', then q is not referenced.
If compq ='I', then, on entry, q need not be set.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-273

If compq ='V', then q must contain the orthogonal/unitary matrix Q1,
typically from the QR factorization of B.
The second dimension of q must be at least max(1, n).

z (ldz,*)
If compq ='N', then z is not referenced.
If compq ='I', then, on entry, z need not be set.
If compq ='V', then z must contain the orthogonal/unitary matrix Z1.
The second dimension of z must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldq INTEGER. The first dimension of q;
If compq ='N', then ldq ≥ 1.
If compq ='I'or 'V', then ldq ≥ max(1,n).

ldz INTEGER. The first dimension of z;
If compq ='N', then ldz ≥ 1.
If compq ='I'or 'V', then ldz ≥ max(1,n).

Output Parameters

a On exit, the upper triangle and the first subdiagonal of A are overwritten
with the upper Hessenberg matrix H, and the rest is set to zero.

b On exit, overwritten by the upper triangular matrix
T = QH B Z. The elements below the diagonal are set to zero.

q If compq ='I', then q contains the orthogonal/unitary matrix Q, where
QH is the product of the Givens transformations that are applied to A and
B on the left;
If compq ='V', then q is overwritten by the
product Q1Q.

z If compq ='I', then z contains the orthogonal/unitary matrix Z, which
is the product of the Givens transformations that are applied to A and B
on the right;
If compq ='V', then z is overwritten by the
product Z1Z.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

4-274

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gghrd interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

q Holds the matrix Q of size (n,n).

z Holds the matrix Z of size (n,n).

ilo Default value for this argument is ilo = 1.

ihi Default value for this argument is ihi = n.

compq If omitted, this argument is restored based on the presence of argument q as follows:
compq = 'I', if q is present,
compq = 'N', if q is omitted.
If present, compq must be equal to 'I' or 'V' and the argument q must also be
present.
Note that there will be an error condition if compq is present and q omitted.

compz If omitted, this argument is restored based on the presence of argument z as follows:
compz = 'I', if z is present,
compz = 'N', if z is omitted.
If present, compz must be equal to 'I' or 'V' and the argument z must also be
present.
Note that there will be an error condition if compz is present and z omitted.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-275

?ggbal
Balances a pair of general real or complex matrices.

Syntax

Fortran 77:

call sggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)

call dggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)

call cggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)

call zggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)

Fortran 95:

call ggbal(a, b [,ilo] [,ihi] [,lscale] [,rscale] [,job] [,info])

Description

This routine balances a pair of general real/complex matrices (A,B). This involves, first, permuting
A and B by similarity transformations to isolate eigenvalues in the first 1 to ilo-1 and last ihi+1
to n elements on the diagonal; and second, applying a diagonal similarity transformation to rows
and columns ilo to ihi to make the rows and columns as close in norm as possible. Both steps
are optional.
Balancing may reduce the 1-norm of the matrices, and improve the accuracy of the computed
eigenvalues and/or eigenvectors in the generalized eigenvalue problem Ax = λBx.

Input Parameters

job CHARACTER*1. Specifies the operations to be performed on A and B.
Must be 'N' or 'P' or 'S' or 'B'.
If job ='N', then no operations are done; simply set ilo=1, ihi=n,
lscale(i) =1.0 and rscale(i)=1.0 for
i = 1,...,n.
If job ='P', then permute only.
If job ='S', then scale only.
If job ='B', then both permute and scale.

n INTEGER. The order of the matrices A and B (n ≥ 0).

4-276

4 Intel® Math Kernel Library Reference Manual

a, b REAL for sggbal
DOUBLE PRECISION for dggbal
COMPLEX for cggbal
DOUBLE COMPLEX for zggbal.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

work REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max(1, 6n).

Output Parameters

a, b Overwritten by the balanced matrices A and B, respectively. If job
='N', a and b are not referenced.

ilo, ihi INTEGER. ilo and ihi are set to integers such that on exit a(i,j)=0
and b(i,j)=0 if i>j and j=1,...,ilo-1
or i=ihi+1,...,n.

If job ='N'or 'S', then ilo = 1 and ihi = n.

lscale,rscale REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n).

lscale contains details of the permutations and scaling factors applied
to the left side of A and B.
If Pj is the index of the row interchanged with row j, and Dj is the
scaling factor applied to row j, then

lscale(j) = Pj , for j = 1,..., ilo-1
 = Dj , for j = ilo,...,ihi
 = Pj , for j = ihi+1,..., n.
rscale contains details of the permutations and scaling factors applied
to the right side of A and B.
If Pj is the index of the column interchanged with column j, and Dj is
the scaling factor applied to column j, then

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-277

rscale(j) = Pj , for j = 1,..., ilo-1
 = Dj , for j = ilo,...,ihi
 = Pj , for j = ihi+1,..., n
The order in which the interchanges are made is n to ihi+1, then 1 to
ilo-1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ggbal interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

lscale Holds the vector of length (n).

rscale Holds the vector of length (n).

ilo Default value for this argument is ilo = 1.

ihi Default value for this argument is ihi = n.

job Must be 'B', 'S', 'P', or 'N'. The default value is 'B'.

4-278

4 Intel® Math Kernel Library Reference Manual

?ggbak
Forms the right or left eigenvectors of a generalized
eigenvalue problem.

Syntax

Fortran 77:

call sggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call dggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call cggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call zggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

Fortran 95:

call ggbak(v [,ilo] [,ihi] [,lscale] [,rscale] [,job] [,info])

Description

This routine forms the right or left eigenvectors of a real/complex generalized eigenvalue problem
 Ax = λBx
by backward transformation on the computed eigenvectors of the balanced pair of matrices output
by ?ggbal.

Input Parameters

job CHARACTER*1. Specifies the type of backward transformation required.
Must be 'N', 'P', 'S', or 'B'.
If job ='N', then no operations are done; return.
If job ='P', then do backward transformation for permutation only.
If job ='S', then do backward transformation for scaling only.
If job ='B', then do backward transformation for both permutation and
scaling.
This argument must be the same as the argument job supplied to
?ggbal.

side CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then v contains left eigenvectors.
If side = 'R', then v contains right eigenvectors.

n INTEGER. The number of rows of the matrix V (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-279

ilo, ihi INTEGER. The integers ilo and ihi determined by ?gebal.
Constraint:
If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, then ilo = 1 and ihi = 0.

lscale,rscale REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n).

The array lscale contains details of the permutations and/or scaling
factors applied to the left side of A and B, as returned by ?ggbal.

The array rscale contains details of the permutations and/or scaling
factors applied to the right side of A and B, as returned by ?ggbal.

m INTEGER. The number of columns of the matrix V
(m ≥ 0).

v REAL for sggbak
DOUBLE PRECISION for dggbak
COMPLEX for cggbak
DOUBLE COMPLEX for zggbak.
Array v(ldv,*). Contains the matrix of right or left eigenvectors to be
transformed, as returned by ?tgevc.
The second dimension of v must be at least max(1, m).

ldv INTEGER. The first dimension of v; at least max(1, n).

Output Parameters

v Overwritten by the transformed eigenvectors

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ggbak interface are the following:

v Holds the matrix V of size (n,m).

4-280

4 Intel® Math Kernel Library Reference Manual

lscale Holds the vector of length (n).

rscale Holds the vector of length (n).

ilo Default value for this argument is ilo = 1.

ihi Default value for this argument is ihi = n.

job Must be 'B', 'S', 'P', or 'N'. The default value is 'B'.

side If omitted, this argument is restored based on the presence of arguments lscale and
rscale as follows:
side = 'L', if lscale is present and rscale omitted,
side = 'R', if lscale is omitted and rscale present.
Note that there will be an error condition if both lscale and rscale are present or
if they both are omitted.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-281

?hgeqz
Implements the QZ method for finding the generalized
eigenvalues of the matrix pair (H,T).

Syntax

Fortran 77:

call shgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,
 alphai, beta, q, ldq, z, ldz, work, lwork, info)

call dhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,
 alphai, beta, q, ldq, z, ldz, work, lwork, info)

call chgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
 beta, q, ldq, z, ldz, work, lwork, rwork, info)

call zhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
 beta, q, ldq, z, ldz, work, lwork, rwork, info)

Fortran 95:

call hgeqz(h, t [,ilo] [,ihi] [,alphar] [,alphai] [,beta] [,q] [,z] [,job]
[,compq] [,compz] [,info])

call hgeqz(h, t [,ilo] [,ihi] [,alpha] [,beta] [,q] [,z] [,job] [,compq]
[,compz] [,info])

Description

This routine computes the eigenvalues of a real/complex matrix pair (H,T), where H is an upper
Hessenberg matrix and T is upper triangular, using the double-shift version (for real flavors) or
single-shift version (for complex flavors) of the QZ method.
Matrix pairs of this type are produced by the reduction to generalized upper Hessenberg form of a
real/complex matrix pair (A,B):

 A = Q1 H Z1
H , B = Q1 T Z1

H ,

as computed by ?gghrd.

For real flavors:
If job ='S', then the Hessenberg-triangular pair (H,T) is also reduced to generalized Schur form,

 H = Q S ZT , T = Q P ZT ,

4-282

4 Intel® Math Kernel Library Reference Manual

where Q and Z are orthogonal matrices, P is an upper triangular matrix, and S is a quasi-triangular
matrix with 1-by-1 and 2-by-2 diagonal blocks.
The 1-by-1 blocks correspond to real eigenvalues of the matrix pair (H,T) and the 2-by-2 blocks
correspond to complex conjugate pairs of eigenvalues.
Additionally, the 2-by-2 upper triangular diagonal blocks of P corresponding to 2-by-2 blocks of S
are reduced to positive diagonal form, that is, if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
P(j,j) > 0, and P(j+1,j+1) > 0.

For complex flavors:
If job ='S', then the Hessenberg-triangular pair (H,T) is also reduced to generalized Schur form,

 H = Q S ZH , T = Q P ZH ,

where Q and Z are unitary matrices, and S and P are upper triangular.

For all function flavors:
Optionally, the orthogonal/unitary matrix Q from the generalized Schur factorization may be
postmultiplied into an input matrix Q1, and the orthogonal/unitary matrix Z may be postmultiplied
into an input matrix Z1. If Q1 and Z1 are the orthogonal/unitary matrices from ?gghrd that
reduced the matrix pair (A,B) to generalized upper Hessenberg form, then the output matrices
Q1Q and Z1Z are the orthogonal/unitary factors from the generalized Schur factorization of
(A,B):

 A = (Q1Q) S (Z1Z)H , B = (Q1Q) P (Z1Z)H .

To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, of (A,B)) are computed as a
pair of values (alpha,beta). For chgeqz/zhgeqz, alpha and beta are complex, and for
shgeqz/dhgeqz, alpha is complex and beta real. If beta is nonzero, λ = alpha / beta is an
eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
 Ax = λBx
and if alpha is nonzero, µ = beta / alpha is an eigenvalue of the alternate form of the GNEP
 µAy = By .
Real eigenvalues (for real flavors) or the values of alpha and beta for the i-th eigenvalue (for
complex flavors) can be read directly from the generalized Schur form:
 alpha = S(i,i), beta = P(i,i).

Input Parameters

job CHARACTER*1. Specifies the operations to be performed. Must be 'E'
or 'S'.
If job ='E', then compute eigenvalues only;
If job ='S', then compute eigenvalues and the Schur form.

compq CHARACTER*1. Must be 'N', 'I', or 'V'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-283

If compq = 'N', left Schur vectors (q) are not computed;
If compq = 'I', q is initialized to the unit matrix and the matrix of left
Schur vectors of (H,T) is returned;

If compq = 'V', q must contain an orthogonal/unitary matrix Q1 on
entry and the product Q1Q is returned.

compz CHARACTER*1. Must be 'N', 'I', or 'V'.

If compz = 'N', left Schur vectors (q) are not computed;
If compz = 'I', z is initialized to the unit matrix and the matrix of
right Schur vectors of (H,T) is returned;

If compz = 'V', z must contain an orthogonal/unitary matrix Z1 on
entry and the product Z1Z is returned.

n INTEGER. The order of the matrices H, T, Q, and Z
(n ≥ 0).

ilo, ihi INTEGER. ilo and ihi mark the rows and columns of H which are in
Hessenberg form. It is assumed that H is already upper triangular in
rows and columns 1:ilo-1 and ihi+1:n. Constraint:
If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, then ilo = 1 and ihi = 0.

h,t,q,z,work REAL for shgeqz
DOUBLE PRECISION for dhgeqz
COMPLEX for chgeqz
DOUBLE COMPLEX for zhgeqz.
Arrays:
On entry, h(ldh,*) contains the n-by-n upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).

On entry, t(ldt,*) contains the n-by-n upper triangular matrix T.
The second dimension of t must be at least max(1, n).

q (ldq,*):
On entry, if compq ='V', this array contains the orthogonal/unitary
matrix Q1 used in the reduction of (A,B) to generalized Hessenberg
form.
If compq ='N', then q is not referenced.
The second dimension of q must be at least max(1, n).

4-284

4 Intel® Math Kernel Library Reference Manual

z (ldz,*):
On entry, if compz ='V', this array contains the orthogonal/unitary
matrix Z1 used in the reduction of (A,B) to generalized Hessenberg form.
If compz ='N', then z is not referenced.
The second dimension of z must be at least max(1, n).

work(lwork) is a workspace array.

ldh INTEGER. The first dimension of h; at least max(1, n).

ldt INTEGER. The first dimension of t; at least max(1, n).

ldq INTEGER. The first dimension of q;
If compq ='N', then ldq ≥ 1.
If compq ='I'or 'V', then ldq ≥ max(1,n).

ldz INTEGER. The first dimension of z;
If compq ='N', then ldz ≥ 1.
If compq ='I'or 'V', then ldz ≥ max(1,n).

lwork INTEGER. The dimension of the array work.
lwork ≥ max(1,n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

rwork REAL for chgeqz
DOUBLE PRECISION for zhgeqz.
Workspace array, DIMENSION at least max(1, n). Used in complex
flavors only.

Output Parameters

h For real flavors:
If job ='S', then, on exit, h contains the upper quasi-triangular matrix
S from the generalized Schur factorization; 2-by-2 diagonal blocks
(corresponding to complex conjugate pairs of eigenvalues) are returned
in standard form, with h(i,i) = h(i+1, i+1) and
h(i+1, i) * h(i, i+1) < 0.
If job ='E', then on exit the diagonal blocks of h match those of S, but
the rest of h is unspecified.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-285

For complex flavors:
If job ='S', then, on exit, h contains the upper triangular matrix S from
the generalized Schur factorization.
If job ='E', then on exit the diagonal of h matches that of S, but the rest
of h is unspecified.

t If job ='S', then, on exit, t contains the upper triangular matrix P from
the generalized Schur factorization.
For real flavors:
2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S are
reduced to positive diagonal form, that is, if h(j+1,j) is non-zero, then
t(j+1,j)=t(j,j+1)=0 and t(j,j) and t(j+1,j+1) will be positive.

If job ='E', then on exit the diagonal blocks of t match those of P, but
the rest of t is unspecified.

For complex flavors:
If job ='E', then on exit the diagonal of t matches that of P, but the rest
of t is unspecified.

alphar,alphai REAL for shgeqz;
DOUBLE PRECISION for dhgeqz.
Arrays, DIMENSION at least max(1,n).
The real and imaginary parts, respectively, of each scalar alpha defining
an eigenvalue of GNEP.

If alphai(j) is zero, then the j-th eigenvalue is real; if positive, then the
j-th and (j+1)-th eigenvalues are a complex conjugate pair, with
alphai(j+1) = -alphai(j).

alpha COMPLEX for chgeqz;
DOUBLE COMPLEX for zhgeqz.
Array, DIMENSION at least max(1,n).
The complex scalars alpha that define the eigenvalues of GNEP.
alphai(i) = S(i,i) in the generalized Schur factorization.

beta REAL for shgeqz
DOUBLE PRECISION for dhgeqz
COMPLEX for chgeqz
DOUBLE COMPLEX for zhgeqz.
Array, DIMENSION at least max(1,n).
For real flavors:
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha = (alphar(j), alphai(j)) and beta =

4-286

4 Intel® Math Kernel Library Reference Manual

beta(j) represent the j-th eigenvalue of the matrix pair (A,B), in one of
the forms
λ = alpha/beta or µ = beta/alpha. Since either λ or µ may overflow,
they should not, in general, be computed.

For complex flavors:
The real non-negative scalars beta that define the eigenvalues of GNEP.
beta(i) = P(i,i) in the generalized Schur factorization.
Together, the quantities alpha = alpha(j) and beta = beta(j) represent
the j-th eigenvalue of the matrix pair (A,B), in one of the forms
λ = alpha/beta or µ = beta/alpha. Since either λ or µ may overflow,
they should not, in general, be computed.

q On exit, if compq ='I', q is overwritten by the orthogonal/unitary
matrix of left Schur vectors of the pair (H,T), and if compq ='V', q is
overwritten by the orthogonal/unitary matrix of left Schur vectors of
(A,B).

z On exit, if compz ='I', z is overwritten by the orthogonal/unitary
matrix of right Schur vectors of the pair (H,T), and if compz ='V', z is
overwritten by the orthogonal/unitary matrix of right Schur vectors of
(A,B).

work(1) If info ≥ 0, on exit, work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1,...,n, the QZ iteration did not converge.
(H,T) is not in Schur form, but alphar(i), alphai(i) (for real flavors),
alpha(i) (for complex flavors), and beta(i), i=info+1,...,n should be
correct.

If info = n+1, ..., 2n, the shift calculation failed.
(H,T) is not in Schur form, but alphar(i), alphai(i) (for real flavors),
alpha(i) (for complex flavors), and beta(i), i =info-n+1,...,n should
be correct.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-287

Specific details for the routine hgeqz interface are the following:

h Holds the matrix H of size (n,n).

t Holds the matrix T of size (n,n).

alphar Holds the vector of length (n). Used in real flavors only.

alphai Holds the vector of length (n). Used in real flavors only.

alpha Holds the vector of length (n). Used in complex flavors only.

beta Holds the vector of length (n).

q Holds the matrix Q of size (n,n).

z Holds the matrix Z of size (n,n).

ilo Default value for this argument is ilo = 1.

ihi Default value for this argument is ihi = n.

job Must be 'E' or 'S'. The default value is 'E'.

compq If omitted, this argument is restored based on the presence of argument q as follows:
compq = 'I', if q is present,
compq = 'N', if q is omitted.
If present, compq must be equal to 'I' or 'V' and the argument q must also be
present.
Note that there will be an error condition if compq is present and q omitted.

compz If omitted, this argument is restored based on the presence of argument z as follows:
compz = 'I', if z is present,
compz = 'N', if z is omitted.
If present, compz must be equal to 'I' or 'V' and the argument z must also be
present.
Note that there will be an error condition if compz is present and z omitted.

4-288

4 Intel® Math Kernel Library Reference Manual

?tgevc
Computes some or all of the right and/or left
generalized eigenvectors of a pair of upper triangular
matrices.

Syntax

Fortran 77:

call stgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
 ldvr, mm, m, work, info)

call dtgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
 ldvr, mm, m, work, info)

call ctgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
 ldvr, mm, m, work, rwork, info)

call ztgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
 ldvr, mm, m, work, rwork, info)

Fortran 95:

call tgevc(s, p [,howmny] [,select] [,vl] [,vr] [,m] [,info])

Description

This routine computes some or all of the right and/or left eigenvectors of a pair of real/complex
matrices (S,P), where S is quasi-triangular (for real flavors) or upper triangular (for complex
flavors) and P is upper triangular.

Matrix pairs of this type are produced by the generalized Schur factorization of a real/complex
matrix pair (A,B):

 A = Q S ZH , B = Q P ZH

as computed by ?gghrd plus ?hgeqz.

The right eigenvector x and the left eigenvector y of (S,P) corresponding to an eigenvalue w are
defined by:

 S x = w P x , yH S = w yHP

The eigenvalues are not input to this routine, but are computed directly from the diagonal blocks or
diagonal elements of S and P.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-289

This routine returns the matrices X and/or Y of right and left eigenvectors of (S,P), or the products
Z X and/or Q Y, where Z and Q are input matrices.
If Q and Z are the orthogonal/unitary factors from the generalized Schur factorization of a matrix
pair (A,B), then Z X and Q Y are the matrices of right and left eigenvectors of (A,B).

Input Parameters

side CHARACTER*1. Must be 'R', 'L', or 'B'.
If side = 'R', compute right eigenvectors only.
If side = 'L', compute left eigenvectors only.
If side = 'B', compute both right and left eigenvectors.

howmny CHARACTER*1. Must be 'A' , 'B', or 'S'.
If howmny ='A', compute all right and/or left eigenvectors.
If howmny ='B', compute all right and/or left eigenvectors,
backtransformed by the matrices in vr and/or vl.
If howmny ='S', compute selected right and/or left eigenvectors,
specified by the logical array select.

select LOGICAL.
Array, DIMENSION at least max (1, n).
If howmny ='S', select specifies the eigenvectors to be computed.
If howmny= 'A'or 'B', select is not referenced.
For real flavors:
If ωj is a real eigenvalue, the corresponding real eigenvector is computed
if select(j) is .TRUE..
If ωj and ωj+1 are the real and imaginary parts of a complex eigenvalue,
the corresponding complex eigenvector is computed if either select(j)
or select(j+1) is .TRUE. , and on exit select(j) is set to .TRUE.and
select(j+1) is set to .FALSE..
For complex flavors:
The eigenvector corresponding to the j-th eigenvalue is computed if
select(j) is .TRUE..

n INTEGER. The order of the matrices A and B (n ≥ 0).

s,p,vl,vr,work REAL for stgevc
DOUBLE PRECISION for dtgevc
COMPLEX for ctgevc
DOUBLE COMPLEX for ztgevc.
Arrays:

4-290

4 Intel® Math Kernel Library Reference Manual

s(lds,*) contains the matrix S from a generalized Schur factorization
as computed by ?hgeqz. This matrix is upper quasi-triangular for real
flavors, and upper triangular for complex flavors.
The second dimension of s must be at least max(1, n).

p(ldp,*) contains the upper triangular matrix P from a generalized
Schur factorization as computed by ?hgeqz.
For real flavors, 2-by-2 diagonal blocks of P corresponding to 2-by-2
blocks of S must be in positive diagonal form.
For complex flavors, P must have real diagonal elements.
The second dimension of p must be at least max(1, n).

If side ='L' or 'B' and howmny ='B',
vl(ldvl,*) must contain an n-by-n matrix Q (usually the
orthogonal/unitary matrix Q of left Schur vectors returned by ?hgeqz).
The second dimension of vl must be at least max(1, mm). If side ='R' ,
vl is not referenced.

If side ='R' or 'B' and howmny ='B',
vr(ldvr,*) must contain an n-by-n matrix Z (usually the
orthogonal/unitary matrix Z of right Schur vectors returned by ?hgeqz).
The second dimension of vr must be at least max(1, mm). If side ='L' ,
vr is not referenced.

work(*) is a workspace array.
DIMENSION at least max (1, 6*n) for real flavors and
at least max (1, 2*n) for complex flavors.

lds INTEGER. The first dimension of s; at least max(1, n).

ldp INTEGER. The first dimension of p; at least max(1, n).

ldvl INTEGER. The first dimension of vl;
If side ='L'or 'B', then ldvl ≥ max(1,n).
If side ='R', then ldvl ≥ 1.

ldvr INTEGER. The first dimension of vr;
If side ='R'or 'B', then ldvr ≥ max(1,n).
If side ='L', then ldvr ≥ 1.

mm INTEGER. The number of columns in the arrays vl and/or vr (mm ≥ m).

rwork REAL for ctgevc
DOUBLE PRECISION for ztgevc.
Workspace array, DIMENSION at least max (1, 2*n). Used in complex
flavors only.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-291

Output Parameters

vl On exit, if side ='L'or 'B', vl contains:
if howmny ='A', the matrix Y of left eigenvectors of (S,P);
if howmny ='B', the matrix QY;
if howmny ='S', the left eigenvectors of (S,P) specified by select,
stored consecutively in the columns of vl, in the same order as their
eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex eigenvalue is stored
in two consecutive columns, the first holding the real part, and the
second the imaginary part.

vr On exit, if side ='R'or 'B', vr contains:
if howmny ='A', the matrix X of right eigenvectors of (S,P);
if howmny ='B', the matrix ZX;
if howmny ='S', the right eigenvectors of (S,P) specified by select,
stored consecutively in the columns of vr, in the same order as their
eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex eigenvalue is stored
in two consecutive columns, the first holding the real part, and the
second the imaginary part.

m INTEGER. The number of columns in the arrays vl and/or vr actually
used to store the eigenvectors.
If howmny ='A' or 'B', m is set to n.
For real flavors:
Each selected real eigenvector occupies one column and each selected
complex eigenvector occupies two columns.
For complex flavors:
Each selected eigenvector occupies one column.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
For real flavors:
If info = i>0, the 2-by-2 block (i:i+1) does not have a complex
eigenvalue.

4-292

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tgevc interface are the following:

s Holds the matrix S of size (n,n).

p Holds the matrix P of size (n,n).

select Holds the vector of length (n).

vl Holds the matrix VL of size (n,mm).

vr Holds the matrix VR of size (n,mm).

side Restored based on the presence of arguments vl and vr as follows:
side = 'B', if both vl and vr are present,
side = 'L', if vl is present and vr omitted,
side = 'R', if vl is omitted and vr present,
Note that there will be an error condition if both vl and vr are omitted.

howmny If omitted, this argument is restored based on the presence of argument select as
follows:
howmny = 'S', if select is present,
howmny = 'A', if select is omitted.
If present, howmny must be equal to 'A' or 'B' and the argument select must be
omitted.
Note that there will be an error condition if both howmny and select are present.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-293

?tgexc
Reorders the generalized Schur decomposition of a pair
of matrices (A,B) so that one diagonal block of (A,B)
moves to another row index.

Syntax

Fortran 77:

call stgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
 ifst, ilst, work, lwork, info)

call dtgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
 ifst, ilst, work, lwork, info)

call ctgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
 ifst, ilst, info)

call ztgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
 ifst, ilst, info)

Fortran 95:

call tgexc(a, b [,ifst] [,ilst] [,z] [,q] [,info])

Description

This routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix
pair (A,B) using an orthogonal/unitary equivalence transformation

 (A, B) = Q (A, B) ZH,

so that the diagonal block of (A, B) with row index ifst is moved to row ilst.
Matrix pair (A, B) must be in a generalized real-Schur/Schur canonical form (as returned by
?gges), that is, A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks and B is upper
triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are updated.

 Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'

 Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'.

4-294

4 Intel® Math Kernel Library Reference Manual

Input Parameters

wantq, wantz LOGICAL.
If wantq =.TRUE., update the left transformation
matrix Q;
If wantq =.FALSE., do not update Q;
If wantz =.TRUE., update the right transformation
matrix Z;
If wantz =.FALSE., do not update Z.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b, q, z REAL for stgexc
DOUBLE PRECISION for dtgexc
COMPLEX for ctgexc
DOUBLE COMPLEX for ztgexc.
Arrays:
a(lda,*) contains the matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B.
The second dimension of b must be at least max(1, n).

q (ldq,*)
If wantq =.FALSE., then q is not referenced.
If wantq =.TRUE., then q must contain the orthogonal/unitary matrix
Q.
The second dimension of q must be at least max(1, n).

z (ldz,*)
If wantz =.FALSE., then z is not referenced.
If wantz =.TRUE., then z must contain the orthogonal/unitary matrix Z.
The second dimension of z must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldq INTEGER. The first dimension of q;
If wantq =.FALSE., then ldq ≥ 1.
If wantq =.TRUE., then ldq ≥ max(1,n).

ldz INTEGER. The first dimension of z;
If wantz =.FALSE., then ldz ≥ 1.
If wantz =.TRUE., then ldz ≥ max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-295

ifst, ilst INTEGER. Specify the reordering of the diagonal blocks of (A, B). The
block with row index ifst is moved to row ilst, by a sequence of
swapping between adjacent blocks. Constraint: 1 ≤ ifst , ilst ≤ n.

work REAL for stgexc;
DOUBLE PRECISION for dtgexc.
Workspace array, DIMENSION (lwork). Used in real flavors only.

lwork INTEGER. The dimension of work; must be at least 4n +16.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

Output Parameters

a, b Overwritten by the updated matrices A and B.

ifst, ilst Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on entry, it is
changed to point to the first row; ilst always points to the first row of
the block in its final position (which may differ from its input value by
±1).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the transformed matrix pair (A, B) would be too far from
generalized Schur form; the problem is ill-conditioned. (A, B) may have
been partially reordered, and ilst points to the first row of the current
position of the block being moved.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tgexc interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

z Holds the matrix Z of size (n,n).

4-296

4 Intel® Math Kernel Library Reference Manual

q Holds the matrix Q of size (n,n).

wantq Restored based on the presence of the argument q as follows:
wantq = .TRUE, if q is present,
wantq = .FALSE, if q is omitted.

wantz Restored based on the presence of the argument z as follows:
wantz = .TRUE, if z is present,
wantz = .FALSE, if z is omitted.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-297

?tgsen
Reorders the generalized Schur decomposition of a pair of
matrices (A,B) so that a selected cluster of eigenvalues
appears in the leading diagonal blocks
of (A,B).

Syntax

Fortran 77:

call stgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,
 alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,
 lwork, iwork, liwork, info)

call dtgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,
 alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,
 lwork, iwork, liwork, info)

call ctgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
 beta, q, ldq, z, ldz, m, pl, pr, dif, work,
 lwork, iwork, liwork, info)

call ztgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
 beta, q, ldq, z, ldz, m, pl, pr, dif, work,
 lwork, iwork, liwork, info)

Fortran 95:

call tgsen(a, b, select [,alphar] [,alphai] [,beta] [,ijob] [,q] [,z] [,pl]
[,pr] [,dif] [,m] [,info])

call tgsen(a, b, select [,alpha] [,beta] [,ijob] [,q] [,z] [,pl] [,pr] [,dif]
[,m] [,info])

Description

This routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix
pair (A, B) (in terms of an orthogonal/unitary equivalence transformation Q' * (A, B) * Z), so that a
selected cluster of eigenvalues appears in the leading diagonal blocks of the pair (A, B).
The leading columns of Q and Z form orthonormal/unitary bases of the corresponding left and
right eigenspaces (deflating subspaces).
(A, B) must be in generalized real-Schur/Schur canonical form (as returned by ?gges), that is, A
and B are both upper triangular.
?tgsen also computes the generalized eigenvalues

4-298

4 Intel® Math Kernel Library Reference Manual

ωj = (alphar(j) + alphai(j)*i)/beta(j) (for real flavors)
ωj = alpha(j)/beta(j) (for complex flavors)
of the reordered matrix pair (A, B).

Optionally, the routine computes the estimates of reciprocal condition numbers for eigenvalues
and eigenspaces. These are
Difu[(A11, B11), (A22, B22)] and Difl[(A11, B11), (A22, B22)], that is, the separation(s) between the
matrix pairs (A11, B11) and (A22, B22) that correspond to the selected cluster and the eigenvalues
outside the cluster, respectively, and norms of "projections" onto left and right eigenspaces with
respect to the selected cluster in the (1,1)-block.

Input Parameters

ijob INTEGER. Specifies whether condition numbers are required for the
cluster of eigenvalues (pl and pr) or the deflating subspaces Difu and
Difl.
If ijob =0, only reorder with respect to select;
If ijob =1, reciprocal of norms of "projections" onto left and right
eigenspaces with respect to the selected cluster (pl and pr);
If ijob =2, compute upper bounds on Difu and Difl, using
F-norm-based estimate (dif (1:2));
If ijob =3, compute estimate of Difu and Difl, using 1-norm-based
estimate (dif (1:2)). This option is about 5 times as expensive as ijob
=2;
If ijob =4, compute pl, pr and dif (i.e., options 0, 1 and 2 above).
This is an economic version to get it all;
If ijob =5, compute pl, pr and dif (i.e., options 0, 1 and 3 above).

wantq, wantz LOGICAL.
If wantq =.TRUE., update the left transformation
matrix Q;
If wantq =.FALSE., do not update Q;
If wantz =.TRUE., update the right transformation
matrix Z;
If wantz =.FALSE., do not update Z.

select LOGICAL.
Array, DIMENSION at least max (1, n).
Specifies the eigenvalues in the selected cluster.
To select an eigenvalue ωj, select(j) must be .TRUE. For real flavors:
to select a complex conjugate pair of eigenvalues ωj and

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-299

ωj+1(corresponding 2 by 2 diagonal block), select(j) and/or
select(j+1) must be set to .TRUE.; the complex conjugate ωj and ωj+1
must be either both included in the cluster or both excluded.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a,b,q,z,work REAL for stgsen
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.
Arrays:
a(lda,*) contains the matrix A.
For real flavors: A is upper quasi-triangular, with (A, B) in generalized
real Schur canonical form.
For complex flavors: A is upper triangular, in generalized Schur
canonical form.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B.
For real flavors: B is upper triangular, with (A, B) in generalized real
Schur canonical form.
For complex flavors: B is upper triangular, in generalized Schur
canonical form.
The second dimension of b must be at least max(1, n).

q (ldq,*)
If wantq =.TRUE., then q is an n-by-n matrix;
If wantq =.FALSE., then q is not referenced.
The second dimension of q must be at least max(1, n).

z (ldz,*)
If wantz =.TRUE., then z is an n-by-n matrix;
If wantz =.FALSE., then z is not referenced.
The second dimension of z must be at least max(1, n).

work(lwork) is a workspace array. If ijob=0, work is not referenced.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldq INTEGER. The first dimension of q; ldq ≥ 1.
If wantq =.TRUE., then ldq ≥ max(1,n).

ldz INTEGER. The first dimension of z; ldz ≥ 1.
If wantz =.TRUE., then ldz ≥ max(1,n).

4-300

4 Intel® Math Kernel Library Reference Manual

lwork INTEGER. The dimension of the array work.
For real flavors:
If ijob = 1, 2, or 4, lwork ≥ max(4n+16, 2m(n−m)).
If ijob = 3 or 5, lwork ≥ max(4n+16, 4m(n−m)).
For complex flavors:
If ijob = 1, 2, or 4, lwork ≥ max(1, 2m(n−m)).
If ijob = 3 or 5, lwork ≥ max(1, 4m(n−m)).

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER. Workspace array, DIMENSION (liwork).
If ijob=0, iwork is not referenced.

liwork INTEGER. The dimension of the array iwork.
For real flavors:
If ijob = 1, 2, or 4, liwork ≥ n+6.
If ijob = 3 or 5, liwork ≥ max(n+6, 2m(n−m)).
For complex flavors:
If ijob = 1, 2, or 4, liwork ≥ n+2.
If ijob = 3 or 5, liwork ≥ max(n+2, 2m(n−m)).

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

a, b Overwritten by the reordered matrices A and B, respectively.

alphar,alphai REAL for stgsen;
DOUBLE PRECISION for dtgsen.
Arrays, DIMENSION at least max(1,n). Contain values that form
generalized eigenvalues in real flavors.
See beta.

alpha COMPLEX for ctgsen;
DOUBLE COMPLEX for ztgsen.
Array, DIMENSION at least max(1,n). Contain values that form
generalized eigenvalues in complex flavors. See beta.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-301

beta REAL for stgsen
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n, will be the
generalized eigenvalues.
alphar(j) + alphai(j)*i and beta(j), j=1,...,n are the diagonals of the
complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks
of the real generalized Schur form of (A,B) were further reduced to
triangular form using complex unitary transformations. If alphai(j) is
zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st
eigenvalues are a complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
The diagonal elements of A and B, respectively, when the pair (A,B) has
been reduced to generalized Schur form. alpha(i)/beta(i), i=1,...,n are
the generalized eigenvalues.

q If wantq =.TRUE., then, on exit, Q has been postmultiplied by the left
orthogonal transformation matrix which reorder (A, B). The leading m
columns of Q form orthonormal bases for the specified pair of left
eigenspaces (deflating subspaces).

z If wantz =.TRUE., then, on exit, Z has been postmultiplied by the left
orthogonal transformation matrix which reorder (A, B). The leading m
columns of Z form orthonormal bases for the specified pair of left
eigenspaces (deflating subspaces).

m INTEGER. The dimension of the specified pair of left and right
eigen-spaces (deflating subspaces); 0 ≤ m ≤ n.

pl, pr REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If ijob = 1, 4, or 5, pl and pr are lower bounds on the reciprocal of the
norm of "projections" onto left and right eigenspaces with respect to the
selected cluster.
0 < pl, pr ≤ 1. If m = 0 or m = n, pl = pr = 1.
If ijob = 0, 2 or 3, pl and pr are not referenced

dif REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (2).

4-302

4 Intel® Math Kernel Library Reference Manual

If ijob ≥ 2, dif(1:2) store the estimates of Difu and Difl.
If ijob = 2 or 4, dif(1:2) are F-norm-based upper bounds on Difu and
Difl.
If ijob = 3 or 5, dif(1:2) are 1-norm-based estimates of Difu and Difl.
If m = 0 or n,
dif(1:2) = F-norm([A, B]).
If ijob = 0 or 1, dif is not referenced.

work(1) If ijob is not 0 and info = 0, on exit, work(1) contains the minimum
value of lwork required for optimum performance. Use this lwork for
subsequent runs.

iwork(1) If ijob is not 0 and info = 0, on exit, iwork(1) contains the
minimum value of liwork required for optimum performance. Use this
liwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, Reordering of (A, B) failed because the transformed matrix
pair (A, B) would be too far from generalized Schur form; the problem is
very ill-conditioned. (A, B) may have been partially reordered. If
requested, 0 is returned in dif(*), pl and pr.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tgsen interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

select Holds the vector of length (n).

alphar Holds the vector of length (n). Used in real flavors only.

alphai Holds the vector of length (n). Used in real flavors only.

alpha Holds the vector of length (n). Used in complex flavors only.

beta Holds the vector of length (n).

q Holds the matrix Q of size (n,n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-303

z Holds the matrix Z of size (n,n).

dif Holds the vector of length (2).

ijob Must be 0, 1, 2, 3, 4, or 5. The default value is 0.

wantq Restored based on the presence of the argument q as follows:
wantq = .TRUE, if q is present,
wantq = .FALSE, if q is omitted.

wantz Restored based on the presence of the argument z as follows:
wantz = .TRUE, if z is present,
wantz = .FALSE, if z is omitted.

4-304

4 Intel® Math Kernel Library Reference Manual

?tgsyl
Solves the generalized Sylvester equation.

Syntax

Fortran 77:

call stgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
 lde, f, ldf, scale, dif, work, lwork, iwork, info)

call dtgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
 lde, f, ldf, scale, dif, work, lwork, iwork, info)

call ctgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
 lde, f, ldf, scale, dif, work, lwork, iwork, info)

call ztgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
 lde, f, ldf, scale, dif, work, lwork, iwork, info)

Fortran 95:

call tgsyl(a, b, c, d, e, f [,ijob] [,trans] [,scale] [,dif] [,info])

Description

This routine solves the generalized Sylvester equation:

 A R - L B = scale * C

 D R - L E = scale * F

where R and L are unknown m-by-n matrices, (A, D), (B, E) and (C, F) are given matrix pairs of
size m-by-m, n-by-n and m-by-n, respectively, with real/complex entries. (A, D) and (B, E) must be
in generalized real-Schur/Schur canonical form, that is, A, B are upper quasi-triangular/triangular
and D, E are upper triangular.

The solution (R, L) overwrites (C, F). The factor scale, 0 ≤ scale ≤ 1,
is an output scaling factor chosen to avoid overflow.

In matrix notation the above equation is equivalent to the following:
solve Zx = scale* b, where Z is defined as

Z
kron In A,() k– ron B′ Im,()

kron In D,() k– ron E′ Im,() 
 
 

=

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-305

Here Ik is the identity matrix of size k and X' is the transpose/conjugate-transpose of X. kron(X, Y)
is the Kronecker product between the matrices X and Y.
If trans = 'T'(for real flavors), or trans = 'C'(for complex flavors), the routine ?tgsyl
solves the transposed/conjugate-transposed system
Z' y = scale * b, which is equivalent to solve for R and L in

 A' R + D' L = scale * C

 R B' + L E' = scale * (-F)

This case (trans = 'T' for stgsyl/dtgsyl or trans = 'C' for ctgsyl/ztgsyl) is used to
compute an one-norm-based estimate of Dif[(A,D), (B,E)], the separation between the matrix pairs
(A,D) and (B,E), using slacon/clacon.

If ijob ≥ 1, ?tgsyl computes a Frobenius norm-based estimate of Dif[(A,D), (B,E)]. That is, the
reciprocal of a lower bound on the reciprocal of the smallest singular value of Z. This is a level 3
BLAS algorithm.

Input Parameters

trans CHARACTER*1. Must be 'N', 'T', or 'C'.
If trans = 'N', solve the generalized Sylvester equation.
If trans = 'T', solve the 'transposed' system (for real flavors only).
If trans = 'C', solve the ' conjugate transposed' system (for complex
flavors only).

ijob INTEGER. Specifies what kind of functionality to be performed:
If ijob =0, solve the generalized Sylvester equation only;
If ijob =1, perform the functionality of ijob =0
and ijob =3;
If ijob =2, perform the functionality of ijob =0
and ijob =4;
If ijob =3, only an estimate of Dif[(A,D), (B,E)] is computed (look
ahead strategy is used);
If ijob =4, only an estimate of Dif[(A,D), (B,E)] is computed (?gecon
on sub-systems is used).
If trans = 'T'or 'C', ijob is not referenced.

m INTEGER.
The order of the matrices A and D, and the row dimension of the
matrices C, F, R and L.

4-306

4 Intel® Math Kernel Library Reference Manual

n INTEGER.
The order of the matrices B and E, and the column dimension of the
matrices C, F, R, and L.

a,b,c,d,e,f,work REAL for stgsyl
DOUBLE PRECISION for dtgsyl
COMPLEX for ctgsyl
DOUBLE COMPLEX for ztgsyl.

Arrays:
a(lda,*) contains the upper quasi-triangular (for real flavors) or upper
triangular (for complex flavors)
matrix A.
The second dimension of a must be at least max(1, m).

b(ldb,*) contains the upper quasi-triangular (for real flavors) or upper
triangular (for complex flavors)
matrix B.
The second dimension of b must be at least max(1, n).

c (ldc,*) contains the right-hand-side of the first matrix equation in the
generalized Sylvester equation (as defined by trans)
The second dimension of c must be at least max(1, n).

d (ldd,*) contains the upper triangular matrix D.
The second dimension of d must be at least max(1, m).

e (lde,*) contains the upper triangular matrix E.
The second dimension of e must be at least max(1, n).

f (ldf,*) contains the right-hand-side of the second matrix equation in
the generalized Sylvester equation (as defined by trans)
The second dimension of f must be at least max(1, n).

work(lwork) is a workspace array. If ijob=0, work is not referenced.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldc INTEGER. The first dimension of c; at least max(1, m).

ldd INTEGER. The first dimension of d; at least max(1, m).

lde INTEGER. The first dimension of e; at least max(1, n).

ldf INTEGER. The first dimension of f; at least max(1, m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-307

lwork INTEGER. The dimension of the array work . lwork ≥ 1.
If ijob = 1 or 2 and trans = 'N', lwork ≥ 2mn.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER. Workspace array, DIMENSION at least (m+n+6) for real
flavors, and at least (m+n+2) for complex flavors.
If ijob=0, iwork is not referenced.

Output Parameters

c If ijob=0, 1, or 2, overwritten by the solution R.
If ijob=3 or 4 and trans = 'N', c holds R, the solution achieved
during the computation of the Dif-estimate.

f If ijob=0, 1, or 2, overwritten by the solution L.
If ijob=3 or 4 and trans = 'N', f holds L, the solution achieved
during the computation of the Dif-estimate.

dif REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
On exit, dif is the reciprocal of a lower bound of the reciprocal of the
Dif-function, that is, dif is an upper bound of Dif[(A,D), (B,E)] =
sigma_min(Z),
where Z as in (2).
If ijob = 0, or trans = 'T'(for real flavors), or trans = 'C'(for
complex flavors), dif is not touched.

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
On exit, scale is the scaling factor in the generalized Sylvester
equation. If 0 < scale < 1, c and f hold the solutions R and L,
respectively, to a slightly perturbed system but the input matrices A, B, D
and E have not been changed. If scale = 0, c and f hold the solutions R
and L, respectively, to the homogeneous system with C = F = 0.
Normally, scale = 1.

work(1) If ijob is not 0 and info = 0, on exit, work(1) contains the minimum
value of lwork required for optimum performance. Use this lwork for
subsequent runs.

4-308

4 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info > 0, (A, D) and (B, E) have common or close eigenvalues.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tgsyl interface are the following:

a Holds the matrix A of size (m,m).

b Holds the matrix B of size (n,n).

c Holds the matrix C of size (m,n).

d Holds the matrix D of size (m,m).

e Holds the matrix E of size (n,n).

f Holds the matrix F of size (m,n).

ijob Must be 0, 1, 2, 3, or 4. The default value is 0.

trans Must be 'N' or 'T'. The default value is 'N'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-309

?tgsna
Estimates reciprocal condition numbers for specified
eigenvalues and/or eigenvectors of a pair of matrices in
generalized real Schur canonical form.

Syntax

Fortran 77:

call stgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
 ldvr, s, dif, mm, m, work, lwork, iwork, info)

call dtgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
 ldvr, s, dif, mm, m, work, lwork, iwork, info)

call ctgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
 ldvr, s, dif, mm, m, work, lwork, iwork, info)

call ztgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
 ldvr, s, dif, mm, m, work, lwork, iwork, info)

Fortran 95:

call tgsna(a, b [,s] [,dif] [,vl] [,vr] [,select] [,m] [,info])

Description

The real flavors stgsna/dtgsna of this routine estimate reciprocal condition numbers for
specified eigenvalues and/or eigenvectors of a matrix pair (A, B) in generalized real Schur
canonical form (or of any matrix pair (Q A ZT, Q B ZT) with orthogonal matrices Q and Z.
(A, B) must be in generalized real Schur form (as returned by sgges/dgges), that is, A is block
upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular.

The complex flavors ctgsna/ztgsna estimate reciprocal condition numbers for specified
eigenvalues and/or eigenvectors of a matrix pair (A, B). (A, B) must be in generalized Schur
canonical form , that is, A and B are both upper triangular.

Input Parameters

job CHARACTER*1. Specifies whether condition numbers are required for
eigenvalues or eigenvectors.
Must be 'E' or 'V' or 'B'.
If job ='E', for eigenvalues only (compute s).

4-310

4 Intel® Math Kernel Library Reference Manual

If job ='V', for eigenvectors only (compute dif).
If job ='B', for both eigenvalues and eigenvectors (compute both s and
dif).

howmny CHARACTER*1. Must be 'A' or 'S'.
If howmny ='A', compute condition numbers for all eigenpairs.
If howmny ='S', compute condition numbers for selected eigenpairs
specified by the logical array select.

select LOGICAL.
Array, DIMENSION at least max (1, n).
If howmny ='S', select specifies the eigenpairs for which condition
numbers are required.
If howmny= 'A', select is not referenced.
For real flavors:
To select condition numbers for the eigenpair corresponding to a real
eigenvalue ωj, select(j) must be set to .TRUE.; to select condition
numbers corresponding to a complex conjugate pair of eigenvalues ωj
and ωj+1, either select(j) or select(j+1) must be set to .TRUE.
For complex flavors:
To select condition numbers for the corresponding j-th eigenvalue and/or
eigenvector, select(j) must be set to .TRUE..

n INTEGER. The order of the square matrix pair (A, B)
 (n ≥ 0).

a,b,vl,vr,work REAL for stgsna
DOUBLE PRECISION for dtgsna
COMPLEX for ctgsna
DOUBLE COMPLEX for ztgsna.
Arrays:
a(lda,*) contains the upper quasi-triangular (for real flavors) or upper
triangular (for complex flavors)
matrix A in the pair (A, B).
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper triangular matrix B in the pair (A, B).
The second dimension of b must be at least max(1, n).

If job ='E' or 'B',
vl(ldvl,*) must contain left eigenvectors of (A, B), corresponding to
the eigenpairs specified by howmny and select. The eigenvectors must

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-311

be stored in consecutive columns of vl, as returned by ?tgevc.
If job ='V', vl is not referenced.
The second dimension of vl must be at least max(1, m).

If job ='E' or 'B',
vr(ldvr,*) must contain right eigenvectors of (A, B), corresponding
to the eigenpairs specified by howmny and select. The eigenvectors
must be stored in consecutive columns of vr, as returned by ?tgevc.
If job ='V', vr is not referenced.
The second dimension of vr must be at least max(1, m).

work(lwork) is a workspace array. If job ='E', work is not
referenced.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

ldvl INTEGER. The first dimension of vl; ldvl ≥ 1.
If job ='E'or 'B', then ldvl ≥ max(1,n).

ldvr INTEGER. The first dimension of vr; ldvr ≥ 1.
If job ='E'or 'B', then ldvr ≥ max(1,n).

mm INTEGER. The number of elements in the arrays s and dif (mm ≥ m).

lwork INTEGER. The dimension of the array work.
For real flavors:
lwork ≥ n.
If job ='V' or 'B', lwork ≥ 2n(n+2)+16.
For complex flavors:
lwork ≥ 1.
If job ='V' or 'B', lwork ≥ 2n2.

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER. Workspace array, DIMENSION at least (n+6) for real flavors,
and at least (n+2) for complex flavors.
If ijob ='E', iwork is not referenced.

4-312

4 Intel® Math Kernel Library Reference Manual

Output Parameters

s REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm).
If job ='E' or 'B', contains the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the array.
If job ='V', s is not referenced.
For real flavors:
For a complex conjugate pair of eigenvalues two consecutive elements
of s are set to the same value. Thus, s(j), dif(j), and the j-th columns of
vl and vr all correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).

dif REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm).
If job ='V' or 'B', contains the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive elements of
the array. If the eigenvalues cannot be reordered to compute dif(j),
dif(j) is set to 0; this can only occur when the true value would be very
small anyway.
If job ='E', dif is not referenced.
For real flavors:
For a complex eigenvector, two consecutive elements of dif are set to
the same value.
For complex flavors:
For each eigenvalue/vector specified by select, dif stores a Frobenius
norm-based estimate of Difl.

m INTEGER. The number of elements in the arrays s and dif used to
store the specified condition numbers; for each selected eigenvalue one
element is used.
If howmny ='A', m is set to n.

work(1) work(1)If job is not 'E' and info = 0, on exit, work(1) contains
the minimum value of lwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-313

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tgsna interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

s Holds the vector of length (mm).

dif Holds the vector of length (mm).

vl Holds the matrix VL of size (n,mm).

vr Holds the matrix VR of size (n,mm).

select Holds the vector of length (n).

howmny Restored based on the presence of the argument select as follows:
howmny = 'S', if select is present,
howmny = 'A', if select is omitted.

job Restored based on the presence of arguments s and dif as follows:
job = 'B', if both s and dif are present,
job = 'E', if s is present and dif omitted,
job = 'V', if s is omitted and dif present,
Note that there will be an error condition if both s and dif are omitted.

4-314

4 Intel® Math Kernel Library Reference Manual

Generalized Singular Value Decomposition
This section describes LAPACK computational routines used for finding the generalized singular
value decomposition (GSVD) of two matrices A and B as

UHAQ = D1 * (0 R),

VHBQ = D2 * (0 R),

where U, V, and Q are orthogonal/unitary matrices, R is a nonsingular upper triangular matrix, and
D1 , D2 are “diagonal” matrices of the structure detailed in the routines description section.

Table 4-7 lists LAPACK routines (Fortran-77 interface) that perform generalized singular value
decomposition of matrices. Respective routine names in Fortran-95 interface are without the first
symbol (see Routine Naming Conventions).

You can use routines listed in the above table as well as the driver routine ?ggsvd to find the
GSVD of a pair of general rectangular matrices.

?ggsvp
Computes the preprocessing decomposition for the
generalized SVD.

Syntax

Fortran 77:

call sggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
 k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info)

call dggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
 k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info)

Table 4-7 Computational Routines for Generalized Singular Value Decomposition

Routine name Operation performed

?ggsvp Computes the preprocessing
decomposition for the generalized SVD

?tgsja Computes the generalized SVD of two
upper triangular or trapezoidal matrices

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-315

call cggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
 k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)

call zggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
 k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)

Fortran 95:

call ggsvp(a, b, tola, tolb [,k] [,l] [,u] [,v] [,q] [,info])

Description

This routine computes orthogonal matrices U, V and Q such that

 , if m-k-l ≥ 0

 = , if m-k-l < 0

where the k-by-k matrix A12 and l-by-l matrix B13 are nonsingular upper triangular; A23 is l-by-l
upper triangular if m-k-l ≥ 0, otherwise A23 is (m-k)-by-l upper trapezoidal. The sum k+l is
equal to the effective numerical rank of the (m+p)-by-n matrix (AH,BH)H.

This decomposition is the preprocessing step for computing the Generalized Singular Value
Decomposition (GSVD), see subroutine ?ggsvd.

n k– l– k l

U
H
A Q

k

l

m k– l–

0 A12 A13

0 0 A23

0 0 0 
 
 
 

=

n k– l– k l

k

m k–

0 A12 A13

0 0 A23 
 
 

n k– l– k l

V
H
B Q

l

p l–

0 0 B13

0 0 0 
 =

4-316

4 Intel® Math Kernel Library Reference Manual

Input Parameters

jobu CHARACTER*1. Must be 'U' or 'N'.
If jobu ='U', orthogonal/unitary matrix U is computed.
If jobu ='N', U is not computed.

jobv CHARACTER*1. Must be 'V' or 'N'.
If jobv ='V', orthogonal/unitary matrix V is computed.
If jobv ='N', V is not computed.

jobq CHARACTER*1. Must be 'Q' or 'N'.
If jobq ='Q', orthogonal/unitary matrix Q is computed.
If jobq ='N', Q is not computed.

m INTEGER. The number of rows of the matrix A (m ≥ 0).

p INTEGER. The number of rows of the matrix B (p ≥ 0).

n INTEGER. The number of columns of the matrices A and B (n ≥ 0).

a,b,tau,work REAL for sggsvp
DOUBLE PRECISION for dggsvp
COMPLEX for cggsvp
DOUBLE COMPLEX for zggsvp.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

tau(*) is a workspace array. The dimension of tau must be at least
max(1, n).

work(*) is a workspace array. The dimension of work must be at least
max(1, 3n, m, p).

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

tola, tolb REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the thresholds to determine the effective numerical
rank of matrix B and a subblock of A. Generally, they are set to
 tola = max(m, n)*||A||*MACHEPS,

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-317

 tolb = max(p, n)*||B||*MACHEPS.
The size of tola and tolb may affect the size of backward errors of the
decomposition.

ldu INTEGER. The first dimension of the output array u.
ldu ≥ max(1, m) if jobu ='U'; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the output array v.
ldv ≥ max(1, p) if jobv ='V'; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the output array q.
ldq ≥ max(1, n) if jobq ='Q'; ldq ≥ 1 otherwise.

iwork INTEGER. Workspace array, DIMENSION at least max(1, n).

rwork REAL for cggsvp
DOUBLE PRECISION for zggsvp.
Workspace array, DIMENSION at least max(1, 2n). Used in complex
flavors only.

Output Parameters

a Overwritten by the triangular (or trapezoidal) matrix described in the
Description section.

b Overwritten by the triangular matrix described in the Description
section.

k, l INTEGER.
On exit, k and l specify the dimension of subblocks.
The sum k +l is equal to effective numerical rank of
(AH, BH)H.

u, v, q REAL for sggsvp
DOUBLE PRECISION for dggsvp
COMPLEX for cggsvp
DOUBLE COMPLEX for zggsvp.
Arrays:
If jobu ='U', u(ldu,*) contains the orthogonal/unitary matrix U.
The second dimension of u must be at least max(1, m).
If jobu ='N', u is not referenced.

If jobv ='V', v(ldv,*) contains the orthogonal/unitary matrix V.
The second dimension of v must be at least max(1, m).
If jobv ='N', v is not referenced.

4-318

4 Intel® Math Kernel Library Reference Manual

If jobq ='Q', q(ldq,*) contains the orthogonal/unitary matrix Q.
The second dimension of q must be at least max(1, n).
If jobq ='N', q is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ggsvp interface are the following:

a Holds the matrix A of size (m,n).

b Holds the matrix B of size (p,n).

u Holds the matrix U of size (m,m).

v Holds the matrix V of size (p,m).

q Holds the matrix Q of size (n,n).

jobu Restored based on the presence of the argument u as follows:
jobu = 'U', if u is present,
jobu = 'N', if u is omitted.

jobv Restored based on the presence of the argument v as follows:
jobz = 'V', if v is present,
jobz = 'N', if v is omitted.

jobq Restored based on the presence of the argument q as follows:
jobz = 'Q', if q is present,
jobz = 'N', if q is omitted.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-319

?tgsja
Computes the generalized SVD of two upper triangular
or trapezoidal matrices.

Syntax

Fortran 77:

call stgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
 tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call dtgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
 tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call ctgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
 tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call ztgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
 tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

Fortran 95:

call tgsja(a, b, tola, tolb, k, l [,u] [,v] [,q] [,jobu] [,jobv] [,jobq]
[,alpha] [,beta] [,ncycle] [,info])

Description

This routine computes the generalized singular value decomposition (GSVD) of two real/complex
upper triangular (or trapezoidal) matrices A and B. On entry, it is assumed that matrices A and B
have the following forms, which may be obtained by the preprocessing subroutine?ggsvp from a
general m-by-n matrix A and p-by-n matrix B:

 , if m-k-l ≥ 0

n k– l– k l

A

k

l

m k– l–

0 A12 A13

0 0 A23

0 0 0 
 
 
 

=

4-320

4 Intel® Math Kernel Library Reference Manual

 = , if m-k-l < 0

where the k-by-k matrix A12 and l-by-l matrix B13 are nonsingular upper triangular; A23 is l-by-l
upper triangular if m-k-l ≥ 0, otherwise A23 is (m-k)-by-l upper trapezoidal.

On exit,

 UH A Q = D1*(0 R), VH B Q = D2*(0 R),
where U, V and Q are orthogonal/unitary matrices, R is a nonsingular upper triangular matrix, and
D1 and D2 are “diagonal'' matrices, which are of the following structures:

If m-k-l ≥ 0,

where

n k– l– k l

k

m k–

0 A12 A13

0 0 A23 
 
 

n k– l– k l

B
l

p l–

0 0 B13

0 0 0 
 =

D1

k

l

m k– l–

I
k

0
l

0 C

0 0 
 
 
 

=

D2
l

p l–

0
k

S
l

0 0 
 =

n k– l– k l

0 R()
k

l

0 R11 R12

0 0 R22 
 
 

=

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-321

C = diag (alpha(k+1),...,alpha(k+l))
S = diag (beta(k+1),...,beta(k+l))
C2 + S2 = I
R is stored in a(1:k+l, n-k-l+1:n) on exit.

If m-k-l < 0,

,

where

C = diag (alpha(k+1),...,alpha(m)),
S = diag (beta(k+1),...,beta(m)),
C2 + S2 = I

 On exit, is stored in a(1:m, n-k-l+1:n) and R33 is stored

in b(m-k+1:l, n+m-k-l+1:n).

k m k– k l m–+

D1
k

m k–

I 0 0

0 C 0 
 =

k m k– k l m–+

D2

m k–

k l m–+

p l–

0 S 0

0 0 I

0 0 0 
 
 
 

=

n k– l– k m k– k l m–+

0 R()
k

m k–

k l m–+

0 R11 R12 R13

0 0 R22 R23

0 0 0 R33 
 
 
 
 

=

R11

0

R12

R22

R13

R23 
 
 

4-322

4 Intel® Math Kernel Library Reference Manual

The computation of the orthogonal/unitary transformation matrices U, V or Q is optional. These
matrices may either be formed explicitly, or they may be postmultiplied into input matrices U1,
V1, or Q1.

Input Parameters

jobu CHARACTER*1. Must be 'U', 'I', or 'N'.
If jobu ='U', u must contain an orthogonal/unitary matrix U1 on
entry.
If jobu ='I', u is initialized to the unit matrix.
If jobu ='N', u is not computed.

jobv CHARACTER*1. Must be 'V', 'I', or 'N'.
If jobv ='V', v must contain an orthogonal/unitary matrix V1 on entry.
If jobv ='I', v is initialized to the unit matrix.
If jobv ='N', v is not computed.

jobq CHARACTER*1. Must be 'Q', 'I', or 'N'.
If jobq ='Q', q must contain an orthogonal/unitary matrix Q1 on
entry.
If jobq ='I', q is initialized to the unit matrix.
If jobq ='N', q is not computed.

m INTEGER. The number of rows of the matrix A (m ≥ 0).

p INTEGER. The number of rows of the matrix B (p ≥ 0).

n INTEGER. The number of columns of the matrices A and B (n ≥ 0).

k, l INTEGER. Specify the subblocks in the input matrices
A and B, whose GSVD is going to be computed by ?tgsja.

a,b,u,v,q,work REAL for stgsja
DOUBLE PRECISION for dtgsja
COMPLEX for ctgsja
DOUBLE COMPLEX for ztgsja.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

If jobu ='U', u(ldu,*) must contain a matrix U1
(usually the orthogonal/unitary matrix returned by ?ggsvp).
The second dimension of u must be at least max(1, m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-323

If jobv ='V', v(ldv,*) must contain a matrix V1
(usually the orthogonal/unitary matrix returned by ?ggsvp).
The second dimension of v must be at least max(1, p).

If jobq ='Q', q(ldq,*) must contain a matrix Q1
(usually the orthogonal/unitary matrix returned by ?ggsvp).
The second dimension of q must be at least max(1, n).

work(*) is a workspace array. The dimension of work must be at least
max(1, 2n).

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

ldu INTEGER. The first dimension of the array u.
ldu ≥ max(1, m) if jobu ='U'; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the array v.
ldv ≥ max(1, p) if jobv ='V'; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the array q.
ldq ≥ max(1, n) if jobq ='Q'; ldq ≥ 1 otherwise.

tola, tolb REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz
iteration procedure. Generally, they are the same as used in ?ggsvp:
 tola = max(m, n)*||A||*MACHEPS,
 tolb = max(p, n)*||B||*MACHEPS.

Output Parameters

a On exit, a(n-k+1:n, 1:min(k+l, m)) contains the triangular matrix R or
part of R.

b On exit, if necessary, b(m-k+1: l, n+m-k-l+1: n)) contains a part of R.

alpha, beta REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1,n).
Contain the generalized singular value pairs of A and B:

alpha(1:k) = 1,
beta(1:k) = 0,

4-324

4 Intel® Math Kernel Library Reference Manual

and if m-k-l ≥ 0,
alpha(k+1:k+l) = diag(C),
beta(k+1:k+l) = diag(S),

or if m-k-l < 0,
alpha(k+1:m)= C, alpha(m+1:k+l)= 0
beta(k+1:m) = S, beta(m+1:k+l) = 1.

Furthermore, if k+l < n,
alpha(k+l+1:n) = 0 and
beta(k+l+1:n) = 0.

u If jobu ='I', u contains the orthogonal/unitary
matrix U.
If jobu ='U', u contains the product U1U.
If jobu ='N', u is not referenced.

v If jobv ='I', v contains the orthogonal/unitary
matrix U.
If jobv ='V', v contains the product V1V.
If jobv ='N', v is not referenced.

q If jobq ='I', q contains the orthogonal/unitary
matrix U.
If jobq ='Q', q contains the product Q1Q.
If jobq ='N', q is not referenced.

ncycle INTEGER. The number of cycles required for convergence.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the procedure does not converge after
MAXIT cycles.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine tgsja interface are the following:

a Holds the matrix A of size (m,n).

b Holds the matrix B of size (p,n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-325

u Holds the matrix U of size (m,m).

v Holds the matrix V of size (p,p).

q Holds the matrix Q of size (n,n).

alpha Holds the vector of length (n).

beta Holds the vector of length (n).

jobu If omitted, this argument is restored based on the presence of argument u as follows:
jobu = 'U', if u is present,
jobu = 'N', if u is omitted.
If present, jobu must be equal to 'I' or 'U' and the argument u must also be
present.
Note that there will be an error condition if jobu is present and u omitted.

jobv If omitted, this argument is restored based on the presence of argument v as follows:
jobv = 'V', if v is present,
jobv = 'N', if v is omitted.
If present, jobv must be equal to 'I' or 'V' and the argument v must also be
present.
Note that there will be an error condition if jobv is present and v omitted.

jobq If omitted, this argument is restored based on the presence of argument q as follows:
jobq = 'Q', if q is present,
jobq = 'N', if q is omitted.
If present, jobq must be equal to 'I' or 'Q' and the argument q must also be
present.
Note that there will be an error condition if jobq is present and q omitted.

4-326

4 Intel® Math Kernel Library Reference Manual

Driver Routines
Each of the LAPACK driver routines solves a complete problem.
To arrive at the solution, driver routines typically call a sequence of appropriate computational
routines.
Driver routines are described in the following sections:

Linear Least Squares (LLS) Problems
Generalized LLS Problems
Symmetric Eigenproblems
Nonsymmetric Eigenproblems
Singular Value Decomposition
Generalized Symmetric Definite Eigenproblems
Generalized Nonsymmetric Eigenproblems

Linear Least Squares (LLS) Problems
This section describes LAPACK driver routines used for solving linear least-squares problems.
Table 4-8 lists all such routines for Fortran-77 interface. Respective routine names in Fortran-95
interface are without the first symbol (see Routine Naming Conventions).

Table 4-8 Driver Routines for Solving LLS Problems

Routine Name Operation performed

?gels Uses QR or LQ factorization to solve a overdetermined or underdetermined
linear system with full rank matrix.

?gelsy Computes the minimum-norm solution to a linear least squares problem
using a complete orthogonal factorization of A.

?gelss Computes the minimum-norm solution to a linear least squares problem
using the singular value decomposition of A.

?gelsd Computes the minimum-norm solution to a linear least squares problem
using the singular value decomposition of A and a divide and conquer
method.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-327

?gels
Uses QR or LQ factorization to solve a overdetermined
or underdetermined linear system with full rank matrix.

Syntax

Fortran 77:

call sgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call dgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call cgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call zgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

Fortran 95:

call gels(a, b [,trans] [,info])

Description

This routine solves overdetermined or underdetermined real/ complex linear systems involving an
m-by-n matrix A, or its transpose/ conjugate-transpose, using a QR or LQ factorization of A. It is
assumed that A has full rank.

The following options are provided:

1. If trans = 'N' and m ≥ n: find the least squares solution of an overdetermined system, that is,
solve the least squares problem

minimize || b - A x ||2

2. If trans = 'N' and m < n: find the minimum norm solution of an underdetermined system
A X = B.

3. If trans = 'T' or 'C' and m ≥ n: find the minimum norm solution of an undetermined system
AH X = B.

4. If trans = 'T' or 'C' and m < n: find the least squares solution of an overdetermined system, that
is, solve the least squares problem

minimize || b - AH x ||2

Several right hand side vectors b and solution vectors x can be handled in a single call; they are
stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrh solution matrix
X.

4-328

4 Intel® Math Kernel Library Reference Manual

Input Parameters

trans CHARACTER*1. Must be 'N', 'T', or 'C'.
If trans = 'N', the linear system involves matrix A;
If trans = 'T', the linear system involves the transposed matrix AT (for
real flavors only);
If trans = 'C', the linear system involves the conjugate-transposed
matrix AH (for complex flavors only).

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

a, b, work REAL for sgels
DOUBLE PRECISION for dgels
COMPLEX for cgels
DOUBLE COMPLEX for zgels.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the matrix B of right hand side vectors, stored
columnwise;
B is m-by-nrhs if trans = 'N', or n-by-nrhs if trans = 'T'or 'C'.
The second dimension of b must be at least max(1, nrhs).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; must be at least max(1, m, n).

lwork INTEGER. The size of the work array; must be at least
min (m, n) +max(1, m, n, nrhs).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-329

Output Parameters

a On exit, overwritten by the factorization data as follows:

if m ≥ n, array a contains the details of the QR factorization of the matrix
A as returned by ?geqrf;
if m < n, array a contains the details of the LQ factorization of the matrix
A as returned by ?gelqf.

b Overwritten by the solution vectors, stored columnwise: If trans = 'N'
and
m ≥ n, rows 1 to n of b contain the least squares solution vectors; the
residual sum of squares for the solution in each column is given by the
sum of squares of elements n+1 to m in that column;
if trans = 'N' and m < n, rows 1 to n of b contain the minimum norm
solution vectors;
if trans = 'T'or 'C' and m ≥ n, rows 1 to m of b contain the minimum
norm solution vectors;
if trans = 'T'or 'C' and m < n, rows 1 to m of b contain the least
squares solution vectors; the residual sum of squares for the solution in
each column is given by the sum of squares of elements m+1 to n in that
column.

work(1) If info = 0, on exit work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.

If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gels interface are the following:

a Holds the matrix A of size (m,n).

b Holds the matrix of size max(m,n)-by-nrhs.
If trans = 'N', then, on entry, the size of b is m-by-nrhs,
If trans = 'T', then, on entry, the size of b is n-by-nrhs,

4-330

4 Intel® Math Kernel Library Reference Manual

trans Must be 'N' or 'T'. The default value is 'N'.

Application Notes

For better performance, try using
lwork =min (m, n) +max(1, m, n, nrhs)*blocksize, where blocksize is a machine-dependent value
(typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-331

?gelsy
Computes the minimum-norm solution to a linear least
squares problem using a complete orthogonal
factorization of A.

Syntax

Fortran 77:

call sgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
 lwork, info)

call dgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
 lwork, info)

call cgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
 lwork, rwork, info)

call zgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
 lwork, rwork, info)

Fortran 95:

call gelsy(a, b [,rank] [,jpvt] [,rcond] [,info])

Description

This routine computes the minimum-norm solution to a real/complex linear least squares problem:

minimize || b - A x ||2

using a complete orthogonal factorization of A. A is an m-by-n matrix which may be
rank-deficient.
Several right hand side vectors b and solution vectors x can be handled in a single call; they are
stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrhs solution
matrix X.

The routine first computes a QR factorization with column pivoting:

 AP Q
R11R12
0 R22 
 =

4-332

4 Intel® Math Kernel Library Reference Manual

with R11 defined as the largest leading submatrix whose estimated condition number is less than
1/rcond. The order of R11, rank, is the effective rank of A.
Then, R22 is considered to be negligible, and R12 is annihilated by orthogonal/unitary
transformations from the right, arriving at the complete orthogonal factorization:

The minimum-norm solution is then

where Q1 consists of the first rank columns of Q. This routine is basically identical to the
original?gelsx except three differences:

• The call to the subroutine ?geqpf has been substituted by the call to the subroutine ?geqp3.
This subroutine is a BLAS-3 version of the QR factorization with column pivoting.

• Matrix B (the right hand side) is updated with BLAS-3.

• The permutation of matrix B (the right hand side) is faster and more simple.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

a, b, work REAL for sgelsy
DOUBLE PRECISION for dgelsy
COMPLEX for cgelsy
DOUBLE COMPLEX for zgelsy.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

AP Q
T110
0 0 
  Z=

x PZ
H T11

1–
Q1
H
b

0 
 
 

=

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-333

b(ldb,*) contains the m-by-nrhs right hand side matrix B.
The second dimension of b must be at least
max(1, nrhs).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; must be at least max(1, m, n).

jpvt INTEGER. Array, DIMENSION at least max(1, n).

On entry, if jpvt(i)≠ 0, the ith column of A is permuted to the front of
AP, otherwise the ith column of A is a free column.

rcond REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

rcond is used to determine the effective rank of A, which is defined as
the order of the largest leading triangular submatrix R11 in the QR
factorization with pivoting of A, whose estimated condition number <
1/rcond.

lwork INTEGER. The size of the work array.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

rwork REAL for cgelsy
DOUBLE PRECISION for zgelsy.
Workspace array, DIMENSION at least max(1, 2n). Used in complex
flavors only.

Output Parameters

a On exit, overwritten by the details of the complete orthogonal
factorization of A.

b Overwritten by the n-by-nrhs solution matrix X.

jpvt On exit, if jpvt(i)= k, then the ith column of AP was the k-th
column of A.

4-334

4 Intel® Math Kernel Library Reference Manual

rank INTEGER.
The effective rank of A, that is, the order of the submatrix R11. This is
the same as the order of the submatrix T11 in the complete orthogonal
factorization of A.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gelsy interface are the following:

a Holds the matrix A of size (m,n).

b Holds the matrix of size max(m,n)-by-nrhs.
On entry, contains the m-by-nrhs right hand side matrix B,
On exit, overwritten by the n-by-nrhs solution matrix X.

jpvt Holds the vector of length (n). Default value for this element is jpvt(i) = 0.

rcond Default value for this element is rcond = 100*EPSILON(1.0_WP).

Application Notes

For real flavors:

The unblocked strategy requires that:
 lwork ≥ max(mn+3n+1, 2*mn + nrhs),
where mn = min(m, n).

The block algorithm requires that:
lwork ≥ max(mn+2n+nb*(n+1), 2*mn+nb*nrhs),

where nb is an upper bound on the blocksize returned by ilaenv for the routines
sgeqp3/dgeqp3, stzrzf/dtzrzf, stzrqf/dtzrqf, sormqr/dormqr, and sormrz/dormrz.

For complex flavors:

The unblocked strategy requires that:
 lwork ≥ mn + max(2*mn, n+1, mn + nrhs),
where mn = min(m, n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-335

The block algorithm requires that:
lwork ≥ mn + max(2*mn, nb*(n+1), mn+mn*nb, mn+nb*nrhs),
where nb is an upper bound on the blocksize returned by ilaenv for the routines
cgeqp3/zgeqp3, ctzrzf/ztzrzf, ctzrqf/ztzrqf, cunmqr/zunmqr, and cunmrz/zunmrz.

4-336

4 Intel® Math Kernel Library Reference Manual

?gelss
Computes the minimum-norm solution to a linear least
squares problem using the singular value decomposition
of A.

Syntax

Fortran 77:

call sgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
 lwork, info)

call dgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
 lwork, info)

call cgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
 lwork, rwork, info)

call zgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
 lwork, rwork, info)

Fortran 95:

call gelss(a, b [,rank] [,s] [,rcond] [,info])

Description

This routine computes the minimum norm solution to a real linear least squares problem:
minimize || b - A x ||2

using the singular value decomposition (SVD) of A. A is an m-by-n matrix which may be
rank-deficient.
Several right hand side vectors b and solution vectors x can be handled in a single call; they are
stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrhs solution
matrix X.
The effective rank of A is determined by treating as zero those singular values which are less than
rcond times the largest singular value.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-337

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

a, b, work REAL for sgelss
DOUBLE PRECISION for dgelss
COMPLEX for cgelss
DOUBLE COMPLEX for zgelss.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the m-by-nrhs right hand side matrix B.
The second dimension of b must be at least
max(1, nrhs).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; must be at least max(1, m, n).

rcond REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

rcond is used to determine the effective rank of A. Singular values
s(i) ≤ rcond *s(1) are treated as zero. If rcond < 0, machine
precision is used instead.

lwork INTEGER. The size of the work array; lwork ≥ 1.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

rwork REAL for cgelss
DOUBLE PRECISION for zgelss.
Workspace array used in complex flavors only.
DIMENSION at least max(1, 5*min(m, n)).

Output Parameters

a On exit, the first min(m, n) rows of A are overwritten with its right
singular vectors, stored row-wise.

b Overwritten by the n-by-nrhs solution matrix X.

4-338

4 Intel® Math Kernel Library Reference Manual

If m ≥ n and rank = n, the residual sum-of-squares for the solution in
the i-th column is given by the sum of squares of elements n+1:m in that
column.

s REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m, n)). The singular values of A
in decreasing order. The condition number of A in the 2-norm is
 k2(A) = s(1) / s(min(m, n)) .

rank INTEGER.
The effective rank of A, that is, the number of singular values which are
greater than rcond *s(1).

work(1) If info = 0, on exit, work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm for computing the SVD failed to
converge; i indicates the number of off-diagonal elements of an
intermediate bidiagonal form which did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gelss interface are the following:

a Holds the matrix A of size (m,n).

b Holds the matrix of size max(m,n)-by-nrhs.
On entry, contains the m-by-nrhs right hand side matrix B,
On exit, overwritten by the n-by-nrhs solution matrix X.

s Holds the vector of length min(m,n).

rcond Default value for this element is rcond = 100*EPSILON(1.0_WP).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-339

Application Notes

For real flavors:

 lwork ≥ 3*min(m, n) + max(2*min(m, n), max(m, n), nrhs)

For complex flavors:

 lwork ≥ 2*min(m, n) + max(m, n , nrhs)

For good performance, lwork should generally be larger. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On exit, examine work(1)
and use this value for subsequent runs.

4-340

4 Intel® Math Kernel Library Reference Manual

?gelsd
Computes the minimum-norm solution to a linear least
squares problem using the singular value decomposition
of A and a divide and conquer method.

Syntax

Fortran 77:

call sgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
 lwork, iwork, info)

call dgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
 lwork, iwork, info)

call cgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
 lwork, rwork, iwork, info)

call zgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
 lwork, rwork, iwork, info)

Fortran 95:

call gelsd(a, b [,rank] [,s] [,rcond] [,info])

Description

This routine computes the minimum-norm solution to a real linear least squares problem:

minimize || b - A x ||2

using the singular value decomposition (SVD) of A. A is an m-by-n matrix which may be
rank-deficient.

Several right hand side vectors b and solution vectors x can be handled in a single call; they are
stored as the columns of the m-by-nrhs right hand side matrix B and the n-by-nrhs solution
matrix X.

The problem is solved in three steps:

1. Reduce the coefficient matrix A to bidiagonal form with Householder transformations,
reducing the original problem into a "bidiagonal least squares problem" (BLS).

2. Solve the BLS using a divide and conquer approach.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-341

3. Apply back all the Householder transformations to solve the original least squares
problem.

The effective rank of A is determined by treating as zero those singular values which are less than
rcond times the largest singular value.

The routine uses auxiliary routines ?lals0 and ?lalsa.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrix A
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns in B
(nrhs ≥ 0).

a, b, work REAL for sgelsd
DOUBLE PRECISION for dgelsd
COMPLEX for cgelsd
DOUBLE COMPLEX for zgelsd.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the m-by-nrhs right hand side matrix B.
The second dimension of b must be at least max(1, nrhs).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; must be at least max(1, m, n).

rcond REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

rcond is used to determine the effective rank of A.
Singular values s(i) ≤ rcond *s(1) are treated as zero.
If rcond < 0, machine precision is used instead.

lwork INTEGER. The size of the work array; lwork ≥ 1.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

4-342

4 Intel® Math Kernel Library Reference Manual

See Application Notes for the suggested value of lwork.

iwork INTEGER. Workspace array. See Application Notes for the suggested
dimension of iwork.

rwork REAL for cgelsd
DOUBLE PRECISION for zgelsd.

Workspace array, used in complex flavors only.
See Application Notes for the suggested dimension of rwork.

Output Parameters

a On exit, A has been overwritten.

b Overwritten by the n-by-nrhs solution matrix X.

If m ≥ n and rank = n, the residual sum-of-squares for the solution in
the i-th column is given by the sum of squares of elements n+1:m in that
column.

s REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m, n)). The singular values of A
in decreasing order. The condition number of A in the 2-norm is
 k2(A) = s(1) / s(min(m, n)).

rank INTEGER.
The effective rank of A, that is, the number of singular values which are
greater than rcond *s(1).

work(1) If info = 0, on exit, work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm for computing the SVD failed to
converge;
i indicates the number of off-diagonal elements of an intermediate
bidiagonal form that did not converge to zero.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-343

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gelsd interface are the following:

a Holds the matrix A of size (m,n).

b Holds the matrix of size max(m,n)-by-nrhs.
On entry, contains the m-by-nrhs right hand side matrix B,
On exit, overwritten by the n-by-nrhs solution matrix X.

s Holds the vector of length min(m,n).

rcond Default value for this element is rcond = 100*EPSILON(1.0_WP).

Application Notes

The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It
will work on machines with a guard digit in add/subtract. It could conceivably fail on hexadecimal
or decimal machines without guard digits, but we know of none.

The exact minimum amount of workspace needed depends on m, n and nrhs. The size lwork of
the workspace array work must be as given below.

For real flavors:

If m ≥ n,
lwork ≥ 12n + 2n*smlsiz + 8n*nlvl + n*nrhs + (smlsiz+1)2;

If m < n,
lwork ≥ 12m + 2m*smlsiz + 8m*nlvl + m*nrhs + (smlsiz+1)2;

For complex flavors:

If m ≥ n,
lwork ≥ 2n + n*nrhs ;

If m < n,
lwork ≥ 2m + m*nrhs ;

where smlsiz is returned by ilaenv and is equal to the maximum size of the subproblems at the
bottom of the computation tree (usually about 25), and
 nlvl = INT(log2(min(m, n)/(smlsiz+1))) + 1 .

4-344

4 Intel® Math Kernel Library Reference Manual

For good performance, lwork should generally be larger. If you are in doubt how much
workspace to supply, use a generous value of lwork for the first run. On exit, examine work(1)
and use this value for subsequent runs.

The dimension of the workspace array iwork must be at least
3*min(m, n)*nlvl + 11*min(m, n).

The dimension lrwork of the workspace array rwork (for complex flavors) must be at least:
If m ≥ n,
lrwork ≥ 10n + 2n*smlsiz + 8n*nlvl + 3*smlsiz*nrhs + (smlsiz+1)2;

If m < n,
lrwork ≥ 10m + 2m*smlsiz + 8m*nlvl + 3*smlsiz*nrhs + (smlsiz+1)2.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-345

Generalized LLS Problems
This section describes LAPACK driver routines used for solving generalized linear least-squares
problems. Table 4-9 lists all such routines for Fortran-77 interface. Respective routine names in
Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

?gglse
Solves the linear equality-constrained least squares
problem using a generalized RQ factorization.

Syntax

Fortran 77:

call sgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call dgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call cgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call zgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

Fortran 95:

call gglse(a, b, c, d, x [,info])

Description

This routine solves the linear equality-constrained least squares (LSE) problem:

minimize || c - A x ||2 subject to B x = d

Table 4-9 Driver Routines for Solving Generalized LLS Problems

Routine Name Operation performed

?gglse Solves the linear equality-constrained least squares problem using a
generalized RQ factorization.

?ggglm Solves a general Gauss-Markov linear model problem using a generalized
QR factorization.

4-346

4 Intel® Math Kernel Library Reference Manual

where A is an m-by-n matrix, B is a p-by-n matrix, c is a given m-vector, and d is a given p-vector.
It is assumed that p ≤ n ≤ m+p, and

 rank(B) = p and rank = n .

These conditions ensure that the LSE problem has a unique solution, which is obtained using a
generalized RQ factorization of the matrices B and A.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrices A and B (n ≥ 0).

p INTEGER. The number of rows of the matrix B
(0 ≤ p ≤ n ≤ m+p).

a,b,c,d,work REAL for sgglse
DOUBLE PRECISION for dgglse
COMPLEX for cgglse
DOUBLE COMPLEX for zgglse.

Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

c(*), dimension at least max(1, m), contains the right hand side vector
for the least squares part of the LSE problem.
d(*), dimension at least max(1, p), contains the right hand side vector
for the constrained equation.
work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

lwork INTEGER. The size of the work array;
lwork ≥ max(1, m+n+p).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

A

B 
 

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-347

See Application Notes for the suggested value of lwork.

Output Parameters

x REAL for sgglse
DOUBLE PRECISION for dgglse
COMPLEX for cgglse
DOUBLE COMPLEX for zgglse.
Array, DIMENSION at least max(1, n).
On exit, contains the solution of the LSE problem.

a,b,d On exit, these arrays are overwritten.

c On exit, the residual sum-of-squares for the solution is given by the sum
of squares of elements n-p+1 to m of vector c.

work(1) If info = 0, on exit, work(1) contains the minimum value of lwork
required for optimum performance. Use this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gglse interface are the following:

a Holds the matrix A of size (m,n).

b Holds the matrix B of size (p,n).

c Holds the vector of length (m).

d Holds the vector of length (p).

x Holds the vector of length (n).

Application Notes

 For optimum performance use
 lwork ≥ p+min(m, n)+max(m, n)*nb,
where nb is an upper bound for the optimal blocksizes for ?geqrf, ?gerqf, ?ormqr/?unmqr
and ?ormrq/?unmrq.

4-348

4 Intel® Math Kernel Library Reference Manual

?ggglm
Solves a general Gauss-Markov linear model problem
using a generalized QR factorization.

Syntax

Fortran 77:

call sggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call dggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call cggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call zggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

Fortran 95:

call ggglm(a, b, d, x, y [,info])

Description

This routine solves a general Gauss-Markov linear model (GLM) problem:
 minimizex || y ||2 subject to d = Ax + By
where A is an n-by-m matrix, B is an n-by-p matrix, and d is a given n-vector.
It is assumed that m ≤ n ≤ m+p, and
 rank(A) = m and rank(A B) = n .
Under these assumptions, the constrained equation is always consistent, and there is a unique
solution x and a minimal 2-norm solution y, which is obtained using a generalized QR factorization
of A and B.
In particular, if matrix B is square nonsingular, then the problem GLM is equivalent to the
following weighted linear least squares problem
 minimizex || B

-1(d-Ax) ||2 .

Input Parameters

n INTEGER. The number of rows of the matrices A and B (n ≥ 0).

m INTEGER. The number of columns in A (m ≥ 0).

p INTEGER. The number of columns in B (p ≥ n - m).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-349

a,b,d,work REAL for sggglm
DOUBLE PRECISION for dggglm
COMPLEX for cggglm
DOUBLE COMPLEX for zggglm.

Arrays:
a(lda,*) contains the n-by-m matrix A.
The second dimension of a must be at least max(1, m).

b(ldb,*) contains the n-by-p matrix B.
The second dimension of b must be at least max(1, p).

d(*), dimension at least max(1, n), contains the left hand side of the
GLM equation.
work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The size of the work array;
lwork ≥ max(1, n+m+p).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

x, y REAL for sggglm
DOUBLE PRECISION for dggglm
COMPLEX for cggglm
DOUBLE COMPLEX for zggglm.
Arrays x(*), y(*). DIMENSION at least max(1, m) for x and at least
max(1, p) for y.
On exit, x and y are the solutions of the GLM problem.

a,b,d On exit, these arrays are overwritten.

work(1) If info = 0, on exit, work(1) contains the minimum value of lwork
required for optimum performance.

4-350

4 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ggglm interface are the following:

a Holds the matrix A of size (n,m).

b Holds the matrix B of size (n,p).

d Holds the vector of length (n).

x Holds the vector of length (m).

y Holds the vector of length (p).

Application Notes

 For optimum performance use
 lwork ≥ m+min(n, p)+max(n, p)*nb,

 where nb is an upper bound for the optimal blocksizes for ?geqrf, ?gerqf, ?ormqr/?unmqr,
and ?ormrq/?unmrq.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-351

Symmetric Eigenproblems
This section describes LAPACK driver routines used for solving symmetric eigenvalue problems.
See also computational routines that can be called to solve these problems.
Table 4-10 lists all such driver routines for Fortran-77 interface. Respective routine names in
Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

Table 4-10 Driver Routines for Solving Symmetric Eigenproblems

Routine Name Operation performed

?syev/?heev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric /
Hermitian matrix.

?syevd/?heevd Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric / Hermitian matrix using divide and conquer algorithm.

?syevx/?heevx Computes selected eigenvalues and, optionally, eigenvectors of a
symmetric / Hermitian matrix.

?syevr/?heevr Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian matrix using the Relatively Robust Representations.

?spev/?hpev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric /
Hermitian matrix in packed storage.

?spevd/?hpevd Uses divide and conquer algorithm to compute all eigenvalues and
(optionally) all eigenvectors of a real symmetric / Hermitian matrix held in
packed storage.

?spevx/?hpevx Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian matrix in packed storage.

?sbev /?hbev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
/ Hermitian band matrix.

?sbevd/?hbevd Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric / Hermitian band matrix using divide and conquer algorithm.

?sbevx/?hbevx Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian band matrix.

?stev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix.

?stevd Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric tridiagonal matrix using divide and conquer algorithm.

?stevx Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix.

?stevr Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix using the Relatively Robust Representations.

4-352

4 Intel® Math Kernel Library Reference Manual

?syev
Computes all eigenvalues and, optionally, eigenvectors
of a real symmetric matrix.

Syntax

Fortran 77:

call ssyev(jobz, uplo, n, a, lda, w, work, lwork, info)

call dsyev(jobz, uplo, n, a, lda, w, work, lwork, info)

Fortran 95:

call syev(a, w [,jobz] [,uplo] [,info])

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.

Note that for most cases of real symmetric eigenvalue problems the default choice should be
?syevr function as its underlying algorithm is faster and uses less workspace.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for ssyev
DOUBLE PRECISION for dsyev
Arrays:
a(lda,*) is an array containing either upper or lower triangular part of
the symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-353

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 3n-1).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a On exit, if jobz ='V', then if info = 0, array a contains the
orthonormal eigenvectors of the matrix A.
If jobz ='N', then on exit the lower triangle
(if uplo = 'L') or the upper triangle (if uplo = 'U') of A, including the
diagonal, is overwritten.

w REAL for ssyev
DOUBLE PRECISION for dsyev
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in ascending order.

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size
of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine syev interface are the following:

a Holds the matrix A of size (n,n).

4-354

4 Intel® Math Kernel Library Reference Manual

w Holds the vector of length (n).

job Must be 'N' or 'V'. The default value is 'N'.

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

 For optimum performance use
 lwork ≥ (nb+2)*n,

 where nb is the blocksize for ?sytrd returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-355

?heev
Computes all eigenvalues and, optionally, eigenvectors
of a Hermitian matrix.

Syntax

Fortran 77:

call cheev(jobz, uplo, n, a, lda, w, work, lwork, rwork, info)

call zheev(jobz, uplo, n, a, lda, w, work, lwork, rwork, info)

Fortran 95:

call heev(a, w [,jobz] [,uplo] [,info])

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix
A.

Note that for most cases of complex Hermitian eigenvalue problems the default choice should be
?heevr function as its underlying algorithm is faster and uses less workspace.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work COMPLEX for cheev
DOUBLE COMPLEX for zheev
Arrays:
a(lda,*) is an array containing either upper or lower triangular part of
the Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

4-356

4 Intel® Math Kernel Library Reference Manual

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 2n-1).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

rwork REAL for cheev
DOUBLE PRECISION for zheev.
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

a On exit, if jobz ='V', then if info = 0, array a contains the
orthonormal eigenvectors of the matrix A.
If jobz ='N', then on exit the lower triangle
(if uplo = 'L') or the upper triangle (if uplo = 'U') of A, including the
diagonal, is overwritten.

 w REAL for cheev
DOUBLE PRECISION for zheev
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in ascending order.

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size
of lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-357

Specific details for the routine heev interface are the following:

a Holds the matrix A of size (n,n).

w Holds the vector of length (n).

job Must be 'N' or 'V'. The default value is 'N'.

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

 For optimum performance use
 lwork ≥ (nb+1)*n,

 where nb is the blocksize for ?hetrd returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

4-358

4 Intel® Math Kernel Library Reference Manual

?syevd
Computes all eigenvalues and (optionally) all
eigenvectors of a real symmetric matrix using divide
and conquer algorithm.

Syntax

Fortran 77:

call ssyevd(job, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)

call dsyevd(job, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)

Fortran 95:

call syevd(a, w [,jobz] [,uplo] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
matrix A. In other words, it can compute the spectral factorization of A as: A = ZΛZT.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
orthogonal matrix whose columns are the eigenvectors zi. Thus,

 Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal-Walker-Kahan variant of the QL or QR algorithm.

Note that for most cases of real symmetric eigenvalue problems the default choice should be
?syevr function as its underlying algorithm is faster and uses less workspace. ?syevd requires
more workspace but is faster in some cases, especially for large matrices.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-359

n INTEGER. The order of the matrix A (n ≥ 0).

a REAL for ssyevd
DOUBLE PRECISION for dsyevd
Array, DIMENSION (lda, *).
a(lda,*) is an array containing either upper or lower triangular part of
the symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

work REAL for ssyevd
DOUBLE PRECISION for dsyevd.
Workspace array, DIMENSION at least lwork.

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ 2n+1;
 if job ='V' and n > 1, then
lwork ≥ 3n2+(5+2k)*n+1, where k is the smallest integer which
satisfies
2k ≥ n.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork.
Constraints:
 if n ≤ 1, then liwork ≥ 1;
 if job ='N' and n > 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

4-360

4 Intel® Math Kernel Library Reference Manual

Output Parameters

w REAL for ssyevd
DOUBLE PRECISION for dsyevd
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in ascending order.
See also info.

a If job ='V', then on exit this array is overwritten by the orthogonal
matrix Z which contains the eigenvectors of A.

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size
of lwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal
size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine syevd interface are the following:

a Holds the matrix A of size (n,n).

w Holds the vector of length (n).

job Must be 'N' or 'V'. The default value is 'N'.

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that ||E||2 = O(ε) ||T||2, where ε is the machine precision.

The complex analogue of this routine is ?heevd.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-361

?heevd
Computes all eigenvalues and (optionally) all
eigenvectors of a complex Hermitian matrix using
divide and conquer algorithm.

Syntax

Fortran 77:

call cheevd(job, uplo, n, a, lda, w, work, lwork, rwork, lrwork,
 iwork, liwork, info)

call zheevd(job, uplo, n, a, lda, w, work, lwork, rwork, lrwork,
 iwork, liwork, info)

Fortran 95:

call heevd(a, w [,job] [,uplo] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex
Hermitian matrix A. In other words, it can compute the spectral factorization of A as: A = ZΛZH .
Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
(complex) unitary matrix whose columns are the eigenvectors zi. Thus,

 Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal-Walker-Kahan variant of the QL or QR algorithm.

Note that for most cases of complex Hermetian eigenvalue problems the default choice should be
?heevr function as its underlying algorithm is faster and uses less workspace. ?heevd requires
more workspace but is faster in some cases, especially for large matrices.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

4-362

4 Intel® Math Kernel Library Reference Manual

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a COMPLEX for cheevd
DOUBLE COMPLEX for zheevd
Array, DIMENSION (lda, *).
a(lda,*) is an array containing either upper or lower triangular part of
the Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

work COMPLEX for cheevd
DOUBLE COMPLEX for zheevd.
Workspace array, DIMENSION at least lwork.

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ n+1;
 if job ='V' and n > 1, then lwork ≥ n2+2n.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

rwork REAL for cheevd
DOUBLE PRECISION for zheevd
Workspace array, DIMENSION at least lrwork.

lrwork INTEGER. The dimension of the array rwork.
Constraints:
if n ≤ 1, then lrwork ≥ 1;
 if job ='N' and n > 1, then lrwork ≥ n;
 if job ='V' and n > 1, then
lrwork ≥ 3n2+(4+2k)*n+1, where k is the smallest integer which
satisfies 2k ≥ n.
If lrwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the rwork array, returns this value as the
first entry of the rwork array, and no error message related to lrwork is
issued by xerbla

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-363

 iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork.
 Constraints:
 if n ≤ 1, then liwork ≥ 1;
 if job ='N' and n > 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

w REAL for cheevd
DOUBLE PRECISION for zheevd
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in ascending order.
See also info.

a If job ='V', then on exit this array is overwritten by the unitary matrix
Z that contains the eigenvectors of A.

work(1) On exit, if lwork > 0, then the real part of work(1) returns the
required minimal size of lwork.

rwork(1) On exit, if lrwork > 0, then rwork(1) returns the required minimal
size of lrwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal
size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.
If info = -i, the ith parameter had an illegal value.

4-364

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine heevd interface are the following:

a Holds the matrix A of size (n,n).

w Holds the vector of length (n).

job Must be 'N' or 'V'. The default value is 'N'.

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix A + E
such that ||E||2 = O(ε) ||A||2, where ε is the machine precision.

The real analogue of this routine is ?syevd.
See also ?hpevd for matrices held in packed storage, and ?hbevd for banded matrices.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-365

?syevx
Computes selected eigenvalues and, optionally,
eigenvectors of a symmetric matrix.

Syntax

Fortran 77:

call ssyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
 m, w, z, ldz, work, lwork, iwork, ifail, info)

call dsyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
 m, w, z, ldz, work, lwork, iwork, ifail, info)

Fortran 95:

call syevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a
range of indices for the desired eigenvalues.

Note that for most cases of real symmetric eigenvalue problems the default choice should be
?syevr function as its underlying algorithm is faster and uses less workspace. ?syevx is faster
for a few selected eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A', 'V', or 'I'.
If range ='A', all eigenvalues will be found.
If range ='V', all eigenvalues in the half-open interval
(vl, vu] will be found.
If range ='I', the eigenvalues with indices il through iu will be
found.

uplo CHARACTER*1. Must be 'U' or 'L'.

4-366

4 Intel® Math Kernel Library Reference Manual

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for ssyevx
DOUBLE PRECISION for dsyevx.
Arrays:
a(lda,*) is an array containing either upper or lower triangular part of
the symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

vl, vu REAL for ssyevx
DOUBLE PRECISION for dsyevx.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues; vl ≤ vu.
Not referenced if range ='A'or 'I'.

il, iu INTEGER. If range ='I', the indices of the smallest and largest
eigenvalues to be returned.
Constraints: 1 ≤ il ≤ iu ≤ n, if n > 0;
il = 1 and iu = 0 , if n = 0.
Not referenced if range ='A'or 'V'.

abstol REAL for ssyevx
DOUBLE PRECISION for dsyevx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The first dimension of the output array z; ldz ≥ 1. If jobz
='V', then ldz ≥ max(1,n).

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 8n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-367

iwork INTEGER. Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

a On exit,
the lower triangle (if uplo = 'L') or
the upper triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

m INTEGER. The total number of eigenvalues found; 0 ≤ m ≤ n.
If range ='A', m = n, and if range ='I', m = iu-il+1.

w REAL for ssyevx
DOUBLE PRECISION for dsyevx
Array, DIMENSION at least max(1, n).
The first m elements contain the selected eigenvalues of the matrix A in
ascending order.

z REAL for ssyevx
DOUBLE PRECISION for dsyevx.
Array z(ldz,*) contains eigenvectors.
The second dimension of z must be at least max(1, m).

If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector associated
with w(i). If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and the index of the
eigenvector is returned in ifail.
If jobz ='N', then z is not referenced.
Note that you must ensure that at least max(1,m) columns are supplied in
the array z; if range ='V', the exact value of m is not known in advance
and an upper bound must be used.

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size
of lwork.

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;
if info > 0, then ifail contains the indices of the eigenvectors that
failed to converge.
If jobz ='V', then ifail is not referenced.

4-368

4 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are
stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine syevx interface are the following:

a Holds the matrix A of size (n,n).

w Holds the vector of length (n).

a Holds the matrix A of size (m,n).

ifail Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if ifail is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-369

Application Notes

For optimum performance use lwork ≥ (nb+3)*n, where nb is the maximum of the blocksize for
?sytrd and ?ormtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to
zero, then ε*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*slamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*slamch('S').

4-370

4 Intel® Math Kernel Library Reference Manual

?heevx
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian matrix.

Syntax

Fortran 77:

call cheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
 m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

call zheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
 m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

Fortran 95:

call heevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a
range of indices for the desired eigenvalues.

Note that for most cases of complex Hermetian eigenvalue problems the default choice should be
?heevr function as its underlying algorithm is faster and uses less workspace. ?heevx is faster
for a few selected eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A', 'V', or 'I'.
If range ='A', all eigenvalues will be found.
If range ='V', all eigenvalues in the half-open interval
 (vl, vu] will be found.
If range ='I', the eigenvalues with indices il through iu will be
found.

uplo CHARACTER*1. Must be 'U' or 'L'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-371

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work COMPLEX for cheevx
DOUBLE COMPLEX for zheevx.
Arrays:
a(lda,*) is an array containing either upper or lower triangular part of
the Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

vl, vu REAL for cheevx
DOUBLE PRECISION for zheevx.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues; vl ≤ vu.
Not referenced if range ='A'or 'I'.

il, iu INTEGER. If range ='I', the indices of the smallest and largest
eigenvalues to be returned.
Constraints: 1 ≤ il ≤ iu ≤ n, if n > 0;
il = 1 and iu = 0, if n = 0.
Not referenced if range ='A'or 'V'.

abstol REAL for cheevx
DOUBLE PRECISION for zheevx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The first dimension of the output array z; ldz ≥ 1. If jobz
='V', then ldz ≥ max(1,n).

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 2n-1).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

4-372

4 Intel® Math Kernel Library Reference Manual

rwork REAL for cheevx
DOUBLE PRECISION for zheevx.
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER. Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

a On exit, the lower triangle (if uplo = 'L') or
the upper triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

m INTEGER. The total number of eigenvalues found; 0 ≤ m ≤ n.
If range ='A', m = n, and if range ='I', m = iu-il+1.

w REAL for cheevx
DOUBLE PRECISION for zheevx
Array, DIMENSION at least max(1, n).
The first m elements contain the selected eigenvalues of the matrix A in
ascending order.

z COMPLEX for cheevx
DOUBLE COMPLEX for zheevx.
Array z(ldz,*) contains eigenvectors.
The second dimension of z must be at least max(1, m).

If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector associated
with w(i). If an eigenvector fails to converge, then that column of z
contains the latest approximation to the eigenvector, and the index of the
eigenvector is returned in ifail.
If jobz ='N', then z is not referenced.
Note that you must ensure that at least max(1,m) columns are supplied
in the array z;
if range ='V', the exact value of m is not known in advance and an
upper bound must be used.

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size
of lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-373

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;
if info > 0, then ifail contains the indices of the eigenvectors that
failed to converge.
If jobz ='V', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are
stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine heevx interface are the following:

a Holds the matrix A of size (n,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

ifail Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if ifail is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,

4-374

4 Intel® Math Kernel Library Reference Manual

range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the maximum of the blocksize for
?hetrd and ?unmtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to
zero, then ε*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*slamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*slamch('S').

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-375

?syevr
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix using the
Relatively Robust Representations.

Syntax

Fortran 77:

call ssyevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
 m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)

call dsyevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
 m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)

Fortran 95:

call syevr(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a
range of indices for the desired eigenvalues.

Whenever possible, ?syevr calls sstegr/dstegr to compute the eigenspectrum using
Relatively Robust Representations. ?stegr computes eigenvalues by the dqds algorithm, while
orthogonal eigenvectors are computed from various “good'' LDLT representations (also known as
Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible.
More specifically, the various steps of the algorithm are as follows.
For the i-th unreduced block of T,

(a) Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively robust representation;
(b) Compute the eigenvalues, λj, of Li Di Li

T to high relative accuracy by the dqds
algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σi close to the cluster, and go
to step (a);
(d) Given the approximate eigenvalue λj of Li Di Li

T, compute the corresponding
eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.

4-376

4 Intel® Math Kernel Library Reference Manual

The routine ?syevr calls sstegr/dstegr when the full spectrum is requested on machines that
conform to the IEEE-754 floating point standard. ?syevr calls sstebz/dstebz and
sstein/dstein on non-IEEE machines and when partial spectrum requests are made.

Note that ?syevr is preferable for most cases of real symmetric eigenvalue problems as its
underlying algorithm is fast and uses less workspace.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

For range ='V'or 'I' and iu-il < n-1, sstebz/dstebz and
sstein/dstein are called.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for ssyevr
DOUBLE PRECISION for dsyevr.
Arrays:
a(lda,*) is an array containing either upper or lower triangular part of
the symmetric matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

vl, vu REAL for ssyevr
DOUBLE PRECISION for dsyevr.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-377

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0;
 il=1 and iu=0, if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for ssyevr
DOUBLE PRECISION for dsyevr.
The absolute error tolerance to which each eigenvalue/eigenvector is
required.
If jobz = 'V', the eigenvalues and eigenvectors output have residual
norms bounded by abstol, and the dot products between different
eigenvectors are bounded by abstol. If abstol < nε||T||1, then nε||T||1
is used in its place, where ε is the machine precision. The eigenvalues
are computed to an accuracy of ε||T||1 irrespective of abstol. If high
relative accuracy is important, set abstol to ?lamch('S').

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1 if jobz ='N';
ldz ≥ max(1, n) if jobz ='V'.

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 26n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

iwork INTEGER. Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork, lwork ≥ max(1, 10n).

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

4-378

4 Intel® Math Kernel Library Reference Manual

Output Parameters

a On exit, the lower triangle (if uplo = 'L') or the upper triangle
 (if uplo = 'U') of A, including the diagonal, is overwritten.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I', m = iu-il+1.

w, z REAL for ssyevr
DOUBLE PRECISION for dsyevr.
Arrays:
w(*), DIMENSION at least max(1, n), contains the selected eigenvalues in
ascending order, stored in w(1) to w(m);

z(ldz, *), the second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix T corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i).
If jobz ='N', then z is not referenced.
Note that you must ensure that at least max(1,m) columns are supplied in
the array z ; if range ='V', the exact value of m is not known in
advance and an upper bound must be used.

isuppz INTEGER.
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices indicating the
nonzero elements in z. The i-th eigenvector is nonzero only in elements
isuppz(2i-1) through isuppz(2i).
Implemented only for range ='A' or 'I' and
iu-il = n-1.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size
of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, an internal error has occurred.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-379

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine syevr interface are the following:

a Holds the matrix A of size (n,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

isuppz Holds the vector of length (2*m), where the values (2*m) are significant.

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if isuppz is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

For optimum performance use lwork ≥ (nb+6)*n, where nb is the maximum of the blocksize for
?sytrd and ?ormtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

4-380

4 Intel® Math Kernel Library Reference Manual

Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a
floating point exception in environments which do not handle NaNs and infinities in the IEEE
standard default manner.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-381

?heevr
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian matrix using the Relatively
Robust Representations.

Syntax

Fortran 77:

call cheevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz,
isuppz, work, lwork, rwork, lrwork, iwork, liwork, info)

call zheevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz,
isuppz, work, lwork, rwork, lrwork, iwork, liwork, info)

Fortran 95:

call heevr(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a
range of indices for the desired eigenvalues.

Whenever possible, ?heevr calls cstegr/zstegr to compute the eigenspectrum using
Relatively Robust Representations. ?stegr computes eigenvalues by the dqds algorithm, while
orthogonal eigenvectors are computed from various “good'' LDLT representations (also known as
Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible.
More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of
T,

(a) Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively robust representation;
(b) Compute the eigenvalues, λj, of Li Di Li

T to high relative accuracy by the dqds
algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σi close to the cluster, and go
to step (a);
(d) Given the approximate eigenvalue λj of Li Di Li

T, compute the corresponding
eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.

4-382

4 Intel® Math Kernel Library Reference Manual

The routine ?heevr calls cstegr/zstegr when the full spectrum is requested on machines
which conform to the IEEE-754 floating point standard. ?heevr calls sstebz/dstebz and
cstein/zstein on non-IEEE machines and when partial spectrum requests are made.

Note that ?heevr is preferable for most cases of complex Hermitian eigenvalue problems as its
underlying algorithm is fast and uses less workspace.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

For range ='V'or 'I', sstebz/dstebz and cstein/zstein are
called.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

a, work COMPLEX for cheevr
DOUBLE COMPLEX for zheevr.
Arrays:
a(lda,*) is an array containing either upper or lower triangular part of
the Hermitian matrix A, as specified by uplo.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

vl, vu REAL for cheevr
DOUBLE PRECISION for zheevr.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-383

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0 if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for cheevr
DOUBLE PRECISION for zheevr.
The absolute error tolerance to which each eigenvalue/eigenvector is
required.
If jobz = 'V', the eigenvalues and eigenvectors output have residual
norms bounded by abstol, and the dot products between different
eigenvectors are bounded by abstol. If abstol < nε||T||1, then nε||T||1
will be used in its place, where ε is the machine precision. The
eigenvalues are computed to an accuracy of ε||T||1 irrespective of
abstol. If high relative accuracy is important, set abstol to
?lamch('S').

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1 if jobz ='N';
ldz ≥ max(1, n) if jobz ='V'.

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 2n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

rwork REAL for cheevr
DOUBLE PRECISION for zheevr.
Workspace array, DIMENSION (lrwork).

lrwork INTEGER. The dimension of the array rwork;
lwork ≥ max(1, 24n).
If lrwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the rwork array, returns this value as the
first entry of the rwork array, and no error message related to lrwork is
issued by xerbla.

4-384

4 Intel® Math Kernel Library Reference Manual

iwork INTEGER. Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork,
lwork ≥ max(1, 10n).
If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

a On exit, the lower triangle (if uplo = 'L') or the upper triangle
(if uplo = 'U') of A, including the diagonal, is overwritten.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for cheevr
DOUBLE PRECISION for zheevr.
Array, DIMENSION at least max(1, n), contains the selected eigenvalues
in ascending order, stored in w(1) to w(m).

z COMPLEX for cheevr
DOUBLE COMPLEX for zheevr.
Array z(ldz, *); the second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix T corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i).
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are supplied in the
array z ; if range ='V', the exact value of m is not known in advance
and an upper bound must be used.

isuppz INTEGER.
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices indicating the
nonzero elements in z. The i-th eigenvector is nonzero only in elements
isuppz(2i-1) through isuppz(2i).

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-385

rwork(1) On exit, if info = 0, then rwork(1) returns the required minimal size
of lrwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size
of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, an internal error has occurred.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine heevr interface are the following:

a Holds the matrix A of size (n,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

isuppz Holds the vector of length (2*n), where the values (2*m) are significant.

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if isuppz is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,

4-386

4 Intel® Math Kernel Library Reference Manual

range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the maximum of the blocksize for
?hetrd and ?unmtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run.
On exit, examine work(1) and use this value for subsequent runs.

Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a
floating point exception in environments which do not handle NaNs and infinities in the IEEE
standard default manner.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-387

?spev
Computes all eigenvalues and, optionally, eigenvectors
of a real symmetric matrix in packed storage.

Syntax

Fortran 77:

call sspev(jobz, uplo, n, ap, w, z, ldz, work, info)

call dspev(jobz, uplo, n, ap, w, z, ldz, work, info)

Fortran 95:

call spev(a, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix
A in packed storage.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

ap,work REAL for sspev
DOUBLE PRECISION for dspev
Arrays:
ap(*) contains the packed upper or lower triangle of symmetric matrix
A, as specified by uplo. The dimension of ap must be at least max(1,
n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 3n).

4-388

4 Intel® Math Kernel Library Reference Manual

ldz INTEGER. The leading dimension of the output array z.
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥ max(1, n) .

Output Parameters

w,z REAL for sspev
DOUBLE PRECISION for dspev
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, w contains the eigenvalues of the matrix A in ascending
order.
z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of z holding the
eigenvector associated with w(i).
If jobz ='N', then z is not referenced.

ap On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form. The elements of the diagonal and the
off-diagonal of the tridiagonal matrix overwrite the corresponding
elements of A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spev interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

w Holds the vector of length (n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-389

z Holds the matrix Z of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

4-390

4 Intel® Math Kernel Library Reference Manual

?hpev
Computes all eigenvalues and, optionally, eigenvectors
of a Hermitian matrix in packed storage.

Syntax

Fortran 77:

call chpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)

call zhpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)

Fortran 95:

call hpev(a, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix A in packed storage.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

ap,work COMPLEX for chpev
DOUBLE COMPLEX for zhpev .
Arrays:
ap(*) contains the packed upper or lower triangle of Hermitian matrix
A, as specified by uplo. The dimension of ap must be at least max(1,
n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 2n-1).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-391

ldz INTEGER. The leading dimension of the output array z.
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥ max(1, n) .

rwork REAL for chpev
DOUBLE PRECISION for zhpev.
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

w REAL for chpev
DOUBLE PRECISION for zhpev.
Array, DIMENSION at least max(1, n).
If info = 0, w contains the eigenvalues of the matrix A in ascending
order.

z COMPLEX for chpev
DOUBLE COMPLEX for zhpev.
Array z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the orthonormal eigenvectors
of the matrix A, with the i-th column of z holding the eigenvector
associated with w(i).
If jobz ='N', then z is not referenced.

ap On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form. The elements of the diagonal and the
off-diagonal of the tridiagonal matrix overwrite the corresponding
elements of A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge; i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpev interface are the following:

4-392

4 Intel® Math Kernel Library Reference Manual

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-393

?spevd
Uses divide and conquer algorithm to compute all
eigenvalues and (optionally) all eigenvectors of a real
symmetric matrix held in packed storage.

Syntax

Fortran 77:

call sspevd(job, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)

call dspevd(job, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)

Fortran 95:

call spevd(a, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
matrix A (held in packed storage). In other words, it can compute the spectral factorization of A as:
A = ZΛZT.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
orthogonal matrix whose columns are the eigenvectors zi. Thus,

 Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal-Walker-Kahan variant of the QL or QR algorithm.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

4-394

4 Intel® Math Kernel Library Reference Manual

ap,work REAL for sspevd
DOUBLE PRECISION for dspevd
Arrays:
ap(*) contains the packed upper or lower triangle of symmetric matrix
A, as specified by uplo. The dimension of ap must be at least max(1,
n*(n+1)/2)
work(*) is a workspace array, DIMENSION at least lwork.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
 if job ='N', then ldz ≥ 1;
 if job ='V', then ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ 2n;
 if job ='V' and n > 1, then
lwork ≥ 2n2+(5+2k)*n+1, where k is the smallest integer which
satisfies 2k ≥ n.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork.
Constraints:
 if n ≤ 1, then liwork ≥ 1;
 if job ='N' and n > 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+3.

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-395

Output Parameters

w,z REAL for sspevd
DOUBLE PRECISION for dspevd
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in ascending order.
See also info.
z(ldz,*). The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n) if job ='V'.
If job ='V', then this array is overwritten by the orthogonal matrix Z
which contains the eigenvectors of A. If job ='N', then z is not
referenced.

ap On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form. The elements of the diagonal and the
off-diagonal of the tridiagonal matrix overwrite the corresponding
elements of A.

work(1) On exit, if info = 0, then work(1) returns the optimal lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the optimal liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spevd interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

4-396

4 Intel® Math Kernel Library Reference Manual

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that ||E||2 = O(ε) ||T||2, where ε is the machine precision.

The complex analogue of this routine is ?hpevd.

See also ?syevd for matrices held in full storage, and ?sbevd for banded matrices.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-397

?hpevd
Uses divide and conquer algorithm to compute all
eigenvalues and (optionally) all eigenvectors of a
complex Hermitian matrix held in packed storage.

Syntax

Fortran 77:

call chpevd(job, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork,
liwork, info)

call zhpevd(job, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork,
liwork, info)

Fortran 95:

call hpevd(a, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex
Hermitian matrix A (held in packed storage). In other words, it can compute the spectral
factorization of A as: A = ZΛZH.
Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
(complex) unitary matrix whose columns are the eigenvectors zi. Thus,

 Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal-Walker-Kahan variant of the QL or QR algorithm.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.

4-398

4 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of the matrix A (n ≥ 0).

ap,work COMPLEX for chpevd
DOUBLE COMPLEX for zhpevd
Arrays:
ap(*) contains the packed upper or lower triangle of Hermitian matrix
A, as specified by uplo. The dimension of ap must be at least max(1,
n*(n+1)/2)
work(*) is a workspace array, DIMENSION at least lwork.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
 if job ='N', then ldz ≥ 1;
 if job ='V', then ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ n;
 if job ='V' and n > 1, then lwork ≥ 2n.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

rwork REAL for chpevd
DOUBLE PRECISION for zhpevd
Workspace array, DIMENSION at least lrwork.

lrwork INTEGER. The dimension of the array rwork.
Constraints:
if n ≤ 1, then lrwork ≥ 1;
 if job ='N' and n > 1, then lrwork ≥ n;
 if job ='V' and n > 1, then
lrwork ≥ 3n2+(4+2k)*n+1, where k is the smallest integer which
satisfies 2k ≥ n.
If lrwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the rwork array, returns this value as the
first entry of the rwork array, and no error message related to lrwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-399

liwork INTEGER. The dimension of the array iwork.
Constraints:
 if n ≤ 1, then liwork ≥ 1;
 if job ='N' and n > 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

w REAL for chpevd
DOUBLE PRECISION for zhpevd
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in ascending order.
See also info.

z COMPLEX for chpevd
DOUBLE COMPLEX for zhpevd
Array, DIMENSION (ldz,*). The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n) if job ='V'.
If job ='V', then this array is overwritten by the unitary matrix Z
which contains the eigenvectors of A. If job ='N', then z is not
referenced.

ap On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form. The elements of the diagonal and the
off-diagonal of the tridiagonal matrix overwrite the corresponding
elements of A.

work(1) On exit, if lwork > 0, then the real part of work(1) returns the
required minimal size of lwork.

rwork(1) On exit, if lrwork > 0, then rwork(1) returns the required minimal
size of lrwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal
size of liwork.

4-400

4 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpevd interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E such that ||E||2 = O(ε)
||T||2, where ε is the machine precision.

The real analogue of this routine is ?spevd.

See also ?heevd for matrices held in full storage, and ?hbevd for banded matrices.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-401

?spevx
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix in packed
storage.

Syntax

Fortran 77:

call sspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz,
work, iwork, ifail, info)

call dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz,
work, iwork, ifail, info)

Fortran 95:

call spevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
matrix A in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a
range of values or a range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

4-402

4 Intel® Math Kernel Library Reference Manual

ap, work REAL for sspevx
DOUBLE PRECISION for dspevx
Arrays:
ap(*) contains the packed upper or lower triangle of the symmetric
matrix A, as specified by uplo. The dimension of ap must be at least
max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 8n).

vl, vu REAL for sspevx
DOUBLE PRECISION for dspevx
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for sspevx
DOUBLE PRECISION for dspevx
The absolute error tolerance to which each eigenvalue is required. See
Application notes for details on error tolerance.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

ap On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form. The elements of the diagonal and the
off-diagonal of the tridiagonal matrix overwrite the corresponding
elements of A.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-403

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w,z REAL for sspevx
DOUBLE PRECISION for dspevx
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the selected eigenvalues of the matrix A in
ascending order.
z(ldz,*). The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i). If an eigenvector fails to converge, then that
column of z contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in ifail.
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are supplied in the
array z ; if range ='V', the exact value of m is not known in advance
and an upper bound must be used.

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;
if info > 0, the ifail contains the indices the eigenvectors that failed
to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are
stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spevx interface are the following:

4-404

4 Intel® Math Kernel Library Reference Manual

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

ifail Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if ifail is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to
zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing
A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-405

?hpevx
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian matrix in packed storage.

Syntax

Fortran 77:

call chpevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz,
work, rwork, iwork, ifail, info)

call zhpevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz,
work, rwork, iwork, ifail, info)

Fortran 95:

call hpevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix A in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a
range of values or a range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ap stores the packed upper triangular part of A.
If uplo = 'L', ap stores the packed lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

4-406

4 Intel® Math Kernel Library Reference Manual

ap, work COMPLEX for chpevx
DOUBLE COMPLEX for zhpevx
Arrays:
ap(*) contains the packed upper or lower triangle of the Hermitian
matrix A, as specified by uplo. The dimension of ap must be at least
max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 2n).

vl, vu REAL for chpevx
DOUBLE PRECISION for zhpevx
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chpevx
DOUBLE PRECISION for zhpevx
The absolute error tolerance to which each eigenvalue is required. See
Application notes for details on error tolerance.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥ max(1, n) .

rwork REAL for chpevx
DOUBLE PRECISION for zhpevx
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-407

Output Parameters

ap On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form. The elements of the diagonal and the
off-diagonal of the tridiagonal matrix overwrite the corresponding
elements of A.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for chpevx
DOUBLE PRECISION for zhpevx
Array, DIMENSION at least max(1, n). If info = 0, contains the selected
eigenvalues of the matrix A in ascending order.

z COMPLEX for chpevx
DOUBLE COMPLEX for zhpevx
Array z(ldz,*). The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i). If an eigenvector fails to converge, then that
column of z contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in ifail.
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are supplied in the
array z ; if range ='V', the exact value of m is not known in advance
and an upper bound must be used.

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;
if info > 0, the ifail contains the indices the eigenvectors that failed
to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are
stored in the array ifail.

4-408

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpevx interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

ifail Holds the vector of length (n).

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if ifail is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to
zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing
A to tridiagonal form.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-409

Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

4-410

4 Intel® Math Kernel Library Reference Manual

?sbev
Computes all eigenvalues and, optionally, eigenvectors
of a real symmetric band matrix.

Syntax

Fortran 77:

call ssbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

call dsbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

Fortran 95:

call sbev(a, w [,uplo] [,z] [,info])

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric band
matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work REAL for ssbev
DOUBLE PRECISION for dsbev.
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part
of the symmetric matrix A (as specified by uplo) in band storage
format.
The second dimension of ab must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-411

work (*) is a workspace array.
The dimension of work must be at least max(1, 3n-2).

ldab INTEGER. The leading dimension of ab; must be at least kd +1.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥ max(1, n) .

Output Parameters

w,z REAL for ssbev
DOUBLE PRECISION for dsbev
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in ascending order.

z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of z holding the
eigenvector associated with w(i).
If jobz ='N', then z is not referenced.

ab On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form. If uplo = 'U', the first superdiagonal and
the diagonal of the tridiagonal matrix T are returned in rows kd and
kd+1 of ab, and if uplo = 'L', the diagonal and first subdiagonal of T
are returned in the first two rows of ab.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge;
i indicates the number of elements of an intermediate tridiagonal form
which did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sbev interface are the following:

4-412

4 Intel® Math Kernel Library Reference Manual

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-413

?hbev
Computes all eigenvalues and, optionally, eigenvectors
of a Hermitian band matrix.

Syntax

Fortran 77:

call chbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)

call zhbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)

Fortran 95:

call hbev(a, w [,uplo] [,z] [,info])

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band
matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work COMPLEX for chbev
DOUBLE COMPLEX for zhbev.
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part
of the Hermitian matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

4-414

4 Intel® Math Kernel Library Reference Manual

work (*) is a workspace array.
The dimension of work must be at least max(1, n).

ldab INTEGER. The leading dimension of ab; must be at least kd +1.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
 if jobz ='N', then ldz ≥ 1;
 if jobz ='V', then ldz ≥ max(1, n) .

rwork REAL for chbev
DOUBLE PRECISION for zhbev
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

w REAL for chbev
DOUBLE PRECISION for zhbev
Array, DIMENSION at least max(1, n). If info = 0, contains the
eigenvalues in ascending order.

z COMPLEX for chbev
DOUBLE COMPLEX for zhbev.
Array z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of z holding the
eigenvector associated with w(i). If jobz ='N', then z is not referenced.

ab On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form. If uplo = 'U', the first superdiagonal and
the diagonal of the tridiagonal matrix T are returned in rows kd and
kd+1 of ab, and if uplo = 'L', the diagonal and first subdiagonal of T
are returned in the first two rows of ab.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge;
i indicates the number of elements of an intermediate tridiagonal form
which did not converge to zero.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-415

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hbev interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

4-416

4 Intel® Math Kernel Library Reference Manual

?sbevd
Computes all eigenvalues and (optionally) all
eigenvectors of a real symmetric band matrix using
divide and conquer algorithm.

Syntax

Fortran 77:

call ssbevd(job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork,
info)

call dsbevd(job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork,
info)

Fortran 95:

call sbevd(a, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
band matrix A. In other words, it can compute the spectral factorization of A as:
 A = ZΛZT
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
orthogonal matrix whose columns are the eigenvectors zi.
Thus,

 Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal-Walker-Kahan variant of the QL or QR algorithm.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-417

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work REAL for ssbevd
DOUBLE PRECISION for dsbevd.
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part
of the symmetric matrix A (as specified by uplo) in band storage
format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least lwork.

ldab INTEGER. The leading dimension of ab; must be at least kd+1.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
 if job ='N', then ldz ≥ 1;
 if job ='V', then ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ 2n;
 if job ='V' and n > 1, then
lwork ≥ 3n2+(4+2k)*n+1, where k is the smallest integer which
satisfies
2k ≥ n.

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork.
Constraints:
 if n ≤ 1, then liwork ≥ 1;
 if job ='N' and n > 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.

4-418

4 Intel® Math Kernel Library Reference Manual

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

w,z REAL for ssbevd
DOUBLE PRECISION for dsbevd
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in ascending order.
See also info.
z(ldz,*). The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n) if job ='V'.
If job ='V', then this array is overwritten by the orthogonal matrix Z
which contains the eigenvectors of A. The ith column of Z contains the
eigenvector which corresponds to the eigenvalue w(i).
If job ='N', then z is not referenced.

ab On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form.

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size
of lwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal
size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-419

Specific details for the routine sbevd interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that ||E||2 = O(ε) ||T||2, where ε is the machine precision.

The complex analogue of this routine is ?hbevd.

See also ?syevd for matrices held in full storage, and ?spevd for matrices held in packed storage.

4-420

4 Intel® Math Kernel Library Reference Manual

?hbevd
Computes all eigenvalues and (optionally) all
eigenvectors of a complex Hermitian band matrix using
divide and conquer algorithm.

Syntax

Fortran 77:

call chbevd(job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
 rwork, lrwork, iwork, liwork, info)

call zhbevd(job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
 rwork, lrwork, iwork, liwork, info)

Fortran 95:

call hbevd(a, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex
Hermitian band matrix A. In other words, it can compute the spectral factorization of A as:
A = ZΛZH.
Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
(complex) unitary matrix whose columns are the eigenvectors zi. Thus,

 Azi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal-Walker-Kahan variant of the QL or QR algorithm.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-421

n INTEGER. The order of the matrix A (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work COMPLEX for chbevd
DOUBLE COMPLEX for zhbevd.
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part
of the Hermitian matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least lwork.

ldab INTEGER. The leading dimension of ab; must be at least kd+1.

ldz INTEGER. The leading dimension of the output array z.
Constraints:
 if job ='N', then ldz ≥ 1;
 if job ='V', then ldz ≥ max(1, n) .

lwork INTEGER. The dimension of the array work.
Constraints:
if n ≤ 1, then lwork ≥ 1;
 if job ='N' and n > 1, then lwork ≥ n;
 if job ='V' and n > 1, then lwork ≥ 2n2.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

rwork REAL for chbevd
DOUBLE PRECISION for zhbevd
Workspace array, DIMENSION at least lrwork.

lrwork INTEGER. The dimension of the array rwork.
Constraints:
if n ≤ 1, then lrwork ≥ 1;
 if job ='N' and n > 1, then lrwork ≥ n;
 if job ='V' and n > 1, then
lrwork ≥ 3n2+(4+2k)*n+1, where k is the smallest integer which
satisfies 2k ≥ n.
If lrwork = -1, then a workspace query is assumed; the routine only

4-422

4 Intel® Math Kernel Library Reference Manual

calculates the optimal size of the rwork array, returns this value as the
first entry of the rwork array, and no error message related to lrwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork.
Constraints:
 if job ='N' or n ≤ 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

w REAL for chbevd
DOUBLE PRECISION for zhbevd
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues of the matrix A in ascending order.
See also info.

z COMPLEX for chbevd
DOUBLE COMPLEX for zhbevd
Array, DIMENSION (ldz,*). The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n) if job ='V'.
If job ='V', then this array is overwritten by the unitary matrix Z
which contains the eigenvectors of A. The ith column of Z contains the
eigenvector which corresponds to the eigenvalue w(i).
If job ='N', then z is not referenced.

ab On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form.

work(1) On exit, if lwork > 0, then the real part of work(1) returns the
required minimal size of lwork.

rwork(1) On exit, if lrwork > 0, then rwork(1) returns the required minimal
size of lrwork.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-423

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal
size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hbevd interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that ||E||2 = O(ε) ||T||2, where ε is the machine precision.

The real analogue of this routine is ?sbevd.

See also ?heevd for matrices held in full storage, and ?hpevd for matrices held in packed storage.

4-424

4 Intel® Math Kernel Library Reference Manual

?sbevx
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric band matrix.

Syntax

Fortran 77:

call ssbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol,
m, w, z, ldz, work, iwork, ifail, info)

call dsbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol,
m, w, z, ldz, work, iwork, ifail, info)

Fortran 95:

call sbevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q]
[,abstol] [,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band
matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a
range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-425

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work REAL for ssbevx
DOUBLE PRECISION for dsbevx.
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part
of the symmetric matrix A (as specified by uplo) in band storage
format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least max(1, 7n).

ldab INTEGER. The leading dimension of ab; must be at least kd +1.

vl, vu REAL for ssbevx
DOUBLE PRECISION for dsbevx.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chpevx
DOUBLE PRECISION for zhpevx
The absolute error tolerance to which each eigenvalue is required. See
Application notes for details on error tolerance.

ldq, ldz INTEGER. The leading dimensions of the output arrays q and z,
respectively. Constraints:
ldq ≥ 1, ldz ≥ 1;
If jobz ='V', then ldq ≥ max(1, n) and ldz ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

4-426

4 Intel® Math Kernel Library Reference Manual

Output Parameters

q REAL for ssbevx
DOUBLE PRECISION for dsbevx.
Array, DIMENSION (ldz,n).
If jobz ='V', the n-by-n orthogonal matrix is used in the reduction to
tridiagonal form.
If jobz ='N', the array q is not referenced.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w,z REAL for ssbevx
DOUBLE PRECISION for dsbevx
Arrays:
w(*), DIMENSION at least max(1, n).
The first m elements of w contain the selected eigenvalues of the matrix A
in ascending order.

z(ldz,*). The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i). If an eigenvector fails to converge, then that
column of z contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in ifail.
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are supplied in the
array z ; if range ='V', the exact value of m is not known in advance
and an upper bound must be used.

ab On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form.
If uplo = 'U', the first superdiagonal and the diagonal of the tridiagonal
matrix T are returned in rows kd and kd+1 of ab, and
if uplo = 'L', the diagonal and first subdiagonal of T are returned in the
first two rows of ab.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-427

if info > 0, the ifail contains the indices the eigenvectors that failed
to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are
stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sbevx interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

ifail Holds the vector of length (n).

q Holds the matrix Q of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if either ifail or q is present and z is
omitted.

4-428

4 Intel® Math Kernel Library Reference Manual

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to
zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing
A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-429

?hbevx
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian band matrix.

Syntax

Fortran 77:

call chbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)

Fortran 95:

call hbevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q]
[,abstol] [,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian
band matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.

n INTEGER. The order of the matrix A (n ≥ 0).

4-430

4 Intel® Math Kernel Library Reference Manual

kd INTEGER. The number of super- or sub-diagonals in A
(kd ≥ 0).

ab, work COMPLEX for chbevx
DOUBLE COMPLEX for zhbevx.
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part
of the Hermitian matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1, n).

work (*) is a workspace array.
The dimension of work must be at least max(1, n).

ldab INTEGER. The leading dimension of ab; must be at least kd +1.

vl, vu REAL for chbevx
DOUBLE PRECISION for zhbevx.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chbevx
DOUBLE PRECISION for zhbevx.
The absolute error tolerance to which each eigenvalue is required. See
Application notes for details on error tolerance.

ldq, ldz INTEGER. The leading dimensions of the output arrays q and z,
respectively. Constraints:
ldq ≥ 1, ldz ≥ 1;
If jobz ='V', then ldq ≥ max(1, n) and ldz ≥ max(1, n).

rwork REAL for chbevx
DOUBLE PRECISION for zhbevx
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-431

Output Parameters

q COMPLEX for chbevx
DOUBLE COMPLEX for zhbevx.
Array, DIMENSION (ldz,n).
If jobz ='V', the n-by-n unitary matrix is used in the reduction to
tridiagonal form.
If jobz ='N', the array q is not referenced.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for chbevx
DOUBLE PRECISION for zhbevx
Array, DIMENSION at least max(1, n).
The first m elements contain the selected eigenvalues of the matrix A in
ascending order.

z COMPLEX for chbevx
DOUBLE COMPLEX for zhbevx.
Array z(ldz,*). The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i). If an eigenvector fails to converge, then that
column of z contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in ifail.
If jobz ='N', then z is not referenced.
Note: you must ensure that at least max(1,m) columns are supplied in the
array z ; if range ='V', the exact value of m is not known in advance
and an upper bound must be used.

ab On exit, this array is overwritten by the values generated during the
reduction to tridiagonal form.
If uplo = 'U', the first superdiagonal and the diagonal of the tridiagonal
matrix T are returned in rows kd and kd+1 of ab, and
if uplo = 'L', the diagonal and first subdiagonal of T are returned in the
first two rows of ab.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;

4-432

4 Intel® Math Kernel Library Reference Manual

if info > 0, the ifail contains the indices of the eigenvectors that
failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are
stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hbevx interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (kd+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

ifail Holds the vector of length (n).

q Holds the matrix Q of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if either ifail or q is present and z is
omitted.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-433

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to
zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing
A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

4-434

4 Intel® Math Kernel Library Reference Manual

?stev
Computes all eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix.

Syntax

Fortran 77:

call sstev(jobz, n, d, e, z, ldz, work, info)

call dstev(jobz, n, d, e, z, ldz, work, info)

Fortran 95:

call stev(d, e [,z] [,info])

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal
matrix A.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

n INTEGER. The order of the matrix A (n ≥ 0).

d, e, work REAL for sstev
DOUBLE PRECISION for dstev.
Arrays:
d(*) contains the n diagonal elements of the tridiagonal matrix A.
The dimension of d must be at least max(1, n).

e(*) contains the n-1 subdiagonal elements of the tridiagonal matrix A.
The dimension of e must be at least max(1, n). The nth element of this
array is used as workspace.

work(*) is a workspace array.
The dimension of work must be at least max(1, 2n-2).
If jobz ='N', work is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-435

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1. If jobz
='V' then ldz ≥ max(1, n).

Output Parameters

d On exit, if info = 0, contains the eigenvalues of the matrix A in
ascending order.

z REAL for sstev
DOUBLE PRECISION for dstev
Array, DIMENSION (ldz, *).
The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the orthonormal eigenvectors
of the matrix A, with the i-th column of z holding the eigenvector
associated with the eigenvalue returned in d(i).
If job ='N', then z is not referenced.

e On exit, this array is overwritten with intermediate results.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then the algorithm failed to converge;
i elements of e did not converge to zero.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine stev interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

4-436

4 Intel® Math Kernel Library Reference Manual

?stevd
Computes all eigenvalues and (optionally) all
eigenvectors of a real symmetric tridiagonal matrix
using divide and conquer algorithm.

Syntax

Fortran 77:

call sstevd(job, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

call dstevd(job, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

Fortran 95:

call stevd(d, e [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
tridiagonal matrix T. In other words, the routine can compute the spectral factorization of T as:
T = ZΛZT.
Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi, and Z is the
orthogonal matrix whose columns are the eigenvectors zi. Thus,

 Tzi = λizi for i = 1, 2, ..., n.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal-Walker-Kahan variant of the QL or QR algorithm.

There is no complex analogue of this routine.

Input Parameters

job CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

n INTEGER. The order of the matrix T (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-437

d, e, work REAL for sstevd
DOUBLE PRECISION for dstevd.
Arrays:
d(*) contains the n diagonal elements of the tridiagonal matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the n-1 off-diagonal elements of T.
The dimension of e must be at least max(1, n). The nth element of this
array is used as workspace.

work(*) is a workspace array.
The dimension of work must be at least lwork.

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1 if job ='N';
ldz ≥ max(1, n) if job ='V'.

lwork INTEGER. The dimension of the array work.
Constraints:
 if job ='N' or n ≤ 1, then lwork ≥ 1;
 if job ='V' and n > 1, then
lwork ≥ 2n2+(3+2k)*n+1, where k is the smallest integer which
satisfies
2k ≥ n.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION at least liwork.

liwork INTEGER. The dimension of the array iwork.
Constraints:
 if job ='N' or n ≤ 1, then liwork ≥ 1;
 if job ='V' and n > 1, then liwork ≥ 5n+2.

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

4-438

4 Intel® Math Kernel Library Reference Manual

Output Parameters

d On exit, if info = 0, contains the eigenvalues of the matrix T in
ascending order.
See also info.

z REAL for sstevd
DOUBLE PRECISION for dstevd
Array, DIMENSION (ldz, *).
The second dimension of z must be:
at least 1 if job ='N';
at least max(1, n) if job ='V'.

If job ='V', then this array is overwritten by the orthogonal matrix Z,
which contains the eigenvectors of T.
If job ='N', then z is not referenced.

e On exit, this array is overwritten with intermediate results.

work(1) On exit, if lwork > 0, then work(1) returns the required minimal size
of lwork.

iwork(1) On exit, if liwork > 0, then iwork(1) returns the required minimal
size of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the
number of elements of an intermediate tridiagonal form which did not
converge to zero.
If info = -i, the ith parameter had an illegal value.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine stevd interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-439

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix T + E
such that ||E||2 = O(ε) ||T||2, where ε is the machine precision.

If λi is an exact eigenvalue, and µi is the corresponding computed value, then

 |µi - λi| ≤ c(n)ε ||T||2 ,

where c(n) is a modestly increasing function of n.

If zi is the corresponding exact eigenvector, and wi is the corresponding computed vector, then
the angle θ(zi, wi) between them is bounded as follows:

 θ(zi, wi) ≤ c(n)ε ||T||2 / mini≠j|λi - λj|.

Thus, the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all
the other eigenvalues.

4-440

4 Intel® Math Kernel Library Reference Manual

?stevx
Computes selected eigenvalues and eigenvectors of a
real symmetric tridiagonal matrix.

Syntax

Fortran 77:

call sstevx(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, work,
iwork, ifail, info)

call dstevx(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, work,
iwork, ifail, info)

Fortran 95:

call stevx(d, e, w [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If job ='N', then only eigenvalues are computed.
If job ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

n INTEGER. The order of the matrix A (n ≥ 0).

d, e, work REAL for sstevx
DOUBLE PRECISION for dstevx.
Arrays:
d(*) contains the n diagonal elements of the tridiagonal matrix A.
The dimension of d must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-441

e(*) contains the n-1 subdiagonal elements of A.
The dimension of e must be at least max(1, n). The nth element of this
array is used as workspace.

work(*) is a workspace array.
The dimension of work must be at least max(1, 5n).

vl, vu REAL for sstevx
DOUBLE PRECISION for dstevx.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for sstevx
DOUBLE PRECISION for dstevx.
The absolute error tolerance to which each eigenvalue is required. See
Application notes for details on error tolerance.

ldz INTEGER. The leading dimensions of the output array z; ldz ≥ 1.
If jobz ='V', then ldz ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w, z REAL for sstevx
DOUBLE PRECISION for dstevx.
Arrays:
w(*), DIMENSION at least max(1, n).
The first m elements of w contain the selected eigenvalues of the matrix A
in ascending order.

4-442

4 Intel® Math Kernel Library Reference Manual

z(ldz,*). The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i). If an eigenvector fails to converge, then that
column of z contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in ifail.
If jobz ='N', then z is not referenced. Note: you must ensure that at
least max(1,m) columns are supplied in the array z ;
if range ='V', the exact value of m is not known in advance and an
upper bound must be used.

d, e On exit, these arrays may be multiplied by a constant factor chosen to
avoid overflow or underflow in computing the eigenvalues.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;
if info > 0, the ifail contains the indices of the eigenvectors that
failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are
stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine stevx interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

ifail Holds the vector of length (n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-443

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if ifail is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to
zero, then ε*||A||1 will be used in its place.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

4-444

4 Intel® Math Kernel Library Reference Manual

?stevr
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric tridiagonal matrix
using the Relatively Robust Representations.

Syntax

Fortran 77:

call sstevr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, iwork, liwork, info)

call dstevr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, iwork, liwork, info)

Fortran 95:

call stevr(d, e, w [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol]
[,info])

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Whenever possible, ?stevr calls sstegr/dstegr to compute the eigenspectrum using
Relatively Robust Representations. ?stegr computes eigenvalues by the dqds algorithm, while
orthogonal eigenvectors are computed from various “good'' LDLT representations (also known as
Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible.
More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of
T,

(a) Compute T - σi = Li Di Li
T, such that Li Di Li

T is a relatively robust
representation;
(b) Compute the eigenvalues, λj, of Li Di Li

T to high relative accuracy by the dqds
algorithm;
(c) If there is a cluster of close eigenvalues, "choose" σi close to the cluster, and go
to step (a);
(d) Given the approximate eigenvalue λj of Li Di Li

T, compute the corresponding
eigenvector by forming a rank-revealing twisted factorization.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-445

The desired accuracy of the output can be specified by the input parameter abstol.

The routine ?stevr calls sstegr/dstegr when the full spectrum is requested on machines
which conform to the IEEE-754 floating point standard. ?stevr calls sstebz/dstebz and
sstein/dstein on non-IEEE machines and when partial spectrum requests are made.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

For range ='V'or 'I' and iu-il < n-1, sstebz/dstebz and
sstein/dstein are called.

n INTEGER. The order of the matrix T (n ≥ 0).

d, e, work REAL for sstevr
DOUBLE PRECISION for dstevr.
Arrays:
d(*) contains the n diagonal elements of the tridiagonal matrix T.
The dimension of d must be at least max(1, n).

e(*) contains the n-1 subdiagonal elements of A.
The dimension of e must be at least max(1, n). The nth element of this
array is used as workspace.

work(lwork) is a workspace array.

vl, vu REAL for sstevr
DOUBLE PRECISION for dstevr.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

4-446

4 Intel® Math Kernel Library Reference Manual

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for ssyevr
DOUBLE PRECISION for dsyevr.
The absolute error tolerance to which each eigenvalue/eigenvector is
required.
If jobz = 'V', the eigenvalues and eigenvectors output have residual
norms bounded by abstol, and the dot products between different
eigenvectors are bounded by abstol. If abstol < nε||T||1, then nε||T||1
will be used in its place, where ε is the machine precision. The
eigenvalues are computed to an accuracy of ε||T||1 irrespective of
abstol. If high relative accuracy is important, set abstol to
?lamch('S').

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1 if jobz ='N';
ldz ≥ max(1, n) if jobz ='V'.

lwork INTEGER. The dimension of the array work.
Constraint: lwork ≥ max(1, 20n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork,
lwork ≥ max(1, 10n).

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-447

Output Parameters

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w, z REAL for sstevr
DOUBLE PRECISION for dstevr.
Arrays:
w(*), DIMENSION at least max(1, n).
The first m elements of w contain the selected eigenvalues of the matrix T
in ascending order.

z(ldz,*). The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix T corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i).
If jobz ='N', then z is not referenced. Note: you must ensure that at
least max(1,m) columns are supplied in the array z ;
if range ='V', the exact value of m is not known in advance and an
upper bound must be used.

d, e On exit, these arrays may be multiplied by a constant factor chosen to
avoid overflow or underflow in computing the eigenvalues.

isuppz INTEGER.
Array, DIMENSION at least 2*max(1, m).

The support of the eigenvectors in z, i.e., the indices indicating the
nonzero elements in z. The i-th eigenvector is nonzero only in elements
isuppz(2i-1) through isuppz(2i).
Implemented only for range ='A' or 'I' and
iu-il = n-1.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size
of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, an internal error has occurred.

4-448

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine stevr interface are the following:

d Holds the vector of length (n).

e Holds the vector of length (n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

isuppz Holds the vector of length (2*n), where the values (2*m) are significant.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted
Note that there will be an error condition if ifail is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

Normal execution of the routine ?stegr may create NaNs and infinities and hence may abort due
to a floating point exception in environments which do not handle NaNs and infinities in the IEEE
standard default manner.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-449

Nonsymmetric Eigenproblems
This section describes LAPACK driver routines used for solving nonsymmetric eigenproblems.
See also computational routines that can be called to solve these problems.
Table 4-11 lists all such driver routines for Fortran-77 interface. Respective routine names in
Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

?gees
Computes the eigenvalues and Schur factorization of a
general matrix, and orders the factorization so that selected
eigenvalues are at the top left of the Schur form.

Syntax

Fortran 77:

call sgees(jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs, work, lwork,
bwork, info)

call dgees(jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs, work, lwork,
bwork, info)

call cgees(jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs, work, lwork,
rwork, bwork, info)

call zgees(jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs, work, lwork,
rwork, bwork, info)

Table 4-11 Driver Routines for Solving Nonsymmetric Eigenproblems

Routine Name Operation performed

?gees Computes the eigenvalues and Schur factorization of a general matrix, and
orders the factorization so that selected eigenvalues are at the top left of the
Schur form.

?geesx Computes the eigenvalues and Schur factorization of a general matrix,
orders the factorization and computes reciprocal condition numbers.

?geev Computes the eigenvalues and left and right eigenvectors of a general
matrix.

?geevx Computes the eigenvalues and left and right eigenvectors of a general
matrix, with preliminary matrix balancing, and computes reciprocal condition
numbers for the eigenvalues and right eigenvectors.

4-450

4 Intel® Math Kernel Library Reference Manual

Fortran 95:

call gees(a, wr, wi [,vs] [,select] [,sdim] [,info])

call gees(a, w [,vs] [,select] [,sdim] [,info])

Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues, the
real Schur form T, and, optionally, the matrix of Schur vectors Z. This gives the Schur factorization
A = Z T ZH.

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that
selected eigenvalues are at the top left. The leading columns of Z then form an orthonormal basis
for the invariant subspace corresponding to the selected eigenvalues.

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks.
2-by-2 blocks will be standardized in the form

where b*c < 0. The eigenvalues of such a block are .

A complex matrix is in Schur form if it is upper triangular.

Input Parameters

jobvs CHARACTER*1. Must be 'N' or 'V'.
If jobvs ='N', then Schur vectors are not computed.
If jobvs ='V', then Schur vectors are computed.

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the diagonal of the
Schur form.

If sort ='N', then eigenvalues are not ordered.
If sort ='S', eigenvalues are ordered (see select).

select LOGICAL FUNCTION of two REAL arguments
for real flavors.
LOGICAL FUNCTION of one COMPLEX argument
for complex flavors.

a
c

b
a 

 

a bc±

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-451

select must be declared EXTERNAL in the calling subroutine.
If sort ='S', select is used to select eigenvalues to sort to the top
left of the Schur form.
If sort ='N', select is not referenced.
For real flavors:
An eigenvalue wr(j)+ *wi(j) is selected if select(wr(j), wi(j)) is
true; that is, if either one of a complex conjugate pair of eigenvalues is
selected, then both complex eigenvalues are selected. Note that a
selected complex eigenvalue may no longer satisfy select(wr(j), wi(j))
= .TRUE. after ordering, since ordering may change the value of
complex eigenvalues (especially if the eigenvalue is ill-conditioned); in
this case info may be set to n+2 (see info below).
For complex flavors:
An eigenvalue w(j) is selected if select(w(j)) is true.

 n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for sgees
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

ldvs INTEGER. The leading dimension of the output array vs. Constraints:
ldvs ≥ 1;
ldvs ≥ max(1, n) if jobvs ='V'.

lwork INTEGER. The dimension of the array work.
Constraint:
lwork ≥ max(1, 3n) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

1–

4-452

4 Intel® Math Kernel Library Reference Manual

rwork REAL for cgees
DOUBLE PRECISION for zgees
Workspace array, DIMENSION at least max(1, n). Used in complex
flavors only.

bwork LOGICAL.
Workspace array, DIMENSION at least max(1, n). Not referenced if sort
='N'.

Output Parameters

a On exit, this array is overwritten by the real-Schur/Schur form T.

sdim INTEGER.
If sort ='N', sdim= 0.
If sort ='S', sdim is equal to the number of eigenvalues (after
sorting) for which select is true.
Note that for real flavors complex conjugate pairs for which select is
true for either eigenvalue count as 2.

wr, wi REAL for sgees
DOUBLE PRECISION for dgees
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the computed
eigenvalues, in the same order that they appear on the diagonal of the
output real-Schur form T. Complex conjugate pairs of eigenvalues
appear consecutively with the eigenvalue having positive imaginary part
first.

w COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues. The eigenvalues are stored in the
same order as they appear on the diagonal of the output Schur form T.

vs REAL for sgees
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array vs(ldvs,*); the second dimension of vs must be at least max(1,
n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-453

If jobvs ='V', vs contains the orthogonal/unitary matrix Z of Schur
vectors.
If jobvs ='N', vs is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

If info = i, and
i ≤ n:

the QR algorithm failed to compute all the eigenvalues; elements
1:ilo-1 and i+1:n of wr and wi (for real flavors) or w (for complex
flavors) contain those eigenvalues which have converged; if jobvs
='V', vs contains the matrix which reduces A to its partially converged
Schur form;

i = n+1:

the eigenvalues could not be reordered because some eigenvalues were
too close to separate (the problem is very ill-conditioned);

i = n+2:

after reordering, round-off changed values of some complex eigenvalues
so that leading eigenvalues in the Schur form no longer satisfy
select = .TRUE.. This could also be caused by underflow due to
scaling.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gees interface are the following:

a Holds the matrix A of size (n,n).

wr Holds the vector of length (n). Used in real flavors only.

wi Holds the vector of length (n). Used in real flavors only.

w Holds the vector of length (n). Used in complex flavors only.

4-454

4 Intel® Math Kernel Library Reference Manual

vs Holds the matrix VS of size (n,n).

jobvs Restored based on the presence of the argument vs as follows:
jobvs = 'V', if vs is present,
jobvs = 'N', if vs is omitted.

sort Restored based on the presence of the argument select as follows:
sort = 'S', if select is present,
sort = 'N', if select is omitted.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-455

?geesx
Computes the eigenvalues and Schur factorization of a
general matrix, orders the factorization and computes
reciprocal condition numbers.

Syntax

Fortran 77:

call sgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs, ldvs,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call dgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs, ldvs,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call cgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs, ldvs, rconde,
rcondv, work, lwork, rwork, bwork, info)

call zgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs, ldvs, rconde,
rcondv, work, lwork, rwork, bwork, info)

Fortran 95:

call geesx(a, wr, wi [,vs] [,select] [,sdim] [,rconde] [,rcondev] [,info])

call geesx(a, w [,vs] [,select] [,sdim] [,rconde] [,rcondev] [,info])

Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues, the
real-Schur/Schur form T, and, optionally, the matrix of Schur vectors Z. This gives the Schur
factorization A = Z T ZH.

 Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that
selected eigenvalues are at the top left; computes a reciprocal condition number for the average of
the selected eigenvalues (rconde); and computes a reciprocal condition number for the right
invariant subspace corresponding to the selected eigenvalues (rcondv). The leading columns of Z
form an orthonormal basis for this invariant subspace.

For further explanation of the reciprocal condition numbers rconde and rcondv, see [LUG],
Section 4.10 (where these quantities are called s and sep respectively).

4-456

4 Intel® Math Kernel Library Reference Manual

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks.
2-by-2 blocks will be standardized in the form

 ,

where b*c < 0. The eigenvalues of such a block are .

A complex matrix is in Schur form if it is upper triangular.

Input Parameters

jobvs CHARACTER*1. Must be 'N' or 'V'.
If jobvs ='N', then Schur vectors are not computed.
If jobvs ='V', then Schur vectors are computed.

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the diagonal of the
Schur form.

If sort ='N', then eigenvalues are not ordered.
If sort ='S', eigenvalues are ordered (see select).

select LOGICAL FUNCTION of two REAL arguments
for real flavors.
LOGICAL FUNCTION of one COMPLEX argument
for complex flavors.

select must be declared EXTERNAL in the calling subroutine.
If sort ='S', select is used to select eigenvalues to sort to the top
left of the Schur form.
If sort ='N', select is not referenced.
For real flavors:
An eigenvalue wr(j)+ *wi(j) is selected if select(wr(j), wi(j)) is
true; that is, if either one of a complex conjugate pair of eigenvalues is
selected, then both complex eigenvalues are selected. Note that a
selected complex eigenvalue may no longer satisfy select(wr(j), wi(j))
= .TRUE. after ordering, since ordering may change the value of
complex eigenvalues (especially if the eigenvalue is ill-conditioned); in
this case info may be set to n+2 (see info below).
For complex flavors:
An eigenvalue w(j) is selected if select(w(j)) is true.

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are computed.

a
c

b
a 

 

a bc±

1–

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-457

If sense ='N', none are computed;
If sense ='E', computed for average of selected eigenvalues only;
If sense ='V', computed for selected right invariant subspace only;
If sense ='B', computed for both.

If sense is 'E', 'V', or 'B', then sort must equal 'S'.

 n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for sgeesx
DOUBLE PRECISION for dgeesx
COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

ldvs INTEGER. The leading dimension of the output array vs. Constraints:
ldvs ≥ 1;
ldvs ≥ max(1, n) if jobvs ='V'.

lwork INTEGER. The dimension of the array work.
Constraint:
lwork ≥ max(1, 3n) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.

Also, if sense = 'E', 'V', or 'B', then
lwork ≥ n+2*sdim*(n-sdim) for real flavors;
lwork ≥ 2*sdim*(n-sdim) for complex flavors;
where sdim is the number of selected eigenvalues computed by this
routine. Note that 2*sdim*(n-sdim) ≤ n*n/2.

For good performance, lwork must generally be larger.

iwork INTEGER.
Workspace array, DIMENSION (liwork). Used in real flavors only. Not
referenced if sense = 'N' or 'E'.

4-458

4 Intel® Math Kernel Library Reference Manual

liwork INTEGER. The dimension of the array iwork. Used in real flavors only.
Constraint:
liwork ≥ 1;
if sense = 'V' or 'B', liwork ≥ sdim*(n-sdim).

rwork REAL for cgeesx
DOUBLE PRECISION for zgeesx
Workspace array, DIMENSION at least max(1, n). Used in complex
flavors only.

bwork LOGICAL.
Workspace array, DIMENSION at least max(1, n). Not referenced if
sort ='N'.

Output Parameters

a On exit, this array is overwritten by the real-Schur/Schur form T.

sdim INTEGER.
If sort ='N', sdim= 0.
If sort ='S', sdim is equal to the number of eigenvalues (after
sorting) for which select is true.
Note that for real flavors complex conjugate pairs for which select is
true for either eigenvalue count as 2.

wr, wi REAL for sgeesx
DOUBLE PRECISION for dgeesx
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the computed
eigenvalues, in the same order that they appear on the diagonal of the
output real-Schur form T. Complex conjugate pairs of eigenvalues
appear consecutively with the eigenvalue having positive imaginary part
first.

w COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues. The eigenvalues are stored in the
same order as they appear on the diagonal of the output Schur form T.

vs REAL for sgeesx
DOUBLE PRECISION for dgeesx
COMPLEX for cgeesx

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-459

DOUBLE COMPLEX for zgeesx.
Array vs(ldvs,*); the second dimension of vs must be at least max(1,
n).

If jobvs ='V', vs contains the orthogonal/unitary matrix Z of Schur
vectors.
If jobvs ='N', vs is not referenced.

rconde,rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If sense = 'E' or 'B', rconde contains the reciprocal condition
number for the average of the selected eigenvalues. If sense = 'N' or
'V', rconde is not referenced.

If sense = 'V' or 'B', rcondv contains the reciprocal condition
number for the selected right invariant subspace. If sense = 'N' or
'E', rcondv is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

info INTEGER.
If info = 0, the execution is successful.

If info = -i, the ith parameter had an illegal value.

If info = i, and
i ≤ n:

the QR algorithm failed to compute all the eigenvalues; elements
1:ilo-1 and i+1:n of wr and wi (for real flavors) or w (for complex
flavors) contain those eigenvalues which have converged; if jobvs
='V', vs contains the transformation which reduces A to its partially
converged Schur form;

i = n+1:

the eigenvalues could not be reordered because some eigenvalues were
too close to separate (the problem is very ill-conditioned);

i = n+2:

after reordering, roundoff changed values of some complex eigenvalues
so that leading eigenvalues in the Schur form no longer satisfy
select = .TRUE.. This could also be caused by underflow due to
scaling.

4-460

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine geesx interface are the following:

a Holds the matrix A of size (n,n).

wr Holds the vector of length (n). Used in real flavors only.

wi Holds the vector of length (n). Used in real flavors only.

w Holds the vector of length (n). Used in complex flavors only.

vs Holds the matrix VS of size (n,n).

jobvs Restored based on the presence of the argument vs as follows:
jobvs = 'V', if vs is present,
jobvs = 'N', if vs is omitted.

sort Restored based on the presence of the argument select as follows:
sort = 'S', if select is present,
sort = 'N', if select is omitted.

sense Restored based on the presence of arguments rconde and rcondv as follows:
sense = 'B', if both rconde and rcondv are present,
sense = 'E', if rconde is present and rcondv omitted,
sense = 'V', if rconde is omitted and rcondv present,
sense = 'N', if both rconde and rcondv are omitted.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-461

?geev
Computes the eigenvalues and left and right
eigenvectors of a general matrix.

Syntax

Fortran 77:

call sgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork,
info)

call dgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork,
info)

call cgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork,
info)

call zgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork,
info)

Fortran 95:

call geev(a, wr, wi [,vl] [,vr] [,info])

call geev(a, w [,vl] [,vr] [,info])

Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues and,
optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies

 A*v(j) = λ(j)*v(j)

where λ(j) is its eigenvalue.

The left eigenvector u(j) of A satisfies

 u(j)H*A = λ(j)*u(j)H

where u(j)H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal
to 1 and largest component real.

4-462

4 Intel® Math Kernel Library Reference Manual

Input Parameters

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', then left eigenvectors of A are not computed.
If jobvl ='V', then left eigenvectors of A are computed.

jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', then right eigenvectors of A are not computed.
If jobvr ='V', then right eigenvectors of A are computed.

 n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for sgeev
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

ldvl, ldvr INTEGER. The leading dimensions of the output arrays vl and vr,
respectively. Constraints:
ldvl ≥ 1; ldvr ≥ 1.
If jobvl ='V', ldvl ≥ max(1, n);
If jobvr ='V', ldvr ≥ max(1, n).

lwork INTEGER. The dimension of the array work.
Constraint:
lwork ≥ max(1, 3n), and if jobvl ='V' or
jobvr ='V', lwork ≥ max(1, 4n) (for real flavors);
lwork ≥ max(1, 2n) (for complex flavors).
For good performance, lwork must generally be larger.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-463

rwork REAL for cgeev
DOUBLE PRECISION for zgeev
Workspace array, DIMENSION at least max(1, 2n). Used in complex
flavors only.

Output Parameters

a On exit, this array is overwritten by intermediate results.

wr, wi REAL for sgeev
DOUBLE PRECISION for dgeev
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the computed
eigenvalues. Complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having positive imaginary part first.

w COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues.

vl, vr REAL for sgeev
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least max(1, n).

If jobvl ='V', the left eigenvectors u(j) are stored one after another in
the columns of vl, in the same order as their eigenvalues. If jobvl
='N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th column of vl. If
the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then
u(j) = vl(:,j) + i*vl(:,j+1) and u(j+1) = vl(:,j) - i*vl(:,j+1), where
i= .

For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at least max(1, n).

If jobvr ='V', the right eigenvectors v(j) are stored one after another in
the columns of vr, in the same order as their eigenvalues. If jobvr
='N', vr is not referenced.

1–

4-464

4 Intel® Math Kernel Library Reference Manual

For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th column of vr. If
the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then
v(j) = vr(:,j) + i*vr(:,j+1) and v(j+1) = vr(:,j) - i*vr(:,j+1), where
i= .

For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the QR algorithm failed to compute all the eigenvalues, and
no eigenvectors have been computed; elements i+1:n of wr and wi (for
real flavors) or w (for complex flavors) contain those eigenvalues which
have converged.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine geev interface are the following:

a Holds the matrix A of size (n,n).

wr Holds the vector of length (n). Used in real flavors only.

wi Holds the vector of length (n). Used in real flavors only.

w Holds the vector of length (n). Used in complex flavors only.

vl Holds the matrix VL of size (n,n).

vr Holds the matrix VR of size (n,n).

jobvl Restored based on the presence of the argument vl as follows:
jobvl = 'V', if vl is present,
jobvl = 'N', if vl is omitted.

jobvr Restored based on the presence of the argument vr as follows:
jobvr = 'V', if vr is present,
jobvr = 'N', if vr is omitted.

1–

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-465

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

4-466

4 Intel® Math Kernel Library Reference Manual

?geevx
Computes the eigenvalues and left and right eigenvectors
of a general matrix, with preliminary matrix balancing,
and computes reciprocal condition numbers for the
eigenvalues and right eigenvectors.

Syntax

Fortran 77:

call sgeevx(balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
ilo, ihi, scale, abnrm, rconde, rcondv, work, lwork, iwork, info)

call dgeevx(balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
ilo, ihi, scale, abnrm, rconde, rcondv, work, lwork, iwork, info)

call cgeevx(balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl, vr, ldvr, ilo,
ihi, scale, abnrm, rconde, rcondv, work, lwork, rwork, info)

call zgeevx(balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl, vr, ldvr, ilo,
ihi, scale, abnrm, rconde, rcondv, work, lwork, rwork, info)

Fortran 95:

call geevx(a, wr, wi [,vl] [,vr] [,balanc] [,ilo] [,ihi] [,scale] [,abnrm]
[,rconde] [,rcondv] [,info])

call geevx(a, w [,vl] [,vr] [,balanc] [,ilo] [,ihi] [,scale] [,abnrm] [,rconde]
[,rcondv] [,info])

Description

This routine computes for an n-by-n real/complex nonsymmetric matrix A, the eigenvalues and,
optionally, the left and/or right eigenvectors.

Optionally also, it computes a balancing transformation to improve the conditioning of the
eigenvalues and eigenvectors (ilo, ihi, scale, and abnrm), reciprocal condition numbers for the
eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

The right eigenvector v(j) of A satisfies

 A*v(j) = λ(j)*v(j)

where λ(j) is its eigenvalue.

The left eigenvector u(j) of A satisfies

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-467

 u(j)H*A = λ(j)*u(j)H

where u(j)H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal
to 1 and largest component real.

Balancing a matrix means permuting the rows and columns to make it more nearly upper
triangular, and applying a diagonal similarity transformation
D A D-1, where D is a diagonal matrix, to make its rows and columns closer in norm and the
condition numbers of its eigenvalues and eigenvectors smaller. The computed reciprocal condition
numbers correspond to the balanced matrix.
Permuting rows and columns will not change the condition numbers in exact arithmetic) but
diagonal scaling will. For further explanation of balancing, see [LUG], Section 4.10.

Input Parameters

balanc CHARACTER*1. Must be 'N', 'P', 'S', or 'B'.
Indicates how the input matrix should be diagonally scaled and/or
permuted to improve the conditioning of its eigenvalues.

If balanc ='N', do not diagonally scale or permute;
If balanc ='P', perform permutations to make the matrix more nearly
upper triangular. Do not diagonally scale;
If balanc ='S', Diagonally scale the matrix, i.e. replace A by D A D-1,
where D is a diagonal matrix chosen to make the rows and columns of A
more equal in norm. Do not permute;
If balanc ='B', both diagonally scale and permute A.

Computed reciprocal condition numbers will be for the matrix after
balancing and/or permuting. Permuting does not change condition
numbers (in exact arithmetic), but balancing does.

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', left eigenvectors of A are not computed;
If jobvl ='V', left eigenvectors of A are computed.
If sense ='E'or 'B', then jobvl must be 'V'.

jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', right eigenvectors of A are not computed;
If jobvr ='V', right eigenvectors of A are computed.
If sense ='E'or 'B', then jobvr must be 'V'.

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are computed.

4-468

4 Intel® Math Kernel Library Reference Manual

If sense ='N', none are computed;
If sense ='E', computed for eigenvalues only;
If sense ='V', computed for right eigenvectors only;
If sense ='B', computed for eigenvalues and right eigenvectors.

If sense is 'E' or 'B', both left and right eigenvectors must also be
computed (jobvl ='V'and jobvr ='V').

 n INTEGER. The order of the matrix A (n ≥ 0).

a, work REAL for sgeevx
DOUBLE PRECISION for dgeevx
COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

ldvl, ldvr INTEGER. The leading dimensions of the output arrays vl and vr,
respectively. Constraints:
ldvl ≥ 1; ldvr ≥ 1.
If jobvl ='V', ldvl ≥ max(1, n);
If jobvr ='V', ldvr ≥ max(1, n).

lwork INTEGER. The dimension of the array work.
For real flavors:
If sense ='N'or 'E', lwork ≥ max(1, 2n), and
if jobvl ='V' or jobvr ='V', lwork ≥ 3n;
If sense ='V'or 'B', lwork ≥ n(n+6).
For good performance, lwork must generally be larger.

For complex flavors:
If sense ='N'or 'E', lwork ≥ max(1, 2n);
If sense ='V'or 'B', lwork ≥ n2+2n.
For good performance, lwork must generally be larger.

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-469

rwork REAL for cgeevx
DOUBLE PRECISION for zgeevx
Workspace array, DIMENSION at least max(1, 2n). Used in complex
flavors only.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 2n-2). Used in real
flavors only. Not referenced if sense = 'N' or 'E'.

Output Parameters

a On exit, this array is overwritten. If jobvl ='V' or jobvr ='V', it
contains the real-Schur/Schur form of the balanced version of the input
matrix A.

wr, wi REAL for sgeevx
DOUBLE PRECISION for dgeevx
Arrays, DIMENSION at least max (1, n) each.
Contain the real and imaginary parts, respectively, of the computed
eigenvalues. Complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having positive imaginary part first.

w COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues.

vl, vr REAL for sgeevx
DOUBLE PRECISION for dgeevx
COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least max(1, n).

If jobvl ='V', the left eigenvectors u(j) are stored one after another in
the columns of vl, in the same order as their eigenvalues. If jobvl
='N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th column of vl. If
the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then
u(j) = vl(:,j) + i*vl(:,j+1) and u(j+1) = vl(:,j) - i*vl(:,j+1), where
i= .1–

4-470

4 Intel® Math Kernel Library Reference Manual

For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at least max(1, n).

If jobvr ='V', the right eigenvectors v(j) are stored one after another in
the columns of vr, in the same order as their eigenvalues. If jobvr
='N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th column of vr. If
the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then
v(j) = vr(:,j) + i*vr(:,j+1) and v(j+1) = vr(:,j) - i*vr(:,j+1), where
i= .

For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

ilo, ihi INTEGER.
ilo and ihi are integer values determined when A was balanced.
The balanced A(i,j) = 0 if i > j and j = 1,..., ilo-1 or
i = ihi+1,..., n.
If balanc ='N'or 'S', ilo = 1 and ihi = n.

scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max(1, n).
Details of the permutations and scaling factors applied when balancing
A. If P(j) is the index of the row and column interchanged with row and
column j, and D(j) is the scaling factor applied to row and column j, then

scale(j) = P(j), for j = 1,...,ilo-1

 = D(j), for j = ilo,...,ihi

 = P(j) for j = ihi+1,...,n.

 The order in which the interchanges are made is n to ihi+1, then 1 to
ilo-1.

abnrm REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

The one-norm of the balanced matrix (the maximum of the sum of
absolute values of elements of any column).

1–

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-471

rconde,rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n) each.
rconde(j) is the reciprocal condition number of the j-th eigenvalue.

rcondv(j) is the reciprocal condition number of the j-th right
eigenvector.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the QR algorithm failed to compute all the eigenvalues, and
no eigenvectors or condition numbers have been computed; elements
1:ilo-1 and i+1:n of wr and wi (for real flavors) or w (for complex
flavors) contain eigenvalues which have converged.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine geevx interface are the following:

a Holds the matrix A of size (n,n).

wr Holds the vector of length (n). Used in real flavors only.

wi Holds the vector of length (n). Used in real flavors only.

w Holds the vector of length (n). Used in complex flavors only.

vl Holds the matrix VL of size (n,n).

vr Holds the matrix VR of size (n,n).

scale Holds the vector of length (n).

rconde Holds the vector of length (n).

rcondv Holds the vector of length (n).

balanc Must be ‘N’, ‘B’, ‘P’ or ‘S’. The default value is ‘N’.

4-472

4 Intel® Math Kernel Library Reference Manual

jobvl Restored based on the presence of the argument vl as follows:
jobvl = 'V', if vl is present,
jobvl = 'N', if vl is omitted.

jobvr Restored based on the presence of the argument vr as follows:
jobvr = 'V', if vr is present,
jobvr = 'N', if vr is omitted.

sense Restored based on the presence of arguments rconde and rcondv as follows:
sense = 'B', if both rconde and rcondv are present,
sense = 'E', if rconde is present and rcondv omitted,
sense = 'V', if rconde is omitted and rcondv present,
sense = 'N', if both rconde and rcondv are omitted.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-473

Singular Value Decomposition
This section describes LAPACK driver routines used for solving singular value problems. See also
computational routines that can be called to solve these problems.
Table 4-12 lists all such driver routines for Fortran-77 interface. Respective routine names in
Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

?gesvd
Computes the singular value decomposition of a
general rectangular matrix.

Syntax

Fortran 77:

call sgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info)

call dgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info)

call cgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork,
info)

call zgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork,
info)

Fortran 95:

call gesvd(a, s [,u] [,vt] [,ww] [,job] [,info])

Description

This routine computes the singular value decomposition (SVD) of a real/complex m-by-n matrix
A, optionally computing the left and/or right singular vectors. The SVD is written
 A = U Σ VH

Table 4-12 Driver Routines for Singular Value Decomposition

Routine Name Operation performed

?gesvd Computes the singular value decomposition of a general rectangular matrix.

?gesdd Computes the singular value decomposition of a general rectangular matrix
using a divide and conquer method.

?ggsvd Computes the generalized singular value decomposition of a pair of general
rectangular matrices.

4-474

4 Intel® Math Kernel Library Reference Manual

where Σ is an m-by-n matrix which is zero except for its min(m,n) diagonal elements, U is an
m-by-m orthogonal/unitary matrix, and V is an n-by-n orthogonal/unitary matrix. The diagonal
elements of Σ are the singular values of A; they are real and non-negative, and are returned in
descending order. The first min(m,n) columns of U and V are the left and right singular vectors of
A.
Note that the routine returns VH, not V.

Input Parameters

jobu CHARACTER*1. Must be 'A', 'S', 'O', or 'N'.
Specifies options for computing all or part of the
matrix U.

If jobu ='A', all m columns of U are returned in the array u;
if jobu ='S', the first min(m,n) columns of U (the left singular vectors)
are returned in the array u;
if jobu ='O', the first min(m,n) columns of U (the left singular vectors)
are overwritten on the array a;
if jobu ='N', no columns of U (no left singular vectors) are computed.

jobvt CHARACTER*1. Must be 'A', 'S', 'O', or 'N'.
Specifies options for computing all or part of the
matrix VH.

If jobvt ='A', all n rows of VH are returned in the
array vt;
if jobvt ='S', the first min(m,n) rows of VH (the right singular vectors)
are returned in the array vt;
if jobvt ='O', the first min(m,n) rows of VH (the right singular vectors)
are overwritten on the array a;
if jobvt ='N', no rows of VH (no right singular vectors) are computed.

jobvt and jobu cannot both be 'O'.

 m INTEGER. The number of rows of the matrix A (m ≥ 0).

 n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgesvd
DOUBLE PRECISION for dgesvd
COMPLEX for cgesvd
DOUBLE COMPLEX for zgesvd.
Arrays:
a(lda,*) is an array containing the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-475

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, m).

ldu, ldvt INTEGER. The leading dimensions of the output arrays u and vt,
respectively. Constraints:
ldu ≥ 1; ldvt ≥ 1.
If jobu ='S' or 'A', ldu ≥ m;
If jobvt ='A', ldvt ≥ n;
If jobvt ='S', ldvt ≥ min(m, n).

lwork INTEGER. The dimension of the array work; lwork ≥ 1.
Constraints:
lwork ≥ max(3*min(m,n)+max(m,n), 5*min(m,n)) (for real flavors);
lwork ≥ 2*min(m,n)+max(m,n) (for complex flavors).
For good performance, lwork must generally be larger.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

rwork REAL for cgesvd
DOUBLE PRECISION for zgesvd
Workspace array, DIMENSION at least
max(1, 5*min(m,n)). Used in complex flavors only.

Output Parameters

a On exit,
If jobu ='O', a is overwritten with the first min(m,n) columns of U (the
left singular vectors, stored columnwise);
If jobvt ='O', a is overwritten with the first min(m,n) rows of VH (the
right singular vectors, stored rowwise);
If jobu ≠'O' and jobvt ≠'O', the contents of a are destroyed.

s REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m,n)).
Contains the singular values of A sorted so that
s(i) ≥ s(i+1).

4-476

4 Intel® Math Kernel Library Reference Manual

u, vt REAL for sgesvd
DOUBLE PRECISION for dgesvd
COMPLEX for cgesvd
DOUBLE COMPLEX for zgesvd.
Arrays:
u(ldu,*); the second dimension of u must be at least max(1, m) if
jobu ='A', and at least max(1, min(m,n)) if jobu ='S'.

If jobu ='A', u contains the m-by-m orthogonal/unitary matrix U.
If jobu ='S', u contains the first min(m,n) columns of U (the left
singular vectors, stored columnwise).
If jobu ='N'or 'O', u is not referenced.

vt(ldvt,*); the second dimension of vt must be at least max(1, n).

If jobvt ='A', vt contains the n-by-n orthogonal/unitary matrix VH.
If jobvt ='S', vt contains the first min(m,n) rows of VH (the right
singular vectors, stored rowwise).
If jobvt ='N'or 'O', vt is not referenced.

work On exit, if info = 0, then work(1) returns the required minimal size of
lwork.
For real flavors:
If info > 0, work(2:min(m,n)) contains the unconverged superdiagonal
elements of an upper bidiagonal matrix B whose diagonal is in s (not
necessarily sorted). B satisfies A = u * B * vt, so it has the same
singular values as A, and singular vectors related by u and vt.

rwork On exit (for complex flavors), if info > 0, rwork(1:min(m,n)-1)
contains the unconverged superdiagonal elements of an upper bidiagonal
matrix B whose diagonal is in s (not necessarily sorted). B satisfies A =
u * B * vt, so it has the same singular values as A, and singular vectors
related by u and vt.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then if ?bdsqr did not converge, i specifies how many
superdiagonals of the intermediate bidiagonal form B did not converge
to zero.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-477

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gesvd interface are the following:

a Holds the matrix A of size (m,n).

s Holds the vector of length min(m,n).

u Holds the matrix U of size (m,min(m,n)).

vt Holds the matrix VT of size (min(m,n),n).

ww Holds the vector of length (min(m,n)-1).

ww Holds the vector of length min(m,n)-1. ww contains the unconverged superdiagonal
elements of an upper bidiagonal matrix B whose diagonal is in s (not necessarily
sorted). B satisfies A = U * B * VT, so it has the same singular values as A, and
singular vectors related by U and VT.

job Must be either 'N', or 'U', or 'V'. The default value is 'N'.
If job = 'U', and u is not present, then u is returned in the array a.
If job = 'V', and vt is not present, then vt is returned in the array a.

jobu Restored based on the presence of the argument u , value of job and sizes of arrays u
and a as follows:
jobu = 'A', if u is present and the number of columns in u is equal to the number of
rows in a,
jobu = 'S', if u is present and the number of columns in u is not equal to the number
of rows in a,
jobu = 'O', if u is not present and job is equal to 'U',
jobu = 'N', if u is not present and job is not equal to 'U'.

jobvt Restored based on the presence of the argument vt , value of job and sizes of arrays
vt and a as follows:
jobvt = 'A', if vt is present and the number of columns in vt is equal to the
number of rows in a,
jobvt = 'S', if vt is present and the number of columns in vt is not equal to the
number of rows in a,
jobvt = 'O', if vt is not present and job is equal to 'V',
jobvt = 'N', if vt is not present and job is not equal to 'V',

4-478

4 Intel® Math Kernel Library Reference Manual

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-479

?gesdd
Computes the singular value decomposition of a
general rectangular matrix using a divide and conquer
method.

Syntax

Fortran 77:

call sgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork, info)

call dgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork, info)

call cgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork,
info)

call zgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork,
info)

Fortran 95:

call gesdd(a, s [,u] [,vt] [,jobz] [,info])

Description

This routine computes the singular value decomposition (SVD) of a real/complex m-by-n matrix
A, optionally computing the left and/or right singular vectors. If singular vectors are desired, it
uses a divide and conquer algorithm.
The SVD is written
 A = U Σ VH ,

where Σ is an m-by-n matrix which is zero except for its min(m,n) diagonal elements, U is an
m-by-m orthogonal/unitary matrix, and V is an n-by-n orthogonal/unitary matrix. The diagonal
elements of Σ are the singular values of A; they are real and non-negative, and are returned in
descending order. The first min(m,n) columns of U and V are the left and right singular vectors of
A.
Note that the routine returns VH, not V.

Input Parameters

jobz CHARACTER*1. Must be 'A', 'S', 'O', or 'N'.
Specifies options for computing all or part of the matrix U.

4-480

4 Intel® Math Kernel Library Reference Manual

If jobz ='A', all m columns of U and all n rows of VT are returned in the
arrays u and vt;
if jobz ='S', the first min(m,n) columns of U and the first min(m,n)
rows of VT are returned in the arrays u and vt;
if jobz ='O', then

 if m ≥ n, the first n columns of U are overwritten
on the array a and all rows of VT are returned in the array vt;
 if m < n, all columns of U are returned in the array u and the first m
rows of VT are overwritten in the array vt;

if jobz ='N', no columns of U or rows of VTare computed.

 m INTEGER. The number of rows of the matrix A (m ≥ 0).

 n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgesdd
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.
Arrays: a(lda,*) is an array containing the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a. Must be at least max(1, m).

ldu, ldvt INTEGER. The leading dimensions of the output arrays u and vt,
respectively. Constraints:
ldu ≥ 1; ldvt ≥ 1.
If jobz ='S' or 'A', or jobz ='O' and m < n,
then ldu ≥ m;
If jobz ='A' or jobz ='O' and m ≥ n,
then ldvt ≥ n;
If jobz ='S', ldvt ≥ min(m, n).

lwork INTEGER. The dimension of the array work; lwork ≥ 1.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-481

rwork REAL for cgesdd
DOUBLE PRECISION for zgesdd
Workspace array, DIMENSION at least max(1, 5*min(m,n)) if jobz
='N'. Otherwise, the dimension of rwork must be at least
5*(min(m,n))2 + 7*min(m,n). This array is used in complex flavors
only.

iwork INTEGER. Workspace array, DIMENSION at least max(1, 8*min(m,n)).

Output Parameters

a On exit:
If jobz ='O', then if m ≥ n, a is overwritten with the first n columns of
U (the left singular vectors, stored columnwise). If m < n, a is
overwritten with the first m rows of VT (the right singular vectors, stored
rowwise);
If jobz ≠'O', the contents of a are destroyed.

s REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max(1, min(m,n)).
Contains the singular values of A sorted so that
s(i) ≥ s(i+1).

u, vt REAL for sgesdd
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.
Arrays:
u(ldu,*); the second dimension of u must be at least max(1, m) if
jobz ='A'or jobz ='O' and m < n.
If jobz ='S', the second dimension of u must be at least max(1,
min(m,n)).

If jobz ='A'or jobz ='O' and m < n, u contains the m-by-m
orthogonal/unitary matrix U.
If jobz ='S', u contains the first min(m,n) columns of U (the left
singular vectors, stored columnwise).
If jobz ='O' and m ≥ n, or jobz ='N', u is not referenced.

vt(ldvt,*); the second dimension of vt must be at least max(1, n).

4-482

4 Intel® Math Kernel Library Reference Manual

If jobz ='A'or jobz ='O' and m ≥ n, vt contains the n-by-n
orthogonal/unitary matrix VT.
If jobz ='S', vt contains the first min(m,n) rows of VT (the right
singular vectors, stored rowwise).
If jobz ='O' and m < n, or jobz ='N', vt is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then ?bdsdc did not converge, updating process failed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gesdd interface are the following:

a Holds the matrix A of size (m,n).

s Holds the vector of length min(m,n).

u Holds the matrix U of size (m,min(m,n)).

vt Holds the matrix VT of size (min(m,n),n).

job Must be 'N', 'A', 'S', or 'O'. The default value is 'N'.

Application Notes

For real flavors:
If jobz ='N', lwork ≥ 3*min(m,n) + max (max(m,n), 6*min(m,n));
If jobz ='O', lwork ≥ 3*(min(m,n))2 +
 max (max(m,n), 5*(min(m,n))2 + 4*min(m,n));
If jobz ='S' or 'A', lwork ≥ 3*(min(m,n))2 +
 max (max(m,n), 4*(min(m,n))2 + 4*min(m,n)).

For complex flavors:
If jobz ='N', lwork ≥ 2*min(m,n) + max(m,n);
If jobz ='O', lwork ≥ 2*(min(m,n))2 + max(m,n) + 2*min(m,n);
If jobz ='S' or 'A', lwork ≥ (min(m,n))2 + max(m,n) + 2*min(m,n);

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-483

For good performance, lwork should generally be larger.
If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

4-484

4 Intel® Math Kernel Library Reference Manual

?ggsvd
Computes the generalized singular value
decomposition of a pair of general rectangular
matrices.

Syntax

Fortran 77:

call sggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
 beta, u, ldu, v, ldv, q, ldq, work, iwork, info)

call dggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
 beta, u, ldu, v, ldv, q, ldq, work, iwork, info)

call cggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
 beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)

call zggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
 beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)

Fortran 95:

call ggsvd(a, b, alpha, beta [,k] [,l] [,u] [,v] [,q] [,iwork] [,info])

Description

This routine computes the generalized singular value decomposition (GSVD) of an m-by-n
real/complex matrix A and p-by-n real/complex matrix B:

 UH A Q = D1*(0 R), VH B Q = D2*(0 R),
where U, V and Q are orthogonal/unitary matrices.

Let k+l = the effective numerical rank of the matrix (AH, BH)H, then R is a (k+l)-by-(k+l)
nonsingular upper triangular matrix, D1 and D2 are m-by-(k+l) and p-by-(k+l) "diagonal"
matrices and of the following structures, respectively:

If m-k-l ≥ 0,

D1

k

l

m k– l–

I
k

0
l

0 C

0 0 
 
 
 

=

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-485

 ,

where

C = diag(alpha(k+1),...,alpha(k+l))
S = diag(beta(k+1),...,beta(k+l))
C2 + S2 = I

R is stored in a(1:k+l, n-k-l+1:n) on exit.

If m-k-l < 0,

where

D2
l

p l–

0
k

S
l

0 0 
 =

n k– l– k l

0 R()
k

l

0 R11 R12

0 0 R22 
 
 

=

k m k– k l m–+

D1
k

m k–

I 0 0

0 C 0 
 =

k m k– k l m–+

D2

m k–

k l m–+

p l–

0 S 0

0 0 I

0 0 0 
 
 
 

=

n k– l– k m k– k l m–+

0 R()
k

m k–

k l m–+

0 R11 R12 R13

0 0 R22 R23

0 0 0 R33 
 
 
 
 

=

4-486

4 Intel® Math Kernel Library Reference Manual

C = diag(alpha(k+1),...,alpha(m)),
S = diag(beta(k+1),...,beta(m)),
C2 + S2 = I

 On exit, is stored in a(1:m, n-k-l+1:n) and R33 is stored

in b(m-k+1:l, n+m-k-l+1:n).,

The routine computes C, S, R, and optionally the orthogonal/unitary transformation matrices U, V,
and Q.
In particular, if B is an n-by-n nonsingular matrix, then the GSVD of A and B implicitly gives the
SVD of AB -1:

 AB -1 = U(D1 D2
 -1) VH.

If (AH, BH)H has orthonormal columns, then the GSVD of A and B is also equal to the CS
decomposition of A and B. Furthermore, the GSVD can be used to derive the solution of the
eigenvalue problem:

 AHA x = λ BHB x.

Input Parameters

jobu CHARACTER*1. Must be 'U' or 'N'.
If jobu ='U', orthogonal/unitary matrix U is computed.
If jobu ='N', U is not computed.

jobv CHARACTER*1. Must be 'V' or 'N'.
If jobv ='V', orthogonal/unitary matrix V is computed.
If jobv ='N', V is not computed.

jobq CHARACTER*1. Must be 'Q' or 'N'.
If jobq ='Q', orthogonal/unitary matrix Q is computed.
If jobq ='N', Q is not computed.

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns of the matrices A and B (n ≥ 0).

p INTEGER. The number of rows of the matrix B (p ≥ 0).

a, b, work REAL for sggsvd
DOUBLE PRECISION for dggsvd
COMPLEX for cggsvd

R11

0

R12

R22

R13

R23 
 
 

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-487

DOUBLE COMPLEX for zggsvd.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1, n).

work(*) is a workspace array. The dimension of work must be at least
max(3n, m, p)+n.

lda INTEGER. The first dimension of a; at least max(1, m).

ldb INTEGER. The first dimension of b; at least max(1, p).

ldu INTEGER. The first dimension of the array u.
ldu ≥ max(1, m) if jobu ='U'; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the array v.
ldv ≥ max(1, p) if jobv ='V'; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the array q.
ldq ≥ max(1, n) if jobq ='Q'; ldq ≥ 1 otherwise.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, n).

rwork REAL for cggsvd
DOUBLE PRECISION for zggsvd.
Workspace array, DIMENSION at least max(1, 2n). Used in complex
flavors only.

Output Parameters

k, l INTEGER. On exit, k and l specify the dimension of the subblocks.
The sum k+l is equal to the effective numerical rank of (AH, BH)H.

a On exit, a contains the triangular matrix R or part of R.

b On exit, b contains part of the triangular matrix R
if m-k-l < 0.

alpha, beta REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1,n) each.
Contain the generalized singular value pairs of A and B:

4-488

4 Intel® Math Kernel Library Reference Manual

alpha(1:k) = 1,
beta(1:k) = 0,

and if m-k-l ≥ 0,
alpha(k+1:k+l) = C,
beta(k+1:k+l) = S,

or if m-k-l < 0,
alpha(k+1:m)= C, alpha(m+1:k+l)= 0
beta(k+1:m) = S, beta(m+1:k+l) = 1

and
alpha(k+l+1:n) = 0
beta(k+l+1:n) = 0.

u, v, q REAL for sggsvd
DOUBLE PRECISION for dggsvd
COMPLEX for cggsvd
DOUBLE COMPLEX for zggsvd.
Arrays:
u(ldu,*); the second dimension of u must be at least max(1, m).
If jobu ='U', u contains the m-by-m orthogonal/unitary matrix U.
If jobu ='N', u is not referenced.
v(ldv,*); the second dimension of v must be at least max(1, p).
If jobv ='V', v contains the p-by-p orthogonal/unitary matrix V.
If jobv ='N', v is not referenced.
q(ldq,*); the second dimension of q must be at least max(1, n).
If jobq ='Q', q contains the n-by-n orthogonal/unitary matrix Q.
If jobq ='N', q is not referenced.

iwork On exit, iwork stores the sorting information.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the Jacobi-type procedure failed to converge. For further
details, see subroutine ?tgsja.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-489

Specific details for the routine ggsvd interface are the following:

a Holds the matrix A of size (m,n).

b Holds the matrix B of size (p,n).

alpha Holds the vector of length (n).

beta Holds the vector of length (n).

u Holds the matrix U of size (m,m).

v Holds the matrix V of size (p,p).

q Holds the matrix Q of size (n,n).

iwork Holds the vector of length (n).

jobu Restored based on the presence of the argument u as follows:
jobu = 'U', if u is present,
jobu = 'N', if u is omitted.

jobv Restored based on the presence of the argument v as follows:
jobz = 'V', if v is present,
jobz = 'N', if v is omitted.

jobq Restored based on the presence of the argument q as follows:
jobz = 'Q', if q is present,
jobz = 'N', if q is omitted.

4-490

4 Intel® Math Kernel Library Reference Manual

Generalized Symmetric Definite Eigenproblems
This section describes LAPACK driver routines used for solving generalized symmetric definite
eigenproblems. See also computational routines that can be called to solve these problems.
Table 4-13 lists all such driver routines for Fortran-77 interface. Respective routine names in
Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

Table 4-13 Driver Routines for Solving Generalized Symmetric Definite Eigenproblems

Routine Name Operation performed

?sygv /?hegv Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem.

?sygvd/?hegvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem. If eigenvectors are
desired, it uses a divide and conquer method.

?sygvx /?hegvx Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem.

?spgv/?hpgv Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with matrices in
packed storage.

?spgvd /?hpgvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with matrices in
packed storage. If eigenvectors are desired, it uses a divide and conquer
method.

?spgvx/?hpgvx Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem with
matrices in packed storage.

?sbgv /?hbgv Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with banded
matrices.

?sbgvd/?hbgvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with banded
matrices. If eigenvectors are desired, it uses a divide and conquer method.

?sbgvx/?hbgvx Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem with
banded matrices.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-491

?sygv
Computes all eigenvalues and, optionally, eigenvectors
of a real generalized symmetric definite eigenproblem.

Syntax

Fortran 77:

call ssygv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)

call dsygv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)

Fortran 95:

call sygv(a, b, w [,itype] [,jobz] [,uplo] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric and B is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

4-492

4 Intel® Math Kernel Library Reference Manual

a, b, work REAL for ssygv
DOUBLE PRECISION for dsygv.
Arrays:
a(lda,*) contains the upper or lower triangle of the symmetric matrix
A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the symmetric
positive definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work;
lwork ≥ max(1, 3n-1).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1

 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo = 'U') or the
lower triangle (if uplo = 'L') of A, including the diagonal, is destroyed.

b On exit, if info ≤ n, the part of b containing the matrix is overwritten
by the triangular factor U or L from the Cholesky factorization B = UTU
or B = L LT.

w REAL for ssygv
DOUBLE PRECISION for dsygv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-493

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyev/dsyev returned an error
code:

If info = i ≤ n, ssyev/dsyev failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sygv interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

w Holds the vector of length (n).

itype Must be 1, 2, or 3. The default value is 1.

jobz Must be 'N' or 'V'. The default value is 'N'.

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For optimum performance use lwork ≥ (nb+2)*n, where nb is the blocksize for
ssytrd/dsytrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

4-494

4 Intel® Math Kernel Library Reference Manual

?hegv
Computes all eigenvalues and, optionally, eigenvectors
of a complex generalized Hermitian definite
eigenproblem.

Syntax

Fortran 77:

call chegv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, info)

call zhegv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, info)

Fortran 95:

call hegv(a, b, w [,itype] [,jobz] [,uplo] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be Hermitian and B is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-495

a, b, work COMPLEX for chegv
DOUBLE COMPLEX for zhegv.
Arrays:
a(lda,*) contains the upper or lower triangle of the Hermitian matrix
A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the Hermitian positive
definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work;
lwork ≥ max(1, 2n-1).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

rwork REAL for chegv
DOUBLE PRECISION for zhegv.
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1

 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo = 'U') or the
lower triangle (if uplo = 'L') of A, including the diagonal, is destroyed.

b On exit, if info ≤ n, the part of b containing the matrix is overwritten
by the triangular factor U or L from the Cholesky factorization B = UHU
or B = L LH.

4-496

4 Intel® Math Kernel Library Reference Manual

w REAL for chegv
DOUBLE PRECISION for zhegv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheev/zheev returned an error
code:

If info = i ≤ n, cheev/zheev failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hegv interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

w Holds the vector of length (n).

itype Must be 1, 2, or 3. The default value is 1.

jobz Must be 'N' or 'V'. The default value is 'N'.

uplo Must be 'U' or 'L'. The default value is 'U'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-497

Application Notes

For optimum performance use lwork ≥ (nb+1)*n, where nb is the blocksize for
chetrd/zhetrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

4-498

4 Intel® Math Kernel Library Reference Manual

?sygvd
Computes all eigenvalues and, optionally, eigenvectors of a
real generalized symmetric definite eigenproblem. If
eigenvectors are desired, it uses a divide and conquer
method.

Syntax

Fortran 77:

call ssygvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, iwork, liwork,
info)

call dsygvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, iwork, liwork,
info)

Fortran 95:

call sygvd(a, b, w [,itype] [,jobz] [,uplo] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric and B is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-499

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b, work REAL for ssygvd
DOUBLE PRECISION for dsygvd.
Arrays:
a(lda,*) contains the upper or lower triangle of the symmetric matrix
A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the symmetric
positive definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ 2n+1;
If jobz ='V'and n>1, lwork ≥ 2n2+6n+1.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3.

If liwork = -1, then a workspace query is assumed; the routine only

4-500

4 Intel® Math Kernel Library Reference Manual

calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1

 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo = 'U') or the
lower triangle (if uplo = 'L') of A, including the diagonal, is destroyed.

b On exit, if info ≤ n, the part of b containing the matrix is overwritten
by the triangular factor U or L from the Cholesky factorization B = UTU
or B = L LT.

w REAL for ssygvd
DOUBLE PRECISION for dsygvd.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size
of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyev/dsyev returned an error
code:

If info = i ≤ n, ssyev/dsyev failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-501

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sygvd interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

w Holds the vector of length (n).

itype Must be 1, 2, or 3. The default value is 1.

jobz Must be 'N' or 'V'. The default value is 'N'.

uplo Must be 'U' or 'L'. The default value is 'U'.

4-502

4 Intel® Math Kernel Library Reference Manual

?hegvd
Computes all eigenvalues and, optionally, eigenvectors of a
complex generalized Hermitian definite eigenproblem. If
eigenvectors are desired, it uses a divide and conquer
method.

Syntax

Fortran 77:

call chegvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, lrwork,
iwork, liwork, info)

call zhegvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, lrwork,
iwork, liwork, info)

Fortran 95:

call hegvd(a, b, w [,itype] [,jobz] [,uplo] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be Hermitian and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-503

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b, work COMPLEX for chegvd
DOUBLE COMPLEX for zhegvd.
Arrays:
a(lda,*) contains the upper or lower triangle of the Hermitian matrix
A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the Hermitian positive
definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ n+1;
If jobz ='V'and n>1, lwork ≥ n2+2n.

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

rwork REAL for chegvd
DOUBLE PRECISION for zhegvd.
Workspace array, DIMENSION (lrwork).

lrwork INTEGER. The dimension of the array rwork.
Constraints:
If n ≤ 1, lrwork ≥ 1;
If jobz ='N'and n>1, lrwork ≥ n;
If jobz ='V'and n>1, lrwork ≥ 2n2+5n+1.

If lrwork = -1, then a workspace query is assumed; the routine only

4-504

4 Intel® Math Kernel Library Reference Manual

calculates the optimal size of the rwork array, returns this value as the
first entry of the rwork array, and no error message related to lrwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3.

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

a On exit, if jobz ='V', then if info = 0, a contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1

 Z = I;

If jobz ='N', then on exit the upper triangle (if uplo = 'U') or the
lower triangle (if uplo = 'L') of A, including the diagonal, is destroyed.

b On exit, if info ≤ n, the part of b containing the matrix is overwritten
by the triangular factor U or L from the Cholesky factorization B = UHU
or B = L LH.

w REAL for chegvd
DOUBLE PRECISION for zhegvd.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the required minimal size
of lrwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size
of liwork.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-505

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheev/zheev returned an error
code:

If info = i ≤ n, cheev/zheev failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hegvd interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

w Holds the vector of length (n).

itype Must be 1, 2, or 3. The default value is 1.

jobz Must be 'N' or 'V'. The default value is 'N'.

uplo Must be 'U' or 'L'. The default value is 'U'.

4-506

4 Intel® Math Kernel Library Reference Manual

?sygvx
Computes selected eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem.

Syntax

Fortran 77:

call ssygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, iwork, ifail, info)

call dsygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, iwork, ifail, info)

Fortran 95:

call sygvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-507

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b, work REAL for ssygvx
DOUBLE PRECISION for dsygvx.
Arrays:
a(lda,*) contains the upper or lower triangle of the symmetric matrix
A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the symmetric
positive definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

vl, vu REAL for ssygvx
DOUBLE PRECISION for dsygvx.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

4-508

4 Intel® Math Kernel Library Reference Manual

abstol REAL for ssygvx
DOUBLE PRECISION for dsygvx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1; if jobz ='V', ldz ≥ max(1, n).

lwork INTEGER. The dimension of the array work;
lwork ≥ max(1, 8n).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

a On exit, the upper triangle (if uplo = 'U') or the lower triangle (if uplo
= 'L') of A, including the diagonal, is overwritten.

b On exit, if info ≤ n, the part of b containing the matrix is overwritten
by the triangular factor U or L from the Cholesky factorization B = UTU
or B = L LT.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w, z REAL for ssygvx
DOUBLE PRECISION for dsygvx.
Arrays:
w(*), DIMENSION at least max(1, n).
The first m elements of w contain the selected eigenvalues in ascending
order.

z(ldz,*). The second dimension of z must be at least max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-509

associated with w(i). The eigenvectors are normalized as follows:
 if itype = 1 or 2, ZTB Z = I;
 if itype = 3, ZTB-1

 Z = I;

If jobz ='N', then z is not referenced.
If an eigenvector fails to converge, then that column of z contains the
latest approximation to the eigenvector, and the index of the eigenvector
is returned in ifail.
Note: you must ensure that at least max(1,m) columns are supplied in the
array z ; if range ='V', the exact value of m is not known in advance
and an upper bound must be used.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;
if info > 0, the ifail contains the indices of the eigenvectors that
failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyevx/dsyevx returned an error
code:

If info = i ≤ n, ssyevx/dsyevx failed to converge, and
i eigenvectors failed to converge. Their indices are stored
in the array ifail;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sygvx interface are the following:

4-510

4 Intel® Math Kernel Library Reference Manual

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

ifail Holds the vector of length (n).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to
zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing
A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-511

For optimum performance use lwork ≥ (nb+3)*n, where nb is the blocksize for
ssytrd/dsytrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

4-512

4 Intel® Math Kernel Library Reference Manual

?hegvx
Computes selected eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
definite eigenproblem.

Syntax

Fortran 77:

call chegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

call zhegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

Fortran 95:

call hegvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be Hermitian and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-513

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles of A and B;
If uplo = 'L', arrays a and b store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

a, b, work COMPLEX for chegvx
DOUBLE COMPLEX for zhegvx.
Arrays:
a(lda,*) contains the upper or lower triangle of the Hermitian matrix
A, as specified by uplo.
The second dimension of a must be at least max(1, n).

b(ldb,*) contains the upper or lower triangle of the Hermitian positive
definite matrix B, as specified by uplo.
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

ldb INTEGER. The first dimension of b; at least max(1, n).

vl, vu REAL for chegvx
DOUBLE PRECISION for zhegvx.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.

If range ='A' or 'V', il and iu are not referenced.

4-514

4 Intel® Math Kernel Library Reference Manual

abstol REAL for chegvx
DOUBLE PRECISION for zhegvx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1; if jobz ='V', ldz ≥ max(1, n).

lwork INTEGER. The dimension of the array work;
lwork ≥ max(1, 2n-1).
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

See Application Notes for the suggested value of lwork.

rwork REAL for chegvx
DOUBLE PRECISION for zhegvx.
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

a On exit, the upper triangle (if uplo = 'U') or the lower triangle
(if uplo = 'L') of A, including the diagonal, is overwritten.

b On exit, if info ≤ n, the part of b containing the matrix is overwritten
by the triangular factor U or L from the Cholesky factorization B = UHU
or B = L LH.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for chegvx
DOUBLE PRECISION for zhegvx.
Array, DIMENSION at least max(1, n).
The first m elements of w contain the selected eigenvalues in ascending
order.

z COMPLEX for chegvx
DOUBLE COMPLEX for zhegvx.
Array z(ldz,*). The second dimension of z must be at least

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-515

max(1, m).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i). The eigenvectors are normalized as follows:
 if itype = 1 or 2, ZHB Z = I;
 if itype = 3, ZHB-1

 Z = I;

If jobz ='N', then z is not referenced.
If an eigenvector fails to converge, then that column of z contains the
latest approximation to the eigenvector, and the index of the eigenvector
is returned in ifail.
Note: you must ensure that at least max(1,m) columns are supplied in the
array z ; if range ='V', the exact value of m is not known in advance
and an upper bound must be used.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;
if info > 0, the ifail contains the indices of the eigenvectors that
failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheevx/zheevx returned an error
code:

If info = i ≤ n, cheevx/zheevx failed to converge, and
i eigenvectors failed to converge. Their indices are stored
in the array ifail;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

4-516

4 Intel® Math Kernel Library Reference Manual

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hegvx interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

ifail Holds the vector of length (n).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
 abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-517

zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing
A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

For optimum performance use lwork ≥ (nb+1)*n, where nb is the blocksize for
chetrd/zhetrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

4-518

4 Intel® Math Kernel Library Reference Manual

?spgv
Computes all eigenvalues and, optionally, eigenvectors of a
real generalized symmetric definite eigenproblem with
matrices in packed storage.

Syntax

Fortran 77:

call sspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)

call dspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)

Fortran 95:

call spgv(a, b, w [,itype] [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric, stored in packed format, and B is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-519

ap, bp, work REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
ap(*) contains the packed upper or lower triangle of the symmetric
matrix A, as specified by uplo. The dimension of ap must be at least
max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of the symmetric
matrix B, as specified by uplo. The dimension of bp must be at least
max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 3n).

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.
If jobz ='V', ldz ≥ max(1, n).

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the Cholesky
factorization
B = UTU or B = L LT, in the same storage format as B.

w, z REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z of eigenvectors.
The eigenvectors are normalized as follows:
 if itype = 1 or 2, ZTB Z = I;
 if itype = 3, ZTB-1

 Z = I;

If jobz ='N', then z is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spptrf/dpptrf and sspev/dspev returned an error
code:

4-520

4 Intel® Math Kernel Library Reference Manual

If info = i ≤ n, sspev/dspev failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spgv interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Stands for argument bp in Fortran 77 interface. Holds the array B of size
(n*(n+1)/2).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-521

?hpgv
Computes all eigenvalues and, optionally, eigenvectors of a
complex generalized Hermitian definite eigenproblem with
matrices in packed storage.

Syntax

Fortran 77:

call chpgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork, info)

call zhpgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork, info)

Fortran 95:

call hpgv(a, b, w [,itype] [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

4-522

4 Intel® Math Kernel Library Reference Manual

ap, bp, work COMPLEX for chpgv
DOUBLE COMPLEX for zhpgv.
Arrays:
ap(*) contains the packed upper or lower triangle of the Hermitian
matrix A, as specified by uplo. The dimension of ap must be at least
max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of the Hermitian
matrix B, as specified by uplo. The dimension of bp must be at least
max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 2n-1).

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.
If jobz ='V', ldz ≥ max(1, n).

rwork REAL for chpgv
DOUBLE PRECISION for zhpgv.
Workspace array, DIMENSION at least max(1, 3n-2).

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the Cholesky
factorization
B = UHU or B = L LH, in the same storage format as B.

w REAL for chpgv
DOUBLE PRECISION for zhpgv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

z COMPLEX for chpgv
DOUBLE COMPLEX for zhpgv.
Array z(ldz,*). The second dimension of z must be at least max(1,
n).
If jobz ='V', then if info = 0, z contains the matrix Z of eigenvectors.
The eigenvectors are normalized as follows:
 if itype = 1 or 2, ZHB Z = I;
 if itype = 3, ZHB-1

 Z = I;

If jobz ='N', then z is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-523

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpev/zhpev returned an error
code:

If info = i ≤ n, chpev/zhpev failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpgv interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Stands for argument bp in Fortran 77 interface. Holds the array B of size
(n*(n+1)/2).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

4-524

4 Intel® Math Kernel Library Reference Manual

?spgvd
Computes all eigenvalues and, optionally, eigenvectors of a
real generalized symmetric definite eigenproblem with
matrices in packed storage. If eigenvectors are desired, it
uses a divide and conquer method.

Syntax

Fortran 77:

call sspgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, iwork, liwork,
info)

call dspgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, iwork, liwork,
info)

Fortran 95:

call spgvd(a, b, w [,itype] [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric, stored in packed format, and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-525

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ap, bp, work REAL for sspgvd
DOUBLE PRECISION for dspgvd.
Arrays:
ap(*) contains the packed upper or lower triangle of the symmetric
matrix A, as specified by uplo. The dimension of ap must be at least
max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of the symmetric
matrix B, as specified by uplo. The dimension of bp must be at least
max(1, n*(n+1)/2).

work(lwork) is a workspace array.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.
If jobz ='V', ldz ≥ max(1, n).

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ 2n;
If jobz ='V'and n>1, lwork ≥ 2n2+6n+1.

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3.

If liwork = -1, then a workspace query is assumed; the routine only

4-526

4 Intel® Math Kernel Library Reference Manual

calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the Cholesky
factorization
B = UTU or B = L LT, in the same storage format as B.

w, z REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z of eigenvectors.
The eigenvectors are normalized as follows:
 if itype = 1 or 2, ZTB Z = I;
 if itype = 3, ZTB-1

 Z = I;

If jobz ='N', then z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size
of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spptrf/dpptrf and sspevd/dspevd returned an error
code:

If info = i ≤ n, sspevd/dspevd failed to converge, and
i off-diagonal elements of an intermediate tridiagonal did
not converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-527

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spgvd interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Stands for argument bp in Fortran 77 interface. Holds the array B of size
(n*(n+1)/2).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

4-528

4 Intel® Math Kernel Library Reference Manual

?hpgvd
Computes all eigenvalues and, optionally, eigenvectors of a
complex generalized Hermitian definite eigenproblem with
matrices in packed storage. If eigenvectors are desired, it
uses a divide and conquer method.

Syntax

Fortran 77:

call chpgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork, info)

call zhpgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork, info)

Fortran 95:

call hpgvd(a, b, w [,itype] [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-529

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ap, bp, work COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd.
Arrays:
ap(*) contains the packed upper or lower triangle of the Hermitian
matrix A, as specified by uplo. The dimension of ap must be at least
max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of the Hermitian
matrix B, as specified by uplo. The dimension of bp must be at least
max(1, n*(n+1)/2).

work(lwork) is a workspace array.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.
If jobz ='V', ldz ≥ max(1, n).

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ n;
If jobz ='V'and n>1, lwork ≥ 2n .

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

rwork REAL for chpgvd
DOUBLE PRECISION for zhpgvd.
Workspace array, DIMENSION (lrwork).

lrwork INTEGER. The dimension of the array rwork.
Constraints:
If n ≤ 1, lrwork ≥ 1;
If jobz ='N'and n>1, lrwork ≥ n;
If jobz ='V'and n>1, lrwork ≥ 2n2+5n+1.

4-530

4 Intel® Math Kernel Library Reference Manual

If lrwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the rwork array, returns this value as the
first entry of the rwork array, and no error message related to lrwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3.

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the Cholesky
factorization
B = UHU or B = L LH, in the same storage format as B.

w REAL for chpgvd
DOUBLE PRECISION for zhpgvd.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

z COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd.
Array z(ldz,*). The second dimension of z must be at least max(1,
n).
If jobz ='V', then if info = 0, z contains the matrix Z of eigenvectors.
The eigenvectors are normalized as follows:
 if itype = 1 or 2, ZHB Z = I;
 if itype = 3, ZHB-1

 Z = I;

If jobz ='N', then z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-531

rwork(1) On exit, if info = 0, then rwork(1) returns the required minimal size
of lrwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size
of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevd/zhpevd returned an error
code:

If info = i ≤ n, chpevd/zhpevd failed to converge, and
i off-diagonal elements of an intermediate tridiagonal did
not converge to zero;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpgvd interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Stands for argument bp in Fortran 77 interface. Holds the array B of size
(n*(n+1)/2).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

4-532

4 Intel® Math Kernel Library Reference Manual

?spgvx
Computes selected eigenvalues and, optionally, eigenvectors
of a real generalized symmetric definite eigenproblem with
matrices in packed storage.

Syntax

Fortran 77:

call sspgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w,
z, ldz, work, iwork, ifail, info)

call dspgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w,
z, ldz, work, iwork, ifail, info)

Fortran 95:

call spgvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .

Here A and B are assumed to be symmetric, stored in packed format, and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-533

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ap, bp, work REAL for sspgvx
DOUBLE PRECISION for dspgvx.
Arrays:
ap(*) contains the packed upper or lower triangle of the symmetric
matrix A, as specified by uplo. The dimension of ap must be at least
max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of the symmetric
matrix B, as specified by uplo. The dimension of bp must be at least
max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 8n).

vl, vu REAL for sspgvx
DOUBLE PRECISION for dspgvx.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0;
il=1 and iu=0, if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for sspgvx
DOUBLE PRECISION for dspgvx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

4-534

4 Intel® Math Kernel Library Reference Manual

ldz INTEGER. The leading dimension of the output array z. Constraints:
ldz ≥ 1; if jobz ='V', ldz ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the Cholesky
factorization B = UTU or B = L LT, in the same storage format as B.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w, z REAL for sspgvx
DOUBLE PRECISION for dspgvx.
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i). The eigenvectors are normalized as follows:
 if itype = 1 or 2, ZTB Z = I;
 if itype = 3, ZTB-1

 Z = I;

If jobz ='N', then z is not referenced.
If an eigenvector fails to converge, then that column of z contains the
latest approximation to the eigenvector, and the index of the eigenvector
is returned in ifail.
Note: you must ensure that at least max(1,m) columns are supplied in the
array z ; if range ='V', the exact value of m is not known in advance
and an upper bound must be used.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;
if info > 0, the ifail contains the indices of the eigenvectors that
failed to converge.
If jobz ='N', then ifail is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-535

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, spptrf/dpptrf and sspevx/dspevx returned an error
code:

If info = i ≤ n, sspevx/dspevx failed to converge, and
i eigenvectors failed to converge. Their indices are stored
in the array ifail;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine spgvx interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Stands for argument bp in Fortran 77 interface. Holds the array B of size
(n*(n+1)/2).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

ifail Holds the vector of length (n).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

4-536

4 Intel® Math Kernel Library Reference Manual

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to
zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing
A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-537

?hpgvx
Computes selected eigenvalues and, optionally, eigenvectors of a
generalized Hermitian definite eigenproblem with matrices in
packed storage.

Syntax

Fortran 77:

call chpgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w,
z, ldz, work, rwork, iwork, ifail, info)

call zhpgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w,
z, ldz, work, rwork, iwork, ifail, info)

Fortran 95:

call hpgvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form
 Ax = λ Bx, ABx = λ x, or B Ax = λ x .
Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type is Ax = λ Bx;
if itype = 2, the problem type is ABx = λ x;
if itype = 3, the problem type is B Ax = λ x.

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

4-538

4 Intel® Math Kernel Library Reference Manual

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.

If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
If uplo = 'L', arrays ap and bp store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ap, bp, work COMPLEX for chpgvx
DOUBLE COMPLEX for zhpgvx.
Arrays:
ap(*) contains the packed upper or lower triangle of the Hermitian
matrix A, as specified by uplo. The dimension of ap must be at least
max(1, n*(n+1)/2).

bp(*) contains the packed upper or lower triangle of the Hermitian
matrix B, as specified by uplo. The dimension of bp must be at least
max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 2n).

vl, vu REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0;
il=1 and iu=0 if n = 0.

If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
The absolute error tolerance for the eigenvalues.

See Application Notes for more information.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-539

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.
If jobz ='V', ldz ≥ max(1, n).

rwork REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

ap On exit, the contents of ap are overwritten.

bp On exit, contains the triangular factor U or L from the Cholesky
factorization
B = UHU or B = L LH, in the same storage format as B.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

z COMPLEX for chpgvx
DOUBLE COMPLEX for zhpgvx.
Array z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix A corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i). The eigenvectors are normalized as follows:
 if itype = 1 or 2, ZHB Z = I;
 if itype = 3, ZHB-1

 Z = I;

If jobz ='N', then z is not referenced.

If an eigenvector fails to converge, then that column of z contains the
latest approximation to the eigenvector, and the index of the eigenvector
is returned in ifail.
Note: you must ensure that at least max(1,m) columns are supplied in the
array z ; if range ='V', the exact value of m is not known in advance
and an upper bound must be used.

4-540

4 Intel® Math Kernel Library Reference Manual

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;
if info > 0, the ifail contains the indices of the eigenvectors that
failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevx/zhpevx returned an error
code:

If info = i ≤ n, chpevx/zhpevx failed to converge, and
i eigenvectors failed to converge. Their indices are stored
in the array ifail;
If info = n + i, for 1 ≤ i ≤ n, then the leading minor of
order i of B is not positive-definite. The factorization of B
could not be completed and no eigenvalues or eigenvectors
were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hpgvx interface are the following:

a Stands for argument ap in Fortran 77 interface. Holds the array A of size
(n*(n+1)/2).

b Stands for argument bp in Fortran 77 interface. Holds the array B of size
(n*(n+1)/2).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n), where the values n and m are significant.

ifail Holds the vector of length (n).

itype Must be 1, 2, or 3. The default value is 1.

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-541

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to
zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing
A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

4-542

4 Intel® Math Kernel Library Reference Manual

?sbgv
Computes all eigenvalues and, optionally, eigenvectors of a
real generalized symmetric definite eigenproblem with
banded matrices.

Syntax

Fortran 77:

call ssbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, info)

call dsbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, info)

Fortran 95:

call sbgv(a, b, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite banded eigenproblem, of the form
 Ax = λ Bx. Here A and B are assumed to be symmetric and banded, and B is also positive definite.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

ab,bb,work REAL for ssbgv
DOUBLE PRECISION for dsbgv
Arrays:

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-543

ab (ldab,*) is an array containing either upper or lower triangular part
of the symmetric matrix A (as specified by uplo) in band storage
format.
The second dimension of the array ab must be at least max(1, n).

bb (ldbb,*) is an array containing either upper or lower triangular part
of the symmetric matrix B (as specified by uplo) in band storage
format.
The second dimension of the array bb must be at least max(1, n).
work(*) is a workspace array, DIMENSION at least max(1, 3n)

ldab INTEGER. The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be at least kb+1.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1. If jobz
='V', ldz ≥ max(1, n).

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky factorization B =
STS, as returned by spbstf/dpbstf.

w, z REAL for ssbgv
DOUBLE PRECISION for dsbgv
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z of eigenvectors,
with the i-th column of z holding the eigenvector associated with w(i).
The eigenvectors are normalized so that ZTB Z = I.
If jobz ='N', then z is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then spbstf/dpbstf

4-544

4 Intel® Math Kernel Library Reference Manual

returned info = i and B is not positive-definite. The
factorization of B could not be completed and no
eigenvalues or eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sbgv interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (ka+1,n).

b Stands for argument bb in Fortran 77 interface. Holds the array B of size (kb+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-545

?hbgv
Computes all eigenvalues and, optionally, eigenvectors of a
complex generalized Hermitian definite eigenproblem with
banded matrices.

Syntax

Fortran 77:

call chbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork,
info)

call zhbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork,
info)

Fortran 95:

call hbgv(a, b, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite banded eigenproblem, of the form Ax = λ Bx. Here A and B are
assumed to be Hermitian and banded, and B is also positive definite.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

4-546

4 Intel® Math Kernel Library Reference Manual

ab,bb,work COMPLEX for chbgv
DOUBLE COMPLEX for zhbgv
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part
of the Hermitian matrix A (as specified by uplo) in band storage format.
The second dimension of the array ab must be at least max(1, n).

bb (ldbb,*) is an array containing either upper or lower triangular part
of the Hermitian matrix B (as specified by uplo) in band storage format.
The second dimension of the array bb must be at least max(1, n).
work(*) is a workspace array, DIMENSION at least max(1, n).

ldab INTEGER. The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be at least kb+1.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.
If jobz ='V', ldz ≥ max(1, n).

rwork REAL for chbgv
DOUBLE PRECISION for zhbgv.
Workspace array, DIMENSION at least max(1, 3n).

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky factorization B =
SHS, as returned by cpbstf/zpbstf.

w REAL for chbgv
DOUBLE PRECISION for zhbgv.
Array, DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

z COMPLEX for chbgv
DOUBLE COMPLEX for zhbgv
Array z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z of eigenvectors,
with the i-th column of z holding the eigenvector associated with w(i).
The eigenvectors are normalized so that ZHB Z = I.
If jobz ='N', then z is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-547

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then cpbstf/zpbstf
returned
info = i and B is not positive-definite. The factorization
of B could not be completed and no eigenvalues or
eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hbgv interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (ka+1,n).

b Stands for argument bb in Fortran 77 interface. Holds the array B of size (kb+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

4-548

4 Intel® Math Kernel Library Reference Manual

?sbgvd
Computes all eigenvalues and, optionally, eigenvectors of a
real generalized symmetric definite eigenproblem with
banded matrices. If eigenvectors are desired, it uses a divide
and conquer method.

Syntax

Fortran 77:

call ssbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork,
iwork, liwork, info)

call dsbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork,
iwork, liwork, info)

Fortran 95:

call sbgvd(a, b, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite banded eigenproblem, of the form
 Ax = λ Bx. Here A and B are assumed to be symmetric and banded, and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-549

ab,bb,work REAL for ssbgvd
DOUBLE PRECISION for dsbgvd
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part
of the symmetric matrix A (as specified by uplo) in band storage
format.
The second dimension of the array ab must be at least max(1, n).

bb (ldbb,*) is an array containing either upper or lower triangular part
of the symmetric matrix B (as specified by uplo) in band storage
format.
The second dimension of the array bb must be at least max(1, n).

work(lwork) is a workspace array.

ldab INTEGER. The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be at least kb+1.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.
If jobz ='V', ldz ≥ max(1, n).

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ 3n;
If jobz ='V'and n>1, lwork ≥ 2n2+5n+1.

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3.

If liwork = -1, then a workspace query is assumed; the routine only

4-550

4 Intel® Math Kernel Library Reference Manual

calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky factorization B =
STS, as returned by spbstf/dpbstf.

w, z REAL for ssbgvd
DOUBLE PRECISION for dsbgvd
Arrays:
w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z of eigenvectors,
with the i-th column of z holding the eigenvector associated with w(i).
 The eigenvectors are normalized so that ZTB Z = I.
If jobz ='N', then z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size
of liwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then spbstf/dpbstf
returned
info = i and B is not positive-definite. The factorization
of B could not be completed and no eigenvalues or
eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-551

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sbgvd interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (ka+1,n).

b Stands for argument bb in Fortran 77 interface. Holds the array B of size (kb+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

4-552

4 Intel® Math Kernel Library Reference Manual

?hbgvd
Computes all eigenvalues and, optionally, eigenvectors of a
complex generalized Hermitian definite eigenproblem with
banded matrices. If eigenvectors are desired, it uses a divide
and conquer method.

Syntax

Fortran 77:

call chbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

call zhbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

Fortran 95:

call hbgvd(a, b, w [,uplo] [,z] [,info])

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite banded eigenproblem, of the form Ax = λ Bx. Here A and B are
assumed to be Hermitian and banded, and B is also positive definite. If eigenvectors are desired, it
uses a divide and conquer algorithm.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-553

ab,bb,work COMPLEX for chbgvd
DOUBLE COMPLEX for zhbgvd
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part
of the Hermitian matrix A (as specified by uplo) in band storage format.
The second dimension of the array ab must be at least max(1, n).

bb (ldbb,*) is an array containing either upper or lower triangular part
of the Hermitian matrix B (as specified by uplo) in band storage format.
The second dimension of the array bb must be at least max(1, n).

work(lwork) is a workspace array.

ldab INTEGER. The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be at least kb+1.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.
If jobz ='V', ldz ≥ max(1, n).

lwork INTEGER. The dimension of the array work.

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N'and n>1, lwork ≥ n;
If jobz ='V'and n>1, lwork ≥ 2n2.

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

rwork REAL for chbgvd
DOUBLE PRECISION for zhbgvd.
Workspace array, DIMENSION (lrwork).

lrwork INTEGER. The dimension of the array rwork.

Constraints:
If n ≤ 1, lrwork ≥ 1;
If jobz ='N'and n>1, lrwork ≥ n;
If jobz ='V'and n>1, lrwork ≥ 2n2+5n +1.

If lrwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the rwork array, returns this value as the
first entry of the rwork array, and no error message related to lrwork is
issued by xerbla.

4-554

4 Intel® Math Kernel Library Reference Manual

iwork INTEGER.
Workspace array, DIMENSION (liwork).

liwork INTEGER. The dimension of the array iwork.
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N'and n>1, liwork ≥ 1;
If jobz ='V'and n>1, liwork ≥ 5n+3.

If liwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the iwork array, returns this value as the
first entry of the iwork array, and no error message related to liwork is
issued by xerbla.

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky factorization B =
SHS, as returned by cpbstf/zpbstf.

w REAL for chbgvd
DOUBLE PRECISION for zhbgvd.
Array, DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z COMPLEX for chbgvd
DOUBLE COMPLEX for zhbgvd
Array z(ldz,*) . The second dimension of z must be at least max(1,
n).
If jobz ='V', then if info = 0, z contains the matrix Z of eigenvectors
, with the i-th column of z holding the eigenvector associated with
w(i).
The eigenvectors are normalized so that ZHB Z = I.
If jobz ='N', then z is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

rwork(1) On exit, if info = 0, then rwork(1) returns the required minimal size
of lrwork.

iwork(1) On exit, if info = 0, then iwork(1) returns the required minimal size
of liwork.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-555

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then cpbstf/zpbstf
returned
info = i and B is not positive-definite. The factorization
of B could not be completed and no eigenvalues or
eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hbgvd interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (ka+1,n).

b Stands for argument bb in Fortran 77 interface. Holds the array B of size (kb+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

4-556

4 Intel® Math Kernel Library Reference Manual

?sbgvx
Computes selected eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem with banded matrices.

Syntax

Fortran 77:

call ssbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu,
il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

call dsbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu,
il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

Fortran 95:

call sbgvx(a, b, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite banded eigenproblem, of the form
Ax = λ Bx. Here A and B are assumed to be symmetric and banded, and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-557

If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

ab,bb,work REAL for ssbgvx
DOUBLE PRECISION for dsbgvx
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part
of the symmetric matrix A (as specified by uplo) in band storage
format.
The second dimension of the array ab must be at least max(1, n).

bb (ldbb,*) is an array containing either upper or lower triangular part
of the symmetric matrix B (as specified by uplo) in band storage
format.
The second dimension of the array bb must be at least max(1, n).

work(*) is a workspace array, DIMENSION at least max(1, 7n).

ldab INTEGER. The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be at least kb+1.

vl, vu REAL for ssbgvx
DOUBLE PRECISION for dsbgvx.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0; il=1 and iu=0
if n = 0.
If range ='A' or 'V', il and iu are not referenced.

4-558

4 Intel® Math Kernel Library Reference Manual

abstol REAL for ssbgvx
DOUBLE PRECISION for dsbgvx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.
If jobz ='V', ldz ≥ max(1, n).

ldq INTEGER. The leading dimension of the output array q; ldq ≥ 1.
If jobz ='V', ldq ≥ max(1, n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky factorization B =
STS, as returned by spbstf/dpbstf.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w, z, q REAL for ssbgvx
DOUBLE PRECISION for dsbgvx
Arrays:
w(*), DIMENSION at least max(1, n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z of eigenvectors
, with the i-th column of z holding the eigenvector associated with
w(i). The eigenvectors are normalized so that ZTB Z = I.
If jobz ='N', then z is not referenced.
q(ldq,*) . The second dimension of q must be at least max(1, n).
If jobz ='V', then q contains the n-by-n matrix used in the reduction of
Ax = λ Bx to standard form, that is,
Cx = λ x and consequently C to tridiagonal form.
If jobz ='N', then q is not referenced.

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-559

if info > 0, the ifail contains the indices of the eigenvectors that
failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then spbstf/dpbstf
returned
info = i and B is not positive-definite. The factorization
of B could not be completed and no eigenvalues or
eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine sbgvx interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (ka+1,n).

b Stands for argument bb in Fortran 77 interface. Holds the array B of size (kb+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

ifail Holds the vector of length (n).

q Holds the matrix Q of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

4-560

4 Intel® Math Kernel Library Reference Manual

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail or q is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|), where ε is the machine precision. If abstol is less than or equal to
zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing
A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-561

?hbgvx
Computes selected eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian definite
eigenproblem with banded matrices.

Syntax

Fortran 77:

call chbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu,
il, iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu,
il, iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

Fortran 95:

call hbgvx(a, b, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q]
[,abstol] [,info])

Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite banded eigenproblem, of the form Ax = λ Bx. Here A and B are
assumed to be Hermitian and banded, and B is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

range CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues λi in the half-open
interval: vl< λi ≤ vu.
If range ='I', the routine computes eigenvalues with indices il to iu.

uplo CHARACTER*1. Must be 'U' or 'L'.

4-562

4 Intel® Math Kernel Library Reference Manual

If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.

n INTEGER. The order of the matrices A and B (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals in A
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals in B
(kb ≥ 0).

ab,bb,work COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part
of the Hermitian matrix A (as specified by uplo) in band storage format.
The second dimension of the array ab must be at least max(1, n).

bb (ldbb,*) is an array containing either upper or lower triangular part
of the Hermitian matrix B (as specified by uplo) in band storage format.
The second dimension of the array bb must be at least max(1, n).

work(*) is a workspace array, DIMENSION at least max(1, n).

ldab INTEGER. The first dimension of the array ab; must be at least ka+1.

ldbb INTEGER. The first dimension of the array bb; must be at least kb+1.

vl, vu REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
If range ='V', the lower and upper bounds of the interval to be
searched for eigenvalues.
Constraint: vl< vu.

If range ='A' or 'I', vl and vu are not referenced.

il, iu INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 ≤ il ≤ iu ≤ n, if n > 0;
il=1 and iu=0, if n = 0.
If range ='A' or 'V', il and iu are not referenced.

abstol REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
The absolute error tolerance for the eigenvalues.
See Application Notes for more information.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-563

ldz INTEGER. The leading dimension of the output array z; ldz ≥ 1.
If jobz ='V', ldz ≥ max(1, n).

ldq INTEGER. The leading dimension of the output array q; ldq ≥ 1.
If jobz ='V', ldq ≥ max(1, n).

rwork REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
Workspace array, DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

ab On exit, the contents of ab are overwritten.

bb On exit, contains the factor S from the split Cholesky factorization B =
SHS, as returned by cpbstf/zpbstf.

m INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n. If range ='A', m = n, and if range ='I',
m = iu-il+1.

w REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
Array w(*), DIMENSION at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.

z, q COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
z(ldz,*). The second dimension of z must be at least max(1, n).
If jobz ='V', then if info = 0, z contains the matrix Z of eigenvectors,
with the i-th column of z holding the eigenvector associated with w(i).
The eigenvectors are normalized so that ZHB Z = I.
If jobz ='N', then z is not referenced.
q(ldq,*). The second dimension of q must be at least max(1, n).
If jobz ='V', then q contains the n-by-n matrix used in the reduction of
Ax = λ Bx to standard form, that is,
Cx = λ x and consequently C to tridiagonal form.
If jobz ='N', then q is not referenced.

4-564

4 Intel® Math Kernel Library Reference Manual

ifail INTEGER.
 Array, DIMENSION at least max(1, n).
If jobz ='V', then if info = 0, the first m elements of ifail are zero;
 if info > 0, the ifail contains the indices of the eigenvectors that
failed to converge.
If jobz ='N', then ifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, and i
off-diagonal elements of an intermediate tridiagonal did not
converge to zero;
if info = n + i, for 1 ≤ i ≤ n, then cpbstf/zpbstf
returned
info = i and B is not positive-definite. The factorization
of B could not be completed and no eigenvalues or
eigenvectors were computed.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine hbgvx interface are the following:

a Stands for argument ab in Fortran 77 interface. Holds the array A of size (ka+1,n).

b Stands for argument bb in Fortran 77 interface. Holds the array B of size (kb+1,n).

w Holds the vector of length (n).

z Holds the matrix Z of size (n,n).

ifail Holds the vector of length (n).

q Holds the matrix Q of size (n,n).

uplo Must be 'U' or 'L'. The default value is 'U'.

vl Default value for this element is vl = -HUGE(vl).

vu Default value for this element is vu = HUGE(vl).

il Default value for this argument is il = 1.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-565

iu Default value for this argument is iu = n.

abstol Default value for this element is abstol = 0.0_WP.

jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail or q is present and z is omitted.

range Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and
at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval
[a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , where ε is the machine precision. If abstol is less than or equal to
zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing
A to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow
threshold 2*?lamch('S'), not zero. If this routine returns with info > 0, indicating that some
eigenvectors did not converge, try setting abstol to 2*?lamch('S').

4-566

4 Intel® Math Kernel Library Reference Manual

Generalized Nonsymmetric Eigenproblems
This section describes LAPACK driver routines used for solving generalized nonsymmetric
eigenproblems. See also computational routines that can be called to solve these problems.
Table 4-14 lists all such driver routines for Fortran-77 interface. Respective routine names in
Fortran-95 interface are without the first symbol (see Routine Naming Conventions).

?gges
Computes the generalized eigenvalues, Schur form, and
the left and/or right Schur vectors for a pair of
nonsymmetric matrices.

Syntax

Fortran 77:

call sgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar,
alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info)

call dgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar,
alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info)

call cgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta,
vsl, ldvsl, vsr, ldvsr, work, lwork, rwork, bwork, info)

call zgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta,
vsl, ldvsl, vsr, ldvsr, work, lwork, rwork, bwork, info)

Table 4-14 Driver Routines for Solving Generalized Nonsymmetric Eigenproblems

Routine Name Operation performed

?gges Computes the generalized eigenvalues, Schur form, and the left and/or right
Schur vectors for a pair of nonsymmetric matrices.

?ggesx Computes the generalized eigenvalues, Schur form, and, optionally, the left
and/or right matrices of Schur vectors.

?ggev Computes the generalized eigenvalues, and the left and/or right
generalized eigenvectors for a pair of nonsymmetric matrices.

?ggevx Computes the generalized eigenvalues, and, optionally, the left and/or right
generalized eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-567

Fortran 95:

call gges(a, b, alphar, alphai, beta [,vsl] [,vsr] [,select] [,sdim] [,info])

call gges(a, b, alpha, beta [,vsl] [,vsr] [,select] [,sdim] [,info])

Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the
generalized eigenvalues, the generalized real/complex Schur form (S,T), optionally, the left and/or
right matrices of Schur vectors (vsl and vsr). This gives the generalized Schur factorization

 (A,B) = (vsl*S *vsrH, vsl*T*vsrH)

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the
leading diagonal blocks of the upper quasi-triangular matrix S and the upper triangular matrix T.
The leading columns of vsl and vsr then form an orthonormal/unitary basis for the
corresponding left and right eigenspaces (deflating subspaces).
(If only the generalized eigenvalues are needed, use the driver ?ggev instead, which is faster.)
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha / beta = w, such
that A - w*B is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable
interpretation for beta=0 or for both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is upper triangular with non-negative
diagonal and S is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
to real generalized eigenvalues, while 2-by-2 blocks of S will be “standardized" by making the
corresponding elements of T have the form:

and the pair of corresponding 2-by-2 blocks in S and T will have a complex conjugate pair of
generalized eigenvalues.
A pair of matrices (S,T) is in generalized complex Schur form if S and T are upper triangular and,
in addition, the diagonal of T are non-negative real numbers.

Input Parameters

jobvsl CHARACTER*1. Must be 'N' or 'V'.
If jobvsl ='N', then the left Schur vectors are not computed.
If jobvsl ='V', then the left Schur vectors are computed.

jobvsr CHARACTER*1. Must be 'N' or 'V'.
If jobvsr ='N', then the right Schur vectors are not computed.
If jobvsr ='V', then the right Schur vectors are computed.

a

0

0

b 
 

4-568

4 Intel® Math Kernel Library Reference Manual

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the diagonal of the
generalized Schur form.

If sort ='N', then eigenvalues are not ordered.
If sort ='S', eigenvalues are ordered (see selctg).

selctg LOGICAL FUNCTION of three REAL arguments
for real flavors.
LOGICAL FUNCTION of two COMPLEX arguments
for complex flavors.

selctg must be declared EXTERNAL in the calling subroutine.
If sort ='S', selctg is used to select eigenvalues to sort to the top
left of the Schur form.
If sort ='N', selctg is not referenced.

For real flavors:
An eigenvalue (alphar(j) + alphai(j))/beta(j) is selected if
selctg(alphar(j), alphai(j), beta(j)) is true; that is, if either one of a
complex conjugate pair of eigenvalues is selected, then both complex
eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex eigenvalue may
no longer satisfy
selctg(alphar(j), alphai(j), beta(j)) = .TRUE. after ordering. In
this case info is set to n+2 .

For complex flavors:
An eigenvalue alpha(j) / beta(j) is selected if selctg(alpha(j),
beta(j)) is true.
Note that a selected complex eigenvalue may no longer satisfy
selctg(alpha(j), beta(j)) = .TRUE. after ordering, since ordering
may change the value of complex eigenvalues (especially if the
eigenvalue is ill-conditioned); in this case info is set to n+2 (see info
below).

n INTEGER. The order of the matrices A, B, vsl, and vsr (n ≥ 0).

a, b, work REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.
Arrays:

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-569

a(lda,*) is an array containing the n-by-n matrix A (first of the pair of
matrices).
The second dimension of a must be at least max(1, n).

b(ldb,*) is an array containing the n-by-n matrix B (second of the pair
of matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

ldb INTEGER. The first dimension of the array b.
Must be at least max(1, n).

ldvsl,ldvsr INTEGER. The first dimensions of the output matrices vsl and vsr,
respectively. Constraints:
ldvsl ≥ 1. If jobvsl ='V', ldvsl ≥ max(1, n).
ldvsr ≥ 1. If jobvsr ='V', ldvsr ≥ max(1, n).

lwork INTEGER. The dimension of the array work.

lwork ≥ max(1, 8n+16) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.
For good performance, lwork must generally be larger.

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

rwork REAL for cgges
DOUBLE PRECISION for zgges
Workspace array, DIMENSION at least max(1, 8n).
This array is used in complex flavors only.

bwork LOGICAL.
Workspace array, DIMENSION at least max(1, n).
Not referenced if sort ='N'.

Output Parameters

a On exit, this array has been overwritten by its generalized Schur form S.

b On exit, this array has been overwritten by its generalized Schur form T.

4-570

4 Intel® Math Kernel Library Reference Manual

sdim INTEGER.
If sort ='N', sdim= 0.
If sort ='S', sdim is equal to the number of eigenvalues (after
sorting) for which selctg is true.
Note that for real flavors complex conjugate pairs for which selctg is
true for either eigenvalue count as 2.

alphar,alphai REAL for sgges;
DOUBLE PRECISION for dgges.
Arrays, DIMENSION at least max(1,n) each. Contain values that form
generalized eigenvalues in real flavors.
See beta.

alpha COMPLEX for cgges;
DOUBLE COMPLEX for zgges.
Array, DIMENSION at least max(1,n). Contain values that form
generalized eigenvalues in complex flavors. See beta.

beta REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n, will be the
generalized eigenvalues.
alphar(j) + alphai(j)*i and beta(j), j=1,...,n are the diagonals of the
complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks
of the real generalized Schur form of (A,B) were further reduced to
triangular form using complex unitary transformations. If alphai(j) is
zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st
eigenvalues are a complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n, will be the generalized eigenvalues.
alpha(j), j=1,...,n, and beta(j), j=1,...,n are the diagonals of the
complex Schur form (S,T) output by cgges/zgges. The beta(j) will be
non-negative real.

See also Application Notes below.

vsl, vsr REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-571

DOUBLE COMPLEX for zgges.
Arrays:
vsl(ldvsl,*), the second dimension of vsl must be at least max(1,
n).
If jobvsl ='V', this array will contain the left Schur vectors.
If jobvsl ='N', vsl is not referenced.

vsr(ldvsr,*), the second dimension of vsr must be at least max(1,
n).
If jobvsr ='V', this array will contain the right Schur vectors.
If jobvsr ='N', vsr is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i ≤ n :

the QZ iteration failed. (A,B) is not in Schur form, but alphar(j),
alphai(j) (for real flavors), or alpha(j) (for complex flavors), and
beta(j), j=info+1,...,n should be correct.

i > n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

i = n+2: after reordering, roundoff changed values of some complex
eigenvalues so that leading eigenvalues in the generalized Schur form no
longer satisfy selctg = .TRUE.. This could also be caused due to
scaling;

i = n+3: reordering failed in ?tgsen.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine gges interface are the following:

a Holds the matrix A of size (n,n).

4-572

4 Intel® Math Kernel Library Reference Manual

b Holds the matrix B of size (n,n).

alphar Holds the vector of length (n). Used in real flavors only.

alphai Holds the vector of length (n). Used in real flavors only.

alpha Holds the vector of length (n). Used in complex flavors only.

beta Holds the vector of length (n).

vsl Holds the matrix VSL of size (n,n).

vsr Holds the matrix VSR of size (n,n).

jobvsl Restored based on the presence of the argument vsl as follows:
jobvsl = 'V', if vsl is present,
jobvsl = 'N', if vsl is omitted.

jobvsr Restored based on the presence of the argument vsr as follows:
jobvsr = 'V', if vsr is present,
jobvsr = 'N', if vsr is omitted.

sort Restored based on the presence of the argument select as follows:
sort = 'S', if select is present,
sort = 'N', if select is omitted.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar
and alphai will be always less than and usually comparable with norm(A) in magnitude, and
beta always less than and usually comparable with norm(B).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-573

?ggesx
Computes the generalized eigenvalues, Schur form,
and, optionally, the left and/or right matrices of Schur
vectors.

Syntax

Fortran 77:

call sggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim,
alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork,
iwork, liwork, bwork, info)

call dggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim,
alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork,
iwork, liwork, bwork, info)

call cggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, rwork,
iwork, liwork, bwork, info)

call zggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, rwork,
iwork, liwork, bwork, info)

Fortran 95:

call ggesx(a, b, alphar, alphai, beta [,vsl] [,vsr] [,select] [,sdim] [,rconde]
[,rcondv] [,info])

call ggesx(a, b, alpha, beta [,vsl] [,vsr] [,select] [,sdim] [,rconde] [,rcondv]
[,info])

Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the
generalized eigenvalues, the generalized real/complex Schur form (S,T), optionally, the left and/or
right matrices of Schur vectors (vsl and vsr). This gives the generalized Schur factorization

 (A,B) = (vsl*S *vsrH, vsl*T*vsrH)

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the
leading diagonal blocks of the upper quasi-triangular matrix S and the upper triangular matrix T;
computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and

4-574

4 Intel® Math Kernel Library Reference Manual

computes a reciprocal condition number for the right and left deflating subspaces corresponding to
the selected eigenvalues (rcondv). The leading columns of vsl and vsr then form an
orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces).

A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha / beta = w, such
that A - w*B is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable
interpretation for beta=0 or for both being zero.
A pair of matrices (S,T) is in generalized real Schur form if T is upper triangular with non-negative
diagonal and S is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
to real generalized eigenvalues, while 2-by-2 blocks of S will be “standardized" by making the
corresponding elements of T have the form:

and the pair of corresponding 2-by-2 blocks in S and T will have a complex conjugate pair of
generalized eigenvalues.
A pair of matrices (S,T) is in generalized complex Schur form if S and T are upper triangular and,
in addition, the diagonal of T are non-negative real numbers.

Input Parameters

jobvsl CHARACTER*1. Must be 'N' or 'V'.
If jobvsl ='N', then the left Schur vectors are not computed.
If jobvsl ='V', then the left Schur vectors are computed.

jobvsr CHARACTER*1. Must be 'N' or 'V'.
If jobvsr ='N', then the right Schur vectors are not computed.
If jobvsr ='V', then the right Schur vectors are computed.

sort CHARACTER*1. Must be 'N' or 'S'.
Specifies whether or not to order the eigenvalues on the diagonal of the
generalized Schur form.

If sort ='N', then eigenvalues are not ordered.
If sort ='S', eigenvalues are ordered (see selctg).

selctg LOGICAL FUNCTION of three REAL arguments
for real flavors.
LOGICAL FUNCTION of two COMPLEX arguments
for complex flavors.

a

0

0

b 
 

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-575

selctg must be declared EXTERNAL in the calling subroutine.
If sort ='S', selctg is used to select eigenvalues to sort to the top
left of the Schur form.
If sort ='N', selctg is not referenced.

For real flavors:
An eigenvalue (alphar(j) + alphai(j))/beta(j) is selected if
selctg(alphar(j), alphai(j), beta(j)) is true; that is, if either one of a
complex conjugate pair of eigenvalues is selected, then both complex
eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex eigenvalue may
no longer satisfy
selctg(alphar(j), alphai(j), beta(j)) = .TRUE. after ordering. In
this case info is set to n+2.

For complex flavors:
An eigenvalue alpha(j) / beta(j) is selected if selctg(alpha(j),
beta(j)) is true.
Note that a selected complex eigenvalue may no longer satisfy
selctg(alpha(j), beta(j)) = .TRUE. after ordering, since ordering
may change the value of complex eigenvalues (especially if the
eigenvalue is ill-conditioned); in this case info is set to n+2 (see info
below).

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are computed.

If sense ='N', none are computed;
If sense ='E', computed for average of selected eigenvalues only;
If sense ='V', computed for selected deflating subspaces only;
If sense ='B', computed for both.
If sense is 'E', 'V', or 'B', then sort must equal 'S'.

n INTEGER. The order of the matrices A, B, vsl, and vsr (n ≥ 0).

a, b, work REAL for sggesx
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A (first of the pair of
matrices).
The second dimension of a must be at least max(1, n).

4-576

4 Intel® Math Kernel Library Reference Manual

b(ldb,*) is an array containing the n-by-n matrix B (second of the pair
of matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

ldb INTEGER. The first dimension of the array b.
Must be at least max(1, n).

ldvsl,ldvsr INTEGER. The first dimensions of the output matrices vsl and vsr,
respectively. Constraints:
ldvsl ≥ 1. If jobvsl ='V', ldvsl ≥ max(1, n).
ldvsr ≥ 1. If jobvsr ='V', ldvsr ≥ max(1, n).

lwork INTEGER. The dimension of the array work.
For real flavors:
lwork ≥ max(1, 8(n+1)+16);
if sense = 'E', 'V', or 'B', then
lwork ≥ max(8(n+1)+16) , 2*sdim*(n-sdim)).
For complex flavors:
lwork ≥ max(1, 2n);
if sense = 'E', 'V', or 'B', then
lwork ≥ max(2n , 2*sdim*(n-sdim)).

For good performance, lwork must generally be larger.

rwork REAL for cggesx
DOUBLE PRECISION for zggesx
Workspace array, DIMENSION at least max(1, 8n).
This array is used in complex flavors only.

iwork INTEGER.
Workspace array, DIMENSION (liwork). Not referenced if sense =
'N'.

liwork INTEGER. The dimension of the array iwork.

liwork ≥ n+6 for real flavors;
liwork ≥ n+2 for complex flavors.

bwork LOGICAL.
Workspace array, DIMENSION at least max(1, n).
Not referenced if sort ='N'.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-577

Output Parameters

a On exit, this array has been overwritten by its generalized Schur form S.

b On exit, this array has been overwritten by its generalized Schur form T.

sdim INTEGER.
If sort ='N', sdim= 0.
If sort ='S', sdim is equal to the number of eigenvalues (after
sorting) for which selctg is true.
Note that for real flavors complex conjugate pairs for which selctg is
true for either eigenvalue count as 2.

alphar,alphai REAL for sggesx;
DOUBLE PRECISION for dggesx.
Arrays, DIMENSION at least max(1,n) each. Contain values that form
generalized eigenvalues in real flavors.
See beta.

alpha COMPLEX for cggesx;
DOUBLE COMPLEX for zggesx.
Array, DIMENSION at least max(1,n). Contain values that form
generalized eigenvalues in complex flavors. See beta.

beta REAL for sggesx
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n will be the
generalized eigenvalues.
alphar(j) + alphai(j)*i and beta(j), j=1,...,n are the diagonals of the
complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks
of the real generalized Schur form of (A,B) were further reduced to
triangular form using complex unitary transformations. If alphai(j) is
zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st
eigenvalues are a complex conjugate pair, with alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n will be the generalized eigenvalues.
alpha(j), j=1,...,n, and beta(j), j=1,...,n are the diagonals of the
complex Schur form (S,T) output by cggesx/zggesx. The beta(j) will
be non-negative real.

4-578

4 Intel® Math Kernel Library Reference Manual

See also Application Notes below.

vsl, vsr REAL for sggesx
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.
Arrays:
vsl(ldvsl,*), the second dimension of vsl must be at least max(1,
n).
If jobvsl ='V', this array will contain the left Schur vectors.
If jobvsl ='N', vsl is not referenced.

vsr(ldvsr,*), the second dimension of vsr must be at least max(1,
n).
If jobvsr ='V', this array will contain the right Schur vectors.
If jobvsr ='N', vsr is not referenced.

rconde,rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION (2) each

If sense = 'E' or 'B' , rconde(1) and rconde(2) contain the
reciprocal condition numbers for the average of the selected eigenvalues.
Not referenced if sense = 'N' or 'V'.

If sense = 'V' or 'B' , rcondv(1) and rcondv(2) contain the
reciprocal condition numbers for the selected deflating subspaces.
Not referenced if sense = 'N' or 'E'.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i ≤ n :

the QZ iteration failed. (A,B) is not in Schur form, but alphar(j),
alphai(j) (for real flavors), or alpha(j) (for complex flavors), and
beta(j), j=info+1,...,n should be correct.

i > n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-579

i = n+2: after reordering, roundoff changed values of some complex
eigenvalues so that leading eigenvalues in the generalized Schur form no
longer satisfy selctg = .TRUE.. This could also be caused due to
scaling;

i = n+3: reordering failed in ?tgsen.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ggesx interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

alphar Holds the vector of length (n). Used in real flavors only.

alphai Holds the vector of length (n). Used in real flavors only.

alpha Holds the vector of length (n). Used in complex flavors only.

beta Holds the vector of length (n).

vsl Holds the matrix VSL of size (n,n).

vsr Holds the matrix VSR of size (n,n).

rconde Holds the vector of length (2).

rcondv Holds the vector of length (2).

jobvsl Restored based on the presence of the argument vsl as follows:
jobvsl = 'V', if vsl is present,
jobvsl = 'N', if vsl is omitted.

jobvsr Restored based on the presence of the argument vsr as follows:
jobvsr = 'V', if vsr is present,
jobvsr = 'N', if vsr is omitted.

sort Restored based on the presence of the argument select as follows:
sort = 'S', if select is present,
sort = 'N', if select is omitted.

4-580

4 Intel® Math Kernel Library Reference Manual

sense Restored based on the presence of arguments rconde and rcondv as follows:
sense = 'B', if both rconde and rcondv are present,
sense = 'E', if rconde is present and rcondv omitted,
sense = 'V', if rconde is omitted and rcondv present,
sense = 'N', if both rconde and rcondv are omitted.

Note that there will be an error condition if rconde or rcondv are present and select is omitted.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar
and alphai will be always less than and usually comparable with norm(A) in magnitude, and
beta always less than and usually comparable with norm(B).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-581

?ggev
Computes the generalized eigenvalues, and the left
and/or right generalized eigenvectors for a pair of
nonsymmetric matrices.

Syntax

Fortran 77:

call sggev(jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr,
ldvr, work, lwork, info)

call dggev(jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr,
ldvr, work, lwork, info)

call cggev(jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr,
work, lwork, rwork, info)

call zggev(jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr,
work, lwork, rwork, info)

Fortran 95:

call ggev(a, b, alphar, alphai, beta [,vl] [,vr] [,info])

call ggev(a, b, alpha, beta [,vl] [,vr] [,info])

Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the
generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.

A generalized eigenvalue for a pair of matrices (A,B) is a scalar λ or a ratio alpha / beta = λ, such
that A - λ*B is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable
interpretation for beta=0 and even for both being zero.
The right generalized eigenvector v(j) corresponding to the generalized eigenvalue λ(j) of (A,B)
satisfies

 A*v(j) = λ(j)*B*v(j).

The left generalized eigenvector u(j) corresponding to the generalized eigenvalue λ(j) of (A,B)
satisfies

 u(j)H*A = λ(j)*u(j)H*B

where u(j)H denotes the conjugate transpose of u(j).

4-582

4 Intel® Math Kernel Library Reference Manual

Input Parameters

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', the left generalized eigenvectors are not computed;
If jobvl ='V', the left generalized eigenvectors are computed.

jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', the right generalized eigenvectors are not computed;
If jobvr ='V', the right generalized eigenvectors are computed.

n INTEGER. The order of the matrices A, B, vl, and vr (n ≥ 0).

a, b, work REAL for sggev
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A (first of the pair of
matrices).
The second dimension of a must be at least max(1, n).

b(ldb,*) is an array containing the n-by-n matrix B (second of the pair
of matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

ldb INTEGER. The first dimension of the array b.
Must be at least max(1, n).

ldvl,ldvr INTEGER. The first dimensions of the output matrices vl and vr,
respectively. Constraints:
ldvl ≥ 1. If jobvl ='V', ldvl ≥ max(1, n).
ldvr ≥ 1. If jobvr ='V', ldvr ≥ max(1, n).

lwork INTEGER. The dimension of the array work.

lwork ≥ max(1, 8n+16) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.
For good performance, lwork must generally be larger.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-583

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

rwork REAL for cggev
DOUBLE PRECISION for zggev
Workspace array, DIMENSION at least max(1, 8n).
This array is used in complex flavors only.

Output Parameters

a, b On exit, these arrays have been overwritten.

alphar,alphai REAL for sggev;
DOUBLE PRECISION for dggev.
Arrays, DIMENSION at least max(1,n) each. Contain values that form
generalized eigenvalues in real flavors. See beta.

alpha COMPLEX for cggev;
DOUBLE COMPLEX for zggev.
Array, DIMENSION at least max(1,n). Contain values that form
generalized eigenvalues in complex flavors. See beta.

beta REAL for sggev
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n, will be the
generalized eigenvalues.
If alphai(j) is zero, then the j-th eigenvalue is real; if positive, then the
j-th and (j+1)-st eigenvalues are a complex conjugate pair, with
alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n, will be the generalized eigenvalues.

See also Application Notes below.

vl, vr REAL for sggev
DOUBLE PRECISION for dggev
COMPLEX for cggev

4-584

4 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for zggev.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least max(1, n).

If jobvl ='V', the left generalized eigenvectors u(j) are stored one after
another in the columns of vl, in the same order as their eigenvalues.
Each eigenvector will be scaled so the largest component have
abs(Re) + abs(Im) = 1.
If jobvl ='N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th column of vl. If
the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then
u(j) = vl(:,j) + i*vl(:,j+1) and u(j+1) = vl(:,j) - i*vl(:,j+1), where
i= .
For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at least max(1, n).

If jobvr ='V', the right generalized eigenvectors v(j) are stored one
after another in the columns of vr, in the same order as their
eigenvalues. Each eigenvector will be scaled so the largest component
have
abs(Re) + abs(Im) = 1.
If jobvr ='N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th column of vr. If
the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then
v(j) = vr(:,j) + i*vr(:,j+1) and v(j+1) = vr(:,j) - i*vr(:,j+1).
For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and i ≤ n :

the QZ iteration failed. No eigenvectors have been calculated, but
alphar(j), alphai(j) (for real flavors), or alpha(j) (for complex
flavors), and beta(j), j=info+1,...,n should be correct.

1–

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-585

i > n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

i = n+2: error return from ?tgevc.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ggev interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

alphar Holds the vector of length (n). Used in real flavors only.

alphai Holds the vector of length (n). Used in real flavors only.

alpha Holds the vector of length (n). Used in complex flavors only.

beta Holds the vector of length (n).

vl Holds the matrix VL of size (n,n).

vr Holds the matrix VR of size (n,n).

jobvl Restored based on the presence of the argument vl as follows:
jobvl = 'V', if vl is present,
jobvl = 'N', if vl is omitted.

jobvr Restored based on the presence of the argument vr as follows:
jobvr = 'V', if vr is present,
jobvr = 'N', if vr is omitted.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar
and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually
comparable with norm(A) in magnitude, and beta always less than and usually comparable with
norm(B).

4-586

4 Intel® Math Kernel Library Reference Manual

?ggevx
Computes the generalized eigenvalues, and, optionally,
the left and/or right generalized eigenvectors.

Syntax

Fortran 77:

call sggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alphar, alphai,
beta, vl, ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde,
rcondv, work, lwork, iwork, bwork, info)

call dggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alphar, alphai,
beta, vl, ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde,
rcondv, work, lwork, iwork, bwork, info)

call cggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alpha, beta, vl,
ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv,
work, lwork, rwork, iwork, bwork, info)

call zggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alpha, beta, vl,
ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv,
work, lwork, rwork, iwork, bwork, info)

Fortran 95:

call ggevx(a, b, alphar, alphai, beta [,vl] [,vr] [,balanc] [,ilo] [,ihi]
[,lscale] [,rscale] [,abnrm] [,bbnrm] [,rconde] [,rcondv] [,info])

call ggevx(a, b, alpha, beta [,vl] [,vr] [,balanc] [,ilo] [,ihi] [,lscale]
[,rscale] [,abnrm] [,bbnrm] [,rconde] [,rcondv] [,info])

Description

This routine computes for a pair of n-by-n real/complex nonsymmetric matrices (A,B), the
generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.

Optionally also, it computes a balancing transformation to improve the conditioning of the
eigenvalues and eigenvectors (ilo, ihi, lscale, rscale, abnrm, and bbnrm), reciprocal
condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right
eigenvectors (rcondv).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-587

 A generalized eigenvalue for a pair of matrices (A,B) is a scalar λ or a ratio alpha / beta = λ, such
that A - λ*B is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable
interpretation for beta=0 and even for both being zero.
The right generalized eigenvector v(j) corresponding to the generalized eigenvalue λ(j) of (A,B)
satisfies

 A*v(j) = λ(j)*B*v(j).

The left generalized eigenvector u(j) corresponding to the generalized eigenvalue λ(j) of (A,B)
satisfies

 u(j)H*A = λ(j)*u(j)H*B,

where u(j)H denotes the conjugate transpose of u(j).

Input Parameters

balanc CHARACTER*1. Must be 'N', 'P', 'S', or 'B'.
Specifies the balance option to be performed.

If balanc ='N', do not diagonally scale or permute;
If balanc ='P', permute only;
If balanc ='S', scale only;
If balanc ='B', both permute and scale.

Computed reciprocal condition numbers will be for the matrices after
balancing and/or permuting. Permuting does not change condition
numbers (in exact arithmetic), but balancing does.

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl ='N', the left generalized eigenvectors are not computed;
If jobvl ='V', the left generalized eigenvectors are computed.

jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr ='N', the right generalized eigenvectors are not computed;
If jobvr ='V', the right generalized eigenvectors are computed.

sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.
Determines which reciprocal condition number are computed.

If sense ='N', none are computed;
If sense ='E', computed for eigenvalues only;
If sense ='V', computed for eigenvectors only;
If sense ='B', computed for eigenvalues and eigenvectors.

n INTEGER. The order of the matrices A, B, vl, and vr (n ≥ 0).

4-588

4 Intel® Math Kernel Library Reference Manual

a, b, work REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Arrays:
a(lda,*) is an array containing the n-by-n matrix A (first of the pair of
matrices).
The second dimension of a must be at least max(1, n).

b(ldb,*) is an array containing the n-by-n matrix B (second of the pair
of matrices).
The second dimension of b must be at least max(1, n).

work(lwork) is a workspace array.

lda INTEGER. The first dimension of the array a.
Must be at least max(1, n).

ldb INTEGER. The first dimension of the array b.
Must be at least max(1, n).

ldvl,ldvr INTEGER. The first dimensions of the output matrices vl and vr,
respectively. Constraints:
ldvl ≥ 1. If jobvl ='V', ldvl ≥ max(1, n).
ldvr ≥ 1. If jobvr ='V', ldvr ≥ max(1, n).

lwork INTEGER. The dimension of the array work.
For real flavors:
lwork ≥ max(1, 6n);
if sense = 'E', lwork ≥ 12n ;
if sense = 'V', or 'B', lwork ≥ 2n2+ 12n+16.
For complex flavors:
lwork ≥ max(1, 2n);
if sense ='N', or 'E', lwork ≥ 2n;
if sense = 'V', or 'B', lwork ≥ 2n2+ 2n.

If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the
first entry of the work array, and no error message related to lwork is
issued by xerbla.

rwork REAL for cggevx
DOUBLE PRECISION for zggevx
Workspace array, DIMENSION at least max(1, 6n).
This array is used in complex flavors only.

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-589

iwork INTEGER.
Workspace array, DIMENSION at least (n+6) for real flavors and at least
(n+2) for complex flavors.
Not referenced if sense = 'E'.

bwork LOGICAL.
Workspace array, DIMENSION at least max(1, n).
Not referenced if sense ='N'.

Output Parameters

a, b On exit, these arrays have been overwritten.

If jobvl ='V' or jobvr ='V' or both, then a contains the first part of
the real Schur form of the "balanced" versions of the input A and B, and
b contains its second part.

alphar,alphai REAL for sggevx;
DOUBLE PRECISION for dggevx.
Arrays, DIMENSION at least max(1,n) each. Contain values that form
generalized eigenvalues in real flavors.
See beta.

alpha COMPLEX for cggevx;
DOUBLE COMPLEX for zggevx.
Array, DIMENSION at least max(1,n). Contain values that form
generalized eigenvalues in complex flavors. See beta.

beta REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n, will be the
generalized eigenvalues.
If alphai(j) is zero, then the j-th eigenvalue is real; if positive, then the
j-th and (j+1)-st eigenvalues are a complex conjugate pair, with
alphai(j+1) negative.
For complex flavors:
On exit, alpha(j)/beta(j), j=1,...,n, will be the generalized eigenvalues.

See also Application Notes below.

4-590

4 Intel® Math Kernel Library Reference Manual

vl, vr REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Arrays:
vl(ldvl,*); the second dimension of vl must be at least max(1, n).

If jobvl ='V', the left generalized eigenvectors u(j) are stored one after
another in the columns of vl, in the same order as their eigenvalues.
Each eigenvector will be scaled so the largest component have
abs(Re) + abs(Im) = 1. If jobvl ='N', vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, then u(j) = vl(:,j), the j-th column of vl. If
the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then
u(j) = vl(:,j) + i*vl(:,j+1) and u(j+1) = vl(:,j) - i*vl(:,j+1), where
i= .
For complex flavors:
u(j) = vl(:,j), the j-th column of vl.

vr(ldvr,*); the second dimension of vr must be at least max(1, n).

If jobvr ='V', the right generalized eigenvectors v(j) are stored one
after another in the columns of vr, in the same order as their
eigenvalues. Each eigenvector will be scaled so the largest component
have
abs(Re) + abs(Im) = 1. If jobvr ='N', vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, then v(j) = vr(:,j), the j-th column of vr. If
the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then
v(j) = vr(:,j) + i*vr(:,j+1) and v(j+1) = vr(:,j) - i*vr(:,j+1).
For complex flavors:
v(j) = vr(:,j), the j-th column of vr.

ilo, ihi INTEGER.
ilo and ihi are integer values such that on exit
 A(i,j) = 0 and B(i,j) = 0 if i > j and j = 1,..., ilo-1 or
i = ihi+1,..., n.
If balanc ='N'or 'S', ilo = 1 and ihi = n.

lscale,rscale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max(1, n) each.
lscale contains details of the permutations and scaling factors applied

1–

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-591

to the left side of A and B.
If PL(j) is the index of the row interchanged with row j, and DL(j) is the
scaling factor applied to row j, then

lscale(j) = PL(j), for j = 1,...,ilo-1

 = DL(j), for j = ilo,...,ihi

 = PL(j) for j = ihi+1,...,n.

 The order in which the interchanges are made is n to ihi+1, then 1 to
ilo-1.

rscale contains details of the permutations and scaling factors applied
to the right side of A and B.
If PR(j) is the index of the column interchanged with column j, and
DR(j) is the scaling factor applied to column j, then

rscale(j) = PR(j), for j = 1,...,ilo-1

 = DR(j), for j = ilo,...,ihi

 = PR(j) for j = ihi+1,...,n.

 The order in which the interchanges are made is n to ihi+1, then 1 to
ilo-1.

abnrm,bbnrm REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

The one-norms of the balanced matrices A and B, respectively.

rconde,rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1, n) each.

 If sense ='E', or 'B', rconde contains the reciprocal condition
numbers of the selected eigenvalues, stored in consecutive elements of
the array. For a complex conjugate pair of eigenvalues two consecutive
elements of rconde are set to the same value. Thus rconde(j),
rcondv(j), and the j-th columns of vl and vr all correspond to the same
eigenpair (but not in general the j-th eigenpair, unless all eigenpairs are
selected).
If sense ='V', rconde is not referenced.

If sense ='V', or 'B', rcondv contains the estimated reciprocal
condition numbers of the selected eigenvectors, stored in consecutive
elements of the array. For a complex eigenvector two consecutive

4-592

4 Intel® Math Kernel Library Reference Manual

elements of rcondv are set to the same value. If the eigenvalues cannot
be reordered to compute rcondv(j), rcondv(j) is set to 0; this can only
occur when the true value would be very small anyway.
If sense ='E', rcondv is not referenced.

work(1) On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, and
i ≤ n :

the QZ iteration failed. No eigenvectors have been calculated, but
alphar(j), alphai(j) (for real flavors), or alpha(j) (for complex
flavors), and beta(j), j=info+1,...,n should be correct.

i > n : errors that usually indicate LAPACK problems:

i = n+1: other than QZ iteration failed in ?hgeqz;

i = n+2: error return from ?tgevc.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their
Fortran 77 counterparts. For general conventions applied to skip redundant or restorable
arguments, see Fortran-95 Interface Conventions.

Specific details for the routine ggevx interface are the following:

a Holds the matrix A of size (n,n).

b Holds the matrix B of size (n,n).

alphar Holds the vector of length (n). Used in real flavors only.

alphai Holds the vector of length (n). Used in real flavors only.

alpha Holds the vector of length (n). Used in complex flavors only.

beta Holds the vector of length (n).

vl Holds the matrix VL of size (n,n).

vr Holds the matrix VR of size (n,n).

lscale Holds the vector of length (n).

LAPACK Routines: Least Squares and Eigenvalue Problems 4

4-593

rscale Holds the vector of length (n).

rconde Holds the vector of length (n).

rcondv Holds the vector of length (n).

balanc Must be 'N', 'B', or 'P'. The default value is 'N'.

jobvl Restored based on the presence of the argument vl as follows:
jobvl = 'V', if vl is present,
jobvl = 'N', if vl is omitted.

jobvr Restored based on the presence of the argument vr as follows:
jobvr = 'V', if vr is present,
jobvr = 'N', if vr is omitted.

sense Restored based on the presence of arguments rconde and rcondv as follows:
sense = 'B', if both rconde and rcondv are present,
sense = 'E', if rconde is present and rcondv omitted,
sense = 'V', if rconde is omitted and rcondv present,
sense = 'N', if both rconde and rcondv are omitted.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of
lwork for the first run. On exit, examine work(1) and use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and
beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar
and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually
comparable with norm(A) in magnitude, and beta always less than and usually comparable with
norm(B).

5-1

LAPACK Auxiliary and
Utility Routines 5

This chapter describes the Intel® Math Kernel Library implementation of LAPACK auxiliary and
utility routines. The library includes auxiliary routines for both real and complex data.

Auxiliary Routines
Routine naming conventions, mathematical notation, and matrix storage schemes used for
LAPACK auxiliary routines are the same as for the driver and computational routines described in
previous chapters.

The table below summarizes information about the available LAPACK auxiliary routines.

Table 5-1 LAPACK Auxiliary Routines

Routine Name Data
Types

Description

?lacgv c, z Conjugates a complex vector.

?lacrm c, z Multiplies a complex matrix by a square real matrix.

?lacrt c, z Performs a linear transformation of a pair of complex vectors.

?laesy c, z Computes the eigenvalues and eigenvectors of a 2-by-2 complex
symmetric matrix.

?rot c, z Applies a plane rotation with real cosine and complex sine to a pair
of complex vectors.

?spmv c, z Computes a matrix-vector product for complex vectors using a
complex symmetric packed matrix

?spr c, z Performs the symmetrical rank-1 update of a complex symmetric
packed matrix.

?symv c, z Computes a matrix-vector product for a complex symmetric matrix.

5-2

5 Intel® Math Kernel Library Reference Manual

?syr c, z Performs the symmetric rank-1 update of a complex symmetric
matrix.

i?max1 c, z Finds the index of the vector element whose real part has
maximum absolute value.

?sum1 sc,dz Forms the 1-norm of the complex vector using the true absolute
value.

?gbtf2 s,d,c,z Computes the LU factorization of a general band matrix using the
unblocked version of the algorithm.

?gebd2 s,d,c,z Reduces a general matrix to bidiagonal form using an unblocked
algorithm.

?gehd2 s,d,c,z Reduces a general square matrix to upper Hessenberg form using
an unblocked algorithm.

?gelq2 s,d,c,z Computes the LQ factorization of a general rectangular matrix
using an unblocked algorithm.

?geql2 s,d,c,z Computes the QL factorization of a general rectangular matrix
using an unblocked algorithm.

?geqr2 s,d,c,z Computes the QR factorization of a general rectangular matrix
using an unblocked algorithm.

?gerq2 s,d,c,z Computes the RQ factorization of a general rectangular matrix
using an unblocked algorithm.

?gesc2 s,d,c,z Solves a system of linear equations using the LU factorization with
complete pivoting computed by ?getc2.

?getc2 s,d,c,z Computes the LU factorization with complete pivoting of the
general n-by-n matrix.

?getf2 s,d,c,z Computes the LU factorization of a general m-by-n matrix using
partial pivoting with row interchanges (unblocked algorithm).

?gtts2 s,d,c,z Solves a system of linear equations with a tridiagonal matrix using
the LU factorization computed by ?gttrf.

?labrd s,d,c,z Reduces the first nb rows and columns of a general matrix to a
bidiagonal form.

?lacon s,d,c,z Estimates the 1-norm of a square matrix, using reverse
communication for evaluating matrix-vector products.

?lacpy s,d,c,z Copies all or part of one two-dimensional array to another.

?ladiv s,d,c,z Performs complex division in real arithmetic, avoiding unnecessary
overflow.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

LAPACK Auxiliary and Utility Routines 5

5-3

?lae2 s,d Computes the eigenvalues of a 2-by-2 symmetric matrix.

?laebz s,d Computes the number of eigenvalues of a real symmetric
tridiagonal matrix which are less than or equal to a given value, and
performs other tasks required by the routine ?stebz.

?laed0 s,d,c,z Used by ?stedc. Computes all eigenvalues and corresponding
eigenvectors of an unreduced symmetric tridiagonal matrix using
the divide and conquer method.

?laed1 s,d Used by sstedc/dstedc. Computes the updated eigensystem
of a diagonal matrix after modification by a rank-one symmetric
matrix. Used when the original matrix is tridiagonal.

?laed2 s,d Used by sstedc/dstedc. Merges eigenvalues and deflates
secular equation. Used when the original matrix is tridiagonal.

?laed3 s,d Used by sstedc/dstedc. Finds the roots of the secular equation
and updates the eigenvectors. Used when the original matrix is
tridiagonal.

?laed4 s,d Used by sstedc/dstedc. Finds a single root of the secular
equation.

?laed5 s,d Used by sstedc/dstedc. Solves the 2-by-2 secular equation.

?laed6 s,d Used by sstedc/dstedc. Computes one Newton step in
solution of the secular equation.

?laed7 s,d,c,z Used by ?stedc. Computes the updated eigensystem of a
diagonal matrix after modification by a rank-one symmetric matrix.
Used when the original matrix is dense.

?laed8 s,d,c,z Used by ?stedc. Merges eigenvalues and deflates secular
equation. Used when the original matrix is dense.

?laed9 s,d Used by sstedc/dstedc. Finds the roots of the secular equation
and updates the eigenvectors. Used when the original matrix is
dense.

?laeda s,d Used by ?stedc. Computes the Z vector determining the
rank-one modification of the diagonal matrix. Used when the
original matrix is dense.

?laein s,d,c,z Computes a specified right or left eigenvector of an upper
Hessenberg matrix by inverse iteration.

?laev2 s,d,c,z Computes the eigenvalues and eigenvectors of a 2-by-2
symmetric/Hermitian matrix.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

5-4

5 Intel® Math Kernel Library Reference Manual

?laexc s,d Swaps adjacent diagonal blocks of a real upper quasi-triangular
matrix in Schur canonical form, by an orthogonal similarity
transformation.

?lag2 s,d Computes the eigenvalues of a 2-by-2 generalized eigenvalue
problem, with scaling as necessary to avoid over-/underflow.

?lags2 s,d Computes 2-by-2 orthogonal matrices U, V, and Q, and applies
them to matrices A and B such that the rows of the transformed A
and B are parallel.

?lagtf s,d Computes an LU factorization of a matrix T-λI, where T is a
general tridiagonal matrix, and λ a scalar, using partial pivoting
with row interchanges.

?lagtm s,d,c,z Performs a matrix-matrix product of the form C = αAB+βC,
where A is a tridiagonal matrix, B and C are rectangular matrices,
and α and β are scalars, which may be 0, 1, or -1.

?lagts s,d Solves the system of equations (T-λI)x = y or (T-λI)Tx = y
,where T is a general tridiagonal matrix and λ a scalar, using the
LU factorization computed by ?lagtf.

?lagv2 s,d Computes the Generalized Schur factorization of a real 2-by-2
matrix pencil (A,B) where B is upper triangular.

?lahqr s,d,c,z Computes the eigenvalues and Schur factorization of an upper
Hessenberg matrix, using the double-shift/single-shift QR
algorithm.

?lahrd s,d,c,z Reduces the first nb columns of a general rectangular matrix A so
that elements below the k-th subdiagonal are zero, and returns
auxiliary matrices which are needed to apply the transformation to
the unreduced part of A.

?laic1 s,d,c,z Applies one step of incremental condition estimation.

?laln2 s,d Solves a 1-by-1 or 2-by-2 linear system of equations of the
specified form.

?lals0 s,d,c,z Applies back multiplying factors in solving the least squares
problem using divide and conquer SVD approach. Used by
?gelsd.

?lalsa s,d,c,z Computes the SVD of the coefficient matrix in compact form. Used
by ?gelsd.

?lalsd s,d,c,z Uses the singular value decomposition of A to solve the least
squares problem.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

LAPACK Auxiliary and Utility Routines 5

5-5

?lamrg s,d Creates a permutation list to merge the entries of two
independently sorted sets into a single set sorted in ascending
order.

?langb s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm, or
the largest absolute value of any element of general band matrix.

?lange s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm, or
the largest absolute value of any element of a general rectangular
matrix.

?langt s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm, or
the largest absolute value of any element of a general tridiagonal
matrix.

?lanhs s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm, or
the largest absolute value of any element of an upper Hessenberg
matrix.

?lansb s,d,c,z Returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a
symmetric band matrix.

?lanhb c,z Returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a
Hermitian band matrix.

?lansp s,d,c,z Returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a
symmetric matrix supplied in packed form.

?lanhp c,z Returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a complex
Hermitian matrix supplied in packed form.

?lanst/?lanht s,d/c,z Returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a real
symmetric or complex Hermitian tridiagonal matrix.

?lansy s,d,c,z Returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a
real/complex symmetric matrix.

?lanhe c,z Returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a complex
Hermitian matrix.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

5-6

5 Intel® Math Kernel Library Reference Manual

?lantb s,d,c,z Returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a
triangular band matrix.

?lantp s,d,c,z Returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a
triangular matrix supplied in packed form.

?lantr s,d,c,z Returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a
trapezoidal or triangular matrix.

?lanv2 s,d Computes the Schur factorization of a real 2-by-2 nonsymmetric
matrix in standard form.

?lapll s,d,c,z Measures the linear dependence of two vectors.

?lapmt s,d,c,z Performs a forward or backward permutation of the columns of a
matrix.

?lapy2 s,d Returns sqrt(x2+y2).

?lapy3 s,d Returns sqrt(x2+y2+z2).

?laqgb s,d,c,z Scales a general band matrix, using row and column scaling
factors computed by ?gbequ.

?laqge s,d,c,z Scales a general rectangular matrix, using row and column scaling
factors computed by ?geequ.

?laqp2 s,d,c,z Computes a QR factorization with column pivoting of the matrix
block.

?laqps s,d,c,z Computes a step of QR factorization with column pivoting of a real
m-by-n matrix A by using BLAS level 3.

?laqsb s,d,c,z Scales a symmetric/Hermitian band matrix, using scaling factors
computed by ?pbequ.

?laqsp s,d,c,z Scales a symmetric/Hermitian matrix in packed storage, using
scaling factors computed by ?ppequ.

?laqsy s,d,c,z Scales a symmetric/Hermitian matrix, using scaling factors
computed by ?poequ.

?laqtr s,d Solves a real quasi-triangular system of equations, or a complex
quasi-triangular system of special form, in real arithmetic.

?lar1v s,d,c,z Computes the (scaled) r-th column of the inverse of the submatrix
in rows b1 through bn of the tridiagonal matrix LDLT - σI.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

LAPACK Auxiliary and Utility Routines 5

5-7

?lar2v s,d,c,z Applies a vector of plane rotations with real cosines and
real/complex sines from both sides to a sequence of 2-by-2
symmetric/Hermitian matrices.

?larf s,d,c,z Applies an elementary reflector to a general rectangular matrix.

?larfb s,d,c,z Applies a block reflector or its transpose/conjugate-transpose to a
general rectangular matrix.

?larfg s,d,c,z Generates an elementary reflector (Householder matrix).

?larft s,d,c,z Forms the triangular factor T of a block reflector H = I - VTVH

?larfx s,d,c,z Applies an elementary reflector to a general rectangular matrix,
with loop unrolling when the reflector has order ≤ 10.

?largv s,d,c,z Generates a vector of plane rotations with real cosines and
real/complex sines.

?larnv s,d,c,z Returns a vector of random numbers from a uniform or normal
distribution.

?larrb s,d Provides limited bisection to locate eigenvalues for more accuracy.

?larre s,d Given the tridiagonal matrix T, sets small off-diagonal elements to
zero and for each unreduced block Ti, finds base representations
and eigenvalues.

?larrf s,d Finds a new relatively robust representation such that at least one
of the eigenvalues is relatively isolated.

?larrv s,d,c,z Computes the eigenvectors of the tridiagonal matrix T = L D LT
given L, D and the eigenvalues of L D LT.

?lartg s,d,c,z Generates a plane rotation with real cosine and real/complex sine.

?lartv s,d,c,z Applies a vector of plane rotations with real cosines and
real/complex sines to the elements of a pair of vectors.

?laruv s,d Returns a vector of n random real numbers from a uniform
distribution.

?larz s,d,c,z Applies an elementary reflector (as returned by ?tzrzf) to a
general matrix.

?larzb s,d,c,z Applies a block reflector or its transpose/conjugate-transpose to a
general matrix.

?larzt s,d,c,z Forms the triangular factor T of a block reflector H = I - VTVH.

?las2 s,d Computes singular values of a 2-by-2 triangular matrix.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

5-8

5 Intel® Math Kernel Library Reference Manual

?lascl s,d,c,z Multiplies a general rectangular matrix by a real scalar defined as
cto/cfrom .

?lasd0 s,d Computes the singular values of a real upper bidiagonal n-by-m
matrix B with diagonal d and off-diagonal e. Used by ?bdsdc.

?lasd1 s,d Computes the SVD of an upper bidiagonal matrix B of the specified
size. Used by ?bdsdc.

?lasd2 s,d Merges the two sets of singular values together into a single sorted
set. Used by ?bdsdc.

?lasd3 s,d Finds all square roots of the roots of the secular equation, as
defined by the values in D and Z, and then updates the singular
vectors by matrix multiplication. Used by ?bdsdc.

?lasd4 s,d Computes the square root of the i-th updated eigenvalue of a
positive symmetric rank-one modification to a positive diagonal
matrix. Used by ?bdsdc.

?lasd5 s,d Computes the square root of the i-th eigenvalue of a positive
symmetric rank-one modification of a 2-by-2 diagonal matrix.Used
by ?bdsdc.

?lasd6 s,d Computes the SVD of an updated upper bidiagonal matrix
obtained by merging two smaller ones by appending a row. Used
by ?bdsdc.

?lasd7 s,d Merges the two sets of singular values together into a single sorted
set. Then it tries to deflate the size of the problem. Used by
?bdsdc.

?lasd8 s,d Finds the square roots of the roots of the secular equation, and
stores, for each element in D, the distance to its two nearest poles.
Used by ?bdsdc.

?lasd9 s,d Finds the square roots of the roots of the secular equation, and
stores, for each element in D, the distance to its two nearest poles.
Used by ?bdsdc.

?lasda s,d Computes the singular value decomposition (SVD) of a real upper
bidiagonal matrix with diagonal d and off-diagonal e. Used by
?bdsdc.

?lasdq s,d Computes the SVD of a real bidiagonal matrix with diagonal d and
off-diagonal e. Used by ?bdsdc.

?lasdt s,d Creates a tree of subproblems for bidiagonal divide and conquer.
Used by ?bdsdc.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

LAPACK Auxiliary and Utility Routines 5

5-9

?laset s,d,c,z Initializes the off-diagonal elements and the diagonal elements of a
matrix to given values.

?lasq1 s,d Computes the singular values of a real square bidiagonal matrix.
Used by ?bdsqr.

?lasq2 s,d Computes all the eigenvalues of the symmetric positive definite
tridiagonal matrix associated with the qd Array z to high relative
accuracy. Used by ?bdsqr and ?stegr.

?lasq3 s,d Checks for deflation, computes a shift and calls dqds. Used by
?bdsqr.

?lasq4 s,d Computes an approximation to the smallest eigenvalue using
values of d from the previous transform. Used by ?bdsqr.

?lasq5 s,d Computes one dqds transform in ping-pong form. Used by
?bdsqr and ?stegr.

?lasq6 s,d Computes one dqd transform in ping-pong form. Used by ?bdsqr
and ?stegr.

?lasr s,d,c,z Applies a sequence of plane rotations to a general rectangular
matrix.

?lasrt s,d Sorts numbers in increasing or decreasing order.

?lassq s,d,c,z Updates a sum of squares represented in scaled form.

?lasv2 s,d Computes the singular value decomposition of a 2-by-2 triangular
matrix.

?laswp s,d,c,z Performs a series of row interchanges on a general rectangular
matrix.

?lasy2 s,d Solves the Sylvester matrix equation where the matrices are of
order 1 or 2.

?lasyf s,d,c,z Computes a partial factorization of a real/complex symmetric
matrix, using the diagonal pivoting method.

?lahef c,z Computes a partial factorization of a complex Hermitian indefinite
matrix, using the diagonal pivoting method.

?latbs s,d,c,z Solves a triangular banded system of equations.

?latdf s,d,c,z Uses the LU factorization of the n-by-n matrix computed by
?getc2 and computes a contribution to the reciprocal
Dif-estimate.

?latps s,d,c,z Solves a triangular system of equations with the matrix held in
packed storage.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

5-10

5 Intel® Math Kernel Library Reference Manual

?latrd s,d,c,z Reduces the first nb rows and columns of a symmetric/Hermitian
matrix A to real tridiagonal form by an orthogonal/unitary similarity
transformation.

?latrs s,d,c,z Solves a triangular system of equations with the scale factor set to
prevent overflow.

?latrz s,d,c,z Factors an upper trapezoidal matrix by means of
orthogonal/unitary transformations.

?lauu2 s,d,c,z Computes the product UUH or LHL, where U and L are upper or
lower triangular matrices (unblocked algorithm).

?lauum s,d,c,z Computes the product UUH or LHL, where U and L are upper or
lower triangular matrices (blocked algorithm).

?org2l/?ung2l s,d/c,z Generates all or part of the orthogonal/unitary matrix Q from a QL
factorization determined by ?geqlf (unblocked algorithm).

?org2r/?ung2r s,d/c,z Generates all or part of the orthogonal/unitary matrix Q from a QR
factorization determined by ?geqrf (unblocked algorithm).

?orgl2/?ungl2 s,d/c,z Generates all or part of the orthogonal/unitary matrix Q from an LQ
factorization determined by ?gelqf (unblocked algorithm).

?orgr2/?ungr2 s,d/c,z Generates all or part of the orthogonal/unitary matrix Q from an RQ
factorization determined by ?gerqf (unblocked algorithm).

?orm2l/?unm2l s,d/c,z Multiplies a general matrix by the orthogonal/unitary matrix from a
QL factorization determined by ?geqlf (unblocked algorithm).

?orm2r/?unm2r s,d/c,z Multiplies a general matrix by the orthogonal/unitary matrix from a
QR factorization determined by ?geqrf (unblocked algorithm).

?orml2/?unml2 s,d/c,z Multiplies a general matrix by the orthogonal/unitary matrix from a
LQ factorization determined by ?gelqf (unblocked algorithm).

?ormr2/?unmr2 s,d/c,z Multiplies a general matrix by the orthogonal/unitary matrix from a
RQ factorization determined by ?gerqf (unblocked algorithm).

?ormr3/?unmr3 s,d/c,z Multiplies a general matrix by the orthogonal/unitary matrix from a
RZ factorization determined by ?tzrzf (unblocked algorithm).

?pbtf2 s,d,c,z Computes the Cholesky factorization of a symmetric/ Hermitian
positive definite band matrix (unblocked algorithm).

?potf2 s,d,c,z Computes the Cholesky factorization of a symmetric/Hermitian
positive definite matrix (unblocked algorithm).

?ptts2 s,d,c,z Solves a tridiagonal system of the form AX=B using the L D LH
factorization computed by ?pttrf.

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

LAPACK Auxiliary and Utility Routines 5

5-11

?lacgv
Conjugates a complex vector.

Syntax
call clacgv(n, x, incx)

call zlacgv(n, x, incx)

Description

This routine conjugates a complex vector x of length n and increment incx (see “Vector
Arguments in BLAS” in Appendix B).

Input Parameters

n INTEGER. The length of the vector x (n ≥ 0).

?rscl s,d,cs,
zd

Multiplies a vector by the reciprocal of a real scalar.

?sygs2/?hegs2 s,d/c,z Reduces a symmetric/Hermitian definite generalized eigenproblem
to standard form, using the factorization results obtained from
?potrf (unblocked algorithm).

?sytd2/?hetd2 s,d/c,z Reduces a symmetric/Hermitian matrix to real symmetric
tridiagonal form by an orthogonal/unitary similarity transformation
(unblocked algorithm).

?sytf2 s,d,c,z Computes the factorization of a real/complex symmetric indefinite
matrix, using the diagonal pivoting method (unblocked algorithm).

?hetf2 c,z Computes the factorization of a complex Hermitian matrix, using
the diagonal pivoting method (unblocked algorithm).

?tgex2 s,d,c,z Swaps adjacent diagonal blocks in an upper (quasi) triangular
matrix pair by an orthogonal/unitary equivalence transformation.

?tgsy2 s,d,c,z Solves the generalized Sylvester equation (unblocked algorithm).

?trti2 s,d,c,z Computes the inverse of a triangular matrix (unblocked algorithm).

Table 5-1 LAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

5-12

5 Intel® Math Kernel Library Reference Manual

x COMPLEX for clacgv
COMPLEX*16 for zlacgv.
Array, dimension (1+(n-1)* |incx|).
Contains the vector of length n to be conjugated.

incx INTEGER. The spacing between successive elements
of x.

Output Parameters

x On exit, overwritten with conjg(x).

?lacrm
Multiplies a complex matrix by a square real matrix.

Syntax
call clacrm(m, n, a, lda, b, ldb, c, ldc, rwork)

call zlacrm(m, n, a, lda, b, ldb, c, ldc, rwork)

Description

This routine performs a simple matrix-matrix multiplication of the form

 C = A * B ,
where A is m-by-n and complex, B is n-by-n and real, C is m-by-n and complex.

Input Parameters

m INTEGER. The number of rows of the matrix A and of the matrix
C (m ≥ 0).

n INTEGER. The number of columns and rows of the matrix B and the
number of columns of the matrix C
(n ≥ 0).

a COMPLEX for clacrm
COMPLEX*16 for zlacrm

Array, DIMENSION (lda, n). Contains the m-by-n matrix A.

LAPACK Auxiliary and Utility Routines 5

5-13

lda INTEGER. The leading dimension of the array a,
lda ≥ max(1, m).

b REAL for clacrm
DOUBLE PRECISION for zlacrm

Array, DIMENSION (ldb, n). Contains the n-by-n matrix B.

ldb INTEGER. The leading dimension of the array b,
ldb ≥ max(1, n).

ldc INTEGER. The leading dimension of the output array c,
ldc ≥ max(1, n).

rwork REAL for clacrm
DOUBLE PRECISION for zlacrm

Workspace array, DIMENSION (2*m*n).

Output Parameters

c COMPLEX for clacrm
COMPLEX*16 for zlacrm

Array, DIMENSION (ldc, n). Contains the m-by-n matrix C.

?lacrt
Performs a linear transformation of a pair of complex
vectors.

Syntax
call clacrt(n, cx, incx, cy, incy, c, s)

call zlacrt(n, cx, incx, cy, incy, c, s)

Description

This routine performs the following transformation

 ,
c s

s– c 
 
  x

y 
  x

y 
 ⇒

5-14

5 Intel® Math Kernel Library Reference Manual

where c, s are complex scalars and x, y are complex vectors.

Input Parameters

n INTEGER. The number of elements in the vectors cx and cy (n ≥ 0).

cx, cy COMPLEX for clacrt
COMPLEX*16 for zlacrt

Arrays, dimension (n).
Contain input vectors x and y, respectively.

incx INTEGER. The increment between successive elements
of cx.

incy INTEGER. The increment between successive elements
of cy.

c, s COMPLEX for clacrt
COMPLEX*16 for zlacrt

Complex scalars that define the transform matrix

Output Parameters

cx On exit, overwritten with c*x + s*y .

cy On exit, overwritten with -s*x + c*y .

?laesy
Computes the eigenvalues and eigenvectors of a 2-by-2
complex symmetric matrix, and checks that the norm of
the matrix of eigenvectors is larger than a threshold
value.

Syntax
call claesy(a, b, c, rt1, rt2, evscal, cs1, sn1)

call zlaesy(a, b, c, rt1, rt2, evscal, cs1, sn1)

c s

-s c

LAPACK Auxiliary and Utility Routines 5

5-15

Description

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix

 ,

provided the norm of the matrix of eigenvectors is larger than some threshold value.

rt1 is the eigenvalue of larger absolute value, and rt2 of smaller absolute value. If the
eigenvectors are computed, then on return (cs1, sn1) is the unit eigenvector for rt1, hence

Input Parameters

a, b, c COMPLEX for claesy
COMPLEX*16 for zlaesy

Elements of the input matrix.

Output Parameters

rt1, rt2 COMPLEX for claesy
COMPLEX*16 for zlaesy

Eigenvalues of larger and smaller modulus, respectively.

evscal COMPLEX for claesy
COMPLEX*16 for zlaesy

The complex value by which the eigenvector matrix was scaled to make
it orthonormal. If evscal is zero, the eigenvectors were not computed.
This means one of two things: the 2-by-2 matrix could not be
diagonalized, or the norm of the matrix of eigenvectors before scaling
was larger than the threshold value thresh (set to 0.1E0).

cs1, sn1 COMPLEX for claesy
COMPLEX*16 for zlaesy

If evscal is not zero, then (cs1, sn1) is the unit right eigenvector for
rt1.

a b

b c

cs1 sn1

sn1– cs1

a b

b c
cs1 sn1–

sn1 cs1
⋅ ⋅ rt1 0

0 rt2
=

5-16

5 Intel® Math Kernel Library Reference Manual

?rot
Applies a plane rotation with real cosine and complex
sine to a pair of complex vectors.

Syntax
call crot(n, cx, incx, cy, incy, c, s)

call zrot(n, cx, incx, cy, incy, c, s)

Description

This routine applies a plane rotation, where the cosine (c) is real and the sine (s) is complex, and
the vectors cx and cy are complex. This routine has its real equivalents in BLAS (see ?rot in
Chapter 2).

Input Parameters

n INTEGER. The number of elements in the vectors cx and cy.

cx, cy COMPLEX for crot
COMPLEX*16 for zrot
Arrays of dimension (n), contain input vectors x and y, respectively.

incx INTEGER. The increment between successive elements
of cx.

incy INTEGER. The increment between successive elements
of cy.

c REAL for crot
DOUBLE PRECISION for zrot

s COMPLEX for crot
COMPLEX*16 for zrot
Values that define a rotation

where c*c + s*conjg(s) = 1.0 .

c s

conjg s()– c

LAPACK Auxiliary and Utility Routines 5

5-17

Output Parameters

cx On exit, overwritten with c*x + s*y .

cy On exit, overwritten with -conjg(s)*x + c*y .

?spmv
Computes a matrix-vector product for complex vectors
using a complex symmetric packed matrix.

Syntax
call cspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

call zspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)

Description

These routines perform a matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are complex scalars,

x and y are n-element complex vectors

a is an n-by-n complex symmetric matrix, supplied in packed form.

These routines have their real equivalents in BLAS (see ?spmv in Chapter 2).

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the matrix a is supplied in the packed array ap, as follows:

If uplo = 'U' or 'u', the upper triangular part of the matrix a is
supplied in the array ap .
If uplo = 'L' or 'l', the lower triangular part of the matrix a is
supplied in the array ap .

n INTEGER. Specifies the order of the matrix a. The value of n must be at
least zero.

5-18

5 Intel® Math Kernel Library Reference Manual

alpha, beta COMPLEX for cspmv
COMPLEX*16 for zspmv

Specify complex scalars alpha and beta. When beta is supplied as
zero, then y need not be set on input.

ap COMPLEX for cspmv
COMPLEX*16 for zspmv

Array, DIMENSION at least ((n*(n + 1))/2). Before entry, with uplo
= 'U' or 'u', the array ap must contain the upper triangular part of the
symmetric matrix packed sequentially, column-by-column, so that
ap(1) contains a(1, 1), ap(2) and ap(3) contain a(1, 2) and a(2,
2) respectively, and so on. Before entry, with uplo = 'L' or 'l', the
array ap must contain the lower triangular part of the symmetric matrix
packed sequentially, column-by-column, so that ap(1) contains a(1,
1), ap(2) and ap(3) contain a(2, 1) and a(3, 1) respectively, and
so on.

x COMPLEX for cspmv
COMPLEX*16 for zspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry,
the incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of
incx must not be zero.

y COMPLEX for cspmv
COMPLEX*16 for zspmv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry,
the incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of
incy must not be zero.

Output Parameters

y Overwritten by the updated vector y.

LAPACK Auxiliary and Utility Routines 5

5-19

?spr
Performs the symmetrical rank-1 update of a complex
symmetric packed matrix.

Syntax
call cspr(uplo, n, alpha, x, incx, ap)

call zspr(uplo, n, alpha, x, incx, ap)

Description

The ?spr routines perform a matrix-vector operation defined as

a:= alpha*x*conjg(x') + a,

where:

alpha is a complex scalar

x is an n-element complex vector

a is an n-by-n complex symmetric matrix, supplied in packed form.

These routines have their real equivalents in BLAS (see ?spr in Chapter 2).

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the matrix a is supplied in the packed array ap, as follows:

If uplo = 'U' or 'u', the upper triangular part of the matrix a is
supplied in the array ap .
If uplo = 'L' or 'l', the lower triangular part of the matrix a is
supplied in the array ap .

n INTEGER. Specifies the order of the matrix a. The value of n must be at
least zero.

alpha COMPLEX for cspr
COMPLEX*16 for zspr

Specifies the scalar alpha.

5-20

5 Intel® Math Kernel Library Reference Manual

x COMPLEX for cspr
COMPLEX*16 for zspr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry,
the incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of
incx must not be zero.

ap COMPLEX for cspr
COMPLEX*16 for zspr

Array, DIMENSION at least ((n*(n + 1))/2). Before entry, with uplo
= 'U' or 'u', the array ap must contain the upper triangular part of the
symmetric matrix packed sequentially, column-by-column, so that
ap(1) contains a(1,1), ap(2) and ap(3) contain a(1, 2) and
a(2,2) respectively, and so on.

Before entry, with uplo = 'L' or 'l', the array ap must contain the
lower triangular part of the symmetric matrix packed sequentially,
column-by-column, so that ap(1) contains a(1,1), ap(2)and
ap(3)contain a(2,1) and a(3,1) respectively, and so on.

Note that the imaginary parts of the diagonal elements need not be set,
they are assumed to be zero, and on exit they are set to zero.

Output Parameters

ap With uplo = 'U' or 'u', overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the
updated matrix.

?symv
Computes a matrix-vector product for a complex
symmetric matrix.

Syntax
call csymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

call zsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

LAPACK Auxiliary and Utility Routines 5

5-21

Description

These routines perform the matrix-vector operation defined as

y := alpha*a*x + beta*y,

where:

alpha and beta are complex scalars

x and y are n-element complex vectors

a is an n-by-n symmetric complex matrix.

These routines have their real equivalents in BLAS (see ?symv in Chapter 2).

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the array a is to be referenced, as follows:

If uplo = 'U' or 'u', the upper triangular part of the array a is to be
referenced.
If uplo = 'L' or 'l', the lower triangular part of the array a is to be
referenced.

n INTEGER. Specifies the order of the matrix a. The value of n must be at
least zero.

alpha, beta COMPLEX for csymv
COMPLEX*16 for zsymv

Specify the scalars alpha and beta. When beta is supplied as zero,
then y need not be set on input.

a COMPLEX for csymv
COMPLEX*16 for zsymv

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array
a must contain the upper triangular part of the symmetric matrix and the
strictly lower triangular part of a is not referenced. Before entry with
uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array
a must contain the lower triangular part of the symmetric matrix and the
strictly upper triangular part of a is not referenced.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1,n).

5-22

5 Intel® Math Kernel Library Reference Manual

x COMPLEX for csymv
COMPLEX*16 for zsymv

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry,
the incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of
incx must not be zero.

y COMPLEX for csymv
COMPLEX*16 for zsymv

Array, DIMENSION at least (1 + (n - 1)*abs(incy)). Before entry,
the incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of
incy must not be zero.

Output Parameters

y Overwritten by the updated vector y.

?syr
Performs the symmetric rank-1 update of a complex
symmetric matrix.

Syntax
call csyr(uplo, n, alpha, x, incx, a, lda)

call zsyr(uplo, n, alpha, x, incx, a, lda)

Description

These routines perform the symmetric rank 1 operation defined as

a := alpha*x*x' + a,

where:

alpha is a complex scalar

x is an n-element complex vector

LAPACK Auxiliary and Utility Routines 5

5-23

a is an n-by-n complex symmetric matrix.

These routines have their real equivalents in BLAS (see ?syr in Chapter 2).

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the array a is to be referenced, as follows:

If uplo = 'U' or 'u', the upper triangular part of the array a is to be
referenced.
If uplo = 'L' or 'l', the lower triangular part of the array a is to be
referenced.

n INTEGER. Specifies the order of the matrix a. The value of n must be at
least zero.

alpha COMPLEX for csyr
COMPLEX*16 for zsyr

Specifies the scalar alpha.

x COMPLEX for csyr
COMPLEX*16 for zsyr

Array, DIMENSION at least (1 + (n - 1)*abs(incx)). Before entry,
the incremented array x must contain the n-element vector x.

incx INTEGER. Specifies the increment for the elements of x. The value of
incx must not be zero.

a COMPLEX for csyr
COMPLEX*16 for zsyr

Array, DIMENSION (lda, n). Before entry with
uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array
a must contain the upper triangular part of the symmetric matrix and the
strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower
triangular part of the array a must contain the lower triangular part of the
symmetric matrix and the strictly upper triangular part of a is not
referenced.

lda INTEGER. Specifies the first dimension of a as declared in the calling
(sub)program. The value of lda must be at least max(1,n).

5-24

5 Intel® Math Kernel Library Reference Manual

Output Parameters

a With uplo = 'U' or 'u', the upper triangular part of the array a is
overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is
overwritten by the lower triangular part of the updated matrix.

i?max1
Finds the index of the vector element whose real part
has maximum absolute value.

Syntax
index = icmax1(n, cx, incx)

index = izmax1(n, cx, incx)

Description

Given a complex vector cx, the i?max1 functions return the index of the vector element whose
real part has maximum absolute value. These functions are based on the BLAS functions
icamax/izamax, but using the absolute value of the real part. They are designed for use with
clacon/zlacon.

Input Parameters

n INTEGER. Specifies the number of elements in the vector cx.

cx COMPLEX for icmax1
COMPLEX*16 for izmax1

Array, DIMENSION at least (1+(n-1)*abs(incx)).

Contains the input vector.

incx INTEGER. Specifies the spacing between successive elements of cx.

Output Parameters

index INTEGER. Contains the index of the vector element whose real part has
maximum absolute value.

LAPACK Auxiliary and Utility Routines 5

5-25

?sum1
Forms the 1-norm of the complex vector using the true
absolute value.

Syntax
res = scsum1(n, cx, incx)

res = dzsum1(n, cx, incx)

Description

Given a complex vector cx, scsum1/dzsum1 functions take the sum of the absolute values of
vector elements and return a single/double precision result, respectively. These functions are based
on scasum/dzasum from Level 1 BLAS, but use the true absolute value and were designed for
use with clacon/zlacon.

Input Parameters

n INTEGER. Specifies the number of elements in the vector cx.

cx COMPLEX for scsum1
COMPLEX*16 for dzsum1

Array, DIMENSION at least (1+(n-1)*abs(incx)).

Contains the input vector whose elements will be summed.

incx INTEGER. Specifies the spacing between successive elements of
cx (incx > 0).

Output Parameters

res REAL for scsum1
DOUBLE PRECISION for dzsum1

 Contains the sum of absolute values.

5-26

5 Intel® Math Kernel Library Reference Manual

?gbtf2
Computes the LU factorization of a general band
matrix using the unblocked version of the algorithm.

Syntax
call sgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)

call dgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)

call cgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)

call zgbtf2(m, n, kl, ku, ab, ldab, ipiv, info)

Description

The routine forms the LU factorization of a general real/complex m-by-n band matrix A with kl
sub-diagonals and ku super-diagonals. The routine uses partial pivoting with row interchanges
and implements the unblocked version of the algorithm, calling Level 2 BLAS.

See Also

 ?gbtrf.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the band of A (ku ≥ 0).

ab REAL for sgbtf2
DOUBLE PRECISION for dgbtf2
COMPLEX for cgbtf2
COMPLEX*16 for zgbtf2.
Array, DIMENSION (ldab,*).
The array ab contains the matrix A in band storage
(see Matrix Arguments).
The second dimension of ab must be at least max(1, n).

ldab INTEGER. The first dimension of the array ab.
(ldab ≥ 2kl + ku +1)

LAPACK Auxiliary and Utility Routines 5

5-27

Output Parameters

ab Overwritten by details of the factorization. The diagonal and kl + ku
super-diagonals of U are stored in the first 1 + kl + ku rows of ab. The
multipliers used during the factorization are stored in the next kl rows.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: row i was interchanged with row ipiv(i).

info INTEGER. If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, uii is 0. The factorization has been completed, but U is
exactly singular. Division by 0 will occur if you use the factor U for
solving a system of linear equations.

?gebd2
Reduces a general matrix to bidiagonal form using an
unblocked algorithm.

Syntax
call sgebd2(m, n, a, lda, d, e, tauq, taup, work, info)

call dgebd2(m, n, a, lda, d, e, tauq, taup, work, info)

call cgebd2(m, n, a, lda, d, e, tauq, taup, work, info)

call zgebd2(m, n, a, lda, d, e, tauq, taup, work, info)

Description

The routine reduces a general m-by-n matrix A to upper or lower bidiagonal form B by an
orthogonal (unitary) transformation: Q′ A P = B

If m ≥ n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

The routine does not form the matrices Q and P explicitly, but represents them as products of
elementary reflectors. If m ≥ n,

Q = H(1)H(2)...H(n) and P = G(1)G(2)...G(n-1)

If m < n,

5-28

5 Intel® Math Kernel Library Reference Manual

Q = H(1)H(2)...H(m-1) and P = G(1)G(2)...G(m)

Each H(i) and G(i) has the form

H(i) = I - tauq*v*v′ and G(i) = I - taup*u*u′

where tauq and taup are scalars (real for sgebd2/dgebd2, complex for cgebd2/zgebd2), and v
and u are vectors (real for sgebd2/dgebd2, complex for cgebd2/zgebd2).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgebd2
DOUBLE PRECISION for dgebd2
COMPLEX for cgebd2
COMPLEX*16 for zgebd2.

Arrays:
a(lda,*) contains the m-by-n general matrix A to be reduced. The
second dimension of a must be at least max(1, n).

work(*) is a workspace array, the dimension of work must be at least
max(1, m, n).

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a If m ≥ n, the diagonal and first super-diagonal of a are overwritten with
the upper bidiagonal matrix B. Elements below the diagonal, with the
array tauq, represent the orthogonal/unitary matrix Q as a product of
elementary reflectors, and elements above the first superdiagonal, with
the array taup, represent the orthogonal/unitary matrix P as a product of
elementary reflectors.

If m < n, the diagonal and first sub-diagonal of a are overwritten by the
lower bidiagonal matrix B. Elements below the first subdiagonal, with
the array tauq, represent the orthogonal/unitary matrix Q as a product
of elementary reflectors, and elements above the diagonal, with the array
taup, represent the orthogonal/unitary matrix P as a product of
elementary reflectors.

LAPACK Auxiliary and Utility Routines 5

5-29

d REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION
at least max(1, min(m, n)).
Contains the diagonal elements of the bidiagonal matrix B: d(i) = a(i, i).

e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION
at least max(1, min(m, n) − 1).
Contains the off-diagonal elements of the bidiagonal matrix B:

If m ≥ n, e(i) = a(i, i+1) for i = 1,2,..., n-1;
If m < n, e(i) = a(i+1, i) for i = 1,2,..., m-1.

tauq,taup REAL for sgebd2
DOUBLE PRECISION for dgebd2
COMPLEX for cgebd2
COMPLEX*16 for zgebd2.
Arrays, DIMENSION at least max (1, min(m, n)).
Contain scalar factors of the elementary reflectors which represent
orthogonal/unitary matrices Q and P, respectively.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?gehd2
Reduces a general square matrix to upper Hessenberg
form using an unblocked algorithm.

Syntax
call sgehd2(n, ilo, ihi, a, lda, tau, work, info)

call dgehd2(n, ilo, ihi, a, lda, tau, work, info)

call cgehd2(n, ilo, ihi, a, lda, tau, work, info)

call zgehd2(n, ilo, ihi, a, lda, tau, work, info)

5-30

5 Intel® Math Kernel Library Reference Manual

Description

The routine reduces a real/complex general matrix A to upper Hessenberg form H by an
orthogonal or unitary similarity transformation Q′A Q = H.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
elementary reflectors.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

ilo, ihi INTEGER. It is assumed that A is already upper triangular in rows and
columns 1:ilo -1 and ihi+1:n .
 If A has been output by ?gebal, then
ilo and ihi must contain the values returned by that routine. Otherwise
they should be set to ilo = 1 and ihi = n. Constraint: 1 ≤ ilo ≤ ihi ≤
max(1, n).

a, work REAL for sgehd2
DOUBLE PRECISION for dgehd2
COMPLEX for cgehd2
COMPLEX*16 for zgehd2.
Arrays:
a (lda,*) contains the n-by-n matrix A to be reduced.
The second dimension of a must be at least max(1, n).

work (n) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, n).

Output Parameters

a On exit, the upper triangle and the first subdiagonal of A are overwritten
with the upper Hessenberg matrix H and the elements below the first
subdiagonal, with the array tau, represent the orthogonal/unitary matrix
Q as a product of elementary reflectors. See Application Notes below.

tau REAL for sgehd2
DOUBLE PRECISION for dgehd2
COMPLEX for cgehd2
COMPLEX*16 for zgehd2.
Array, DIMENSION at least max (1, n-1).
Contains the scalar factors of elementary reflectors. See Application
Notes below.

LAPACK Auxiliary and Utility Routines 5

5-31

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

Application Notes

The matrix Q is represented as a product of (ihi -ilo) elementary reflectors

Q = H(ilo) H(ilo +1) ... H(ihi -1)

Each H(i) has the form

H(i) = I - tau *v *v′,

where tau is a real/complex scalar, and v is a real/complex vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0 .

On exit, v(i+2:ihi) is stored in a(i+2:ihi, i) and tau in tau(i).

The contents of a are illustrated by the following example, with n = 7,
ilo = 2 and ihi = 6:

 on entry on exit

where a denotes an element of the original matrix A, h denotes a modified element of the upper
Hessenberg matrix H, and vi denotes an element of the vector defining H(i).

a a a a a a a

 a a a a a a

 a a a a a a

 a a a a a a

 a a a a a a

 a a a a a a

 a

a a h h h h a

 a h h h h a

 h h h h h h

 v2 h h h h h

 v2 v3 h h h h

 v2 v3 v4 h h h

 a

5-32

5 Intel® Math Kernel Library Reference Manual

?gelq2
Computes the LQ factorization of a general rectangular
matrix using an unblocked algorithm.

Syntax
call sgelq2(m, n, a, lda, tau, work, info)

call dgelq2(m, n, a, lda, tau, work, info)

call cgelq2(m, n, a, lda, tau, work, info)

call zgelq2(m, n, a, lda, tau, work, info)

Description

The routine computes an LQ factorization of a real/complex m-by-n matrix A as A = L Q.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of min(m,
n) elementary reflectors :

Q = H(k) ... H(2) H(1) (or Q = H(k)′ ... H(2)′ H(1)′ for complex flavors), where k = min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with v(1:i-1) = 0
and v(i) = 1.

On exit, v(i+1:n) is stored in a(i, i+1:n).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgelq2
DOUBLE PRECISION for dgelq2
COMPLEX for cgelq2
COMPLEX*16 for zgelq2.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

LAPACK Auxiliary and Utility Routines 5

5-33

work(m) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, the elements on and below the diagonal of the array a contain
the m-by-min(n,m) lower trapezoidal matrix L (L is lower triangular if n
≥ m); the elements above the diagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of min(n,m) elementary
reflectors.

tau REAL for sgelq2
DOUBLE PRECISION for dgelq2
COMPLEX for cgelq2
COMPLEX*16 for zgelq2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?geql2
Computes the QL factorization of a general rectangular
matrix using an unblocked algorithm.

Syntax
call sgeql2(m, n, a, lda, tau, work, info)

call dgeql2(m, n, a, lda, tau, work, info)

call cgeql2(m, n, a, lda, tau, work, info)

call zgeql2(m, n, a, lda, tau, work, info)

Description

The routine computes a QL factorization of a real/complex m-by-n matrix A as A = Q L.

5-34

5 Intel® Math Kernel Library Reference Manual

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product
of min(m, n) elementary reflectors :

Q = H(k) ... H(2) H(1) , where k = min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′,

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1.

On exit, v(1:m-k+i-1) is stored in a(1:m-k+i-1, n-k+i).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeql2
DOUBLE PRECISION for dgeql2
COMPLEX for cgeql2
COMPLEX*16 for zgeql2.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(m) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, if m ≥ n, the lower triangle of the subarray
a(m-n+1:m, 1:n) contains the n-by-n lower triangular matrix L;
if m < n, the elements on and below the (n-m)th superdiagonal contain the
m-by-n lower trapezoidal matrix L; the remaining elements, with the
array tau, represent the orthogonal/unitary matrix Q as a product of
elementary reflectors.

tau REAL for sgeql2
DOUBLE PRECISION for dgeql2
COMPLEX for cgeql2

LAPACK Auxiliary and Utility Routines 5

5-35

COMPLEX*16 for zgeql2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?geqr2
Computes the QR factorization of a general rectangular
matrix using an unblocked algorithm.

Syntax
call sgeqr2(m, n, a, lda, tau, work, info)

call dgeqr2(m, n, a, lda, tau, work, info)

call cgeqr2(m, n, a, lda, tau, work, info)

call zgeqr2(m, n, a, lda, tau, work, info)

Description

The routine computes a QR factorization of a real/complex m-by-n matrix A as A = Q R.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product
of min(m, n) elementary reflectors :

Q = H(1)H(2) ... H(k) , where k = min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′,

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with v(1:i-1) = 0
and v(i) = 1.

On exit, v(i+1:m) is stored in a(i+1:m, i).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

5-36

5 Intel® Math Kernel Library Reference Manual

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgeqr2
DOUBLE PRECISION for dgeqr2
COMPLEX for cgeqr2
COMPLEX*16 for zgeqr2.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

work(n) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, the elements on and above the diagonal of the array a contain
the min(n,m)-by-n upper trapezoidal matrix R (R is upper triangular if m
≥ n);
the elements below the diagonal, with the array tau, represent
the orthogonal/unitary matrix Q as a product of elementary reflectors.

tau REAL for sgeqr2
DOUBLE PRECISION for dgeqr2
COMPLEX for cgeqr2
COMPLEX*16 for zgeqr2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

LAPACK Auxiliary and Utility Routines 5

5-37

?gerq2
Computes the RQ factorization of a general rectangular
matrix using an unblocked algorithm.

Syntax
call sgerq2(m, n, a, lda, tau, work, info)

call dgerq2(m, n, a, lda, tau, work, info)

call cgerq2(m, n, a, lda, tau, work, info)

call zgerq2(m, n, a, lda, tau, work, info)

Description

The routine computes a RQ factorization of a real/complex m-by-n matrix A as A = R Q.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of
min(m, n) elementary reflectors :

Q = H(1)H(2) ... H(k) , where k = min(m, n)

Each H(i) has the form

H(i) = I - tau*v*v′,

where tau is a real/complex scalar stored in tau(i), and v is a real/complex vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1.

On exit, v(1:n-k+i-1) is stored in a(m-k+i, 1:n-k+i-1).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a, work REAL for sgerq2
DOUBLE PRECISION for dgerq2
COMPLEX for cgerq2
COMPLEX*16 for zgerq2.
Arrays:
a(lda,*) contains the m-by-n matrix A.
The second dimension of a must be at least max(1, n).

5-38

5 Intel® Math Kernel Library Reference Manual

work(m) is a workspace array.

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by the factorization data as follows:

on exit, if m ≤ n, the upper triangle of the subarray
a(1:m, n-m+1:n) contains the m-by-m upper triangular matrix R;
if m > n, the elements on and above the (m-n)th subdiagonal contain the
m-by-n upper trapezoidal matrix R; the remaining elements, with the
array tau, represent the orthogonal/unitary matrix Q as a product of
elementary reflectors.

tau REAL for sgerq2
DOUBLE PRECISION for dgerq2
COMPLEX for cgerq2
COMPLEX*16 for zgerq2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?gesc2
Solves a system of linear equations using the LU
factorization with complete pivoting computed by
?getc2.

Syntax
call sgesc2(n, a, lda, rhs, ipiv, jpiv, scale)

call dgesc2(n, a, lda, rhs, ipiv, jpiv, scale)

call cgesc2(n, a, lda, rhs, ipiv, jpiv, scale)

call zgesc2(n, a, lda, rhs, ipiv, jpiv, scale)

LAPACK Auxiliary and Utility Routines 5

5-39

Description

This routine solves a system of linear equations

 AX = scale * RHS

with a general n-by-n matrix A using the LU factorization with complete pivoting computed by
?getc2.

Input Parameters

n INTEGER. The order of the matrix A.

a, rhs REAL for sgesc2
DOUBLE PRECISION for dgesc2
COMPLEX for cgesc2
COMPLEX*16 for zgesc2.
Arrays:
a(lda,*) contains the LU part of the factorization of the n-by-n matrix
A computed by ?getc2:
A = P L U Q.
The second dimension of a must be at least max(1, n);

rhs(n) contains on entry the right hand side vector for the system of
equations.

lda INTEGER. The first dimension of a; at least max(1, n).

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices: for 1 ≤ i ≤ n , row i of the matrix has been
interchanged with row ipiv(i).

jpiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices: for 1 ≤ j ≤ n , column j of the matrix has been
interchanged with column jpiv(j).

 Output Parameters

rhs On exit, overwritten with the solution vector X.

scale REAL for sgesc2/cgesc2
DOUBLE PRECISION for dgesc2/zgesc2
Contains the scale factor. scale is chosen in the range
0 ≤ scale ≤ 1 to prevent overflow in the solution.

5-40

5 Intel® Math Kernel Library Reference Manual

?getc2
Computes the LU factorization with complete pivoting
of the general n-by-n matrix.

Syntax
call sgetc2(n, a, lda, ipiv, jpiv, info)

call dgetc2(n, a, lda, ipiv, jpiv, info)

call cgetc2(n, a, lda, ipiv, jpiv, info)

call zgetc2(n, a, lda, ipiv, jpiv, info)

Description

This routine computes an LU factorization with complete pivoting of the n-by-n matrix A. The
factorization has the form A = P * L * U * Q, where P and Q are permutation matrices, L is lower
triangular with unit diagonal elements and U is upper triangular.

The LU factorization computed by this routine is used by ?latdf to compute a contribution to the
reciprocal Dif-estimate.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

a REAL for sgetc2
DOUBLE PRECISION for dgetc2
COMPLEX for cgetc2
COMPLEX*16 for zgetc2.
Array a(lda,*) contains the n-by-n matrix A to be factored.
The second dimension of a must be at least max(1, n);

lda INTEGER. The first dimension of a; at least max(1, n).

 Output Parameters

a On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not stored. If U(k, k)
appears to be less than smin, U(k, k) is given the value of smin, i.e.,
giving a nonsingular perturbed system.

LAPACK Auxiliary and Utility Routines 5

5-41

ipiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices: for 1 ≤ i ≤ n , row i of the matrix has been
interchanged with row ipiv(i).

jpiv INTEGER.
Array, DIMENSION at least max(1,n).
The pivot indices: for 1 ≤ j ≤ n , column j of the matrix has been
interchanged with column jpiv(j).

info INTEGER.
If info = 0, the execution is successful.
If info = k > 0, U(k, k) is likely to produce overflow if we try to solve
for x in Ax = b. So U is perturbed to avoid the overflow.

?getf2
Computes the LU factorization of a general m-by-n
matrix using partial pivoting with row interchanges
(unblocked algorithm).

Syntax
call sgetf2(m, n, a, lda, ipiv, info)

call dgetf2(m, n, a, lda, ipiv, info)

call cgetf2(m, n, a, lda, ipiv, info)

call zgetf2(m, n, a, lda, ipiv, info)

Description

The routine computes the LU factorization of a general m-by-n matrix A using partial pivoting
with row interchanges. The factorization has the form

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower
trapezoidal if m > n) and U is upper triangular (upper trapezoidal if m < n).

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

A PLU,=

5-42

5 Intel® Math Kernel Library Reference Manual

n INTEGER. The number of columns in A (n ≥ 0).

a REAL for sgetf2
DOUBLE PRECISION for dgetf2
COMPLEX for cgetf2
COMPLEX*16 for zgetf2.
Array, DIMENSION (lda,*). Contains the matrix A to be factored. The
second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, m).

Output Parameters

a Overwritten by L and U. The unit diagonal elements of L are not stored.

ipiv INTEGER.
Array, DIMENSION at least max(1,min(m,n)).
The pivot indices: for 1 ≤ i ≤ n , row i was interchanged with row
ipiv(i).

info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i > 0, uii is 0. The factorization has been completed, but U is
exactly singular. Division by 0 will occur if you use the factor U for
solving a system of linear equations.

?gtts2
Solves a system of linear equations with a tridiagonal
matrix using the LU factorization computed by ?gttrf.

Syntax
call sgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call dgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call cgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

call zgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)

LAPACK Auxiliary and Utility Routines 5

5-43

Description

This routine solves for X one of the following systems of linear equations with multiple right hand
sides:

AX = B ATX = B or AHX = B (for complex matrices only),
 with a tridiagonal matrix A using the LU factorization computed
by ?gttrf.

Input Parameters

itrans INTEGER. Must be 0, 1, or 2.

Indicates the form of the equations being solved:

If itrans = 0, then AX = B (no transpose).

If itrans = 1, then ATX = B (transpose).

If itrans = 2, then AHX = B (conjugate transpose).

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides, that is, the number of
columns in B (nrhs ≥ 0).

dl,d,du,du2,b REAL for sgtts2
DOUBLE PRECISION for dgtts2
COMPLEX for cgtts2
COMPLEX*16 for zgtts2.
Arrays: dl(n - 1), d(n), du(n - 1), du2(n - 2), b(ldb,nrhs).
The array dl contains the (n - 1) multipliers that define the matrix L
from the LU factorization of A.
The array d contains the n diagonal elements of the upper triangular
matrix U from the LU factorization of A.
The array du contains the (n - 1) elements of the first super-diagonal of
U.
The array du2 contains the (n - 2) elements of the second
super-diagonal of U.
The array b contains the matrix B whose columns are the right-hand
sides for the systems of equations.

ldb INTEGER. The leading dimension of b; must be
ldb ≥ max(1, n).

5-44

5 Intel® Math Kernel Library Reference Manual

ipiv INTEGER.
Array, DIMENSION (n).
The pivot indices array, as returned by ?gttrf.

Output Parameters

b Overwritten by the solution matrix X.

?labrd
Reduces the first nb rows and columns of a general
matrix to a bidiagonal form.

Syntax
call slabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

call dlabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

call clabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

call zlabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)

Description

The routine reduces the first nb rows and columns of a general m-by-n matrix A to upper or lower
bidiagonal form by an orthogonal/unitary transformation Q′ A P, and returns the matrices X and Y
which are needed to apply the transformation to the unreduced part of A.

If m ≥ n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal form.

The matrices Q and P are represented as products of elementary reflectors:
Q = H(1) H(2) ... H(nb) and P = G(1) G(2) ... G(nb)

Each H(i) and G(i) has the form

H(i) = I - tauq*v*v′ and G(i) = I - taup*u*u′

where tauq and taup are scalars, and v and u are vectors.

The elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix U′
which are needed, with X and Y, to apply the transformation to the unreduced part of the matrix,
using a block update of the form: A := A - V*Y′ - X*U′.

LAPACK Auxiliary and Utility Routines 5

5-45

This is an auxiliary routine called by ?gebrd.

Input Parameters

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

nb INTEGER. The number of leading rows and columns of A to be reduced.

a REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.

Array a(lda,*) contains the matrix A to be reduced.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a; at least max(1, m).

ldx INTEGER. The first dimension of the output array x; must beat least
max(1, m).

ldy INTEGER. The first dimension of the output array y; must beat least
max(1, n).

Output Parameters

a On exit, the first nb rows and columns of the matrix are overwritten; the
rest of the array is unchanged.

 If m ≥ n, elements on and below the diagonal in the first nb columns,
with the array tauq, represent the orthogonal/unitary matrix Q as a
product of elementary reflectors; and elements above the diagonal in the
first nb rows, with the array taup, represent the orthogonal/unitary
matrix P as a product of elementary reflectors.

If m < n, elements below the diagonal in the first nb columns, with the
array tauq, represent the orthogonal/unitary matrix Q as a product of
elementary reflectors, and elements on and above the diagonal in the
first nb rows, with the array taup, represent the orthogonal/unitary
matrix P as a product of elementary reflectors.

d, e REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Arrays, DIMENSION
(nb) each.
The array d contains the diagonal elements of the first nb rows and

5-46

5 Intel® Math Kernel Library Reference Manual

columns of the reduced matrix:
d(i) = a(i,i).
The array e contains the off-diagonal elements of the first nb rows and
columns of the reduced matrix.

tauq,taup REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.

Arrays, DIMENSION (nb) each.
Contain scalar factors of the elementary reflectors which represent the
orthogonal/unitary matrices Q and P, respectively.

x, y REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.

Arrays, dimension x(ldx, nb), y(ldy, nb).
The array x contains the m-by-nb matrix X required to update the
unreduced part of A.

The array y contains the n-by-nb matrix Y required to update the
unreduced part of A.

Application Notes

 If m ≥ n, then for the elementary reflectors H(i) and G(i),

v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in a(i:m, i) ;
u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in a(i, i+1:n) ;
tauq is stored in tauq(i) and taup in taup(i).

If m < n,

v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in a(i+2:m, i) ;
u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in a(i, i+1:n) ;
tauq is stored in tauq(i) and taup in taup(i).

LAPACK Auxiliary and Utility Routines 5

5-47

The contents of a on exit are illustrated by the following examples with
nb = 2:

 m =6 , n =5 (m > n) m =5 , n =6 (m < n)

where a denotes an element of the original matrix which is unchanged, vi denotes an element of
the vector defining H(i), and ui an element of the vector defining G(i).

?lacon
Estimates the 1-norm of a square matrix, using reverse
communication for evaluating matrix-vector products.

Syntax
call slacon(n, v, x, isgn, est, kase, jmax, jump, iter)

call dlacon(n, v, x, isgn, est, kase, jmax, jump, iter)

call clacon(n, v, x, est, kase, jmax, jump, iter)

call zlacon(n, v, x, est, kase, jmax, jump, iter)

Description

This routine estimates the 1-norm of a square, real/complex matrix A. Reverse communication is
used for evaluating matrix-vector products.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 1).

1 1 u1 u1 u1

v1 1 1 u2 u2

v1 v2 a a a

v1 v2 a a a

v1 v2 a a a

v1 v2 a a a

1 u1 u1 u1 u1 u1

1 1 u2 u2 u2 u2

v1 1 a a a a

v1 v2 a a a a

v1 v2 a a a a

5-48

5 Intel® Math Kernel Library Reference Manual

v, x REAL for slacon
DOUBLE PRECISION for dlacon
COMPLEX for clacon
COMPLEX*16 for zlacon.

Arrays, DIMENSION (n) each.
v is a workspace array.
x is used as input after an intermediate return.

isgn INTEGER. Workspace array, DIMENSION (n), used with real flavors only.

kase INTEGER. On the initial call to ?lacon, kase should be 0.

jmax, jump, iter INTEGER. Workspace, keep internal data since the initial call to ?lacon
with kase = 0. Should never be modified.

Output Parameters

est REAL for slacon/clacon
DOUBLE PRECISION for dlacon/zlacon
An estimate (a lower bound) for norm(A).

kase On an intermediate return, kase will be 1 or 2, indicating whether x
should be overwritten by A *x or A′*x. On the final return from
?lacon, kase will again be 0.

v On the final return, v = A*w, where est = norm(v)/norm(w) (w is not
returned).

x On an intermediate return, x should be overwritten by
A *x , if kase = 1,
A′ *x , if kase = 2,
(where for complex flavors A′ is the conjugate transpose of A), and
?lacon must be re-called with all the other parameters unchanged.

?lacpy
Copies all or part of one two-dimensional array to
another.

Syntax
call slacpy(uplo, m, n, a, lda, b, ldb)

LAPACK Auxiliary and Utility Routines 5

5-49

call dlacpy(uplo, m, n, a, lda, b, ldb)

call clacpy(uplo, m, n, a, lda, b, ldb)

call zlacpy(uplo, m, n, a, lda, b, ldb)

Description

This routine copies all or part of a two-dimensional matrix A to another matrix B.

Input Parameters

uplo CHARACTER*1.

Specifies the part of the matrix A to be copied to B.

If uplo = 'U', the upper triangular part of A is copied.
If uplo = 'L', the lower triangular part of A is copied.
Otherwise, all of the matrix A is copied.

m INTEGER. The number of rows in the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

a REAL for slacpy
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
COMPLEX*16 for zlacpy.
Array a(lda,*), contains the m-by-n matrix A.
The second dimension of a must be at least max(1,n).
If uplo = 'U', only the upper triangle or trapezoid is accessed; if uplo
= 'L', only the lower triangle or trapezoid is accessed.

lda INTEGER. The first dimension of a; lda ≥ max(1, m).

ldb INTEGER. The first dimension of the output array b; ldb ≥ max(1, m).

Output Parameters

b REAL for slacpy
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
COMPLEX*16 for zlacpy.
Array b(ldb,*), contains the m-by-n matrix B.
The second dimension of b must be at least max(1,n).
On exit, B = A in the locations specified by uplo .

5-50

5 Intel® Math Kernel Library Reference Manual

?ladiv
Performs complex division in real arithmetic, avoiding
unnecessary overflow.

Syntax
call sladiv(a, b, c, d, p, q)

call dladiv(a, b, c, d, p, q)

res = cladiv(x, y)

res = zladiv(x, y)

Description

The routines sladiv/dladiv perform complex division in real arithmetic as

Complex functions cladiv/zladiv compute the result as

 ,

where x and y are complex. The computation of x / y will not overflow on an intermediary step
unless the results overflows.

 Input Parameters

a, b, c, d REAL for sladiv
DOUBLE PRECISION for dladiv
The scalars a, b, c, and d in the above expression (for real flavors only).

x, y COMPLEX for cladiv
COMPLEX*16 for zladiv
The complex scalars x and y (for complex flavors only).

Output Parameters

p, q REAL for sladiv
DOUBLE PRECISION for dladiv
The scalars p and q in the above expression (for real flavors only).

p iq+ a ib+
c id+
-----------------=

res x y⁄=

LAPACK Auxiliary and Utility Routines 5

5-51

res COMPLEX for cladiv
DOUBLE COMPLEX for zladiv
Contains the result of division x / y.

?lae2
Computes the eigenvalues of a
2-by-2 symmetric matrix.

Syntax
call slae2(a, b, c, rt1, rt2)

call dlae2(a, b, c, rt1, rt2)

Description

The routines sla2/dlae2 compute the eigenvalues of a 2-by-2 symmetric matrix

On return, rt1 is the eigenvalue of larger absolute value, and rt1 is the eigenvalue of smaller
absolute value.

 Input Parameters

a, b, c REAL for slae2
DOUBLE PRECISION for dlae2
The elements a, b, and c of the 2-by-2 matrix above.

Output Parameters

rt1, rt2 REAL for slae2
DOUBLE PRECISION for dlae2
The computed eigenvalues of larger and smaller absolute value,
respectively.

a b

b c

5-52

5 Intel® Math Kernel Library Reference Manual

Application Notes

rt1 is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive
cancellation in the determinant a*c-b*b; higher precision or correctly rounded or correctly
truncated arithmetic would be needed to compute rt2 accurately in all cases.

Overflow is possible only if rt1 is within a factor of 5 of overflow. Underflow is harmless if the
input data is 0 or exceeds
underflow_threshold / macheps.

?laebz
Computes the number of eigenvalues of a real
symmetric tridiagonal matrix which are less than or
equal to a given value, and performs other tasks
required by the routine ?stebz.

Syntax
call slaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol,

 reltol, pivmin, d, e, e2, nval, ab, c, mout, nab,
 work, iwork, info)

call dlaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol,
 reltol, pivmin, d, e, e2, nval, ab, c, mout, nab,
 work, iwork, info)

Description

The routine ?laebz contains the iteration loops which compute and use the function N(w), which
is the count of eigenvalues of a symmetric tridiagonal matrix T less than or equal to its argument
w. It performs a choice of two types of loops:

ijob =1, followed by

ijob =2: It takes as input a list of intervals and returns a list of sufficiently small intervals whose
union contains the same eigenvalues as the union of the original intervals. The input
intervals are (ab(j,1),ab(j,2)], j=1,...,minp. The output interval (ab(j,1),ab(j,2)] will
contain eigenvalues nab(j,1)+1,...,nab(j,2), where 1 ≤ j ≤ mout.

LAPACK Auxiliary and Utility Routines 5

5-53

ijob =3: It performs a binary search in each input interval (ab(j,1),ab(j,2)] for a point w(j) such
that N(w(j))=nval(j), and uses c(j) as the starting point of the search. If such a w(j) is
found, then on output ab(j,1)=ab(j,2)=w. If no such w(j) is found, then on output
(ab(j,1),ab(j,2)] will be a small interval containing the point where N(w) jumps through
nval(j), unless that point lies outside the initial interval.

Note that the intervals are in all cases half-open intervals, that is, of the form (a,b] , which includes
b but not a .

To avoid underflow, the matrix should be scaled so that its largest element is no greater than
overflow**(1/2) * underflow**(1/4) in absolute value. To assure the most accurate computation of
small eigenvalues, the matrix should be scaled to be not much smaller than that, either.

Note: the arguments are, in general, not checked for unreasonable values.

Input Parameters

ijob INTEGER. Specifies what is to be done:
= 1: Compute nab for the initial intervals.
= 2: Perform bisection iteration to find eigenvalues of T.
= 3: Perform bisection iteration to invert N(w), i.e., to find a point which
has a specified number of eigenvalues of T to its left.
Other values will cause ?laebz to return with info=-1.

nitmax INTEGER.
The maximum number of "levels" of bisection to be performed, i.e., an
interval of width W will not be made smaller than 2^(-nitmax) * W. If
not all intervals have converged after nitmax iterations, then info is set
to the number of non-converged intervals.

n INTEGER.
The dimension n of the tridiagonal matrix T. It must be at least 1.

mmax INTEGER.
The maximum number of intervals. If more than mmax intervals are
generated, then ?laebz will quit with info=mmax+1.

minp INTEGER.
The initial number of intervals. It may not be greater than mmax.

nbmin INTEGER.
The smallest number of intervals that should be processed using a vector
loop. If zero, then only the scalar loop will be used.

5-54

5 Intel® Math Kernel Library Reference Manual

abstol REAL for slaebz
DOUBLE PRECISION for dlaebz.
The minimum (absolute) width of an interval. When an interval is
narrower than abstol, or than reltol times the larger (in magnitude)
endpoint, then it is considered to be sufficiently small, i.e., converged.
This must be at least zero.

reltol REAL for slaebz
DOUBLE PRECISION for dlaebz.
The minimum relative width of an interval. When an interval is narrower
than abstol, or than reltol times the larger (in magnitude) endpoint,
then it is considered to be sufficiently small, i.e., converged. Note: this
should always be at least radix*machine epsilon.

pivmin REAL for slaebz
DOUBLE PRECISION for dlaebz.
The minimum absolute value of a "pivot" in the Sturm sequence loop.
This must be at least
max |e(j)**2| * safe_min and at least safe_min, where safe_min is at
least the smallest number that can divide one without overflow.

d, e, e2 REAL for slaebz
DOUBLE PRECISION for dlaebz.
Arrays, dimension (n) each.
The array d contains the diagonal elements of the tridiagonal matrix T.

The array e contains the off-diagonal elements of the tridiagonal matrix
T in positions 1 through n-1. e(n) is arbitrary.

The array e2 contains the squares of the off-diagonal elements of the
tridiagonal matrix T. e2(n) is ignored.

nval INTEGER.
Array, dimension (minp).
If ijob=1 or 2, not referenced.
If ijob=3, the desired values of N(w).

ab REAL for slaebz
DOUBLE PRECISION for dlaebz.
Array, dimension (mmax,2)
The endpoints of the intervals. ab(j,1) is a(j), the left endpoint of the
j-th interval, and ab(j,2) is b(j), the right endpoint of the j-th interval.

LAPACK Auxiliary and Utility Routines 5

5-55

c REAL for slaebz
DOUBLE PRECISION for dlaebz.
Array, dimension (mmax)
If ijob=1, ignored.
If ijob=2, workspace.
If ijob=3, then on input c(j) should be initialized to the first search
point in the binary search.

nab INTEGER.
Array, dimension (mmax,2)
If ijob=2, then on input, nab(i,j) should be set. It must satisfy the
condition:
N(ab(i,1)) ≤ nab(i,1) ≤ nab(i,2) ≤ N(ab(i,2)), which means that in
interval i only eigenvalues
nab(i,1)+1,...,nab(i,2) will be considered. Usually, nab(i,j)=N(ab(i,j)),
from a previous call to ?laebz with ijob=1.

If ijob=3, normally, nab should be set to some distinctive value(s)
before ?laebz is called.

work REAL for slaebz
DOUBLE PRECISION for dlaebz.
Workspace array, dimension (mmax).

iwork INTEGER.
Workspace array, dimension (mmax).

Output Parameters

nval The elements of nval will be reordered to correspond with the intervals
in ab. Thus, nval(j) on output will not, in general be the same as
nval(j) on input, but it will correspond with the interval
(ab(j,1),ab(j,2)] on output.

ab The input intervals will, in general, be modified, split, and reordered by
the calculation.

mout INTEGER.
If ijob=1, the number of eigenvalues in the intervals.
If ijob=2 or 3, the number of intervals output.
If ijob=3, mout will equal minp.

nab If ijob=1, then on output nab(i,j) will be set to N(ab(i,j)).

5-56

5 Intel® Math Kernel Library Reference Manual

If ijob=2, then on output, nab(i,j) will contain max(na(k), min(nb(k),
N(ab(i,j)))), where k is the index of the input interval that the output
interval (ab(j,1),ab(j,2)] came from, and na(k) and nb(k) are the input
values of nab(k,1) and nab(k,2).

If ijob=3, then on output, nab(i,j) contains N(ab(i,j)), unless N(w) >
nval(i) for all search points w, in which case nab(i,1) will not be
modified, i.e., the output value will be the same as the input value
(modulo reorderings, see nval and ab), or unless N(w) < nval(i) for all
search points w, in which case nab(i,2) will not be modified.

info INTEGER.

0: All intervals converged.
1--mmax: The last info intervals did not converge.
mmax+1: More than mmax intervals were generated.

Application Notes

This routine is intended to be called only by other LAPACK routines, thus the interface is less
user-friendly. It is intended for two purposes:

(a) finding eigenvalues. In this case, ?laebz should have one or more initial intervals set up in ab,
and ?laebz should be called with ijob=1. This sets up nab, and also counts the eigenvalues.
Intervals with no eigenvalues would usually be thrown out at this point. Also, if not all the
eigenvalues in an interval i are desired, nab(i,1) can be increased or nab(i,2) decreased. For
example, set nab(i,1)=nab(i,2)-1 to get the largest eigenvalue. ?laebz is then called with
ijob=2 and mmax no smaller than the value of mout returned by the call with ijob=1. After this
(ijob=2) call, eigenvalues nab(i,1)+1 through nab(i,2) are approximately ab(i,1) (or ab(i,2)) to
the tolerance specified by abstol and reltol.

(b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). In this case, start with a
Gershgorin interval (a,b). Set up ab to contain 2 search intervals, both initially (a,b). One nval
element should contain f-1 and the other should contain l, while c should contain a and b,
respectively. nab(i,1) should be -1 and nab(i,2) should be n+1, to flag an error if the desired
interval does not lie in (a,b). ?laebz is then called with ijob=3. On exit, if w(f-1) < w(f), then
one of the intervals -- j -- will have ab(j,1)=ab(j,2) and nab(j,1)=nab(j,2)=f-1, while if, to the
specified tolerance, w(f-k)=...=w(f+r), k > 0 and r ≥ 0, then the interval will have
N(ab(j,1))=nab(j,1)=f-k and N(ab(j,2))=nab(j,2)=f+r. The cases w(l) < w(l+1) and
w(l-r)=...=w(l+k) are handled similarly.

LAPACK Auxiliary and Utility Routines 5

5-57

?laed0
Used by ?stedc. Computes all eigenvalues and
corresponding eigenvectors of an unreduced symmetric
tridiagonal matrix using the divide and conquer
method.

Syntax
call slaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs, work, iwork, info)

call dlaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs, work, iwork, info)

call claed0(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info)

call zlaed0(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info)

Description

Real flavors of this routine compute all eigenvalues and (optionally) corresponding eigenvectors of
a symmetric tridiagonal matrix using the divide and conquer method.

Complex flavors claed0/zlaed0 compute all eigenvalues of a symmetric tridiagonal matrix
which is one diagonal block of those from reducing a dense or band Hermitian matrix and
corresponding eigenvectors of the dense or band matrix.

Input Parameters

icompq INTEGER. Used with real flavors only.

If icompq = 0, compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense symmetric
matrix also. On entry, the array q must contain the orthogonal matrix
used to reduce the original matrix to tridiagonal form.
If icompq = 2, compute eigenvalues and eigenvectors of the tridiagonal
matrix.

qsiz INTEGER.

The dimension of the orthogonal/unitary matrix used to reduce the full
matrix to tridiagonal form; qsiz ≥ n (for real flavors, qsiz ≥ n if
icompq = 1).

n INTEGER. The dimension of the symmetric tridiagonal matrix (n ≥ 0).

5-58

5 Intel® Math Kernel Library Reference Manual

d, e, rwork REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the main diagonal of the tridiagonal matrix. The
dimension of d must be at least max(1, n).

e(*) contains the off-diagonal elements of the tridiagonal matrix. The
dimension of e must be at least max(1, n-1).

rwork(*) is a workspace array used in complex flavors only. The
dimension of rwork must be at least
(1 +3n+2nlg(n)+3n2), where lg(n) = smallest integer k such that 2k ≥
n.

q, qstore REAL for slaed0
DOUBLE PRECISION for dlaed0
COMPLEX for claed0
COMPLEX*16 for zlaed0.
Arrays: q(ldq, *), qstore(ldqs, *). The second dimension of these
arrays must be at least max(1, n).
For real flavors:
If icompq = 0, array q is not referenced.
If icompq = 1, on entry, q is a subset of the columns of the orthogonal
matrix used to reduce the full matrix to tridiagonal form corresponding
to the subset of the full matrix which is being decomposed at this time.
If icompq = 2, on entry, q will be the identity matrix.
The array qstore is a workspace array referenced only when icompq
= 1. Used to store parts of the eigenvector matrix when the updating
matrix multiplies take place.

For complex flavors:
On entry, q must contain an qsiz-by-n matrix whose columns are
unitarily orthonormal. It is a part of the unitary matrix that reduces the
full dense Hermitian matrix to a (reducible) symmetric tridiagonal
matrix.
The array qstore is a workspace array used to store parts of the
eigenvector matrix when the updating matrix multiplies take place.

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

ldqs INTEGER. The first dimension of the array qstore; ldqs ≥ max(1, n).

LAPACK Auxiliary and Utility Routines 5

5-59

work REAL for slaed0
DOUBLE PRECISION for dlaed0.
Workspace array, used in real flavors only.
If icompq = 0 or 1, the dimension of work must be at least (1
+3n+2nlg(n)+2n2), where lg(n) = smallest integer k such that 2k ≥ n.
If icompq = 2, the dimension of work must be at least (4n+n2).

iwork INTEGER.
Workspace array.
For real flavors, if icompq = 0 or 1, and for complex flavors, the
dimension of iwork must be at least
(6 +6n+5nlg(n)),
For real flavors, If icompq = 2, the dimension of iwork must be at least
(3+5n).

Output Parameters

d On exit, contains eigenvalues in ascending order.

e On exit, the array has been destroyed.

q If icompq = 2, on exit, q contains the eigenvectors of the tridiagonal
matrix.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i > 0, the algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns i/(n+1) through
mod(i, n+1).

?laed1
Used by sstedc/dstedc. Computes the updated
eigensystem of a diagonal matrix after modification by
a rank-one symmetric matrix. Used when the original
matrix is tridiagonal.

Syntax
call slaed1(n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info)

5-60

5 Intel® Math Kernel Library Reference Manual

call dlaed1(n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info)

Description

The routine ?laed1 computes the updated eigensystem of a diagonal matrix after modification
by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all
eigenvalues and eigenvectors of a tridiagonal matrix. ?laed7 handles the case in which
eigenvalues only or eigenvalues and eigenvectors of a full symmetric matrix (which was reduced
to tridiagonal form) are desired.

 T = Q(in) (D(in) + rho * z*z') Q'(in) = Q(out) * D(out) * Q'(out)

where z = Q'u, u is a vector of length n with ones in the cutpnt and (cutpnt + 1) -th elements
and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the eigenvalues
are in D. The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are multiple eigenvalues or
if there is a zero in the z vector. For each such occurrence the dimension of the secular equation
problem is reduced by one. This stage is performed by the routine ?laed2.

The second stage consists of calculating the updated eigenvalues. This is done by finding the roots
of the secular equation via the routine ?laed4 (as called by ?laed3). This routine also calculates
the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated
eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from
the overall problem.

Input Parameters

n INTEGER. The dimension of the symmetric tridiagonal matrix (n ≥ 0).

d, q, work REAL for slaed1
DOUBLE PRECISION for dlaed1.
Arrays:
d(*) contains the eigenvalues of the rank-1-perturbed matrix. The
dimension of d must be at least max(1, n).

q(ldq, *) contains the eigenvectors of the rank-1-perturbed matrix.
The second dimension of q must be at least max(1, n).

work(*) is a workspace array, dimension at least
(4n+n2).

LAPACK Auxiliary and Utility Routines 5

5-61

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

indxq INTEGER. Array, dimension (n).
On entry, the permutation which separately sorts the two subproblems in
d into ascending order.

rho REAL for slaed1
DOUBLE PRECISION for dlaed1.
The subdiagonal entry used to create the rank-1 modification.

cutpnt INTEGER.
The location of the last eigenvalue in the leading sub-matrix. min(1,n) ≤
cutpnt ≤ n/2.

iwork INTEGER. Workspace array, dimension (4n).

Output Parameters

d On exit, contains the eigenvalues of the repaired matrix.

q On exit, q contains the eigenvectors of the repaired tridiagonal matrix.

indxq On exit, contains the permutation which will reintegrate the
subproblems back into sorted order, that is,
 d(indxq(i = 1, n)) will be in ascending order.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, an eigenvalue did not converge.

?laed2
Used by sstedc/dstedc. Merges eigenvalues and
deflates secular equation. Used when the original
matrix is tridiagonal.

Syntax
call slaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlamda, w, q2, indx, indxc,

indxp, coltyp, info)

5-62

5 Intel® Math Kernel Library Reference Manual

call dlaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlamda, w, q2, indx, indxc,
indxp, coltyp, info)

Description

The routine ?laed2 merges the two sets of eigenvalues together into a single sorted set. Then it
tries to deflate the size of the problem. There are two ways in which deflation can occur: when two
or more eigenvalues are close together or if there is a tiny entry in the z vector. For each such
occurrence the order of the related secular equation problem is reduced by one.

 Input Parameters

k INTEGER. The number of non-deflated eigenvalues, and the order of the
related secular equation (0 ≤ k ≤ n).

n INTEGER. The dimension of the symmetric tridiagonal matrix (n ≥ 0).

n1 INTEGER. The location of the last eigenvalue in the leading sub-matrix;
min(1,n) ≤ n1 ≤ n/2.

d, q, z REAL for slaed2
DOUBLE PRECISION for dlaed2.
Arrays:
d(*) contains the eigenvalues of the two submatrices to be combined.
The dimension of d must be at least max(1, n).

q(ldq, *) contains the eigenvectors of the two submatrices in the two
square blocks with corners at (1,1), (n1,n1) and (n1+1,n1+1), (n,n).
The second dimension of q must be at least max(1, n).
z(*) contains the updating vector (the last row of the first
sub-eigenvector matrix and the first row of the second sub-eigenvector
matrix).

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

indxq INTEGER. Array, dimension (n).
On entry, the permutation which separately sorts the two subproblems in
d into ascending order. Note that elements in the second half of this
permutation must first have n1 added to their values.

rho REAL for slaed2
DOUBLE PRECISION for dlaed2.
On entry, the off-diagonal element associated with the rank-1 cut which
originally split the two submatrices which are now being recombined.

LAPACK Auxiliary and Utility Routines 5

5-63

indx, indxp INTEGER.

Workspace arrays, dimension (n) each.
Array indx contains the permutation used to sort the contents of
dlamda into ascending order.

 Array indxp contains the permutation used to place deflated values of d
at the end of the array.
indxp(1:k) points to the nondeflated d-values and indxp(k+1:n) points
to the deflated eigenvalues.

coltyp INTEGER. Workspace array, dimension (n).
During execution, a label which will indicate which of the following
types a column in the q2 matrix is:
1 : non-zero in the upper half only;
2 : dense;
3 : non-zero in the lower half only;
4 : deflated.

Output Parameters

d On exit, d contains the trailing (n-k) updated eigenvalues (those which
were deflated) sorted into increasing order.

q On exit, q contains the trailing (n-k) updated eigenvectors (those which
were deflated) in its last n-k columns.

indxq Destroyed on exit.

rho On exit, rho has been modified to the value required by ?laed3.

dlamda, w, q2 REAL for slaed2
DOUBLE PRECISION for dlaed2.
Arrays: dlamda(n), w(n), q2(n12+(n-n1)2).

The array dlamda contains a copy of the first k eigenvalues which will
be used by ?laed3 to form the secular equation.

The array w contains the first k values of the final deflation-altered
z-vector which is passed to ?laed3.

The array q2 contains a copy of the first k eigenvectors which is used
by ?laed3 in a matrix multiply (sgemm/dgemm) to solve for the new
eigenvectors.

5-64

5 Intel® Math Kernel Library Reference Manual

indxc INTEGER. Array, dimension (n).
The permutation used to arrange the columns of the deflated q matrix
into three groups: the first group contains non-zero elements only at and
above n1, the second contains non-zero elements only below n1, and the
third is dense.

coltyp On exit, coltyp(i) is the number of columns of type i, for i=1 to 4 only
(see the definition of types in the description of coltyp in Input
Parameters).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

?laed3
Used by sstedc/dstedc. Finds the roots of the
secular equation and updates the eigenvectors. Used
when the original matrix is tridiagonal.

Syntax
call slaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx, ctot, w, s, info)

call dlaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx, ctot, w, s, info)

Description

The routine ?laed3 finds the roots of the secular equation, as defined by the values in d, w, and
rho, between 1 and k. It makes the appropriate calls to ?laed4 and then updates the eigenvectors
by multiplying the matrix of eigenvectors of the pair of eigensystems being combined by the
matrix of eigenvectors of the k-by-k system which is solved here.

This code makes very mild assumptions about floating point arithmetic. It will work on machines
with a guard digit in add/subtract, or on those binary machines without guard digits which subtract
like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal
or decimal machines without guard digits, but none are known.

 Input Parameters

k INTEGER. The number of terms in the rational function to be solved by
?laed4 (k ≥ 0).

LAPACK Auxiliary and Utility Routines 5

5-65

n INTEGER. The number of rows and columns in the q matrix. n ≥ k
(deflation may result in n > k).

n1 INTEGER. The location of the last eigenvalue in the leading sub-matrix;
min(1,n) ≤ n1 ≤ n/2.

q REAL for slaed3
DOUBLE PRECISION for dlaed3.
Array q(ldq, *). The second dimension of q must be at least max(1,
n).
Initially, the first k columns of this array are used as workspace.

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

rho REAL for slaed3
DOUBLE PRECISION for dlaed3.
The value of the parameter in the rank one update equation. rho ≥ 0
required.

dlamda, q2, w REAL for slaed3
DOUBLE PRECISION for dlaed3.
Arrays: dlamda(k), q2(ldq2, *), w(k).

The first k elements of the array dlamda contain the old roots of the
deflated updating problem. These are the poles of the secular equation.

The first k columns of the array q2 contain the non-deflated
eigenvectors for the split problem. The second dimension of q2 must be
at least max(1, n).

The first k elements of the array w contain the components of the
deflation-adjusted updating vector.

indx INTEGER. Array, dimension (n).
The permutation used to arrange the columns of the deflated q matrix
into three groups (see ?laed2). The rows of the eigenvectors found by
?laed4 must be likewise permuted before the matrix multiply can take
place.

ctot INTEGER. Array, dimension (4).
A count of the total number of the various types of columns in q, as
described in indx. The fourth column type is any column which has
been deflated.

5-66

5 Intel® Math Kernel Library Reference Manual

s REAL for slaed3
DOUBLE PRECISION for dlaed3.
Workspace array, dimension (n1+1)*k .

Will contain the eigenvectors of the repaired matrix which will be
multiplied by the previously accumulated eigenvectors to update the
system.

Output Parameters

d REAL for slaed3
DOUBLE PRECISION for dlaed3.
Array, dimension at least max(1, n).
d(i) contains the updated eigenvalues for 1 ≤ i ≤ k.

q On exit, the columns 1 to k of q contain the updated eigenvectors.

dlamda May be changed on output by having lowest order bit set to zero on Cray
X-MP, Cray Y-MP, Cray-2, or Cray C-90, as described above.

w Destroyed on exit.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, an eigenvalue did not converge.

?laed4
Used by sstedc/dstedc. Finds a single root of the
secular equation.

Syntax
call slaed4(n, i, d, z, delta, rho, dlam, info)

call dlaed4(n, i, d, z, delta, rho, dlam, info)

Description

This subroutine computes the i-th updated eigenvalue of a symmetric rank-one modification to a
diagonal matrix whose elements are given in the array d, and that

LAPACK Auxiliary and Utility Routines 5

5-67

D(i) < D(j) for i < j

and that rho > 0. This is arranged by the calling routine, and is no loss in generality. The rank-one
modified system is thus

 diag(D) + rho * Z * transpose(Z) .

where we assume the Euclidean norm of Z is 1.

The method consists of approximating the rational functions in the secular equation by simpler
interpolating rational functions.

 Input Parameters

n INTEGER. The length of all arrays.

i INTEGER. The index of the eigenvalue to be computed;
1 ≤ i ≤ n.

d, z REAL for slaed4
DOUBLE PRECISION for dlaed4
Arrays, dimension (n) each.
The array d contains the original eigenvalues. It is assumed that they are
in order, d(i) < d(j) for i < j.

The array z contains the components of the updating vector Z.

rho REAL for slaed4
DOUBLE PRECISION for dlaed4
The scalar in the symmetric updating formula.

Output Parameters

delta REAL for slaed4
DOUBLE PRECISION for dlaed4
Array, dimension (n).
If n ≠ 1, delta contains (d(j) - lambda_i) in its j-th component. If n =
1, then delta(1) = 1. The vector delta contains the information
necessary to construct the eigenvectors.

dlam REAL for slaed4
DOUBLE PRECISION for dlaed4
The computed lambda_i, the i-th updated eigenvalue.

5-68

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = 1, the updating process failed.

?laed5
Used by sstedc/dstedc.
Solves the 2-by-2 secular equation.

Syntax
call slaed5(i, d, z, delta, rho, dlam)

call dlaed5(i, d, z, delta, rho, dlam)

Description

This subroutine computes the i-th eigenvalue of a symmetric rank-one modification of a 2-by-2
diagonal matrix

 diag(D) + rho * Z * transpose(Z) .

The diagonal elements in the array D are assumed to satisfy

 D(i) < D(j) for i < j .

We also assume rho > 0 and that the Euclidean norm of the vector Z is one.

 Input Parameters

i INTEGER. The index of the eigenvalue to be computed;
1 ≤ i ≤ 2.

d, z REAL for slaed5
DOUBLE PRECISION for dlaed5
Arrays, dimension (2) each.
The array d contains the original eigenvalues. It is assumed that d(1) <
d(2).

The array z contains the components of the updating vector.

LAPACK Auxiliary and Utility Routines 5

5-69

rho REAL for slaed5
DOUBLE PRECISION for dlaed5
The scalar in the symmetric updating formula.

Output Parameters

delta REAL for slaed5
DOUBLE PRECISION for dlaed5
Array, dimension (2).
The vector delta contains the information necessary to construct the
eigenvectors.

dlam REAL for slaed5
DOUBLE PRECISION for dlaed5
The computed lambda_i, the i-th updated eigenvalue.

?laed6
Used by sstedc/dstedc.
Computes one Newton step in solution of the secular
equation.

Syntax
call slaed6(kniter, orgati, rho, d, z, finit, tau, info)

call dlaed6(kniter, orgati, rho, d, z, finit, tau, info)

Description

This routine computes the positive or negative root (closest to the origin) of

It is assumed that if orgati =.TRUE. the root is between d(2) and d(3); otherwise it is between
d(1) and d(2)
This routine is called by ?laed4 when necessary. In most cases, the root sought is the smallest in
magnitude, though it might not be in some extremely rare situations.

f x() rho
z 1()

d 1() x–
-------------------- z 2()

d 2() x–
-------------------- z 3()

d 3() x–
--------------------+ + +=

5-70

5 Intel® Math Kernel Library Reference Manual

 Input Parameters

kniter INTEGER.
Refer to ?laed4 for its significance.

orgati LOGICAL.
If orgati = .TRUE., the needed root is between d(2) and d(3);
otherwise it is between d(1) and d(2). See ?laed4 for further details.

rho REAL for slaed6
DOUBLE PRECISION for dlaed6
Refer to the equation for f(x) above.

d, z REAL for slaed6
DOUBLE PRECISION for dlaed6
Arrays, dimension (3) each.

The array d satisfies d(1) < d(2) < d(3).

Each of the elements in the array z must be positive.

finit REAL for slaed6
DOUBLE PRECISION for dlaed6
The value of f(x) at 0. It is more accurate than the one evaluated inside
this routine (if someone wants to do so).

Output Parameters

tau REAL for slaed6
DOUBLE PRECISION for dlaed6
The root of the equation for f(x).

info INTEGER.
If info = 0, the execution is successful.
If info = 1, failure to converge.

LAPACK Auxiliary and Utility Routines 5

5-71

?laed7
Used by ?stedc. Computes the updated eigensystem of
a diagonal matrix after modification by a rank-one
symmetric matrix. Used when the original matrix is
dense.

Syntax
call slaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq,

 indxq, rho, cutpnt, qstore, qptr, prmptr, perm, givptr, givcol,
 givnum, work, iwork, info)

call dlaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq,
 indxq, rho, cutpnt, qstore, qptr, prmptr, perm, givptr, givcol,
 givnum, work, iwork, info)

call claed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho,
 indxq, qstore, qptr, prmptr, perm, givptr, givcol, givnum,
 work, rwork, iwork, info)

call zlaed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho,
 indxq, qstore, qptr, prmptr, perm, givptr, givcol, givnum,
 work, rwork, iwork, info)

Description

The routine ?laed7 computes the updated eigensystem of a diagonal matrix after modification
by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all
eigenvalues and optionally eigenvectors of a dense symmetric/Hermitian matrix that has been
reduced to tridiagonal form. For real flavors, slaed1/dlaed1 handles the case in which all
eigenvalues and eigenvectors of a symmetric tridiagonal matrix are desired.

 T = Q(in) (D(in) + rho * z*z') Q'(in) = Q(out) * D(out) * Q'(out)

where z = Q'u, u is a vector of length n with ones in the cutpnt and (cutpnt + 1) -th elements
and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the eigenvalues
are in D. The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are multiple eigenvalues or
if there is a zero in the z vector. For each such occurrence the dimension of the secular equation
problem is reduced by one. This stage is performed by the routine slaed8/dlaed8 (for real
flavors) or by the routine slaed2/dlaed2 (for complex flavors).

5-72

5 Intel® Math Kernel Library Reference Manual

The second stage consists of calculating the updated eigenvalues. This is done by finding the roots
of the secular equation via the routine ?laed4 (as called by ?laed9 or ?laed3). This routine also
calculates the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated
eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from
the overall problem.

Input Parameters

icompq INTEGER. Used with real flavors only.

If icompq = 0, compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense symmetric
matrix also. On entry, the array q must contain the orthogonal matrix
used to reduce the original matrix to tridiagonal form.

n INTEGER. The dimension of the symmetric tridiagonal matrix (n ≥ 0).

cutpnt INTEGER. The location of the last eigenvalue in the leading sub-matrix.
min(1,n) ≤ cutpnt ≤ n .

qsiz INTEGER. The dimension of the orthogonal/unitary matrix used to
reduce the full matrix to tridiagonal form; qsiz ≥ n (for real flavors,
qsiz ≥ n if icompq = 1).

tlvls INTEGER. The total number of merging levels in the overall divide and
conquer tree.

curlvl INTEGER. The current level in the overall merge routine, 0 ≤ curlvl ≤
tlvls .

curpbm INTEGER. The current problem in the current level in the overall merge
routine (counting from upper left to lower right).

d REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7.

Array, dimension at least max(1, n).
Array d(*) contains the eigenvalues of the rank-1-perturbed matrix.

 q, work REAL for slaed7
DOUBLE PRECISION for dlaed7
COMPLEX for claed7
COMPLEX*16 for zlaed7.

LAPACK Auxiliary and Utility Routines 5

5-73

Arrays:
q(ldq, *) contains the the eigenvectors of the rank-1-perturbed
matrix. The second dimension of q must be at least max(1, n).

work(*) is a workspace array, dimension at least
(3n+qsiz*n) for real flavors and at least (qsiz*n) for complex flavors.

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

rho REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7.
The subdiagonal element used to create the rank-1 modification.

qstore REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7.
Array, dimension (n2+1). Serves also as output parameter.
Stores eigenvectors of submatrices encountered during divide and
conquer, packed together. qptr points to beginning of the submatrices.

qptr INTEGER. Array, dimension (n+2). Serves also as output parameter.
List of indices pointing to beginning of submatrices stored in qstore.
The submatrices are numbered starting at the bottom left of the divide
and conquer tree, from left to right and bottom to top.

prmptr, perm,
givptrINTEGER. Arrays, dimension (n lgn) each.

The array prmptr(*) contains a list of pointers which indicate where in
perm a level's permutation is stored. prmptr(i+1) - prmptr(i) indicates
the size of the permutation and also the size of the full, non-deflated
problem.

The array perm(*) contains the permutations (from deflation and
sorting) to be applied to each eigenblock.

The array givptr(*) contains a list of pointers which indicate where in
givcol a level's Givens rotations are stored. givptr(i+1) - givptr(i)
indicates the number of Givens rotations.

givcol INTEGER. Array, dimension (2, n lgn).
Each pair of numbers indicates a pair of columns to take place in a
Givens rotation.

5-74

5 Intel® Math Kernel Library Reference Manual

givnum REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7.
Array, dimension (2, n lgn).
Each number indicates the S value to be used in the corresponding
Givens rotation.

iwork INTEGER. Workspace array, dimension (4n).

rwork REAL for claed7
DOUBLE PRECISION for zlaed7.
Workspace array, dimension (3n+2qsiz*n). Used in complex flavors
only.

Output Parameters

d On exit, contains the eigenvalues of the repaired matrix.

q On exit, q contains the eigenvectors of the repaired tridiagonal matrix.

indxq INTEGER. Array, dimension (n).
Contains the permutation which will reintegrate the subproblems back
into sorted order, that is,
d(indxq(i = 1, n)) will be in ascending order.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, an eigenvalue did not converge.

?laed8
Used by ?stedc. Merges eigenvalues and deflates
secular equation. Used when the original matrix is
dense.

Syntax
call slaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z,

 dlamda, q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx,
 info)

LAPACK Auxiliary and Utility Routines 5

5-75

call dlaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z,
 dlamda, q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx,
 info)

call claed8(k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2,
 ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum,
 info)

call zlaed8(k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2,
 ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum,
 info)

Description

This routine merges the two sets of eigenvalues together into a single sorted set. Then it tries to
deflate the size of the problem. There are two ways in which deflation can occur: when two or
more eigenvalues are close together or if there is a tiny element in the z vector. For each such
occurrence the order of the related secular equation problem is reduced by one.

Input Parameters

icompq INTEGER. Used with real flavors only.

If icompq = 0, compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense symmetric
matrix also. On entry, the array q must contain the orthogonal matrix
used to reduce the original matrix to tridiagonal form.

n INTEGER. The dimension of the symmetric tridiagonal matrix (n ≥ 0).

cutpnt INTEGER. The location of the last eigenvalue in the leading sub-matrix.
min(1,n) ≤ cutpnt ≤ n .

qsiz INTEGER. The dimension of the orthogonal/unitary matrix used to
reduce the full matrix to tridiagonal form; qsiz ≥ n (for real flavors,
qsiz ≥ n if icompq = 1).

d, z REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Arrays, dimension at least max(1, n) each.
The array d(*) contains the eigenvalues of the two submatrices to be
combined.
On entry, z(*) contains the updating vector (the last row of the first
sub-eigenvector matrix and the first row of the second sub-eigenvector
matrix). The contents of z are destroyed by the updating process.

5-76

5 Intel® Math Kernel Library Reference Manual

 q REAL for slaed8
DOUBLE PRECISION for dlaed8
COMPLEX for claed8
COMPLEX*16 for zlaed8.
Array q(ldq, *). The second dimension of q must be at least max(1,
n). On entry, q contains the eigenvectors of the partially solved system
which has been previously updated in matrix multiplies with other
partially solved eigensystems.
For real flavors, if icompq = 0, q is not referenced.

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

ldq2 INTEGER. The first dimension of the output array q2;
ldq2 ≥ max(1, n).

indxq INTEGER. Array, dimension (n).
The permutation which separately sorts the two sub-problems in d into
ascending order. Note that elements in the second half of this
permutation must first have cutpnt added to their values in order to be
accurate.

rho REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
On entry, the off-diagonal element associated with the rank-1 cut which
originally split the two submatrices which are now being recombined.

Output Parameters

k INTEGER. The number of non-deflated eigenvalues, and the order of the
related secular equation.

d On exit, contains the trailing (n-k) updated eigenvalues (those which
were deflated) sorted into increasing order.

q On exit, q contains the trailing (n-k) updated eigenvectors (those which
were deflated) in its last (n-k) columns.

rho On exit, rho has been modified to the value required by ?laed3.

dlamda, w REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Arrays, dimension (n) each.
The array dlamda(*) contains a copy of the first k eigenvalues which
will be used by ?laed3 to form the secular equation.

LAPACK Auxiliary and Utility Routines 5

5-77

The array w(*) will hold the first k values of the final deflation-altered
z-vector and will be passed to ?laed3.

q2 REAL for slaed8
DOUBLE PRECISION for dlaed8
COMPLEX for claed8
COMPLEX*16 for zlaed8.
Array q2(ldq2, *). The second dimension of q2 must be at least
max(1, n).
Contains a copy of the first k eigenvectors which will be used by
slaed7/dlaed7 in a matrix multiply (sgemm/dgemm) to update the
new eigenvectors.
For real flavors, if icompq = 0, q2 is not referenced.

indxp, indx INTEGER. Workspace arrays, dimension (n) each.

The array indxp(*) will contain the permutation used to place deflated
values of d at the end of the array. On output, indxp(1:k) points to the
nondeflated d-values and indxp(k+1:n) points to the deflated
eigenvalues.

The array indx(*) will contain the permutation used to sort the contents
of d into ascending order.

perm INTEGER. Array, dimension (n).
Contains the permutations (from deflation and sorting) to be applied to
each eigenblock.

givptr INTEGER. Contains the number of Givens rotations which took place in
this subproblem.

givcol INTEGER. Array, dimension (2, n).
Each pair of numbers indicates a pair of columns to take place in a
Givens rotation.

givnum REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Array, dimension (2, n).
Each number indicates the S value to be used in the corresponding
Givens rotation.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

5-78

5 Intel® Math Kernel Library Reference Manual

?laed9
Used by sstedc/dstedc.
Finds the roots of the secular equation and updates the
eigenvectors. Used when the original matrix is dense.

Syntax
call slaed9(k, kstart, kstop, n, d, q, ldq, rho, dlamda, w, s, lds, info)

call dlaed9(k, kstart, kstop, n, d, q, ldq, rho, dlamda, w, s, lds, info)

Description

This routine finds the roots of the secular equation, as defined by the values in d, z, and rho,
between kstart and kstop. It makes the appropriate calls to slaed4/dlaed4 and then stores
the new matrix of eigenvectors for use in calculating the next level of z vectors.

 Input Parameters

k INTEGER. The number of terms in the rational function to be solved by
slaed4/dlaed4 (k ≥ 0).

kstart, kstop INTEGER. The updated eigenvalues lambda(i),
kstart ≤ i ≤ kstop are to be computed.
1 ≤ kstart ≤ kstop ≤ k.

n INTEGER. The number of rows and columns in the Q matrix. n ≥ k
(deflation may result in n > k).

q REAL for slaed9
DOUBLE PRECISION for dlaed9.
Workspace array, dimension (ldq, *) . The second dimension of q
must be at least max(1, n).

ldq INTEGER. The first dimension of the array q;
ldq ≥ max(1, n).

rho REAL for slaed9
DOUBLE PRECISION for dlaed9
The value of the parameter in the rank one update equation. rho ≥ 0
required.

LAPACK Auxiliary and Utility Routines 5

5-79

dlamda, w REAL for slaed9
DOUBLE PRECISION for dlaed9
Arrays, dimension (k) each.
The first k elements of the array dlamda(*) contain the old roots of the
deflated updating problem. These are the poles of the secular equation.

The first k elements of the array w(*) contain the components of the
deflation-adjusted updating vector.

lds INTEGER. The first dimension of the output array s;
lds ≥ max(1, k).

Output Parameters

d REAL for slaed9
DOUBLE PRECISION for dlaed9
Array, dimension (n). d (i) contains the updated eigenvalues for
kstart ≤ i ≤ kstop.

s REAL for slaed9
DOUBLE PRECISION for dlaed9.
Array, dimension (lds, *) . The second dimension of s must be at least
max(1, k).
Will contain the eigenvectors of the repaired matrix which will be stored
for subsequent z vector calculation and multiplied by the previously
accumulated eigenvectors to update the system.

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, the eigenvalue did not converge.

5-80

5 Intel® Math Kernel Library Reference Manual

?laeda
Used by ?stedc. Computes the Z vector determining
the rank-one modification of the diagonal matrix. Used
when the original matrix is dense.

Syntax
call slaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol,

 givnum, q, qptr, z, ztemp, info)

call dlaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol,
 givnum, q, qptr, z, ztemp, info)

Description

The routine ?laeda computes the z vector corresponding to the merge step in the curlvl-th step
of the merge process with tlvls steps for the curpbm-th problem.

Input Parameters

n INTEGER. The dimension of the symmetric tridiagonal matrix (n ≥ 0).

tlvls INTEGER. The total number of merging levels in the overall divide and
conquer tree.

curlvl INTEGER. The current level in the overall merge routine,
0 ≤ curlvl ≤ tlvls .

curpbm INTEGER. The current problem in the current level in the overall merge
routine (counting from upper left to lower right).

prmptr, perm,

givptrINTEGER. Arrays, dimension (n lgn) each.

The array prmptr(*) contains a list of pointers which indicate where in
perm a level's permutation is stored. prmptr(i+1) - prmptr(i) indicates
the size of the permutation and also the size of the full, non-deflated
problem.

The array perm(*) contains the permutations (from deflation and
sorting) to be applied to each eigenblock.

LAPACK Auxiliary and Utility Routines 5

5-81

The array givptr(*) contains a list of pointers which indicate where in
givcol a level's Givens rotations are stored. givptr(i+1) - givptr(i)
indicates the number of Givens rotations.

givcol INTEGER. Array, dimension (2, n lgn).
Each pair of numbers indicates a pair of columns to take place in a
Givens rotation.

givnum REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension (2, n lgn).
Each number indicates the S value to be used in the corresponding
Givens rotation.

q REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension (n2).
Contains the square eigenblocks from previous levels, the starting
positions for blocks are given by qptr.

qptr INTEGER. Array, dimension (n+2). Contains a list of pointers which
indicate where in q an eigenblock is stored. sqrt(qptr(i+1) - qptr(i)
) indicates the size of the block.

ztemp REAL for slaeda
DOUBLE PRECISION for dlaeda.
Workspace array, dimension (n).

Output Parameters

z REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension (n). Contains the updating vector (the last row of the
first sub-eigenvector matrix and the first row of the second
sub-eigenvector matrix).

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

5-82

5 Intel® Math Kernel Library Reference Manual

?laein
Computes a specified right or left eigenvector of an
upper Hessenberg matrix by inverse iteration.

Syntax
call slaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb, work, eps3,

smlnum, bignum, info)

call dlaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb, work, eps3,
smlnum, bignum, info)

call claein(rightv, noinit, n, h, ldh, w, v, b, ldb, rwork, eps3, smlnum,
info)

call zlaein(rightv, noinit, n, h, ldh, w, v, b, ldb, rwork, eps3, smlnum,
info)

Description

The routine ?laein uses inverse iteration to find a right or left eigenvector corresponding to the
eigenvalue (wr,wi) of a real upper Hessenberg matrix H (for real flavors slaein/dlaein) or to
the eigenvalue w of a complex upper Hessenberg matrix H (for complex flavors
claein/zlaein).

Input Parameters

rightv LOGICAL.
If rightv = .TRUE., compute right eigenvector;
if rightv = .FALSE., compute left eigenvector.

noinit LOGICAL.
If noinit = .TRUE., no initial vector is supplied in (vr,vi) or in v (for
complex flavors);
if noinit = .FALSE., initial vector is supplied in (vr,vi) or in v (for
complex flavors).

n INTEGER. The order of the matrix H (n ≥ 0).

h REAL for slaein
DOUBLE PRECISION for dlaein
COMPLEX for claein

LAPACK Auxiliary and Utility Routines 5

5-83

COMPLEX*16 for zlaein.
Array h(ldh, *). The second dimension of h must be at least max(1,
n). Contains the upper Hessenberg matrix H.

ldh INTEGER. The first dimension of the array h;
ldh ≥ max(1, n).

wr, wi REAL for slaein
DOUBLE PRECISION for dlaein.
The real and imaginary parts of the eigenvalue of H whose
corresponding right or left eigenvector is to be computed (for real flavors
of the routine).

w COMPLEX for claein
COMPLEX*16 for zlaein.
The eigenvalue of H whose corresponding right or left eigenvector is to
be computed (for complex flavors of the routine).

vr, vi REAL for slaein
DOUBLE PRECISION for dlaein.
Arrays, dimension (n) each. Used for real flavors only.
On entry, if noinit =.FALSE. and wi = 0.0, vr must contain a real
starting vector for inverse iteration using the real eigenvalue wr;
if noinit =.FALSE. and wi ≠ 0.0, vr and vi must contain the real and
imaginary parts of a complex starting vector for inverse iteration using
the complex eigenvalue (wr,wi); otherwise vr and vi need not be set.

v COMPLEX for claein
COMPLEX*16 for zlaein.
Array, dimension (n). Used for complex flavors only.
On entry, if noinit =.FALSE., v must contain a starting vector for
inverse iteration; otherwise v need not be set.

b REAL for slaein
DOUBLE PRECISION for dlaein
COMPLEX for claein
COMPLEX*16 for zlaein.
Workspace array b(ldb, *). The second dimension of b must be at
least max(1, n).

ldb INTEGER. The first dimension of the array b;
ldb ≥ n+1 for real flavors;
ldb ≥ max(1, n) for complex flavors.

5-84

5 Intel® Math Kernel Library Reference Manual

work REAL for slaein
DOUBLE PRECISION for dlaein.
Workspace array, dimension (n). Used for real flavors only.

rwork REAL for claein
DOUBLE PRECISION for zlaein.
Workspace array, dimension (n). Used for complex flavors only.

eps3, smlnum REAL for slaein/claein
DOUBLE PRECISION for dlaein/zlaein.
eps3 is a small machine-dependent value which is used to perturb close
eigenvalues, and to replace zero pivots.
smlnum is a machine-dependent value close to underflow threshold.

bignum REAL for slaein
DOUBLE PRECISION for dlaein.
bignum is a machine-dependent value close to overflow threshold.
Used for real flavors only.

Output Parameters

vr, vi On exit, if wi = 0.0 (real eigenvalue), vr contains the computed real
eigenvector; if wi ≠ 0.0 (complex eigenvalue), vr and vi contain the
real and imaginary parts of the computed complex eigenvector. The
eigenvector is normalized so that the component of largest magnitude
has magnitude 1; here the magnitude of a complex number (x,y) is taken
to be |x| + |y|.
vi is not referenced if wi = 0.0.

v On exit, v contains the computed eigenvector, normalized so that the
component of largest magnitude has magnitude 1; here the magnitude of
a complex number (x,y) is taken to be |x| + |y|.

info INTEGER.
If info = 0, the execution is successful.
If info = 1, inverse iteration did not converge. For real flavors, vr is set
to the last iterate, and so is vi if wi ≠ 0.0. For complex flavors, v is set
to the last iterate.

LAPACK Auxiliary and Utility Routines 5

5-85

?laev2
Computes the eigenvalues and eigenvectors of a 2-by-2
symmetric/Hermitian matrix.

Syntax
call slaev2(a, b, c, rt1, rt2, cs1, sn1)

call dlaev2(a, b, c, rt1, rt2, cs1, sn1)

call claev2(a, b, c, rt1, rt2, cs1, sn1)

call zlaev2(a, b, c, rt1, rt2, cs1, sn1)

Discussion

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix

 (for slaev2/dlaev2) or Hermitian matrix

(for claev2/zlaev2).

On return, rt1 is the eigenvalue of larger absolute value, rt2 of smaller absolute value, and (cs1,
sn1) is the unit right eigenvector for rt1, giving the decomposition

(for slaev2/dlaev2),

or

(for claev2/zlaev2).

a b

b c

a b

conjg b() c

cs1 sn1

sn1– cs1

a b

b c
cs1 sn1–

sn1 cs1
⋅ ⋅ rt1 0

0 rt2
=

cs1 conjg sn1()
sn1– cs1

a b

conjg b() c
cs1 conjg sn1()–

sn1 cs1
⋅ ⋅ rt1 0

0 rt2
=

5-86

5 Intel® Math Kernel Library Reference Manual

Input Parameters

a, b, c REAL for slaev2
DOUBLE PRECISION for dlaev2
COMPLEX for claev2
COMPLEX*16 for zlaev2.
Elements of the input matrix.

Output Parameters

rt1, rt2 REAL for slaev2/claev2
DOUBLE PRECISION for dlaev2/zlaev2.
Eigenvalues of larger and smaller absolute value, respectively.

cs1 REAL for slaev2/claev2
DOUBLE PRECISION for dlaev2/zlaev2.

sn1 REAL for slaev2
DOUBLE PRECISION for dlaev2
COMPLEX for claev2
COMPLEX*16 for zlaev2.
The vector (cs1, sn1) is the unit right eigenvector for rt1.

Application Notes

rt1 is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive
cancellation in the determinant a*c-b*b; higher precision or correctly rounded or correctly
truncated arithmetic would be needed to compute rt2 accurately in all cases. cs1 and sn1 are
accurate to a few ulps barring over/underflow. Overflow is possible only if rt1 is within a factor
of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds underflow_threshold /
macheps.

?laexc
Swaps adjacent diagonal blocks of a real upper
quasi-triangular matrix in Schur canonical form, by an
orthogonal similarity transformation.

Syntax
call slaexc(wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)

LAPACK Auxiliary and Utility Routines 5

5-87

call dlaexc(wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)

Description

This routine swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in an upper
quasi-triangular matrix T by an orthogonal similarity transformation.
T must be in Schur canonical form, that is, block upper triangular with 1-by-1 and 2-by-2 diagonal
blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements
of opposite sign.

Input Parameters

wantq LOGICAL.
If wantq =.TRUE., accumulate the transformation in the matrix Q;
If wantq =.FALSE., do not accumulate the transformation.

n INTEGER. The order of the matrix T (n ≥ 0).

t, q REAL for slaexc
DOUBLE PRECISION for dlaexc
Arrays:
t(ldt,*) contains on entry the upper quasi-triangular matrix T, in
Schur canonical form.
The second dimension of t must be at least max(1, n).

q(ldq,*) contains on entry, if wantq =.TRUE., the orthogonal matrix
Q. If wantq =.FALSE., q is not referenced.
The second dimension of q must be at least max(1, n).

ldt INTEGER. The first dimension of t; at least max(1, n).

ldq INTEGER. The first dimension of q;
If wantq =.FALSE., then ldq ≥ 1.
If wantq =.TRUE., then ldq ≥ max(1,n).

j1 INTEGER. The index of the first row of the first
block T11.

n1 INTEGER. The order of the first block T11
(n1 = 0, 1, or 2).

n2 INTEGER. The order of the second block T22
(n2 = 0, 1, or 2).

5-88

5 Intel® Math Kernel Library Reference Manual

work REAL for slaexc;
DOUBLE PRECISION for dlaexc.
Workspace array, DIMENSION (n).

Output Parameters

t On exit, the updated matrix T, again in Schur canonical form.

q On exit, if wantq =.TRUE., the updated matrix Q.

info INTEGER.
If info = 0, the execution is successful.
If info = 1, the transformed matrix T would be too far from Schur form;
the blocks are not swapped and T and Q are unchanged.

?lag2
Computes the eigenvalues of a 2-by-2 generalized
eigenvalue problem, with scaling as necessary to avoid
over-/underflow.

Syntax
call slag2(a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)

call dlag2(a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)

Description

This routine computes the eigenvalues of a 2 x 2 generalized eigenvalue problem A - w B, with
scaling as necessary to avoid over-/underflow. The scaling factor, s, results in a modified
eigenvalue equation

 s A - w B ,

where s is a non-negative scaling factor chosen so that w, w B, and s A do not overflow and, if
possible, do not underflow, either.

Input Parameters

a, b REAL for slag2
DOUBLE PRECISION for dlag2
Arrays:

LAPACK Auxiliary and Utility Routines 5

5-89

a(lda,2) contains, on entry, the 2 x 2 matrix A. It is assumed that its
1-norm is less than 1/safmin. Entries less than
sqrt(safmin)*norm(A) are subject to being treated as zero.

b(ldb,2) contains, on entry, the 2 x 2 upper triangular matrix B. It is
assumed that the one-norm of B is less than 1/safmin. The diagonals
should be at least sqrt(safmin) times the largest element of B (in
absolute value); if a diagonal is smaller than that, then +/-
sqrt(safmin) will be used instead of that diagonal.

lda INTEGER. The first dimension of a; lda ≥ 2.

ldb INTEGER. The first dimension of b; ldb ≥ 2.

safmin REAL for slag2;
DOUBLE PRECISION for dlag2.
The smallest positive number such that 1/safmin does not overflow.
(This should always be ?lamch('S') - it is an argument in order to avoid
having to call ?lamch frequently.)

Output Parameters

scale1 REAL for slag2;
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the eigenvalue
equation which defines the first eigenvalue. If the eigenvalues are
complex, then the eigenvalues are (wr1 +/- wi i) /scale1 (which
may lie outside the exponent range of the machine), scale1=scale2,
and scale1 will always be positive.
If the eigenvalues are real, then the first (real) eigenvalue is wr1 /
scale1 , but this may overflow or underflow, and in fact, scale1 may
be zero or less than the underflow threshhold if the exact eigenvalue is
sufficiently large.

scale2 REAL for slag2;
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the eigenvalue
equation which defines the second eigenvalue. If the eigenvalues are
complex, then scale2=scale1. If the eigenvalues are real, then the
second (real) eigenvalue is wr2 / scale2 , but this may overflow or
underflow, and in fact, scale2 may be zero or less than the underflow
threshold if the exact eigenvalue is sufficiently large.

5-90

5 Intel® Math Kernel Library Reference Manual

wr1 REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wr1 is scale1 times the eigenvalue closest
to the (2,2) element of AB-1. If the eigenvalue is complex, then wr1=wr2
is scale1 times the real part of the eigenvalues.

wr2 REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wr2 is scale2 times the other eigenvalue.
If the eigenvalue is complex, then wr1=wr2 is scale1 times the real
part of the eigenvalues.

wi REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wi is zero. If the eigenvalue is complex,
then wi is scale1 times the imaginary part of the eigenvalues. wi will
always be non-negative.

?lags2
Computes 2-by-2 orthogonal matrices U, V, and Q, and
applies them to matrices A and B such that the rows of
the transformed A and B are parallel.

Syntax
call slags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)

call dlags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)

Description

This routine computes 2-by-2 orthogonal matrices U, V and Q, such that if upper =.TRUE., then

and

U′*A*Q U′*
A1 A2

0 A3

*Q x 0
x x

= =

LAPACK Auxiliary and Utility Routines 5

5-91

or if upper =.FALSE., then

and

The rows of the transformed A and B are parallel, where

, ,

Here Z' denotes the transpose of Z.

Input Parameters

upper LOGICAL.
If upper =.TRUE., the input matrices A and B are upper triangular;
If upper =.FALSE., the input matrices A and B are lower triangular.

a1, a2, a3 REAL for slags2
DOUBLE PRECISION for dlags2
On entry, a1, a2 and a3 are elements of the input 2-by-2 upper (lower)
triangular matrix A.

b1, b2, b3 REAL for slags2
DOUBLE PRECISION for dlags2
On entry, b1, b2 and b3 are elements of the input 2-by-2 upper (lower)
triangular matrix B.

V′*B*Q V′*
B1 B2

0 B3

*Q x 0
x x

= =

U′*A*Q U′*
A1 0

A2 A3

*Q x x
0 x

= =

V′*B*Q V′*
B1 0

B2 B3

*Q x x
0 x

= =

U csu snu

snu– csu
= V csv snv

snv– csv
= Q csq snq

snq– csq
=

5-92

5 Intel® Math Kernel Library Reference Manual

Output Parameters

csu, snu REAL for slags2
DOUBLE PRECISION for dlags2
The desired orthogonal matrix U.

csv, snv REAL for slags2
DOUBLE PRECISION for dlags2
The desired orthogonal matrix V.

csq, snq REAL for slags2
DOUBLE PRECISION for dlags2
The desired orthogonal matrix Q.

?lagtf
Computes an LU factorization of a matrix T-λI, where
T is a general tridiagonal matrix, and λ a scalar, using
partial pivoting with row interchanges.

Syntax
call slagtf(n, a, lambda, b, c, tol, d, in, info)

call dlagtf(n, a, lambda, b, c, tol, d, in, info)

Description

This routine factorizes the matrix (T - lambda*I), where T is an n-by-n tridiagonal matrix and
lambda is a scalar, as

 T - lambda*I = P L U,

where P is a permutation matrix, L is a unit lower tridiagonal matrix with at most one non-zero
sub-diagonal elements per column and U is an upper triangular matrix with at most two non-zero
super-diagonal elements per column. The factorization is obtained by Gaussian elimination with
partial pivoting and implicit row scaling. The parameter lambda is included in the routine so that
?lagtf may be used, in conjunction with ?lagts, to obtain eigenvectors of T by inverse
iteration.

Input Parameters

n INTEGER. The order of the matrix T (n ≥ 0).

LAPACK Auxiliary and Utility Routines 5

5-93

a, b, c REAL for slagtf
DOUBLE PRECISION for dlagtf
Arrays, dimension a(n), b(n-1), c(n-1):
On entry, a(*) must contain the diagonal elements of the matrix T.
On entry, b(*) must contain the (n-1) super-diagonal elements of T.
On entry, c(*) must contain the (n-1) sub-diagonal elements of T.

tol REAL for slagtf
DOUBLE PRECISION for dlagtf
On entry, a relative tolerance used to indicate whether or not the matrix
(T - lambda*I) is nearly singular. tol should normally be chose as
approximately the largest relative error in the elements of T. For
example, if the elements of T are correct to about 4 significant figures,
then tol should be set to about 5*10-4. If tol is supplied as less than
eps, where eps is the relative machine precision, then the value eps is
used in place of tol.

Output Parameters

a On exit, a is overwritten by the n diagonal elements of the upper
triangular matrix U of the factorization of T.

b On exit, b is overwritten by the n-1 super-diagonal elements of the
matrix U of the factorization of T.

c On exit, c is overwritten by the n-1 sub-diagonal elements of the matrix
L of the factorization of T.

d REAL for slagtf
DOUBLE PRECISION for dlagtf
Array, dimension (n-2).
On exit, d is overwritten by the n-2 second super-diagonal elements of
the matrix U of the factorization of T.

in INTEGER.
Array, dimension (n).
On exit, in contains details of the permutation matrix P. If an
interchange occurred at the k-th step of the elimination, then in(k) = 1,
otherwise
in(k) = 0. The element in(n) returns the smallest positive integer j
such that
 abs(u(j,j)) ≤ norm((T - lambda*I)(j))*tol,
where norm(A(j)) denotes the sum of the absolute values of the j-th
row of the matrix A. If no such j exists then in(n) is returned as zero. If

5-94

5 Intel® Math Kernel Library Reference Manual

in(n) is returned as positive, then a diagonal element of U is small,
indicating that
(T - lambda*I) is singular or nearly singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -k, the kth parameter had an illegal value.

?lagtm
Performs a matrix-matrix product of the form C =
αAB+βC, where A is a tridiagonal matrix, B and C are
rectangular matrices, and α and β are scalars, which
may be 0, 1, or -1.

Syntax
call slagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call dlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call clagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

call zlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)

Description

This routine performs a matrix-vector product of the form:

B := alpha*A*X + beta*B

where A is a tridiagonal matrix of order n, B and X are n-by-n rhs matrices, and alpha and beta
are real scalars, each of which may be 0., 1., or -1.

Input Parameters

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then B := alpha*A*X + beta*B
(no transpose);

If trans = 'T', then B := alpha*AT*X + beta*B
(transpose);

LAPACK Auxiliary and Utility Routines 5

5-95

If trans = 'C', then B := alpha*AH*X + beta*B
(conjugate transpose)

n INTEGER. The order of the matrix A (n ≥ 0).

nrhs INTEGER. The number of right-hand sides, i.e., the number of columns
in X and B (nrhs ≥ 0).

alpha, beta REAL for slagtm/clagtm
DOUBLE PRECISION for dlagtm/zlagtm
The scalars α and β. alpha must be 0., 1., or -1.; otherwise, it is
assumed to be 0. beta must be 0., 1., or -1.; otherwise, it is assumed to
be 1.

dl,d,du REAL for slagtm
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
COMPLEX*16 for zlagtm.
Arrays: dl(n - 1), d(n), du(n - 1).
The array dl contains the (n - 1) sub-diagonal elements of T.
The array d contains the n diagonal elements of T.
The array du contains the (n - 1) super-diagonal elements of T.

x, b REAL for slagtm
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
COMPLEX*16 for zlagtm.
Arrays:
x(ldx,*) contains the n-by-nrhs matrix X. The second dimension of
x must be at least max(1, nrhs).

b(ldb,*) contains the n-by-nrhs matrix B. The second dimension of
b must be at least max(1, nrhs).

ldx INTEGER. The leading dimension of the array x;
ldx ≥ max(1, n).

ldb INTEGER. The leading dimension of the array b;
ldb ≥ max(1, n).

5-96

5 Intel® Math Kernel Library Reference Manual

Output Parameters

b Overwritten by the matrix expression
B := alpha*A*X + beta*B

?lagts
Solves the system of equations (T-λI)x = y or
(T-λI)Tx = y ,where T is a general tridiagonal matrix
and λ a scalar, using the LU factorization computed by
?lagtf.

Syntax
call slagts(job, n, a, b, c, d, in, y, tol, info)

call dlagts(job, n, a, b, c, d, in, y, tol, info)

Description

This routine may be used to solve for x one of the systems of equations:

 (T - lambda*I)*x = y or (T - lambda*I)′*x = y ,
where T is an n-by-n tridiagonal matrix, following the factorization of
 (T - lambda*I) as

 T - lambda*I = P L U,

computed by the routine ?lagtf.

The choice of equation to be solved is controlled by the argument job, and in each case there is an
option to perturb zero or very small diagonal elements of U, this option being intended for use in
applications such as inverse iteration.

Input Parameters

job INTEGER. Specifies the job to be performed by ?lagts as follows:
= 1: The equations (T - lambda*I)x = y are to be solved, but diagonal
elements of U are not to be perturbed.

= -1: The equations (T - lambda*I)x = y are to be solved and, if
overflow would otherwise occur, the diagonal elements of U are to be
perturbed. See argument tol below.

LAPACK Auxiliary and Utility Routines 5

5-97

 = 2: The equations (T - lambda*I)′x = y are to be solved, but diagonal
elements of U are not to be perturbed.

= -2: The equations (T - lambda*I)′x = y are to be solved and, if
overflow would otherwise occur, the diagonal elements of U are to be
perturbed. See argument tol below.

n INTEGER. The order of the matrix T (n ≥ 0).

a, b, c, d REAL for slagts
DOUBLE PRECISION for dlagts
Arrays, dimension a(n) , b(n-1), c(n-1), d(n-2):
On entry, a(*) must contain the diagonal elements of U as returned
from ?lagtf.
On entry, b(*) must contain the first super-diagonal elements of U as
returned from ?lagtf.
On entry, c(*) must contain the sub-diagonal elements of L as returned
from ?lagtf.
On entry, d(*) must contain the second super-diagonal elements of U
as returned from ?lagtf.

in INTEGER.
Array, dimension (n).
On entry, in(*) must contain details of the matrix P as returned from
?lagtf.

y REAL for slagts
DOUBLE PRECISION for dlagts
Array, dimension (n). On entry, the right hand side vector y.

tol REAL for slagtf
DOUBLE PRECISION for dlagtf.
On entry, with job < 0, tol should be the minimum perturbation to be
made to very small diagonal elements of U. tol should normally be
chosen as about eps*norm(U), where eps is the relative machine
precision, but if tol is supplied as non-positive, then it is reset to
eps*max(abs(u(i,j))). If job > 0 then tol is not referenced.

Output Parameters

y On exit, y is overwritten by the solution vector x.

tol On exit, tol is changed as described in Input Parameters section above,
only if tol is non-positive on entry. Otherwise tol is unchanged.

5-98

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i > 0, overflow would occur when computing the ith
element of the solution vector x. This can only occur when job is
supplied as positive and either means that a diagonal element of U is
very small, or that the elements of the right-hand side vector y are very
large.

?lagv2
Computes the Generalized Schur factorization of a real
2-by-2 matrix pencil (A,B) where B is upper triangular.

Syntax
call slagv2(a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr)

call dlagv2(a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr)

Description

This routine computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B)
where B is upper triangular. The routine computes orthogonal (rotation) matrices given by csl,
snl and csr, snr such that:

1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then

2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then

a11 a12

0 a22

csl snl

snl– csl

a11 a12

a21 a22

csr snr–
snr csr

=

b11 b12

0 b22

csl snl

snl– csl

b11 b12

0 b22

csr snr–
snr csr

=

LAPACK Auxiliary and Utility Routines 5

5-99

 where b11 ≥ b22 > 0.

Input Parameters

a, b REAL for slagv2
DOUBLE PRECISION for dlagv2
Arrays:
a(lda,2) contains the 2-by-2 matrix A;
b(ldb,2) contains the upper triangular 2-by-2 matrix B.

lda INTEGER. The leading dimension of the array a;
lda ≥ 2.

ldb INTEGER. The leading dimension of the array b;
ldb ≥ 2.

Output Parameters

a On exit, a is overwritten by the “A-part” of the generalized Schur form.

b On exit, b is overwritten by the “B-part” of the generalized Schur form.

alphar,alphai,beta REAL for slagv2
DOUBLE PRECISION for dlagv2.
Arrays, dimension (2) each.
(alphar(k) + i ∗ alphai(k))/beta(k) are the eigenvalues of the pencil
(A,B), k=1,2 and i = sqrt(-1). Note that beta(k) may be zero.

csl, snl REAL for slagv2
DOUBLE PRECISION for dlagv2
The cosine and sine of the left rotation matrix, respectively.

csr, snr REAL for slagv2
DOUBLE PRECISION for dlagv2
The cosine and sine of the right rotation matrix, respectively.

a11 a12

a21 a22

csl snl

snl– csl

a11 a12

a21 a22

csr snr–
snr csr

=

b11 0

0 b22

csl snl

snl– csl

b11 b12

0 b22

csr snr–
snr csr

=

5-100

5 Intel® Math Kernel Library Reference Manual

?lahqr
Computes the eigenvalues and Schur factorization of an
upper Hessenberg matrix, using the
double-shift/single-shift QR algorithm.

Syntax
call slahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz,

info)

call dlahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz,
info)

call clahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info)

call zlahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info)

Description

This routine is an auxiliary routine called by ?hseqr to update the eigenvalues and Schur
decomposition already computed by ?hseqr, by dealing with the Hessenberg submatrix in rows
and columns ilo to ihi.

Input Parameters

wantt LOGICAL.
If wantt =.TRUE., the full Schur form T is required;
If wantt =.FALSE., eigenvalues only are required.

wantz LOGICAL.
If wantz =.TRUE., the matrix of Schur vectors Z is required;
If wantz =.FALSE., Schur vectors are not required.

n INTEGER. The order of the matrix H (n ≥ 0).

ilo, ihi INTEGER.
It is assumed that H is already upper quasi-triangular in rows and
columns ihi+1:n, and that H(ilo,ilo-1) = 0 (unless ilo = 1). The
routine ?lahqr works primarily with the Hessenberg submatrix in rows
and columns ilo to ihi, but applies transformations to all of H if
wantt =.TRUE..
Constraints:
1 ≤ ilo ≤ max(1,ihi); ihi ≤ n.

LAPACK Auxiliary and Utility Routines 5

5-101

h, z REAL for slahqr
DOUBLE PRECISION for dlahqr
COMPLEX for clahqr
COMPLEX*16 for zlahqr.
Arrays:
h(ldh,*) contains the upper Hessenberg matrix H.
The second dimension of h must be at least max(1, n).

z(ldz,*)
If wantz =.TRUE., then, on entry, z must contain the current matrix Z
of transformations accumulated by ?hseqr.
If wantz =.FALSE., then z is not referenced.
The second dimension of z must be at least max(1, n).

ldh INTEGER. The first dimension of h; at least max(1, n).

ldz INTEGER. The first dimension of z; at least max(1, n).

iloz, ihiz INTEGER. Specify the rows of Z to which transformations must be
applied if wantz =.TRUE..
1 ≤ iloz ≤ ilo; ihi ≤ ihiz ≤ n.

Output Parameters

h On exit, if wantt =.TRUE., H is upper quasi-triangular (upper
triangular for complex flavors) in rows and columns ilo:ihi, with any
2-by-2 diagonal blocks in standard form. If wantt =.FALSE., the
contents of H are unspecified on exit.

wr, wi REAL for slahqr
DOUBLE PRECISION for dlahqr
Arrays, DIMENSION at least max (1, n) each. Used with real flavors only.
The real and imaginary parts, respectively, of the computed eigenvalues
ilo to ihi are stored in the corresponding elements of wr and wi. If
two eigenvalues are computed as a complex conjugate pair, they are
stored in consecutive elements of wr and wi, say the i-th and (i+1)th,
with wi(i) > 0 and wi(i+1) < 0. If wantt =.TRUE., the eigenvalues are
stored in the same order as on the diagonal of the Schur form returned in
H, with wr(i) = H(i,i), and,
if H(i:i+1, i:i+1) is a 2-by-2 diagonal block,
wi(i) = sqrt(H(i+1,i)*H(i,i+1)) and wi(i+1) = -wi(i).

5-102

5 Intel® Math Kernel Library Reference Manual

w COMPLEX for clahqr
COMPLEX*16 for zlahqr.
Array, DIMENSION at least max (1, n). Used with complex flavors only.
The computed eigenvalues ilo to ihi are stored in the corresponding
elements of w.
If wantt =.TRUE., the eigenvalues are stored in the same order as on
the diagonal of the Schur form returned in H, with w(i) = H(i,i).

z If wantz =.TRUE., then, on exit z has been updated; transformations
are applied only to the submatrix Z(iloz:ihiz, ilo:ihi).

info INTEGER.
If info = 0, the execution is successful.
If info = i > 0, ?lahqr failed to compute all the eigenvalues ilo to
ihi in a total of 30*(ihi-ilo+1) iterations; elements i+1:ihi of wr
and wi (for slahqr/dlahqr) or w (for clahqr/zlahqr) contain
those eigenvalues which have been successfully computed.

?lahrd
Reduces the first nb columns of a general rectangular
matrix A so that elements below the k-th subdiagonal
are zero, and returns auxiliary matrices which are
needed to apply the transformation to the unreduced
part of A.

Syntax
call slahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)

call dlahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)

call clahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)

call zlahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)

Description

The routine reduces the first nb columns of a real/complex general n-by-(n-k+1) matrix A so that
elements below the k-th subdiagonal are zero. The reduction is performed by an
orthogonal/unitary similarity transformation Q′ A Q. The routine returns the matrices V and T
which determine Q as a block reflector I - V T V′, and also the matrix Y = A V T.

LAPACK Auxiliary and Utility Routines 5

5-103

The matrix Q is represented as products of nb elementary reflectors:
Q = H(1) H(2) ... H(nb)

Each H(i) has the form

H(i) = I - tau*v*v′,

where tau is a real/complex scalar, and v is a real/complex vector.

This is an auxiliary routine called by ?gehrd.

Input Parameters

n INTEGER. The order of the matrix A (n ≥ 0).

k INTEGER. The offset for the reduction. Elements below the k-th
subdiagonal in the first nb columns are reduced to zero.

nb INTEGER. The number of columns to be reduced.

a REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.

Array a(lda, n-k+1) contains the n-by-(n-k+1) general matrix A to be
reduced.

lda INTEGER. The first dimension of a; at least max(1, n).

ldt INTEGER. The first dimension of the output array t; must be at least
max(1, nb).

ldy INTEGER. The first dimension of the output array y; must be at least
max(1, n).

Output Parameters

a On exit, the elements on and above the k-th subdiagonal in the first nb
columns are overwritten with the corresponding elements of the reduced
matrix; the elements below the k-th subdiagonal, with the array tau,
represent the matrix Q as a product of elementary reflectors. The other
columns of a are unchanged. See Application Notes below.

5-104

5 Intel® Math Kernel Library Reference Manual

tau REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.

Array, DIMENSION (nb).
Contains scalar factors of the elementary reflectors.

t, y REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.

Arrays, dimension t(ldt, nb), y(ldy, nb).
The array t contains upper triangular matrix T.

The array y contains the n-by-nb matrix Y .

Application Notes

For the elementary reflector H(i) ,

v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in a(i+k+1:n, i) and tau is stored in
tau(i).

The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with T
and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form:
A := (I - V T V′) * (A - Y V′).
The contents of A on exit are illustrated by the following example with
n = 7, k = 3 and nb = 2:

a h a a a

a h a a a

a h a a a

h h a a a

v1 h a a a

v1 v2 a a a

v1 v2 a a a

LAPACK Auxiliary and Utility Routines 5

5-105

where a denotes an element of the original matrix A, h denotes a modified element of the upper
Hessenberg matrix H, and vi denotes an element of the vector defining H(i).

?laic1
Applies one step of incremental condition estimation.

Syntax
call slaic1(job, j, x, sest, w, gamma, sestpr, s, c)

call dlaic1(job, j, x, sest, w, gamma, sestpr, s, c)

call claic1(job, j, x, sest, w, gamma, sestpr, s, c)

call zlaic1(job, j, x, sest, w, gamma, sestpr, s, c)

Description

The routine ?laic1 applies one step of incremental condition estimation in its simplest version.

Let x, ||x||2 = 1 (where ||a||2 denotes the 2-norm of a), be an approximate singular vector of an
j-by-j lower triangular matrix L, such that

||L*x||2 = sest

Then ?laic1 computes sestpr, s, c such that the vector

is an approximate singular vector of

in the sense that

||Lhat *xhat||2 = sestpr.

xhat s*x
c

=

Lhat L 0
w′ gamma

=

5-106

5 Intel® Math Kernel Library Reference Manual

Depending on job, an estimate for the largest or smallest singular value is computed.

Note that [s c]′ and sestpr2 is an eigenpair of the system (for slaic1/claic)

,

where alpha = x′*w ;

or of the system (for claic1/zlaic)

,

where alpha = conjg(x)′*w.

Input Parameters

job INTEGER.
If job =1, an estimate for the largest singular value is computed;
If job =2, an estimate for the smallest singular value is computed;

j INTEGER. Length of x and w.

x, w REAL for slaic1
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
COMPLEX*16 for zlaic1.
Arrays, dimension (j) each.
Contain vectors x and w, respectively.

sest REAL for slaic1/claic1;
DOUBLE PRECISION for dlaic1/zlaic1.
Estimated singular value of j-by-j matrix L.

gamma REAL for slaic1
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
COMPLEX*16 for zlaic1.
The diagonal element gamma.

diag sest*sest 0(,) alpha gamma[] *
alpha

gamma
+

diag sest*sest 0(,) alpha gamma[] *
conjg alpha()

conjg gamma()
+

LAPACK Auxiliary and Utility Routines 5

5-107

Output Parameters

sestpr REAL for slaic1/claic1;
DOUBLE PRECISION for dlaic1/zlaic1.
Estimated singular value of (j+1)-by-(j+1) matrix Lhat.

s, c REAL for slaic1
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
COMPLEX*16 for zlaic1.
Sine and cosine needed in forming xhat.

?laln2
Solves a 1-by-1 or 2-by-2 linear system of equations of
the specified form.

Syntax
call slaln2(ltrans, na, nw, smin, ca, a, lda, d1, d2, b, ldb, wr, wi, x, ldx,

scale, xnorm, info)

call dlaln2(ltrans, na, nw, smin, ca, a, lda, d1, d2, b, ldb, wr, wi, x, ldx,
scale, xnorm, info)

Description

The routine solves a system of the form

 (ca A - w D) X = s B or (ca A' - w D) X = s B
with possible scaling (s) and perturbation of A (A' means A-transpose.)

A is an na-by-na real matrix, ca is a real scalar, D is an na-by-na real diagonal matrix, w is a real
or complex value, and X and B are na-by-1 matrices: real if w is real, complex if w is complex. The
parameter na may be 1 or 2.

If w is complex, X and B are represented as na-by-2 matrices, the first column of each being the
real part and the second being the imaginary part.

The routine computes the scaling factor s (≤ 1) so chosen that X can be computed without
overflow. X is further scaled if necessary to assure that norm(ca A - w D)*norm(X) is less than
overflow.

5-108

5 Intel® Math Kernel Library Reference Manual

If both singular values of (ca A - w D) are less than smin, smin * I (where I stands for identity)
will be used instead of (ca A - w D). If only one singular value is less than smin, one element of
(ca A - w D) will be perturbed enough to make the smallest singular value roughly smin. If both
singular values are at least smin, (ca A - w D) will not be perturbed.
In any case, the perturbation will be at most some small multiple of
max(smin, ulp * norm(ca A - w D)).
The singular values are computed by infinity-norm approximations, and thus will only be correct
to a factor of 2 or so.

Input Parameters

trans LOGICAL.
If trans =.TRUE., A- transpose will be used.
If trans =.FALSE., A will be used (not transposed.)

na INTEGER. The size of the matrix A. May only be 1 or 2.

nw INTEGER. This parameter must be 1 if w is real, and 2 if w is complex.
May only be 1or 2.

smin REAL for slaln2
DOUBLE PRECISION for dlaln2.
The desired lower bound on the singular values of A. This should be a
safe distance away from underflow or overflow, for example, between
(underflow/machine_precision) and (machine_precision * overflow).
(See bignum and ulp).

ca REAL for slaln2
DOUBLE PRECISION for dlaln2.
The coefficient by which A is multiplied.

a REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (lda,na). The na-by-na matrix A.

lda INTEGER. The leading dimension of a. Must be at least na.

NOTE. All input quantities are assumed to be smaller than overflow
by a reasonable factor (see bignum).

LAPACK Auxiliary and Utility Routines 5

5-109

d1, d2 REAL for slaln2
DOUBLE PRECISION for dlaln2.
The (1,1) and (2,2) elements in the diagonal matrix D, respectively. d2 is
not used if nw = 1.

b REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (ldb,nw). The na-by-nw matrix B (right-hand side).
If nw =2 (w is complex), column 1 contains the real part of B and
column 2 contains the imaginary part.

ldb INTEGER. The leading dimension of b. Must be at least na.

wr, wi REAL for slaln2
DOUBLE PRECISION for dlaln2.
The real and imaginary part of the scalar w, respectively. wi is not used
if nw = 1.

ldx INTEGER. The leading dimension of the output array x. Must be at least
na.

Output Parameters

x REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (ldx,nw). The na-by-nw matrix X (unknowns), as
computed by the routine. If nw = 2 (w is complex), on exit, column 1
will contain the real part of X and column 2 will contain the imaginary
part.

scale REAL for slaln2
DOUBLE PRECISION for dlaln2.
The scale factor that B must be multiplied by to insure that overflow
does not occur when computing X. Thus (ca A - w D) X will be
scale*B, not B (ignoring perturbations of A.) It will be at most 1.

xnorm REAL for slaln2
DOUBLE PRECISION for dlaln2.
The infinity-norm of X, when X is regarded as an na-by-nw real matrix.

info INTEGER.
An error flag. It will be zero if no error occurs, a negative number if an
argument is in error, or a positive number if (ca A - w D) had to be
perturbed.
The possible values are:

5-110

5 Intel® Math Kernel Library Reference Manual

If info = 0: no error occurred, and (ca A - w D) did not have to be
perturbed.
If info = 1: (ca A - w D) had to be perturbed to make its smallest (or
only) singular value greater than smin.

?lals0
Applies back multiplying factors in solving the least
squares problem using divide and conquer SVD
approach. Used by ?gelsd.

Syntax
call slals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,

 givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
 k, c, s, work, info)

call dlals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
 givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
 k, c, s, work, info)

call clals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
 givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
 k, c, s, rwork, info)

call zlals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
 givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
 k, c, s, rwork, info)

Description

The routine applies back the multiplying factors of either the left or right singular vector matrix of
a diagonal matrix appended by a row to the right hand side matrix B in solving the least squares
problem using the divide-and-conquer SVD approach.

For the left singular vector matrix, three types of orthogonal matrices are involved:

NOTE. In the interests of speed, this routine does not check the
inputs for errors.

LAPACK Auxiliary and Utility Routines 5

5-111

(1L) Givens rotations: the number of such rotations is givptr; the pairs of columns/rows they
were applied to are stored in givcol; and the c- and s-values of these rotations are stored in
givnum.

(2L) Permutation. The (nl+1)-st row of B is to be moved to the first row, and for j=2:n, perm(j)-th
row of B is to be moved to the j-th row.

(3L) The left singular vector matrix of the remaining matrix.

For the right singular vector matrix, four types of orthogonal matrices are involved:

(1R) The right singular vector matrix of the remaining matrix.

(2R) If sqre = 1, one extra Givens rotation to generate the right null space.

(3R) The inverse transformation of (2L).

(4R) The inverse transformation of (1L).

Input Parameters

icompq INTEGER. Specifies whether singular vectors are to be computed in
factored form:
If icompq = 0: Left singular vector matrix.
If icompq = 1: Right singular vector matrix.

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER.
If sqre = 0: the lower block is an nr-by-nr square matrix.
If sqre = 1: the lower block is an nr-by-(nr+1) rectangular matrix. The
bidiagonal matrix has row dimension n = nl + nr + 1, and column
dimension
m = n + sqre.

nrhs INTEGER. The number of columns of b and bx.
Must be at least 1.

b REAL for slals0
DOUBLE PRECISION for dlals0
COMPLEX for clals0

5-112

5 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for zlals0.
Array, DIMENSION (ldb, nrhs). Contains the right hand sides of the
least squares problem in rows 1 through m.

ldb INTEGER. The leading dimension of b. Must be at least max(1,max(m,
n)).

bx REAL for slals0
DOUBLE PRECISION for dlals0
COMPLEX for clals0
COMPLEX*16 for zlals0.
Workspace array, DIMENSION (ldbx, nrhs).

ldbx INTEGER. The leading dimension of bx.

perm INTEGER.
Array, DIMENSION (n). The permutations (from deflation and sorting)
applied to the two blocks.

givptr INTEGER. The number of Givens rotations which took place in this
subproblem.

givcol INTEGER.
Array, DIMENSION (ldgcol, 2). Each pair of numbers indicates a pair
of rows/columns involved in a Givens rotation.

ldgcol INTEGER. The leading dimension of givcol, must be at least n.

givnum REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (ldgnum, 2). Each number indicates the c or s
value used in the corresponding Givens rotation.

ldgnum INTEGER. The leading dimension of arrays difr, poles and givnum,
must be at least k.

poles REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (ldgnum, 2). On entry,
poles(1:k, 1) contains the new singular values obtained from solving
the secular equation, and poles(1:k, 2) is an array containing the poles
in the secular equation.

LAPACK Auxiliary and Utility Routines 5

5-113

difl REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (k). On entry, difl(i) is the distance between i-th
updated (undeflated) singular value and the i-th (undeflated) old
singular value.

difr REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (ldgnum, 2). On entry, difr(i, 1) contains the
distances between i-th updated (undeflated) singular value and the
i+1-th (undeflated) old singular value. And difr(i, 2) is the
normalizing factor for the i-th right singular vector.

z REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION (k). Contains the components of the
deflation-adjusted updating row vector.

k INTEGER. Contains the dimension of the non-deflated matrix. This is the
order of the related secular equation. 1 ≤ k ≤ n.

c REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre =0 and the c value of a Givens rotation related
to the right null space if sqre = 1.

s REAL for slals0 /clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre =0 and the s value of a Givens rotation related
to the right null space if sqre = 1.

work REAL for slals0
DOUBLE PRECISION for dlals0
Workspace array, DIMENSION (k). Used with real flavors only.

rwork REAL for clals0
DOUBLE PRECISION for zlals0
Workspace array, DIMENSION (k*(1+nrhs) + 2*nrhs). Used with
complex flavors only.

Output Parameters

b On exit, contains the solution X in rows 1 through n.

5-114

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.

?lalsa
Computes the SVD of the coefficient matrix in compact
form. Used by ?gelsd.

Syntax
call slalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl,

difr, z, poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork,
info)

call dlalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl,
difr, z, poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork,
info)

call clalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl,
difr, z, poles, givptr, givcol, ldgcol, perm, givnum, c, s, rwork, iwork,
info)

call zlalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl,
difr, z, poles, givptr, givcol, ldgcol, perm, givnum, c, s, rwork, iwork,
info)

Description

The routine is an itermediate step in solving the least squares problem by computing the SVD of
the coefficient matrix in compact form. The singular vectors are computed as products of simple
orthorgonal matrices.

If icompq = 0, ?lalsa applies the inverse of the left singular vector matrix of an upper bidiagonal
matrix to the right hand side; and if
icompq = 1, the routine applies the right singular vector matrix to the right hand side. The singular
vector matrices were generated in the compact form by ?lalsa.

LAPACK Auxiliary and Utility Routines 5

5-115

Input Parameters

icompq INTEGER. Specifies whether the left or the right singular vector matrix is
involved.
If icompq = 0: left singular vector matrix is used
If icompq = 1: right singular vector matrix is used.

smlsiz INTEGER. The maximum size of the subproblems at the bottom of the
computation tree.

n INTEGER. The row and column dimensions of the upper bidiagonal
matrix.

nrhs INTEGER. The number of columns of b and bx. Must be at least 1.

b REAL for slalsa
DOUBLE PRECISION for dlalsa
COMPLEX for clalsa
COMPLEX*16 for zlalsa
Array, DIMENSION (ldb, nrhs). Contains the right hand sides of the
least squares problem in rows 1 through m.

ldb INTEGER. The leading dimension of b in the calling subprogram. Must
be at least max(1,max(m, n)).

ldbx INTEGER. The leading dimension of the output array bx.

u REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, smlsiz). On entry, u contains the left
singular vector matrices of all subproblems at the bottom level.

ldu INTEGER, ldu ≥ n. The leading dimension of arrays u, vt, difl, difr,
poles, givnum, and z.

vt REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, smlsiz +1). On entry, contains the right
singular vector matrices of all subproblems at the bottom level.

k INTEGER array, DIMENSION (n).

difl REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, nlvl),
where nlvl = int(log2 (n /(smlsiz+1))) + 1.

5-116

5 Intel® Math Kernel Library Reference Manual

difr REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, 2*nlvl). On entry,
difl(*, i) and difr(*, 2i -1) record distances between singular values
on the i-th level and singular values on the (i -1)-th level, and
difr(*, 2i) record the normalizing factors of the right singular vectors
matrices of subproblems on i-th level.

z REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, nlvl). On entry, z(1, i) contains the
components of the deflation- adjusted updating the row vector for
subproblems on the i-th level.

poles REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, 2*nlvl).
On entry, poles(*, 2i-1: 2i) contains the new and old singular values
involved in the secular equations on the i-th level.

givptr INTEGER.
Array, DIMENSION (n).
On entry, givptr(i) records the number of Givens rotations performed
on the i-th problem on the computation tree.

givcol INTEGER.
Array, DIMENSION (ldgcol, 2*nlvl). On entry, for each i,
givcol(*, 2i-1: 2i) records the locations of Givens rotations
performed on the i-th level on the computation tree.

ldgcol INTEGER, ldgcol ≥ n. The leading dimension of arrays givcol and
perm.

perm INTEGER.
Array, DIMENSION (ldgcol, nlvl). On entry, perm(*, i) records
permutations done on the i-th level of the computation tree.

givnum REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, 2*nlvl). On entry, givnum(*, 2i-1 : 2i)
records the c and s values of Givens rotations performed on the i-th
level on the computation tree.

LAPACK Auxiliary and Utility Routines 5

5-117

c REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (n). On entry, if the i-th subproblem is not square,
c(i) contains the c value of a Givens rotation related to the right null
space of the i-th subproblem.

s REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (n). On entry, if the i-th subproblem is not square,
s(i) contains the s-value of a Givens rotation related to the right null
space of the i-th subproblem.

work REAL for slalsa
DOUBLE PRECISION for dlalsa
Workspace array, DIMENSION at least (n). Used with real flavors only.

rwork REAL for clalsa
DOUBLE PRECISION for zlalsa
Workspace array, DIMENSION at least
max(n, (smlsz+1)*nrhs*3). Used with complex flavors only.

iwork INTEGER.
Workspace array, DIMENSION at least (3n).

Output Parameters

b On exit, contains the solution X in rows 1 through n.

bx REAL for slalsa
DOUBLE PRECISION for dlalsa
COMPLEX for clalsa
COMPLEX*16 for zlalsa
Array, DIMENSION (ldbx, nrhs). On exit, the result of applying the
left or right singular vector matrix to b.

info INTEGER.
If info = 0: successful exit
If info = -i < 0, the i-th argument had an illegal value.

5-118

5 Intel® Math Kernel Library Reference Manual

?lalsd
Uses the singular value decomposition of A to solve the
least squares problem.

Syntax
call slalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, iwork,

info)

call dlalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, iwork,
info)

call clalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, rwork,
iwork, info)

call zlalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, rwork,
iwork, info)

Description

The routine uses the singular value decomposition of A to solve the least squares problem of
finding X to minimize the Euclidean norm of each column of AX-B, where A is n-by-n upper
bidiagonal, and X and B are n-by-nrhs. The solution X overwrites B.

The singular values of A smaller than rcond times the largest singular value are treated as zero in
solving the least squares problem; in this case a minimum norm solution is returned. The actual
singular values are returned in d in ascending order.

This code makes very mild assumptions about floating point arithmetic. It will work on machines
with a guard digit in add/subtract, or on those binary machines without guard digits which subtract
like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.

It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know
of none.

Input Parameters

uplo CHARACTER*1.
If uplo = 'U', d and e define an upper bidiagonal matrix.
If uplo = 'L', d and e define a lower bidiagonal matrix.

smlsiz INTEGER. The maximum size of the subproblems at the bottom of the
computation tree.

LAPACK Auxiliary and Utility Routines 5

5-119

n INTEGER. The dimension of the bidiagonal matrix.
n ≥ 0.

nrhs INTEGER. The number of columns of B. Must be at
least 1.

d REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
Array, DIMENSION (n). On entry, d contains the main diagonal of the
bidiagonal matrix.

e REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
Array, DIMENSION (n-1). Contains the super-diagonal entries of the
bidiagonal matrix. On exit, e is destroyed.

b REAL for slalsd
DOUBLE PRECISION for dlalsd
COMPLEX for clalsd
COMPLEX*16 for zlalsd
Array, DIMENSION (ldb,nrhs). On input, b contains the right hand
sides of the least squares problem. On output, b contains the solution X.

ldb INTEGER. The leading dimension of b in the calling subprogram. Must
be at least max(1,n).

rcond REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
The singular values of A less than or equal to rcond times the largest
singular value are treated as zero in solving the least squares problem.
If rcond is negative, machine precision is used instead.
For example, if diag(S)*X=B were the least squares problem, where
diag(S) is a diagonal matrix of singular values, the solution would be
X(i) = B(i) / S(i) if S(i) is greater than rcond *max(S), and X(i) = 0 if
S(i) is less than or equal to rcond *max(S).

rank INTEGER. The number of singular values of A greater than rcond times
the largest singular value.

work REAL for slalsd
DOUBLE PRECISION for dlalsd
COMPLEX for clalsd
COMPLEX*16 for zlalsd
Workspace array.
DIMENSION for real flavors at least

5-120

5 Intel® Math Kernel Library Reference Manual

(9n+2n*smlsiz+8n*nlvl+n*nrhs+(smlsiz+1)2),
where
nlvl = max(0, int(log2(n / (smlsiz+1))) + 1).

DIMENSION for complex flavors at least (n*nrhs).

rwork REAL for clalsd
DOUBLE PRECISION for zlalsd
Workspace array, used with complex flavors only. DIMENSION at least
(9n + 2n*smlsiz + 8n*nlvl + 3*mlsiz*nrhs + (smlsiz+1)2),
where
nlvl = max(0, int(log2(min(m,n)/(smlsiz+1))) + 1).

iwork INTEGER.
Workspace array, DIMENSION at least (3n*nlvl + 11n).

Output Parameters

d On exit, if info = 0, d contains singular values of the bidiagonal matrix.

b On exit, b contains the solution X.

info INTEGER.
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info > 0: The algorithm failed to compute a singular value while
working on the submatrix lying in rows and columns info/(n+1)
through mod(info,n+1).

?lamrg
Creates a permutation list to merge the entries of two
independently sorted sets into a single set sorted in
acsending order.

Syntax
call slamrg(n1, n2, a, strd1, strd2, index)

call dlamrg(n1, n2, a, strd1, strd2, index)

LAPACK Auxiliary and Utility Routines 5

5-121

Description

The routine creates a permutation list which will merge the elements of a (which is composed of
two independently sorted sets) into a single set which is sorted in ascending order.

Input Parameters

n1, n2 INTEGER.
These arguments contain the respective lengths of the two sorted lists to
be merged.

a REAL for slamrg
DOUBLE PRECISION for dlamrg.
Array, DIMENSION (n1+n2).
The first n1 elements of a contain a list of numbers which are sorted in
either ascending or descending order. Likewise for the final n2 elements.

strd1, strd2 INTEGER.
These are the strides to be taken through the array a. Allowable strides
are 1 and -1. They indicate whether a subset of a is sorted in ascending
(strdx = 1) or descending (strdx = -1) order.

Output Parameters

index INTEGER.
Array, DIMENSION (n1+n2).
On exit, this array will contain a permutation such that if
b(i) = a(index(i)) for i=1, n1+n2, then b will be sorted in ascending
order.

?langb
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element of general band matrix.

Syntax
val = slangb(norm, n, kl, ku, ab, ldab, work)

val = dlangb(norm, n, kl, ku, ab, ldab, work)

val = clangb(norm, n, kl, ku, ab, ldab, work)

5-122

5 Intel® Math Kernel Library Reference Manual

val = zlangb(norm, n, kl, ku, ab, ldab, work)

Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the
element of largest absolute value of an n-by-n band matrix A, with kl sub-diagonals and ku
super-diagonals.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’,

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned by the routine as
described above.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?langb is set to zero.

kl INTEGER. The number of sub-diagonals of the matrix A. kl ≥ 0.

ku INTEGER. The number of super-diagonals of the matrix A. ku ≥ 0.

ab REAL for slangb
DOUBLE PRECISION for dlangb
COMPLEX for clangb
COMPLEX*16 for zlangb
Array, DIMENSION (ldab,n). The band matrix A, stored in rows 1 to
kl+ku+1. The j-th column of A is stored in the j-th column of the
array ab as follows:
ab(ku+1+i-j,j) = a(i,j)
for max(1,j-ku) ≤ i ≤ min(n,j+kl).

ldab INTEGER. The leading dimension of the array ab.
ldab ≥ kl+ku+1.

LAPACK Auxiliary and Utility Routines 5

5-123

work REAL for slangb/clangb
DOUBLE PRECISION for dlangb/zlangb
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I'; otherwise, work is not referenced.

Output Parameters

val REAL for slangb/clangb
DOUBLE PRECISION for dlangb/zlangb
Value returned by the function.

?lange
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element of a general rectangular matrix.

Syntax
val = slange(norm, m, n, a, lda, work)

val = dlange(norm, m, n, a, lda, work)

val = clange(norm, m, n, a, lda, work)

val = zlange(norm, m, n, a, lda, work)

Description

The function ?lange returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real/complex matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’ ,

5-124

5 Intel® Math Kernel Library Reference Manual

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lange as
described above.

m INTEGER. The number of rows of the matrix A.
m ≥ 0. When m = 0, ?lange is set to zero.

n INTEGER. The number of columns of the matrix A.
n ≥ 0. When n = 0, ?lange is set to zero.

a REAL for slange
DOUBLE PRECISION for dlange
COMPLEX for clange
COMPLEX*16 for zlange
Array, DIMENSION (lda,n). The m-by-n matrix A.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(m,1).

work REAL for slange and clange.
DOUBLE PRECISION for dlange and zlange.
Workspace array, DIMENSION (lwork), where lwork ≥ m when
norm = 'I'; otherwise, work is not referenced.

Output Parameters

val REAL for slange/clange
DOUBLE PRECISION for dlange/zlange
Value returned by the function.

LAPACK Auxiliary and Utility Routines 5

5-125

?langt
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element of a general tridiagonal matrix.

Syntax
val = slangt(norm, n, dl, d, du)

val = dlangt(norm, n, dl, d, du)

val = clangt(norm, n, dl, d, du)

val = zlangt(norm, n, dl, d, du)

Description

The routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the
element of largest absolute value of a real/complex tridiagonal matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’ ,

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?langt as
described above.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?langt is set to zero.

dl, d, du REAL for slangt
DOUBLE PRECISION for dlangt
COMPLEX for clangt

5-126

5 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for zlangt
Arrays: dl (n-1), d (n), du (n-1).
The array dl contains the (n-1) sub-diagonal elements of A.
The array d contains the diagonal elements of A.
The array du contains the (n-1) super-diagonal elements of A.

Output Parameters

val REAL for slangt/clangt
DOUBLE PRECISION for dlangt/zlangt
Value returned by the function.

?lanhs
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element of an upper Hessenberg matrix.

Syntax
val = slanhs(norm, n, a, lda, work)

val = dlanhs(norm, n, a, lda, work)

val = clanhs(norm, n, a, lda, work)

val = zlanhs(norm, n, a, lda, work)

Description

The function ?lanhs returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a Hessenberg matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’ ,

LAPACK Auxiliary and Utility Routines 5

5-127

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lanhs as
described above.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lanhs is set to zero.

a REAL for slanhs
DOUBLE PRECISION for dlanhs
COMPLEX for clanhs
COMPLEX*16 for zlanhs
Array, DIMENSION (lda,n). The n-by-n upper Hessenberg matrix A; the
part of A below the first sub-diagonal is not referenced.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(n,1).

work REAL for slanhs and clanhs.
DOUBLE PRECISION for dlange and zlange.
Workspace array, DIMENSION (lwork), where lwork ≥ n when
norm ='I'; otherwise, work is not referenced.

Output Parameters

val REAL for slanhs/clanhs
DOUBLE PRECISION for dlanhs/zlanhs
Value returned by the function.

?lansb
Returns the value of the 1-norm, or the Frobenius norm,
or the infinity norm, or the element of largest absolute
value of a symmetric band matrix.

Syntax
val = slansb(norm, uplo, n, k, ab, ldab, work)

5-128

5 Intel® Math Kernel Library Reference Manual

val = dlansb(norm, uplo, n, k, ab, ldab, work)

val = clansb(norm, uplo, n, k, ab, ldab, work)

val = zlansb(norm, uplo, n, k, ab, ldab, work)

Description

The function ?lansb returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n-by-n real/complex symmetric band matrix
A, with k super-diagonals.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’ ,

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lansb as
described above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the band matrix A is supplied.
If uplo = 'U': upper triangular part is supplied;
If uplo = 'L': lower triangular part is supplied.

n INTEGER. The order of the matrix A. n ≥ 0.
When n = 0, ?lansb is set to zero.

k INTEGER. The number of super-diagonals or sub-diagonals of the band
matrix A. k ≥ 0.

ab REAL for slansb
DOUBLE PRECISION for dlansb
COMPLEX for clansb
COMPLEX*16 for zlansb
Array, DIMENSION (ldab,n). The upper or lower triangle of the

LAPACK Auxiliary and Utility Routines 5

5-129

symmetric band matrix A, stored in the first k+1 rows of ab. The j-th
column of A is stored in the j-th column of the array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j)
for max(1,j-k) ≤ i≤ j;
if uplo = 'L', ab(1+i-j,j) = a(i,j) for j≤i≤min(n,j+k).

ldab INTEGER. The leading dimension of the array ab.
ldab ≥ k+1.

work REAL for slansb and clansb.
DOUBLE PRECISION for dlansb and zlansb.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not
referenced.

Output Parameters

val REAL for slansb/clansb
DOUBLE PRECISION for dlansb/zlansb
Value returned by the function.

?lanhb
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a Hermitian band matrix.

Syntax
val = clanhb(norm, uplo, n, k, ab, ldab, work)

val = zlanhb(norm, uplo, n, k, ab, ldab, work)

Description

The routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the
element of largest absolute value of an n-by-n Hermitian band matrix A, with k super-diagonals.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

5-130

5 Intel® Math Kernel Library Reference Manual

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’ ,

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lanhb as
described above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the band matrix A is supplied.
If uplo = 'U': upper triangular part is supplied;
If uplo = 'L': lower triangular part is supplied.

n INTEGER. The order of the matrix A. n ≥ 0. When
n = 0, ?lanhb is set to zero.

k INTEGER. The number of super-diagonals or sub-diagonals of the band
matrix A. k ≥ 0.

ab COMPLEX for clanhb.
COMPLEX*16 for zlanhb.
Array, DIMENSION (ldab,n). The upper or lower triangle of the
Hermitian band matrix A, stored in the first k+1 rows of ab. The j-th
column of A is stored in the j-th column of the array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j)
for max(1,j-k) ≤ i≤ j;
if uplo = 'L', ab(1+i-j,j) = a(i,j) for j≤i≤min(n,j+k).

Note that the imaginary parts of the diagonal elements need not be set
and are assumed to be zero.

ldab INTEGER. The leading dimension of the array ab.
ldab ≥ k+1.

work REAL for clanhb.
DOUBLE PRECISION for zlanhb.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not
referenced.

LAPACK Auxiliary and Utility Routines 5

5-131

Output Parameters

val REAL for slanhb/clanhb
DOUBLE PRECISION for dlanhb/zlanhb
Value returned by the function.

?lansp
Returns the value of the 1-norm, or the Frobenius norm,
or the infinity norm, or the element of largest absolute
value of a symmetric matrix supplied in packed form.

Syntax
val = slansp(norm, uplo, n, ap, work)

val = dlansp(norm, uplo, n, ap, work)

val = clansp(norm, uplo, n, ap, work)

val = zlansp(norm, uplo, n, ap, work)

Description

The function ?lansp returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real/complex symmetric matrix A, supplied in
packed form.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’ ,

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

5-132

5 Intel® Math Kernel Library Reference Manual

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lansp as
described above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the symmetric matrix A is supplied.
If uplo = 'U': Upper triangular part of A is supplied
If uplo = 'L': Lower triangular part of A is supplied.

n INTEGER. The order of the matrix A. n ≥ 0. When
 n = 0, ?lansp is set to zero.

ap REAL for slansp
DOUBLE PRECISION for dlansp
COMPLEX for clansp
COMPLEX*16 for zlansp
Array, DIMENSION (n(n+1)/2). The upper or lower triangle of the
symmetric matrix A, packed columnwise in a linear array. The j-th
column of A is stored in the array ap as follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1≤ i≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

work REAL for slansp and clansp.
DOUBLE PRECISION for dlansp and zlansp.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not
referenced.

Output Parameters

val REAL for slansp/clansp
DOUBLE PRECISION for dlansp/zlansp
Value returned by the function.

LAPACK Auxiliary and Utility Routines 5

5-133

?lanhp
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a complex Hermitian matrix supplied
in packed form.

Syntax
val = clanhp(norm, uplo, n, ap, work)

val = zlanhp(norm, uplo, n, ap, work)

Description

The function ?lanhp returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex Hermitian matrix A, supplied in
packed form.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’,

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lanhp as
described above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the Hermitian matrix A is supplied.
If uplo = 'U': Upper triangular part of A is supplied
If uplo = 'L': Lower triangular part of A is supplied.

5-134

5 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lanhp is set to zero.

ap COMPLEX for clanhp.
COMPLEX*16 for zlanhp.
Array, DIMENSION (n(n+1)/2). The upper or lower triangle of the
Hermitian matrix A, packed columnwise in a linear array. The j-th
column of A is stored in the array ap as follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1≤ i≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

work REAL for clanhp.
DOUBLE PRECISION for zlanhp.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not
referenced.

Output Parameters

val REAL for clanhp.
DOUBLE PRECISION for zlanhp.
Value returned by the function.

?lanst/?lanht
Returns the value of the 1-norm, or the Frobenius norm,
or the infinity norm, or the element of largest absolute
value of a real symmetric or complex Hermitian
tridiagonal matrix.

Syntax
val = slanst(norm, n, d, e)

val = dlanst(norm, n, d, e)

val = clanht(norm, n, d, e)

val = zlanht(norm, n, d, e)

LAPACK Auxiliary and Utility Routines 5

5-135

Description

The functions ?lanst/?lanht return the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a real symmetric or a complex
Hermitian tridiagonal matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’ ,

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lanst/?lanht
as described above.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lanst/?lanht is set to zero.

d REAL for slanst/clanht
DOUBLE PRECISION for dlanst/zlanht
Array, DIMENSION (n). The diagonal elements of A.

e REAL for slanst
DOUBLE PRECISION for dlanst
COMPLEX for clanht
COMPLEX*16 for zlanht
Array, DIMENSION (n-1). The (n-1) sub-diagonal or super-diagonal
elements of A.

Output Parameters

val REAL for slanst/clanht
DOUBLE PRECISION for dlanst/zlanht
Value returned by the function.

5-136

5 Intel® Math Kernel Library Reference Manual

?lansy
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a real/complex symmetric matrix.

Syntax
val = slansy(norm, uplo, n, a, lda, work)

val = dlansy(norm, uplo, n, a, lda, work)

val = clansy(norm, uplo, n, a, lda, work)

val = zlansy(norm, uplo, n, a, lda, work)

Description

The function ?lansy returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real/complex symmetric matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’ ,

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lansy as
described above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the symmetric matrix A is to be referenced.
= 'U': Upper triangular part of A is referenced.
= 'L': Lower triangular part of A is referenced

LAPACK Auxiliary and Utility Routines 5

5-137

n INTEGER. The order of the matrix A. n ≥ 0. When
n = 0, ?lansy is set to zero.

a REAL for slansy
DOUBLE PRECISION for dlansy
COMPLEX for clansy
COMPLEX*16 for zlansy
Array, DIMENSION (lda,n). The symmetric matrix A. If uplo = 'U', the
leading n-by-n upper triangular part of a contains the upper triangular
part of the matrix A, and the strictly lower triangular part of a is not
referenced. If uplo = 'L', the leading n-by-n lower triangular part of a
contains the lower triangular part of the matrix A, and the strictly upper
triangular part of a is not referenced.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(n,1).

work REAL for slansy and clansy.
DOUBLE PRECISION for dlansy and zlansy.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not
referenced.

Output Parameters

val REAL for slansy/clansy
DOUBLE PRECISION for dlansy/zlansy
Value returned by the function.

?lanhe
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a complex Hermitian matrix.

Syntax
val = clanhe(norm, uplo, n, a, lda, work)

val = zlanhe(norm, uplo, n, a, lda, work)

5-138

5 Intel® Math Kernel Library Reference Manual

Description

The function ?lanhe returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex Hermitian matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’ ,

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lanhe as
described above.

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the Hermitian matrix A is to be referenced.
= 'U': Upper triangular part of A is referenced.
= 'L': Lower triangular part of A is referenced

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lanhe is set to zero.

a COMPLEX for clanhe.
COMPLEX*16 for zlanhe.
Array, DIMENSION (lda,n). The Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of a contains the
upper triangular part of the matrix A, and the strictly lower triangular
part of a is not referenced. If uplo = 'L', the leading n-by-n lower
triangular part of a contains the lower triangular part of the matrix A,
and the strictly upper triangular part of a is not referenced.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(n,1).

LAPACK Auxiliary and Utility Routines 5

5-139

work REAL for clanhe.
DOUBLE PRECISION for zlanhe.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' or '1' or 'O'; otherwise, work is not
referenced.

Output Parameters

val REAL for clanhe.
DOUBLE PRECISION for zlanhe.
Value returned by the function.

?lantb
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a triangular band matrix.

Syntax
val = slantb(norm, uplo, diag, n, k, ab, ldab, work)

val = dlantb(norm, uplo, diag, n, k, ab, ldab, work)

val = clantb(norm, uplo, diag, n, k, ab, ldab, work)

val = zlantb(norm, uplo, diag, n, k, ab, ldab, work)

Description

The function ?lantb returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n-by-n triangular band matrix A, with (k +
1) diagonals.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’ ,

5-140

5 Intel® Math Kernel Library Reference Manual

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lantb as
described above.

uplo CHARACTER*1. Specifies whether the matrix A is upper or lower
triangular.
= 'U': Upper triangular
= 'L': Lower triangular.

diag CHARACTER*1. Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lantb is set to zero.

k INTEGER. The number of super-diagonals of the matrix A if uplo = 'U',
or the number of sub-diagonals of the matrix A if uplo = 'L'. k ≥ 0.

ab REAL for slantb
DOUBLE PRECISION for dlantb
COMPLEX for clantb
COMPLEX*16 for zlantb
Array, DIMENSION (ldab,n). The upper or lower triangular band matrix
A, stored in the first k+1 rows of ab. The j-th column of A is stored in
the j-th column of the array ab as follows:
if uplo = 'U', ab(k+1+i-j,j) = a(i,j) for
max(1,j-k) ≤ i ≤ j;
if uplo = 'L', ab(1+i-j,j) = a(i,j) for
j≤ i≤ min(n,j+k).
Note that when diag = 'U', the elements of the array ab corresponding to
the diagonal elements of the matrix A are not referenced, but are
assumed to be one.

ldab INTEGER. The leading dimension of the array ab.
ldab ≥ k+1.

LAPACK Auxiliary and Utility Routines 5

5-141

work REAL for slantb and clantb.
DOUBLE PRECISION for dlantb and zlantb.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' ; otherwise, work is not referenced.

Output Parameters

val REAL for slantb/clantb.
DOUBLE PRECISION for dlantb/zlantb.
Value returned by the function.

?lantp
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a triangular matrix supplied in
packed form.

Syntax
val = slantp(norm, uplo, diag, n, ap, work)

val = dlantp(norm, uplo, diag, n, ap, work)

val = clantp(norm, uplo, diag, n, ap, work)

val = zlantp(norm, uplo, diag, n, ap, work)

Discussion

The function ?lantp returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a triangular matrix A, supplied in packed form.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’ ,

5-142

5 Intel® Math Kernel Library Reference Manual

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lantp as
described above.

uplo CHARACTER*1. Specifies whether the matrix A is upper or lower
triangular.
= 'U': Upper triangular
= 'L': Lower triangular.

diag CHARACTER*1. Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular.

n INTEGER. The order of the matrix A.
n ≥ 0. When n = 0, ?lantp is set to zero.

ap REAL for slantp
DOUBLE PRECISION for dlantp
COMPLEX for clantp
COMPLEX*16 for zlantp
Array, DIMENSION (n(n+1)/2). The upper or lower triangular matrix A,
packed columnwise in a linear array. The j-th column of A is stored in
the array ap as follows:
if uplo = 'U', AP(i + (j-1)j/2) = a(i,j)
for 1≤ i≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = a(i,j)
for j≤ i≤ n.
Note that when diag = 'U', the elements of the array ap corresponding
to the diagonal elements of the matrix A are not referenced, but are
assumed to be one.

work REAL for slantp and clantp.
DOUBLE PRECISION for dlantp and zlantp.
Workspace array, DIMENSION (lwork), where
lwork ≥ n when norm = 'I' ; otherwise, work is not referenced.

LAPACK Auxiliary and Utility Routines 5

5-143

 Output Parameters

val REAL for slantp/clantp.
DOUBLE PRECISION for dlantp/zlantp.
Value returned by the function.

?lantr
Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a trapezoidal or triangular matrix.

Syntax
val = slantr(norm, uplo, diag, m, n, a, lda, work)

val = dlantr(norm, uplo, diag, m, n, a, lda, work)

val = clantr(norm, uplo, diag, m, n, a, lda, work)

val = zlantr(norm, uplo, diag, m, n, a, lda, work)

Description

The function ?lantr returns the value of the 1-norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a trapezoidal or triangular matrix A.

The value val returned by the function is:

val = max(abs(Aij)), if norm = ‘M’ or ‘m’

 = norm1(A) , if norm = ‘1’ or ‘O’ or ‘o’

 = normI(A) , if norm = ‘I’ or ‘i’

 = normF(A) , if norm = ‘F’, ‘f’, ‘E’ or ‘e’,

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a
matrix (square root of sum of squares). Note that max(abs(Aij)) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lantr as
described above.

5-144

5 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1. Specifies whether the matrix A is upper or lower
trapezoidal.
= 'U': Upper trapezoidal
= 'L': Lower trapezoidal.
Note that A is triangular instead of trapezoidal if m = n.

diag CHARACTER*1. Specifies whether or not the matrix A has unit diagonal.
= 'N': Non-unit diagonal
= 'U': Unit diagonal.

m INTEGER. The number of rows of the matrix A.
m ≥ 0, and if uplo = 'U', m ≤ n. When m = 0, ?lantr is set to zero.

n INTEGER. The number of columns of the matrix A.
n ≥ 0, and if uplo = 'L', n ≤ m. When n = 0, ?lantr is set to zero.

a REAL for slantr
DOUBLE PRECISION for dlantr
COMPLEX for clantr
COMPLEX*16 for zlantr
Array, DIMENSION (lda,n).

The trapezoidal matrix A (A is triangular if m = n).
If uplo = 'U', the leading m-by-n upper trapezoidal part of the array a
contains the upper trapezoidal matrix, and the strictly lower triangular
part of a is not referenced.
If uplo = 'L', the leading m-by-n lower trapezoidal part of the array a
contains the lower trapezoidal matrix, and the strictly upper triangular
part of a is not referenced. Note that when diag = 'U', the diagonal
elements of a are not referenced and are assumed to be one.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(m,1).

work REAL for slantr/clantrp.
DOUBLE PRECISION for dlantr/zlantr.
Workspace array, DIMENSION (lwork), where
lwork ≥ m when norm = 'I' ; otherwise, work is not referenced.

 Output Parameters

val REAL for slantr/clantrp.
DOUBLE PRECISION for dlantr/zlantr.
Value returned by the function.

LAPACK Auxiliary and Utility Routines 5

5-145

?lanv2
Computes the Schur factorization of a real 2-by-2
nonsymmetric matrix in standard form.

Syntax
call slanv2(a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn)

call dlanv2(a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn)

Description

The routine computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard
form:

where either

1. cc = 0 so that aa and dd are real eigenvalues of the matrix, or

2. aa = dd and bb*cc < 0, so that aa sqrt(bb*cc) are complex conjugate eigenvalues.

The routine was adjusted to reduce the risk of cancellation errors, when computing real
eigenvalues, and to ensure, if possible, that abs(rt1r) ≥ abs(rt2r).

Input Parameters

a, b, c, d REAL for slanv2
DOUBLE PRECISION for dlanv2.
On entry, elements of the input matrix.

Output Parameters

a, b, c, d On exit, overwritten by the elements of the standardized Schur form.

rt1r, rt1i, rt2r, rt2i REAL for slanv2
DOUBLE PRECISION for dlanv2.
The real and imaginary parts of the eigenvalues. If the eigenvalues are a
complex conjugate pair, rt1i > 0.

a b

c d

cs sn–
sn cs

aa bb
cc dd

cs sn

sn– cs
=

 ±

5-146

5 Intel® Math Kernel Library Reference Manual

cs, sn REAL for slanv2
DOUBLE PRECISION for dlanv2.
Parameters of the rotation matrix.

?lapll
Measures the linear dependence of two vectors.

Syntax
call slapll(n, x, incx, y, incy, ssmin)

call dlapll(n, x, incx, y, incy, ssmin)

call clapll(n, x, incx, y, incy, ssmin)

call zlapll(n, x, incx, y, incy, ssmin)

Description

Given two column vectors x and y of length n, let

 A = (x y) be the n-by-2 matrix.

The routine ?lapll first computes the QR factorization of A as A = QR and then computes the
SVD of the 2-by-2 upper triangular matrix R. The smaller singular value of R is returned in ssmin,
which is used as the measurement of the linear dependency of the vectors x and y.

Input Parameters

n INTEGER. The length of the vectors x and y.

x REAL for slapll
DOUBLE PRECISION for dlapll
COMPLEX for clapll
COMPLEX*16 for zlapll
Array, DIMENSION (1+(n-1)incx).
On entry, x contains the n-vector x.

y REAL for slapll
DOUBLE PRECISION for dlapll
COMPLEX for clapll

LAPACK Auxiliary and Utility Routines 5

5-147

COMPLEX*16 for zlapll
Array, DIMENSION (1+(n-1)incy). On entry, y contains the n-vector
y.

incx INTEGER. The increment between successive elements of x; incx > 0.

incy INTEGER. The increment between successive elements of y; incy > 0.

Output Parameters

x On exit, x is overwritten.

y On exit, y is overwritten.

ssmin REAL for slapll/clapll
DOUBLE PRECISION for dlapll/zlapll
 The smallest singular value of the n-by-2 matrix
A = (x y) .

?lapmt
Performs a forward or backward permutation of the
columns of a matrix.

Syntax
call slapmt(forwrd, m, n, x, ldx, k)

call dlapmt(forwrd, m, n, x, ldx, k)

call clapmt(forwrd, m, n, x, ldx, k)

call zlapmt(forwrd, m, n, x, ldx, k)

Description

The routine ?lapmt rearranges the columns of the m-by-n matrix X as specified by the
permutation k(1),k(2),...,k(n) of the integers 1,...,n.

If forwrd = .TRUE., forward permutation:

X(*,k(j)) is moved to X(*,j) for j= 1,2,...,n.

If forwrd = .FALSE., backward permutation:

5-148

5 Intel® Math Kernel Library Reference Manual

X(*,j) is moved to X(*,k(j)) for j = 1,2,...,n.

Input Parameters

forwrd LOGICAL.
If forwrd = .TRUE., forward permutation
If forwrd = .FALSE., backward permutation

m INTEGER. The number of rows of the matrix X.
m ≥ 0.

n INTEGER. The number of columns of the matrix X.
n ≥ 0.

x REAL for slapmt
DOUBLE PRECISION for dlapmt
COMPLEX for clapmt
COMPLEX*16 for zlapmt
Array, DIMENSION (ldx,n). On entry, the m-by-n matrix X.

ldx INTEGER. The leading dimension of the array x,
ldx ≥ max(1,m).

k INTEGER.
Array, DIMENSION (n). On entry, k contains the permutation vector.

Output Parameters

x On exit, x contains the permuted matrix X.

?lapy2
Returns sqrt(x2+y2).

Syntax
val = slapy2(x, y)

val = dlapy2(x, y)

Description

The function ?lapy2 returns sqrt(x2+y2), avoiding unnecessary overflow or harmful underflow.

LAPACK Auxiliary and Utility Routines 5

5-149

Input Parameters

x, y REAL for slapy2
DOUBLE PRECISION for dlapy2
Specify the input values x and y.

Output Parameters

val REAL for slapy2
DOUBLE PRECISION for dlapy2.
Value returned by the function.

?lapy3
Returns sqrt(x2+y2+z2).

Syntax
val = slapy3(x, y, z)

val = dlapy3(x, y, z)

Description

The function ?lapy3 returns sqrt(x2+y2+z2), avoiding unnecessary overflow or harmful
underflow.

Input Parameters

x, y, z REAL for slapy3
DOUBLE PRECISION for dlapy3
Specify the input values x, y and z.

Output Parameters

val REAL for slapy3
DOUBLE PRECISION for dlapy3.
Value returned by the function.

5-150

5 Intel® Math Kernel Library Reference Manual

?laqgb
Scales a general band matrix, using row and column
scaling factors computed by ?gbequ.

Syntax
call slaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)

call dlaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)

call claqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)

call zlaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)

Description

The routine equilibrates a general m-by-n band matrix A with kl subdiagonals and ku
superdiagonals using the row and column scaling factors in the vectors r and c.

Input Parameters

m INTEGER. The number of rows of the matrix A.
m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

kl INTEGER. The number of subdiagonals within the band of A. kl ≥ 0.

ku INTEGER. The number of superdiagonals within the band of A. ku ≥ 0.

ab REAL for slaqgb
DOUBLE PRECISION for dlaqgb
COMPLEX for claqgb
COMPLEX*16 for zlaqgb
Array, DIMENSION (ldab,n). On entry, the matrix A in band storage, in
rows 1 to kl+ku+1. The j-th column of A is stored in the j-th column
of the array ab as follows: ab(ku+1+i-j,j) = A(i,j) for
max(1,j-ku) ≤ i ≤ min(m,j+kl).

ldab INTEGER. The leading dimension of the array ab.
lda ≥ kl+ku+1.

LAPACK Auxiliary and Utility Routines 5

5-151

amax REAL for slaqgb/claqgb
DOUBLE PRECISION for dlaqgb/zlaqgb
Absolute value of largest matrix entry.

Output Parameters

ab On exit, the equilibrated matrix, in the same storage format as A.
See equed for the form of the equilibrated matrix.

r, c REAL for slaqgb/claqgb
DOUBLE PRECISION for dlaqgb/zlaqgb
Arrays r (m), c (n). Contain the row and column scale factors for A,
respectively.

rowcnd REAL for slaqgb/claqgb
DOUBLE PRECISION for dlaqgb/zlaqgb
Ratio of the smallest r(i) to the largest r(i).

colcnd REAL for slaqgb/claqgb
DOUBLE PRECISION for dlaqgb/zlaqgb
Ratio of the smallest c(i) to the largest c(i).

equed CHARACTER*1.
Specifies the form of equilibration that was done.
If equed = 'N': No equilibration
If equed = 'R': Row equilibration, that is, A has been premultiplied by
diag(r).
If equed = 'C': Column equilibration, that is, A has been postmultiplied
by diag(c).
If equed = 'B': Both row and column equilibration, that is, A has been
replaced by diag(r)*A*diag(c).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following
meaning. thresh is a threshold value used to decide if row or column scaling should be done
based on the ratio of the row or column scaling factors. If rowcnd < thresh, row scaling is done,
and if colcnd < thresh, column scaling is done. large and small are threshold values used to
decide if row scaling should be done based on the absolute size of the largest matrix element. If
amax > large or amax < small, row scaling is done.

5-152

5 Intel® Math Kernel Library Reference Manual

?laqge
Scales a general rectangular matrix, using row and
column scaling factors computed by ?geequ.

Syntax
call slaqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

call dlaqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

call claqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

call zlaqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)

Description

The routine equilibrates a general m-by-n matrix A using the row and scaling factors in the vectors
r and c.

Input Parameters

m INTEGER. The number of rows of the matrix A.
m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

a REAL for slaqge
DOUBLE PRECISION for dlaqge
COMPLEX for claqge
COMPLEX*16 for zlaqge
Array, DIMENSION (lda,n). On entry, the m-by-n matrix A.

lda INTEGER. The leading dimension of the array A.
lda ≥ max(m,1).

r REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Array, DIMENSION (m). The row scale factors for A.

c REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Array, DIMENSION (n). The column scale factors for A.

LAPACK Auxiliary and Utility Routines 5

5-153

rowcnd REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Ratio of the smallest r(i) to the largest r(i).

colcnd REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Ratio of the smallest c(i) to the largest c(i).

amax REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Absolute value of largest matrix entry.

Output Parameters

a On exit, the equilibrated matrix.
See equed for the form of the equilibrated matrix.

equed CHARACTER*1.
Specifies the form of equilibration that was done.
If equed = 'N': No equilibration
If equed = 'R': Row equilibration, that is, A has been premultiplied by
diag(r).
If equed = 'C': Column equilibration, that is, A has been postmultiplied
by diag(c).
If equed = 'B': Both row and column equilibration, that is, A has been
replaced by diag(r)*A*diag(c).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following
meaning. thresh is a threshold value used to decide if row or column scaling should be done
based on the ratio of the row or column scaling factors. If rowcnd < thresh, row scaling is done,
and if colcnd < thresh, column scaling is done. large and small are threshold values used to
decide if row scaling should be done based on the absolute size of the largest matrix element. If
amax > large or amax < small, row scaling is done.

5-154

5 Intel® Math Kernel Library Reference Manual

?laqp2
Computes a QR factorization with column pivoting of
the matrix block.

Syntax
call slaqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

call dlaqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

call claqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

call zlaqp2(m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)

Description

The routine computes a QR factorization with column pivoting of the block A(offset+1:m,1:n).
The block A(1:offset,1:n) is accordingly pivoted, but not factorized.

Input Parameters

m INTEGER. The number of rows of the matrix A.
m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

offset INTEGER. The number of rows of the matrix A that must be pivoted but
no factorized. offset ≥ 0.

a REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Array, DIMENSION (lda,n). On entry, the m-by-n matrix A.

lda INTEGER. The leading dimension of the array A. lda ≥ max(1,m).

jpvt INTEGER .
Array, DIMENSION (n). On entry, if jpvt(i) ≠ 0, the i-th column of A is
permuted to the front of A*P (a leading column); if jpvt(i) = 0, the
i-th column of A is a free column.

LAPACK Auxiliary and Utility Routines 5

5-155

vn1, vn2 REAL for slaqp2/claqp2
DOUBLE PRECISION for dlaqp2/zlaqp2
Arrays, DIMENSION (n) each. Contain the vectors with the partial and
exact column norms, respectively.

work REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Workspace array, DIMENSION (n).

Output Parameters

a On exit, the upper triangle of block A(offset+1:m,1:n) is the triangular
factor obtained; the elements in block A(offset+1:m,1:n) below the
diagonal, together with the array tau, represent the orthogonal matrix Q
as a product of elementary reflectors. Block A(1:offset,1:n) has been
accordingly pivoted, but not factorized.

jpvt On exit, if jpvt(i) = k, then the i-th column of A*P was the k-th
column of A.

tau REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Array, DIMENSION (min(m,n)). The scalar factors of the elementary
reflectors.

vn1, vn2 Contain the vectors with the partial and exact column norms,
respectively.

?laqps
Computes a step of QR factorization with column
pivoting of a real m-by-n matrix A by using BLAS
level 3.

Syntax
call slaqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)

5-156

5 Intel® Math Kernel Library Reference Manual

call dlaqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)

call claqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)

call zlaqps(m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf)

Description

This routine computes a step of QR factorization with column pivoting of a real m-by-n matrix A
by using BLAS level 3. The routine tries to factorize nb columns from A starting from the row
offset+1, and updates all of the matrix with BLAS level 3 routine ?gemm.

In some cases, due to catastrophic cancellations, ?laqps cannot factorize nb columns. Hence, the
actual number of factorized columns is returned
in kb.

Block A(1:offset,1:n) is accordingly pivoted, but not factorized.

Input Parameters

m INTEGER. The number of rows of the matrix A.
m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

offset INTEGER. The number of rows of A that have been factorized in
previous steps.

nb INTEGER. The number of columns to factorize.

a REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (lda,n).
On entry, the m-by-n matrix A.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(1,m).

jpvt INTEGER.
Array, DIMENSION (n). If jpvt(i) = k then column k of the full matrix
A has been permuted into position i in AP.

LAPACK Auxiliary and Utility Routines 5

5-157

vn1, vn2 REAL for slaqps/claqps
DOUBLE PRECISION for dlaqps/zlaqps
Arrays, DIMENSION (n) each. Contain the vectors with the partial and
exact column norms, respectively.

auxv REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (nb). Auxiliary vector.

f REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (ldf,nb). Matrix F′ = L*Y′*A.

ldf INTEGER. The leading dimension of the array f.
ldf ≥ max(1,n).

Output Parameters

kb INTEGER. The number of columns actually factorized.

a On exit, block A(offset+1:m,1:kb) is the triangular factor obtained and
block A(1:offset,1:n) has been accordingly pivoted, but no factorized.
The rest of the matrix, block A(offset+1:m,kb+1:n) has been updated.

jpvt INTEGER array, DIMENSION (n). If jpvt(i) = k then column k of the
full matrix A has been permuted into position i in AP.

tau REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
COMPLEX*16 for zlaqps
Array, DIMENSION (kb). The scalar factors of the elementary
reflectors.

vn1, vn2 The vectors with the partial and exact column norms, respectively.

auxv Auxiliary vector.

f Matrix F′ = L*Y′*A.

5-158

5 Intel® Math Kernel Library Reference Manual

?laqsb
Scales a symmetric/Hermitian band matrix, using
scaling factors computed by ?pbequ.

Syntax
call slaqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)

call dlaqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)

call claqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)

call zlaqsb(uplo, n, kd, ab, ldab, s, scond, amax, equed)

Description

The routine equilibrates a symmetric band matrix A using the scaling factors in the vector s.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the symmetric matrix A is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.

n INTEGER. The order of the matrix A.
n ≥ 0.

kd INTEGER. The number of super-diagonals of the matrix A if uplo = 'U',
or the number of sub-diagonals if uplo = 'L'. kd ≥ 0.

ab REAL for slaqsb
DOUBLE PRECISION for dlaqsb
COMPLEX for claqsb
COMPLEX*16 for zlaqsb
Array, DIMENSION (ldab,n). On entry, the upper or lower triangle of the
symmetric band matrix A, stored in the first kd+1 rows of the array. The
j-th column of A is stored in the j-th column of the array ab as follows:
if uplo = 'U', ab(kd+1+i-j,j) = A(i,j) for
 max(1,j-kd) ≤ i ≤ j;
if uplo = 'L', ab(1+i-j,j) = A(i,j) for
j ≤ i ≤ min(n,j+kd).

LAPACK Auxiliary and Utility Routines 5

5-159

ldab INTEGER. The leading dimension of the array ab.
ldab ≥ kd+1.

scond REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Ratio of the smallest s(i) to the largest s(i).

amax REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Absolute value of largest matrix entry.

Output Parameters

ab On exit, if info = 0, the triangular factor U or L from the Cholesky
factorization A = U' U or A = L L' of the band matrix A, in the same
storage format as A.

s REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Array, DIMENSION (n). The scale factors for A.

equed CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, that is, A has been replaced by
diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following
meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the
scaling factors. If scond < thresh, scaling is done. large and small are threshold values used
to decide if scaling should be done based on the absolute size of the largest matrix element. If
amax > large or amax < small, scaling is done.

5-160

5 Intel® Math Kernel Library Reference Manual

?laqsp
Scales a symmetric/Hermitian matrix in packed
storage, using scaling factors computed by ?ppequ.

Syntax
call slaqsp(uplo, n, ap, s, scond, amax, equed)

call dlaqsp(uplo, n, ap, s, scond, amax, equed)

call claqsp(uplo, n, ap, s, scond, amax, equed)

call zlaqsp(uplo, n, ap, s, scond, amax, equed)

Description

The routine ?laqsp equilibrates a symmetric matrix A using the scaling factors in the vector s.

Internal Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the symmetric matrix A is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.

n INTEGER. The order of the matrix A.
n ≥ 0.

ap REAL for slaqsp
DOUBLE PRECISION for dlaqsp
COMPLEX for claqsp
COMPLEX*16 for zlaqsp
Array, DIMENSION (n(n+1)/2). On entry, the upper or lower triangle of
the symmetric matrix A, packed columnwise in a linear array. The j-th
column of A is stored in the array ap as follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1 ≤ i ≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

s REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Array, DIMENSION (n). The scale factors for A.

LAPACK Auxiliary and Utility Routines 5

5-161

scond REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Ratio of the smallest s(i) to the largest s(i).

amax REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Absolute value of largest matrix entry.

Output Parameters

ap On exit, the equilibrated matrix: diag(s)*A*diag(s), in the same storage
format as A.

equed CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, that is, A has been replaced by
diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following
meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the
scaling factors. If scond < thresh, scaling is done. large and small are threshold values used
to decide if scaling should be done based on the absolute size of the largest matrix element. If
amax > large or amax < small, scaling is done.

?laqsy
Scales a symmetric/Hermitian matrix, using scaling
factors computed by ?poequ.

Syntax
call slaqsy(uplo, n, a, lda, s, scond, amax, equed)

call dlaqsy(uplo, n, a, lda, s, scond, amax, equed)

call claqsy(uplo, n, a, lda, s, scond, amax, equed)

call zlaqsy(uplo, n, a, lda, s, scond, amax, equed)

5-162

5 Intel® Math Kernel Library Reference Manual

Description

The routine equilibrates a symmetric matrix A using the scaling factors in the vector s.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of
the symmetric matrix A is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.

n INTEGER. The order of the matrix A.
n ≥ 0.

a REAL for slaqsy
DOUBLE PRECISION for dlaqsy
COMPLEX for claqsy
COMPLEX*16 for zlaqsy
Array, DIMENSION (lda,n). On entry, the symmetric matrix A. If uplo
= 'U', the leading n-by-n upper triangular part of a contains the upper
triangular part of the matrix A, and the strictly lower triangular part of a
is not referenced. If uplo = 'L', the leading n-by-n lower triangular part
of a contains the lower triangular part of the matrix A, and the strictly
upper triangular part of a is not referenced.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(n,1).

s REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Array, DIMENSION (n). The scale factors for A.

scond REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Ratio of the smallest s(i) to the largest s(i).

amax REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Absolute value of largest matrix entry.

Output Parameters

a On exit, if equed = 'Y', the equilibrated matrix: diag(s)*A*diag(s).

LAPACK Auxiliary and Utility Routines 5

5-163

equed CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed = 'Y': Equilibration was done, i.e., A has been replaced by
diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following
meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the
scaling factors. If scond < thresh, scaling is done. large and small are threshold values used
to decide if scaling should be done based on the absolute size of the largest matrix element. If
amax > large or amax < small, scaling is done.

?laqtr
Solves a real quasi-triangular system of equations, or a
complex quasi-triangular system of special form, in real
arithmetic.

Syntax
call slaqtr(ltran, lreal, n, t, ldt, b, w, scale, x, work, info)

call dlaqtr(ltran, lreal, n, t, ldt, b, w, scale, x, work, info)

Description

The routine ?laqtr solves the real quasi-triangular system
 op(T) * p = scale* c, if lreal = .TRUE.

or the complex quasi-triangular systems
 op(T + iB)*(p+iq) = scale*(c+id), if lreal = .FALSE.
in real arithmetic, where T is upper quasi-triangular.

If lreal = .FALSE., then the first diagonal block of T must be 1-by-1,
B is the specially structured matrix

5-164

5 Intel® Math Kernel Library Reference Manual

op(A) = A or A′, A′ denotes the conjugate transpose of matrix A.

On input,

 , on output

This routine is designed for the condition number estimation in routine ?trsna.

Input Parameters

ltran LOGICAL.
On entry, ltran specifies the option of conjugate transpose:
= .FALSE., op(T + iB) = T + iB,
= .TRUE., op(T + iB) = (T + iB)′.

lreal LOGICAL.
On entry, lreal specifies the input matrix structure:
= .FALSE., the input is complex
= .TRUE., the input is real.

n INTEGER. On entry, n specifies the order of T + iB.
n ≥ 0.

t REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (ldt,n). On entry, t contains a matrix in Schur
canonical form. If lreal = .FALSE., then the first diagonal block of t
must be 1-by-1.

ldt INTEGER. The leading dimension of the matrix T.
ldt ≥ max(1,n).

B

b1 b2 … … bn

 w

 w

 …

 w

=

x
c

d
= x

p

q
=

LAPACK Auxiliary and Utility Routines 5

5-165

b REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (n). On entry, b contains the elements to form the
matrix B as described above. If lreal = .TRUE., b is not referenced.

w REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On entry, w is the diagonal element of the matrix B. If lreal = .TRUE.,
w is not referenced.

x REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (2n). On entry, x contains the right hand side of the
system.

work REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Workspace array, dimension (n).

Output Parameters

scale REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On exit, scale is the scale factor.

x On exit, x is overwritten by the solution.

info INTEGER.
If info = 0: successful exit.
If info = 1: the some diagonal 1-by-1 block has been perturbed by a
small number smin to keep nonsingularity.
If info = 2: the some diagonal 2-by-2 block has been perturbed by a
small number in ?laln2 to keep nonsingularity.

NOTE. In the interests of speed, this routine does not check the
inputs for errors.

5-166

5 Intel® Math Kernel Library Reference Manual

?lar1v
Computes the (scaled) r-th column of the inverse of the
submatrix in rows b1 through bn of the tridiagonal
matrix LDLT - σI.

Syntax
call slar1v(n, b1, bn, sigma, d, l, ld, lld, gersch, z, ztz, mingma, r, isuppz,

work)

call dlar1v(n, b1, bn, sigma, d, l, ld, lld, gersch, z, ztz, mingma, r, isuppz,
work)

call clar1v(n, b1, bn, sigma, d, l, ld, lld, gersch, z, ztz, mingma, r, isuppz,
work)

call zlar1v(n, b1, bn, sigma, d, l, ld, lld, gersch, z, ztz, mingma, r, isuppz,
work)

Description

The routine ?lar1v computes the (scaled) r-th column of the inverse of the submatrix in rows b1
through bn of the tridiagonal matrix
LDLT - σ*I.
The following steps accomplish this computation :

1. Stationary qd transform, LDLT - σ*I = L(+) D(+) L(+)T

2. Progressive qd transform, LDLT - σ*I = U(-) D(-) U(-)T,

3. Computation of the diagonal elements of the inverse of LDLT - σ*I by combining the
above transforms, and choosing r as the index where the diagonal of the inverse is (one
of the) largest in magnitude.

4. Computation of the (scaled) r-th column of the inverse using the twisted factorization
obtained by combining the top part of the stationary and the bottom part of the
progressive transform.

Input Parameters

n INTEGER. The order of the matrix LDLT.

b1 INTEGER. First index of the submatrix of LDLT.

bn INTEGER. Last index of the submatrix of LDLT.

LAPACK Auxiliary and Utility Routines 5

5-167

sigma REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The shift. Initially, when r = 0, sigma should be a good approximation
to an eigenvalue of LDLT.

l REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1). The (n-1) subdiagonal elements of the unit
bidiagonal matrix L, in elements 1 to n-1.

d REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n). The n diagonal elements of the diagonal matrix
D.

ld REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1). The n-1 elements Li*Di.

lld REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (n-1). The n-1 elements Li*Li*Di.

gersch REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Array, DIMENSION (2n). The n Gerschgorin intervals. These are used to
restrict the initial search for r, when r is input as 0.

r INTEGER.
Initially r should be input to be 0 and is then output as the index where
the diagonal element of the inverse is largest in magnitude. In later
iterations, this same value of r should be input.

work REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Workspace array, DIMENSION (4n).

Output Parameters

z REAL for slar1v
DOUBLE PRECISION for dlar1v
COMPLEX for clar1v
COMPLEX*16 for zlar1v
Array, DIMENSION (n). The (scaled) r-th column of the inverse. z(r) is
returned to be 1.

5-168

5 Intel® Math Kernel Library Reference Manual

ztz REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The square of the norm of z.

mingma REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The reciprocal of the largest (in magnitude) diagonal element of the
inverse of LDLT - σ*I.

r On output, r is the index where the diagonal element of the inverse is
largest in magnitude.

isuppz INTEGER.
Array, DIMENSION (2). The support of the vector in z, that is, the vector
z is nonzero only in elements isuppz(1) through isuppz(2).

?lar2v
Applies a vector of plane rotations with real cosines
and real/complex sines from both sides to a sequence of
2-by-2 symmetric/Hermitian matrices.

Syntax
call slar2v(n, x, y, z, incx, c, s, incc)

call dlar2v(n, x, y, z, incx, c, s, incc)

call clar2v(n, x, y, z, incx, c, s, incc)

call zlar2v(n, x, y, z, incx, c, s, incc)

Description

The routine ?lar2v applies a vector of real/complex plane rotations with real cosines from both
sides to a sequence of 2-by-2 real symmetric or complex Hermitian matrices, defined by the
elements of the vectors x, y and z. For i = 1,2,...,n

xi zi

conjg zi() yi
: c i() conjg s i()()

s i()– c i()

xi zi

conjg zi() yi

c i() conjg s i()()–

s i() c i()
=

LAPACK Auxiliary and Utility Routines 5

5-169

Input Parameters

n INTEGER. The number of plane rotations to be applied.

x, y, z REAL for slar2v
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
COMPLEX*16 for zlar2v
Arrays, DIMENSION (1+(n-1)*incx) each. Contain the vectors x, y and
z, respectively. For all flavors of ?lar2v, elements of x and y are
assumed to be real.

incx INTEGER. The increment between elements of x, y, and z. incx > 0.

c REAL for slar2v/clar2v
DOUBLE PRECISION for dlar2v/zlar2v
Array, DIMENSION (1+(n-1)*incc). The cosines of the plane rotations.

s REAL for slar2v
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
COMPLEX*16 for zlar2v
Array, DIMENSION (1+(n-1)*incc). The sines of the plane rotations.

incc INTEGER. The increment between elements of c and s. incc > 0.

Output Parameters

x, y, z Vectors x, y and z, containing the results of transform.

?larf
Applies an elementary reflector to a general
rectangular matrix.

Syntax
call slarf(side, m, n, v, incv, tau, c, ldc, work)

call dlarf(side, m, n, v, incv, tau, c, ldc, work)

call clarf(side, m, n, v, incv, tau, c, ldc, work)

call zlarf(side, m, n, v, incv, tau, c, ldc, work)

5-170

5 Intel® Math Kernel Library Reference Manual

Description

The routine applies a real/complex elementary reflector H to a real/complex m-by-n matrix C,
from either the left or the right. H is represented in the form
H = I - tau * v * v',
where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then H is taken to be the unit matrix.
For clarf/zlarf, to apply H′ (the conjugate transpose of H), supply conjg(tau) instead of tau.

Input Parameters

side CHARACTER*1.
If side = 'L': form H *C
If side = 'R': form C *H.

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

v REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Array, DIMENSION
(1 + (m-1)*abs(incv)) if side = 'L' or
(1 + (n-1)*abs(incv)) if side = 'R'.
The vector v in the representation of H. v is not used if tau = 0.

incv INTEGER. The increment between elements of v.
incv ≠ 0.

tau REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
The value tau in the representation of H.

c REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Array, DIMENSION (ldc,n).
On entry, the m-by-n matrix C.

LAPACK Auxiliary and Utility Routines 5

5-171

ldc INTEGER. The leading dimension of the array c.
ldc ≥ max(1,m).

work REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.

Output Parameters

c On exit, c is overwritten by the matrix H*C if side = 'L', or C*H if
side = 'R'.

?larfb
Applies a block reflector or its
transpose/conjugate-transpose to a general rectangular
matrix.

Syntax
call slarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work,

ldwork)

call dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work,
ldwork)

call clarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work,
ldwork)

call zlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work,
ldwork)

Description

The routine ?larfb applies a complex block reflector H or its transpose H′ to a complex m-by-n
matrix C from either left or right.

5-172

5 Intel® Math Kernel Library Reference Manual

Input Parameters

side CHARACTER*1.
If side = 'L': apply H or H' from the left
If side = 'R': apply H or H' from the right

trans CHARACTER*1.
If trans = 'N': apply H (No transpose)
If trans = 'C': apply H' (Conjugate transpose)

direct CHARACTER*1. Indicates how H is formed from a product of elementary
reflectors
If direct = 'F': H = H(1) H(2) . . . H(k) (forward)
If direct = 'B': H = H(k) . . . H(2) H(1) (backward)

storev CHARACTER*1. Indicates how the vectors which define the elementary
reflectors are stored:
If storev = 'C': Column-wise
If storev = 'R': Row-wise

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

k INTEGER. The order of the matrix T (equal to the number of elementary
reflectors whose product defines the block reflector).

v REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION
(ldv, k) if storev = 'C'
(ldv, m) if storev = 'R' and side = 'L'
(ldv, n) if storev = 'R' and side = 'R'
The matrix V.

ldv INTEGER.
The leading dimension of the array v.
If storev = 'C' and side = 'L', ldv ≥ max(1,m);
if storev = 'C' and side = 'R', ldv ≥ max(1,n);
if storev = 'R', ldv ≥ k.

t REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb

LAPACK Auxiliary and Utility Routines 5

5-173

COMPLEX*16 for zlarfb
Array, DIMENSION (ldt,k).
Contains the triangular k-by-k matrix T in the representation of the block
reflector.

ldt INTEGER. The leading dimension of the array t.
ldt ≥ k.

c REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Array, DIMENSION (ldc,n).
On entry, the m-by-n matrix C.

ldc INTEGER. The leading dimension of the array c.
ldc ≥ max(1,m).

work REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
COMPLEX*16 for zlarfb
Workspace array, DIMENSION (ldwork, k).

ldwork INTEGER. The leading dimension of the array work.
If side = 'L', ldwork ≥ max(1, n);
if side = 'R', ldwork ≥ max(1, m).

Output parameters

c On exit, c is overwritten by H*C or H′*C or C*H or C*H′.

?larfg
Generates an elementary reflector (Householder
matrix).

Syntax
call slarfg(n, alpha, x, incx, tau)

call dlarfg(n, alpha, x, incx, tau)

5-174

5 Intel® Math Kernel Library Reference Manual

call clarfg(n, alpha, x, incx, tau)

call zlarfg(n, alpha, x, incx, tau)

Description

The routine ?larfg generates a real/complex elementary reflector H of order n, such that

 , H′*H = I ,

where alpha and beta are scalars (with beta real for all flavors), and x is an (n-1)-element
real/complex vector. H is represented in the form

,

where tau is a real/complex scalar and v is a real/complex (n-1)-element vector. Note that for
clarfg/zlarfg, H is not Hermitian.

If the elements of x are all zero (and, for complex flavors, alpha is real), then tau = 0 and H is
taken to be the unit matrix.

Otherwise, 1 ≤ tau ≤ 2 (for real flavors), or
 1 ≤ Re(tau) ≤ 2 and abs(tau-1) ≤ 1 (for complex flavors).

Input Parameters

n INTEGER. The order of the elementary reflector.

alpha REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg
On entry, the value alpha.

x REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg

H′* alpha

x

beta

0
=

H I tau* 1

v
* 1 v′–=

LAPACK Auxiliary and Utility Routines 5

5-175

COMPLEX*16 for zlarfg
Array, DIMENSION (1+(n-2)*abs(incx)).
On entry, the vector x.

incx INTEGER.
The increment between elements of x. incx > 0.

Output Parameters

alpha On exit, it is overwritten with the value beta.

x On exit, it is overwritten with the vector v.

tau REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg
The value tau.

?larft
Forms the triangular factor T of a block reflector H = I
- VTVH.

Syntax
call slarft(direct, storev, n, k, v, ldv, tau, t, ldt)

call dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)

call clarft(direct, storev, n, k, v, ldv, tau, t, ldt)

call zlarft(direct, storev, n, k, v, ldv, tau, t, ldt)

Description

The routine ?larft forms the triangular factor T of a real/complex block reflector H of order n,
which is defined as a product of k elementary reflectors.

If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column
of the array v, and H = I - V*T*V' .

5-176

5 Intel® Math Kernel Library Reference Manual

If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of
the array v, and H = I - V' *T*V.

Input Parameters

direct CHARACTER*1. Specifies the order in which the elementary reflectors
are multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (forward)
= 'B': H = H(k) . . . H(2) H(1) (backward)

storev CHARACTER*1. Specifies how the vectors which define the elementary
reflectors are stored (see also Application Notes below):
= 'C': column-wise
= 'R': row-wise.

n INTEGER. The order of the block reflector H. n ≥ 0.

k INTEGER. The order of the triangular factor T (equal to the number of
elementary reflectors). k ≥ 1.

v REAL for slarft
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION
(ldv, k) if storev = 'C' or
(ldv, n) if storev = 'R'.
The matrix V.

ldv INTEGER. The leading dimension of the array v.
If storev = 'C', ldv ≥ max(1,n);
if storev = 'R', ldv ≥ k.

tau REAL for slarft
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION (k). tau(i) must contain the scalar factor of the
elementary reflector H(i).

ldt INTEGER. The leading dimension of the output array t. ldt ≥ k.

LAPACK Auxiliary and Utility Routines 5

5-177

Output Parameters

t REAL for slarft
DOUBLE PRECISION for dlarft
COMPLEX for clarft
COMPLEX*16 for zlarft
Array, DIMENSION (ldt,k). The k-by-k triangular factor T of the block
reflector. If direct = 'F', T is upper triangular; if direct = 'B', T is
lower triangular. The rest of the array is not used.

v The matrix V.

Application Notes

The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by
the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the
corresponding array elements are modified but restored on exit. The rest of the array is not used.

 direct = 'F' and storev = 'C': direct = 'F' and storev = 'R':

 direct = 'B' and storev = 'C': direct = 'B' and storev = 'R':

1

v1 1

v1 v2 1

v1 v2 v3

v1 v2 v3

1 v1 v1 v1 v1

 1 v2 v2 v2

 1 v3 v3

v1 v2 v3

v1 v2 v3

1 v2 v3

 1 v3

 1

v1 v1 1

v2 v2 v2 1

v3 v3 v3 v3 1

5-178

5 Intel® Math Kernel Library Reference Manual

?larfx
Applies an elementary reflector to a general
rectangular matrix, with loop unrolling when the
reflector has order ≤ 10.

Syntax
call slarfx(side, m, n, v, tau, c, ldc, work)

call dlarfx(side, m, n, v, tau, c, ldc, work)

call clarfx(side, m, n, v, tau, c, ldc, work)

call zlarfx(side, m, n, v, tau, c, ldc, work)

Description

The routine ?larfx applies a real/complex elementary reflector H to a real/complex m-by-n
matrix C, from either the left or the right.
H is represented in the form
H = I - tau * v * v', where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then H is taken to be the unit matrix.

Input Parameters

side CHARACTER*1.
If side = 'L': form H*C,
If side = 'R': form C*H.

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

v REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Array, DIMENSION
(m) if side = 'L' or
(n) if side = 'R'.
The vector v in the representation of H.

LAPACK Auxiliary and Utility Routines 5

5-179

tau REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
The value tau in the representation of H.

c REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Array, DIMENSION (ldc,n). On entry, the m-by-n matrix C.

ldc INTEGER. The leading dimension of the array c.
lda ≥ (1,m).

work REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.
work is not referenced if H has order < 11.

Output Parameters

c On exit, C is overwritten by the matrix H*C if side = 'L',
or C*H if side = 'R'.

?largv
Generates a vector of plane rotations with real cosines
and real/complex sines.

Syntax
call slargv(n, x, incx, y, incy, c, incc)

call dlargv(n, x, incx, y, incy, c, incc)

call clargv(n, x, incx, y, incy, c, incc)

call zlargv(n, x, incx, y, incy, c, incc)

5-180

5 Intel® Math Kernel Library Reference Manual

Description

The routine generates a vector of real/complex plane rotations with real cosines, determined by
elements of the real/complex vectors x and y.

For slargv/dlargv:

 , for i = 1,2,...,n

For clargv/zlargv:

 , for i = 1,2,...,n

where c(i)2 + abs(s(i))2 = 1 and the following conventions are used (these are the same as in
clartg/zlartg but differ from the BLAS Level 1 routine crotg/zrotg):
If yi = 0, then c(i) = 1 and s(i) = 0;
If xi = 0, then c(i) = 0 and s(i) is chosen so that ri is real.

Input Parameters

n INTEGER. The number of plane rotations to be generated.

x, y REAL for slargv
DOUBLE PRECISION for dlargv
COMPLEX for clargv
COMPLEX*16 for zlargv
Arrays, DIMENSION (1+(n-1)*incx) and (1+(n-1)*incy), respectively.
On entry, the vectors x and y.

incx INTEGER. The increment between elements of x.
incx > 0.

incy INTEGER. The increment between elements of y.
incy > 0.

incc INTEGER. The increment between elements of the output array c.
incc > 0.

c i() s i()
s i()– c i()

xi

yi

ai

0
=

c i() s i()
conjg s i()()– c i()

xi

yi

ri

0
=

LAPACK Auxiliary and Utility Routines 5

5-181

Output Parameters

x On exit, x(i) is overwritten by ai (for real flavors), or by ri (for
complex flavors), for i = 1,...,n.

y On exit, the sines s(i) of the plane rotations.

c REAL for slargv/clargv
DOUBLE PRECISION for dlargv/zlargv
Array, DIMENSION (1+(n-1)*incc). The cosines of the plane rotations.

?larnv
Returns a vector of random numbers from a uniform or
normal distribution.

Syntax
call slarnv(idist, iseed, n, x)

call dlarnv(idist, iseed, n, x)

call clarnv(idist, iseed, n, x)

call zlarnv(idist, iseed, n, x)

Description

The routine ?larnv returns a vector of n random real/complex numbers from a uniform or
normal distribution.

This routine calls the auxiliary routine ?laruv to generate random real numbers from a uniform
(0,1) distribution, in batches of up to 128 using vectorisable code. The Box-Muller method is used
to transform numbers from a uniform to a normal distribution.

Input Parameters

idist INTEGER. Specifies the distribution of the random numbers:
for slarnv and dlanrv:
= 1: uniform (0,1)
= 2: uniform (-1,1)
= 3: normal (0,1).
for clarnv and zlanrv:
= 1: real and imaginary parts each uniform (0,1)

5-182

5 Intel® Math Kernel Library Reference Manual

= 2: real and imaginary parts each uniform (-1,1)
= 3: real and imaginary parts each normal (0,1)
= 4: uniformly distributed on the disc abs(z) < 1
= 5: uniformly distributed on the circle abs(z) = 1

iseed INTEGER.
Array, DIMENSION (4).
On entry, the seed of the random number generator; the array elements
must be between 0 and 4095, and iseed(4) must be odd.

n INTEGER. The number of random numbers to be generated.

Output Parameters

x REAL for slarnv
DOUBLE PRECISION for dlarnv
COMPLEX for clarnv
COMPLEX*16 for zlarnv
Array, DIMENSION (n). The generated random numbers.

iseed On exit, the seed is updated.

?larrb
Provides limited bisection to locate eigenvalues for
more accuracy.

Syntax
call slarrb(n, d, l, ld, lld, ifirst, ilast, sigma, reltol, w, wgap, werr,

work, iwork, info)

call dlarrb(n, d, l, ld, lld, ifirst, ilast, sigma, reltol, w, wgap, werr,
work, iwork, info)

Description

Given the relatively robust representation(RRR) LDLT, the routine does “limited” bisection to
locate the eigenvalues of LDLT, w(ifirst) through w(ilast), to more accuracy.
Intervals [left, right] are maintained by storing their mid-points and semi-widths in the arrays w
and werr respectively.

LAPACK Auxiliary and Utility Routines 5

5-183

Input Parameters

n INTEGER. The order of the matrix.

d REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). The n diagonal elements of the diagonal matrix
D.

l REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n-1). The n-1 subdiagonal elements of the unit
bidiagonal matrix L.

ld REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n-1). The n-1 elements Li*Di.

lld REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n-1). The n-1 elements Li*Li*Di.

ifirst INTEGER. The index of the first eigenvalue in the cluster.

ilast INTEGER. The index of the last eigenvalue in the cluster.

sigma REAL for slarrb
DOUBLE PRECISION for dlarrb
The shift used to form LDLT (see ?larrf).

reltol REAL for slarrb
DOUBLE PRECISION for dlarrb
The relative tolerance.

w REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). On input, w(ifirst) through w(ilast) are
estimates of the corresponding eigenvalues of LDLT .

wgap REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). The gaps between the eigenvalues of LDLT .

werr REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (n). On input, werr(ifirst) through werr(ilast)
are the errors in the estimates w(ifirst) through w(ilast).

5-184

5 Intel® Math Kernel Library Reference Manual

work REAL for slarrb
DOUBLE PRECISION for dlarrb
Workspace array. Note that this parameter is never used in the routine.

iwork INTEGER.
Workspace array, DIMENSION (2n).

Output Parameters

w On output these estimates of the eigenvalues are “refined”.

wgap Very small gaps are changed on output.

werr On output, “refined” errors in the estimates w(ifirst) through
w(ilast).

info INTEGER.
Error flag. Note that this parameter is never set in the routine.

?larre
Given the tridiagonal matrix T, sets small off-diagonal
elements to zero and for each unreduced block Ti, finds
base representations and eigenvalues.

Syntax
call slarre(n, d, e, tol, nsplit, isplit, m, w, woff, gersch, work, info)

call dlarre(n, d, e, tol, nsplit, isplit, m, w, woff, gersch, work, info)

Description

Given the tridiagonal matrix T, the routine sets "small" off-diagonal elements to zero, and for each
unreduced block Ti, it finds

• the numbers σi

• the base Ti - σi I = Li Di Li
T representations and

• eigenvalues of each Li Di Li
T.

LAPACK Auxiliary and Utility Routines 5

5-185

The representations and eigenvalues found are then used by ?stegr to compute the eigenvectors
of a symmetric tridiagonal matrix. Currently, the base representations are limited to being positive
or negative definite, and the eigenvalues of the definite matrices are found by the dqds algorithm
(subroutine ?lasq2). As an added benefit, ?larre also outputs the n Gerschgorin intervals for
each Li Di Li

T.

Input Parameters

n INTEGER. The order of the matrix.

d REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). On entry, the n diagonal elements of the
tridiagonal matrix T.

e REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). On entry, the (n-1) subdiagonal elements of the
tridiagonal matrix T; e(n) need not be set.

tol REAL for slarre
DOUBLE PRECISION for dlarre
The threshold for splitting. If on input |e(i)| < tol, then the matrix T is
split into smaller blocks.

nsplit INTEGER. The number of blocks T splits into.
1 ≤ nsplit ≤ n.

work REAL for slarre
DOUBLE PRECISION for dlarre
Workspace array, DIMENSION (4*n).

Output Parameters

d On exit, the n diagonal elements of the diagonal matrices Di .

e On exit, the subdiagonal elements of the unit bidiagonal matrices Li .

isplit INTEGER.
Array, DIMENSION (2n). The splitting points, at which T breaks up into
submatrices. The first submatrix consists of rows/columns 1 to
isplit(1), the second of rows/columns isplit(1)+1 through
isplit(2), etc., and the nsplit-th consists of rows/columns
isplit(nsplit-1)+1 through isplit(nsplit)=n.

5-186

5 Intel® Math Kernel Library Reference Manual

 m INTEGER. The total number of eigenvalues (of all the
Li Di Li

T) found.

w REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n). The first m elements contain the eigenvalues.
The eigenvalues of each of the blocks, Li Di Li

T, are sorted in ascending
order.

woff REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n).The nsplit base points σi.

gersch REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (2n). The n Gerschgorin intervals.

info INTEGER. Output error code from ?lasq2.

?larrf
Finds a new relatively robust representation such that at
least one of the eigenvalues is relatively isolated.

Syntax
call slarrf(n, d, l, ld, lld, ifirst, ilast, w, dplus, lplus, work, iwork,

info)

call dlarrf(n, d, l, ld, lld, ifirst, ilast, w, dplus, lplus, work, iwork,
info)

Description

 Given the initial representation LDLT and its cluster of close eigenvalues (in a relative measure),
w(ifirst), w(ifirst+1), ... w(ilast), the routine ?larrf finds a new relatively robust
representation
 LDLT - σi I = L(+)D(+)L(+)T
such that at least one of the eigenvalues of L(+)D(+)L(+)T is relatively isolated.

Input Parameters

n INTEGER. The order of the matrix.

LAPACK Auxiliary and Utility Routines 5

5-187

d REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The n diagonal elements of the diagonal matrix
D.

l REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1). The (n-1) subdiagonal elements of the unit
bidiagonal matrix L.

ld REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1). The n-1 elements Li*Di.

lld REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1). The n-1 elements Li*Li*Di.

ifirst INTEGER. The index of the first eigenvalue in the cluster.

ilast INTEGER. The index of the last eigenvalue in the cluster.

w REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). On input, the eigenvalues of LDLT in ascending
order. w(ifirst) through w(ilast) form the cluster of relatively close
eigenvalues.

sigma REAL for slarrf
DOUBLE PRECISION for dlarrf
The shift used to form L(+)D(+)L(+)T.

work REAL for slarrf
DOUBLE PRECISION for dlarrf
Workspace array.

Output Parameters

w On output, w(ifirst) through w(ilast) are estimates of the
corresponding eigenvalues of L(+)D(+)L(+)T.

dplus REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The n diagonal elements of the diagonal matrix
D(+).

5-188

5 Intel® Math Kernel Library Reference Manual

lplus REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The first (n-1) elements of lplus contain the
subdiagonal elements of the unit bidiagonal matrix L(+). lplus(n) is set
to sigma.

?larrv
Computes the eigenvectors of the tridiagonal matrix
 T = L D LT given L, D and the eigenvalues of L D LT.

Syntax
call slarrv(n, d, l, isplit, m, w, iblock, gersch, tol, z, ldz, isuppz, work,

iwork, info)

call dlarrv(n, d, l, isplit, m, w, iblock, gersch, tol, z, ldz, isuppz, work,
iwork, info)

call clarrv(n, d, l, isplit, m, w, iblock, gersch, tol, z, ldz, isuppz, work,
iwork, info)

call zlarrv(n, d, l, isplit, m, w, iblock, gersch, tol, z, ldz, isuppz, work,
iwork, info)

Description

The routine ?larrv computes the eigenvectors of the tridiagonal matrix
T = L D LT given L, D and the eigenvalues of L D LT. The input eigenvalues should have high
relative accuracy with respect to the entries of L and D. The desired accuracy of the output can be
specified by the input parameter tol.

Input Parameters

n INTEGER. The order of the matrix. n ≥ 0.

d REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n). On entry, the n diagonal elements of the
diagonal matrix D.

LAPACK Auxiliary and Utility Routines 5

5-189

l REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n-1). On entry, the (n-1) subdiagonal elements of
the unit bidiagonal matrix L are contained in elements 1 to n-1 of l.
l(n) need not be set.

isplit INTEGER.
Array, DIMENSION (n). The splitting points, at which T breaks up into
submatrices. The first submatrix consists of rows/columns 1 to
isplit(1), the second of rows/columns isplit(1)+1 through
isplit(2), etc.

tol REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
The absolute error tolerance for the eigenvalues/eigenvectors.
Errors in the input eigenvalues must be bounded by tol. The
eigenvectors output have residual norms bounded by tol, and the dot
products between different eigenvectors are bounded by tol. tol must
be at least n*eps*|T|, where eps is the machine precision and |T| is the
1-norm of the tridiagonal matrix.

m INTEGER. The total number of eigenvalues found.
0 ≤ m ≤ n. If range = 'A', m = n, and if range = 'I',
m = iu - il +1.

w REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n). The first m elements of w contain the
eigenvalues for which eigenvectors are to be computed. The eigenvalues
should be grouped by split-off block and ordered from smallest to largest
within the block (The output array w from ?larre is expected here).
Errors in w must be bounded by tol.

iblock INTEGER.
Array, DIMENSION (n). The submatrix indices associated with the
corresponding eigenvalues in w; iblock(i)=1 if eigenvalue w(i)
belongs to the first submatrix from the top, =2 if w(i) belongs to the
second submatrix, etc.

ldz INTEGER. The leading dimension of the output array z. ldz ≥ 1, and if
jobz = 'V', ldz ≥ max(1,n).

5-190

5 Intel® Math Kernel Library Reference Manual

work REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Workspace array, DIMENSION (13n).

iwork INTEGER.
Workspace array, DIMENSION (6n).

Output Parameters

d On exit, d may be overwritten.

l On exit, l is overwritten.

z REAL for slarrv
DOUBLE PRECISION for dlarrv
COMPLEX for clarrv
COMPLEX*16 for zlarrv
Array, DIMENSION (ldz, max(1,m)).
If jobz = 'V', then if info = 0, the first m columns of z contain the
orthonormal eigenvectors of the matrix T corresponding to the selected
eigenvalues, with the i-th column of z holding the eigenvector
associated with w(i).
If jobz = 'N', then z is not referenced.

isuppz INTEGER .
Array, DIMENSION (2*max(1,m)). The support of the eigenvectors in z,
that is, the indices indicating the nonzero elements in z. The i-th
eigenvector is nonzero only in elements isuppz(2i-1) through
isuppz(2i).

info INTEGER.
If info = 0: successful exit
If info = -i < 0: the i-th argument had an illegal value
info > 0: if info = 1, there is an internal error in ?larrb;
if info = 2, there is an internal error in ?stein.

NOTE. The user must ensure that at least max(1,m) columns are
supplied in the array z; if range = 'V', the exact value of m is not
known in advance and an upper bound must be used.

LAPACK Auxiliary and Utility Routines 5

5-191

?lartg
Generates a plane rotation with real cosine and
real/complex sine.

Syntax
call slartg(f, g, cs, sn, r)

call dlartg(f, g, cs, sn, r)

call clartg(f, g, cs, sn, r)

call zlartg(f, g, cs, sn, r)

Description

The routine generates a plane rotation so that

where cs2 + |sn|2 = 1

This is a slower, more accurate version of the BLAS Level 1 routine ?rotg, except for the
following differences.

For slartg/dlartg:

f and g are unchanged on return;
If g=0, then cs=1 and sn=0;
If f=0 and g ≠ 0, then cs=0 and sn=1 without doing any floating point operations
(saves work in ?bdsqr when there are zeros on the diagonal);
If f exceeds g in magnitude, cs will be positive.

For clartg/zlartg:

f and g are unchanged on return;
If g=0, then cs=1 and sn=0;
If f=0, then cs=0 and sn is chosen so that r is real.

cs sn

conjg sn()– cs

f

g
⋅ r

0
=

5-192

5 Intel® Math Kernel Library Reference Manual

Input Parameters

f, g REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The first and second component of vector to be rotated.

Output Parameters

cs REAL for slartg/clartg
DOUBLE PRECISION for dlartg/zlartg
The cosine of the rotation.

sn REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The sine of the rotation.

r REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The nonzero component of the rotated vector.

?lartv
Applies a vector of plane rotations with real cosines
and real/complex sines to the elements of a pair of
vectors.

Syntax
call slartv(n, x, incx, y, incy, c, s, incc)

call dlartv(n, x, incx, y, incy, c, s, incc)

call clartv(n, x, incx, y, incy, c, s, incc)

call zlartv(n, x, incx, y, incy, c, s, incc)

LAPACK Auxiliary and Utility Routines 5

5-193

Description

The routine applies a vector of real/complex plane rotations with real cosines to elements of the
real/complex vectors x and y. For i = 1,2,...,n

Input Parameters

n INTEGER. The number of plane rotations to be applied.

x, y REAL for slartv
DOUBLE PRECISION for dlartv
COMPLEX for clartv
COMPLEX*16 for zlartv
Arrays, DIMENSION (1+(n-1)*incx) and (1+(n-1)*incy), respectively.
The input vectors x and y.

incx INTEGER. The increment between elements of x.
incx > 0.

incy INTEGER. The increment between elements of y.
incy > 0.

c REAL for slartv/clartv
DOUBLE PRECISION for dlartv/zlartv
Array, DIMENSION (1+(n-1)*incc). The cosines of the plane rotations.

s REAL for slartv
DOUBLE PRECISION for dlartv
COMPLEX for clartv
COMPLEX*16 for zlartv
Array, DIMENSION (1+(n-1)*incc). The sines of the plane rotations.

incc INTEGER. The increment between elements of c and s. incc > 0.

Output Parameters

x, y The rotated vectors x and y.

xi

yi
: c i() s i()

conjg s i()()– c i()

xi

yi
=

5-194

5 Intel® Math Kernel Library Reference Manual

?laruv
Returns a vector of n random real numbers from a
uniform distribution.

Syntax
call slaruv(iseed, n, x)

call dlaruv(iseed, n, x)

Description

The routine ?laruv returns a vector of n random real numbers from a uniform (0,1) distribution
(n ≤ 128).

This is an auxiliary routine called by ?larnv.

Input Parameters

iseed INTEGER.
Array, DIMENSION (4). On entry, the seed of the random number
generator; the array elements must be between 0 and 4095, and
iseed(4) must be odd.

n INTEGER. The number of random numbers to be generated. n ≤ 128.

Output Parameters

x REAL for slaruv
DOUBLE PRECISION for dlaruv
Array, DIMENSION (n). The generated random numbers.

seed On exit, the seed is updated.

LAPACK Auxiliary and Utility Routines 5

5-195

?larz
Applies an elementary reflector (as returned by
?tzrzf) to a general matrix.

Syntax
call slarz(side, m, n, l, v, incv, tau, c, ldc, work)

call dlarz(side, m, n, l, v, incv, tau, c, ldc, work)

call clarz(side, m, n, l, v, incv, tau, c, ldc, work)

call zlarz(side, m, n, l, v, incv, tau, c, ldc, work)

Description

The routine ?larz applies a real/complex elementary reflector H to a real/complex m-by-n
matrix C, from either the left or the right.
H is represented in the form
H = I - tau * v * v',
where tau is a real/complex scalar and v is a real/complex vector.
If tau = 0, then H is taken to be the unit matrix.
For complex flavors, to apply H ′(the conjugate transpose of H), supply conjg(tau) instead of
tau.
H is a product of k elementary reflectors as returned by ?tzrzf.

Input Parameters

side CHARACTER*1.
If side = 'L': form H*C
If side = 'R': form C*H

m INTEGER. The number of rows of the matrix C.

n INTEGER. The number of columns of the matrix C.

l INTEGER. The number of entries of the vector v containing the
meaningful part of the Householder vectors.
If side = 'L', m ≥ l ≥ 0, if side = 'R', n ≥ l ≥ 0.

v REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz

5-196

5 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (1+(l-1)*abs(incv)). The vector v in the
representation of H as returned by ?tzrzf.
v is not used if tau = 0.

incv INTEGER. The increment between elements of v.
incv ≠ 0.

tau REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
The value tau in the representation of H.

c REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Array, DIMENSION (ldc,n).
On entry, the m-by-n matrix C.

ldc INTEGER. The leading dimension of the array c.
ldc ≥ max(1,m).

work REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.

Output Parameters

c On exit, c is overwritten by the matrix H*C if side = 'L', or C*H if
side = 'R'.

LAPACK Auxiliary and Utility Routines 5

5-197

?larzb
Applies a block reflector or its
transpose/conjugate-transpose to a general matrix.

call slarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc,
work, ldwork)

call dlarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc,
work, ldwork)

call clarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc,
work, ldwork)

call zlarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc,
work, ldwork)

Description

The routine applies a real/complex block reflector H or its transpose HT (or HH for complex
flavors) to a real/complex distributed m-by-n matrix C from the left or the right.
Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters

side CHARACTER*1.
If side = 'L': apply H or H' from the left
If side = 'R': apply H or H' from the right

trans CHARACTER*1.
If trans = 'N': apply H (No transpose)
If trans='C': apply H' (Transpose/conjugate transpose)

direct CHARACTER*1. Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2)... H(k) (forward, not supported yet)
= 'B': H = H(k)... H(2) H(1) (backward)

storev CHARACTER*1. Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Column-wise (not supported yet)
= 'R': Row-wise.

m INTEGER. The number of rows of the matrix C.

5-198

5 Intel® Math Kernel Library Reference Manual

n INTEGER. The number of columns of the matrix C.

k INTEGER. The order of the matrix T (equal to the number of elementary
reflectors whose product defines the block reflector).

l INTEGER. The number of columns of the matrix V containing the
meaningful part of the Householder reflectors.
If side = 'L', m ≥ l ≥ 0, if side = 'R', n ≥ l ≥ 0.

v REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldv, nv).
If storev = 'C', nv = k; if storev = 'R', nv = l.

ldv INTEGER. The leading dimension of the array v.
If storev = 'C', ldv ≥ l; if storev = 'R', ldv ≥ k.

t REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldt,k). The triangular k-by-k matrix T in the
representation of the block reflector.

ldt INTEGER. The leading dimension of the array t.
ldt ≥ k.

c REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldc,n). On entry, the m-by-n matrix C.

ldc INTEGER. The leading dimension of the array c.
ldc ≥ max(1,m).

work REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Workspace array, DIMENSION (ldwork, k).

LAPACK Auxiliary and Utility Routines 5

5-199

ldwork INTEGER. The leading dimension of the array work.
If side = 'L', ldwork ≥ max(1, n);
if side = 'R', ldwork ≥ max(1, m).

Output Parameters

c On exit, c is overwritten by H*C or H'*C or C*H or C*H'.

?larzt
Forms the triangular factor T of a block reflector H = I
- VTVH.

Syntax
call slarzt(direct, storev, n, k, v, ldv, tau, t, ldt)

call dlarzt(direct, storev, n, k, v, ldv, tau, t, ldt)

call clarzt(direct, storev, n, k, v, ldv, tau, t, ldt)

call zlarzt(direct, storev, n, k, v, ldv, tau, t, ldt)

Description

The routine forms the triangular factor T of a real/complex block reflector H of order > n, which is
defined as a product of k elementary reflectors.
If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular.
If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column
of the array v, and
H = I - V*T*V'
If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of
the array v, and
H = I - V'*T*V
Currently, only storev = 'R' and direct = 'B' are supported.

5-200

5 Intel® Math Kernel Library Reference Manual

Input Parameters

direct CHARACTER*1. Specifies the order in which the elementary reflectors
are multiplied to form the block reflector:
If direct = 'F': H = H(1) H(2) . . . H(k) (forward, not supported yet)
If direct = 'B': H = H(k) . . . H(2) H(1) (backward)

storev CHARACTER*1. Specifies how the vectors which define the elementary
reflectors are stored (see also Application Notes below):
If storev = 'C': column-wise (not supported yet)
If storev = 'R': row-wise

n INTEGER. The order of the block reflector H. n ≥ 0.

k INTEGER. The order of the triangular factor T (equal to the number of
elementary reflectors). k ≥ 1.

v REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION
(ldv, k) if storev = 'C'
(ldv, n) if storev = 'R'
The matrix V.

ldv INTEGER. The leading dimension of the array v.
If storev = 'C', ldv ≥ max(1,n);
if storev = 'R', ldv ≥ k.

tau REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION (k). tau(i) must contain the scalar factor of the
elementary reflector H(i).

ldt INTEGER. The leading dimension of the output array t.
ldt ≥ k.

Output Parameters

t REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt

LAPACK Auxiliary and Utility Routines 5

5-201

COMPLEX*16 for zlarzt
Array, DIMENSION (ldt,k). The k-by-k triangular factor T of the block
reflector. If direct = 'F', T is upper triangular; if direct = 'B', T is
lower triangular. The rest of the array is not used.

v The matrix V. See Application Notes below.

Application Notes

The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by
the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the
corresponding array elements are modified but restored on exit. The rest of the array is not used.

 direct = 'F' and storev = 'C': direct = 'F' and storev = 'R':

 ____V___

 / \

V

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

=

. . .

. . .
1 . .
 1 .
 1

v1 v1 v1 v1 v1 1

v2 v2 v2 v2 v2 . . . 1

v3 v3 v3 v3 v3 . . 1

5-202

5 Intel® Math Kernel Library Reference Manual

direct = 'B' and storev = 'C': direct = 'B' and storev = 'R':

 ____V___

 / \

?las2
Computes singular values of a 2-by-2 triangular
matrix.

Syntax
call slas2(f, g, h, ssmin, ssmax)

call dlas2(f, g, h, ssmin, ssmax)

Description

The routine ?las2 computes the singular values of the 2-by-2 matrix

On return, ssmin is the smaller singular value and ssmax is the larger singular value.

1

. 1

. . 1

. . .

. . .

V

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

=

1 v1 v1 v1 v1 v1

. 1 . . . v2 v2 v2 v2 v2

. . 1 . . v3 v3 v3 v3 v3

f g

0 h

LAPACK Auxiliary and Utility Routines 5

5-203

Input Parameters

f, g, h REAL for slas2
DOUBLE PRECISION for dlas2
The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix, respectively.

Output Parameters

ssmin, ssmax REAL for slas2
DOUBLE PRECISION for dlas2
The smaller and the larger singular values, respectively.

Application Notes

Barring over/underflow, all output quantities are correct to within a few units in the last place
(ulps), even in the absence of a guard digit in addition/subtraction.
In IEEE arithmetic, the code works correctly if one matrix element is infinite.
Overflow will not occur unless the largest singular value itself overflows, or is within a few ulps
of overflow. (On machines with partial overflow, like the Cray, overflow may occur if the largest
singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results may correspond to a matrix
modified by perturbations of size near the underflow threshold.

?lascl
Multiplies a general rectangular matrix by a real scalar
defined as cto/cfrom.

Syntax
call slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)

call dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)

call clascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)

call zlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)

5-204

5 Intel® Math Kernel Library Reference Manual

Description

The routine ?lascl multiplies the m-by-n real/complex matrix A by the real scalar cto/cfrom.
The operation is performed without over/underflow as long as the final result cto*A(i,j)/cfrom
does not over/underflow.
type specifies that A may be full, upper triangular, lower triangular, upper Hessenberg, or banded.

Input Parameters

type CHARACTER*1. type indices the storage type of the input matrix.
= 'G': A is a full matrix.
= 'L': A is a lower triangular matrix.
= 'U': A is an upper triangular matrix.
= 'H': A is an upper Hessenberg matrix.
= 'B': A is a symmetric band matrix with lower bandwidth kl and upper
bandwidth ku and with the only the lower half stored
= 'Q': A is a symmetric band matrix with lower bandwidth kl and upper
bandwidth ku and with the only the upper half stored.
= 'Z': A is a band matrix with lower bandwidth kl and upper bandwidth
ku.

kl INTEGER. The lower bandwidth of A. Referenced only if type = 'B', 'Q'
or 'Z'.

ku INTEGER. The upper bandwidth of A. Referenced only if type = 'B', 'Q'
or 'Z'.

cfrom, cto REAL for slascl/clascl
DOUBLE PRECISION for dlascl/zlascl

The matrix A is multiplied by cto/cfrom. A(i,j) is computed without
over/underflow if the final result
cto*A(i,j)/cfrom can be represented without over/underflow.
cfrom must be nonzero.

m INTEGER. The number of rows of the matrix A. m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

a REAL for slascl
DOUBLE PRECISION for dlascl
COMPLEX for clascl

LAPACK Auxiliary and Utility Routines 5

5-205

COMPLEX*16 for zlascl
Array, DIMENSION (lda, m). The matrix to be multiplied by cto/cfrom.
See type for the storage type.

lda INTEGER. The leading dimension of the array a.
lda ≥ max(1,m).

Output Parameters

a The multiplied matrix A.

info INTEGER.
If info = 0 - successful exit
If info = -i < 0, the i-th argument had an illegal value.

?lasd0
Computes the singular values of a real upper
bidiagonal n-by-m matrix B with diagonal d and
off-diagonal e.
Used by ?bdsdc.

Syntax
call slasd0(n, sqre, d, e, u, ldu, vt, ldvt, smlsiz, iwork, work, info)

call dlasd0(n, sqre, d, e, u, ldu, vt, ldvt, smlsiz, iwork, work, info)

Description

Using a divide and conquer approach, the routine ?lasd0 computes the singular value
decomposition (SVD) of a real upper bidiagonal n-by-m matrix B with diagonal d and
offdiagonal e, where m = n + sqre.

The algorithm computes orthogonal matrices U and VT such that
B = U*S*VT. The singular values S are overwritten on d.

The related subroutine ?lasda computes only the singular values, and optionally, the singular
vectors in compact form.

5-206

5 Intel® Math Kernel Library Reference Manual

Input Parameters

n INTEGER. On entry, the row dimension of the upper bidiagonal matrix.
This is also the dimension of the main diagonal array d.

sqre INTEGER. Specifies the column dimension of the bidiagonal matrix.
If sqre = 0: The bidiagonal matrix has column dimension m = n;
If sqre = 1: The bidiagonal matrix has column dimension m = n+1;

d REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION (n). On entry, d contains the main diagonal of the
bidiagonal matrix.

e REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION (m-1). Contains the subdiagonal entries of the
bidiagonal matrix. On exit, e is destroyed.

ldu INTEGER. On entry, leading dimension of the output array u.

ldvt INTEGER. On entry, leading dimension of the output array vt.

smlsiz INTEGER. On entry, maximum size of the subproblems at the bottom of
the computation tree.

iwork INTEGER.
Workspace array, DIMENSION must be at least (8n).

work REAL for slasd0
DOUBLE PRECISION for dlasd0
Workspace array, DIMENSION must be at least
(3m2 + 2m).

Output Parameters

d On exit d, if info = 0, contains singular values of the bidiagonal matrix.

u REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION at least (ldq, n). On exit, u contains the left
singular vectors.

vt REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION at least (ldvt, m). On exit, vt' contains the right
singular vectors.

LAPACK Auxiliary and Utility Routines 5

5-207

info INTEGER.
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info = 1, an singular value did not converge.

?lasd1
Computes the SVD of an upper bidiagonal matrix B of
the specified size. Used by ?bdsdc.

Syntax
call slasd1(nl, nr, sqre, d, alpha, beta, u, ldu, vt, ldvt, idxq, iwork, work,

info)

call dlasd1(nl, nr, sqre, d, alpha, beta, u, ldu, vt, ldvt, idxq, iwork, work,
info)

Description

This routine computes the SVD of an upper bidiagonal n-by-m matrix B, where n = nl + nr + 1
and m = n + sqre. The routine ?lasd1 is called from ?lasd0.

A related subroutine ?lasd7 handles the case in which the singular values (and the singular
vectors in factored form) are desired.
?lasd1 computes the SVD as follows:

where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension m with alpha and beta in the
nl+1 and nl+2 -th entries and zeros elsewhere; and the entry b is empty if sqre = 0.

The left singular vectors of the original matrix are stored in u, and the transpose of the right
singular vectors are stored in vt, and the singular values are in d. The algorithm consists of three
stages:

B U in()*

D1 in() 0 0 0

Z1′ a Z2′ b

0 0 D2 in() 0
*VT in()=

U out()* D out() 0()*VT out()=

5-208

5 Intel® Math Kernel Library Reference Manual

The first stage consists of deflating the size of the problem when there are multiple singular values
or when there are zeros in the Z vector. For each such occurrence the dimension of the secular
equation problem is reduced by one. This stage is performed by the routine ?lasd2.

The second stage consists of calculating the updated singular values. This is done by finding the
square roots of the roots of the secular equation via the routine ?lasd4 (as called by ?lasd3).
This routine also calculates the singular vectors of the current problem.

The final stage consists of computing the updated singular vectors directly using the updated
singular values. The singular vectors for the current problem are multiplied with the singular
vectors from the overall problem.

Input Parameters

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER.
If sqre = 0: the lower block is an nr-by-nr square matrix.
If sqre = 1: the lower block is an nr-by-(nr+1) rectangular matrix. The
bidiagonal matrix has row dimension n = nl + nr + 1, and column
dimension
m = n + sqre.

d REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (n = nl+nr+1). On entry d(1:nl,1:nl) contains the
singular values of the upper block; and d(nl+2:n) contains the singular
values of the lower block.

alpha REAL for slasd1
DOUBLE PRECISION for dlasd1
Contains the diagonal element associated with the added row.

beta REAL for slasd1
DOUBLE PRECISION for dlasd1
Contains the off-diagonal element associated with the added row.

LAPACK Auxiliary and Utility Routines 5

5-209

u REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (ldu, n). On entry u(1:nl, 1:nl) contains the left
singular vectors of the upper block; u(nl+2:n, nl+2:n) contains the left
singular vectors of the lower block.

ldu INTEGER. The leading dimension of the array u.
ldu ≥ max(1, n).

vt REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (ldvt, m), where m = n + sqre.
On entry vt(1:nl+1, 1:nl+1)' contains the right singular vectors of the
upper block; vt(nl+2:m, nl+2:m)' contains the right singular vectors of
the lower block.

ldvt INTEGER. The leading dimension of the array vt.
ldvt ≥ max(1, m).

iwork INTEGER.
Workspace array, DIMENSION (4n).

work REAL for slasd1
DOUBLE PRECISION for dlasd1
Workspace array, DIMENSION (3m2 + 2m).

Output Parameters

d On exit d(1:n) contains the singular values of the modified matrix.

u On exit u contains the left singular vectors of the bidiagonal matrix.

vt On exit vt' contains the right singular vectors of the bidiagonal matrix.

idxq INTEGER
Array, DIMENSION (n). Contains the permutation which will reintegrate
the subproblem just solved back into sorted order, that is, d(idxq(i = 1,
n)) will be in ascending order.

info INTEGER.
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info = 1, an singular value did not converge.

5-210

5 Intel® Math Kernel Library Reference Manual

?lasd2
Merges the two sets of singular values together into a
single sorted set.
Used by ?bdsdc.

Syntax
call slasd2(nl, nr, sqre, k, d, z, alpha, beta, u, ldu, vt, ldvt, dsigma, u2,

ldu2, vt2, ldvt2, idxp, idx, idxc, idxq, coltyp, info)

call dlasd2(nl, nr, sqre, k, d, z, alpha, beta, u, ldu, vt, ldvt, dsigma, u2,
ldu2, vt2, ldvt2, idxp, idx, idxc, idxq, coltyp, info)

Description

The routine ?lasd2 merges the two sets of singular values together into a single sorted set. Then
it tries to deflate the size of the problem. There are two ways in which deflation can occur: when
two or more singular values are close together or if there is a tiny entry in the Z vector. For each
such occurrence the order of the related secular equation problem is reduced by one.

The routine ?lasd2 is called from ?lasd1.

Input Parameters

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER.
If sqre = 0: the lower block is an nr-by-nr square matrix
If sqre = 1: the lower block is an nr-by-(nr+1) rectangular matrix. The
bidiagonal matrix has n = nl + nr + 1 rows and m = n + sqre ≥ n
columns.

d REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). On entry d contains the singular values of the
two submatrices to be combined.

LAPACK Auxiliary and Utility Routines 5

5-211

alpha REAL for slasd2
DOUBLE PRECISION for dlasd2
Contains the diagonal element associated with the added row.

beta REAL for slasd2
DOUBLE PRECISION for dlasd2
Contains the off-diagonal element associated with the added row.

u REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldu, n). On entry u contains the left singular
vectors of two submatrices in the two square blocks with corners at
(1,1), (nl, nl), and (nl+2, nl+2), (n,n).

ldu INTEGER. The leading dimension of the array u.
ldu ≥ n.

ldu2 INTEGER. The leading dimension of the output array u2. ldu2 ≥ n.

vt REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldvt, m). On entry vt' contains the right singular
vectors of two submatrices in the two square blocks with corners at
(1,1), (nl+1, nl+1), and (nl+2, nl+2), (m,m).

ldvt INTEGER. The leading dimension of the array vt.
ldvt ≥ m.

ldvt2 INTEGER. The leading dimension of the output array vt2. ldvt2 ≥ m.

idxp INTEGER.
Workspace array, DIMENSION (n). This will contain the permutation
used to place deflated values of d at the end of the array. On output
idxp(2:k) points to the nondeflated d-values and idxp(k+1:n) points to
the deflated singular values.

idx INTEGER.
Workspace array, DIMENSION (n). This will contain the permutation
used to sort the contents of d into ascending order.

coltyp INTEGER.
Workspace array, DIMENSION (n). As workspace, this will contain a
label which will indicate which of the following types a column in the
u2 matrix or a row in the vt2 matrix is:
1 : non-zero in the upper half only

5-212

5 Intel® Math Kernel Library Reference Manual

2 : non-zero in the lower half only
3 : dense
4 : deflated.

idxq INTEGER.
Array, DIMENSION (n). This contains the permutation which separately
sorts the two sub-problems in d into ascending order. Note that entries
in the first half of this permutation must first be moved one position
backward; and entries in the second half must first have nl+1 added to
their values.

Output Parameters

k INTEGER. Contains the dimension of the non-deflated matrix, This is the
order of the related secular equation. 1 ≤ k ≤n.

d On exit d contains the trailing (n-k) updated singular values (those
which were deflated) sorted into increasing order.

u On exit u contains the trailing (n-k) updated left singular vectors (those
which were deflated) in its last n-k columns.

z REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). On exit z contains the updating row vector in
the secular equation.

dsigma REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). Contains a copy of the diagonal elements (k-1
singular values and one zero) in the secular equation.

u2 REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldu2, n). Contains a copy of the first k-1 left
singular vectors which will be used by ?lasd3 in a matrix multiply
(?gemm) to solve for the new left singular vectors. u2 is arranged into
four blocks. The first block contains a column with 1 at nl+1 and zero
everywhere else; the second block contains non-zero entries only at and
above nl; the third contains non-zero entries only below nl+1; and the
fourth is dense.

vt On exit vt' contains the trailing (n-k) updated right singular vectors
(those which were deflated) in its last n-k columns. In case sqre =1, the
last row of vt spans the right null space.

LAPACK Auxiliary and Utility Routines 5

5-213

vt2 REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldvt2, n). vt2' contains a copy of the first k right
singular vectors which will be used by ?lasd3 in a matrix multiply
(?gemm) to solve for the new right singular vectors. vt2 is arranged into
three blocks. The first block contains a row that corresponds to the
special 0 diagonal element in sigma; the second block contains
non-zeros only at and before nl +1; the third block contains non-zeros
only at and after nl +2.

idxc INTEGER.
Array, DIMENSION (n). This will contain the permutation used to
arrange the columns of the deflated U matrix into three groups: the first
group contains non-zero entries only at and above nl, the second
contains non-zero entries only below nl+2, and the third is dense.

coltyp On exit, it is an array of dimension 4, with coltyp(i) being the
dimension of the i-th type columns.

info INTEGER.
If info = 0: successful exit
If info = -i < 0, the i-th argument had an illegal value.

?lasd3
Finds all square roots of the roots of the secular
equation, as defined by the values in D and Z, and then
updates the singular vectors by matrix multiplication.
Used by ?bdsdc.

Syntax
call slasd3(nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu, u2, ldu2, vt, ldvt,

vt2, ldvt2, idxc, ctot, z, info)

call dlasd3(nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu, u2, ldu2, vt, ldvt,
vt2, ldvt2, idxc, ctot, z, info)

5-214

5 Intel® Math Kernel Library Reference Manual

Description

The routine ?lasd3 finds all the square roots of the roots of the secular equation, as defined by
the values in D and Z. It makes the appropriate calls to ?lasd4 and then updates the singular
vectors by matrix multiplication.

The routine ?lasd3 is called from ?lasd1.

Input Parameters

nl INTEGER. The row dimension of the upper block.
nl ≥ 1.

nr INTEGER. The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER.
If sqre = 0: the lower block is an nr-by-nr square matrix.
If sqre = 1: the lower block is an nr-by-(nr+1) rectangular matrix. The
bidiagonal matrix has n = nl + nr + 1 rows and m = n + sqre ≥ n
columns.

k INTEGER.The size of the secular equation, 1 ≤ k ≤ n.

q REAL for slasd3
DOUBLE PRECISION for dlasd3
Workspace array, DIMENSION at least (ldq, k).

ldq INTEGER. The leading dimension of the array q.
ldq ≥ k.

dsigma REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). The first k elements of this array contain the old
roots of the deflated updating problem. These are the poles of the
secular equation.

u REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldu, n). The last n - k columns of this matrix
contain the deflated left singular vectors.

ldu INTEGER. The leading dimension of the array u.
 ldu ≥ n.

LAPACK Auxiliary and Utility Routines 5

5-215

u2 REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldu2, n). The first k columns of this matrix contain
the non-deflated left singular vectors for the split problem.

ldu2 INTEGER. The leading dimension of the array u2.
ldu2 ≥ n.

vt REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldvt, m). The last m - k columns of vt' contain the
deflated right singular vectors.

ldvt INTEGER. The leading dimension of the array vt.
ldvt ≥ n.

vt2 REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (ldvt2, n). The first k columns of vt2' contain the
non-deflated right singular vectors for the split problem.

ldvt2 INTEGER. The leading dimension of the array vt2. ldvt2 ≥ n.

idxc INTEGER.
Array, DIMENSION (n). The permutation used to arrange the columns of
u (and rows of vt) into three groups: the first group contains non-zero
entries only at and above (or before) nl +1; the second contains
non-zero entries only at and below (or after) nl+2; and the third is
dense. The first column of u and the row of vt are treated separately,
however. The rows of the singular vectors found by ?lasd4 must be
likewise permuted before the matrix multiplies can take place.

ctot INTEGER.
Array, DIMENSION (4). A count of the total number of the various types
of columns in u (or rows in vt), as described in idxc. The fourth
column type is any column which has been deflated.

z REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). The first k elements of this array contain the
components of the deflation-adjusted updating row vector.

5-216

5 Intel® Math Kernel Library Reference Manual

Output Parameters

d REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (k). On exit the square roots of the roots of the
secular equation, in ascending order.

info INTEGER.
If info = 0: successful exit.
If info = -i < 0, the i-th argument had an illegal value.
If info = 1, an singular value did not converge.

Application Notes

This code makes very mild assumptions about floating point arithmetic. It will work on machines
with a guard digit in add/subtract, or on those binary machines without guard digits which subtract
like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. It could conceivably fail on hexadecimal or
decimal machines without guard digits, but we know of none.

?lasd4
Computes the square root of the i-th updated
eigenvalue of a positive symmetric rank-one
modification to a positive diagonal matrix.
Used by ?bdsdc.

Syntax
call slasd4(n, i, d, z, delta, rho, sigma, work, info)

call dlasd4(n, i, d, z, delta, rho, sigma, work, info)

Description

This routine computes the square root of the i-th updated eigenvalue of a positive symmetric
rank-one modification to a positive diagonal matrix whose entries are given as the squares of the
corresponding entries in the array d, and that 0 ≤ d(i) < d(j) for i < j and that rho > 0. This is
arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus
 diag(d)* diag(d) + rho *Z * Z_transpose
where we assume the Euclidean norm of Z is 1.The method consists of approximating the rational
functions in the secular equation by simpler interpolating rational functions.

LAPACK Auxiliary and Utility Routines 5

5-217

Input Parameters

n INTEGER. The length of all arrays.

i INTEGER. The index of the eigenvalue to be computed. 1 ≤ i ≤ n.

d REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).
The original eigenvalues. It is assumed that they are in order,
0 ≤ d(i) < d(j) for i < j.

z REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).
The components of the updating vector.

 rho REAL for slasd4
DOUBLE PRECISION for dlasd4
The scalar in the symmetric updating formula.

work REAL for slasd4
DOUBLE PRECISION for dlasd4
Workspace array, DIMENSION (n).
If n ≠ 1, work contains (d(j) + sigma_i) in its j-th component. If n = 1,
then work(1) = 1.

Output Parameters

delta REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).
If n ≠ 1, delta contains (d(j) - sigma_i) in its j-th component.
If n = 1, then delta (1) = 1. The vector delta contains the information
necessary to construct the (singular) eigenvectors.

sigma REAL for slasd4
DOUBLE PRECISION for dlasd4
The computed λi, the i-th updated eigenvalue.

info INTEGER.
 = 0: successful exit
 > 0: if info = 1, the updating process failed.

5-218

5 Intel® Math Kernel Library Reference Manual

?lasd5
Computes the square root of the i-th eigenvalue of a
positive symmetric rank-one modification of a 2-by-2
diagonal matrix.Used by ?bdsdc.

Syntax
call slasd5(i, d, z, delta, rho, dsigma, work)

call dlasd5(i, d, z, delta, rho, dsigma, work)

Description

This routine computes the square root of the i-th eigenvalue of a positive symmetric rank-one
modification of a 2-by-2 diagonal matrix
 diag(d)* diag(d) + rho *Z * Z_transpose

The diagonal entries in the array d are assumed to satisfy 0 ≤ d(i) < d(j) for i < j .We also assume
rho > 0 and that the Euclidean norm of the vector Z is one.

Input Parameters

i INTEGER.The index of the eigenvalue to be computed. i = 1 or i = 2.

d REAL for slasd5
DOUBLE PRECISION for dlasd5
Array, DIMENSION (2).
The original eigenvalues. We assume 0 ≤ d(1) < d(2).

z REAL for slasd5
DOUBLE PRECISION for dlasd5
Array, DIMENSION (2).
The components of the updating vector.

rho REAL for slasd5
DOUBLE PRECISION for dlasd5
The scalar in the symmetric updating formula.

work REAL for slasd5
DOUBLE PRECISION for dlasd5.
Workspace array, DIMENSION (2).
Contains (d(j) + sigma_i) in its j-th component.

LAPACK Auxiliary and Utility Routines 5

5-219

Output Parameters

delta REAL for slasd5
DOUBLE PRECISION for dlasd5.
Array, DIMENSION (2).
Contains (d(j) - λi) in its j-th component. The vector delta contains
the information necessary to construct the eigenvectors.

dsigma REAL for slasd5
DOUBLE PRECISION for dlasd5.
The computed λi, the i-th updated eigenvalue.

?lasd6
Computes the SVD of an updated upper bidiagonal
matrix obtained by merging two smaller ones by
appending a row. Used by ?bdsdc.

Syntax
call slasd6(icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr,

givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, iwork,
info)

call dlasd6(icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr,
givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, iwork,
info)

Description

The routine ?lasd6 computes the SVD of an updated upper bidiagonal matrix B obtained by
merging two smaller ones by appending a row. This routine is used only for the problem which
requires all singular values and optionally singular vector matrices in factored form. B is an
n-by-m matrix with n = nl + nr + 1 and m = n + sqre. A related subroutine, ?lasd1, handles
the case in which all singular values and singular vectors of the bidiagonal matrix are desired.
?lasd6 computes the SVD as follows:

B U in()*

D1 in() 0 0 0

Z1′ a Z2′ b

0 0 D2 in() 0
*VT in()=

5-220

5 Intel® Math Kernel Library Reference Manual

where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension m with alpha and beta in the
nl+1 and nl+2 -th entries and zeros elsewhere; and the entry b is empty if sqre = 0.

The singular values of B can be computed using D1, D2, the first components of all the right
singular vectors of the lower block, and the last components of all the right singular vectors of the
upper block. These components are stored and updated in vf and vl, respectively, in ?lasd6.
Hence U and VT are not explicitly referenced.
The singular values are stored in D. The algorithm consists of two stages:
the first stage consists of deflating the size of the problem when there are multiple singular values
or if there is a zero in the Z vector. For each such occurrence the dimension of the secular equation
problem is reduced by one. This stage is performed by the routine ?lasd7.

The second stage consists of calculating the updated singular values. This is done by finding the
roots of the secular equation via the routine ?lasd4 (as called by ?lasd8). This routine also
updates vf and vl and computes the distances between the updated singular values and the old
singular values. ?lasd6 is called from ?lasda.

Input Parameters

icompq INTEGER. Specifies whether singular vectors are to be computed in
factored form:
= 0: Compute singular values only
= 1: Compute singular vectors in factored form as well.

nl INTEGER.The row dimension of the upper block.
nl ≥ 1.

nr INTEGER.The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER .
= 0: the lower block is an nr-by-nr square matrix.
= 1: the lower block is an nr-by-(nr+1) rectangular matrix.
The bidiagonal matrix has row dimension n=nl+nr+1, and column
dimension m = n + sqre.

U out()* D out() 0()*VT out()=

LAPACK Auxiliary and Utility Routines 5

5-221

 d REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION (nl+nr+1). On entry d(1:nl,1:nl) contains the
singular values of the upper block, and d(nl+2:n) contains the singular
values of the lower block.

 vf REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION (m). On entry, vf(1:nl+1) contains the first
components of all right singular vectors of the upper block; and
vf(nl+2:m) contains the first components of all right singular vectors of
the lower block.

vl REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION (m). On entry, vl(1:nl+1) contains the last
components of all right singular vectors of the upper block; and
vl(nl+2:m) contains the last components of all right singular vectors of
the lower block.

 alpha REAL for slasd6
DOUBLE PRECISION for dlasd6
Contains the diagonal element associated with the added row.

 beta REAL for slasd6
DOUBLE PRECISION for dlasd6
Contains the off-diagonal element associated with the added row.

ldgcol INTEGER.The leading dimension of the output array givcol, must
be at least n.

ldgnum INTEGER. The leading dimension of the output arrays givnum and
poles, must be at least n.

 work REAL for slasd6
DOUBLE PRECISION for dlasd6
Workspace array, DIMENSION (4m).

iwork INTEGER
Workspace array, DIMENSION (3n).

Output Parameters

 d On exit d(1:n) contains the singular values of the modified matrix.

5-222

5 Intel® Math Kernel Library Reference Manual

 vf On exit, vf contains the first components of all right singular vectors of
the bidiagonal matrix.

vl On exit, vl contains the last components of all right singular vectors of
the bidiagonal matrix.

idxq INTEGER.
Array, DIMENSION (n). This contains the permutation which will
reintegrate the subproblem just solved back into sorted order, that is, d(
idxq(i = 1, n)) will be in ascending order.

perm INTEGER.
Array, DIMENSION (n). The permutations (from deflation and sorting)
to be applied to each block. Not referenced if icompq = 0.

 givptr INTEGER. The number of Givens rotations which took place in this
subproblem. Not referenced if icompq = 0.

 givcol INTEGER.
Array, DIMENSION (ldgcol, 2). Each pair of numbers indicates a pair
of columns to take place in a Givens rotation.
Not referenced if icompq = 0.

givnum REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION (ldgnum, 2). Each number indicates the C or S
value to be used in the corresponding Givens rotation.
Not referenced if icompq = 0.

poles REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION (ldgnum, 2). On exit, poles(1,*) is an array
containing the new singular values obtained from solving the secular
equation, and poles(2,*) is an array containing the poles in the secular
equation. Not referenced if icompq = 0.

difl REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION (n). On exit, difl(i) is the distance between i-th
updated (undeflated) singular value and the i-th (undeflated) old singular
value.

difr REAL for slasd6
DOUBLE PRECISION for dlasd6
Array,

LAPACK Auxiliary and Utility Routines 5

5-223

DIMENSION (ldgnum, 2) if icompq = 1 and
DIMENSION (n) if icompq = 0.
On exit, difr(i, 1) is the distance between i-th updated (undeflated)
singular value and the i+1-th (undeflated) old singular value.
If icompq = 1, difr(1:k, 2) is an array containing the normalizing
factors for the right singular vector matrix.

 See ?lasd8 for details on difl and difr.

 z REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION (m).
The first elements of this array contain the components of the
deflation-adjusted updating row vector.

 k INTEGER. Contains the dimension of the non-deflated matrix. This is
the order of the related secular equation. 1 ≤ k ≤ n.

 c REAL for slasd6
DOUBLE PRECISION for dlasd6
c contains garbage if sqre =0 and the C-value of a Givens rotation
related to the right null space if
sqre = 1.

s REAL for slasd6
DOUBLE PRECISION for dlasd6
s contains garbage if sqre =0 and the S-value of a Givens rotation
related to the right null space if
sqre = 1.

 info INTEGER.
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value.
>0:if info = 1, an singular value did not converge

5-224

5 Intel® Math Kernel Library Reference Manual

?lasd7
Merges the two sets of singular values together into a
single sorted set. Then it tries to deflate the size of the
problem. Used by ?bdsdc.

Syntax
call slasd7(icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta,

dsigma, idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s,
info)

call dlasd7(icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta,
dsigma, idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s,
info)

Description

The routine ?lasd7 merges the two sets of singular values together into a single sorted set. Then
it tries to deflate the size of the problem. There are two ways in which deflation can occur: when
two or more singular values are close together or if there is a tiny entry in the Z vector. For each
such occurrence the order of the related secular equation problem is reduced by one. ?lasd7 is
called from ?lasd6.

Input Parameters

icompq INTEGER.Specifies whether singular vectors are to be computed in
compact form, as follows:
 = 0: Compute singular values only.
 = 1: Compute singular vectors of upper bidiagonal matrix in compact
form.

nl INTEGER. The row dimension of the upper block.
 nl ≥ 1.

nr INTEGER. The row dimension of the lower block.
nr ≥ 1.

sqre INTEGER.
 = 0: the lower block is an nr-by-nr square matrix.
 = 1: the lower block is an nr-by-(nr+1) rectangular matrix. The
bidiagonal matrix has n = nl + nr + 1 rows and m = n + sqre ≥ n
columns.

LAPACK Auxiliary and Utility Routines 5

5-225

d REAL for slasd7
DOUBLE PRECISION for dlasd7
Array, DIMENSION (n). On entry d contains the singular values of the
two submatrices to be combined.

zw REAL for slasd7
DOUBLE PRECISION for dlasd7
Array, DIMENSION (m). Workspace for z.

vf REAL for slasd7
DOUBLE PRECISION for dlasd7
Array, DIMENSION (m). On entry, vf(1:nl+1) contains the first
components of all right singular vectors of the upper block; and
vf(nl+2:m) contains the first components of all right singular vectors of
the lower block.

 vfw REAL for slasd7
DOUBLE PRECISION for dlasd7
Array, DIMENSION (m). Workspace for vf.

vl REAL for slasd7
DOUBLE PRECISION for dlasd7
Array, DIMENSION (m). On entry, vl(1:nl+1) contains the last
components of all right singular vectors of the upper block; and
vl(nl+2:m) contains the last components of all right singular vectors of
the lower block.

vlw REAL for slasd7
DOUBLE PRECISION for dlasd7
Array, DIMENSION (m). Workspace for vl.

alpha REAL for slasd7
DOUBLE PRECISION for dlasd7.
Contains the diagonal element associated with the added row.

beta REAL for slasd7
DOUBLE PRECISION for dlasd7
Contains the off-diagonal element associated with the added row.

idx INTEGER.
Workspace array, DIMENSION (n). This will contain the permutation
used to sort the contents of d into ascending order.

5-226

5 Intel® Math Kernel Library Reference Manual

idxp INTEGER.
Workspace array, DIMENSION (n). This will contain the permutation
used to place deflated values of d at the end of the array.

idxq INTEGER.
Array, DIMENSION (n). This contains the permutation which separately
sorts the two sub-problems in d into ascending order. Note that entries
in the first half of this permutation must first be moved one position
backward; and entries in the second half must first have nl+1 added to
their values.

ldgcol INTEGER.The leading dimension of the output array givcol, must be at
least n.

ldgnum INTEGER. The leading dimension of the output array givnum, must be
at least n.

Output Parameters

k INTEGER. Contains the dimension of the non-deflated matrix, this is the
order of the related secular equation.
1 ≤ k ≤n.

d On exit, d contains the trailing (n-k) updated singular values (those
which were deflated) sorted into increasing order.

 z REAL for slasd7
DOUBLE PRECISION for dlasd7.
Array, DIMENSION (m). On exit, z contains the updating row vector in
the secular equation.

vf On exit, vf contains the first components of all right singular vectors of
the bidiagonal matrix.

vl On exit, vl contains the last components of all right singular vectors of
the bidiagonal matrix.

dsigma REAL for slasd7
DOUBLE PRECISION for dlasd7.
Array, DIMENSION (n). Contains a copy of the diagonal elements (k-1
singular values and one zero) in the secular equation.

idxp On output, idxp(2:k) points to the nondeflated d-values and
idxp(k+1:n) points to the deflated singular values.

LAPACK Auxiliary and Utility Routines 5

5-227

perm INTEGER.
Array, DIMENSION (n). The permutations (from deflation and sorting) to
be applied to each singular block. Not referenced if icompq = 0.

givptr INTEGER.The number of Givens rotations which took place in this
subproblem. Not referenced if icompq = 0.

givcol INTEGER.
Array, DIMENSION (ldgcol, 2). Each pair of numbers indicates a pair
of columns to take place in a Givens rotation.
Not referenced if icompq = 0.

givnum REAL for slasd7
DOUBLE PRECISION for dlasd7.
Array, DIMENSION (ldgnum, 2). Each number indicates the C or S
value to be used in the corresponding Givens rotation. Not referenced if
icompq = 0.

c REAL for slasd7.
DOUBLE PRECISION for dlasd7.
c contains garbage if sqre =0 and the C-value of a Givens rotation
related to the right null space if
sqre = 1.

s REAL for slasd7.
DOUBLE PRECISION for dlasd7.
s contains garbage if sqre =0 and the S-value of a Givens rotation
related to the right null space if
sqre = 1.

info INTEGER.
 = 0: successful exit.
 < 0: if info = -i, the i-th argument had an illegal value.

5-228

5 Intel® Math Kernel Library Reference Manual

?lasd8
Finds the square roots of the roots of the secular
equation, and stores, for each element in D, the
distance to its two nearest poles. Used by ?bdsdc.

Syntax
call slasd8(icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info)

call dlasd8(icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info)

Description

The routine ?lasd8 finds the square roots of the roots of the secular equation, as defined by the
values in dsigma and z. It makes the appropriate calls to ?lasd4, and stores, for each element in
d, the distance to its two nearest poles (elements in dsigma). It also updates the arrays vf and
vl, the first and last components of all the right singular vectors of the original bidiagonal matrix.
?lasd8 is called from ?lasd6.

Input Parameters

icompq INTEGER. Specifies whether singular vectors are to be computed in
factored form in the calling routine:
 = 0: Compute singular values only.
 = 1: Compute singular vectors in factored form as well.

k INTEGER. The number of terms in the rational function to be solved by
?lasd4. k ≥ 1.

z REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). The first k elements of this array contain the
components of the deflation-adjusted updating row vector.

vf REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). On entry, vf contains information passed
through dbede8.

LAPACK Auxiliary and Utility Routines 5

5-229

vl REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k).On entry, vl contains information passed
through dbede8.

lddifr INTEGER.The leading dimension of the output array difr, must be at
least k.

dsigma REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). The first k elements of this array contain the
old roots of the deflated updating problem. These are the poles of the
secular equation.

work REAL for slasd8
DOUBLE PRECISION for dlasd8.
Workspace array, DIMENSION at least (3k).

Output Parameters

d REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). On output, d contains the updated singular
values.

vf On exit, vf contains the first k components of the first components of all
right singular vectors of the bidiagonal matrix.

vl On exit, vl contains the first k components of the last components of all
right singular vectors of the bidiagonal matrix.

difl REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (k). On exit, difl(i) = d(i) - dsigma(i).

difr REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array,
DIMENSION (lddifr, 2) if icompq = 1 and
DIMENSION (k) if icompq = 0.
On exit, difr(i,1) = d(i) - dsigma(i+1), difr(k,1) is not defined and
will not be referenced.
If icompq = 1, difr(1:k,2) is an array containing the normalizing
factors for the right singular vector matrix.

5-230

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value.
> 0: if info = 1, an singular value did not converge.

?lasd9
Finds the square roots of the roots of the secular
equation, and stores, for each element in D, the
distance to its two nearest poles. Used by ?bdsdc.

Syntax
call slasd9(icompq, ldu, k, d, z, vf, vl, difl, difr, dsigma, work, info)

call dlasd9(icompq, ldu, k, d, z, vf, vl, difl, difr, dsigma, work, info)

Description

The routine ?lasd9 finds the square roots of the roots of the secular equation, as defined by the
values in dsigma and z. The routine makes the appropriate calls to ?lasd4, and stores, for each
element in d, the distance to its two nearest poles (elements in dsigma). It also updates the arrays
vf and vl, the first and last components of all the right singular vectors of the original bidiagonal
matrix. ?lasd9 is called from ?lasd7.

Input Parameters

icompq INTEGER.Specifies whether singular vectors are to be computed in
factored form in the calling routine:
If icompq = 0, compute singular values only;
If icompq = 1, compute singular vector matrices in factored form also.

k INTEGER.The number of terms in the rational function to be solved by
slasd4. k ≥ 1.

dsigma REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). The first k elements of this array contain the old
roots of the deflated updating problem. These are the poles of the
secular equation.

LAPACK Auxiliary and Utility Routines 5

5-231

z REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION (k). The first k elements of this array contain the
components of the deflation-adjusted updating row vector.

vf REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). On entry, vf contains information passed
through sbede8.

vl REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). On entry, vl contains information passed
through sbede8.

work REAL for slasd9
DOUBLE PRECISION for dlasd9.
Workspace array, DIMENSION at least (3k).

Output Parameters

d REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). d(i) contains the updated singular values.

vf On exit, vf contains the first k components of the first components of all
right singular vectors of the bidiagonal matrix.

vl On exit, vl contains the first k components of the last components of all
right singular vectors of the bidiagonal matrix.

difl REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION (k).
On exit, difl(i) = d(i) - dsigma(i).

difr REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array,
DIMENSION (ldu, 2) if icompq =1 and
DIMENSION (k) if icompq = 0.
On exit, difr(i, 1) = d(i) - dsigma(i+1), difr(k, 1) is not defined and
will not be referenced.
If icompq = 1, difr(1:k, 2) is an array containing the normalizing
factors for the right singular vector matrix.

5-232

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
 = 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value.
> 0: if info = 1, an singular value did not converge

?lasda
Computes the singular value decomposition (SVD) of a
real upper bidiagonal matrix with diagonal d and
off-diagonal e. Used by ?bdsdc.

Syntax
call slasda(icompq, smlsiz, n, sqre, d, e, u, ldu, vt, k, difl, difr, z, poles,

givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info)

call dlasda(icompq, smlsiz, n, sqre, d, e, u, ldu, vt, k, difl, difr, z, poles,
givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info)

Description

Using a divide and conquer approach, ?lasda computes the singular value decomposition (SVD)
of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e,
where m = n + sqre. The algorithm computes the singular values in the SVD B = U*S*VT. The
orthogonal matrices U and VT are optionally computed in compact form. A related subroutine
?lasd0 computes the singular values and the singular vectors in explicit form.

Input Parameters

icompq INTEGER. Specifies whether singular vectors are to be computed in
compact form, as follows:
= 0: Compute singular values only.
= 1: Compute singular vectors of upper bidiagonal matrix in compact
form.

smlsiz INTEGER. The maximum size of the subproblems at the bottom of the
computation tree.

n INTEGER. The row dimension of the upper bidiagonal matrix. This is
also the dimension of the main diagonal array d.

LAPACK Auxiliary and Utility Routines 5

5-233

sqre INTEGER. Specifies the column dimension of the bidiagonal matrix.
If sqre = 0: The bidiagonal matrix has column dimension m = n;
If sqre = 1: The bidiagonal matrix has column dimension m = n + 1.

d REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (n). On entry d contains the main diagonal of the
bidiagonal matrix.

 e REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (m -1). Contains the subdiagonal entries of the
bidiagonal matrix. On exit, e has been destroyed.

ldu INTEGER. The leading dimension of arrays u, vt, difl, difr,
poles, givnum, and z. ldu ≥ n.

ldgcol INTEGER. The leading dimension of arrays givcol and perm.
ldgcol ≥ n.

work REAL for slasda
DOUBLE PRECISION for dlasda.
Workspace array, DIMENSION (6n + (smlsiz + 1)2).

iwork INTEGER.
 Workspace array, DIMENSION must be at least (7n).

Output Parameters

d On exit d, if info = 0, contains the singular values of the bidiagonal
matrix.

u REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, smlsiz) if icompq = 1.
Not referenced if icompq = 0.
If icompq = 1, on exit, u contains the left singular vector matrices of all
subproblems at the bottom level.

 vt REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, smlsiz+1) if icompq = 1, and not
referenced if icompq = 0. If icompq = 1, on exit, vt contains the right
singular vector matrices of all subproblems at the bottom level.

5-234

5 Intel® Math Kernel Library Reference Manual

k INTEGER.
Array,
DIMENSION (n) if icompq = 1 and
DIMENSION (1) if icompq = 0.
If icompq = 1, on exit, k(i) is the dimension of the i-th secular equation
on the computation tree.

difl REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, nlvl),
where nlvl = floor (log2 (n/smlsiz))).

difr REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (ldu, 2 nlvl) if icompq = 1 and
DIMENSION (n) if icompq = 0.
If icompq = 1, on exit, difl(1:n, i) and difr(1:n,2i -1) record
distances between singular values on the i-th level and singular values
on the (i -1)-th level, and difr(1:n, 2i) contains the normalizing factors
for the right singular vector matrix. See ?lasd8 for details.

z REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (ldu, nlvl) if icompq = 1 and
DIMENSION (n) if icompq = 0.
The first k elements of z(1, i) contain the components of the
deflation-adjusted updating row vector for subproblems on the i-th level.

poles REAL for slasda
DOUBLE PRECISION for dlasda
Array, DIMENSION (ldu, 2*nlvl) if icompq = 1, and not referenced
if icompq = 0. If icompq = 1, on exit, poles(1, 2i - 1) and poles(1,
2i) contain the new and old singular values involved in the secular
equations on the i-th level.

givptr INTEGER.
Array, DIMENSION (n) if icompq = 1, and not referenced if icompq = 0.
If icompq = 1, on exit, givptr(i) records the number of Givens
rotations performed on the i-th problem on the computation tree.

LAPACK Auxiliary and Utility Routines 5

5-235

givcol INTEGER .
Array, DIMENSION (ldgcol, 2*nlvl) if icompq = 1, and not
referenced if icompq = 0.
If icompq = 1, on exit, for each i, givcol(1, 2 i - 1) and givcol(1, 2 i)
record the locations of Givens rotations performed on the i-th level on
the computation tree.

perm INTEGER .
Array, DIMENSION (ldgcol, nlvl) if icompq = 1, and not referenced
if icompq = 0. If icompq = 1, on exit, perm (1, i) records permutations
done on the i-th level of the computation tree.

givnum REAL for slasda
DOUBLE PRECISION for dlasda.
Array DIMENSION (ldu, 2*nlvl) if icompq = 1, and not referenced
if icompq = 0. If icompq = 1, on exit, for each i, givnum(1, 2 i - 1) and
givnum(1, 2 i) record the C- and S-values of Givens rotations performed
on the i-th level on the computation tree.

c REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (n) if icompq = 1, and
DIMENSION (1) if icompq = 0.
If icompq = 1 and the i-th subproblem is not square, on exit, c(i)
contains the C-value of a Givens rotation related to the right null space
of the i-th subproblem.

s REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (n) icompq = 1, and
DIMENSION (1) if icompq = 0.
If icompq = 1 and the i-th subproblem is not square, on exit, s(i)
contains the S-value of a Givens rotation related to the right null space of
the i-th subproblem.

info INTEGER.
 = 0: successful exit;
< 0: if info = -i, the i-th argument had an illegal value > 0;
= 1: a singular value did not converge.

5-236

5 Intel® Math Kernel Library Reference Manual

?lasdq
Computes the SVD of a real bidiagonal matrix with
diagonal d and off-diagonal e.
Used by ?bdsdc.

Syntax
call slasdq(uplo, sqre, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc,

work, info)

call dlasdq(uplo, sqre, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc,
work, info)

Description

The routine ?lasdq computes the singular value decomposition (SVD) of a real (upper or lower)
bidiagonal matrix with diagonal d and off-diagonal e, accumulating the transformations if desired.
Letting B denote the input bidiagonal matrix, the algorithm computes orthogonal matrices Q and
P such that B = Q S P' (P' denotes the transpose of P). The singular values S are overwritten on d.
The input matrix U is changed to UQ if desired.
The input matrix VT is changed to P' VT if desired.
The input matrix C is changed to Q' C if desired.

Input Parameters

uplo CHARACTER*1. On entry, uplo specifies whether the input bidiagonal
matrix is upper or lower bidiagonal.
If uplo = 'U' or 'u' , B is upper bidiagonal;
If uplo = 'L' or 'l' , B is lower bidiagonal.

sqre INTEGER.
 = 0: then the input matrix is n-by-n.
 = 1: then the input matrix is n-by-(n+1) if uplu = 'U' and (n+1)-by-n
if uplu = 'L'. The bidiagonal matrix has n = nl + nr + 1 rows and
m = n + sqre ≥ n columns.

n INTEGER. On entry, n specifies the number of rows and columns in the
matrix. n must be at least 0.

 ncvt INTEGER. On entry, ncvt specifies the number of columns of the matrix
VT. ncvt must be at least 0.

LAPACK Auxiliary and Utility Routines 5

5-237

nru INTEGER. On entry, nru specifies the number of rows of the matrix U.
nru must be at least 0.

ncc INTEGER. On entry, ncc specifies the number of columns of the matrix
C. ncc must be at least 0.

d REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (n). On entry, d contains the diagonal entries of the
bidiagonal matrix whose SVD is desired.

e REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION is (n-1) if sqre = 0 and n if sqre = 1. On entry, the
entries of e contain the off-diagonal entries of the bidiagonal matrix
whose SVD is desired.

vt REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (ldvt, ncvt). On entry, contains a matrix that on
exit has been premultiplied by P', dimension n-by-ncvt if sqre = 0 and
(n+1)-by-ncvt if sqre = 1 (not referenced if ncvt=0).

ldvt INTEGER. On entry, ldvt specifies the leading dimension of vt as
declared in the calling (sub) program. ldvt must be at least 1. If ncvt is
nonzero, ldvt must also be at least n.

u REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (ldu, n). On entry, contains a matrix which on exit
has been postmultiplied by Q, dimension nru-by-n if sqre = 0 and
nru-by-(n+1) if sqre = 1 (not referenced if nru=0).

ldu INTEGER.On entry, ldu specifies the leading dimension of u as
declared in the calling (sub) program. ldu must be at least max(1, nru).

c REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (ldc, ncc). On entry, contains an n-by-ncc matrix
which on exit has been premultiplied by Q', dimension n-by-ncc if
sqre = 0 and (n+1)-by-ncc if sqre = 1 (not referenced if ncc=0).

 ldc INTEGER. On entry, ldc specifies the leading dimension of c as
declared in the calling (sub) program. ldc must be at least 1. If ncc is
non-zero, ldc must also be at least n.

5-238

5 Intel® Math Kernel Library Reference Manual

work REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (4n).This is a workspace array. Only referenced if
one of ncvt, nru, or ncc is nonzero, and if n is at least 2.

Output Parameters

d On normal exit, d contains the singular values in ascending order.

e On normal exit, e will contain 0. If the algorithm does not converge, d
and e will contain the diagonal and superdiagonal entries of a
bidiagonal matrix orthogonally equivalent to the one given as input.

vt On exit, the matrix has been premultiplied by P'.

u On exit, the matrix has been postmultiplied by Q.

c On exit, the matrix has been premultiplied by Q'.

info INTEGER. On exit, a value of 0 indicates a successful exit. If info < 0,
argument number -info is illegal. If info > 0, the algorithm did not
converge, and info specifies how many superdiagonals did not
converge.

?lasdt
Creates a tree of subproblems for bidiagonal divide and
conquer.
Used by ?bdsdc.

Syntax
call slasdt(n, lvl, nd, inode, ndiml, ndimr, msub)

call dlasdt(n, lvl, nd, inode, ndiml, ndimr, msub)

Description

The routine creates a tree of subproblems for bidiagonal divide and conquer.

Input Parameters

n INTEGER. On entry, the number of diagonal elements of the bidiagonal
matrix.

LAPACK Auxiliary and Utility Routines 5

5-239

msub INTEGER. On entry, the maximum row dimension each subproblem at
the bottom of the tree can be of.

Output Parameters

lvl INTEGER. On exit, the number of levels on the computation tree.

nd INTEGER. On exit, the number of nodes on the tree.

inode INTEGER.
Array, DIMENSION (n). On exit, centers of subproblems.

ndiml INTEGER.
Array, DIMENSION (n). On exit, row dimensions of left children.

ndimr INTEGER.
Array, DIMENSION (n). On exit, row dimensions of right children.

?laset
Initializes the off-diagonal elements and the diagonal
elements of a matrix to given values.

Syntax
call slaset(uplo, m, n, alpha, beta, a, lda)

call dlaset(uplo, m, n, alpha, beta, a, lda)

call claset(uplo, m, n, alpha, beta, a, lda)

call zlaset(uplo, m, n, alpha, beta, a, lda)

Description

The routine initializes an m-by-n matrix A to beta on the diagonal and alpha on the
off-diagonals.

Input parameters

uplo CHARACTER*1. Specifies the part of the matrix A to be set.
If uplo = 'U', upper triangular part is set; the strictly lower triangular
part of A is not changed.

5-240

5 Intel® Math Kernel Library Reference Manual

If uplo = 'L': lower triangular part is set; the strictly upper triangular
part of A is not changed.
Otherwise: all of the matrix A is set.

m INTEGER. The number of rows of the matrix A.
m ≥ 0.

n INTEGER. The number of columns of the matrix A.
n ≥ 0.

alpha, beta REAL for slaset
DOUBLE PRECISION for dlaset
COMPLEX for claset
COMPLEX*16 for zlaset.
The constants to which the off-diagonal and diagonal elements are to be
set, respectively.

a REAL for slaset
DOUBLE PRECISION for dlaset
COMPLEX for claset
COMPLEX*16 for zlaset.
Array, DIMENSION (lda, n).
On entry, the m-by-n matrix A.

lda INTEGER. The leading dimension of the array A.
lda ≥ max(1,m).

Output Parameters

a On exit, the leading m-by-n submatrix of A is set as follows:
 if uplo = 'U', A(i,j) = alpha, 1≤ i ≤ j-1, 1≤ j ≤ n,
 if uplo = 'L', A(i,j) = alpha, j+1≤ i ≤ m, 1≤ j ≤ n,
otherwise, A(i,j) = alpha, 1≤ i ≤ m, 1≤ j ≤ n, i ≠ j,

and, for all uplo, A(i,i) = beta, 1≤ i ≤ min(m, n).

LAPACK Auxiliary and Utility Routines 5

5-241

?lasq1
Computes the singular values of a real square
bidiagonal matrix. Used by ?bdsqr.

Syntax
call slasq1(n, d, e, work, info)

call dlasq1(n, d, e, work, info)

Description

The routine ?lasq1 computes the singular values of a real n-by-n bidiagonal matrix with
diagonal d and off-diagonal e. The singular values are computed to high relative accuracy, in the
absence of denormalization, underflow and overflow.

Input Parameters

n INTEGER.The number of rows and columns in the matrix. n ≥ 0.

d REAL for slasq1
DOUBLE PRECISION for dlasq1.
Array, DIMENSION (n). On entry, d contains the diagonal elements of
the bidiagonal matrix whose SVD is desired.

e REAL for slasq1
DOUBLE PRECISION for dlasq1.
Array, DIMENSION (n). On entry, elements e(1:n-1) contain the
off-diagonal elements of the bidiagonal matrix whose SVD is desired.

work REAL for slasq1
DOUBLE PRECISION for dlasq1.
Workspace array, DIMENSION (4n).

Output Parameters

d On normal exit, d contains the singular values in decreasing order.

e On exit, e is overwritten.

info INTEGER.
 = 0: successful exit;
 < 0: if info = -i, the i-th argument had an illegal value;

5-242

5 Intel® Math Kernel Library Reference Manual

> 0: the algorithm failed:
 = 1, a split was marked by a positive value in e;
 = 2, current block of z not diagonalized after 30*n iterations (in
inner while loop);
 = 3, termination criterion of outer while loop not met (program
created more than n unreduced blocks.

?lasq2
Computes all the eigenvalues of the symmetric positive
definite tridiagonal matrix associated with the qd array
z to high relative accuracy.
Used by ?bdsqr and ?stegr.

Syntax
call slasq2(n, z, info)

call dlasq2(n, z, info)

Description

The routine ?lasq2 computes all the eigenvalues of the symmetric positive definite tridiagonal
matrix associated with the qd array z to high relative accuracy, in the absence of denormalization,
underflow and overflow.

To see the relation of z to the tridiagonal matrix, let L be a unit lower bidiagonal matrix with
subdiagonals z(2,4,6,,..) and let U be an upper bidiagonal matrix with 1's above and diagonal
z(1,3,5,,..). The tridiagonal is LU or, if you prefer, the symmetric tridiagonal to which it is similar.

Input Parameters

n INTEGER. The number of rows and columns in the matrix. n ≥ 0.

z REAL for slasq2
DOUBLE PRECISION for dlasq2.
Array, DIMENSION (4n). On entry, z holds the qd array.

LAPACK Auxiliary and Utility Routines 5

5-243

Output Parameters

z On exit, entries 1 to n hold the eigenvalues in decreasing order, z(2n+1)
holds the trace, and z(2n+2) holds the sum of the eigenvalues. If n > 2,
then
z(2n+3) holds the iteration count, z(2n+4) holds ndivs/nin2, and
z(2n+5) holds the percentage of shifts that failed.

info INTEGER.
 = 0: successful exit;
 < 0: if the i-th argument is a scalar and had an illegal value, then info
= -i, if the i-th argument is an array and the j-entry had an illegal
value, then
info = -(i*100+j);
 > 0: the algorithm failed:
 = 1, a split was marked by a positive value in e;
 = 2, current block of z not diagonalized after 30*n iterations (in inner
while loop);
 = 3, termination criterion of outer while loop not met (program
created more than n unreduced blocks).

Application Notes

The routine ?lasq2 defines a logical variable, ieee, which is .TRUE. on machines which
follow IEEE-754 floating-point standard in their handling of infinities and NaNs, and .FALSE.
otherwise. This variable is passed to ?lasq3.

?lasq3
Checks for deflation, computes a shift and calls dqds.
Used by ?bdsqr.

Syntax
call slasq3(i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv, ieee,

ttype, dmin1, dmin2, dn, dn1, dn2, tau)

call dlasq3(i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv, ieee,
ttype, dmin1, dmin2, dn, dn1, dn2, tau)

5-244

5 Intel® Math Kernel Library Reference Manual

Description

The routine ?lasq3 checks for deflation, computes a shift (tau) and calls dqds. In case of failure,
it changes shifts, and tries again until output is positive.

Input Parameters

i0 INTEGER. First index.

n0 INTEGER. Last index.

z REAL for slasq3
DOUBLE PRECISION for dlasq3.
Array, DIMENSION (4n). z holds the qd array.

pp INTEGER.
pp=0 for ping, pp=1 for pong.

desig REAL for slasq3
DOUBLE PRECISION for dlasq3.
Lower order part of sigma.

qmax REAL for slasq3
DOUBLE PRECISION for dlasq3.
Maximum value of q.

ieee LOGICAL. Flag for IEEE or non-IEEE arithmetic (passed to ?lasq5).

dmin1 REAL for slasq3
DOUBLE PRECISION for dlasq3.
Minimum value of d, excluding d(n0). Should be 0 on entry at the first
iteration and should not be modified further.

dmin2 REAL for slasq3
DOUBLE PRECISION for dlasq3.
Minimum value of d, excluding d(n0) and d(n0-1). Should be 0 on entry
at the first iteration and should not be modified further.

dn REAL for slasq3
DOUBLE PRECISION for dlasq3.
Contains d(n). Should be 0 on entry at the first iteration and should not
be modified further.

dn1 REAL for slasq3
DOUBLE PRECISION for dlasq3.
Contains d(n-1). Should be 0 on entry at the first iteration and should not
be modified further.

LAPACK Auxiliary and Utility Routines 5

5-245

dn2 REAL for slasq3
DOUBLE PRECISION for dlasq3.
Contains d(n-2). Should be 0 on entry at the first iteration and should not
be modified further.

Output Parameters

 dmin REAL for slasq3
DOUBLE PRECISION for dlasq3.
Minimum value of d.

sigma REAL for slasq3
DOUBLE PRECISION for dlasq3.
Sum of shifts used in current segment.

desig Lower order part of sigma.

nfail INTEGER. Number of times shift was too big.

iter INTEGER. Number of iterations.

ndiv INTEGER. Number of divisions.

ttype INTEGER. Shift type.

dmin1 Minimum value of d, excluding d(n0).

dmin2 Minimum value of d, excluding d(n0) and d(n0-1).

dn d(n).

dn1 d(n-1).

dn2 d(n-2).

tau REAL for slasq3
DOUBLE PRECISION for dlasq3.
Shift.

5-246

5 Intel® Math Kernel Library Reference Manual

?lasq4
Computes an approximation to the smallest eigenvalue
using values of d from the previous transform.
Used by ?bdsqr.

Syntax
call slasq4(i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau,

ttype, g)

call dlasq4(i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau,
ttype, g)

Description

The routine computes an approximation tau to the smallest eigenvalue using values of d from the
previous transform.

 Input Parameters

i0 INTEGER. First index.

n0 INTEGER. Last index.

z REAL for slasq4
DOUBLE PRECISION for dlasq4.
Array, DIMENSION (4n). z holds the qd array.

pp INTEGER. pp=0 for ping, pp=1 for pong.

noin INTEGER. The value of n0 at start of eigtest.

dmin REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d.

dmin1 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d, excluding d(n0).

dmin2 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of d, excluding d(n0) and d(n0-1).

LAPACK Auxiliary and Utility Routines 5

5-247

dn REAL for slasq4
DOUBLE PRECISION for dlasq4.
Contains d(n).

dn1 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Contains d(n-1).

dn2 REAL for slasq4
DOUBLE PRECISION for dlasq4.
Contains d(n-2).

g REAL for slasq4
DOUBLE PRECISION for dlasq4.
Shift coefficient, should be 0 on entry.

Output Parameters

tau REAL for slasq4
DOUBLE PRECISION for dlasq4.
Shift.

ttype INTEGER. Shift type.

?lasq5
Computes one dqds transform in ping-pong form. Used
by ?bdsqr and ?stegr.

Syntax
call slasq5(i0, n0, z, pp, tau, dmin, dmin1, dmin2, dn, dnm1, dnm2, ieee)

call dlasq5(i0, n0, z, pp, tau, dmin, dmin1, dmin2, dn, dnm1, dnm2, ieee)

Description

The routine computes one dqds transform in ping-pong form: one version for IEEE machines,
another for non-IEEE machines.

Input Parameters

i0 INTEGER First index.

5-248

5 Intel® Math Kernel Library Reference Manual

n0 INTEGER Last index.

z REAL for slasq5
DOUBLE PRECISION for dlasq5.
Array, DIMENSION (4n). z holds the qd array. emin is stored in z(4*n0)
to avoid an extra argument.

pp INTEGER. pp=0 for ping, pp=1 for pong.

tau REAL for slasq5
DOUBLE PRECISION for dlasq5.
This is the shift.

ieee LOGICAL. Flag for IEEE or non-IEEE arithmetic.

Output Parameters

dmin REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of d.

dmin1 REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of d, excluding d(n0).

dmin2 REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of d, excluding d(n0) and d(n0-1).

dn REAL for slasq5
DOUBLE PRECISION for dlasq5.
Contains d(n0), the last value of d.

dnm1 REAL for slasq5
DOUBLE PRECISION for dlasq5.
Contains d(n0-1).

dnm2 REAL for slasq5
DOUBLE PRECISION for dlasq5.
Contains d(n0-2).

LAPACK Auxiliary and Utility Routines 5

5-249

?lasq6
Computes one dqd transform in ping-pong form. Used
by ?bdsqr and ?stegr.

Syntax
call slasq6(i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2)

call dlasq6(i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2)

Description

The routine ?lasq6 computes one dqd (shift equal to zero) transform in ping-pong form, with
protection against underflow and overflow.

Input Parameters

i0 INTEGER. First index.

n0 INTEGER. Last index.

z REAL for slasq6
DOUBLE PRECISION for dlasq6.
Array, DIMENSION (4n). z holds the qd array. emin is stored in
z(4*n0) to avoid an extra argument.

pp INTEGER. pp=0 for ping, pp=1 for pong.

Output Parameters

dmin REAL for slasq6
DOUBLE PRECISION for dlasq6.
Minimum value of d.

dmin1 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Minimum value of d, excluding d(n0).

dmin2 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Minimum value of d, excluding d(n0) and d(n0-1).

5-250

5 Intel® Math Kernel Library Reference Manual

dn REAL for slasq6
DOUBLE PRECISION for dlasq6.
Contains d(n0), the last value of d.

dnm1 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Contains d(n0-1).

dnm2 REAL for slasq6
DOUBLE PRECISION for dlasq6.
Contains d(n0-2).

?lasr
Applies a sequence of plane rotations to a general
rectangular matrix.

Syntax
call slasr(side, pivot, direct, m, n, c, s, a, lda)

call dlasr(side, pivot, direct, m, n, c, s, a, lda)

call clasr(side, pivot, direct, m, n, c, s, a, lda)

call zlasr(side, pivot, direct, m, n, c, s, a, lda)

Description

The routine performs the transformation:
 A := P A, when side = 'L' or 'l' (Left-hand side)
 A := A P', when side = 'R' or 'r' (Right-hand side),

where A is an m-by-n real matrix and P is an orthogonal matrix, consisting of a sequence of plane
rotations determined by the parameters pivot and direct as follows (z = m when side = 'L' or
'l' and z = n when side = 'R' or 'r'):

When direct = 'F' or 'f' (Forward sequence) then
 P = P(z - 1) ... P(2) P(1),
and when direct = 'B' or 'b' (Backward sequence) then
 P = P(1) P(2) ... P(z - 1),

where P(k) is a plane rotation matrix for the following planes:

LAPACK Auxiliary and Utility Routines 5

5-251

when pivot = 'V' or 'v' (Variable pivot), the plane (k, k + 1)
when pivot = 'T' or 't' (Top pivot), the plane (1, k + 1)
when pivot = 'B' or 'b' (Bottom pivot), the plane (k, z)

c(k) and s(k) must contain the cosine and sine that define the matrix P(k). The 2-by-2 plane
rotation part of the matrix P(k), R(k), is assumed to be of the form:

.

Input Parameters

side CHARACTER*1. Specifies whether the plane rotation matrix P is applied
to A on the left or the right.
 = 'L': Left, compute A := P A
 = 'R': Right, compute A:= A P'

direct CHARACTER*1. Specifies whether P is a forward or backward sequence
of plane rotations.
 = 'F': Forward, P = P(z - 1) ... P(2) P(1)
 = 'B': Backward, P = P(1) P(2) ... P(z - 1)

 pivot CHARACTER*1. Specifies the plane for which P(k) is a plane rotation
matrix.
 = 'V': Variable pivot, the plane (k, k+1)
 = 'T': Top pivot, the plane (1, k+1)
 = 'B': Bottom pivot, the plane (k, z)

 m INTEGER. The number of rows of the matrix A.
If m ≤ 1, an immediate return is effected.

n INTEGER. The number of columns of the matrix A.
If n ≤ 1, an immediate return is effected.

 c, s REAL for slasr/clasr
DOUBLE PRECISION for dlasr/zlasr.
Arrays, DIMENSION
(m-1) if side = 'L',
(n-1) if side = 'R'.
c(k) and s(k) contain the cosine and sine that define the matrix P(k) as
described above.

R k() c k() s k()
s k()– c k()

=

5-252

5 Intel® Math Kernel Library Reference Manual

a REAL for slasr
DOUBLE PRECISION for dlasr
COMPLEX for clasr
COMPLEX*16 for zlasr.
Array, DIMENSION (lda, n). The m-by-n matrix A.

lda INTEGER. The leading dimension of the array A.
lda ≥ max(1,m).

Output Parameters

a On exit, A is overwritten by PA if side = 'R' or by AP' if side = 'L'.

?lasrt
Sorts numbers in increasing or decreasing order.

Syntax
call slasrt(id, n, d, info)

call dlasrt(id, n, d, info)

Description

The routine ?lasrt sorts the numbers in d in increasing order (if id = 'I') or in decreasing order
(if id = 'D'). It uses Quick Sort, reverting to Insertion Sort on arrays of size ≤ 20. Dimension of
stack limits n to about 232.

Input Parameters

id CHARACTER*1.
 = 'I': sort d in increasing order;
 = 'D': sort d in decreasing order.

n INTEGER. The length of the array d.

d REAL for slasrt
DOUBLE PRECISION for dlasrt.
On entry, the array to be sorted.

LAPACK Auxiliary and Utility Routines 5

5-253

Output Parameters

d On exit, d has been sorted into increasing order
(d(1) ≤ ... ≤ d(n)) or into decreasing order
(d(1) ≥ ... ≥ d(n)), depending on id.

info INTEGER.
 = 0: successful exit
 < 0: if info = -i, the i-th argument had an illegal value.

?lassq
Updates a sum of squares represented in scaled form.

Syntax
call slassq(n, x, incx, scale, sumsq)

call dlassq(n, x, incx, scale, sumsq)

call classq(n, x, incx, scale, sumsq)

call zlassq(n, x, incx, scale, sumsq)

Description

The real routines slassq/dlassq return the values scl and smsq such that

 scl2 * smsq = x(1)2 +...+ x(n)2 + scale2 *sumsq,

where x(i) = x(1 + (i - 1) incx).
The value of sumsq is assumed to be non-negative and scl returns the value
 scl = max(scale, abs(x(i))).

Values scale and sumsq must be supplied in scale and sumsq, and scl and smsq are overwritten
on scale and sumsq, respectively.

The complex routines classq/zlassq return the values scl and ssq such that

 scl2 * ssq = x(1)2 +...+ x(n)2 + scale2 *sumsq,

where x(i) = abs (x(1 + (i - 1) incx)).
The value of sumsq is assumed to be at least unity and the value of ssq will then satisfy
 1.0 ≤ ssq ≤ sumsq + 2n

5-254

5 Intel® Math Kernel Library Reference Manual

scale is assumed to be non-negative and scl returns the value

 scl = max(scale, abs(real(x(i))), abs(aimag(x(i)))).
 i

Values scale and sumsq must be supplied in scale and sumsq, and scl and ssq are overwritten
on scale and sumsq, respectively.

All routines ?lassq make only one pass through the vector x.

Input Parameters

n INTEGER. The number of elements to be used from the vector x.

x REAL for slassq
DOUBLE PRECISION for dlassq
COMPLEX for classq
COMPLEX*16 for zlassq.
The vector for which a scaled sum of squares is computed:
x(i) = x(1 + (i - 1) incx), 1 ≤ i ≤ n.

incx INTEGER. The increment between successive values of the vector x.
incx > 0.

scale REAL for slassq/classq
DOUBLE PRECISION for dlassq/zlassq.
On entry, the value scale in the equation above.

sumsq REAL for slassq/classq
DOUBLE PRECISION for dlassq/zlassq.
On entry, the value sumsq in the equation above.

Output Parameters

scale On exit, scale is overwritten with scl , the scaling factor for the sum of
squares.

sumsq For real flavors:
On exit, sumsq is overwritten with the value smsq in the equation
above.
For complex flavors:
On exit, sumsq is overwritten with the value ssq in the equation above.

LAPACK Auxiliary and Utility Routines 5

5-255

?lasv2
Computes the singular value decomposition of a 2-by-2
triangular matrix.

Syntax
call slasv2(f, g, h, ssmin, ssmax, snr, csr, snl, csl)

call dlasv2(f, g, h, ssmin, ssmax, snr, csr, snl, csl)

Description

The routine ?lasv2 computes the singular value decomposition of a 2-by-2 triangular matrix

On return, abs(ssmax) is the larger singular value, abs(ssmin) is the smaller singular value, and
(csl,snl) and (csr,snr) are the left and right singular vectors for abs(ssmax), giving the
decomposition

Input Parameters

f, g, h REAL for slasv2
DOUBLE PRECISION for dlasv2.
The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix, respectively.

Output Parameters

ssmin, ssmax REAL for slasv2
DOUBLE PRECISION for dlasv2.
abs(ssmin) and abs(ssmax) is the smaller and the larger singular
value, respectively.

f g

0 h

csl snl

snl– csl

f g

0 h

csr snr–
snr csr

ssmax 0

0 ssmin
=

5-256

5 Intel® Math Kernel Library Reference Manual

snl, csl REAL for slasv2
DOUBLE PRECISION for dlasv2.
The vector (csl, snl) is a unit left singular vector for the singular value
abs(ssmax).

snr, csr REAL for slasv2
DOUBLE PRECISION for dlasv2.
The vector (csr, snr) is a unit right singular vector for the singular
value abs(ssmax).

Application Notes

Any input parameter may be aliased with any output parameter.
Barring over/underflow and assuming a guard digit in subtraction, all output quantities are correct
to within a few units in the last place (ulps).

In IEEE arithmetic, the code works correctly if one matrix element is infinite.
Overflow will not occur unless the largest singular value itself overflows or is within a few ulps of
overflow. (On machines with partial overflow, like the Cray, overflow may occur if the largest
singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results may correspond to a matrix
modified by perturbations of size near the underflow threshold.

?laswp
Performs a series of row interchanges on a general
rectangular matrix.

Syntax
call slaswp(n, a, lda, k1, k2, ipiv, incx)

call dlaswp(n, a, lda, k1, k2, ipiv, incx)

call claswp(n, a, lda, k1, k2, ipiv, incx)

call zlaswp(n, a, lda, k1, k2, ipiv, incx)

Description

The routine performs a series of row interchanges on the matrix A. One row interchange is
initiated for each of rows k1 through k2 of A.

LAPACK Auxiliary and Utility Routines 5

5-257

Input Parameters

n INTEGER.The number of columns of the matrix A.

a REAL for slaswp
DOUBLE PRECISION for dlaswp
COMPLEX for claswp
COMPLEX*16 for zlaswp.
Array, DIMENSION (lda, n).
On entry, the matrix of column dimension n to which the row
interchanges will be applied.

lda INTEGER. The leading dimension of the array a.

k1 INTEGER. The first element of ipiv for which a row interchange will
be done.

k2 INTEGER. The last element of ipiv for which a row interchange will be
done.

ipiv INTEGER.
Array, DIMENSION (m * abs(incx)).
The vector of pivot indices. Only the elements in positions k1 through
k2 of ipiv are accessed.
ipiv(k) = l implies rows k and l are to be interchanged.

incx INTEGER. The increment between successive values of ipiv. If ipiv is
negative, the pivots are applied in reverse order.

Output Parameters

a On exit, the permuted matrix.

?lasy2
Solves the Sylvester matrix equation where the matrices
are of order 1 or 2.

Syntax
call slasy2(ltranl, ltranr, isgn, n1, n2, tl, ldtl, tr,ldtr, b, ldb, scale, x,

ldx, xnorm, info)

5-258

5 Intel® Math Kernel Library Reference Manual

call dlasy2(ltranl, ltranr, isgn, n1, n2, tl, ldtl, tr,ldtr, b, ldb, scale, x,
ldx, xnorm, info)

Description

The routine solves for the n1-by-n2 matrix X, 1 ≤ n1, n2 ≤ 2, in

 op(TL) * X + isgn * X *op(TR) = scale *B,

where
 TL is n1-by-n1,
 TR is n2- by-n2,
 B is n1-by-n2,
and isgn = 1 or -1. op(T) = T or T', where T' denotes the transpose of T.

Input Parameters

ltranl LOGICAL.
On entry, ltranl specifies the op(TL):
= .FALSE., op(TL) = TL,
= .TRUE., op(TL) = TL'.

ltranr LOGICAL.
On entry, ltranr specifies the op(TR):
= .FALSE., op(TR) = TR,
= .TRUE., op(TR) = TR'.

isgn INTEGER. On entry, isgn specifies the sign of the equation as
described before. isgn may only be 1 or -1.

n1 INTEGER. On entry, n1 specifies the order of matrix TL.
n1 may only be 0, 1 or 2.

n2 INTEGER.
On entry, n2 specifies the order of matrix TR.
n2 may only be 0, 1 or 2.

tl REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldtl,2). On entry, tl contains an n1-by-n1 matrix
TL.

ldtl INTEGER.The leading dimension of the matrix tl.
ldtl ≥ max(1,n1).

LAPACK Auxiliary and Utility Routines 5

5-259

tr REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldtr,2). On entry, tr contains an n2-by-n2 matrix
TR.

ldtr INTEGER.
The leading dimension of the matrix tr.
ldtr ≥ max(1,n2).

b REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldb,2). On entry, the n1-by-n2 matrix b contains
the right-hand side of the equation.

ldb INTEGER.
The leading dimension of the matrix b.
ldb ≥ max(1,n1).

ldx INTEGER.
The leading dimension of the output matrix x.
ldx ≥ max(1,n1).

Output Parameters

scale REAL for slasy2
DOUBLE PRECISION for dlasy2.
On exit, scale contains the scale factor.
scale is chosen less than or equal to 1 to prevent the solution
overflowing.

x REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (ldx,2). On exit, x contains the
n1-by-n2 solution.

xnorm REAL for slasy2
DOUBLE PRECISION for dlasy2.
On exit, xnorm is the infinity-norm of the solution.

info INTEGER. On exit, info is set to
0: successful exit.
1: TL and TR have too close eigenvalues, so TL or TR is perturbed to get
a nonsingular equation.

5-260

5 Intel® Math Kernel Library Reference Manual

?lasyf
Computes a partial factorization of a real/complex
symmetric matrix, using the diagonal pivoting method.

Syntax
call slasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call dlasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call clasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call zlasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

Description

The routine ?lasyf computes a partial factorization of a real/complex symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method. The partial factorization has the form:

 if uplo = 'U', or

 if uplo = 'L',

NOTE. In the interests of speed, this routine does not check the
inputs for errors.

A
I U12

0 U22

A11 0

0 D

I 0

U12′ U22′
=

A
L11 0

L21 I

D 0

0 A22

L11′ L21′

0 I
=

LAPACK Auxiliary and Utility Routines 5

5-261

where the order of D is at most nb. The actual order is returned in the argument kb, and is either
nb or nb-1, or n if n ≤ nb.

This is an auxiliary routine called by ?sytrf. It uses blocked code (calling Level 3 BLAS) to
update the submatrix A11 (if uplo = 'U') or A22 (if uplo = 'L').

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric
matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

 n INTEGER.
The order of the matrix A. n ≥ 0.

nb INTEGER.
The maximum number of columns of the matrix A that should be
factored.
nb should be at least 2 to allow for 2-by-2 pivot blocks.

a REAL for slasyf
DOUBLE PRECISION for dlasyf
COMPLEX for clasyf
COMPLEX*16 for zlasyf.
Array, DIMENSION (lda, n). On entry, the symmetric matrix A. If uplo
= 'U', the leading n-by-n upper triangular part of a contains the upper
triangular part of the matrix A, and the strictly lower triangular part of a
is not referenced. If uplo = 'L', the leading n-by-n lower triangular part
of a contains the lower triangular part of the matrix A, and the strictly
upper triangular part of a is not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

 w REAL for slasyf
DOUBLE PRECISION for dlasyf
COMPLEX for clasyf
COMPLEX*16 for zlasyf.
Workspace array, DIMENSION (ldw, nb).

ldw INTEGER.
The leading dimension of the array w. ldw ≥ max(1,n).

5-262

5 Intel® Math Kernel Library Reference Manual

Output Parameters

kb INTEGER.
The number of columns of A that were actually factored kb is either
nb-1 or nb, or n if n ≤ nb.

 a On exit, a contains details of the partial factorization.

ipiv INTEGER.
Array, DIMENSION (n). Details of the interchanges and the block
structure of D.
If uplo = 'U', only the last kb elements of ipiv are set;
if uplo = 'L', only the first kb elements are set.

If ipiv(k) > 0, then rows and columns k and ipiv(k) were interchanged
and D(k,k) is a 1-by-1 diagonal block. If uplo = 'U' and ipiv(k) =
ipiv(k-1) < 0, then rows and columns k-1and -ipiv(k) were
interchanged and D(k-1:k, k-1:k) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows and columns k+1
and -ipiv(k) were interchanged and D(k:k+1, k:k+1) is a 2-by-2
diagonal block.

 info INTEGER.
= 0: successful exit
> 0: if info = k, D(k,k) is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular.

?lahef
Computes a partial factorization of a complex
Hermitian indefinite matrix, using the diagonal
pivoting method.

Syntax
call clahef(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

call zlahef(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

LAPACK Auxiliary and Utility Routines 5

5-263

Description

The routine ?lahef computes a partial factorization of a complex Hermitian matrix A, using the
Bunch-Kaufman diagonal pivoting method. The partial factorization has the form:

 if uplo = 'U', or

 if uplo = 'L',

where the order of D is at most nb. The actual order is returned in the argument kb, and is either
nb or nb-1, or n if n ≤ nb.
Note that U′ denotes the conjugate transpose of U.

This is an auxiliary routine called by ?hetrf. It uses blocked code (calling Level 3 BLAS) to
update the submatrix A11 (if uplo = 'U') or A22 (if uplo = 'L').

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian
matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

 n INTEGER.
The order of the matrix A. n ≥ 0.

nb INTEGER.
The maximum number of columns of the matrix A that should be
factored.
nb should be at least 2 to allow for 2-by-2 pivot blocks.

a COMPLEX for clahef
COMPLEX*16 for zlahef.
Array, DIMENSION (lda, n).
On entry, the Hermitian matrix A.

A
I U12

0 U22

A11 0

0 D

I 0

U12′ U22′
=

A
L11 0

L21 I

D 0

0 A22

L11′ L21′

0 I
=

5-264

5 Intel® Math Kernel Library Reference Manual

If uplo = 'U', the leading n-by-n upper triangular part of a contains the
upper triangular part of the matrix A, and the strictly lower triangular
part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of a contains the
lower triangular part of the matrix A, and the strictly upper triangular
part of a is not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

 w COMPLEX for clahef
COMPLEX*16 for zlahef.
Workspace array, DIMENSION (ldw, nb).

ldw INTEGER.
The leading dimension of the array w. ldw ≥ max(1,n).

Output Parameters

kb INTEGER.
The number of columns of A that were actually factored kb is either
nb-1 or nb, or n if n ≤ nb.

a On exit, a contains details of the partial factorization.

ipiv INTEGER.
Array, DIMENSION (n). Details of the interchanges and the block
structure of D.
If uplo = 'U', only the last kb elements of ipiv are set;
if uplo = 'L', only the first kb elements are set.

If ipiv(k) > 0, then rows and columns k and ipiv(k) were interchanged
and D(k,k) is a 1-by-1 diagonal block. If uplo = 'U' and ipiv(k) =
ipiv(k-1) < 0, then rows and columns k-1and -ipiv(k) were
interchanged and D(k-1:k, k-1:k) is a 2-by-2 diagonal block.
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows and columns k+1
and -ipiv(k) were interchanged and D(k:k+1, k:k+1) is a 2-by-2
diagonal block.

 info INTEGER.
= 0: successful exit
> 0: if info = k, D(k,k) is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular.

LAPACK Auxiliary and Utility Routines 5

5-265

?latbs
Solves a triangular banded system of equations.

Syntax
call slatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)

call dlatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)

call clatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)

call zlatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)

Description

The routine solves one of the triangular systems

Ax = s b or ATx = s b or AHx = s b (for complex flavors)

with scaling to prevent overflow, where A is an upper or lower triangular band matrix. Here AT
denotes the transpose of A, AH denotes the conjugate transpose of A, x and b are n-element
vectors, and s is a scaling factor, usually less than or equal to 1, chosen so that the components of
x will be less than the overflow threshold. If the unscaled problem will not cause overflow, the
Level 2 BLAS routine ?tbsv is called. If the matrix A is singular (A(j, j) = 0 for some j), then s is
set to 0 and a non-trivial solution to Ax = 0 is returned.

Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

 trans CHARACTER*1.
Specifies the operation applied to A.
= 'N': Solve Ax = s b (no transpose)
= 'T': Solve ATx = s b (transpose)
= 'C': Solve AHx = s b (conjugate transpose)

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular
 = 'N': Non-unit triangular
 = 'U': Unit triangular

5-266

5 Intel® Math Kernel Library Reference Manual

normin CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry. On exit, the norms will be computed
and stored in cnorm.

 n INTEGER.
The order of the matrix A. n ≥ 0.

kd INTEGER.
The number of subdiagonals or superdiagonals in the triangular matrix
A.
kd ≥ 0.

ab REAL for slatbs
DOUBLE PRECISION for dlatbs
COMPLEX for clatbs
COMPLEX*16 for zlatbs.
Array, DIMENSION (ldab, n). The upper or lower triangular band matrix
A, stored in the first kd+1 rows of the array. The j-th column of A is
stored in the j-th column of the array ab as follows:
if uplo = 'U', ab(kd+1+i-j,j) = A(i,j) for
max(1,j-kd) ≤ i ≤ j;
if uplo = 'L', ab(1+i-j,j) = A(i,j) for
j ≤ i ≤ min(n,j+kd).

ldab INTEGER.
The leading dimension of the array ab. ldab ≥ kd+1.

x REAL for slatbs
DOUBLE PRECISION for dlatbs
COMPLEX for clatbs
COMPLEX*16 for zlatbs.
Array, DIMENSION (n).
On entry, the right hand side b of the triangular system.

cnorm REAL for slatbs/clatbs
DOUBLE PRECISION for dlatbs/zlatbs.
Array, DIMENSION (n).
If normin = 'Y', cnorm is an input argument and cnorm(j) contains the
norm of the off-diagonal part of the j-th column of A. If trans = 'N',
cnorm(j) must be greater than or equal to the infinity-norm, and if
trans = 'T' or 'C', cnorm(j) must be greater than or equal to the 1-norm.

LAPACK Auxiliary and Utility Routines 5

5-267

Output Parameters

scale REAL for slatbs/clatbs
DOUBLE PRECISION for dlatbs/zlatbs.
The scaling factor s for the triangular system as described above.
If scale = 0, the matrix A is singular or badly scaled, and the vector x is
an exact or approximate solution to Ax = 0.

cnorm If normin = 'N', cnorm is an output argument and cnorm(j) returns the
1-norm of the off-diagonal part of the j-th column of A.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

?latdf
Uses the LU factorization of the n-by-n matrix
computed by ?getc2 and computes a contribution to
the reciprocal Dif-estimate.

Syntax
call slatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

call dlatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

call clatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

call zlatdf(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)

Description

The routine ?latdf uses the LU factorization of the n-by-n matrix Z computed by ?getc2 and
computes a contribution to the reciprocal Dif-estimate by solving Zx = b for x, and choosing the
right-hand side b such that the norm of x is as large as possible. On entry rhs = b holds the
contribution from earlier solved sub-systems, and on return rhs = x.

The factorization of Z returned by ?getc2 has the form Z = P L U Q, where P and Q are
permutation matrices. L is lower triangular with unit diagonal elements and U is upper triangular.

5-268

5 Intel® Math Kernel Library Reference Manual

Input Parameters

ijob INTEGER.
ijob = 2: First compute an approximative null-vector e of Z using
?gecon, e is normalized, and solve for
Zx = ±e - f with the sign giving the greater value of 2-norm(x). This
option is about 5 times as expensive as default.
ijob ≠ 2 (default): Local look ahead strategy where all entries of the
right-hand side b is chosen as either +1 or -1 .

n INTEGER.
The number of columns of the matrix Z.

z REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
Array, DIMENSION (ldz, n)
On entry, the LU part of the factorization of the n-by-n matrix Z
computed by ?getc2: Z = P L U Q .

ldz INTEGER.
The leading dimension of the array z. lda ≥ max(1, n).

rhs REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
Array, DIMENSION (n).
On entry, rhs contains contributions from other subsystems.

rdsum REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
On entry, the sum of squares of computed contributions to the
Dif-estimate under computation by ?tgsyl, where the scaling factor
rdscal has been factored out.
If trans = 'T' , rdsum is not touched.
Note that rdsum only makes sense when ?tgsy2 is called by ?tgsyl.

rdscal REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
On entry, scaling factor used to prevent overflow in rdsum. If trans =
T', rdscal is not touched.
Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyl.

ipiv INTEGER.
Array, DIMENSION (n).
The pivot indices; for 1 ≤ i ≤ n, row i of the matrix has been
interchanged with row ipiv(i).

LAPACK Auxiliary and Utility Routines 5

5-269

jpiv INTEGER.
Array, DIMENSION (n).
The pivot indices; for 1 ≤ j ≤ n, column j of the matrix has been
interchanged with column jpiv(j).

Output Parameters

rhs On exit, rhs contains the solution of the subsystem with entries
according to the value of ijob.

rdsum On exit, the corresponding sum of squares updated with the
contributions from the current sub-system.
If trans = 'T' , rdsum is not touched.

rdscal On exit, rdscal is updated with respect to the current contributions in
rdsum.
If trans = 'T', rdscal is not touched.

?latps
Solves a triangular system of equations with the matrix
held in packed storage.

Syntax
call slatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

call dlatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

call clatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

call zlatps(uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)

Description

The routine ?latps solves one of the triangular systems

Ax = s b or ATx = s b or AHx = s b (for complex flavors)

with scaling to prevent overflow, where A is an upper or lower triangular matrix stored in packed
form. Here AT denotes the transpose of A, AH denotes the conjugate transpose of A, x and b are
n-element vectors, and s is a scaling factor, usually less than or equal to 1, chosen so that the

5-270

5 Intel® Math Kernel Library Reference Manual

components of x will be less than the overflow threshold. If the unscaled problem does not cause
overflow, the Level 2 BLAS routine ?tpsv is called. If the matrix A is singular (A(j, j) = 0 for
some j), then s is set to 0 and a non-trivial solution to Ax = 0 is returned.

Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

trans CHARACTER*1.
Specifies the operation applied to A.
= 'N': Solve Ax = s b (no transpose)
= 'T': Solve ATx = s b (transpose)
= 'C': Solve AHx = s b (conjugate transpose)

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

normin CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry. On exit, the norms will be computed
and stored in cnorm.

n INTEGER.
The order of the matrix A. n ≥ 0.

ap REAL for slatps
DOUBLE PRECISION for dlatps
COMPLEX for clatps
COMPLEX*16 for zlatps.
Array, DIMENSION (n(n+1)/2). The upper or lower triangular matrix A,
packed columnwise in a linear array. The j-th column of A is stored in
the array ap as follows:
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1≤ i ≤ j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i,j) for j≤i≤n.

x REAL for slatps
DOUBLE PRECISION for dlatps
COMPLEX for clatps

LAPACK Auxiliary and Utility Routines 5

5-271

COMPLEX*16 for zlatps.
 Array, DIMENSION (n)
On entry, the right hand side b of the triangular system.

cnorm REAL for slatps/clatps
DOUBLE PRECISION for dlatps/zlatps.
Array, DIMENSION (n).
If normin = 'Y', cnorm is an input argument and cnorm(j) contains the
norm of the off-diagonal part of the j-th column of A. If trans = 'N',
cnorm(j) must be greater than or equal to the infinity-norm, and if
trans = 'T' or 'C', cnorm(j) must be greater than or equal to the 1-norm.

Output Parameters

x On exit, x is overwritten by the solution vector x.

scale REAL for slatps/clatps
DOUBLE PRECISION for dlatps/zlatps.
The scaling factor s for the triangular system as described above.
If scale = 0, the matrix A is singular or badly scaled, and the vector x is
an exact or approximate solution to
Ax = 0.

cnorm If normin = 'N', cnorm is an output argument and cnorm(j) returns the
1-norm of the off-diagonal part of the j-th column of A.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

?latrd
Reduces the first nb rows and columns of a
symmetric/Hermitian matrix A to real tridiagonal form
by an orthogonal/unitary similarity transformation.

Syntax
call slatrd(uplo, n, nb, a, lda, e, tau, w, ldw)

call dlatrd(uplo, n, nb, a, lda, e, tau, w, ldw)

call clatrd(uplo, n, nb, a, lda, e, tau, w, ldw)

5-272

5 Intel® Math Kernel Library Reference Manual

call zlatrd(uplo, n, nb, a, lda, e, tau, w, ldw)

Description

The routine ?latrd reduces nb rows and columns of a real symmetric or complex Hermitian
matrix A to symmetric/Hermitian tridiagonal form by an orthogonal/unitary similarity
transformation Q' A Q, and returns the matrices V and W which are needed to apply the
transformation to the unreduced part of A.
If uplo = 'U', ?latrd reduces the last nb rows and columns of a matrix, of which the upper
triangle is supplied;
if uplo = 'L', ?latrd reduces the first nb rows and columns of a matrix, of which the lower
triangle is supplied.

This is an auxiliary routine called by ?sytrd/?hetrd.

Input Parameters

uplo CHARACTER
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A.

nb INTEGER.
The number of rows and columns to be reduced.

a REAL for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n) .
On entry, the symmetric/Hermitian matrix A
If uplo = 'U', the leading n-by-n upper triangular part of a contains the
upper triangular part of the matrix A, and the strictly lower triangular
part of a is not referenced. If uplo = 'L', the leading n-by-n lower
triangular part of a contains the lower triangular part of the matrix A,
and the strictly upper triangular part of a is not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ (1,n).

LAPACK Auxiliary and Utility Routines 5

5-273

 ldw INTEGER.
The leading dimension of the output array w.
ldw ≥ max(1,n).

Output Parameters

a On exit, if uplo = 'U', the last nb columns have been reduced to
tridiagonal form, with the diagonal elements overwriting the diagonal
elements of a; the elements above the diagonal with the array tau,
represent the orthogonal/unitary matrix Q as a product of elementary
reflectors;
 if uplo = 'L', the first nb columns have been reduced to tridiagonal
form, with the diagonal elements overwriting the diagonal elements of
a; the elements below the diagonal with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary reflectors.

e REAL for slatrd/clatrd
DOUBLE PRECISION for dlatrd/zlatrd.
If uplo = 'U', e(n-nb:n-1) contains the superdiagonal elements of the
last nb columns of the reduced matrix;
 if uplo = 'L', e(1:nb) contains the subdiagonal elements of the first nb
columns of the reduced matrix.

tau REAL for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n).
The scalar factors of the elementary reflectors, stored in tau(n-nb:n-1)
if uplo = 'U', and in tau(1:nb) if uplo = 'L'.

w REAL for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n).
The n-by-nb matrix W required to update the unreduced part of A.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

 Q = H(n) H(n-1) . . . H(n-nb+1).

5-274

5 Intel® Math Kernel Library Reference Manual

Each H,(i) has the form
 H(i) = I - tau*v*v',
where tau is a real/complex scalar, and v is a real/complex vector with v(i:n) = 0 and v(i-1) = 1;
v(1:i-1) is stored on exit in a(1:i-1, i), and tau in tau(i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors

 Q = H(1) H(2) . . . H(nb),

Each H(i) has the form
 H(i) = I - tau*v*v',
where tau is a real/complex scalar, and v is a real/complex vector with v(1:i) = 0 and v(i+1) = 1;
v(i+1:n) is stored on exit in a(i+1:n, i), and tau in tau(i).

The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to
apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian
rank-2k update of the form:
A := A - VW' - WV'.

The contents of a on exit are illustrated by the following examples with
n = 5 and nb = 2:

if uplo = 'U': if uplo = 'L':

where d denotes a diagonal element of the reduced matrix, a denotes an element of the original
matrix that is unchanged, and vi denotes an element of the vector defining H(i).

a a a v4 v5

 a a v4 v5

 a 1 v5

 d 1

 d

d

1 d

v1 1 a

v1 v2 a a

v1 v2 a a a

LAPACK Auxiliary and Utility Routines 5

5-275

?latrs
Solves a triangular system of equations with the scale
factor set to prevent overflow.

Syntax
call slatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)

call dlatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)

call clatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)

call zlatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)

Description

The routine solves one of the triangular systems

Ax = s b or ATx = s b or AHx = s b (for complex flavors)

with scaling to prevent overflow. Here A is an upper or lower triangular matrix, AT denotes the
transpose of A, AH denotes the conjugate transpose of A, x and b are n-element vectors, and s is a
scaling factor, usually less than or equal to 1, chosen so that the components of x will be less than
the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS
routine ?trsv is called. If the matrix A is singular (A(j,j) = 0 for some j), then s is set to 0 and
a non-trivial solution to Ax = 0 is returned.

Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

trans CHARACTER*1.
Specifies the operation applied to A.
= 'N': Solve Ax = s b (no transpose)
= 'T': Solve ATx = s b (transpose)
= 'C': Solve AHx = s b (conjugate transpose)

5-276

5 Intel® Math Kernel Library Reference Manual

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

normin CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry. On exit, the norms will be computed and
stored in cnorm.

n INTEGER.
The order of the matrix A. n ≥ 0

a REAL for slatrs
DOUBLE PRECISION for dlatrs
COMPLEX for clatrs
COMPLEX*16 for zlatrs.
Array, DIMENSION (lda, n). Contains the triangular matrix A. If uplo
= 'U', the leading n-by-n upper triangular part of the array a contains the
upper triangular matrix, and the strictly lower triangular part of a is not
referenced. If uplo = 'L', the leading n-by-n lower triangular part of the
array a contains the lower triangular matrix, and the strictly upper
triangular part of a is not referenced. If diag = 'U', the diagonal
elements of a are also not referenced and are assumed to be 1.

lda INTEGER.
The leading dimension of the array a. lda ≥ max (1, n).

x REAL for slatrs
DOUBLE PRECISION for dlatrs
COMPLEX for clatrs
COMPLEX*16 for zlatrs.
Array, DIMENSION (n). On entry, the right hand side b of the triangular
system.

cnorm REAL for slatrs/clatrs)
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (n). If normin = 'Y', cnorm is an input argument and
cnorm (j) contains the norm of the off-diagonal part of the j-th column
of A. If trans = 'N', cnorm (j) must be greater than or equal to the
infinity-norm, and if trans = 'T' or 'C', cnorm(j) must be greater than or
equal to the 1-norm.

LAPACK Auxiliary and Utility Routines 5

5-277

Output Parameters

x On exit, x is overwritten by the solution vector x.

scale REAL for slatrs/clatrs)
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (lda, n). The scaling factor s for the triangular
system as described above.
If scale = 0, the matrix A is singular or badly scaled, and the vector x is
an exact or approximate solution to Ax = 0.

cnorm If normin = 'N', cnorm is an output argument and cnorm(j) returns the
1-norm of the off-diagonal part of the j-th column of A.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value

Application Notes

A rough bound on x is computed; if that is less than overflow, ?trsv is called, otherwise, specific
code is used which checks for possible overflow or divide-by-zero at every operation.

A columnwise scheme is used for solving Ax = b. The basic algorithm if A is lower triangular is

 x[1:n] := b[1:n]
 for j = 1, ..., n
 x(j) := x(j) / A(j,j)
 x[j+1:n] := x[j+1:n] - x(j)*A[j+1:n,j]
 end

Define bounds on the components of x after j iterations of the loop:
 M(j) = bound on x[1:j]
 G(j) = bound on x[j+1:n]
 Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.

Then for iteration j+1 we have
 M(j+1) ≤ G(j) / | A(j+1,j+1) |
 G(j+1) ≤ G(j) + M(j+1)*| A[j+2:n,j+1] |
 ≤ G(j) (1 + cnorm(j+1) / | A(j+1,j+1) | ,

where cnorm(j+1) is greater than or equal to the infinity-norm of column j+1 of A, not counting
the diagonal. Hence

5-278

5 Intel® Math Kernel Library Reference Manual

and

.

Since |x(j)| ≤ M(j), we use the Level 2 BLAS routine ?trsv if the reciprocal of the largest M(j),
j=1,..,n, is larger than max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the columnwise method can be
performed without fear of overflow. If the computed bound is greater than a large constant, x is
scaled to prevent overflow, but if the bound overflows, x is set to 0, x(j) to 1, and scale to 0, and a
non-trivial solution to Ax = 0 is found.

Similarly, a row-wise scheme is used to solve ATx = b or AHx = b. The basic algorithm for A
upper triangular is

 for j = 1, ..., n
 x(j) := (b(j) - A[1:j-1,j]' x[1:j-1]) / A(j,j)
 end

We simultaneously compute two bounds
 G(j) = bound on (b(i) - A[1:i-1,i]'*x[1:i-1]), 1≤ i≤ j
 M(j) = bound on x(i), 1≤ i≤ j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we add the constraint G(j) ≥
G(j-1) and M(j) ≥ M(j-1) for j ≥ 1.
Then the bound on x(j) is

 M(j) ≤ M(j-1) *(1 + cnorm(j)) / | A(j,j) |

and we can safely call ?trsv if 1/M(n) and 1/G(n) are both greater than max(underflow,
1/overflow).

G j() G 0() 1 cnorm i() A i i(,)⁄+()
1 i j≤ ≤

∏≤

x j() G 0() A j j(,)⁄() 1 cnorm i() A i i(,)⁄+()
1 i j≤ ≤

∏≤

 M 0() 1 cnorm i() A i i(,)⁄+()
1 i j≤ ≤

∏≤

LAPACK Auxiliary and Utility Routines 5

5-279

?latrz
Factors an upper trapezoidal matrix by means of
orthogonal/unitary transformations.

Syntax
call slatrz(m, n, l, a, lda, tau, work)

call dlatrz(m, n, l, a, lda, tau, work)

call clatrz(m, n, l, a, lda, tau, work)

call zlatrz(m, n, l, a, lda, tau, work)

Description

The routine ?latrz factors the m-by-(m+l) real/complex upper trapezoidal matrix
[A1 A2] = [A(1:m,1:m) A(1:m, n-l+1:n)]

as (R 0)*Z, by means of orthogonal/unitary transformations. Z is an (m+l)-by-(m+l)
orthogonal/unitary matrix and R and A1 are m-by-m upper triangular matrices.

Input Parameters

m INTEGER.
The number of rows of the matrix A. m ≥ 0.

n INTEGER.
The number of columns of the matrix A. n ≥ 0.

l INTEGER.
The number of columns of the matrix A containing the meaningful part
of the Householder vectors.
n-m ≥ l ≥ 0.

a REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Array, DIMENSION (lda, n).
On entry, the leading m-by-n upper trapezoidal part of the array a must
contain the matrix to be factorized.

5-280

5 Intel® Math Kernel Library Reference Manual

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,m).

work REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Workspace array, DIMENSION (m).

Output Parameters

a On exit, the leading m-by-m upper triangular part of a contains the
upper triangular matrix R, and elements n-l+1 to n of the first m rows
of a, with the array tau, represent the orthogonal/unitary matrix Z as a
product of m elementary reflectors.

tau REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Array, DIMENSION (m). The scalar factors of the elementary reflectors.

Application Notes

The factorization is obtained by Householder's method. The k-th transformation matrix, Z(k),
which is used to introduce zeros into the (m - k + 1)-th row of A, is given in the form

 ,

where

 T(k) = I - tau* u(k)* u(k)', .

 tau is a scalar and z(k) is an l-element vector. tau and z(k)
 are chosen to annihilate the elements of the k-th row of A2.
 The scalar tau is returned in the k-th element of tau and the vector

Z k() I 0

0 T k()
=

u k()
1

0
z k()

=

LAPACK Auxiliary and Utility Routines 5

5-281

 u(k) in the k-th row of A2, such that the elements of z(k) are
 in a(k, l + 1), ..., a(k, n). The elements of R are returned in
 the upper triangular part of A1.

 Z is given by

 Z = Z(1) Z(2) ... Z(m).

?lauu2
Computes the product UUH or LHL, where U and L are
upper or lower triangular matrices (unblocked
algorithm).

Syntax
call slauu2(uplo, n, a, lda, info)

call dlauu2(uplo, n, a, lda, info)

call clauu2(uplo, n, a, lda, info)

call zlauu2(uplo, n, a, lda, info)

Description

The routine ?lauu2 computes the product UU' or L'L, where the triangular factor U or L is stored
in the upper or lower triangular part of the array a.
If uplo = 'U' or 'u' , then the upper triangle of the result is stored, overwriting the factor U in a.
If uplo = 'L' or 'l' , then the lower triangle of the result is stored, overwriting the factor L in a.

This is the unblocked form of the algorithm, calling “BLAS Level 2 Routines”.

Input Parameters

uplo CHARACTER*1.
Specifies whether the triangular factor stored in the array a is upper or
lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the triangular factor U or L. n ≥ 0.

5-282

5 Intel® Math Kernel Library Reference Manual

a REAL for slauu2
DOUBLE PRECISION for dlauu2
COMPLEX for clauu2
COMPLEX*16 for zlauu2.
Array, DIMENSION (lda, n).On entry, the triangular factor U or L.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, if uplo = 'U', the upper triangle of a is overwritten with the
upper triangle of the product UU' ; if uplo = 'L', the lower triangle of a
is overwritten with the lower triangle of the product L'L.

info INTEGER.
= 0: successful exit,
< 0: if info = -k, the k-th argument had an illegal value.

?lauum
Computes the product UUH or LHL, where U and L are
upper or lower triangular matrices (blocked
algorithm).

Syntax
call slauum(uplo, n, a, lda, info)

call dlauum(uplo, n, a, lda, info)

call clauum(uplo, n, a, lda, info)

call zlauum(uplo, n, a, lda, info)

Description

The routine ?lauum computes the product UU' or L'L, where the triangular factor U or L is stored
in the upper or lower triangular part of the array a.

If uplo = 'U' or 'u' , then the upper triangle of the result is stored, overwriting the factor U in a.
If uplo = 'L' or 'l' , then the lower triangle of the result is stored, overwriting the factor L in a.

This is the blocked form of the algorithm, calling “BLAS Level 3 Routines”.

LAPACK Auxiliary and Utility Routines 5

5-283

Input Parameters

uplo CHARACTER*1.
Specifies whether the triangular factor stored in the array a is upper or
lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the triangular factor U or L. n ≥ 0.

a REAL for slauum
DOUBLE PRECISION for dlauum
COMPLEX for clauum
COMPLEX*16 for zlauum .
Array, DIMENSION (lda, n). On entry, the triangular factor U or L.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, if uplo = 'U', the upper triangle of a is overwritten with the
upper triangle of the product UU' ; if uplo = 'L', the lower triangle of a
is overwritten with the lower triangle of the product L'L.

info INTEGER.
= 0: successful exit,
< 0: if info = -k, the k-th argument had an illegal value.

?org2l/?ung2l
Generates all or part of the orthogonal/unitary matrix
Q from a QL factorization determined by ?geqlf
(unblocked algorithm).

Syntax
call sorg2l(m, n, k, a, lda, tau, work, info)

call dorg2l(m, n, k, a, lda, tau, work, info)

call cung2l(m, n, k, a, lda, tau, work, info)

5-284

5 Intel® Math Kernel Library Reference Manual

call zung2l(m, n, k, a, lda, tau, work, info)

Description

The routine ?org2l/?ung2l generates an m-by-n real/complex matrix Q with orthonormal
columns, which is defined as the last n columns of a product of k elementary reflectors of order m:

Q = H(k) . . . H(2) H(1) as returned by ?geqlf.

Input Parameters

m INTEGER.
The number of rows of the matrix Q. m ≥ 0.

n INTEGER.
The number of columns of the matrix Q. m ≥ n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
n ≥ k ≥ 0.

a REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Array, DIMENSION (lda,n).
On entry, the (n-k+i)-th column must contain the vector which defines
the elementary reflector H(i), for
i = 1,2,...,k, as returned by ?geqlf in the last k columns
of its array argument a.

lda INTEGER.
The first dimension of the array a. lda ≥ max(1,m).

tau REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by ?geqlf.

LAPACK Auxiliary and Utility Routines 5

5-285

work REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Workspace array, DIMENSION (n).

Output Parameters

a On exit, the m-by-n matrix Q.

info INTEGER.
= 0: successful exit,
< 0: if info = -i, the i-th argument has an illegal value.

?org2r/?ung2r
Generates all or part of the orthogonal/unitary matrix
Q from a QR factorization determined by ?geqrf
(unblocked algorithm).

Syntax
call sorg2r(m, n, k, a, lda, tau, work, info)

call dorg2r(m, n, k, a, lda, tau, work, info)

call cung2r(m, n, k, a, lda, tau, work, info)

call zung2r(m, n, k, a, lda, tau, work, info)

Description

The routine ?org2r/?ung2r generates an m-by-n real/complex matrix Q with orthonormal
columns, which is defined as the first n columns of a product of k elementary reflectors of order m

 Q = H(1) H(2) . . . H(k)

as returned by ?geqrf.

Input Parameters

m INTEGER.
The number of rows of the matrix Q. m ≥ 0.

5-286

5 Intel® Math Kernel Library Reference Manual

n INTEGER.
The number of columns of the matrix Q. m ≥ n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
n ≥ k ≥ 0.

a REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
COMPLEX*16 for zung2r.
Array, DIMENSION (lda, n).
On entry, the i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by ?geqrf in the
first k columns of its array argument a.

lda INTEGER.
The first DIMENSION of the array a. lda ≥ max(1,m).

tau REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
COMPLEX*16 for zung2r.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by ?geqrf.

work REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
COMPLEX*16 for zung2r.
Workspace array, DIMENSION (n).

Output Parameters

a On exit, the m-by-n matrix Q.

info INTEGER.
= 0: successful exit,
< 0: if info = -i, the i-th argument has an illegal value.

LAPACK Auxiliary and Utility Routines 5

5-287

?orgl2/?ungl2
Generates all or part of the orthogonal/unitary matrix
Q from an LQ factorization determined by ?gelqf
(unblocked algorithm).

Syntax
call sorgl2(m, n, k, a, lda, tau, work, info)

call dorgl2(m, n, k, a, lda, tau, work, info)

call cungl2(m, n, k, a, lda, tau, work, info)

call zungl2(m, n, k, a, lda, tau, work, info)

Description

The routine ?orgl2/?ungl2 generates a m-by-n real/complex matrix Q with orthonormal rows,
which is defined as the first m rows of a product of k elementary reflectors of order n

 Q = H(k) . . . H(2) H(1) or Q = H(k)′ . . . H(2)′ H(1)′

as returned by ?gelqf.

Input Parameters

m INTEGER.
The number of rows of the matrix Q. m ≥ 0.

n INTEGER.
The number of columns of the matrix Q. n ≥ m.

k INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
m ≥ k ≥ 0.

a REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Array, DIMENSION (lda, n). On entry, the i-th row must contain the
vector which defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by ?gelqf in the first k rows of its array argument a.

5-288

5 Intel® Math Kernel Library Reference Manual

lda INTEGER.
The first dimension of the array a. lda ≥ max(1,m).

tau REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by ?gelqf.

work REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Workspace array, DIMENSION (m).

Output Parameters

a On exit, the m-by-n matrix Q.

info INTEGER.
= 0: successful exit,
< 0: if info = -i, the i-th argument has an illegal value.

?orgr2/?ungr2
Generates all or part of the orthogonal/unitary matrix
Q from an RQ factorization determined by ?gerqf
(unblocked algorithm).

Syntax
call sorgr2(m, n, k, a, lda, tau, work, info)

call dorgr2(m, n, k, a, lda, tau, work, info)

call cungr2(m, n, k, a, lda, tau, work, info)

call zungr2(m, n, k, a, lda, tau, work, info)

LAPACK Auxiliary and Utility Routines 5

5-289

Description

The routine ?orgr2/?ungr2 generates an m-by-n real matrix Q with orthonormal rows, which
is defined as the last m rows of a product of k elementary reflectors of order n
Q = H(1) H(2) . . . H(k) or Q = H(1)′ H(2)′ . . . H(k)′
as returned by ?gerqf.

Input Parameters

m INTEGER. The number of rows of the matrix Q. m ≥ 0.

n INTEGER.
The number of columns of the matrix Q. n ≥ m.

k INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
m ≥ k ≥ 0.

a REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
COMPLEX*16 for zungr2.
Array, DIMENSION (lda, n).On entry, the (m-k+i)-th row must contain
the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by ?gerqf in the last k rows of its array argument a.

lda INTEGER.
The first dimension of the array a. lda ≥ max(1,m).

tau REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
COMPLEX*16 for zungr2.
Array, DIMENSION (k).tau(i) must contain the scalar factor of the
elementary reflector H(i), as returned by ?gerqf.

work REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
COMPLEX*16 for zungr2.
Workspace array, DIMENSION (m).

5-290

5 Intel® Math Kernel Library Reference Manual

Output Parameters

a On exit, the m-by-n matrix Q.

info INTEGER.
= 0: successful exit,
< 0: if info = -i, the i-th argument has an illegal value.

?orm2l/?unm2l
Multiplies a general matrix by the orthogonal/unitary
matrix from a QL factorization determined by ?geqlf
(unblocked algorithm).

Syntax
call sorm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call dorm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunm2l(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

Description

The routine ?orm2l/?unm2l overwrites the general real/complex m-by-n matrix C with

 Q*C if side = 'L' and trans = 'N', or
 Q'*C if side = 'L' and trans = 'T' (for real flavors) or
 trans = 'C' (for complex flavors), or
 C*Q if side = 'R' and trans = 'N', or
 C*Q' if side = 'R' and trans = 'T' (for real flavors) or
 trans = 'C' (for complex flavors),

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

 Q = H(k) . . . H(2) H(1)

as returned by ?geqlf. Q is of order m if side = 'L' and of order n if side = 'R'.

LAPACK Auxiliary and Utility Routines 5

5-291

Input Parameters

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
 flavors)

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (lda,k).The i-th column must contain the vector
which defines the elementary reflector H(i), for i = 1,2,...,k, as returned
by ?geqlf in the last k columns of its array argument a. The array a is
modified by the routine but restored on exit.

lda INTEGER.
The leading dimension of the array a.
If side = 'L', lda ≥ max(1, m);
if side = 'R', lda ≥ max(1, n).

tau REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (k). tau(i) must contain the scalar factor of the
elementary reflector H(i), as returned by ?geqlf.

5-292

5 Intel® Math Kernel Library Reference Manual

c REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (ldc, n).On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array C. ldc ≥ max(1,m).

work REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Workspace array, DIMENSION:
(n) if side = 'L',
(m) if side = 'R'.

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit,
< 0: if info = -i, the i-th argument had an illegal value.

?orm2r/?unm2r
Multiplies a general matrix by the orthogonal/unitary
matrix from a QR factorization determined by ?geqrf
(unblocked algorithm).

Syntax
call sorm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call dorm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

LAPACK Auxiliary and Utility Routines 5

5-293

Description

The routine ?orm2r/?unm2r overwrites the general real/complex m-by-n matrix C with

 Q*C if side = 'L' and trans = 'N', or
 Q'*C if side = 'L' and trans = 'T' (for real flavors) or
 trans = 'C' (for complex flavors), or
 C*Q if side = 'R' and trans = 'N', or
 C*Q' if side = 'R' and trans = 'T' (for real flavors) or
 trans = 'C' (for complex flavors),

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

 Q = H(1) H(2) . . . H(k)

as returned by ?geqrf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

 side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
 flavors)

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r

5-294

5 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for zunm2r.
Array, DIMENSION (lda,k).The i-th column must contain the vector
which defines the elementary reflector H(i), for i = 1,2,...,k, as returned
by ?geqrf in the first k columns of its array argument a. The array a is
modified by the routine but restored on exit.

lda INTEGER.
The leading dimension of the array a.
If side = 'L', lda ≥ max(1, m);
if side = 'R', lda ≥ max(1, n).

tau REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by ?geqrf.

c REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Array, DIMENSION (ldc, n). On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array C. ldc ≥ max(1,m).

work REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'.

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit,
< 0: if info = -i, the i-th argument had an illegal value.

LAPACK Auxiliary and Utility Routines 5

5-295

?orml2/?unml2
Multiplies a general matrix by the orthogonal/unitary
matrix from a LQ factorization determined by ?gelqf
(unblocked algorithm).

Syntax
call sorml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call dorml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

Description

The routine ?orml2/?unml2 overwrites the general real/complex m-by-n matrix C with

 Q*C if side = 'L' and trans = 'N', or
 Q'*C if side = 'L' and trans = 'T' (for real flavors) or
 trans = 'C' (for complex flavors), or
 C*Q if side = 'R' and trans = 'N', or
 C*Q' if side = 'R' and trans = 'T' (for real flavors) or
 trans = 'C' (for complex flavors),

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

 Q = H(k) . . . H(2) H(1) or Q = H(k)′ . . . H(2)′ H(1)′

as returned by ?gelqf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

 side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
 flavors)

5-296

5 Intel® Math Kernel Library Reference Manual

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'R'
The i-th row must contain the vector which defines the elementary
reflector H(i), for i = 1,2,...,k, as returned by ?gelqf in the first k rows
of its array argument a. The array a is modified by the routine but
restored on exit.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,k).

tau REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by ?gelqf.

c REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, DIMENSION (ldc, n)
On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array c. ldc ≥ max(1,m).

LAPACK Auxiliary and Utility Routines 5

5-297

work REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit,
< 0: if info = -i, the i-th argument had an illegal value.

?ormr2/?unmr2
Multiplies a general matrix by the orthogonal/unitary
matrix from a RQ factorization determined by ?gerqf
(unblocked algorithm).

Syntax
call sormr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call dormr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call cunmr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

call zunmr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)

Description

The routine ?ormr2/?unmr2 overwrites the general real/complex m-by-n matrix C with

 Q*C if side = 'L' and trans = 'N', or
 Q'*C if side = 'L' and trans = 'T' (for real flavors) or
 trans = 'C' (for complex flavors), or
 C*Q if side = 'R' and trans = 'N', or
 C*Q' if side = 'R' and trans = 'T' (for real flavors) or
 trans = 'C' (for complex flavors),

5-298

5 Intel® Math Kernel Library Reference Manual

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

 Q = H(1) H(2) . . . H(k) or Q = H(1)′ H(2)′ . . . H(k)′

as returned by ?gerqf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
 flavors)

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'R'
The i-th row must contain the vector which defines the elementary
reflector H(i), for i = 1,2,...,k, as returned by ?gerqf in the last k rows
of its array argument a. The array a is modified by the routine but
restored on exit.

 lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,k).

LAPACK Auxiliary and Utility Routines 5

5-299

tau REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by ?gerqf.

c REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Array, DIMENSION (ldc, n).
On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array C. ldc ≥ max(1,m).

work REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
COMPLEX*16 for zunmr2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit,
< 0: if info = -i, the i-th argument had an illegal value.

5-300

5 Intel® Math Kernel Library Reference Manual

?ormr3/?unmr3
Multiplies a general matrix by the orthogonal/unitary
matrix from a RZ factorization determined by ?tzrzf
(unblocked algorithm).

Syntax
call sormr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call dormr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call cunmr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

call zunmr3(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info)

Description

The routine ?ormr3/?unmr3 overwrites the general real/complex m-by-n matrix C with

 Q*C if side = 'L' and trans = 'N', or
 Q'*C if side = 'L' and trans = 'T' (for real flavors) or
 trans = 'C' (for complex flavors), or
 C*Q if side = 'R' and trans = 'N', or
 C*Q' if side = 'R' and trans = 'T' (for real flavors) or
 trans = 'C' (for complex flavors),

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

 Q = H(1) H(2) . . . H(k)

as returned by ?tzrzf. Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right

trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
 flavors)

LAPACK Auxiliary and Utility Routines 5

5-301

m INTEGER.
The number of rows of the matrix C. m ≥ 0.

n INTEGER.
The number of columns of the matrix C. n ≥ 0.

k INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

l INTEGER.
The number of columns of the matrix A containing the meaningful part
of the Householder reflectors.
If side = 'L', m ≥ l ≥ 0,
if side = 'R', n ≥ l ≥ 0.

a REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Array, DIMENSION
(lda, m) if side = 'L',
(lda, n) if side = 'R'
The i-th row must contain the vector which defines the elementary
reflector H(i), for i = 1,2,...,k, as returned by ?tzrzf in the last k rows
of its array argument a. The array a is modified by the routine but
restored on exit.

 lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,k).

tau REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by ?tzrzf.

c REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3

5-302

5 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for zunmr3.
Array, DIMENSION (ldc, n).
On entry, the m-by-n matrix C.

ldc INTEGER.
The leading dimension of the array c. ldc ≥ max(1,m).

work REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'.

Output Parameters

c On exit, c is overwritten by QC or Q'C or CQ' or CQ.

info INTEGER.
= 0: successful exit,
< 0: if info = -i, the i-th argument had an illegal value.

?pbtf2
Computes the Cholesky factorization of a symmetric/
Hermitian positive-definite band matrix (unblocked
algorithm).

Syntax
call spbtf2(uplo, n, kd, ab, ldab, info)

call dpbtf2(uplo, n, kd, ab, ldab, info)

call cpbtf2(uplo, n, kd, ab, ldab, info)

call zpbtf2(uplo, n, kd, ab, ldab, info)

LAPACK Auxiliary and Utility Routines 5

5-303

Description

The routine computes the Cholesky factorization of a real symmetric or complex Hermitian
positive definite band matrix A. The factorization has the form
A = U' U , if uplo = 'U', or
A = L L', if uplo = 'L',

where U is an upper triangular matrix, U' is the transpose of U, and L is lower triangular.
This is the unblocked version of the algorithm, calling “BLAS Level 2 Routines”.

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

kd INTEGER.
The number of super-diagonals of the matrix A if uplo = 'U , or the
number of sub-diagonals if uplo = 'L'.
kd ≥ 0.

ab REAL for spbtf2
DOUBLE PRECISION for dpbtf2
COMPLEX for cpbtf2
COMPLEX*16 for zpbtf2.
Array, DIMENSION (ldab, n).
On entry, the upper or lower triangle of the symmetric/ Hermitian band
matrix A, stored in the first kd+1 rows of the array. The j-th column of
A is stored in the j-th column of the array ab as follows:
if uplo = 'U', ab(kd+1+i-j,j) = A(i,j) for
max(1,j-kd) ≤ i ≤ j;
if uplo = 'L', ab(1+i-j,j) = A(i,j) for
j ≤ i ≤ min(n,j+kd).

ldab INTEGER.
The leading dimension of the array ab. ldab ≥ kd+1.

5-304

5 Intel® Math Kernel Library Reference Manual

Output Parameters

ab On exit, if info = 0, the triangular factor U or L from the Cholesky
factorization A = U' U or A = L L' of the band matrix A, in the same
storage format as A.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, the leading minor of order k is not positive definite,
and the factorization could not be completed.

?potf2
Computes the Cholesky factorization of a
symmetric/Hermitian positive-definite matrix
(unblocked algorithm).

Syntax
call spotf2(uplo, n, a, lda, info)

call dpotf2(uplo, n, a, lda, info)

call cpotf2(uplo, n, a, lda, info)

call zpotf2(uplo, n, a, lda, info)

Description

The routine ?potf2 computes the Cholesky factorization of a real symmetric or complex
Hermitian positive definite matrix A. The factorization has the form
A = U' U , if uplo = 'U', or
A = L L', if uplo = 'L',
where U is an upper triangular matrix and L is lower triangular.

This is the unblocked version of the algorithm, calling “BLAS Level 2 Routines”.

LAPACK Auxiliary and Utility Routines 5

5-305

Input Parameters

 uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

a REAL for spotf2
DOUBLE PRECISION or dpotf2
COMPLEX for cpotf2
COMPLEX*16 for zpotf2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of a contains the
upper triangular part of the matrix A, and the strictly lower triangular
part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of a contains the
lower triangular part of the matrix A, and the strictly upper triangular
part of a is not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, if info = 0, the factor U or L from the Cholesky factorization
A = U' U or A = L L'.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, the leading minor of order k is not positive definite,
and the factorization could not be completed.

5-306

5 Intel® Math Kernel Library Reference Manual

?ptts2
Solves a tridiagonal system of the form AX=B using the
L D LH factorization computed by ?pttrf.

Syntax
call sptts2(n, nrhs, d, e, b, ldb)

call dptts2(n, nrhs, d, e, b, ldb)

call cptts2(iuplo, n, nrhs, d, e, b, ldb)

call zptts2(iuplo, n, nrhs, d, e, b, ldb)

Description

The routine ?ptts2 solves a tridiagonal system of the form
 A X = B.
Real flavors sptts2/dptts2 use the L D L' factorization of A computed by spttrf/dpttrf,
and complex flavors cptts2/zptts2 use the U'D U or L D L' factorization of A computed by
cpttrf/zpttrf.
D is a diagonal matrix specified in the vector d, U (or L) is a unit bidiagonal matrix whose
superdiagonal (subdiagonal) is specified in the vector e, and X and B are n-by-nrhs matrices.

Input Parameters

iuplo INTEGER. Used with complex flavors only.
Specifies the form of the factorization and whether the vector e is the
superdiagonal of the upper bidiagonal factor U or the subdiagonal of the
lower bidiagonal factor L.
= 1: A = U' D U, e is the superdiagonal of U;
= 0: A = L D L', e is the subdiagonal of L .

n INTEGER.
The order of the tridiagonal matrix A. n ≥ 0.

nrhs INTEGER.
The number of right hand sides, that is, the number of columns of the
matrix B. nrhs ≥ 0.

LAPACK Auxiliary and Utility Routines 5

5-307

d REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (n).
The n diagonal elements of the diagonal matrix D from the factorization
of A.

e REAL for sptts2
DOUBLE PRECISION for dptts2
COMPLEX for cptts2
COMPLEX*16 for zptts2.
Array, DIMENSION (n-1).
Contains the (n-1) subdiagonal elements of the unit bidiagonal factor L
from the LDL' factorization of A (for real flavors, or for complex flavors
when iuplo = 0).
For complex flavors when iuplo = 1, e contains the (n-1)
superdiagonal elements of the unit bidiagonal factor U from the
factorization A = U'DU.

b REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (ldb, nrhs).
On entry, the right hand side vectors B for the system of linear equations.

ldb INTEGER.
The leading dimension of the array B. ldb ≥ max(1,n).

Output Parameters

 b On exit, the solution vectors, X.

?rscl
Multiplies a vector by the reciprocal of a real scalar.

Syntax
call srscl(n, sa, sx, incx)

call drscl(n, sa, sx, incx)

call csrscl(n, sa, sx, incx)

call zdrscl(n, sa, sx, incx)

5-308

5 Intel® Math Kernel Library Reference Manual

Description

The routine ?rscl multiplies an n-element real/complex vector x by the real scalar 1/a. This is
done without overflow or underflow as long as the final result x/a does not overflow or underflow.

Input Parameters

 n INTEGER.
The number of components of the vector x.

sa REAL for srscl/csrscl
DOUBLE PRECISION for drscl/zdrscl.
The scalar a which is used to divide each component of the vector x. sa
must be ≥ 0, or the subroutine will divide by zero.

sx REAL for srscl
DOUBLE PRECISION for drscl
COMPLEX for csrscl
COMPLEX*16 for zdrscl.
Array, DIMENSION (1+(n-1)*abs(incx)).
The n-element vector x.

incx INTEGER.
The increment between successive values of the vector sx.
If incx > 0, sx(1) = x(1) and
sx(1+(i-1)*incx) = x(i), 1< i ≤ n.

Output Parameters

sx On exit, the result x/a.

?sygs2/?hegs2
Reduces a symmetric/Hermitian definite generalized
eigenproblem to standard form, using the factorization
results obtained from ?potrf (unblocked algorithm).

Syntax
call ssygs2(itype, uplo, n, a, lda, b, ldb, info)

call dsygs2(itype, uplo, n, a, lda, b, ldb, info)

LAPACK Auxiliary and Utility Routines 5

5-309

call chegs2(itype, uplo, n, a, lda, b, ldb, info)

call zhegs2(itype, uplo, n, a, lda, b, ldb, info)

Description

The routine ?sygs2/?hegs2 reduces a real symmetric-definite or a complex Hermitian-definite
generalized eigenproblem to standard form.
If itype = 1, the problem is
 Ax = λBx,
and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L').

If itype = 2 or 3, the problem is
 ABx = λx or B Ax =λx,
and A is overwritten by UAU′ or L′AL. B must have been previously factorized as U' U or L L' by
?potrf.

Input Parameters

itype INTEGER.
= 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
= 2 or 3: compute UAU' or L' AL.

uplo CHARACTER
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored, and how B has been factorized.
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrices A and B. n ≥ 0.

a REAL for ssygs2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs2
COMPLEX*16 for zhegs2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of a contains the
upper triangular part of the matrix A, and the strictly lower triangular
part of a is not referenced. If uplo = 'L', the leading n-by-n lower
triangular part of a contains the lower triangular part of the matrix A,
and the strictly upper triangular part of a is not referenced.

5-310

5 Intel® Math Kernel Library Reference Manual

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

b REAL for ssygs2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs2
COMPLEX*16 for zhegs2.
Array, DIMENSION (ldb, n).
The triangular factor from the Cholesky factorization of B as returned by
?potrf.

ldb INTEGER.
The leading dimension of the array B. ldb ≥ max(1,n).

Output Parameters

a On exit, if info = 0, the transformed matrix, stored in the same format
as A.

info INTEGER.
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value.

?sytd2/?hetd2
Reduces a symmetric/Hermitian matrix to real
symmetric tridiagonal form by an orthogonal/unitary
similarity transformation (unblocked algorithm).

Syntax
call ssytd2(uplo, n, a, lda, d, e, tau, info)

call dsytd2(uplo, n, a, lda, d, e, tau, info)

call chetd2(uplo, n, a, lda, d, e, tau, info)

call zhetd2(uplo, n, a, lda, d, e, tau, info)

Description

The routine ?sytd2/?hetd2 reduces a real symmetric/complex Hermitian matrix A to real
symmetric tridiagonal form T by an orthogonal/unitary similarity transformation: Q' AQ = T.

LAPACK Auxiliary and Utility Routines 5

5-311

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

a REAL for ssytd2
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
COMPLEX*16 for zhetd2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of a contains the
upper triangular part of the matrix A, and the strictly lower triangular
part of a is not referenced. If uplo = 'L', the leading n-by-n lower
triangular part of a contains the lower triangular part of the matrix A,
and the strictly upper triangular part of a is not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, if uplo = 'U', the diagonal and first superdiagonal of a are
overwritten by the corresponding elements of the tridiagonal matrix T,
and the elements above the first superdiagonal, with the array tau,
represent the orthogonal/unitary matrix Q as a product of elementary
reflectors;
if uplo = 'L', the diagonal and first subdiagonal of a are overwritten by
the corresponding elements of the tridiagonal matrix T, and the elements
below the first subdiagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary reflectors.

d REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n).
The diagonal elements of the tridiagonal matrix T:
d(i) = a(i,i).

5-312

5 Intel® Math Kernel Library Reference Manual

e REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n-1).
The off-diagonal elements of the tridiagonal matrix T:
e(i) = a(i,i+1) if uplo = 'U',
e(i) = a(i+1,i) if uplo = 'L'.

tau REAL for ssytd2
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
COMPLEX*16 for zhetd2.
Array, DIMENSION (n-1).
The scalar factors of the elementary reflectors .

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value.

?sytf2
Computes the factorization of a real/complex symmetric
indefinite matrix, using the diagonal pivoting method
(unblocked algorithm).

Syntax
call ssytf2(uplo, n, a, lda, ipiv, info)

call dsytf2(uplo, n, a, lda, ipiv, info)

call csytf2(uplo, n, a, lda, ipiv, info)

call zsytf2(uplo, n, a, lda, ipiv, info)

Description

The routine ?sytf2 computes the factorization of a real/complex symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method:
 A = U D U' or A = L D L'

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, U' is the
transpose of U, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

LAPACK Auxiliary and Utility Routines 5

5-313

This is the unblocked version of the algorithm, calling “BLAS Level 2 Routines”.

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric
matrix A is stored
 = 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

a REAL for ssytf2
DOUBLE PRECISION for dsytf2
COMPLEX for csytf2
COMPLEX*16 for zsytf2.
Array, DIMENSION (lda, n).
On entry, the symmetric matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of a contains the
upper triangular part of the matrix A, and the strictly lower triangular
part of a is not referenced. If uplo = 'L', the leading n-by-n lower
triangular part of a contains the lower triangular part of the matrix A,
and the strictly upper triangular part of a is not referenced.

 lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, the block diagonal matrix D and the multipliers used to obtain
the factor U or L.

ipiv INTEGER.
 Array, DIMENSION (n).
Details of the interchanges and the block structure of D If ipiv(k) > 0,
then rows and columns k and ipiv(k) were interchanged and D(k,k) is
a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows and columns k-1
and -ipiv(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
diagonal block.
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows and columns k+1
and -ipiv(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.

5-314

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, D(k,k) is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular, and
division by zero will occur if it is used to solve a system of equations.

?hetf2
Computes the factorization of a complex Hermitian
matrix, using the diagonal pivoting method (unblocked
algorithm).

Syntax
call chetf2(uplo, n, a, lda, ipiv, info)

call zhetf2(uplo, n, a, lda, ipiv, info)

Description

The routine computes the factorization of a complex Hermitian matrix A using the
Bunch-Kaufman diagonal pivoting method:
 A = U D U' or A = L D L'

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, U' is the
conjugate transpose of U, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal
blocks.

This is the unblocked version of the algorithm, calling “BLAS Level 2 Routines”.

Input Parameters

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian
matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

LAPACK Auxiliary and Utility Routines 5

5-315

a COMPLEX for chetf2
COMPLEX*16 for zhetf2.
Array, DIMENSION (lda, n).
On entry, the Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of a contains the
upper triangular part of the matrix A, and the strictly lower triangular
part of a is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of a contains the
lower triangular part of the matrix A, and the strictly upper triangular
part of a is not referenced.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, the block diagonal matrix D and the multipliers used to obtain
the factor U or L.

ipiv INTEGER.
 Array, DIMENSION (n).
Details of the interchanges and the block structure of D If ipiv(k) > 0,
then rows and columns k and ipiv(k) were interchanged and D(k,k) is
a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows and columns k-1
and -ipiv(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
diagonal block.
If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, then rows and columns k+1
and -ipiv(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
> 0: if info = k, D(k,k) is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular, and
division by zero will occur if it is used to solve a system of equations.

5-316

5 Intel® Math Kernel Library Reference Manual

?tgex2
Swaps adjacent diagonal blocks in an upper (quasi)
triangular matrix pair by an orthogonal/unitary
equivalence transformation.

Syntax
call stgex2(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, n1, n2, work,

lwork, info)

call dtgex2(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, n1, n2, work,
lwork, info)

call ctgex2(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, info)

call ztgex2(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, j1, info)

Description

The real routines stgex2/dtgex2 swap adjacent diagonal blocks (A11, B11) and (A22, B22) of
size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair (A, B) by an orthogonal
equivalence transformation. (A, B) must be in generalized real Schur canonical form (as returned
by sgges/dgges), that is, A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B
is upper triangular.

The complex routines ctgex2/ztgex2 swap adjacent diagonal 1-by-1 blocks (A11, B11) and
(A22, B22) in an upper triangular matrix pair (A, B) by an unitary equivalence transformation.
(A, B) must be in generalized Schur canonical form, that is, A and B are both upper triangular.

All routines optionally update the matrices Q and Z of generalized Schur vectors:

Q(in) *A(in)*Z(in)' = Q(out)*A(out)* Z(out)'
Q(in)*B(in)*Z(in)' = Q(out)*B(out)*Z(out)'

Input Parameters

wantq LOGICAL.
If wantq = .TRUE. : update the left transformation matrix Q;
If wantq = .FALSE.: do not update Q.

wantz LOGICAL.
If wantz = .TRUE. : update the right transformation matrix Z;
If wantz = .FALSE.: do not update Z.

LAPACK Auxiliary and Utility Routines 5

5-317

n INTEGER.
The order of the matrices A and B. n ≥ 0.

a, b REAL for stgex2
DOUBLE PRECISION for dtgex2
COMPLEX for ctgex2
COMPLEX*16 for ztgex2.
Arrays, DIMENSION (lda, n) and (ldb, n), respectively.
On entry, the matrices A and B in the pair (A, B).

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

 ldb INTEGER.
The leading dimension of the array b. ldb ≥ max(1,n).

q, z REAL for stgex2
DOUBLE PRECISION for dtgex2
COMPLEX for ctgex2
COMPLEX*16 for ztgex2.
Arrays, DIMENSION (ldq, n) and (ldz, n), respectively.
On entry, if wantq = .TRUE., q contains the orthogonal/unitary matrix
Q, and if wantz = .TRUE.,
z contains the orthogonal/unitary matrix Z.

ldq INTEGER.
The leading dimension of the array q. ldq ≥ 1.
If wantq = .TRUE., ldq ≥ n.

ldz INTEGER.
The leading dimension of the array z. ldz ≥ 1.
If wantz = .TRUE., ldz ≥ n.

j1 INTEGER.
The index to the first block (A11, B11). 1 ≤ j1 ≤ n.

n1 INTEGER. Used with real flavors only.
The order of the first block (A11, B11). n1 = 0, 1 or 2.

n2 INTEGER. Used with real flavors only.
The order of the second block (A22, B22). n2 = 0, 1 or 2.

work REAL for stgex2
DOUBLE PRECISION for dtgex2.
Workspace array, DIMENSION (lwork). Used with real flavors only.

5-318

5 Intel® Math Kernel Library Reference Manual

lwork INTEGER.
The dimension of the array work.
lwork ≥ max(n*(n2+n1), 2*(n2+n1)2)

Output Parameters

a On exit, the updated matrix A.

b On exit, the updated matrix B.

q On exit, the updated matrix Q.
Not referenced if wantq = .FALSE..

z On exit, the updated matrix Z.
Not referenced if wantz = .FALSE..

info INTEGER.
=0: Successful exit
For stgex2/dtgex2: if info = 1, the transformed matrix (A, B) would
be too far from generalized Schur form; the blocks are not swapped and
(A, B) and (Q, Z) are unchanged. The problem of swapping is too
ill-conditioned. If info = -16: lwork is too small. Appropriate value for
lwork is returned in work(1).

For ctgex2/ztgex2: if info = 1, the transformed matrix pair (A, B)
would be too far from generalized Schur form; the problem is
ill-conditioned. (A, B) may have been partially reordered, and ilst
points to the first row of the current position of the block being moved.

?tgsy2
Solves the generalized Sylvester equation (unblocked
algorithm).

Syntax
call stgsy2(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,

scale, rdsum, rdscal, iwork, pq, info)

call dtgsy2(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,
scale, rdsum, rdscal, iwork, pq, info)

call ctgsy2(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,
scale, rdsum, rdscal, iwork, pq, info)

LAPACK Auxiliary and Utility Routines 5

5-319

call ztgsy2(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf,
scale, rdsum, rdscal, iwork, pq, info)

Description

The routine ?tgsy2 solves the generalized Sylvester equation:
 AR - L B = scale*C (1)
 DR - L E = scale*F,

using Level 1 and 2 BLAS, where R and L are unknown m-by-n matrices, (A, D), (B, E), and
(C, F) are given matrix pairs of size m-by-m, n-by-n, and m-by-n respectively.
For stgsy2/dtgsy2, pairs (A, D) and (B, E) must be in generalized Schur canonical form, that
is, A, B are upper quasi triangular and D, E are upper triangular. For ctgsy2/ztgsy2, matrices
A, B, D, and E are upper triangular (that is, (A, D) and (B, E) in generalized Schur form).

The solution (R, L) overwrites (C, F). 0 ≤ scale ≤ 1 is an output scaling factor chosen to avoid
overflow.

In matrix notation, solving equation (1) corresponds to solve
 Zx = scale* b,
where Z is defined as

 (2)

Here Ik is the identity matrix of size k and X' is the transpose of X.
kron(X, Y) denotes the Kronecker product between the matrices X and Y.

If trans = 'T' , solve the transposed (conjugate transposed) system
 Z'y = scale* b
for y, which is equivalent to solve for R and L in

 A' R + D' L = scale*C (3)
 R B' + L E' = scale*(-F)

This case is used to compute an estimate of Dif[(A, D), (B, E)] = sigma_min(Z) using reverse
communication with ?lacon.

?tgsy2 also (for ijob ≥ 1) contributes to the computation in ?tgsyl of an upper bound on the
separation between two matrix pairs. Then the input (A, D), (B, E) are sub-pencils of the matrix
pair (two matrix pairs) in ?tgsyl. See ?tgsyl for details.

Z
kron In, A() kron B′, Im()–

kron In, D() kron E′, Im()–
=

5-320

5 Intel® Math Kernel Library Reference Manual

Input Parameters

trans CHARACTER
If trans = 'N', solve the generalized Sylvester
equation (1);
 If trans = 'T': solve the 'transposed' system (3).

ijob INTEGER.
Specifies what kind of functionality is to be performed.
If ijob = 0: solve (1) only.
If ijob = 1: a contribution from this subsystem to a Frobenius
norm-based estimate of the separation between two matrix pairs is
computed (look ahead strategy is used);
If ijob = 2: a contribution from this subsystem to a Frobenius
norm-based estimate of the separation between two matrix pairs is
computed (?gecon on sub-systems is used).
Not referenced if trans = 'T'.

m INTEGER.
On entry, m specifies the order of A and D, and the row
dimension of C, F, R and L.

n INTEGER.
On entry, n specifies the order of B and E, and the column dimension of
C, F, R, and L.

a, b REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (lda, m) and (ldb, n), respectively. On entry, a
contains an upper (quasi) triangular matrix A and b contains an upper
(quasi) triangular matrix B.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1, m).

ldb INTEGER.
The leading dimension of the array b. ldb ≥ max(1, n).

c, f REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
COMPLEX*16 for ztgsy2.

LAPACK Auxiliary and Utility Routines 5

5-321

Arrays, DIMENSION (ldc, n) and (ldf, n), respectively. On entry, c
contains the right-hand-side of the first matrix equation in (1) and f
contains the right-hand-side of the second matrix equation in (1).

ldc INTEGER.
The leading dimension of the array c. ldc ≥ max(1, m).

d, e REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (ldd, m) and (lde, n), respectively. On entry, d
contains an upper triangular matrix D and e contains an upper triangular
matrix E.

ldd INTEGER.
The leading dimension of the array d. ldd ≥ max(1, m).

lde INTEGER.
The leading dimension of the array e. lde ≥ max(1, n).

ldf INTEGER.
The leading dimension of the array f. ldf ≥ max(1, m).

rdsum REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, the sum of squares of computed contributions to the
Dif-estimate under computation by ?tgsyl, where the scaling factor
rdscal has been factored out.

rdscal REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, scaling factor used to prevent overflow in rdsum.

iwork INTEGER. Used with real flavors only.
Workspace array, DIMENSION (m+n+2).

Output Parameters

c On exit, if ijob = 0, c has been overwritten by the solution R.

f On exit, if ijob = 0, f has been overwritten by the solution L.

scale REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On exit, 0 ≤ scale ≤ 1. If 0 < scale < 1, the solutions R and L (C and

5-322

5 Intel® Math Kernel Library Reference Manual

F on entry) will hold the solutions to a slightly perturbed system, but the
input matrices A, B, D and E have not been changed. If scale = 0, R and
L will hold the solutions to the homogeneous system with C = F = 0.
Normally scale = 1.

rdsum On exit, the corresponding sum of squares updated with the
contributions from the current sub-system.
If trans = 'T', rdsum is not touched.
Note that rdsum only makes sense when ?tgsy2 is called by ?tgsyl.

rdscal On exit, rdscal is updated with respect to the current contributions in
rdsum.
If trans = 'T', rdscal is not touched.
Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyl.

pq INTEGER. Used with real flavors only.
On exit, the number of subsystems (of size 2-by-2, 4-by-4 and 8-by-8)
solved by the routine stgsy2/dtgsy2.

info INTEGER.
On exit, if info is set to
=0: Successful exit
<0: If info = -i, the i-th argument had an illegal value.
>0: The matrix pairs (A, D) and (B, E) have common or very close
eigenvalues.

?trti2
Computes the inverse of a triangular matrix (unblocked
algorithm).

Syntax
call strti2(uplo, diag, n, a, lda, info)

call dtrti2(uplo, diag, n, a, lda, info)

call ctrti2(uplo, diag, n, a, lda, info)

call ztrti2(uplo, diag, n, a, lda, info)

LAPACK Auxiliary and Utility Routines 5

5-323

Description

The routine ?trti2 computes the inverse of a real/complex upper or lower triangular matrix.

This is the Level 2 BLAS version of the algorithm.

Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

n INTEGER.
The order of the matrix A. n ≥ 0.

a REAL for strti2
DOUBLE PRECISION for dtrti2
COMPLEX for ctrti2
COMPLEX*16 for ztrti2.
Array, DIMENSION (lda, n).
On entry, the triangular matrix A. If uplo = 'U', the leading n-by-n
upper triangular part of the array a contains the upper triangular matrix,
and the strictly lower triangular part of a is not referenced. If uplo =
'L', the leading n-by-n lower triangular part of the array a contains the
lower triangular matrix, and the strictly upper triangular part of a is not
referenced. If diag = 'U', the diagonal elements of a are also not
referenced and are assumed to be 1.

lda INTEGER.
The leading dimension of the array a. lda ≥ max(1,n).

Output Parameters

a On exit, the (triangular) inverse of the original matrix, in the same
storage format.

info INTEGER.
= 0: successful exit,
< 0: if info = -k, the k-th argument had an illegal value.

5-324

5 Intel® Math Kernel Library Reference Manual

Utility Functions and Routines
This section describes LAPACK utility functions and routines. Summary information about these
routines is given in the following table:

Table 5-2 LAPACK Utility Routines

Routine
Name

Data
Types Description

ilaenv Environmental enquiry function which returns values for tuning algorithmic
performance.

ieeeck Checks if the infinity and NaN arithmetic is safe. Called by ilaenv.

lsame Tests two characters for equality regardless of case.

lsamen Tests two character strings for equality regardless of case.

?labad s,d Returns the square root of the underflow and overflow thresholds if the
exponent-range is very large.

?lamch s,d Determines machine parameters for floating-point arithmetic.

?lamc1 s,d Called from ?lamc2. Determines machine parameters given by beta, t,
rnd, ieee1.

?lamc2 s,d Used by ?lamch. Determines machine parameters specified in its arguments
list.

?lamc3 s,d Called from ?lamc1-?lamc5. Intended to force a and b to be stored prior to
doing the addition of a and b.

?lamc4 s,d This is a service routine for ?lamc2.

?lamc5 s,d Called from ?lamc2. Attempts to compute the largest machine floating-point
number, without overflow.

second/
dsecnd

Return user time for a process.

xerbla Error handling routine called by LAPACK routines.

LAPACK Auxiliary and Utility Routines 5

5-325

ilaenv
Environmental enquiry function which returns values
for tuning algorithmic performance.

Syntax
value = ilaenv(ispec, name, opts, n1, n2, n3, n4)

Description

Enquiry function ilaenv is called from the LAPACK routines to choose problem-dependent
parameters for the local environment. See ispec below for a description of the parameters.

This version provides a set of parameters which should give good, but not optimal, performance on
many of the currently available computers. Users are encouraged to modify this subroutine to set
the tuning parameters for their particular machine using the option and problem size information
in the arguments.

This routine will not function correctly if it is converted to all lower case. Converting it to all
upper case is allowed.

Input Parameters

ispec INTEGER. Specifies the parameter to be returned as the value of
ilaenv:

= 1: the optimal blocksize; if this value is 1, an unblocked algorithm will
give the best performance.

= 2: the minimum block size for which the block routine should be used;
if the usable block size is less than this value, an unblocked routine
should be used.

= 3: the crossover point (in a block routine, for N less than this value, an
unblocked routine should be used).

= 4: the number of shifts, used in the nonsymmetric eigenvalue routines.

= 5: the minimum column dimension for blocking to be used;
rectangular blocks must have dimension at least k-by-m, where k is
given by ilaenv(2,...) and m by ilaenv(5,...).

5-326

5 Intel® Math Kernel Library Reference Manual

= 6: the crossover point for the SVD (when reducing an m-by-n matrix
to bidiagonal form, if max(m,n)/min(m,n) exceeds this value, a QR
factorization is used first to reduce the matrix to a triangular form).

= 7: the number of processors.

= 8: the crossover point for the multishift QR and QZ methods for
nonsymmetric eigenvalue problems.

= 9: maximum size of the subproblems at the bottom of the computation
tree in the divide-and-conquer algorithm (used by ?gelsd and ?gesdd).

=10: IEEE NaN arithmetic can be trusted not to trap.

=11: infinity arithmetic can be trusted not to trap.

name CHARACTER*(*).The name of the calling subroutine, in either upper
case or lower case.

opts CHARACTER*(*). The character options to the subroutine name,
concatenated into a single character string. For example, uplo = 'U',
trans = 'T', and diag = 'N' for a triangular routine would be
specified as opts = 'UTN'.

n1,n2,n3,n4 INTEGER. Problem dimensions for the subroutine name; these may not
all be required.

Output Parameters

value INTEGER.
If value ≥ 0: the value of the parameter specified by ispec;
If value = -k < 0: the k-th argument had an illegal value.

Application Notes

The following conventions have been used when calling ilaenv from the LAPACK routines:

 1) opts is a concatenation of all of the character options to subroutine name, in the same order
that they appear in the argument list for name, even if they are not used in determining the value of
the parameter specified by ispec.

 2) The problem dimensions n1,n2,n3,n4 are specified in the order that they appear in the
argument list for name. n1 is used first, n2 second, and so on, and unused problem dimensions are
passed a value of -1.

 3) The parameter value returned by ilaenv is checked for validity in the calling subroutine. For
example, ilaenv is used to retrieve the optimal blocksize for strtri as follows:

LAPACK Auxiliary and Utility Routines 5

5-327

 nb = ilaenv(1, 'strtri', uplo // diag, n, -1, -1, -1)

 if(nb.le.1) nb = max(1, n)

Below is an example of ilaenv usage in C language:

ieeeck
Checks if the infinity and NaN arithmetic is safe.
Called by ilaenv.

Syntax
ival = ieeeck(ispec, zero, one)

Description

The function ieeeck is called from ilaenv to verify that infinity and possibly NaN arithmetic is
safe, that is, will not trap.

Input Parameters

ispec INTEGER. Specifies whether to test just for inifinity arithmetic or both
for infinity and NaN arithmetic:
If ispec = 0: Verify infinity arithmetic only.
If ispec = 1: Verify infinity and NaN arithmetic.

Example 5-1 ILAENV Function Usage in C

#include <stdio.h>
#include "mkl.h"

int main(void)
{
 int size = 1000;
 int ispec = 1;
 int dummy = -1;
 int blockSize1 = ilaenv(&ispec, "dsytrd", "U", &size, &dummy, &dummy, &dummy);
 int blockSize2 = ilaenv(&ispec, "dormtr", "LUN", &size, &size, &dummy, &dummy);
 printf("DSYTRD blocksize = %d\n", blockSize1);
 printf("DORMTR blocksize = %d\n", blockSize2);
 return 0;
}

5-328

5 Intel® Math Kernel Library Reference Manual

zero REAL. Must contain the value 0.0
This is passed to prevent the compiler from optimizing away this code.

one REAL. Must contain the value 1.0
This is passed to prevent the compiler from optimizing away this code.

Output Value

ival INTEGER.

If ival = 0: Arithmetic failed to produce the correct answers.
If ival = 1: Arithmetic produced the correct answers.

lsame
Tests two characters for equality regardless of case.

Syntax
val = lsame(ca, cb)

Description

This logical function returns .TRUE. if ca is the same letter as cb regardless of case.

Input Parameters

ca, cb CHARACTER*1. Specify the single characters to be compared.

Output Parameters

val LOGICAL. Result of the comparison.

LAPACK Auxiliary and Utility Routines 5

5-329

lsamen
Tests two character strings for equality regardless of
case.

Syntax
val = lsamen(n, ca, cb)

Description

This logical function tests if the first n letters of the string ca are the same as the first n letters of
cb, regardless of case. The function lsamen returns .TRUE. if ca and cb are equivalent except
for case and .FALSE. otherwise. lsamen also returns .FALSE. if len(ca) or len(cb) is less
than n.

Input Parameters

n INTEGER. The number of characters in ca and cb to be compared.

ca, cb CHARACTER*(*). Specify two character strings of length at least n to
be compared. Only the first n characters of each string will be accessed.

Output Parameters

val LOGICAL. Result of the comparison.

?labad
Returns the square root of the underflow and overflow
thresholds if the exponent-range is very large.

Syntax
call slabad(small, large)

call dlabad(small, large)

5-330

5 Intel® Math Kernel Library Reference Manual

Description

This routine takes as input the values computed by ?lamch for underflow and overflow, and
returns the square root of each of these values if the log of large is sufficiently large. This
subroutine is intended to identify machines with a large exponent range, such as the Crays, and
redefine the underflow and overflow limits to be the square roots of the values computed by
?lamch. This subroutine is needed because ?lamch does not compensate for poor arithmetic in
the upper half of the exponent range, as is found on a Cray.

Input Parameters

small REAL for slabad
DOUBLE PRECISION for dlabad.
The underflow threshold as computed by ?lamch.

large REAL for slabad
DOUBLE PRECISION for dlabad.
The overflow threshold as computed by ?lamch.

Output Parameters

small On exit, if log10(large) is sufficiently large, the square root of small,
otherwise unchanged.

large On exit, if log10(large) is sufficiently large, the square root of large,
otherwise unchanged.

?lamch
Determines machine parameters for floating-point
arithmetic.

Syntax
val = slamch(cmach)

val = dlamch(cmach)

Description

The function ?lamch determines single precision and double precision machine parameters.

LAPACK Auxiliary and Utility Routines 5

5-331

Input Parameters

cmach CHARACTER*1. Specifies the value to be returned by ?lamch:
= 'E' or 'e', val = eps
= 'S' or 's , val = sfmin
= 'B' or 'b', val = base
= 'P' or 'p', val = eps*base
= 'N' or 'n', val = t
= 'R' or 'r', val = rnd
= 'M' or 'm', val = emin
= 'U' or 'u', val = rmin
= 'L' or 'l', val = emax
= 'O' or 'o', val = rmax
where
eps = relative machine precision;
sfmin = safe minimum, such that 1/sfmin does not overflow;
base = base of the machine;
prec = eps*base;
t = number of (base) digits in the mantissa;
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise;
emin = minimum exponent before (gradual) underflow;
rmin = underflow_threshold - base**(emin-1);
emax = largest exponent before overflow;
rmax = overflow_threshold - (base**emax)*(1-eps).

Output Parameters

val REAL for slamch
DOUBLE PRECISION for dlamch
Value returned by the function.

?lamc1
Called from ?lamc2.
Determines machine parameters given by beta, t,
rnd, ieee1.

Syntax
call slamc1(beta, t, rnd, ieee1)

5-332

5 Intel® Math Kernel Library Reference Manual

call dlamc1(beta, t, rnd, ieee1)

Description

The routine ?lamc1 determines machine parameters given by beta, t, rnd, ieee1.

Output Parameters

beta INTEGER. The base of the machine.

t INTEGER. The number of (beta) digits in the mantissa.

rnd LOGICAL.
Specifies whether proper rounding (rnd = .TRUE.) or chopping
(rnd = .FALSE.) occurs in addition. This may not be a reliable guide
to the way in which the machine performs its arithmetic.

ieee1 LOGICAL.
Specifies whether rounding appears to be done in the ieee 'round to
nearest' style.

?lamc2
Used by ?lamch.
Determines machine parameters specified in its
arguments list.

Syntax
call slamc2(beta, t, rnd, eps, emin, rmin, emax, rmax)

call dlamc2(beta, t, rnd, eps, emin, rmin, emax, rmax)

Description

The routine ?lamc2 determines machine parameters specified in its arguments list.

Output Parameters

beta INTEGER. The base of the machine.

t INTEGER. The number of (beta) digits in the mantissa.

LAPACK Auxiliary and Utility Routines 5

5-333

rnd LOGICAL.
Specifies whether proper rounding (rnd = .TRUE.) or chopping
 (rnd = .FALSE.) occurs in addition. This may not be a reliable guide
to the way in which the machine performs its arithmetic.

eps REAL for slamc2
DOUBLE PRECISION for dlamc2
The smallest positive number such that
 fl(1.0 - eps) < 1.0,
where fl denotes the computed value.

emin INTEGER. The minimum exponent before (gradual) underflow occurs.

rmin REAL for slamc2
DOUBLE PRECISION for dlamc2
The smallest normalized number for the machine, given by
base emin - 1 , where base is the floating point value of beta.

emax INTEGER.The maximum exponent before overflow occurs.

rmax REAL for slamc2
DOUBLE PRECISION for dlamc2
The largest positive number for the machine, given by
baseemax (1 - eps), where base is the floating point value of beta.

?lamc3
Called from ?lamc1-?lamc5. Intended to force a and
b to be stored prior to doing the addition of a and b.

Syntax
val = slamc3(a, b)

val = dlamc3(a, b)

Description

The routine is intended to force a and b to be stored prior to doing the addition of a and b, for
use in situations where optimizers might hold one of these in a register.

5-334

5 Intel® Math Kernel Library Reference Manual

 Input Parameters

a,b REAL for slamc3
DOUBLE PRECISION for dlamc3
The values a and b.

Output Parameters

val REAL for slamc3
DOUBLE PRECISION for dlamc3
The result of adding values a and b.

?lamc4
A service routine for ?lamc2.

Syntax
call slamc4(emin, start, base)

call dlamc4(emin, start, base)

Description

This routine is a service routine for ?lamc2.

Input Parameters

start REAL for slamc4
DOUBLE PRECISION for dlamc4
The starting point for determining emin.

base INTEGER. The base of the machine.

Output Parameters

emin INTEGER. The minimum exponent before (gradual) underflow,
computed by setting a = start and dividing by base until the
previous a can not be recovered.

LAPACK Auxiliary and Utility Routines 5

5-335

?lamc5
Called from ?lamc2.
Attempts to compute the largest machine floating-point
number, without overflow.

Syntax
call slamc5(beta, p, emin, ieee, emax, rmax)

call dlamc5(beta, p, emin, ieee, emax, rmax)

Description

The routine ?lamc5 attempts to compute rmax, the largest machine floating-point number,
without overflow. It assumes that
emax + abs(emin) sum approximately to a power of 2. It will fail on machines where this
assumption does not hold, for example, the Cyber 205 (emin = -28625, emax = 28718). It will
also fail if the value supplied for emin is too large (that is, too close to zero), probably with
overflow.

Input Parameters

beta INTEGER.The base of floating-point arithmetic.

p INTEGER.The number of base beta digits in the mantissa of a
floating-point value.

emin INTEGER. The minimum exponent before (gradual) underflow.

ieee LOGICAL. A logical flag specifying whether or not the arithmetic
system is thought to comply with the IEEE standard.

Output Parameters.

emax INTEGER. The largest exponent before overflow.

rmax REAL for slamc5
DOUBLE PRECISION for dlamc5
The largest machine floating-point number.

5-336

5 Intel® Math Kernel Library Reference Manual

second/dsecnd
Return user time for a process.

Syntax
val = second()

val = dsecnd()

Description

The functions second/dsecnd return the user time for a process in seconds. These versions get
the time from the system function etime. The difference is that dsecnd returns the result with
double presision.

Output Parameters

val REAL for second
DOUBLE PRECISION for dsecnd
User time for a process.

xerbla
Error handling routine called by BLAS, LAPACK, VML
routines.

Syntax
call xerbla(srname, info)

Description

The routine xerbla is an error handler for the BLAS, LAPACK, and VML routines. It is called
by a BLAS, LAPACK, or VML routine if an input parameter has an invalid value.
A message is printed and execution stops.
Installers may consider modifying the stop statement in order to call system-specific
exception-handling facilities.

LAPACK Auxiliary and Utility Routines 5

5-337

Input Parameters

srname CHARACTER*6
The name of the routine which called xerbla.

info INTEGER.
The position of the invalid parameter in the parameter list of the calling
routine.

6-1

ScaLAPACK Routines 6
This chapter describes the Intel® Math Kernel Library implementation of routines from the
ScaLAPACK package for distributed-memory architectures. Routines are supported for both real
and complex dense and band matrices to perform the tasks of solving systems of linear equations,
solving linear least-squares problems, eigenvalue and singular value problems, as well as
performing a number of related computational tasks. All routines are available in both single
precision and double precision.

Sections in this chapter include descriptions of ScaLAPACK computational routines that perform
distinct computational tasks, as well as driver routines for solving standard types of problems in
one call.

Generally, ScaLAPACK runs on a network of computers using MPI as a message-passing layer
and a set of prebuilt communication subprograms (BLACS), as well as a set of BLAS optimized
for the target architecture. Intel® Cluster MKL version of ScaLAPACK is optimized for Intel®
processors. For the detailed system and environment requirements see Intel MKL Release Notes
and Intel MKL Technical UserNotes.

For full reference on ScaLAPACK routines and related information see [SLUG].

NOTE. ScaLAPACK routines are provided with Intel® Cluster MKL product
only which is a superset of Intel MKL.

6-2

6 Intel® Math Kernel Library Reference Manual

Overview
The model of the computing environment for ScaLAPACK is represented as a one-dimensional
array of processes (for operations on band or tridiagonal matrices) or also a two-dimensional
process grid (for operations on dense matrices). To use ScaLAPACK, all global matrices or vectors
should be distributed on this array or grid prior to calling the ScaLAPACK routines.

ScaLAPACK uses the two-dimensional block-cyclic data distribution as a layout for dense matrix
computations. This distribution provides good work balance between available processors, as well
as gives the opportunity to use BLAS Level 3 routines for optimal local computations. Information
about the data distribution that is required to establish the mapping between each global array and
its corresponding process and memory location is contained in the so called array descriptor
associated with each global array.
An example of an array descriptor structure is given in Table 6-1

The number of rows and columns of a global dense matrix that a particular process in a grid
receives after data distributing is denoted by LOCr() and LOCc(), respectively. To compute these
numbers, you can use the ScaLAPACK tool routine numroc.

After the block-cyclic distribution of global data is done, you may choose to perform an operation
on a submatrix of the global matrix A, which is contained in the global subarray sub(A), defined by
the following 6 values (for dense matrices):

m The number of rows of sub(A)

Table 6-1 Content of the array descriptor for dense matrices

Array
Element # Name Definition

1 dtype Descriptor type (=1 for dense matrices)

2 ctxt BLACS context handle for the process grid

3 m Number of rows in the global array

4 n Number of columns in the global array

5 mb Row blocking factor

6 nb Column blocking factor

7 rsrc Process row over which the first row of the global array is
distributed

8 csrc Process column over which the first column of the global
array is distributed

9 lld Leading dimension of the local array

ScaLAPACK Routines 6

6-3

n The number of columns of sub(A)

a A pointer to the local array containing the entire global array A

ia The row index of sub(A) in the global array

ja The column index of sub(A) in the global array

desca The array descriptor for the global array

Routine Naming Conventions
For each routine introduced in this chapter, you can use the ScaLAPACK name. The naming
convention for ScaLAPACK routines is similar to that used for LAPACK routines (see Routine
Naming Conventions in Chapter 4). A general rule is that each routine name in ScaLAPACK,
which has an LAPACK equivalent, is simply the LAPACK name prefixed by initial letter p.

ScaLAPACK names have the structure p?yyzzz or p?yyzz, which is described below.

The initial letter p is a distinctive prefix of ScaLAPACK routines and is present in each such
routine.
The second symbol ? indicates the data type:
s real, single precision c complex, single precision
d real, double precision z complex, double precision

The second and third letters yy indicate the matrix type as:
ge general
gb general band
gg a pair of general matrices (for a generalized problem)
dt general tridiagonal (diagonally dominant-like)
db general band (diagonally dominant-like)
po symmetric or Hermitian positive-definite
pb symmetric or Hermitian positive-definite band
pt symmetric or Hermitian positive-definite tridiagonal
sy symmetric
st symmetric tridiagonal (real)
he Hermitian
or orthogonal
tr triangular (or quasi-triangular)
tz trapezoidal
un unitary

For computational routines, the last three letters zzz indicate the computation performed and have
the same meaning as for LAPACK routines.

6-4

6 Intel® Math Kernel Library Reference Manual

For driver routines, the last two letters zz or three letters zzz have the following meaning:

sv a simple driver for solving a linear system
svx an expert driver for solving a linear system
ls a driver for solving a linear least squares problem
ev a simple driver for solving a symmetric eigenvalue problem
evx an expert driver for solving a symmetric eigenvalue problem
svd a driver for computing a singular value decomposition
gvx an expert driver for solving a generalized symmetric definite
 eigenvalue problem

Simple driverd here means that the driver just solves the general problem, whereas an expert driver
is more versatile and can also optionally perform some related computations (such, for example, as
refining the solution and computing error bounds after the linear system is solved).

Computational Routines
In the sections that follow, the descriptions of ScaLAPACK computational routines are given.
These routines perform distinct computational tasks that can be used for:

• Solving Systems of Linear Equations

• Orthogonal Factorizations and LLS Problems

• Symmetric Eigenproblems

• Nonsymmetric Eigenvalue Problems

• Singular Value Decomposition

• Generalized Symmetric-Definite Eigenproblems

See also the respective driver routines.

Linear Equations

ScaLAPACK supports routines for the systems of equations with the following types of matrices:

• general
• general banded
• general diagonally dominant-like banded (including general tridiagonal)
• symmetric or Hermitian positive-definite
• symmetric or Hermitian positive-definite banded
• symmetric or Hermitian positive-definite tridiagonal

ScaLAPACK Routines 6

6-5

A diagonally dominant-like matrix is defined as a matrix for which it is known in advance that
pivoting is not required in the LU factorization of this matrix.

For the above matrix types, the library includes routines for performing the following
computations: factoring the matrix; equilibrating the matrix; solving a system of linear equations;
estimating the condition number of a matrix; refining the solution of linear equations and
computing its error bounds; inverting the matrix. Note that for some of the listed matrix types only
part of the computational routines are provided (for example, routines that refine the solution are
not provided for band or tridiagonal matrices). See Table 6-2 for full list of available routines.

To solve a particular problem, you can either call two or more computational routines or call a
corresponding driver routine that combines several tasks in one call. Thus, to solve a system of
linear equations with a general matrix, you can first call p?getrf (LU factorization) and then
p?getrs (computing the solution). Then, you might wish to call p?gerfs to refine the solution
and get the error bounds. Alternatively, you can just use the driver routine p?gesvx which
performs all these tasks in one call.

Table 6-2 lists the ScaLAPACK computational routines for factorizing, equilibrating, and inverting
matrices, estimating their condition numbers, solving systems of equations with real matrices,
refining the solution, and estimating its error.

Table 6-2 Computational Routines for Systems of Linear Equations

Matrix type,
storage scheme

Factorize
matrix

Equilibrate
matrix

Solve
system

Condition
number

Estimate
error

Invert
matrix

general
(partial pivoting)

p?getrf p?geequ p?getrs p?gecon p?gerfs p?getri

general band
(partial pivoting)

p?gbtrf p?gbtrs

general band
(no pivoting)

p?dbtrf p?dbtrs

general tridiagonal
(no pivoting)

p?dttrf p?dttrs

symmetric/Hermitian
positive-definite

p?potrf p?poequ p?potrs p?pocon p?porfs p?potri

symmetric/Hermitian
positive-definite,
band

p?pbtrf p?pbtrs

symmetric/Hermitian
positive-definite,
tridiagonal

p?pttrf p?pttrs

triangular p?trtrs p?trcon p?trrfs p?trtri

6-6

6 Intel® Math Kernel Library Reference Manual

In this table ? stands for s (single precision real), d (double precision real),
c (single precision complex), or z (double precision complex).

Routines for Matrix Factorization

This section describes the ScaLAPACK routines for matrix factorization. The following
factorizations are supported:

• LU factorization of general matrices

• LU factorization of diagonally dominant-like matrices

• Cholesky factorization of real symmetric or complex Hermitian positive-definite matrices

You can compute the factorizations using full and band storage of matrices.

p?getrf
Computes the LU factorization of a general m-by-n
distributed matrix.

Syntax
call psgetrf(m, n, a, ia, ja, desca, ipiv, info)

call pdgetrf(m, n, a, ia, ja, desca, ipiv, info)

call pcgetrf(m, n, a, ia, ja, desca, ipiv, info)

call pzgetrf(m, n, a, ia, ja, desca, ipiv, info)

Description

The routine forms the LU factorization of a general m-by-n distributed matrix
sub(A) = A(ia:ia+n-1, ja:ja+n-1) as

 A = P L U,

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower
trapezoidal if m > n) and U is upper triangular (upper trapezoidal if m < n). L and U are stored in
sub(A).

The routine uses partial pivoting, with row interchanges.

ScaLAPACK Routines 6

6-7

Input Parameters

m (global) INTEGER. The number of rows in the distributed submatrix
sub(A),
m ≥ 0.

n (global) INTEGER. The number of columns in the distributed submatrix
sub(A), n ≥ 0.

a (local)

REAL for psgetrf
DOUBLE PRECISION for pdgetrf
COMPLEX for pcgetrf
DOUBLE COMPLEX for pzgetrf.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).
Contains the local pieces of the distributed matrix sub(A) to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of
the submatrix A(ia:ia+n-1, ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array
descriptor for the distributed matrix A.

Output Parameters

a Overwritten by local pieces of the factors L and U from the factorization
A = P L U. The unit diagonal elements of L are not stored.

ipiv (local) INTEGER array.
The dimension of ipiv is (LOCr(m_a)+ mb_a).
This array contains the pivoting information: local row i was
interchanged with global row ipiv(i). This array is tied to the
distributed matrix A.

info (global) INTEGER.

If info=0, the execution is successful.
info < 0: if the ith argument is an array and the jth entry had an illegal
value, then info = -(i*100+j); if the ith argument is a scalar and
had an illegal value, then info = -i.
If info = i, uii is 0. The factorization has been completed, but the
factor U is exactly singular. Division by zero will occur if you use the
factor U for solving a system of linear equations.

6-8

6 Intel® Math Kernel Library Reference Manual

p?gbtrf
Computes the LU factorization of a general n-by-n
banded distributed matrix.

Syntax
call psgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)

call pdgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)

call pcgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)

call pzgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)

Description

The routine computes the LU factorization of a general n-by-n real/complex banded distributed
matrix A(1:n, ja:ja+n-1) using partial pivoting with row interchanges.

The resulting factorization is not the same factorization as returned from the LAPACK routine
?gbtrf. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form

 A(1:n, ja:ja+n-1) = P L U Q,

 where P and Q are permutation matrices, and L and U are banded lower and upper triangular
matrices, respectively. The matrix Q represents reordering of columns for the sake of parallelism,
while P represents reordering of rows for numerical stability using classic partial pivoting.

Input Parameters

n (global) INTEGER. The number of rows and columns in the distributed
submatrix A(1:n, ja:ja+n-1); n ≥ 0.

bwl (global) INTEGER. The number of sub-diagonals within the band of A,
(0 ≤ bwl ≤ n-1).

bwu (global) INTEGER. The number of super-diagonals within the band of A,
(0 ≤ bwu ≤ n-1).

a (local)
REAL for psgbtrf
DOUBLE PRECISION for pdgbtrf
COMPLEX for pcgbtrf

ScaLAPACK Routines 6

6-9

DOUBLE COMPLEX for pzgbtrf.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)), where lld_a ≥ 2*bwl + 2*bwu +1.
Contains the local pieces of the n-by-n distributed banded matrix
A(1:n, ja:ja+n-1) to be factored.

ja (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

laf (local) INTEGER. The dimension of the array af.
Must be laf ≥ (NB+bwu)*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu) .

 If laf is not large enough, an error code will be returned and the minimum
acceptable size will be returned in af(1).

work (local) Same type as a. Workspace array of dimension lwork .

lwork (local or global) INTEGER. The size of the work array (lwork ≥ 1). If lwork
is too small, the minimal acceptable size will be returned in work(1) and an
error code is returned.

Output Parameters

a On exit, this array contains details of the factorization. Note that additional
permutations are performed on the matrix, so that the factors returned are
different from those returned by LAPACK.

ipiv (local) INTEGER array.
The dimension of ipiv must be ≥ desca(NB).
Contains pivot indices for local factorizations. Note that you should not alter
the contents of this array between factorization and solve.

af (local)
REAL for psgbtrf
DOUBLE PRECISION for pdgbtrf
COMPLEX for pcgbtrf
DOUBLE COMPLEX for pzgbtrf.

6-10

6 Intel® Math Kernel Library Reference Manual

Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine
p?gbtrf and this is stored in af.
Note that if a linear system is to be solved using p?gbtrs after the
factorization routine, af must not be altered after the factorization.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.

If info=0, the execution is successful.
info < 0:
if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.
info > 0:

If info = k ≤ NPROCS, the submatrix stored on processor info and factored
locally was not nonsingular, and the factorization was not completed.
If info = k > NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not nonsingular, and the
factorization was not completed.

p?dbtrf
Computes the LU factorization of a n-by-n diagonally
dominant-like banded distributed matrix.

Syntax
call psdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)

call pddbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)

call pcdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)

call pzdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)

Description

The routine computes the LU factorization of a n-by-n real/complex diagonally dominant-like
banded distributed matrix A(1:n, ja:ja+n-1) without pivoting.

ScaLAPACK Routines 6

6-11

Note that the resulting factorization is not the same factorization as returned from LAPACK.
Additional permutations are performed on the matrix for the sake of parallelism.

Input Parameters

n (global) INTEGER. The number of rows and columns in the distributed
submatrix A(1:n, ja:ja+n-1); n ≥ 0.

bwl (global) INTEGER. The number of sub-diagonals within the band of A,
(0 ≤ bwl ≤ n-1).

bwu (global) INTEGER. The number of super-diagonals within the band of A,
(0≤ bwu ≤ n-1).

a (local)

REAL for psdbtrf
DOUBLE PRECISION for pddbtrf
COMPLEX for pcdbtrf
DOUBLE COMPLEX for pzdbtrf.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).
Contains the local pieces of the n-by-n distributed banded matrix
A(1:n, ja:ja+n-1) to be factored.

ja (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

laf (local) INTEGER. The dimension of the array af.
Must be laf ≥ NB*(bwl+bwu)+6*(max(bwl,bwu))2 .

 If laf is not large enough, an error code will be returned and the minimum
acceptable size will be returned in af(1).

work (local) Same type as a. Workspace array of dimension lwork .

lwork (local or global) INTEGER. The size of the work array, must be
lwork ≥ (max(bwl,bwu))2. If lwork is too small, the minimal acceptable
size will be returned in work(1) and an error code is returned.

6-12

6 Intel® Math Kernel Library Reference Manual

Output Parameters

a On exit, this array contains details of the factorization. Note that additional
permutations are performed on the matrix, so that the factors returned are
different from those returned by LAPACK.

af (local)

REAL for psdbtrf
DOUBLE PRECISION for pddbtrf
COMPLEX for pcdbtrf
DOUBLE COMPLEX for pzdbtrf.

Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine
p?dbtrf and this is stored in af.
Note that if a linear system is to be solved using p?dbtrs after the
factorization routine, af must not be altered after the factorization.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.

If info=0, the execution is successful.
info < 0:
if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.
info > 0:

If info = k ≤ NPROCS, the submatrix stored on processor info and factored
locally was not diagonally dominant-like, and the factorization was not
completed.
If info = k>NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not nonsingular, and the
factorization was not completed.

ScaLAPACK Routines 6

6-13

p?potrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite distributed matrix.

Syntax
call pspotrf(uplo, n, a, ia, ja, desca, info)

call pdpotrf(uplo, n, a, ia, ja, desca, info)

call pcpotrf(uplo, n, a, ia, ja, desca, info)

call pzpotrf(uplo, n, a, ia, ja, desca, info)

Description

This routine computes the Cholesky factorization of a real symmetric or complex Hermitian
positive-definite distributed n-by-n matrix A(ia:ia+n-1, ja:ja+n-1), denoted below as
sub(A).

The factorization has the form

 sub(A) = UHU if uplo='U', or

 sub(A) = LLH if uplo='L',

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo (global) CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of sub(A) is stored:
If uplo = 'U', the array a stores the upper triangular part of the matrix sub(A),
and sub(A) is factored as UHU.
If uplo = 'L', the array a stores the lower triangular part of the matrix sub(A),
and sub(A) is factored as LLH.

n (global) INTEGER. The order of the distributed submatrix sub(A) (n ≥ 0).

a (local)
REAL for pspotrf
DOUBLE PRECISION for pdpotrf
COMPLEX for pcpotrf
DOUBLE COMPLEX for pzpotrf.

6-14

6 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the n-by-n
symmetric/Hermitian distributed matrix sub(A) to be factored.
Depending on uplo, the array a contains either the upper or the lower
triangular part of the matrix sub(A) (see uplo).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

Output Parameters

a The upper or lower triangular part of a is overwritten by the Cholesky factor U
or L, as specified by uplo.

info (global) INTEGER.
If info=0, the execution is successful;
info < 0: if the ith argument is an array and the jth entry had an illegal value,
then info = -(i*100+j); if the ith argument is a scalar and had an illegal
value, then info = -i.
If info = k >0, the leading minor of order k, A(ia:ia+k-1, ja:ja+k-1), is
not positive-definite, and the factorization could not be completed.

p?pbtrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite banded distributed matrix.

Syntax
call pspbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)

call pdpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)

call pcpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)

call pzpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)

ScaLAPACK Routines 6

6-15

Description

This routine computes the Cholesky factorization of an n-by-n real symmetric or complex
Hermitian positive-definite banded distributed matrix A(1:n, ja:ja+n-1).

The resulting factorization is not the same factorization as returned from LAPACK. Additional
permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:

 A(1:n, ja:ja+n-1) = P U HU PT, if uplo='U', or

 A(1:n, ja:ja+n-1) = P L L H PT, if uplo='L',

where P is a permutation matrix and U and L are banded upper and lower triangular matrices,
respectively.

Input Parameters

uplo (global) CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', upper triangle of A(1:n, ja:ja+n-1) is stored;
If uplo = 'L', lower triangle of A(1:n, ja:ja+n-1) is stored.

n (global) INTEGER. The order of the distributed submatrix
A(1:n, ja:ja+n-1) (n ≥ 0).

bw (global) INTEGER. The number of superdiagonals of the distributed matrix if
uplo = 'U', or the number of subdiagonals if uplo = 'L' (bw ≥ 0).

a (local)
REAL for pspbtrf
DOUBLE PRECISION for pdpbtrf
COMPLEX for pcpbtrf
DOUBLE COMPLEX for pzpbtrf.

Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)).

On entry, this array contains the local pieces of the upper or lower triangle of
the symmetric/Hermitian band distributed matrix A(1:n, ja:ja+n-1) to be
factored.

ja (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

6-16

6 Intel® Math Kernel Library Reference Manual

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

laf (local) INTEGER. The dimension of the array af.
Must be laf ≥ (NB+2*bw)*bw .

 If laf is not large enough, an error code will be returned and the minimum
acceptable size will be returned in af(1).

work (local) Same type as a. Workspace array of dimension lwork .

lwork (local or global) INTEGER. The size of the work array, must be lwork ≥ bw 2.

Output Parameters

a On exit, if info=0, contains the permuted triangular factor U or L from the
Cholesky factorization of the band matrix A(1:n, ja:ja+n-1), as specified by
uplo.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.

If info=0, the execution is successful.
info < 0:
if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.
info > 0:

If info = k ≤ NPROCS, the submatrix stored on processor info and factored
locally was not positive definite, and the factorization was not completed.
If info = k>NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not nonsingular, and the
factorization was not completed.

ScaLAPACK Routines 6

6-17

p?pttrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite tridiagonal distributed
matrix.

Syntax
call pspttrf(n, d, e, ja, desca, af, laf, work, lwork, info)

call pdpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)

call pcpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)

call pzpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)

Description

This routine computes the Cholesky factorization of an n-by-n real symmetric or complex
Hermitian positive-definite tridiagonal distributed matrix A(1:n, ja:ja+n-1).

The resulting factorization is not the same factorization as returned from LAPACK. Additional
permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:

 A(1:n, ja:ja+n-1) = P L D LH PT, or

 A(1:n, ja:ja+n-1) = P UH D U PT,

where P is a permutation matrix, and U and L are tridiagonal upper and lower triangular matrices,
respectively.

Input Parameters

n (global) INTEGER. The order of the distributed submatrix
A(1:n, ja:ja+n-1) (n ≥ 0).

d, e (local)

REAL for pspttrf
DOUBLE PRECISION for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.

Pointers into the local memory to arrays of dimension (desca(nb_)) each.

6-18

6 Intel® Math Kernel Library Reference Manual

On entry, the array d contains the local part of the global vector storing the
main diagonal of the distributed matrix A.

On entry, the array e contains the local part of the global vector storing the
upper diagonal of the distributed matrix A.

ja (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

laf (local) INTEGER. The dimension of the array af.
Must be laf ≥ NB+2 .

 If laf is not large enough, an error code will be returned and the minimum
acceptable size will be returned in af(1).

work (local) Same type as d and e. Workspace array of dimension lwork .

lwork (local or global) INTEGER. The size of the work array, must be at least
lwork ≥ 8*NPCOL.

Output Parameters

d, e On exit, overwritten by the details of the factorization.

af (local)

REAL for pspttrf
DOUBLE PRECISION for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.

Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine
p?pttrf and this is stored in af.
Note that if a linear system is to be solved using p?pttrs after the
factorization routine, af must not be altered.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.

ScaLAPACK Routines 6

6-19

If info=0, the execution is successful.
info < 0:
if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.
info > 0:

If info = k ≤ NPROCS, the submatrix stored on processor info and factored
locally was not positive definite, and the factorization was not completed.
If info = k>NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not nonsingular, and the
factorization was not completed.

p?dttrf
Computes the LU factorization of a diagonally
dominant-like tridiagonal distributed matrix.

Syntax
call psdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)

call pddttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)

call pcdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)

call pzdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)

Description

This routine computes the LU factorization of an n-by-n real/complex diagonally dominant-like
tridiagonal distributed matrix A(1:n, ja:ja+n-1) without pivoting for stability.

The resulting factorization is not the same factorization as returned from LAPACK. Additional
permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:

 A(1:n, ja:ja+n-1) = P L U PT,

where P is a permutation matrix, and L and U are banded lower and upper triangular matrices,
respectively.

6-20

6 Intel® Math Kernel Library Reference Manual

Input Parameters

n (global) INTEGER. The number of rows and columns to be operated on, that is,
the order of the distributed submatrix A(1:n, ja:ja+n-1) (n ≥ 0).

dl,d,du (local)

REAL for pspttrf
DOUBLE PRECISION for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.

Pointers to the local arrays of dimension (desca(nb_)) each.

On entry, the array dl contains the local part of the global vector storing the
subdiagonal elements of the matrix. Globally, dl(1) is not referenced, and dl
must be aligned with d.

On entry, the array d contains the local part of the global vector storing the
diagonal elements of the matrix.

On entry, the array du contains the local part of the global vector storing the
super-diagonal elements of the matrix. du(n) is not referenced, and du must
be aligned with d.

ja (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

laf (local) INTEGER. The dimension of the array af.
Must be laf ≥ 2*(NB+2) .

 If laf is not large enough, an error code will be returned and the minimum
acceptable size will be returned in af(1).

work (local) Same type as d. Workspace array of dimension lwork .

lwork (local or global) INTEGER. The size of the work array, must be at least
lwork ≥ 8*NPCOL.

Output Parameters

dl,d,du On exit, overwritten by the information containing the factors of the matrix.

ScaLAPACK Routines 6

6-21

af (local)

REAL for psdttrf
DOUBLE PRECISION for pddttrf
COMPLEX for pcdttrf
DOUBLE COMPLEX for pzdttrf.

Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine
p?dttrf and this is stored in af.
Note that if a linear system is to be solved using p?dttrs after the
factorization routine, af must not be altered.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.

If info=0, the execution is successful.
info < 0:
if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.
info > 0:

If info = k ≤ NPROCS, the submatrix stored on processor info and factored
locally was not diagonally dominant-like, and the factorization was not
completed.
If info = k>NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not nonsingular, and the
factorization was not completed.

6-22

6 Intel® Math Kernel Library Reference Manual

Routines for Solving Systems of Linear Equations

This section describes the ScaLAPACK routines for solving systems of linear equations. Before
calling most of these routines, you need to factorize the matrix of your system of equations (see
Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if
your system of equations has a triangular matrix.

p?getrs
Solves a system of distributed linear equations with a
general square matrix, using the LU factorization
computed by p?getrf.

Syntax
call psgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,

info)

call pdgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,
info)

call pcgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,
info)

call pzgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,
info)

Description

This routine solves a system of distributed linear equations with a general n-by-n distributed
matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) using the LU factorization computed by p?getrf.

The system has one of the following forms specified by trans:

sub(A)*X = sub(B) (no transpose),

sub(A)T*X = sub(B) (transpose),

sub(A)H *X = sub(B) (conjugate transpose),

where sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1) .

Before calling this routine, you must call p?getrf to compute the LU factorization of sub(A).

ScaLAPACK Routines 6

6-23

Input Parameters

trans (global) CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then sub(A)*X = sub(B) is solved for X.

If trans = 'T', then sub(A)T*X = sub(B) is solved for X.

If trans = 'C', then sub(A)H *X = sub(B) is solved for X.

n (global) INTEGER. The number of linear equations; the order of the submatrix
sub(A) (n ≥ 0).

nrhs (global) INTEGER. The number of right hand sides; the number of columns of
the distributed submatrix sub(B) (nrhs ≥ 0).

a, b (global)

REAL for psgetrs
DOUBLE PRECISION for pdgetrs
COMPLEX for pcgetrs
DOUBLE COMPLEX for pzgetrs.
Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)) and b(lld_b, LOCc(jb+nrhs-1)),
respectively.
On entry, the array a contains the local pieces of the factors L and U from the
factorization sub(A) = PLU ; the unit diagonal elements of L are not stored.
On entry, the array b contains the right hand sides sub(B).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

ipiv (local) INTEGER array.
The dimension of ipiv is (LOCr(m_a)+ mb_a).
This array contains contains the pivoting information: local row i of the
matrix was interchanged with the global row ipiv(i).
This array is tied to the distributed matrix A.

ib,jb (global) INTEGER. The row and column indices in the global array B
indicating the first row and the first column of the submatrix sub(B),
respectively.

6-24

6 Intel® Math Kernel Library Reference Manual

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

Output Parameters

b On exit, overwritten by the solution distributed matrix X.

info INTEGER. If info=0, the execution is successful.
info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

p?gbtrs
Solves a system of distributed linear equations with a
general band matrix, using the LU factorization
computed by p?gbtrf.

Syntax
call psgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,

af, laf, work, lwork, info)

call pdgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,
af, laf, work, lwork, info)

call pcgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,
af, laf, work, lwork, info)

call pzgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,
af, laf, work, lwork, info)

Description

This routine solves a system of distributed linear equations with a general band distributed matrix
sub(A) = A(1:n, ja:ja+n-1) using the LU factorization computed by p?gbtrf.

The system has one of the following forms specified by trans:

sub(A)*X = sub(B) (no transpose),

sub(A)T*X = sub(B) (transpose),

ScaLAPACK Routines 6

6-25

sub(A)H *X = sub(B) (conjugate transpose),

where sub(B) = B(ib:ib+n-1, 1:nrhs) .

Before calling this routine, you must call p?gbtrf to compute the LU factorization of sub(A).

Input Parameters

trans (global) CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then sub(A)*X = sub(B) is solved for X.

If trans = 'T', then sub(A)T*X = sub(B) is solved for X.

If trans = 'C', then sub(A)H *X = sub(B) is solved for X.

n (global) INTEGER. The number of linear equations; the order of the distributed
submatrix sub(A) (n ≥ 0).

bwl (global) INTEGER. The number of sub-diagonals within the band of A,
(0≤ bwl ≤ n-1).

bwu (global) INTEGER. The number of super-diagonals within the band of A,
(0≤ bwu ≤ n-1).

nrhs (global) INTEGER. The number of right hand sides; the number of columns of
the distributed submatrix sub(B), (nrhs ≥ 0).

a, b (global)

REAL for psgbtrs
DOUBLE PRECISION for pdgbtrs
COMPLEX for pcgbtrs
DOUBLE COMPLEX for pzgbtrs.
Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)) and b(lld_b, LOCc(nrhs)), respectively.

The array a contains details of the LU factorization of the distributed band
matrix A.

On entry, the array b contains the local pieces of the right hand sides
B(ib:ib+n-1, 1:nrhs).

ja (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

6-26

6 Intel® Math Kernel Library Reference Manual

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

ib (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

laf (local) INTEGER. The dimension of the array af.
Must be laf ≥ NB*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu) .

 If laf is not large enough, an error code will be returned and the minimum
acceptable size will be returned in af(1).

work (local) Same type as a. Workspace array of dimension lwork .

lwork (local or global) INTEGER. The size of the work array, must be at least
lwork ≥ nrhs*(NB+2*bwl+4*bwu) .

Output Parameters

ipiv (local) INTEGER array.
The dimension of ipiv must be ≥ desca(NB).
Contains pivot indices for local factorizations. Note that you should not alter
the contents of this array between factorization and solve.

b On exit, overwritten by the local pieces of the solution distributed matrix X.

af (local)

REAL for psgbtrs
DOUBLE PRECISION for pdgbtrs
COMPLEX for pcgbtrs
DOUBLE COMPLEX for pzgbtrs.

Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine
p?gbtrf and this is stored in af.
Note that if a linear system is to be solved using p?gbtrs after the
factorization routine, af must not be altered after the factorization.

ScaLAPACK Routines 6

6-27

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info INTEGER. If info=0, the execution is successful.
info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

p?potrs
Solves a system of linear equations with a
Cholesky-factored symmetric/Hermitian distributed
positive-definite matrix.

Syntax
call pspotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pdpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pcpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pzpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

Description

The routine p?potrs solves for X a system of distributed linear equations in the form:

 sub(A)*X = sub(B) ,

where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is an n-by-n real symmetric or complex Hermitian
positive definite distributed matrix, and sub(B) denotes the distributed matrix
B(ib:ib+n-1, jb:jb+nrhs-1).
This routine uses Cholesky factorization

 sub(A) = UH U or sub(A) = L LH

computed by p?potrf.

Input Parameters

uplo (global) CHARACTER*1. Must be 'U' or 'L'.

6-28

6 Intel® Math Kernel Library Reference Manual

If uplo = 'U', upper triangle of sub(A) is stored;
If uplo = 'L', lower triangle of sub(A) is stored.

n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

nrhs (global) INTEGER. The number of right hand sides; the number of columns of
the distributed submatrix sub(B), (nrhs ≥ 0).

a, b (local)

REAL for pspotrs
DOUBLE PRECISION for pdpotrs
COMPLEX for pcpotrs
DOUBLE COMPLEX for pzpotrs.
Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)) and b(lld_b, LOCc(jb+nrhs-1)),
respectively.

The array a contains the factors L or U from the Cholesky factorization
sub(A) = L LH or sub(A) = UHU , as computed by p?potrf.

On entry, the array b contains the local pieces of the right hand sides sub(B).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

ib,jb (global) INTEGER. The row and column indices in the global array B
indicating the first row and the first column of the submatrix sub(B),
respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

Output Parameters

b Overwritten by the local pieces of the solution matrix X.

info INTEGER. If info=0, the execution is successful.
info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

ScaLAPACK Routines 6

6-29

p?pbtrs
Solves a system of linear equations with a
Cholesky-factored symmetric/Hermitian
positive-definite band matrix.

Syntax
call pspbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,

work, lwork, info)

call pdpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pcpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pzpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

Description

The routine p?pbtrs solves for X a system of distributed linear equations in the form:

 sub(A)*X = sub(B) ,

where sub(A) = A(1:n, ja:ja+n-1) is an n-by-n real symmetric or complex Hermitian positive
definite distributed band matrix, and sub(B) denotes the distributed matrix
B(ib:ib+n-1, 1:nrhs).
This routine uses Cholesky factorization

 sub(A) = P UH U PT or sub(A) =P L LH PT

computed by p?pbtrf.

Input Parameters

uplo (global) CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', upper triangle of sub(A) is stored;
If uplo = 'L', lower triangle of sub(A) is stored.

n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

bw (global) INTEGER. The number of superdiagonals of the distributed matrix if
uplo = 'U', or the number of subdiagonals if uplo = 'L', (bw ≥ 0).

6-30

6 Intel® Math Kernel Library Reference Manual

nrhs (global) INTEGER. The number of right hand sides; the number of columns of
the distributed submatrix sub(B), (nrhs ≥ 0).

a, b (local)

REAL for pspbtrs
DOUBLE PRECISION for pdpbtrs
COMPLEX for pcpbtrs
DOUBLE COMPLEX for pzpbtrs.
Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)) and b(lld_b, LOCc(nrhs-1)), respectively.
The array a contains the permuted triangular factor U or L from the Cholesky
factorization sub(A) = P UH U PT or sub(A) =P L LH PT of the band matrix A,
as returned by p?pbtrf.

On entry, the array b contains the local pieces of the n-by-nrhs right hand side
distributed matrix sub(B).

ja (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

ib (global) INTEGER. The row index in the global array B indicating the first row
of the submatrix sub(B).

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

If descb(dtype_) = 502, then dlen_ ≥ 7;
else if descb(dtype_) = 1, then dlen_ ≥ 9.

af, work (local) Arrays, same type as a.
The array af is of dimension (laf). It contains auxiliary Fillin space. Fillin is
created during the factorization routine p?dbtrf and this is stored in af.

The array work is a workspace array of dimension lwork.

laf (local) INTEGER. The dimension of the array af.
Must be laf ≥ nrhs*bw .

 If laf is not large enough, an error code will be returned and the minimum
acceptable size will be returned in af(1).

ScaLAPACK Routines 6

6-31

lwork (local or global) INTEGER. The size of the array work, must be at least
lwork ≥ bw2.

Output Parameters

b On exit, if info=0, this array contains the local pieces of the n-by-nrhs
solution distributed matrix X.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info INTEGER. If info=0, the execution is successful.
info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

p?pttrs
Solves a system of linear equations with a symmetric
(Hermitian) positive-definite tridiagonal distributed
matrix using the factorization computed by p?pttrf .

Syntax
call pspttrs(n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,

lwork, info)

call pdpttrs(n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,
lwork, info)

call pcpttrs(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pzpttrs(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

Description

The routine p?pttrs solves for X a system of distributed linear equations in the form:

 sub(A)*X = sub(B) ,

6-32

6 Intel® Math Kernel Library Reference Manual

where sub(A) = A(1:n, ja:ja+n-1) is an n-by-n real symmetric or complex Hermitian positive
definite tridiagonal distributed matrix, and sub(B) denotes the distributed matrix
B(ib:ib+n-1, 1:nrhs).
This routine uses the factorization

 sub(A) = P L D LH PT or sub(A) =P UHD U PT

computed by p?pttrf.

Input Parameters

uplo (global, used in complex flavors only)
CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', upper triangle of sub(A) is stored;
If uplo = 'L', lower triangle of sub(A) is stored.

n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

nrhs (global) INTEGER. The number of right hand sides; the number of columns of
the distributed submatrix sub(B), (nrhs ≥ 0).

d, e (local)

REAL for pspttrs
DOUBLE PRECISION for pdpttrs
COMPLEX for pcpttrs
DOUBLE COMPLEX for pzpttrs.

Pointers into the local memory to arrays of dimension (desca(nb_)) each.

These arrays contain details of the factorization as returned by p?pttrf

ja (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501 or 502, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

b (local) Same type as d, e.

Pointer into the local memory to an array of local dimension
b(lld_b, LOCc(nrhs)).
On entry, the array b contains the local pieces of the n-by-nrhs right hand side
distributed matrix sub(B).

ScaLAPACK Routines 6

6-33

ib (global) INTEGER. The row index in the global array B that points to the first
row of the matrix to be operated on (which may be either all of B or a
submatrix of B).

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

If descb(dtype_) = 502, then dlen_ ≥ 7;
else if descb(dtype_) = 1, then dlen_ ≥ 9.

af, work (local)
REAL for pspttrs
DOUBLE PRECISION for pdpttrs
COMPLEX for pcpttrs
DOUBLE COMPLEX for pzpttrs.

Arrays of dimension (laf) and (lwork), respectively
The array af contains auxiliary Fillin space. Fillin is created during the
factorization routine p?pttrf and this is stored in af.

The array work is a workspace array.

laf (local) INTEGER. The dimension of the array af.
Must be laf ≥ NB+2 .

 If laf is not large enough, an error code will be returned and the minimum
acceptable size will be returned in af(1).

lwork (local or global) INTEGER. The size of the array work, must be at least
lwork ≥ (10+2*min(100,nrhs))*NPCOL+4*nrhs.

Output Parameters

b On exit, this array contains the local pieces of the solution distributed
matrix X.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info INTEGER. If info=0, the execution is successful.
info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

6-34

6 Intel® Math Kernel Library Reference Manual

p?dttrs
Solves a system of linear equations with a diagonally
dominant-like tridiagonal distributed matrix using the
factorization computed by p?dttrf .

Syntax
call psdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,

laf, work, lwork, info)

call pddttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pcdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pzdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

Description

The routine p?dttrs solves for X one of the systems of equations:

 sub(A)*X = sub(B) ,

 (sub(A))T*X = sub(B) , or

 (sub(A))H*X = sub(B) ,

where sub(A) = A(1:n, ja:ja+n-1) is a diagonally dominant-like tridiagonal distributed matrix,
and sub(B) denotes the distributed matrix B(ib:ib+n-1, 1:nrhs).
This routine uses the LU factorization computed by p?dttrf.

Input Parameters

trans (global) CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then sub(A)*X = sub(B) is solved for X.

If trans = 'T', then sub(A)T*X = sub(B) is solved for X.

If trans = 'C', then sub(A)H *X = sub(B) is solved for X.

n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

ScaLAPACK Routines 6

6-35

nrhs (global) INTEGER. The number of right hand sides; the number of columns of
the distributed submatrix sub(B), (nrhs ≥ 0).

dl,d,du (local)

REAL for psdttrs
DOUBLE PRECISION for pddttrs
COMPLEX for pcdttrs
DOUBLE COMPLEX for pzdttrs.

Pointers to the local arrays of dimension (desca(nb_)) each.

On entry, these arrays contain details of the factorization. Globally, dl(1) and
du(n) are not referenced; dl and du must be aligned with d.

ja (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501 or 502, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

b (local) Same type as d.

Pointer into the local memory to an array of local dimension
b(lld_b, LOCc(nrhs)).
On entry, the array b contains the local pieces of the n-by-nrhs right hand side
distributed matrix sub(B).

ib (global) INTEGER. The row index in the global array B that points to the first
row of the matrix to be operated on (which may be either all of B or a
submatrix of B).

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

If descb(dtype_) = 502, then dlen_ ≥ 7;
else if descb(dtype_) = 1, then dlen_ ≥ 9.

af, work (local)
REAL for psdttrs
DOUBLE PRECISION for pddttrs
COMPLEX for pcdttrs
DOUBLE COMPLEX for pzdttrs.

6-36

6 Intel® Math Kernel Library Reference Manual

Arrays of dimension (laf) and (lwork), respectively.
The array af contains auxiliary Fillin space. Fillin is created during the
factorization routine p?dttrf and this is stored in af. If a linear system is to
be solved using p?dttrs after the factorization routine, af must not be
altered.

The array work is a workspace array.

laf (local) INTEGER. The dimension of the array af.
Must be laf ≥ NB*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu) .

 If laf is not large enough, an error code will be returned and the minimum
acceptable size will be returned in af(1).

lwork (local or global) INTEGER. The size of the array work, must be at least
lwork ≥ 10*NPCOL+4*nrhs.

Output Parameters

b On exit, this array contains the local pieces of the solution distributed
matrix X.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info INTEGER. If info=0, the execution is successful.
info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

p?dbtrs
Solves a system of linear equations with a diagonally
dominant-like banded distributed matrix using the
factorization computed by p?dbtrf.

Syntax
call psdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,

laf, work, lwork, info)

ScaLAPACK Routines 6

6-37

call pddbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pcdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pzdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

Description

The routine p?dbtrs solves for X one of the systems of equations:

 sub(A)*X = sub(B) ,

 (sub(A))T*X = sub(B) , or

 (sub(A))H*X = sub(B) ,

where sub(A) = A(1:n, ja:ja+n-1) is a diagonally dominant-like banded distributed matrix, and
sub(B) denotes the distributed matrix B(ib:ib+n-1, 1:nrhs).
This routine uses the LU factorization computed by p?dbtrf.

Input Parameters

trans (global) CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then sub(A)*X = sub(B) is solved for X.

If trans = 'T', then sub(A)T*X = sub(B) is solved for X.

If trans = 'C', then sub(A)H *X = sub(B) is solved for X.

n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

bwl (global) INTEGER. The number of subdiagonals within the band of A,
(0≤ bwl ≤ n-1).

bwu (global) INTEGER. The number of superdiagonals within the band of A,
(0≤ bwu ≤ n-1).

nrhs (global) INTEGER. The number of right hand sides; the number of columns of
the distributed submatrix sub(B) (nrhs ≥ 0).

6-38

6 Intel® Math Kernel Library Reference Manual

a, b (local)
REAL for psdbtrs
DOUBLE PRECISION for pddbtrs
COMPLEX for pcdbtrs
DOUBLE COMPLEX for pzdbtrs.

Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)) and b(lld_b, LOCc(nrhs)), respectively.

On entry, the array a contains details of the LU factorization of the band
matrix A, as computed by p?dbtrf.

On entry, the array b contains the local pieces of the right hand side distributed
matrix sub(B).

ja (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

ib (global) INTEGER. The row index in the global array B that points to the first
row of the matrix to be operated on (which may be either all of B or a
submatrix of B).

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

If descb(dtype_) = 502, then dlen_ ≥ 7;
else if descb(dtype_) = 1, then dlen_ ≥ 9.

af, work (local)
REAL for psdbtrs
DOUBLE PRECISION for pddbtrs
COMPLEX for pcdbtrs
DOUBLE COMPLEX for pzdbtrs.

Arrays of dimension (laf) and (lwork), respectively
The array af contains auxiliary Fillin space. Fillin is created during the
factorization routine p?dbtrf and this is stored in af.

The array work is a workspace array.

laf (local) INTEGER. The dimension of the array af.
Must be laf ≥ NB*(bwl+bwu)+6*(max(bwl,bwu))2 .

ScaLAPACK Routines 6

6-39

 If laf is not large enough, an error code will be returned and the minimum
acceptable size will be returned in af(1).

lwork (local or global) INTEGER. The size of the array work, must be at least
lwork ≥ (max(bwl,bwu))2.

Output Parameters

b On exit, this array contains the local pieces of the solution distributed
matrix X.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info INTEGER. If info=0, the execution is successful.
info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

p?trtrs
Solves a system of linear equations with a triangular
distributed matrix.

Syntax
call pstrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,

descb, info)

call pdtrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, info)

call pctrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, info)

call pztrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, info)

Description

This routine solves for X one of the following systems of linear equations:

 sub(A)*X = sub(B) ,

6-40

6 Intel® Math Kernel Library Reference Manual

 (sub(A))T*X = sub(B) , or

 (sub(A))H*X = sub(B) ,

where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is a triangular distributed matrix of order n, and
sub(B) denotes the distributed matrix B(ib:ib+n-1, jb:jb+nrhs-1).
A check is made to verify that sub(A) is nonsingular.

Input Parameters

uplo (global) CHARACTER*1. Must be 'U' or 'L'.

Indicates whether sub(A) is upper or lower triangular:

If uplo = 'U', then sub(A) is upper triangular.
If uplo = 'L', then sub(A) is lower triangular.

trans (global) CHARACTER*1. Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then sub(A)*X = sub(B) is solved for X.

If trans = 'T', then sub(A)T*X = sub(B) is solved for X.

If trans = 'C', then sub(A)H *X = sub(B) is solved for X.

diag (global) CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then sub(A) is not a unit triangular matrix.

If diag = 'U', then sub(A) is unit triangular.

n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

nrhs (global) INTEGER. The number of right-hand sides; i.e., the number of
columns of the distributed matrix sub(B), (nrhs ≥ 0).

a, b (local)
REAL for pstrtrs
DOUBLE PRECISION for pdtrtrs
COMPLEX for pctrtrs
DOUBLE COMPLEX for pztrtrs.

Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)) and b(lld_b, LOCc(jb+nrhs-1)),
respectively.

ScaLAPACK Routines 6

6-41

The array a contains the local pieces of the distributed triangular matrix
sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the
upper triangular matrix, and the strictly lower triangular part of sub(A) is not
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular matrix, and the strictly upper triangular part of sub(A) is not
referenced.
If diag = 'U', the diagonal elements of sub(A) are also not referenced and are
assumed to be 1.

On entry, the array b contains the local pieces of the right hand side distributed
matrix sub(B).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

ib,jb (global) INTEGER. The row and column indices in the global array B
indicating the first row and the first column of the submatrix sub(B),
respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

Output Parameters

b On exit, if info=0, sub(B) is overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.

info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i;

info > 0:

If info = i, the ith diagonal element of sub(A) is zero, indicating that the
submatrix is singular and the solutions X have not been computed.

6-42

6 Intel® Math Kernel Library Reference Manual

Routines for Estimating the Condition Number

This section describes the ScaLAPACK routines for estimating the condition number of a matrix.
The condition number is used for analyzing the errors in the solution of a system of linear
equations. Since the condition number may be arbitrarily large when the matrix is nearly singular,
the routines actually compute the reciprocal condition number.

p?gecon
Estimates the reciprocal of the condition number of a
general distributed matrix in either the 1-norm or the
infinity-norm.

Syntax
call psgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,

iwork, liwork, info)

call pdgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,
iwork, liwork, info)

call pcgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,
rwork, lrwork, info)

call pzgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,
rwork, lrwork, info)

Description

This routine estimates the reciprocal of the condition number of a general distributed real/complex
matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) in either the 1-norm or infinity-norm, using the LU
factorization computed by p?getrf.

An estimate is obtained for ||(sub(A))-1|| , and the reciprocal of the condition number is computed
as

.

 Input Parameters

norm (global) CHARACTER*1. Must be '1' or 'O' or 'I'.

rcond 1

sub A()
sub A()() 1–×

--=

ScaLAPACK Routines 6

6-43

Specifies whether the 1-norm condition number or the infinity-norm condition
number is required.

If norm = '1' or 'O', then the 1-norm is used;

If norm = 'I', then the infinity-norm is used.

n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

a (local)
REAL for psgecon
DOUBLE PRECISION for pdgecon
COMPLEX for pcgecon
DOUBLE COMPLEX for pzgecon.

Pointer into the local memory to an array of dimension
a(lld_a, LOCc(ja+n-1)).

The array a contains the local pieces of the factors L and U from the
factorization sub(A) = P L U; the unit diagonal elements of L are not stored.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

anorm (global) REAL for single precision flavors,
DOUBLE PRECISION for double precision flavors.
If norm = '1' or 'O', the 1-norm of the original distributed matrix sub(A);

If norm = 'I', the infinity-norm of the original distributed matrix sub(A).

work (local)
REAL for psgecon
DOUBLE PRECISION for pdgecon
COMPLEX for pcgecon
DOUBLE COMPLEX for pzgecon.

The array work of dimension (lwork) is a workspace array.

lwork (local or global) INTEGER. The dimension of the array work.

For real flavors:
lwork must be at least
lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+

6-44

6 Intel® Math Kernel Library Reference Manual

 2*LOCc(n+mod(ja-1,nb_a))+
 max(2, max(nb_a*max(1, ceil(NPROW-1,NPCOL)),
 LOCc(n+mod(ja-1,nb_a))+nb_a*max(1, ceil(NPCOL-1, NPROW))).

For complex flavors:
lwork must be at least
lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+
 max(2, max(nb_a*ceil(NPROW-1, NPCOL),
 LOCc(n+mod(ja-1,nb_a))+ nb_a*ceil(NPCOL-1, NPROW))).

LOCr and LOCc values can be computed using the ScaLAPACK tool
function numroc; NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.

iwork (local) INTEGER.
Workspace array, DIMENSION (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥ LOCr(n+mod(ia-1,mb_a)).

rwork (local) REAL for pcgecon
DOUBLE PRECISION for pzgecon
Workspace array, DIMENSION (lrwork). Used in complex flavors only.

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at
least
lrwork ≥ 2*LOCc(n+mod(ja-1,nb_a)).

Output Parameters

rcond (global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The reciprocal of the condition number of the distributed matrix sub(A). See
Description.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for
optimum performance (for real flavors).

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for
optimum performance (for complex flavors).

ScaLAPACK Routines 6

6-45

info (global) INTEGER. If info=0, the execution is successful.

info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

p?pocon
Estimates the reciprocal of the condition number (in the
1 - norm) of a symmetric / Hermitian positive-definite
distributed matrix.

Syntax
call pspocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,

iwork, liwork, info)

call pdpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,
iwork, liwork, info)

call pcpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,
rwork, lrwork, info)

call pzpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,
rwork, lrwork, info)

Description

This routine estimates the reciprocal of the condition number (in the 1 - norm) of a real symmetric
or complex Hermitian positive definite distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1),
using the Cholesky factorization sub(A) = UHU or sub(A) = LLH computed by p?potrf.

An estimate is obtained for ||(sub(A))-1|| , and the reciprocal of the condition number is computed
as

.

Input Parameters

uplo (global) CHARACTER*1. Must be 'U' or 'L'.

rcond 1

sub A()
sub A()() 1–×

--=

6-46

6 Intel® Math Kernel Library Reference Manual

Specifies whether the factor stored in sub(A) is upper or lower triangular.

If uplo = 'U', sub(A) stores the upper triangular factor U of the Cholesky
factorization sub(A) = UHU.
If uplo = 'L', sub(A) stores the lower triangular factor L of the Cholesky
factorization sub(A) = LLH.

n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

a (local)
REAL for pspocon
DOUBLE PRECISION for pdpocon
COMPLEX for pcpocon
DOUBLE COMPLEX for pzpocon.

Pointer into the local memory to an array of dimension
a(lld_a, LOCc(ja+n-1)).

The array a contains the local pieces of the factors L or U from the Cholesky
factorization sub(A) = UHU or sub(A) = LLH , as computed by p?potrf.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

anorm (global) REAL for single precision flavors,
DOUBLE PRECISION for double precision flavors.
The 1-norm of the symmetric/Hermitian distributed matrix sub(A).

work (local)
REAL for pspocon
DOUBLE PRECISION for pdpocon
COMPLEX for pcpocon
DOUBLE COMPLEX for pzpocon.

The array work of dimension (lwork) is a workspace array.

lwork (local or global) INTEGER. The dimension of the array work.
For real flavors:
lwork must be at least
lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+
 2*LOCc(n+mod(ja-1,nb_a))+

ScaLAPACK Routines 6

6-47

 max(2, max(nb_a*ceil(NPROW-1, NPCOL),
 LOCc(n+mod(ja-1,nb_a))+
 nb_a*ceil(NPCOL-1, NPROW))).

For complex flavors:
lwork must be at least
lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+
 max(2, max(nb_a*max(1,ceil(NPROW-1, NPCOL)),
 LOCc(n+mod(ja-1,nb_a))+
 nb_a*max(1,ceil(NPCOL-1, NPROW))).

iwork (local) INTEGER.
Workspace array, DIMENSION (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥ LOCr(n+mod(ia-1,mb_a)).

rwork (local) REAL for pcpocon
DOUBLE PRECISION for pzpocon
Workspace array, DIMENSION (lrwork). Used in complex flavors only.

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at
least lrwork ≥ 2*LOCc(n+mod(ja-1,nb_a)).

Output Parameters

rcond (global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The reciprocal of the condition number of the distributed matrix sub(A).

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for
optimum performance (for real flavors).

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for
optimum performance (for complex flavors).

info (global) INTEGER. If info=0, the execution is successful.

info < 0:

6-48

6 Intel® Math Kernel Library Reference Manual

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

p?trcon
Estimates the reciprocal of the condition number of a
triangular distributed matrix in either 1-norm or
infinity-norm.

Syntax
call pstrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork,

iwork, liwork, info)

call pdtrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork,
iwork, liwork, info)

call pctrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork,
rwork, lrwork, info)

call pztrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork,
rwork, lrwork, info)

Description

This routine estimates the reciprocal of the condition number of a triangular distributed matrix
sub(A) = A(ia:ia+n-1, ja:ja+n-1), in either the 1-norm or the infinity-norm.

The norm of sub(A) is computed and an estimate is obtained for ||(sub(A))-1|| , then the reciprocal
of the condition number is computed as

.

Input Parameters

norm (global) CHARACTER*1. Must be '1' or 'O' or 'I'.

Specifies whether the 1-norm condition number or the infinity-norm condition
number is required.

If norm = '1' or 'O', then the 1-norm is used;

rcond 1

sub A()
sub A()() 1–×

--=

ScaLAPACK Routines 6

6-49

If norm = 'I', then the infinity-norm is used.

uplo (global) CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', sub(A) is upper triangular.
If uplo = 'L', sub(A) is lower triangular.

diag (global) CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', sub(A) is non-unit triangular.
If diag = 'U', sub(A) is unit triangular.

n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

a (local)
REAL for pstrcon
DOUBLE PRECISION for pdtrcon
COMPLEX for pctrcon
DOUBLE COMPLEX for pztrcon.

Pointer into the local memory to an array of dimension
a(lld_a, LOCc(ja+n-1)).

The array a contains the local pieces of the triangular distributed matrix
sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of this distributed
matrix contains the upper triangular matrix, and its strictly lower triangular
part is not referenced.

If uplo = 'L', the leading n-by-n lower triangular part of this distributed
matrix contains the lower triangular matrix, and its strictly upper triangular
part is not referenced.
If diag = 'U', the diagonal elements of sub(A) are also not referenced and are
assumed to be 1.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

work (local)
REAL for pstrcon
DOUBLE PRECISION for pdtrcon
COMPLEX for pctrcon
DOUBLE COMPLEX for pztrcon.

6-50

6 Intel® Math Kernel Library Reference Manual

The array work of dimension (lwork) is a workspace array.

lwork (local or global) INTEGER. The dimension of the array work.
For real flavors:
lwork must be at least
lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+
 LOCc(n+mod(ja-1,nb_a))+
 max(2, max(nb_a*max(1,ceil(NPROW-1, NPCOL)),
 LOCc(n+mod(ja-1,nb_a))+
 nb_a*max(1,ceil(NPCOL-1, NPROW))).

For complex flavors:
lwork must be at least
lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))+
 max(2, max(nb_a*ceil(NPROW-1, NPCOL),
 LOCc(n+mod(ja-1,nb_a))+
 nb_a*ceil(NPCOL-1, NPROW))).

iwork (local) INTEGER.
Workspace array, DIMENSION (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥ LOCr(n+mod(ia-1,mb_a)).

rwork (local) REAL for pcpocon
DOUBLE PRECISION for pzpocon
Workspace array, DIMENSION (lrwork). Used in complex flavors only.

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at
least lrwork ≥ LOCc(n+mod(ja-1,nb_a)).

Output Parameters

rcond (global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The reciprocal of the condition number of the distributed matrix sub(A).

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for
optimum performance (for real flavors).

ScaLAPACK Routines 6

6-51

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for
optimum performance (for complex flavors).

info (global) INTEGER. If info=0, the execution is successful.

info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

Refining the Solution and Estimating Its Error

This section describes the ScaLAPACK routines for refining the computed solution of a system of
linear equations and estimating the solution error. You can call these routines after factorizing the
matrix of the system of equations and computing the solution (see “Routines for Matrix
Factorization” and “Routines for Solving Systems of Linear Equations”).

p?gerfs
Improves the computed solution to a system of linear
equations and provides error bounds and backward
error estimates for the solution.

Syntax
call psgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,

ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
iwork, liwork, info)

call pdgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
iwork, liwork, info)

call pcgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
rwork, lrwork, info)

call pzgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
rwork, lrwork, info)

6-52

6 Intel® Math Kernel Library Reference Manual

Description

This routine improves the computed solution to one of the systems of linear equations
 sub(A)*sub(X) = sub(B) ,
 sub(A)T*sub(X) = sub(B) , or
 sub(A)T*sub(X) = sub(B)
and provides error bounds and backward error estimates for the solution.

Here sub(A) = A(ia:ia+n-1, ja:ja+n-1), sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1) , and
sub(X) = X(ix:ix+n-1, jx:jx+nrhs-1).

Input Parameters

trans (global) CHARACTER*1. Must be 'N' or 'T' or 'C'.

Specifies the form of the system of equations:

If trans = 'N', the system has the form
 sub(A)*sub(X) = sub(B) (No transpose);

If trans = 'T', the system has the form
 sub(A)T*sub(X) = sub(B) (Transpose);

If trans = 'C', the system has the form
sub(A)H*sub(X) = sub(B) (Conjugate transpose).

n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

nrhs (global) INTEGER. The number of right-hand sides, i.e., the number of
columns of the matrices sub(B) and sub(X), (nrhs ≥ 0).

a, af, b, x (local)
REAL for psgerfs
DOUBLE PRECISION for pdgerfs
COMPLEX for pcgerfs
DOUBLE COMPLEX for pzgerfs.

Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)), af(lld_af, LOCc(jaf+n-1)),
b(lld_b, LOCc(jb+nrhs-1)), and x(lld_x, LOCc(jx+nrhs-1)),
respectively.

The array a contains the local pieces of the distributed matrix sub(A).

The array af contains the local pieces of the distributed factors of the matrix
sub(A) = P L U as computed by p?getrf.

ScaLAPACK Routines 6

6-53

The array b contains the local pieces of the distributed matrix of right hand
sides sub(B).

On entry, the array x contains the local pieces of the distributed solution
matrix sub(X).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

iaf,jaf (global) INTEGER. The row and column indices in the global array AF
indicating the first row and the first column of the submatrix sub(AF),
respectively.

descaf (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix AF.

ib,jb (global) INTEGER. The row and column indices in the global array B
indicating the first row and the first column of the submatrix sub(B),
respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

ix,jx (global) INTEGER. The row and column indices in the global array X
indicating the first row and the first column of the submatrix sub(X),
respectively.

descx (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix X.

ipiv (local) INTEGER.
Array, dimension LOCr(m_af)+ mb_af.
This array contains pivoting information as computed by p?getrf. If
ipiv(i)=j , then the local row i was swapped with the global row j.
This array is tied to the distributed matrix A.

work (local)
REAL for psgerfs
DOUBLE PRECISION for pdgerfs
COMPLEX for pcgerfs
DOUBLE COMPLEX for pzgerfs.

The array work of dimension (lwork) is a workspace array.

6-54

6 Intel® Math Kernel Library Reference Manual

lwork (local or global) INTEGER. The dimension of the array work.
For real flavors:
lwork must be at least
lwork ≥ 3*LOCr(n+mod(ia-1,mb_a))

For complex flavors:
lwork must be at least
lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))

iwork (local) INTEGER.
Workspace array, DIMENSION (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥ LOCr(n+mod(ib-1,mb_b)).

rwork (local) REAL for pcgerfs
DOUBLE PRECISION for pzgerfs
Workspace array, DIMENSION (lrwork). Used in complex flavors only.

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at
least lrwork ≥ LOCr(n+mod(ib-1,mb_b))).

Output Parameters

x On exit, contains the improved solution vectors.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCc(jb+nrhs-1) each.

The array ferr contains the estimated forward error bound for each solution
vector of sub(X).
If XTRUE is the true solution corresponding to sub(X), ferr is an estimated
upper bound for the magnitude of the largest element in (sub(X) - XTRUE)
divided by the magnitude of the largest element in sub(X). The estimate is as
reliable as the estimate for rcond, and is almost always a slight overestimate
of the true error.
This array is tied to the distributed matrix X.

The array berr contains the component-wise relative backward error of each
solution vector (that is, the smallest relative change in any entry of sub(A) or
sub(B) that makes sub(X) an exact solution). This array is tied to the distributed
matrix X.

ScaLAPACK Routines 6

6-55

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for
optimum performance (for real flavors).

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for
optimum performance (for complex flavors).

info (global) INTEGER. If info=0, the execution is successful.

info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

p?porfs
Improves the computed solution to a system of linear
equations with symmetric/Hermitian positive definite
distributed matrix and provides error bounds and
backward error estimates for the solution.

Syntax
call psporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,

ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork,
liwork, info)

call pdporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,
ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork,
liwork, info)

call pcporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,
ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork,
lrwork, info)

call pzporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,
ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork,
lrwork, info)

6-56

6 Intel® Math Kernel Library Reference Manual

Description

The routine p?porfs improves the computed solution to the system of linear equations
 sub(A)*sub(X) = sub(B) ,

where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is a real symmetric or complex Hermitian positive
definite distributed matrix and
 sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1) ,
 sub(X) = X(ix:ix+n-1, jx:jx+nrhs-1)
are right-hand side and solution submatrices, respectively.
This routine also provides error bounds and backward error estimates for the solution.

Input Parameters

uplo (global) CHARACTER*1. Must be 'U' or 'L'.

Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix sub(A) is stored.

If uplo = 'U', sub(A) is upper triangular.
If uplo = 'L', sub(A) is lower triangular.

n (global) INTEGER. The order of the distributed matrix sub(A), (n ≥ 0).

nrhs (global) INTEGER. The number of right-hand sides, i.e., the number of
columns of the matrices sub(B) and sub(X) (nrhs ≥ 0).

a, af, b, x (local)
REAL for psporfs
DOUBLE PRECISION for pdporfs
COMPLEX for pcporfs
DOUBLE COMPLEX for pzporfs.

Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)), af(lld_af, LOCc(ja+n-1)),
b(lld_b, LOCc(jb+nrhs-1)), and x(lld_x, LOCc(jx+nrhs-1)),
respectively.

The array a contains the local pieces of the n-by-n symmetric/Hermitian
distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the
upper triangular part of the matrix, and its strictly lower triangular part is not
referenced.

ScaLAPACK Routines 6

6-57

If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular part of the distributed matrix, and its strictly upper triangular
part is not referenced.

The array af contains the factors L or U from the Cholesky factorization
sub(A) = LLH or sub(A) = UHU , as computed by p?potrf.

On entry, the array b contains the local pieces of the distributed matrix of right
hand sides sub(B).

On entry, the array x contains the local pieces of the solution vectors sub(X).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

iaf,jaf (global) INTEGER. The row and column indices in the global array AF
indicating the first row and the first column of the submatrix sub(AF),
respectively.

descaf (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix AF.

ib,jb (global) INTEGER. The row and column indices in the global array B
indicating the first row and the first column of the submatrix sub(B),
respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

ix,jx (global) INTEGER. The row and column indices in the global array X
indicating the first row and the first column of the submatrix sub(X),
respectively.

descx (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix X.

work (local)
REAL for psporfs
DOUBLE PRECISION for pdporfs
COMPLEX for pcporfs
DOUBLE COMPLEX for pzporfs.

The array work of dimension (lwork) is a workspace array.

6-58

6 Intel® Math Kernel Library Reference Manual

lwork (local) INTEGER. The dimension of the array work.
For real flavors:
lwork must be at least
lwork ≥ 3*LOCr(n+mod(ia-1,mb_a))

For complex flavors:
lwork must be at least
lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))

iwork (local) INTEGER.
Workspace array, DIMENSION (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥ LOCr(n+mod(ib-1,mb_b)).

rwork (local) REAL for pcporfs
DOUBLE PRECISION for pzporfs
Workspace array, DIMENSION (lrwork). Used in complex flavors only.

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at
least lrwork ≥ LOCr(n+mod(ib-1,mb_b))).

Output Parameters

x On exit, contains the improved solution vectors.

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCc(jb+nrhs-1) each.

The array ferr contains the estimated forward error bound for each solution
vector of sub(X).
If XTRUE is the true solution corresponding to sub(X), ferr is an estimated
upper bound for the magnitude of the largest element in (sub(X) - XTRUE)
divided by the magnitude of the largest element in sub(X). The estimate is as
reliable as the estimate for rcond, and is almost always a slight overestimate
of the true error.
This array is tied to the distributed matrix X.

The array berr contains the component-wise relative backward error of each
solution vector (that is, the smallest relative change in any entry of sub(A) or
sub(B) that makes sub(X) an exact solution). This array is tied to the distributed
matrix X.

ScaLAPACK Routines 6

6-59

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for
optimum performance (for real flavors).

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for
optimum performance (for complex flavors).

info (global) INTEGER. If info=0, the execution is successful.

info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

p?trrfs
Provides error bounds and backward error estimates
for the solution to a system of linear equations with a
distributed triangular coefficient matrix.

Syntax
call pstrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,

descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)

call pdtrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)

call pctrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)

call pztrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)

Description

The routine p?trrfs provides error bounds and backward error estimates for the solution to one
of the systems of linear equations

 sub(A)*sub(X) = sub(B) ,
 sub(A)T*sub(X) = sub(B) , or
 sub(A)T*sub(X) = sub(B) ,

6-60

6 Intel® Math Kernel Library Reference Manual

where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is a triangular matrix,
 sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1) , and
 sub(X) = X(ix:ix+n-1, jx:jx+nrhs-1).

The solution matrix X must be computed by p?trtrs or some other means before entering this
routine. The routine p?trrfs does not do iterative refinement because doing so cannot improve
the backward error.

Input Parameters

uplo (global) CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', sub(A) is upper triangular.
If uplo = 'L', sub(A) is lower triangular.

trans (global) CHARACTER*1. Must be 'N' or 'T' or 'C'.

Specifies the form of the system of equations:

If trans = 'N', the system has the form
 sub(A)*sub(X) = sub(B) (No transpose);

If trans = 'T', the system has the form
 sub(A)T*sub(X) = sub(B) (Transpose);

If trans = 'C', the system has the form
sub(A)H*sub(X) = sub(B) (Conjugate transpose).

diag CHARACTER*1. Must be 'N' or 'U'.

If diag = 'N', then sub(A) is non-unit triangular.

If diag = 'U', then sub(A) is unit triangular.

n (global) INTEGER. The order of the distributed matrix sub(A), (n ≥ 0).

nrhs (global) INTEGER. The number of right-hand sides, i.e., the number of
columns of the matrices sub(B) and sub(X), (nrhs ≥ 0).

a, b, x (local)
REAL for pstrrfs
DOUBLE PRECISION for pdtrrfs
COMPLEX for pctrrfs
DOUBLE COMPLEX for pztrrfs.

Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)), b(lld_b, LOCc(jb+nrhs-1)), and
x(lld_x, LOCc(jx+nrhs-1)), respectively.

ScaLAPACK Routines 6

6-61

The array a contains the local pieces of the original triangular distributed
matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the
upper triangular part of the matrix, and its strictly lower triangular part is not
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular part of the distributed matrix, and its strictly upper triangular
part is not referenced.
If diag = 'U', the diagonal elements of sub(A) are also not referenced and are
assumed to be 1.

On entry, the array b contains the local pieces of the distributed matrix of right
hand sides sub(B).

On entry, the array x contains the local pieces of the solution vectors sub(X).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

ib,jb (global) INTEGER. The row and column indices in the global array B
indicating the first row and the first column of the submatrix sub(B),
respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

ix,jx (global) INTEGER. The row and column indices in the global array X
indicating the first row and the first column of the submatrix sub(X),
respectively.

descx (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix X.

work (local)
REAL for pstrrfs
DOUBLE PRECISION for pdtrrfs
COMPLEX for pctrrfs
DOUBLE COMPLEX for pztrrfs.

The array work of dimension (lwork) is a workspace array.

6-62

6 Intel® Math Kernel Library Reference Manual

lwork (local) INTEGER. The dimension of the array work.
For real flavors:
lwork must be at least
lwork ≥ 3*LOCr(n+mod(ia-1,mb_a))

For complex flavors:
lwork must be at least
lwork ≥ 2*LOCr(n+mod(ia-1,mb_a))

iwork (local) INTEGER.
Workspace array, DIMENSION (liwork). Used in real flavors only.

liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least
liwork ≥ LOCr(n+mod(ib-1,mb_b)).

rwork (local) REAL for pctrrfs
DOUBLE PRECISION for pztrrfs
Workspace array, DIMENSION (lrwork). Used in complex flavors only.

lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at
least lrwork ≥ LOCr(n+mod(ib-1,mb_b))).

Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCc(jb+nrhs-1) each.

The array ferr contains the estimated forward error bound for each solution
vector of sub(X).
If XTRUE is the true solution corresponding to sub(X), ferr is an estimated
upper bound for the magnitude of the largest element in (sub(X) - XTRUE)
divided by the magnitude of the largest element in sub(X). The estimate is as
reliable as the estimate for rcond, and is almost always a slight overestimate
of the true error.
This array is tied to the distributed matrix X.

The array berr contains the component-wise relative backward error of each
solution vector (that is, the smallest relative change in any entry of sub(A) or
sub(B) that makes sub(X) an exact solution). This array is tied to the distributed
matrix X.

ScaLAPACK Routines 6

6-63

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for
optimum performance (for real flavors).

rwork(1) On exit, rwork(1) contains the minimum value of lrwork required for
optimum performance (for complex flavors).

info (global) INTEGER. If info=0, the execution is successful.

info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

6-64

6 Intel® Math Kernel Library Reference Manual

Routines for Matrix Inversion

This sections describes ScaLAPACK routines that compute the inverse of a matrix based on the
previously obtained factorization. Note that it is not recommended to solve a system of equations
Ax = b by first computing A−1 and then forming the matrix-vector product x = A−1b.
Call a solver routine instead (see “Routines for Solving Systems of Linear Equations”); this is
more efficient and more accurate.

p?getri
Computes the inverse of a LU-factored distributed
matrix.

Syntax
call psgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)

call pdgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)

call pcgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)

call pzgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)

Description

This routine computes the inverse of a general distributed matrix
sub(A) = A(ia:ia+n-1, ja:ja+n-1) using the LU factorization computed by p?getrf. This
method inverts U and then computes the inverse of sub(A) denoted by InvA by solving the system

 InvA * L = U-1

for InvA.

Input Parameters

n (global) INTEGER. The number of rows and columns to be operated on, that is,
the order of the distributed submatrix sub(A) (n ≥ 0).

a (local)
REAL for psgetri
DOUBLE PRECISION for pdgetri
COMPLEX for pcgetri
DOUBLE COMPLEX for pzgetri.

ScaLAPACK Routines 6

6-65

Pointer into the local memory to an array of local dimension
a(lld_a, LOCc(ja+n-1)).

On entry, the array a contains the local pieces of the L and U obtained by the
factorization sub(A) = P L U computed by p?getrf.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

work (local)
REAL for psgetri
DOUBLE PRECISION for pdgetri
COMPLEX for pcgetri
DOUBLE COMPLEX for pzgetri.

The array work of dimension (lwork) is a workspace array.

lwork (local) INTEGER. The dimension of the array work.
lwork must be at least lwork ≥ LOCr(n+mod(ia-1,mb_a))*nb_a .
The array work is used to keep at most an entire column block of sub(A).

iwork (local) INTEGER.
Workspace array used for physically transposing the pivots, DIMENSION
(liwork).

liwork (local or global) INTEGER.
The dimension of the array iwork.
The minimal value liwork of is determined by the following code:
If NPROW == NPCOL then
 liwork = LOCc(n_a + mod(ja-1,nb_a))+ nb_a
Else

 liwork = LOCc(n_a + mod(ja-1,nb_a)) +
max(ceil(ceil(LOCr(m_a)/mb_a)/(lcm/NPROW)),nb_a)
End if

where lcm is the least common multiple of process rows and columns (NPROW
and NPCOL).

6-66

6 Intel® Math Kernel Library Reference Manual

Output Parameters

ipiv (local) INTEGER.
Array, dimension (LOCr(m_a)+ mb_a).
This array contains the pivoting information.
If ipiv(i)=j , then the local row i was swapped with the global row j.
This array is tied to the distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

iwork(1) On exit, iwork(1) contains the minimum value of liwork required for
optimum performance.

info (global) INTEGER. If info=0, the execution is successful.

info < 0:
if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

info > 0:
if info = i, U(i,i) is exactly zero. The factorization has been completed, but
the factor U is exactly singular, and division by zero will occur if it is used to
solve a system of equations.

p?potri
Computes the inverse of a symmetric/Hermitian
positive definite distributed matrix.

Syntax
call pspotri(uplo, n, a, ia, ja, desca, info)

call pdpotri(uplo, n, a, ia, ja, desca, info)

call pcpotri(uplo, n, a, ia, ja, desca, info)

call pzpotri(uplo, n, a, ia, ja, desca, info)

ScaLAPACK Routines 6

6-67

Description

This routine computes the inverse of a real symmetric or complex Hermitian positive definite
distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) using the Cholesky factorization
 sub(A) = UHU or sub(A) = LLH computed by p?potrf.

Input Parameters

uplo (global) CHARACTER*1. Must be 'U' or 'L'.

Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix sub(A) is stored.

If uplo = 'U', upper triangle of sub(A) is stored.
If uplo = 'L', lower triangle of sub(A) is stored.

n (global) INTEGER. The number of rows and columns to be operated on, that is,
the order of the distributed submatrix sub(A), (n ≥ 0).

a (local)
REAL for pspotri
DOUBLE PRECISION for pdpotri
COMPLEX for pcpotri
DOUBLE COMPLEX for pzpotri.

Pointer into the local memory to an array of local dimension
a(lld_a, LOCc(ja+n-1)).

On entry, the array a contains the local pieces of the triangular factor U or L
from the Cholesky factorization sub(A) = UHU or sub(A) = LLH , as computed
by p?potrf.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

Output Parameters

a On exit, overwritten by the local pieces of the upper or lower triangle of the
(symmetric/Hermitian) inverse of sub(A).

info (global) INTEGER. If info=0, the execution is successful.

6-68

6 Intel® Math Kernel Library Reference Manual

info < 0:
if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

info > 0:
if info = i, the (i,i) element of the factor U or L is zero, and the inverse
could not be computed.

p?trtri
Computes the inverse of a triangular distributed matrix.

Syntax
call pstrtri(uplo, diag, n, a, ia, ja, desca, info)

call pdtrtri(uplo, diag, n, a, ia, ja, desca, info)

call pctrtri(uplo, diag, n, a, ia, ja, desca, info)

call pztrtri(uplo, diag, n, a, ia, ja, desca, info)

Description

This routine computes the inverse of a real or complex upper or lower triangular distributed matrix
sub(A) = A(ia:ia+n-1, ja:ja+n-1).

Input Parameters

uplo (global) CHARACTER*1. Must be 'U' or 'L'.

Specifies whether the distributed matrix sub(A) is upper or lower triangular.

If uplo = 'U', sub(A) is upper triangular.
If uplo = 'L', sub(A) is lower triangular.

diag CHARACTER*1. Must be 'N' or 'U'.
Specifies whether or not the distributed matrix sub(A) is unit triangular.

If diag = 'N', then sub(A) is non-unit triangular.
If diag = 'U', then sub(A) is unit triangular.

n (global) INTEGER. The number of rows and columns to be operated on, that is,
the order of the distributed submatrix sub(A), (n ≥ 0).

ScaLAPACK Routines 6

6-69

a (local)
REAL for pstrtri
DOUBLE PRECISION for pdtrtri
COMPLEX for pctrtri
DOUBLE COMPLEX for pztrtri.

Pointer into the local memory to an array of local dimension
a(lld_a, LOCc(ja+n-1)).

The array a contains the local pieces of the triangular distributed matrix
sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the
upper triangular matrix to be inverted, and the strictly lower triangular part of
sub(A) is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular matrix, and the strictly upper triangular part of sub(A) is not
referenced.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

Output Parameters

a On exit, overwritten by the (triangular) inverse of the original matrix.

info (global) INTEGER. If info=0, the execution is successful.

info < 0:
if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

info > 0:
if info = k, A(ia+k-1, ja+k-1) is exactly zero. The triangular matrix sub(A)
is singular and its inverse can not be computed.

6-70

6 Intel® Math Kernel Library Reference Manual

Routines for Matrix Equilibration

ScaLAPACK routines described in this section are used to compute scaling factors needed to
equilibrate a matrix. Note that these routines do not actually scale the matrices.

p?geequ
Computes row and column scaling factors intended to
equilibrate a general rectangular distributed matrix
and reduce its condition number.

Syntax
call psgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

call pdgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

call pcgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

call pzgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)

Description

This routine computes row and column scalings intended to equilibrate an m-by-n distributed
matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1) and reduce its condition number. The output array r
returns the row scale factors and the array c the column scale factors. These factors are chosen to
try to make the largest element in each row and column of the matrix B with elements
bij=r(i)*aij*c(j) have absolute value 1.

r(i) and c(j) are restricted to be between SMLNUM = smallest safe number and BIGNUM = largest
safe number. Use of these scaling factors is not guaranteed to reduce the condition number of
sub(A) but works well in practice.

The auxiliary function p?laqge uses scaling factors computed by p?geequ to scale a general
rectangular mtrix.

Input Parameters

m (global) INTEGER. The number of rows to be operated on, that is, the number
of rows of the distributed submatrix sub(A), (m ≥ 0).

n (global) INTEGER. The number of columns to be operated on, that is, the
number of columns of the distributed submatrix sub(A), (n ≥ 0).

ScaLAPACK Routines 6

6-71

a (local)
REAL for psgeequ
DOUBLE PRECISION for pdgeequ
COMPLEX for pcgeequ
DOUBLE COMPLEX for pzgeequ .

Pointer into the local memory to an array of local dimension
a(lld_a, LOCc(ja+n-1)).

The array a contains the local pieces of the m-by-n distributed matrix whose
equilibration factors are to be computed.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

Output Parameters

r, c (local) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCr(m_a) and LOCc(n_a), respectively.
If info = 0, or info > ia+m-1, the array r (ia:ia+m-1) contains the row
scale factors for sub(A). r is aligned with the distributed matrix A, and
replicated across every process column. r is tied to the distributed matrix A.
If info = 0 , the array c (ja:ja+n-1) contains the column scale factors for
sub(A). c is aligned with the distributed matrix A, and replicated down every
process row. c is tied to the distributed matrix A.

rowcnd,colcnd (global)
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0 or info > ia+m-1, rowcnd contains the ratio of the smallest r(i)
to the largest r(i) (ia ≤ i ≤ ia+m-1) . If rowcnd ≥ 0.1 and amax is neither
too large nor too small, it is not worth scaling by r (ia:ia+m-1).

If info = 0, colcnd contains the ratio of the smallest c(j) to the largest c(j)
(ja ≤ j ≤ ja+n-1).
If colcnd ≥ 0.1 , it is not worth scaling by c (ja:ja+n-1).

6-72

6 Intel® Math Kernel Library Reference Manual

amax (global)
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest matrix element. If amax is very close to overflow
or very close to underflow, the matrix should be scaled.

info (global) INTEGER. If info=0, the execution is successful.

info < 0:
if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

info > 0:
If info = i and
 i≤ m, the ith row of the distributed matrix
 sub(A) is exactly zero;
 i > m, the (i-m)th column of the distributed
 matrix sub(A) is exactly zero.

p?poequ
Computes row and column scaling factors intended to
equilibrate a symmetric (Hermitian) positive definite
distributed matrix and reduce its condition number.

Syntax
call pspoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)

call pdpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)

call pcpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)

call pzpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)

Description

This routine computes row and column scalings intended to equilibrate a real symmetric or
complex Hermitian positive definite distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1) and
reduce its condition number (with respect to the two-norm). The output arrays sr and sc return
the row and column scale factors

ScaLAPACK Routines 6

6-73

These factors are chosen so that the scaled distributed matrix B with elements bij=s(i)*aij*s(j) has
ones on the diagonal.

This choice of sr and sc puts the condition number of B within a factor n of the smallest possible
condition number over all possible diagonal scalings.

The auxiliary function p?laqsy uses scaling factors computed by p?geequ to scale a general
rectangular mtrix.

Input Parameters

n (global) INTEGER. The number of rows and columns to be operated on, that is,
the order of the distributed submatrix sub(A) (n ≥ 0).

a (local)
REAL for pspoequ
DOUBLE PRECISION for pdpoequ
COMPLEX for pcpoequ
DOUBLE COMPLEX for pzpoequ .

Pointer into the local memory to an array of local dimension
a(lld_a, LOCc(ja+n-1)).

The array a contains the n-by-n symmetric/Hermitian positive definite
distributed matrix sub(A) whose scaling factors are to be computed. Only the
diagonal elements of sub(A) are referenced.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

Output Parameters

sr, sc (local)
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCr(m_a) and LOCc(n_a), respectively.
If info = 0, the array sr (ia:ia+n-1) contains the row scale factors for
sub(A). sr is aligned with the distributed matrix A, and replicated across

s i() 1

ai i,

---------------=

6-74

6 Intel® Math Kernel Library Reference Manual

every process column. sr is tied to the distributed matrix A.
If info = 0 , the array sc (ja:ja+n-1) contains the column scale factors for
sub(A). sc is aligned with the distributed matrix A, and replicated down every
process row. sc is tied to the distributed matrix A.

scond (global)
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info = 0, scond contains the ratio of the smallest sr(i) (or sc(j)) to the
largest sr(i) (or sc(j)), with ia ≤ i ≤ ia+n-1 and ja ≤ j ≤ ja+n-1.
If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth
scaling by sr (or sc).

amax (global)
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest matrix element. If amax is very close to overflow
or very close to underflow, the matrix should be scaled.

info (global) INTEGER. If info=0, the execution is successful.

info < 0:
if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

info > 0:
If info = k, the kth diagonal entry of sub(A) is nonpositive.

ScaLAPACK Routines 6

6-75

Orthogonal Factorizations

This section describes the ScaLAPACK routines for the QR (RQ) and LQ (QL) factorization of
matrices. Routines for the RZ factorization as well as for generalized QR and RQ factorizations are
also included. For the mathematical definition of the factorizations, see the respective LAPACK
sections or refer to [SLUG].

Table 5-1 lists ScaLAPACK routines that perform orthogonal factorization of matrices.

p?geqrf
Computes the QR factorization of a general m-by-n
matrix.

Syntax
call psgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)

Table 6-3 Computational Routines for Orthogonal Factorizations

Matrix type, factorization
Factorize
without pivoting

Factorize
with pivoting

Generate
matrix Q

Apply
matrix Q

general matrices,
QR factorization

p?geqrf p?geqpf p?orgqr
 p?ungqr

p?ormqr
p?unmqr

general matrices,
RQ factorization

p?gerqf p?orgrq
p?ungrq

p?ormrq
p?unmrq

general matrices,
LQ factorization

p?gelqf p?orglq
p?unglq

p?ormlq
p?unmlq

general matrices,
QL factorization

p?geqlf p?orgql
p?ungql

p?ormql
p?unmql

trapezoidal matrices,
RZ factorization

p?tzrzf p?ormrz
p?unmrz

pair of matrices, generalized
QR factorization

p?ggqrf

pair of matrices, generalized
RQ factorization

p?ggrqf

6-76

6 Intel® Math Kernel Library Reference Manual

Description

The routine forms the QR factorization of a general m-by-n distributed matrix
sub(A)= A (ia:ia+m-1,ja:ja+n-1) as

 A=Q R.

Input Parameters

m (global) INTEGER. The number of rows in the distributed submatrix sub(A),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed submatrix sub(A),
(n ≥ 0).

a (local)
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).
Contains the local pieces of the distributed matrix sub(A) to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix
A(ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A

work (local).
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ nb_a * (mp0+nq0+nb_a), where

iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

ScaLAPACK Routines 6

6-77

mp0 = numroc(m+iroff, mb_a, MYROW, iarow, NPROW),

nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL),
and numroc, indxg2p are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW, and NPCOL can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a The elements on and above the diagonal of
sub(A) contain the min(m,n)-by-n upper trapezoidal matrix R (R is upper
triangular if m ≥ n); the elements below the diagonal, with the array tau,
represent the orthogonal/unitary matrix Q as a product of elementary reflectors
(see Application Notes below).

tau (local)
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Array, DIMENSION LOCc(ja+min(m,n)-1).
Contains the scalar factor tau of elementary reflectors.
tau is tied to the distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0, the execution is successful.
 < 0, if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

The matrix Q is represented as a product of elementary reflectors
 Q = H(ja) H(ja+1)... H(ja+k-1),

where k = min(m,n).

6-78

6 Intel® Math Kernel Library Reference Manual

Each H(i) has the form

H(j) = I - tau * v * v' ,

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1;
v(i+1:m) is stored on exit in A(ia+i:ia+m-1,ja+i-1), and tau in tau(ja+i-1).

p?geqpf
Computes the QR factorization of a general m-by-n
matrix with pivoting.

Syntax
call psgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)

call pdgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)

call pcgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)

call pzgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)

Description

The routine forms the QR factorization with column pivoting of a general m-by-n distributed
matrix sub(A)= A (ia:ia+m-1,ja:ja+n-1) as

 sub(A) P=Q R.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(A), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(A), (n ≥ 0).

a (local)
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf
COMPLEX for pcgeqpf
DOUBLE COMPLEX for pzgeqpf.

Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).
Contains the local pieces of the distributed matrix sub(A) to be factored.

ScaLAPACK Routines 6

6-79

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix
A(ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

work (local).
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf.
COMPLEX for pcgeqpf.
DOUBLE COMPLEX for pzgeqpf
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least

For real flavors:
lwork ≥ max (3,mp0+nq0) + LOCc (ja+n-1) + nq0.

For complex flavors:
lwork ≥ max (3,mp0+nq0) .

Here
iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW),

nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL),

LOCc (ja+n-1) = numroc(ja+n-1, nb_a, MYCOL,csrc_a, NPCOL),
and numroc, indxg2p are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW, and NPCOL can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

6-80

6 Intel® Math Kernel Library Reference Manual

Output Parameters

a The elements on and above the diagonal of sub(A) contain the min(m,n)-by-n
upper trapezoidal matrix R (R is upper triangular if m ≥ n); the elements below
the diagonal, with the array tau, represent the orthogonal/unitary matrix Q as
a product of elementary reflectors (see Application Notes below)

ipiv (local) INTEGER.
Array, DIMENSION LOCc (ja+n-1).

ipiv(i) = k, the local i-th column of sub(A)*P was the global k-th column of
sub(A). ipiv is tied to the distributed matrix A.

tau (local)

REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf
COMPLEX for pcgeqpf
DOUBLE COMPLEX for pzgeqpf.
Array, DIMENSION LOCc(ja+min(m,n)-1)).
Contains the scalar factor tau of elementary reflectors. tau is tied to the
distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0, the execution is successful.
 < 0, if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

The matrix Q is represented as a product of elementary reflectors
 Q = H(1) H(2)... H(n).

Each H(i) has the form
H = I - tau * v * v' ,

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1;
v(i+1:m) is stored on exit in A(ia+i-1:ia+m-1,ja+i-1).

The matrix P is represented in jpvt as follows: if jpvt(j) = i then the j-th column of P is the
i-th canonical unit vector.

ScaLAPACK Routines 6

6-81

p?orgqr
Generates the orthogonal matrix Q of the QR factorization
formed by p?geqrf.

Syntax
call psorgqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n real distributed matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal columns, which is defined as the first n columns of a
product of k elementary reflectors of order m

 Q= H(1) H(2)...H(k)

as returned by p?geqrf.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q),
(m ≥n ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q, (n ≥ k ≥0).

a (local)

REAL for psorgqr
DOUBLE PRECISION for pdorgqr
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).The j-th column must contain the vector which
defines the elementary reflector H(j), ja < j< ja +k-1, as returned by
p?geqrf in the k columns of its distributed matrix argument
a(ia:*,ja:ja+k-1).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix
A(ia:ia+m-1,ja:ja+n-1), respectively.

6-82

6 Intel® Math Kernel Library Reference Manual

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

REAL for psorgqr
DOUBLE PRECISION for pdorgqr
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (j) of elementary reflectors H(j) as returned by
p?geqrf. tau is tied to the distributed matrix A.

work (local)

REAL for psorgqr
DOUBLE PRECISION for pdorgqr
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work.
Must be at least lwork ≥ nb_a* (nqa0 + mpa0 + nb_a), where

iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL) ;

indxg2p and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW, and NPCOL can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

ScaLAPACK Routines 6

6-83

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?ungqr
Generates the complex unitary matrix Q of the QR
factorization formed by p?geqrf.

Syntax
call pcungqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n complex distributed matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal columns, which is defined as the first n columns of a
product of k elementary reflectors of order m

 Q = H(1) H(2)... H(k)

as returned by p?geqrf.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q),
(m ≥ n ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q, (n ≥ k ≥ 0).

a (local)
COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr

6-84

6 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)).The j-th column must contain the vector which
defines the elementary reflector H(j), ja < j< ja +k-1, as returned by
p?geqrf in the k columns of its distributed matrix argument
a(ia:*,ja:ja+k-1).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (j) of elementary reflectors H(j) as returned by
p?geqrf. tau is tied to the distributed matrix A.

work (local)

COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr
 Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ nb_a* (nqa0 + mpa0 + nb_a), where

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

ScaLAPACK Routines 6

6-85

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?ormqr
Multiplies a general matrix by the orthogonal matrix Q of
the QR factorization formed by p?geqrf.

Syntax
call psormqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info)

call pdormqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

The routine overwrites the general real m-by-n distributed matrix
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

 side ='L' side ='R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'T': QT sub(C) sub(C) QT

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

6-86

6 Intel® Math Kernel Library Reference Manual

Q = H(1) H(2)... H(k)

as returned by p?geqrf. Q is of order m if side ='L' and of order n if side ='R'.

 Input Parameters

side (global) CHARACTER
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

m (global) INTEGER. The number of rows in the distributed matrix
sub(C) (m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix
sub(C) (n ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
if side ='L', m > k >0
if side ='R', n > k >0.

a (local)

REAL for psormqr
DOUBLE PRECISION for pdormqr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+k-1)).The j-th column must contain the vector which
defines the elementary reflector H(j), ja < j< ja +k-1, as returned by
p?geqrf in the k columns of its distributed matrix argument
a(ia:*,ja:ja+k-1).a(ia:*,ja:ja+k-1)is modified by the routine but
restored on exit.

if side ='L', lld_a > max (1, LOCr(ia+m-1)

if side ='R', lld_a > max (1, LOCr(ia+n-1)

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

ScaLAPACK Routines 6

6-87

tau (local)
REAL for psormqr
DOUBLE PRECISION for pdormqr
Array, DIMENSION LOCc(ja+k-1).).
Contains the scalar factor tau (j) of elementary reflectors H(j) as returned by
p?geqrf. tau is tied to the distributed matrix A.

c (local)

REAL for psormqr
DOUBLE PRECISION for pdormqr
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

work (local)

REAL for psormqr
DOUBLE PRECISION for pdormqr. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:
 if side ='L',

lwork ≥ max ((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a

 else if side ='R',

lwork ≥ max ((nb_a* (nb_a-1))/2, (nqc0 + max
(npa0 + numroc (numroc(n+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq),
mpc0))*nb_a) + nb_a * nb_a

end if

where

lcmq = lcm / NPCOL with lcm = ilcm (NPROW, NPCOL),

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),

6-88

6 Intel® Math Kernel Library Reference Manual

npa0 = numroc(n+iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

if lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

c Overwritten by the product Q* sub(C) or QT sub (C), or sub(C)* QT, or
sub(C)* Q .

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

ScaLAPACK Routines 6

6-89

p?unmqr
Multiplies a complex matrix by the unitary matrix Q of the
QR factorization formed by p?geqrf.

Syntax
call cunmqr(side,trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info)

call zunmqr(side,trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

The routine overwrites the general complex m-by-n distributed matrix
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

 side ='L' side ='R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'T': QH sub(C) sub(C) QH

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(1) H(2)... H(k)

as returned by p?geqrf. Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side (global) CHARACTER
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed matrix
sub(C), (m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix
sub(C), (n ≥ 0).

6-90

6 Intel® Math Kernel Library Reference Manual

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
if side ='L', m > k >0
if side ='R', n > k >0.

a (local)

COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+k-1)).The j-th column must contain the vector which
defines the elementary reflector H(j), ja < j< ja +k-1, as returned by
p?geqrf in the k columns of its distributed matrix argument
a(ia:*,ja:ja+k-1).
a(ia:*,ja:ja+k-1)is modified by the routine but restored on exit.

If side ='L', lld_a > max (1, LOCr(ia+m-1)

if side ='R', lld_a > max (1, LOCr(ia+n-1)

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)
COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (j) of elementary reflectors H(j) as returned by
p?geqrf. tau is tied to the distributed matrix A.

c (local)

COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr.
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

ScaLAPACK Routines 6

6-91

work (local)

COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:
 if side ='L',

lwork ≥ max ((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a

 else if side ='R',

lwork ≥ max ((nb_a* (nb_a-1))/2, (nqc0 + max
(npa0 + numroc (numroc(n+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq),
mpc0))*nb_a) + nb_a * nb_a

end if

where

lcmq = lcm / NPCOL with lcm = ilcm (NPROW, NPCOL),

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),

npa0 = numroc(n+iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

if lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

6-92

6 Intel® Math Kernel Library Reference Manual

Output Parameters

c Overwritten by the product Q* sub(C) or QH sub (C), or sub(C)* QH, or
sub(C)* Q .

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?gelqf
Computes the LQ factorization of a general rectangular
matrix.

Syntax
call psgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine computes the LQ factorization of a real/complex distributed m-by-n matrix
sub(A)= A(ia:ia+m-1,ia:ia+n-1) = L*Q .

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q), (n ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q, (n ≥ k ≥0).

ScaLAPACK Routines 6

6-93

a (local)
REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)). Contains the local pieces of the distributed
matrix sub(A) to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix
A((ia:ia+m-1,ia:ia+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

work (local)

REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ mb_a* (mp0 + nq0 + mb_a), where

iroff = mod(ia-1, mb_a),

icoff = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW),

nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL)

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

6-94

6 Intel® Math Kernel Library Reference Manual

Output Parameters

a The elements on and below the diagonal of
sub(A) contain the m by min(m,n) lower trapezoidal matrix L (L is lower
trapezoidal if m < n); the elements above the diagonal, with the array tau,
represent the orthogonal/unitary matrix Q as a product of elementary reflectors
(see Application Notes below)

tau (local)

REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Array, DIMENSION LOCr(ia+min(m,n)-1)).
Contains the scalar factors of elementary reflectors. tau is tied to the
distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

 Q = H(ia+k-1) H(ia+k-2)... H(ia),

where k = min(m,n)

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1;
v(i+1:n) is stored on exit in A(ia+i-1:ia+i-1,ja+n-1), and tau in tau (ia+i-1).

ScaLAPACK Routines 6

6-95

p?orglq
Generates the real orthogonal matrix Q of the LQ
factorization formed by p?gelqf.

Syntax
call psorglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n real distributed matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a product
of k elementary reflectors of order n

 Q = H(k)... H(2) H(1)

 as returned by p?gelqf.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q),
(n ≥ m ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q, (m ≥ k ≥0).

a (local)

REAL for psorglq
DOUBLE PRECISION for pdorglq
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).On entry, the i-th row must contain the vector
which defines the elementary reflector H(i), ia < i < ia+k-1, as returned by
p?gelqf in the k rows of its distributed matrix argument A(ia:ia+k -1,ja:*).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix
A((ia:ia+m-1,ja:ja+n-1), respectively.

6-96

6 Intel® Math Kernel Library Reference Manual

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

work (local)

REAL for psorglq
DOUBLE PRECISION for pdorglq
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ mb_a* (mpa0 + nqa0 + mb_a), where

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q to be factored.

tau (local)

REAL for psorglq
DOUBLE PRECISION for pdorglq
Array, DIMENSION LOCr(ia+k-1).).
Contains the scalar factors tau of elementary reflectors H(i). tau is tied to
the distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

ScaLAPACK Routines 6

6-97

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?unglq
Generates the unitary matrix Q of the LQ factorization
formed by p?gelqf.

Syntax
call pcunglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzunglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n complex distributed matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a product
of k elementary reflectors of order n

 Q = H(k)... H(2)' H(1)'

 as returned by p?gelqf.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q),
(n ≥ m ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q, (m ≥ k ≥0).

a (local)

COMPLEX for pcunglq
DOUBLE COMPLEX for pzunglq

6-98

6 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)). On entry, the i-th row must contain the vector
which defines the elementary reflector H(i), ia < i < ia+k-1, as returned by
p?gelqf in the k rows of its distributed matrix argument A(ia:ia+k -1,ja:*).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix
A(ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

COMPLEX for pcunglq
DOUBLE COMPLEX for pzunglq
Array, DIMENSION LOCr(ia+k-1)).
Contains the scalar factors tau of elementary reflectors H(i).
tau is tied to the distributed matrix A.

work (local)

COMPLEX for pcunglq
DOUBLE COMPLEX for pzunglq
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ mb_a* (mpa0 + nqa0 + mb_a), where

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

ScaLAPACK Routines 6

6-99

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q to be factored.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?ormlq
Multiplies a general matrix by the orthogonal matrix Q of
the LQ factorization formed by p?gelqf.

Syntax
call psormlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

work, lwork, info)

call pdormlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
work, lwork, info)

Description

The routine overwrites the general real m-by-n distributed matrix
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

 side ='L' side ='R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'T': QT sub(C) sub(C) QT

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

6-100

6 Intel® Math Kernel Library Reference Manual

Q = H(k)...H(2) H(1)

as returned by p?gelqf. Q is of order m if side ='L' and of order n if side ='R'.

 Input Parameters

side (global) CHARACTER
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix sub(C),
(n ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
if side ='L', m > k >0
if side ='R', n > k >0.

a (local)

REAL for psormlq
DOUBLE PRECISION for pdormlq.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)), if side ='L' and (lld_a, LOCc(ja+n-1)),
if side ='R'.The i-th row must contain the vector which defines the
elementary reflector H(i), ia < i< ia +k-1, as returned by p?gelqf in the k
rows of its distributed matrix argument a(ia:ia+k-1,ja:*).
a(ia:ia+k-1,ja:*)is modified by the routine but restored on exit.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)
REAL for psormlq
DOUBLE PRECISION for pdormlq

ScaLAPACK Routines 6

6-101

Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gelqf. tau is tied to the distributed matrix A.

c (local)
REAL for psormlq
DOUBLE PRECISION for pdormlq
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

work (local)

REAL for psormlq
DOUBLE PRECISION for pdormlq. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of the array work; must be at least:
 if side ='L',

lwork ≥ max ((mb_a*(mb_a-1))/2, (mpc0 + max mqa0)+ numroc (numroc
(m + iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nqc0)) * mb_a) +
mb_a*mb_a

 else if side ='R',

lwork ≥ max ((mb_a* (mb_a-1))/2, (mpc0 + nqc0) *mb_a + mb_a*mb_a

end if

where

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL),

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

6-102

6 Intel® Math Kernel Library Reference Manual

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

if lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)* Q’,
or sub(C)* Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?unmlq
Multiplies a general matrix by the unitary matrix Q of the
LQ factorization formed by p?gelqf.

Syntax
call pcunmlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info)

call pzunmlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

ScaLAPACK Routines 6

6-103

Description

The routine overwrites the general complex m-by-n distributed matrix
sub (C) = C (ic:ic+m-1,jc:jc+n-1) with

 side ='L' side ='R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'T': QH sub(C) sub(C) QH

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(k)' ... H(2)' H(1)'

as returned by p?gelqf. Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side (global) CHARACTER
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix sub(C),
(n ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
if side ='L', m > k >0
if side ='R', n > k >0.

a (local)

COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)), if side ='L', and
(lld_a, LOCc(ja+n-1)), if side ='R',
where lld_a > max (1, LOCr (ia+k-1)).The i-th column must contain the
vector which defines the elementary reflector H(i), ia < i< ia +k-1, as

6-104

6 Intel® Math Kernel Library Reference Manual

returned by p?gelqf in the k rows of its distributed matrix argument
a(ia:ia+k-1,ja:*).
a(ia:ia+k-1,ja:*)is modified by the routine but restored on exit.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq
Array, DIMENSION LOCc(ia+k-1)).
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gelqf. tau is tied to the distributed matrix A.

c (local)

COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq.
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c
indicating the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

work (local)

COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of the array work; must be at least:
 if side ='L',

lwork ≥ max ((mb_a*(mb_a-1))/2, (mpc0 + max mqa0)+ numroc (numroc
(m + iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nqc0)) * mb_a) +
mb_a*mb_a

 else if side ='R',

lwork ≥ max ((mb_a* (mb_a-1))/2, (mpc0 + nqc0) *mb_a + mb_a*mb_a

ScaLAPACK Routines 6

6-105

end if

where

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL),

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(m + icoffa, nb_a, MYCOL, iacol, NPCOL),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

if lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)* Q’,
or sub(C)* Q .

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

6-106

6 Intel® Math Kernel Library Reference Manual

p?geqlf
Computes the QL factorization of a general matrix.

Syntax
call psgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine forms the QL factorization of a real/complex distributed m-by-n matrix
sub (A) = A (ia:ia+m-1,ja:ja+n-1) = Q * L.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q), (n ≥ 0).

a (local)

REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).Contains the local pieces of the distributed matrix
sub(A) to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix
A((ia:ia+m-1,ia:ia+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

work (local)
REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf

ScaLAPACK Routines 6

6-107

COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ nb_a* (mp0 + nq0 + nb_a), where

iroff = mod(ia-1, mb_a),

icoff = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW),

nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL)

numroc and indxg2p are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if m > n, the lower triangle of the distributed submatrix
A(ia+m-n:ia+m-1, ja:ja+n-1) contains the n-by-n lower triangular matrix L;
if m < n, the elements on and below the (n-m)-th superdiagonal contain the
m-by-n lower trapezoidal matrix L; the remaining elements, with the array tau,
represent the orthogonal/unitary matrix Q as a product of elementary reflectors
(see Application Notes below)

tau (local)

REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Array, DIMENSION LOCc(ja+n-1)).
Contains the scalar factors of elementary reflectors. tau is tied to the
distributed matrix A.

6-108

6 Intel® Math Kernel Library Reference Manual

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

 Q = H(ja+k-1)... H(ja+1) H(ja),

where k = min(m,n)

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(m-k+i+1:m) = 0 and
v(m-k+i) = 1; v(m-k+i-1) is stored on exit in A(ia+ia+m-k+i-2, ja+n-k+i-1), and tau in tau
(ja+n-k+i-1).

p?orgql
Generates the orthogonal matrix Q of the QL factorization
formed by p?geqlf.

Syntax
call psorgql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n real distributed matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a product
of k elementary reflectors of order n

 Q = H(k)... H(2) H(1)

ScaLAPACK Routines 6

6-109

 as returned by p?geqlf.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q),
(m ≥ n ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q, (n ≥ k ≥0).

a (local)

REAL for psorgql
DOUBLE PRECISION for pdorgql
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).On entry, the j-th column must contain the vector
which defines the elementary reflector H(j), ja + n - k < j < ja+n-1, as
returned by p?geqlf in the k columns of its distributed matrix argument
A(ia:*ja+n-k:ja+n-1).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix
A((ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

REAL for psorgql
DOUBLE PRECISION for pdorgql
Array, DIMENSION LOCc(ja+n-1)).
Contains the scalar factors tau(j) of elementary reflectors H(j).
tau is tied to the distributed matrix A.

work (local)

REAL for psorgql
DOUBLE PRECISION for pdorgql
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ nb_a* (nqa0 + mpa0 + nb_a), where

iroffa = mod(ia-1, mb_a),

6-110

6 Intel® Math Kernel Library Reference Manual

icoffa = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q to be factored.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?ungql
Generates the unitary matrix Q of the QL factorization
formed by p?geqlf.

Syntax
call pcungql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

ScaLAPACK Routines 6

6-111

Description

The routine generates the whole or part of m-by-n complex distributed matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the first n columns of a
product of k elementary reflectors of order m

 Q = H(k)... H(2) H(1)

 as returned by p?geqlf.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q),
(m ≥ n ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q, (n ≥ k ≥ 0).

a (local)

COMPLEX for pcungql
DOUBLE COMPLEX for pzungql
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).On entry, the j-th column must contain the vector
which defines the elementary reflector H(j), ja+n-k < j < ja+n-1, as
returned by p?geqlf in the k columns of its distributed matrix argument
A(ia:*, ja+n-k: ja+n-1).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix
A(ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

COMPLEX for pcungql
DOUBLE COMPLEX for pzungql
Array, DIMENSION LOCr(ia+n-1)).
Contains the scalar factors tau (j) of elementary reflectors H(j).
tau is tied to the distributed matrix A.

work (local)

6-112

6 Intel® Math Kernel Library Reference Manual

COMPLEX for pcungql
DOUBLE COMPLEX for pzungql
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ nb_a* (nqa0 + mpa0 + nb_a), where

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q to be factored.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

ScaLAPACK Routines 6

6-113

p?ormql
Multiplies a general matrix by the orthogonal matrix Q of
the QL factorization formed by p?geqlf.

Syntax
call psormql(side, trans, m, n, k, a, ia, ja, desca, tau, c,ic, jc,

descc, work, lwork, info)

call pdormql(side, trans, m, n, k, a, ia, ja, desca, tau, c,ic, jc,
descc, work, lwork, info)

Description

The routine overwrites the general real m-by-n distributed matrix
sub(C) = C (ic:ic+m-1,jc:jc+n-1) with

 side ='L' side ='R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'T': QT sub(C) sub(C) QT

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(k)' ... H(2)' H(1)'

as returned by p?geqlf. Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side (global) CHARACTER
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix sub(C),
(n ≥ 0).

6-114

6 Intel® Math Kernel Library Reference Manual

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
if side ='L', m > k >0
if side ='R', n > k >0.

a (local)

REAL for psormql
DOUBLE PRECISION for pdormql.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+k-1)).The j-th column must contain the vector which
defines the elementary reflector H(j), ja < j< ja +k-1, as returned by
p?gelqf in the k columns of its distributed matrix argument
a(ia:*,ja:ja+k-1).a(ia:*,ja:ja+k-1)is modified by the routine but
restored on exit.

if side ='L',lld_a > max (1, LOCr(ia+m-1)),

if side ='R',lld_a > max (1, LOCr(ia+n-1)).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

REAL for psormql
DOUBLE PRECISION for pdormql.
Array, DIMENSION LOCc(ja+n-1)).
Contains the scalar factor tau (j) of elementary reflectors H(j) as returned
by p?geqlf . tau is tied to the distributed matrix A.

c (local)

REAL for psormql
DOUBLE PRECISION for pdormql.
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating
the first row and the first column of the submatrix C, respectively.

ScaLAPACK Routines 6

6-115

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

work (local)

REAL for psormql.
DOUBLE PRECISION for pdormql. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:
 if side ='L',

lwork ≥ max ((nb_a* (nb_a-1))/2, (nqc0 + mpc0) *nb_a + nb_a*nb_a

 else if side ='R',

lwork ≥ max ((nb_a*(nb_a-1))/2, (nqc0 + max npa0)+ numroc (numroc
(n + icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), mpc0)) * nb_a) +
nb_a*nb_a

end if

where

lcmp = lcm / NPCOL with lcm = ilcm (NPROW, NPCOL),

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),

npa0 = numroc(n + iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

6-116

6 Intel® Math Kernel Library Reference Manual

if lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)* Q’,
or sub(C)* Q .

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?unmql
Multiplies a general matrix by the unitary matrix Q of the
QL factorization formed by p?geqlf.

Syntax
call pcunmql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info)

call pzunmql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

The routine overwrites the general complex m-by-n distributed matrix
sub(C) = C (ic:ic+m-1,jc:jc+n-1) with

 side ='L' side ='R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'C': QH sub(C) sub(C) QH

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

ScaLAPACK Routines 6

6-117

Q = H(k)' ... H(2)' H(1)'

as returned by p?geqlf. Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side (global) CHARACTER
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix sub(C),
(n ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
if side ='L', m > k >0
if side ='R', n > k >0.

a (local)

COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+k-1)).The j-th column must contain the vector which
defines the elementary reflector H(j), ja < j< ja +k-1, as returned by
p?geqlf in the k columns of its distributed matrix argument
a(ia:*,ja:ja+k-1).
a(ia:*,ja:ja+k-1)is modified by the routine but restored on exit.

if side ='L',lld_a > max (1, LOCr(ia+m-1)),

if side ='R',lld_a > max (1, LOCr(ia+n-1)).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

6-118

6 Intel® Math Kernel Library Reference Manual

tau (local)
COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql
Array, DIMENSION LOCc(ia+n-1)).
Contains the scalar factor tau (j) of elementary reflectors H(j) as returned by
p?geqlf. tau is tied to the distributed matrix A.

c (local)

COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql.
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

work (local)

COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:
 if side ='L',

lwork ≥ max ((nb_a* (nb_a-1))/2, (nqc0 + mpc0) *nb_a + nb_a*nb_a

 else if side ='R',

lwork ≥ max ((nb_a*(nb_a-1))/2, (nqc0 + max npa0)+ numroc (numroc
(n + icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), mpc0)) * nb_a) +
nb_a*nb_a

end if

where

lcmp = lcm / NPCOL with lcm = ilcm (NPROW, NPCOL),

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),

ScaLAPACK Routines 6

6-119

npa0 = numroc (n + iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

if lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)* Q’,
or sub(C)* Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?gerqf
Computes the RQ factorization of a general rectangular
matrix.

Syntax
call psgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

6-120

6 Intel® Math Kernel Library Reference Manual

call pdgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pcgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pzgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine forms the QR factorization of a general m-by-n distributed matrix
sub(A)= A (ia:ia+m-1,ja:ja+n-1) as

 A= R Q.

Input Parameters

m (global) INTEGER. The number of rows in the distributed submatrix sub(A),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed submatrix sub(A),
(n ≥ 0).

a (local)

REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).
Contains the local pieces of the distributed matrix sub(A) to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix
A(ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A

work (local).
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ mb_a * (mp0+nq0+mb_a), where

ScaLAPACK Routines 6

6-121

iroff = mod(ia-1, mb_a),

icoff = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW),

nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL) and numroc,
indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW, and
NPCOL can be determined by calling the subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if m < n, the upper triangle of A(ia:ia+m-1,ja:ja+n-1) contains the
m-by-m upper triangular matrix R; if m > n, the elements on and above the (m -
n)-th subdiagonal contain the m-by-n upper trapezoidal matrix R; the
remaining elements, with the array tau, represent the orthogonal/unitary
matrix Q as a product of elementary reflectors (see Application Notes
below)

tau (local)

REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Array, DIMENSION LOCr(ia+m-1).
Contains the scalar factor tau of elementary reflectors.
tau is tied to the distributed matrix A.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0, the execution is successful.
 < 0, if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

6-122

6 Intel® Math Kernel Library Reference Manual

Application Notes

The matrix Q is represented as a product of elementary reflectors
 Q = H(ia) H(ia+1)... H(ia+k-1),

where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real/complex scalar, and v is a real/complex vector with v(n-k+i+1:n) = 0 and
v(n-k+i) = 1; v(1:n-k+i-1)/conjg (v(1:n-k+i-1)) is stored on exit in
A(ia+m-k+i-1,ja:ja+n-k+i-2), and tau in tau(ia+m-k+i-1).

p?orgrq
Generates the orthogonal matrix Q of the RQ factorization
formed by p?gerqf.

Syntax
call psorgrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the whole or part of m-by-n real distributed matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal columns, which is defined as the last m rows of a
product of k elementary reflectors of order m

Q= H(1) H(2)...H(k)

as returned by p?gerqf.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q),
(n ≥ m ≥ 0).

ScaLAPACK Routines 6

6-123

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q (m ≥ k ≥ 0).

a (local)

REAL for psorgrq
DOUBLE PRECISION for pdorgrq
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)).The i-th column must contain the vector which
defines the elementary reflector H(i), ja < j< ja +k-1, as returned by
p?geqrf in the k columns of its distributed matrix argument
a(ia:*,ja:ja+k-1).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix
A(ia:ia+m-1,ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

REAL for psorgrq
DOUBLE PRECISION for pdorgrq
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gerqf. tau is tied to the distributed matrix A.

work (local)

REAL for psorgrq
DOUBLE PRECISION for pdorgrq
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ mb_a* (mpa0 + nqa0 + mb_a), where

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)

6-124

6 Intel® Math Kernel Library Reference Manual

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?ungrq
Generates the unitary matrix Q of the RQ factorization
formed by p?gerqf.

Syntax
call pcungrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine generates the m-by-n complex distributed matrix Q denoting A(ia:ia+m-1,ja:ja+n-1)
with orthonormal rows, which is defined as the last m rows of a product of k elementary reflectors
of order n

 Q = H(1)' H(2)'... H(k)'

as returned by p?gerqf.

ScaLAPACK Routines 6

6-125

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(Q), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(Q),
(n ≥ m ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q, (m ≥ k ≥ 0).

a (local)

COMPLEX for pcungrq
DOUBLE COMPLEX for pzungrq
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)).The i-th row must contain the vector which
defines the elementary reflector H(i), ia+m-k < i< ia +m-1, as returned by
p?gerqf in the k rows of its distributed matrix argument a(ia+m-k:ia+m-1,
ja:*).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

COMPLEX for pcungrq
DOUBLE COMPLEX for pzungrq
Array, DIMENSION LOCr(ia+m-1)).
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gerqf. tau is tied to the distributed matrix A.

work (local)

COMPLEX for pcungrq
DOUBLE COMPLEX for pzungrq
 Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ mb_a* (mpa0 +nqa0+mb_a), where

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

6-126

6 Intel® Math Kernel Library Reference Manual

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),

nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a Contains the local pieces of the m-by-n distributed matrix Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?ormrq
Multiplies a general matrix by the orthogonal matrix Q of
the RQ factorization formed by p?gerqf.

Syntax
call psormrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info)

call pdormrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

ScaLAPACK Routines 6

6-127

Description

The routine overwrites the general real m-by-n distributed matrix
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

 side ='L' side ='R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'T': QT sub(C) sub(C) QT

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(1) H(2)... H(k)

as returned by p?gerqf. Q is of order m if side ='L' and of order n if side ='R'.

 Input Parameters

side (global) CHARACTER
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix sub(C),
(n ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
if side ='L', m > k >0
if side ='R', n > k >0.

a (local)

REAL for psormqr
DOUBLE PRECISION for pdormqr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side ='L', and (lld_a, LOCc(ja+n-1))
if side ='R'.The i-th row must contain the vector which defines the

6-128

6 Intel® Math Kernel Library Reference Manual

elementary reflector H(i), ia < i< ia +k-1, as returned by p?gerqf in the k
rows of its distributed matrix argument a(ia:ia +k-1,ja:*).
a(ia:ia +k-1,ja:*)is modified by the routine but restored on exit.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

REAL for psormqr
DOUBLE PRECISION for pdormqr
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gerqf. tau is tied to the distributed matrix A.

c (local)

REAL for psormrq
DOUBLE PRECISION for pdormrq
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

work (local)

REAL for psormrq
DOUBLE PRECISION for pdormrq. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:
 if side ='L',

lwork ≥ max ((mb_a* (mb_a-1))/2, (mpc0 + max
(mqa0 + numroc (numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp),
nqc0))*mb_a) + mb_a * mb_a

 else if side ='R',

lwork ≥ max ((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a *mb_a

ScaLAPACK Routines 6

6-129

end if
where

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL),

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

if lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

c Overwritten by the product Q* sub(C) or Q' sub (C), or sub(C)* Q’,
or sub(C)* Q .

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

6-130

6 Intel® Math Kernel Library Reference Manual

p?unmrq
Multiplies a general matrix by the unitary matrix Q of the
RQ factorization formed by p?gerqf.

Syntax
call pcunmrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info)

call pzunmrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

The routine overwrites the general complex m-by-n distributed matrix
sub (C) = C(ic:ic+m-1,jc:jc+n-1) with

 side ='L' side ='R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'C': QH sub(C) sub(C) QH

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(1)' H(2)'... H(k)'

as returned by p?gerqf. Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side (global) CHARACTER
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix sub(C),
(n ≥ 0).

ScaLAPACK Routines 6

6-131

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
if side ='L', m > k >0
if side ='R', n > k >0.

a (local)

COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side ='L', and (lld_a, LOCc(ja+n-1))
if side ='R'.The i-th row must contain the vector which defines the
elementary reflector H(i), ia < i< ia +k-1, as returned by p?gerqf in the k
rows of its distributed matrix argument a(ia:ia +k-1,ja*).
a(ia:ia +k-1,ja*)is modified by the routine but restored on exit.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq
Array, DIMENSION LOCc(ja+k-1)).
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gerqf. tau is tied to the distributed matrix A.

c (local)

COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq.
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).

Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

6-132

6 Intel® Math Kernel Library Reference Manual

work (local)
COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:
 if side ='L',

lwork ≥ max ((mb_a* (mb_a-1))/2, (mpc0 + max
(mqa0 + numroc (numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp),
nqc0))*mb_a) + mb_a * mb_a

 else if side ='R',

lwork ≥ max ((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a * mb_a

end if
where

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL),

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

if lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

ScaLAPACK Routines 6

6-133

Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)* Q’,
or sub(C)* Q .

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?tzrzf
Reduces the upper trapezoidal matrix A to upper
triangular form.

Syntax
call pstzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pdtzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pctzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)

call pztzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine reduces the m-by-n (m ≤ n) real/complex upper trapezoidal matrix
sub(A)=(ia:ia+m-1,ja:ja+n-1) to upper triangular form by means of orthogonal/unitary
transformations. The upper trapezoidal matrix A is factored as

 A = (R 0) * Z,

where Z is an n-by-n orthogonal/unitary matrix and R is an m-by-m upper triangular matrix.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix sub(A), (m ≥ 0).

n (global) INTEGER. The number of columns in the submatrix sub(A), (n ≥ 0).

6-134

6 Intel® Math Kernel Library Reference Manual

a (local)

REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)).Contains the local pieces of the m-by-n
distributed matrix sub (A) to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

work (local)

REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ mb_a* (mp0 +nq0+mb_a), where

iroff = mod(ia-1, mb_a),

icoff = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW),

nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL)

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

ScaLAPACK Routines 6

6-135

Output Parameters

a On exit, the leading m-by-m upper triangular part of
sub(A) contains the upper triangular matrix R, and elements m+1 to n of the
first m rows of
sub (A), with the array tau, represent the orthogonal/unitary matrix Z as a
product of m elementary reflectors.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

tau (local)

REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
Array, DIMENSION LOCr(ia+m-1)).
Contains the scalar factor of elementary reflectors.
tau is tied to the distributed matrix A.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

The factorization is obtained by the Householder's method. The k-th transformation matrix, Z(k),
which is or whose conjugate transpose is used to introduce zeros into the (m - k + 1)-th row of
sub(A), is given in the form

 Z(k) = ,

 where

T(k) = i - tau*u(k)*u(k)',

 u(k) = .

i 0

0 T k()

1

0

z k()

6-136

6 Intel® Math Kernel Library Reference Manual

tau is a scalar and Z(k) is an (n - m) element vector.tau and Z(k) are chosen to annihilate the
elements of the k-th row of sub(A). The scalar tau is returned in the k-th element of tau and the
vector u(k) in the k-th row of sub(A), such that the elements of Z(k) are in a(k, m + 1),..., a(k, n).
The elements of R are returned in the upper triangular part of sub(A). Z is given by

 Z = Z(1) * Z(2) *... * Z(m).

p?ormrz
Multiplies a general matrix by the orthogonal matrix from
a reduction to upper triangular form formed by p?tzrzf.

Syntax
call psormrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info)

call pdormrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

The routine overwrites the general real m-by-n distributed matrix
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

 side ='L' side ='R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'T': QT sub(C) sub(C) QT

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

Q = H(1) H(2)... H(k)

as returned by p?tzrzf. Q is of order m if side ='L' and of order n if side ='R'.

 Input Parameters

side (global) CHARACTER
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

ScaLAPACK Routines 6

6-137

trans (global) CHARACTER
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix sub(C),
(n ≥ 0).

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
if side ='L', m > k >0
if side ='R', n > k >0.

l (global)

The columns of the distributed submatrix sub(A) containing the meaningful
part of the Householder reflectors.
if side ='L', m > l >0
if side ='R', n > l >0.

a (local)

REAL for psormrz
DOUBLE PRECISION for pdormrz.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side ='L', and
(lld_a, LOCc(ja+n-1)) if side ='R',
where lld_a > max (1,LOCr (ia+k-1). The i-th row must contain the
vector which defines the elementary reflector H(i),
ia < i< ia+k-1, as returned by p?tzrzf in the k rows of its distributed
matrix argument a(ia:ia+k-1,ja:*).
a(ia:ia+k-1,ja:*)is modified by the routine but restored on exit.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)
REAL for psormrz
DOUBLE PRECISION for pdormrz

6-138

6 Intel® Math Kernel Library Reference Manual

Array, DIMENSION LOCc(ia+k-1)).
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?tzrzf. tau is tied to the distributed matrix A.

c (local)

REAL for psormrz
DOUBLE PRECISION for pdormrz
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c indicating
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

work (local)

REAL for psormrz
DOUBLE PRECISION for pdormrz. Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:
 if side ='L',

lwork ≥ max ((mb_a* (mb_a-1))/2, (mpc0 + max
(mqa0 + numroc (numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp),
nqc0))*mb_a) + mb_a * mb_a

 else if side ='R',

lwork ≥ max ((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a *mb_a

end if
where

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL),

iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

ScaLAPACK Routines 6

6-139

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

if lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

c Overwritten by the product Q* sub(C) or Q' sub (C), or sub(C)*Q’,
or sub(C)*Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

6-140

6 Intel® Math Kernel Library Reference Manual

p?unmrz
Multiplies a general matrix by the unitary transformation
matrix from a reduction to upper triangular form
determined by p?tzrzf.

Syntax
call pcunmrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info)

call pzunmrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

The routine overwrites the general complex m-by-n distributed matrix
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

 side ='L' side ='R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'C': QH sub(C) sub(C) QH

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors

Q = H(1)' H(2)'... H(k)'

as returned by pctzrzf/pztzrzf. Q is of order m if side ='L' and of order n if side ='R'.

Input Parameters

side (global) CHARACTER
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed matrix sub(C),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix sub(C),
(n ≥ 0).

ScaLAPACK Routines 6

6-141

k (global) INTEGER. The number of elementary reflectors whose product defines
the matrix Q. Constraints:
if side ='L', m > k >0
if side ='R', n > k >0.

a (local)

COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side ='L', and
(lld_a, LOCc(ja+n-1)) if side ='R',
where lld_a > max (1, LOCr (ja+k-1). The i-th row must contain the vector
which defines the elementary reflector H(i), ia < i< ia +k-1, as returned by
p?gerqf in the k rows of its distributed matrix argument
a(ia:ia +k-1,ja*).
a(ia:ia +k-1,ja*)is modified by the routine but restored on exit.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)

COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz
Array, DIMENSION LOCc(ia+k-1)).
Contains the scalar factor tau (i) of elementary reflectors H(i) as returned by
p?gerqf. tau is tied to the distributed matrix A.

c (local)

COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of local dimension
(lld_c, LOCc(jc+n-1)).
Contains the local pieces of the distributed matrix sub(C) to be factored.

ic,jc (global) INTEGER. The row and column indices in the global array c
indicating the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

6-142

6 Intel® Math Kernel Library Reference Manual

work (local)

COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz. Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:
 if side ='L',

lwork ≥ max ((mb_a* (mb_a-1))/2, (mpc0 + max
(mqa0 + numroc (numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp),
nqc0))*mb_a) + mb_a * mb_a

 else if side ='R',

lwork ≥ max ((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a * mb_a

end if

where

lcmp = lcm / NPROW with lcm = ilcm (NPROW, NPCOL),

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),

iroffc = mod(ic-1, mb_c),

icoffc = mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

if lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

ScaLAPACK Routines 6

6-143

Output Parameters

c Overwritten by the product Q* sub(C) or Q’ sub (C), or sub(C)*Q’,
or sub(C)*Q .

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?ggqrf
Computes the generalized QR factorization.

Syntax
call psggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,

work, lwork, info)

call pdggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

call pcggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

call pzggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

Description

The routine forms the generalized QR factorization of an n-by-m matrix
 sub(A) = A (ia:ia+n-1, ja:ja+m-1)
and an n-by-p matrix
 sub(B) = B (ib:ib+n-1, jb:jb+p-1):

as
 sub(A) = Q R, sub(B) = Q T Z,

where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and R
and T assume one of the forms:

6-144

6 Intel® Math Kernel Library Reference Manual

if n > m

or if n <m

where R11 is upper triangular, and

, if n ≤ p,

or , if n > p

where T12 or T21 is an upper triangular matrix.

In particular, if sub(B) is square and nonsingular, the GQR factorization of sub(A) and sub(B)
implicitly gives the QR factorization of inv (sub(B))* sub (A):

 inv (sub(B)) * sub(A) = ZH (T -1 R).

Input Parameters

n (global) INTEGER. The number of rows in the distributed matrices sub (A) and
sub(B), (n ≥ 0).

m (global) INTEGER. The number of columns in the distributed matrix sub(A),
(m ≥ 0).

p INTEGER. The number of columns in the distributed matrix sub(B), (p ≥ 0).

R
R11

0 
 
  m

n m–
=

m

R R11 R12 
 

n=

n m n–

T 0 T12 
 

n=

p n– n

T T11

T21 
 
  n p–

p 
 
 

=

p

ScaLAPACK Routines 6

6-145

a (local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)). Contains the local pieces of the n-by-m matrix
sub(A) to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

b (local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Pointer into the local memory to an array of dimension
(lld_b, LOCc(jb+p-1)). Contains the local pieces of the n-by-p matrix
sub(B) to be factored.

ib,jb (global) INTEGER. The row and column indices in the global array b
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

work (local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least lwork ≥ max
(nb_a* (npa0 +mqa0+nb_a), max((nb_a*(nb_a-1))/2, (pqb0 + npb0)*nb_a)
+ nb_a * nb_a,
mb_b * (npb0 + pqb0 + mb_b)), where

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),

6-146

6 Intel® Math Kernel Library Reference Manual

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

npa0 = numroc (n+iroffa, mb_a, MYROW, iarow, NPROW),

mqa0 = numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL)

iroffb = mod(ib-1, mb_b),

icoffb = mod(jb-1, nb_b),

ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW),

ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),

npb0 = numroc (n+iroffa, mb_b, MYROW, ibrow, NPROW),

pqb0 = numroc (m+icoffb, nb_b, MYCOL, ibcol, NPCOL)

and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, the elements on and above the diagonal of sub (A) contain the
min(n,m)-by-m upper trapezoidal matrix R (R is upper triangular if n ≥ m);
the elements below the diagonal, with the array taua, represent the
orthogonal/unitary matrix Q as a product of min(n,m) elementary reflectors.
(See Application Notes below).

taua, taub (local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Arrays, DIMENSION LOCc(ja+min(n,m)-1)for taua and LOCr(ib+n-1) for
taub.
The array taua contains the scalar factors of the elementary reflectors which
represent the orthogonal/unitary matrix Q.
taua is tied to the distributed matrix A. (See Application Notes below).

ScaLAPACK Routines 6

6-147

The array taub contains the scalar factors of the elementary reflectors which
represent the orthogonal/unitary matrix Z.
taub is tied to the distributed matrix B. (See Application Notes below).

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ja) H(ja+1)... H(ja+k-1),

where k = min(n,m).

Each H(i) has the form

H(i) = i - taua * v * v'

where taua is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:n) is stored on exit in A(ia+i:ia+n-1,ja+i-1), and taua in taua(ja+i-1).To
form Q explicitly, use ScaLAPACK subroutine p?orgqr/p?ungqr. To use Q to update another
matrix, use ScaLAPACK subroutine p?ormqr/p?unmqr.

The matrix Z is represented as a product of elementary reflectors

Z = H(ib) H(ib+1) . . . H(ib+k-1),
where k = min(n,p).

Each H(i) has the form

H(i) = i - taub * v * v'

where taub is a real/complex scalar, and v is a real/complex vector with v(p-k+i+1:p) = 0 and
v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in B(ib+n-k+i-1,jb:jb+p-k+i-2), and taub in
taub(ib+n-k+i-1).To form Z explicitly, use ScaLAPACK subroutine p?orgrq/p?ungrq.To use
Z to update another matrix, use ScaLAPACK subroutine p?ormrq/p?unmrq.

6-148

6 Intel® Math Kernel Library Reference Manual

p?ggrqf
Computes the generalized RQ factorization.

Syntax
call psggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,

work, lwork, info)

call pdggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

call pcggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

call pzggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
work, lwork, info)

Description

The routine forms the generalized RQ factorization of an m-by-n matrix
sub(A)=(ia:ia+m-1, ja:ja+n-1) and a p-by-n matrix sub(B)=(ib:ib+p-1, ja:ja+n-1):

 sub(A) = R Q, sub(B) = Z T Q,

where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by-p orthogonal/unitary matrix, and R
and T assume one of the forms:

, if m ≤ n,

or

 , if m > n

where R11 or R21 is upper triangular, and

 , if p ≥ n

R m= 0(R12)
n m– m

R
R11
R12 
  m n–

n
=

n

T
T11
0 

  n

p n–
=

n

ScaLAPACK Routines 6

6-149

or

, if p < n,

where T11 is upper triangular.

In particular, if sub(B) is square and nonsingular, the GRQ factorization of sub(A) and sub(B)
implicitly gives the RQ factorization of sub (A)*inv(sub(B)):

 sub(A)*inv(sub(B)) = (R*inv(T))*Z'

where inv(sub(B)) denotes the inverse of the matrix sub(B), and Z' denotes the transpose of matrix
Z.

Input Parameters

m (global) INTEGER. The number of rows in the distributed matrices sub (A),
(m ≥ 0).

p INTEGER. The number of rows in the distributed matrix sub(B), (p ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrices sub(A)
and sub(B), (n ≥ 0).

a (local)
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). Contains the local pieces of the m-by-n
distributed matrix sub(A) to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

b (local)
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.

T p= T11(T12) p

p n p–

6-150

6 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of dimension
(lld_b, LOCc(jb+n-1)). Contains the local pieces of the p-by-n matrix
sub(B) to be factored.

ib,jb (global) INTEGER. The row and column indices in the global array b
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

work (local)
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.Workspace array of dimension of lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork ≥ max (mb_a* (mpa0 +nqa0+mb_a), max((mb_a*(mb_a-1))/2,
(ppb0 + nqb0)*mb_a) + mb_a * mb_a,
nb_b * (ppb0 + nqb0 + nb_b)), where

iroffa = mod(ia-1, mb_a),

icoffa = mod(ja-1, nb_a),

iarow = indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),

mpa0 = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),

nqa0 = numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL)

iroffb = mod(ib-1, mb_b),

icoffb = mod(jb-1, nb_b),

ibrow = indxg2p (ib, mb_b, MYROW, rsrc_b, NPROW),

ibcol = indxg2p (jb, nb_b, MYCOL, csrc_b, NPCOL),

ppb0 = numroc (p+iroffb, mb_b, MYROW, ibrow, NPROW),

nqb0 = numroc (n+icoffb, nb_b, MYCOL, ibcol, NPCOL)

and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

ScaLAPACK Routines 6

6-151

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if m < n, the upper triangle of A(ia:ia+m-1, ja+n-m:ja+n-1)
contains the m-by-m upper triangular matrix R; if m > n, the elements on and
above the (m-n)-th subdiagonal contain the m-by-n upper trapezoidal matrix R;
the remaining elements, with the array taua, represent the orthogonal/unitary
matrix Q as a product of min(n,m) elementary reflectors. (See Application
Notes below).

taua, taub (local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Arrays, DIMENSION LOCr(ia+m-1)for taua and LOCc(jb+min(p,n)-1) for
taub.
The array taua contains the scalar factors of the elementary reflectors which
represent the orthogonal/unitary matrix Q.
taua is tied to the distributed matrix A. (See Application Notes below).

The array taub contains the scalar factors of the elementary reflectors which
represent the orthogonal/unitary matrix Z.
taub is tied to the distributed matrix B. (See Application Notes below).

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ia) H(ia+1)... H(ia+k-1),

6-152

6 Intel® Math Kernel Library Reference Manual

where k = min(m,n).

Each H(i) has the form

H(i) = i - taua * v * v'

where taua is a real/complex scalar, and v is a real/complex vector with v(n-k+i+1:n) = 0 and
v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(ia+m-k+i-1, ja:ja+n-k+i-2), and taua in
taua(ia+m-k+i-1). To form Q explicitly, use ScaLAPACK subroutine p?orgrq/p?ungrq. To
use Q to update another matrix, use ScaLAPACK subroutine p?ormrq/p?unmrq.

The matrix Z is represented as a product of elementary reflectors

Z = H(jb) H(jb+1)... H(jb+k-1),
where k = min(p,n).

Each H(i) has the form

H(i) = i - taub * v * v' ,

where taub is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i)= 1;
v(i+1:p) is stored on exit in B(ib+i:ib+p-1,jb+i-1), and taub in taub(jb+i-1). To form Z
explicitly, use ScaLAPACK subroutine p?orgqr/p?ungqr. To use Z to update another matrix,
use ScaLAPACK subroutine p?ormqr/p?unmqr.

ScaLAPACK Routines 6

6-153

Symmetric Eigenproblems

To solve a symmetric eigenproblem with ScaLAPACK, you usually need to reduce the matrix to
real tridiagonal form T and then find the eigenvalues and eigenvectors of the tridiagonal matrix T.
ScaLAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or
unitary) similarity transformation A = QTQH as well as for solving tridiagonal symmetric
eigenvalue problems. These routines are listed in Table 6-4.

There are different routines for symmetric eigenproblems, depending on whether you need
eigenvalues only or eigenvectors as well, and on the algorithm used (either the QR algorithm, or
bisection followed by inverse iteration).

*) This routine will be described as part of auxiliary ScaLAPACK routines.

Table 6-4 Computational Routines for Solving Symmetric Eigenproblems

Operation
Dense
symmetric/Hermitian
matrix

Orthogonal/
unitary
matrix

Symmetric
tridiagonal
matrix

Reduce to tridiagonal form
A = QTQH

p?sytrd/p?hetrd

Multiply matrix after reduction p?ormtr/p?unmtr

Find all eigenvalues and
eigenvectors of a tridiagonal
matrix T by a QR method

?steqr2*)

Find selected eigenvalues of a
tridiagonal matrix T via
bisection

p?stebz

Find selected eigenvectors of a
tridiagonal matrix T by inverse
iteration

p?stein

6-154

6 Intel® Math Kernel Library Reference Manual

p?sytrd
Reduces a symmetric matrix to real symmetric tridiagonal
form by an orthogonal similarity transformation.

Syntax
call pssytrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pdsytrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

Description

This routine reduces a real symmetric matrix sub(A) to symmetric tridiagonal form T by an
orthogonal similarity transformation:

 Q' sub(A) * Q = T,

where sub(A) = A(ia:ia+n-1,ja:ja+n-1).

Input Parameters

uplo (global) CHARACTER.

Specifies whether the upper or lower triangular part of the symmetric matrix
sub(A) is stored:

If uplo = 'U', upper triangular
If uplo = 'L', lower triangular

n (global) INTEGER. The order of the distributed matrix sub(A), (n ≥ 0).

a (local)

REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)).On entry, this array contains the local pieces of the
symmetric distributed matrix sub(A).
 If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the
upper triangular part of the matrix, and its strictly lower triangular part is not
referenced.

ScaLAPACK Routines 6

6-155

If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular part of the matrix, and its strictly upper triangular part is not
referenced. (See Application Notes below).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

work (local)

REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least
lwork > max(NB * (np +1), 3 * NB),

where NB = mb_a = nb_a,

np = numroc(n, NB, MYROW, iarow, NPROW),

iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW).

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if uplo = 'U', the diagonal and first superdiagonal of sub(A) are
overwritten by the corresponding elements of the tridiagonal matrix T, and the
elements above the first superdiagonal, with the array tau, represent the
orthogonal matrix Q as a product of elementary reflectors; if uplo = 'L', the
diagonal and first subdiagonal of sub(A) are overwritten by the corresponding
elements of the tridiagonal matrix T, and the elements below the first
subdiagonal, with the array tau, represent the orthogonal matrix Q as a
product of elementary reflectors. (See Application Notes below).

6-156

6 Intel® Math Kernel Library Reference Manual

d (local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCc(ja+n-1). The diagonal elements of the
tridiagonal matrix T:

 d(i) = A(i,i).

d is tied to the distributed matrix A.

e (local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCc(ja+n-1) if uplo = 'U', LOCc(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix T:

e(i) = A(i,i+1) if uplo = 'U',
e(i) = A(i+1,i) if uplo = 'L'.
e is tied to the distributed matrix A.

tau (local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCc(ja+n-1). This array contains the scalar factors
tau of the elementary reflectors.
tau is tied to the distributed matrix A.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

Q = H(n-1)... H(2) H(1).

Each H(i) has the form

H(i) = i - tau * v * v',

ScaLAPACK Routines 6

6-157

where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored
on exit in A(ia:ia+i-2,ja+i), and tau in tau (ja+i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2)... H(n-1).

Each H(i) has the form

H(i) = i - tau * v * v',

where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored
on exit in A(ia+i+1:ia+n-1,ja+i-1), and tau in tau(ja+i-1).

The contents of sub(A) on exit are illustrated by the following examples with n = 5:

if uplo = 'U':

if uplo = 'L':

where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the
vector defining H(i).

d e v2 v3 v4

 d e v3 v4

 d e v4

 d e

 d

d

e d
v1 e d

v1 v2 e d

v1 v2 v3 e d

6-158

6 Intel® Math Kernel Library Reference Manual

p?ormtr
Multiplies a general matrix by the orthogonal
transformation matrix from a reduction to tridiagonal form
determined by p?sytrd.

Syntax
call psormtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info)

call pdormtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

The routine overwrites the general real distributed m-by-n matrix
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

 side = 'L' side = 'R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'T': QT sub(C) sub(C) QT

where Q is a real orthogonal distributed matrix of order nq, with nq = m if side = 'L' and nq = n
if side = 'R'. Q is defined as the product of nq elementary reflectors, as returned by p?sytrd.

if uplo = 'U', Q = H(nq-1)... H(2) H(1);

if uplo = 'L', Q = H(1) H(2)... H(nq-1).

Input Parameters

side (global) CHARACTER
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

uplo (global) CHARACTER.
= 'U': Upper triangle of A(ia:*,ja:*) contains elementary reflectors from
p?sytrd;

ScaLAPACK Routines 6

6-159

= 'L': Lower triangle of A(ia:*,ja:*) contains elementary reflectors from
p?sytrd

m (global) INTEGER. The number of rows in the distributed matrix sub(C),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix sub(C),
(n ≥ 0).

a (local)
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side='L', or
(lld_a, LOCc(ja+n-1)) if side = 'R'.
Contains the vectors which define the elementary reflectors, as returned by
p?sytrd.
If side='L', lld_a > max(1, LOCr(ia+m-1));
if side ='R', lld_a > max(1, LOCr(ia+n-1)).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Array, DIMENSION of ltau where

if side = 'L' and uplo = 'U', ltau = LOCc(m_a),
if side = 'L' and uplo = 'L', ltau = LOCc(ja+m-2),
if side = 'R' and uplo = 'U', ltau = LOCc(n_a),
if side = 'R' and uplo = 'L', ltau = LOCc(ja+n-2). tau(i) must contain the
scalar factor of the elementary reflector H(i), as returned by p?sytrd.
tau is tied to the distributed matrix A.

c (local)
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). Contains the local pieces of the distributed matrix
sub (C).

6-160

6 Intel® Math Kernel Library Reference Manual

work (local)
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:

if uplo = 'U',

iaa=ia, jaa=ja+1, icc=ic, jcc=jc;

else uplo = 'L',

 iaa=ia+1, jaa=ja;

 if side = 'L',

icc=ic+1, jcc=jc;

else icc=ic, jcc=jc+1;

 end if

 end if

If side = 'L',

 mi=m-1, ni=n

lwork > max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a

else if side = 'R',

mi=m; mi = n-1;

lwork > max((nb_a*(nb_a-1))/2,
(nqc0 + max(npa0 + numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL),
nb_a, 0, 0, lcmq), mpc0))*nb_a) + nb_a * nb_a

 end if

where lcmq = lcm / NPCOL with lcm = ilcm(NPROW, NPCOL),

iroffa = mod(iaa-1, mb_a),

icoffa = mod(jaa-1, nb_a),

iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),

npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(icc-1, mb_c),

ScaLAPACK Routines 6

6-161

icoffc = mod(jcc-1, nb_c),

icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo. If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c Overwritten by the product Q sub(C), or Q'sub(C) or sub(C) Q' or sub(C) Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?hetrd
Reduces a Hermitian matrix to Hermitian tridiagonal form
by a unitary similarity transformation.

Syntax
call pchetrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pzhetrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

6-162

6 Intel® Math Kernel Library Reference Manual

Description

This routine reduces a complex Hermitian matrix sub(A) to Hermitian tridiagonal form T by a
unitary similarity transformation:

 Q' sub(A) Q = T

where sub(A) = A(ia:ia+n-1,ja:ja+n-1).

Input Parameters
uplo (global) CHARACTER.

Specifies whether the upper or lower triangular part of the Hermitian matrix
sub(A) is stored:
If uplo = 'U', upper triangular
If uplo = 'L', lower triangular

n (global) INTEGER. The order of the distributed matrix sub(A), (n ≥ 0).

a (local)

COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains the local pieces of the
Hermitian distributed matrix sub(A).
 If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the
upper triangular part of the matrix, and its strictly lower triangular part is not
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular part of the matrix, and its strictly upper triangular part is not
referenced.(See Application Notes below).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

work (local)

COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:

ScaLAPACK Routines 6

6-163

lwork > max(NB * (np +1), 3 * NB)

where NB = mb_a = nb_a,

np = numroc(n, NB, MYROW, iarow, NPROW),

iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW).

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if uplo = 'U', the diagonal and first superdiagonal of sub(A) are
overwritten by the corresponding elements of the tridiagonal matrix T, and the
elements above the first superdiagonal, with the array tau, represent the
unitary matrix Q as a product of elementary reflectors; if uplo = 'L', the
diagonal and first subdiagonal of sub(A) are overwritten by the corresponding
elements of the tridiagonal matrix T, and the elements below the first
subdiagonal, with the array tau, represent the unitary matrix Q as a product of
elementary reflectors. (See Application Notes below).

d (local)
REAL for pchetrd
DOUBLE PRECISION for pzhetrd.
Arrays, DIMENSION LOCc(ja+n-1). The diagonal elements of the
tridiagonal matrix T:

 d(i) = A(i,i).

d is tied to the distributed matrix A.

e (local)
REAL for pchetrd
DOUBLE PRECISION for pzhetrd.
Arrays, DIMENSION LOCc(ja+n-1) if uplo = 'U', LOCc(ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix T:

6-164

6 Intel® Math Kernel Library Reference Manual

e(i) = A(i,i+1) if uplo = 'U',
e(i) = A(i+1,i) if uplo = 'L'.
e is tied to the distributed matrix A.

tau (local)
COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
Arrays, DIMENSION LOCc(ja+n-1). This array contains the scalar factors
tau of the elementary reflectors.
tau is tied to the distributed matrix A.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

Q = H(n-1)... H(2) H(1).

Each H(i) has the form

H(i) = i - tau * v * v',

where tau is a complex scalar, and v is a complex vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1)
is stored on exit in A(ia:ia+i-2,ja+i), and tau in tau (ja+i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2)... H(n-1).

Each H(i) has the form

H(i) = i - tau * v * v',

where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n)
is stored on exit in A(ia+i+1:ia+n-1,ja+i-1), and tau in tau(ja+i-1).

The contents of sub(A) on exit are illustrated by the following examples with n = 5:

ScaLAPACK Routines 6

6-165

if uplo = 'U':

if uplo = 'L':

where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the
vector defining H(i).

p?unmtr
Multiplies a general matrix by the unitary transformation
matrix from a reduction to tridiagonal form determined by
p?hetrd.

Syntax
call pcunmtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info)

call pzunmtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

d e v2 v3 v4

 d e v3 v4

 d e v4

 d e

 d

d

e d

v1 e d

v1 v2 e d

v1 v2 v3 e d

6-166

6 Intel® Math Kernel Library Reference Manual

Description

The routine overwrites the general complex distributed m-by-n matrix
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

 side = 'L' side = 'R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'C': QH sub(C) sub(C) QH

where Q is a complex unitary distributed matrix of order nq, with nq = m if side = 'L' and nq = n
if side = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by p?hetrd.

if uplo = 'U', Q = H(nq-1)... H(2) H(1);

if uplo = 'L', Q = H(1) H(2)... H(nq-1).

Input Parameters

side (global) CHARACTER
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

uplo (global) CHARACTER.
= 'U': Upper triangle of A(ia:*,ja:*) contains elementary reflectors from
p?hetrd;
= 'L': Lower triangle of A(ia:*,ja:*) contains elementary reflectors from
p?hetrd

m (global) INTEGER. The number of rows in the distributed matrix sub(C),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix sub(C),
(n ≥ 0).

a (local)
REAL for pcunmtr
DOUBLE PRECISION for pzunmtr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side='L', or
(lld_a, LOCc(ja+n-1)) if side = 'R'.
Contains the vectors which define the elementary reflectors, as returned by

ScaLAPACK Routines 6

6-167

p?hetrd.
If side='L', lld_a > max(1, LOCr(ia+m-1));
if side ='R', lld_a > max(1, LOCr(ia+n-1)).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)
COMPLEX for pcunmtr
DOUBLE COMPLEX for pzunmtr.
Array, DIMENSION of ltau where

if side = 'L' and uplo = 'U', ltau = LOCc(m_a),
if side = 'L' and uplo = 'L', ltau = LOCc(ja+m-2),
if side = 'R' and uplo = 'U', ltau = LOCc(n_a),
if side = 'R' and uplo = 'L', ltau = LOCc(ja+n-2). tau(i) must contain the
scalar factor of the elementary reflector H(i), as returned by p?hetrd.
tau is tied to the distributed matrix A.

c (local)
COMPLEX for pcunmtr
DOUBLE COMPLEX for pzunmtr.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+n-1)). Contains the local pieces of the distributed matrix sub (C).

work (local)
COMPLEX for pcunmtr
DOUBLE COMPLEX for pzunmtr.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:

If uplo = 'U',

iaa=ia; jaa=ja+1, icc=ic; jcc=jc;

else uplo = 'L',

 iaa=ia+1, jaa=ja;

 if side = 'L',

icc=ic+1; jcc=jc;

else icc=ic; jcc=jc+1;

6-168

6 Intel® Math Kernel Library Reference Manual

 end if

 end if

If side = 'L',

 mi=m-1; ni=n

lwork > max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a

else if side = 'R',

mi=m; mi = n-1;

lwork > max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 +
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), * nb_a, 0, 0, lcmq),
mpc0))*nb_a) + nb_a * nb_a

 end if

where lcmq = lcm / NPCOL with lcm = ilcm(NPROW, NPCOL),

iroffa = mod(iaa-1, mb_a),

icoffa = mod(jaa-1, nb_a),

iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),

npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(icc-1, mb_c),

icoffc = mod(jcc-1, nb_c),

icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo. If lwork = -1, then lwork is global input and a workspace
query is assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

ScaLAPACK Routines 6

6-169

Output Parameters

c Overwritten by the product Q sub(C), or Q'sub(C) or sub(C) Q' or sub(C) Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - i

p?stebz
Computes the eigenvalues of a symmetric tridiagonal
matrix by bisection.

Syntax
call psstebz(ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m,

nsplit, w, iblock, isplit, work, iwork, liwork, info)

call pdstebz(ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m,
nsplit, w, iblock, isplit, work, iwork, liwork, info)

Description

This routine computes the eigenvalues of a symmetric tridiagonal matrix in parallel. These may be
all eigenvalues, all eigenvalues in the interval

, or the eigenvalues indexed il through iu. A static partitioning of work is done at the
beginning of p?stebz, which results in all processes finding an (almost) equal number of
eigenvalues.

Input Parameters

ictxt (global) INTEGER.
The BLACS context handle.

range (global) CHARACTER. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues in the
interval .

vl vu

vl vu

6-170

6 Intel® Math Kernel Library Reference Manual

If range ='I', the routine computes eigenvalues with indices il to iu.
order (global) CHARACTER. Must be 'B' or 'E'.

If order ='B', the eigenvalues are to be ordered from smallest to largest
within each split-off block.
If order ='E', the eigenvalues for the entire matrix are to be ordered from
smallest to largest.

n (global) INTEGER. The order of the tridiagonal matrix T, (n ≥ 0).

vl, vu (global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
If range ='V', the routine computes the lower and the upper bounds for the
eigenvalues on the interval .

If range ='A' or 'I', vl and vu are not referenced.

il, iu (global)
INTEGER. Constraint: 1 ≤ il ≤ iu ≤ n.
If range ='I', the index of the smallest eigenvalue is returned for il and of
the largest eigenvalue for iu (assuming that the eigenvalues are in ascending
order) must be returned.
il must be at least 1. iu must be at least il and no greater than n.

If range ='A' or 'V', il and iu are not referenced.

abstol (global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
The absolute tolerance to which each eigenvalue is required. An eigenvalue (or
cluster) is considered to have converged if it lies in an interval of width
abstol. If abstol ≤ 0, then the tolerance is taken as ulp||T||, where ulp is the
machine precision and ||T|| means the 1-norm of T

Eigenvalues is computed most accurately when abstol is set to the underflow
threshold slamch('U'), not 0.
Note that if eigenvectors are desired later by inverse iteration (p?stein),
abstol should be set to 2*p?lamch('S').

d (global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.

Array, DIMENSION (n).

vl vu

ScaLAPACK Routines 6

6-171

Contains n diagonal elements of the tridiagonal matrix T. To avoid overflow,
the matrix must be scaled so that its largest entry is no greater than the
overflow(1/2) * underflow(1/4) in absolute value, and for greatest accuracy, it
should not be much smaller than that.

 e (global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array, DIMENSION (n - 1).

Contains (n-1) off-diagonal elements of the tridiagonal matrix T. To avoid
overflow, the matrix must be scaled so that its largest entry is no greater than
overflow(1/2) * underflow(1/4) in absolute value, and for greatest accuracy, it
should not be much smaller than that.

work (local)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array, DIMENSION max(5n, 7). This is a workspace array.

lwork (local) INTEGER.
the size of the work array must be > max(5n, 7).

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

iwork (local) INTEGER.
Array, DIMENSION max(4n, 14). This is a workspace array.

liwork (local) INTEGER.
the size of the iwork array must be > max(4n, 14, NPROCS).

If liwork = -1, then liwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

m (global) INTEGER. The actual number of eigenvalues found. 0 < m < n.

nsplit (global) INTEGER. The number of diagonal blocks detected in T.
1 < nsplit < n.

6-172

6 Intel® Math Kernel Library Reference Manual

w (global) REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array, DIMENSION (n).
On exit, the first m elements of w contain the eigenvalues on all processes.

iblock (global)
INTEGER.
Array, DIMENSION (n).
At each row/column j where e(j) is zero or small, the matrix T is considered
to split into a block diagonal matrix. On exit iblock(i) specifies which block
(from 1 to the number of blocks) the eigenvalue w(i) belongs to.

isplit (global)
INTEGER.
Array, DIMENSION (n).
Contains the splitting points, at which T breaks up into submatrices. The first
submatrix consists of rows/columns 1 to isplit(1), the second of
rows/columns isplit(1)+1 through isplit(2), etc., and the nsplit-th
consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n.
(Only the first nsplit elements are used, but since the nsplit values are
not known, n words must be reserved for isplit.)

info (global)
INTEGER.
If info = 0, the execution is successful.
If info < 0, if info = -i, the i-th argument has an illegal value.
If info > 0, some or all of the eigenvalues fail to converge or not computed.
If info = 1, bisection fails to converge for some eigenvalues; these eigenvalues
are flagged by a negative block number. The effect is that the eigenvalues may
not be as accurate as the absolute and relative tolerances.
If info = 2, mismatch between the number of eigenvalues output and the
number desired.
If info = 3: range='i', and the Gershgorin interval initially used is incorrect.
No eigenvalues are computed. Probable cause: the machine has a sloppy
floating point arithmetic. Increase the fudge parameter, recompile, and try
again.

NOTE. In the (theoretically impossible) event that bisection does not
converge for some or all eigenvalues, info is set to 1 and the ones for
which it did not are identified by a negative block number.

ScaLAPACK Routines 6

6-173

p?stein
Computes the eigenvectors of a tridiagonal matrix using
inverse iteration.

Syntax
call psstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,

work, lwork, iwork, liwork, ifail, iclustr, gap, info)

call pdstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,
work, lwork, iwork, liwork, ifail, iclustr, gap, info)

call pcstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,
work, lwork, iwork, liwork, ifail, iclustr, gap, info)

call pzstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,
work, lwork, iwork, liwork, ifail, iclustr, gap, info)

Description

This routine computes the eigenvectors of a symmetric tridiagonal matrix T corresponding to
specified eigenvalues, by inverse iteration. p?stein does not orthogonalize vectors that are on
different processes. The extent of orthogonalization is controlled by the input parameter lwork.
Eigenvectors that are to be orthogonalized are computed by the same process. p?stein decides
on the allocation of work among the processes and then calls the modified LAPACK routine
sstein2 (psstein and pcstein) or sdtein2 (pdstein and pzstein) on each individual
process. If insufficient workspace is allocated, the expected orthogonalization may not be done.

p = NPROW * NPCOL is the total number of processes.

Input Parameters

n (global) INTEGER. The order of the matrix T, (n ≥ 0).

m (global) INTEGER. The number of eigenvectors to be returned.

NOTE. If the eigenvectors obtained are not orthogonal, increase lwork
and run the code again.

6-174

6 Intel® Math Kernel Library Reference Manual

d, e, w (global)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
DIMENSION (n).

e(*) contains the off-diagonal elements of T.
DIMENSION (n-1).

w(*) contains all the eigenvalues grouped by split-off block.The eigenvalues
are supplied from smallest to largest within the block. (Here the output array w
from p?stebz with order = 'B' is expected. The array should be replicated in
all processes.
DIMENSION(m)

iblock (global) INTEGER.
Array, DIMENSION (n).
The submatrix indices associated with the corresponding eigenvalues in w -- 1
for eigenvalues belonging to the first submatrix from the top, 2 for those
belonging to the second submatrix, etc. (The output array iblock from
p?stebz is expected here).

isplit (global) INTEGER.
Array, DIMENSION (n).
The splitting points, at which T breaks up into submatrices. The first submatrix
consists of rows/columns 1 to isplit (1), the second of rows/columns
isplit(1)+1 through isplit(2), etc., and the nsplit-th consists of
rows/columns isplit (nsplit-1)+1 through isplit(nsplit)=n (The
output array isplit from p?stebz is expected here.)

orfac (global)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. orfac specifies which
eigenvectors should be orthogonalized. Eigenvectors that correspond to
eigenvalues within orfac*||T|| of each other are to be orthogonalized.
However, if the workspace is insufficient (see lwork), this tolerance may be
decreased until all eigenvectors can be stored in one process. No
orthogonalization is done if orfac is equal to zero. A default value of 103 is
used if orfac is negative. orfac should be identical on all processes

iz, jz (global) INTEGER. The row and column indices in the global array z indicating
the first row and the first column of the submatrix Z, respectively.

ScaLAPACK Routines 6

6-175

descz (global and local) INTEGER array, dimension (dlen_). The array descriptor for
the distributed matrix Z.

work (local).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Workspace array,
DIMENSION (lwork).

lwork (local) INTEGER.
lwork controls the extent of orthogonalization which can be done. The
number of eigenvectors for which storage is allocated on each process is

nvec = floor((lwork- max(5*n,np00*mq00))/n). Eigenvectors
corresponding to eigenvalue clusters of size nvec- ceil(m/p) + 1 are
guaranteed to be orthogonal (the orthogonality is similar to that obtained
from?stein2).

It is the minimum value of lwork input on different processes that is
significant.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

iwork (local) INTEGER.
Workspace array, DIMENSION (3n+p+1).

liwork (local) INTEGER. The size of the array iwork. It must be > 3*n + p + 1.

If liwork = -1, then liwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

NOTE. lwork must be no smaller than:
max(5*n,np00*mq00) + ceil(m/p)*n,
and should have the same input value on all processes.

6-176

6 Intel® Math Kernel Library Reference Manual

Output Parameters

z (local)
REAL for psstein
DOUBLE PRECISION for pdstein
COMPLEX for pcstein
DOUBLE COMPLEX for pzstein.
Array, DIMENSION (descz(dlen_), n/NPCOL + NB).
z contains the computed eigenvectors associated with the specified
eigenvalues. Any vector which fails to converge is set to its current iterate after
MAXIT iterations (See ?stein2). On output, z is distributed across the p
processes in block cyclic format.

work(1) On exit, work(1) gives a lower bound on the workspace (lwork) that
guarantees the user desired orthogonalization (see orfac). Note that this may
overestimate the minimum workspace needed.

iwork On exit, iwork(1) contains the amount of integer workspace required.
On exit, the iwork(2) through iwork(p+2) indicate the eigenvectors
computed by each process. Process i computes eigenvectors indexed
iwork(i+2)+1 through iwork(i+3).

ifail (global).
INTEGER. Array, DIMENSION (m).
On normal exit, all elements of ifail are zero. If one or more eigenvectors
fail to converge after MAXIT iterations (as in ?stein), then info > 0 is
returned. If mod(info,m+1)>0, then for i=1 to mod(info,m+1), the
eigenvector corresponding to the eigenvalue w (ifail(i)) failed to converge
(w refers to the array of eigenvalues on output).

iclustr (global) INTEGER. Array, DIMENSION (2*p)
This output array contains indices of eigenvectors corresponding to a cluster of
eigenvalues that could not be orthogonalized due to insufficient workspace (see
lwork, orfac and info). Eigenvectors corresponding to clusters of
eigenvalues indexed iclustr(2*I-1) to iclustr(2*I), i = 1 to info/(m+1),
could not be orthogonalized due to lack of workspace. Hence the eigenvectors
corresponding to these * clusters may not be orthogonal. iclustr is a zero
terminated array --- (iclustr(2*k).ne.0.and. iclustr(2*k+1).eq.0) if and
only if k is the number of clusters.

gap (global)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
This output array contains the gap between eigenvalues whose eigenvectors

ScaLAPACK Routines 6

6-177

could not be orthogonalized. The info/m output values in this array
correspond to the info/(m+1) clusters indicated by the array iclustr. As a
result, the dot product between eigenvectors corresponding to the ith cluster
may be as high as (O(n)*macheps) / gap(i).

info (global) INTEGER.
If info = 0, the execution is successful.
If info < 0: If the i-th argument is an array and the j-entry had an illegal
value, then info = -(i*100+j),
if the i-th argument is a scalar and had an illegal value, then info = -i.

If info < 0: if info = -i, the i-th argument had an illegal value.
If info > 0: if mod(info,m+1) = i, then i eigenvectors failed to converge in
MAXIT iterations. Their indices are stored in the array ifail.
If info/(m+1) = i, then eigenvectors corresponding to i clusters of
eigenvalues could not be orthogonalized due to insufficient workspace.
The indices of the clusters are stored in the array iclustr.

6-178

6 Intel® Math Kernel Library Reference Manual

Nonsymmetric Eigenvalue Problems

This section describes ScaLAPACK routines for solving nonsymmetric eigenvalue problems,
computing the Schur factorization of general matrices, as well as performing a number of related
computational tasks.

To solve a nonsymmetric eigenvalue problem with ScaLAPACK, you usually need to reduce the
matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg
matrix obtained.

 Table 6-5 lists ScaLAPACK routines for reducing the matrix to the upper Hessenberg form by an
orthogonal (or unitary) similarity transformation
A = QHQH , as well as routines for solving eigenproblems with Hessenberg matrices, and
multiplying the matrix after reduction.

p?gehrd
Reduces a general matrix to upper Hessenberg form.

Syntax
call psgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,

 info)

call pdgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,
 info)

call pcgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,
 info)

call pzgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,
 info)

Table 6-5 Computational Routines for Solving Nonsymmetric Eigenproblems

Operation performed
General
matrix

Orthogonal/Unitary
matrix

Hessenberg
matrix

Reduce to Hessenberg form
A = QHQH

p?gehrd

Multiply the matrix after reduction p?ormhr/p?unmhr

Find eigenvalues and Schur
factorization

p?lahqr

ScaLAPACK Routines 6

6-179

Description

The routine reduces a real/complex general distributed matrix sub (A) to upper Hessenberg form H
by an orthogonal or unitary similarity transformation

 Q' sub(A) Q = H,

where sub(A) = A(ia+n-1:ia+n-1,ja+n-1:ja+n-1).

Input Parameters

n (global) INTEGER. The order of the distributed matrix sub(A), (n ≥ 0).

ilo, ihi (global) INTEGER. It is assumed that sub(A) is already upper triangular in rows
ia:ia+ilo-2 and ia+ihi:ia+n-1 and columns ja:ja+ilo-2 and
ja+ihi:ja+n-1. (See Application Notes below).
If n > 0, 1 < ilo < ihi < n; otherwise set ilo = 1, ihi = n.

a (local)
REAL for psgehrd
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd
DOUBLE COMPLEX for pzgehrd.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains the local pieces of the
n-by-n general distributed matrix sub(A) to be reduced.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

work (local)
REAL for psgehrd
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd
DOUBLE COMPLEX for pzgehrd.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of the array work.
lwork is local input and must be at least

lwork > NB*NB + NB*max(ihip+1, ihlp+inlq)

6-180

6 Intel® Math Kernel Library Reference Manual

where NB = mb_a = nb_a,
iroffa = mod(ia-1, NB),
icoffa = mod(ja-1, NB),
ioff = mod(ia+ilo-2, NB),
iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW), ihip =
numroc(ihi+iroffa, NB, MYROW, iarow, NPROW),
ilrow = indxg2p(ia+ilo-1, NB, MYROW, rsrc_a, NPROW),
ihlp = numroc(ihi-ilo+ioff+1, NB,MYROW, ilrow, NPROW),
ilcol = indxg2p(ja+ilo-1, NB, MYCOL, csrc_a, NPCOL),
inlq = numroc(n-ilo+ioff+1, NB, MYCOL, ilcol, NPCOL),

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, the upper triangle and the first subdiagonal of sub(A) are overwritten
with the upper Hessenberg matrix H, and the elements below the first
subdiagonal, with the array tau, represent the orthogonal/unitary matrix Q as a
product of elementary reflectors. (See Application Notes below).

tau (local).
REAL for psgehrd
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd
DOUBLE COMPLEX for pzgehrd.
Array, DIMENSION at least max (ja+n-2).
The scalar factors of the elementary reflectors (see Application Notes below).
Elements ja:ja+ilo-2 and ja+ihi:ja+n-2 of tau are set to zero.
tau is tied to the distributed matrix A.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

ScaLAPACK Routines 6

6-181

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

The matrix Q is represented as a product of (ihi-ilo) elementary reflectors

Q = H(ilo) H(ilo+1)... H(ihi-1).

Each H(i) has the form

 H(i) = i - tau * v * v' ,

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i) = 0, v(i+1) = 1 and
v(ihi+1:n) = 0; v(i+2:ihi) is stored on exit in a(ia+ilo+i:ia+ihi-1,ja+ilo+i-2), and tau in
tau(ja+ilo+i-2). The contents of a(ia:ia+n-1,ja:ja+n-1) are illustrated by the following
example, with n = 7, ilo = 2 and ihi = 6:
on entry

on exit

a a a a a a a

 a a a a a a

 a a a a a a

 a a a a a a

 a a a a a a

 a a a a a a

 a

a a h h h h a

 a h h h h a

 h h h h h h

 v2 h h h h h

 v2 v3 h h h h

 v2 v3 v4 h h h

 a

6-182

6 Intel® Math Kernel Library Reference Manual

where a denotes an element of the original matrix sub(A), H denotes a modified element of the
upper Hessenberg matrix H, and vi denotes an element of the vector defining H(ja+ilo+i-2).

p?ormhr
Multiplies a general matrix by the orthogonal
transformation matrix from a reduction to Hessenberg
form determined by p?gehrd.

Syntax
call psormhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,

jc, descc, work, lwork, info)

call pdormhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,
jc, descc, work, lwork, info)

Description

The routine overwrites the general real distributed m-by-n matrix sub(C) =
C(ic:ic+m-1,jc:jc+n-1) with

 side = 'L' side = 'R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'T': QT sub(C) sub(C) QT

where Q is a real orthogonal distributed matrix of order nq, with nq = m if side = 'L' and nq = n
if side = 'R'. Q is defined as the product of ihi-ilo elementary reflectors, as returned by
p?gehrd.

Q = H(ilo) H(ilo+1)... H(ihi-1).

Input Parameters

side (global) CHARACTER
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='T', transpose, QT is applied.

ScaLAPACK Routines 6

6-183

m (global) INTEGER. The number of rows in the distributed matrix sub (C),
(m ≥ 0).

n (global) INTEGER. The number of columns in he distributed matrix sub (C),
(n ≥ 0).

ilo, ihi (global) INTEGER.
ilo and ihi must have the same values as in the previous call of p?gehrd.
Q is equal to the unit matrix except for the distributed submatrix
Q(ia+ilo:ia+ihi-1,ia+ilo:ja+ihi-1).

 If side = 'L', 1 < ilo < ihi < max(1,m);
 if side = 'R', 1 < ilo <ihi < max(1,n);
 ilo and ihi are relative indexes.

a (local)
REAL for psormhr
DOUBLE PRECISION for pdormhr
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side='L', and
(lld_a, LOCc(ja+n-1)) if side = 'R'.
Contains the vectors which define the elementary reflectors, as returned by
p?gehrd.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)
REAL for psormhr
DOUBLE PRECISION for pdormhr
Array, DIMENSION LOCc(ja+m-2), if side = 'L', and
 LOCc(ja+n-2) if side = 'R'.
This array contains the scalar factors tau(j) of the elementary reflectors H(j)
as returned by p?gehrd. tau is tied to the distributed matrix A.

c (local)
REAL for psormhr
DOUBLE PRECISION for pdormhr
Pointer into the local memory to an array of dimension
(lld_c,LOCc(jc+n-1)). Contains the local pieces of the distributed matrix
sub(C).

6-184

6 Intel® Math Kernel Library Reference Manual

ic,jc (global) INTEGER. The row and column indices in the global array c
indicating the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

work (local)
REAL for psormhr
DOUBLE PRECISION for pdormhr
Workspace array with dimension lwork.

lwork (local or global) INTEGER.
The dimension of the array work.
lwork must be at least
iaa = ia + ilo; jaa = ja+ilo-1;
if side = 'L',
mi = ihi-ilo; ni = n; icc = ic + ilo; jcc = jc;
lwork > max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a

else if side = 'R',
mi = m; ni = ihi-ilo; icc = ic; jcc = jc + ilo;
lwork > max((nb_a*(nb_a-1))/2,
(nqc0 + max(npa0 + numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL),
nb_a, 0, 0, lcmq), mpc0))*nb_a) + nb_a * nb_a

 end if

where lcmq = lcm / NPCOL with lcm = ilcm(NPROW, NPCOL),

iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

ScaLAPACK Routines 6

6-185

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

c sub(C) is overwritten by Q sub(C) or Q'sub(C)
or sub(C)Q' or sub(C)Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?unmhr
Multiplies a general matrix by the unitary
transformation matrix from a reduction to Hessenberg
form determined by p?gehrd.

Syntax
call pcunmhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,

jc, descc, work, lwork, info)

call pzunmhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,
jc, descc, work, lwork, info)

Description

The routine overwrites the general complex distributed m-by-n matrix
sub(C) = C(ic:ic+m-1,jc:jc+n-1) with

 side = 'L' side = 'R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'C': QH sub(C) sub(C) QH

6-186

6 Intel® Math Kernel Library Reference Manual

where Q is a complex unitary distributed matrix of order nq, with nq = m if side = 'L' and nq = n
if side = 'R'. Q is defined as the product of ihi-ilo elementary reflectors, as returned by
p?gehrd.

Q = H(ilo) H(ilo+1)... H(ihi-1).

Input Parameters

side (global) CHARACTER
='L': Q or QH is applied from the left.
='R': Q or QH is applied from the right.

trans (global) CHARACTER
='N', no transpose, Q is applied.
='C', conjugate transpose, QH is applied.

m (global) INTEGER. The number of rows in the distributed submatrix sub (C),
 (m ≥ 0).

n (global) INTEGER. The number of columns in the distributed submatrix
 sub (C), (n ≥ 0).

ilo, ihi (global) INTEGER. These must be the same parameters ilo and ihi,
respectively, as supplied to p?gehrd. Q is equal to the unit matrix except in
the distributed submatrix
Q (ia+ilo:ia+ihi-1,ia+ilo:ja+ihi-1).
If side ='L', then 1 ≤ ilo ≤ ihi ≤ max (1,m).
If side ='R', then 1 ≤ ilo ≤ ihi ≤ max (1,n)
ilo and ihi are relative indexes.

a (local)
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+m-1)) if side='L', and
(lld_a, LOCc(ja+n-1)) if side = 'R'.
Contains the vectors which define the elementary reflectors, as returned by
p?gehrd.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

ScaLAPACK Routines 6

6-187

tau (local)
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Array, DIMENSION LOCc(ja+m-2), if side = 'L', and
LOCc(ja+n-2) if side = 'R'.
This array contains the scalar factors tau(j) of the elementary reflectors H(j)
as returned by p?gehrd. tau is tied to the distributed matrix A.

c (local)
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Pointer into the local memory to an array of dimension (lld_c,
LOCc(jc+n-1)). Contains the local pieces of the distributed matrix sub(C).

ic,jc (global) INTEGER. The row and column indices in the global array c
indicating the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

work (local)
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Workspace array with dimension lwork.

lwork (local or global)
The dimension of the array work. lwork must be at least
iaa = ia + ilo; jaa = ja+ilo-1;
if side = 'L',
mi = ihi-ilo; ni = n; icc = ic + ilo; jcc = jc;
lwork > max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a

else if side = 'R',
mi = m; ni = ihi-ilo; icc = ic; jcc = jc + ilo;
lwork > max((nb_a*(nb_a-1))/2,
(nqc0 + max(npa0 + numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL),
nb_a, 0, 0, lcmq), mpc0))*nb_a) + nb_a * nb_a

 end if

where lcmq = lcm / NPCOL with lcm = ilcm(NPROW, NPCOL),

iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),

6-188

6 Intel® Math Kernel Library Reference Manual

npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

c C is overwritten by Q* sub (C) or Q'*sub(C) or
 sub(C)*Q' or sub(C)*Q.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

p?lahqr
Computes the Schur decomposition and/or eigenvalues
of a matrix already in Hessenberg form.

Syntax
call pslahqr(wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z,

descz, work, lwork, iwork, ilwork, info)

ScaLAPACK Routines 6

6-189

call pdlahqr(wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z,
descz, work, lwork, iwork, ilwork, info)

Description

This is an auxiliary routine used to find the Schur decomposition and/or eigenvalues of a matrix
already in Hessenberg form from columns ilo to ihi.

Input Parameters

wantt (global) LOGICAL.
If wantt = .TRUE., the full Schur form T is required;
If wantt = .FALSE., only eigenvalues are required.

wantz (global) LOGICAL.
If wantz = .TRUE., the matrix of Schur vectors z is required;
If wantz= .FALSE., Schur vectors are not required.

n (global) INTEGER. The order of the Hessenberg matrix A (and z if wantz).
(n ≥ 0).

ilo, ihi (global) INTEGER.
It is assumed that A is already upper quasi-triangular in rows and columns
ihi+1:n, and that A(ilo,ilo-1) = 0 (unless ilo = 1). p?lahqr works
primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but
applies transformations to all of h if wantt is .TRUE..1 < ilo < max(1,ihi);
ihi < n.

a (global)
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Array, DIMENSION (desca(lld_),*) . On entry, the upper Hessenberg
matrix A.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

iloz,ihiz (global) INTEGER. Specify the rows of z to which transformations must be
applied if wantz is .TRUE.. 1 < iloz < ilo; ihi < ihiz < n.

z (global) REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Array. If wantz is .TRUE., on entry z must contain the current matrix Z of
transformations accumulated by pdhseqr. If wantz is .FALSE., z is not
referenced.

6-190

6 Intel® Math Kernel Library Reference Manual

descz (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix Z.

work (local)
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Workspace array with dimension lwork.

lwork (local)
INTEGER. The dimension of work. lwork is assumed big enough so that
lwork > 3*n + max(2*max(descz(lld_),desca(lld_)) + 2*LOCq(n),
7*ceil(n/hbl)/lcm(NPROW,NPCOL))).
If lwork = -1, then work(1) gets set to the above number and the code returns
immediately.

iwork (global and local)
INTEGER array of size ilwork.

ilwork (local) INTEGER.This holds some of the iblk integer arrays.

Output Parameters

a On exit, if wantt is .TRUE., A is upper quasi-triangular in rows and columns
ilo:ihi, with any 2-by-2 or larger diagonal blocks not yet in standard form. If
wantt is .FALSE., the contents of A are unspecified on exit.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

wr,wi (global replicated output)
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Arrays, DIMENSION (n) each.
The real and imaginary parts, respectively, of the computed eigenvalues ilo to
ihi are stored in the corresponding elements of wr and wi. If two eigenvalues
are computed as a complex conjugate pair, they are stored in consecutive
elements of wr and wi, say the i-th and (i+1)-th, with wi(i) > 0 and
wi(i+1) < 0. If wantt is .TRUE., the eigenvalues are stored in the same order
as on the diagonal of the Schur form returned in A. A may be returned with
larger diagonal blocks until the next release.

z On exit z has been updated; transformations are applied only to the submatrix
z(iloz:ihiz, ilo:ihi).

ScaLAPACK Routines 6

6-191

info (global) INTEGER.
 = 0: the execution is successful.
< 0: parameter number -info incorrect or inconsistent
> 0: p?lahqr failed to compute all the eigenvalues ilo to ihi in a total of
30*(ihi-ilo+1) iterations; if info = i, elements i+1:ihi of wr and wi
contain those eigenvalues which have been successfully computed.

Singular Value Decomposition

This section describes ScaLAPACK routines for computing the singular value decomposition
(SVD) of a general m-by-n matrix A (see Singular Value Decomposition in LAPACK chapter).

To find the SVD of a general matrix A, this matrix is first reduced to a bidiagonal matrix B by a
unitary (orthogonal) transformation, and then SVD of the bidiagonal matrix is computed. Note
that the SVD of B is computed using the LAPACK routine ?bdsqr.

 Table 6-6 lists ScaLAPACK computational routines for performing this decomposition.

p?gebrd
Reduces a general matrix to bidiagonal form.

Syntax
call psgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pdgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pcgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pzgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

Table 6-6 Computational Routines for Singular Value Decomposition (SVD)

Operation
General
matrix

Orthogonal/unitary
matrix

Reduce A to a bidiagonal matrix p?gebrd

Multiply matrix after reduction p?ormbr/p?unmbr

6-192

6 Intel® Math Kernel Library Reference Manual

Description

The routine reduces a real/complex general m-by-n distributed matrix
sub(A) = A(ia:ia+m-1,ja:ja+n-1) to upper or lower bidiagonal form B by an orthogonal/unitary
transformation:

 Q' * sub(A) * P = B.

If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

 Input Parameters

m (global) INTEGER. The number of rows in the distributed matrix sub(A),
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed matrix sub(A),
(n ≥ 0).

a (local)
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd.

Real pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains the distributed matrix
sub (A).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

work (local)
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd.Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:

lwork ≥ nb* (mpa0 + nqa0+1)+ nqa0

 where NB = mb_a = nb_a,

iroffa = mod(ia-1, nb),

ScaLAPACK Routines 6

6-193

icoffa = mod(ja-1, NB),

iarow = indxg2p (ia, nb, MYROW, rsrc_a, NPROW),

iacol = indxg2p (ja, NB, MYCOL, csrc_a, NPCOL),

mpa0 = numroc(m +iroffa, NB, MYROW, iarow, NPROW),

nqa0 = numroc(n +icoffa, NB, MYCOL, iacol, NPCOL),

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW,
and NPCOL can be determined by calling the subroutine blacs_gridinfo.

if lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if m > n, the diagonal and the first superdiagonal of sub(A) are
overwritten with the upper bidiagonal matrix B; the elements below the
diagonal, with the array tauq, represent the orthogonal/unitary matrix Q as a
product of elementary reflectors, and the elements above the first
superdiagonal, with the array taup, represent the orthogonal matrix P as a
product of elementary reflectors. If m < n, the diagonal and the first
subdiagonal are overwritten with the lower bidiagonal matrix B; the elements
below the first subdiagonal, with the array tauq, represent the
orthogonal/unitary matrix Q as a product of elementary reflectors, and the
elements above the diagonal, with the array taup, represent the orthogonal
matrix P as a product of elementary reflectors. (See Application Notes below)

d (local)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION
LOCc(ja+min(m,n)-1) if m > n; LOCr(ia+min(m,n)-1) otherwise. The
distributed diagonal elements of the bidiagonal matrix B: d(i) = a(i,i).
d is tied to the distributed matrix A.

e (local)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION
LOCr(ia+min(m,n)-1) if m > n; LOCc(ja+min(m,n)-2) otherwise. The
distributed off-diagonal elements of the bidiagonal distributed matrix B:

6-194

6 Intel® Math Kernel Library Reference Manual

if m > n,
e(i) = a(i,i+1) for i = 1,2,...,n-1;
 if m < n,
e(i) = a(i+1,i) for i = 1,2,...,m-1.
e is tied to the distributed matrix A.

tauq,taup (local)
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd.
Arrays, DIMENSION LOCc(ja+min(m,n)-1) for tauq and
LOCr(ia+min(m,n)-1) for taup.
Contain the scalar factors of the elementary reflectors which represent the
orthogonal/unitary matrices Q and P, respectively.
tauq and taup are tied to the distributed matrix A.
(See Application Notes below)

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

Application Notes

The matrices Q and P are represented as products of elementary reflectors:

If m > n,

Q = H(1) H(2)... H(n) and P = G(1) G(2)... G(n-1).

Each H(i) and G(i) has the form:

H(i) = i - tauq * v * v' and G(i) = i - taup * u * u',

where tauq and taup are real/complex scalars, and v and u are real/complex vectors;

v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(ia+i:ia+m-1,ja+i-1);

u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(ia+i-1,ja+i+1:ja+n-1);

ScaLAPACK Routines 6

6-195

tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).

If m < n,

Q = H(1) H(2)... H(m-1) and P = G(1) G(2)... G(m) .

Each H(i) and G(i) has the form:

H(i) = i - tauq * v * v' and G(i) = i - taup * u * u' ,

where tauq and taup are real/complex scalars, and v and u are real/complex vectors;

v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(ia+i:ia+m-1,ja+i-1); u(1:i-1) = 0,
u(i) = 1, and u(i+1:n) is stored on exit in A(ia+i-1,ja+i+1:ja+n-1);

tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).

The contents of sub(A) on exit are illustrated by the following examples:

m = 6 and n = 5 (m > n):

m = 5 and n = 6 (m < n):

d e u1 u1 u1

v1 d e u2 u2

v1 v2 d e u3

v1 v2 v3 d e

v1 v2 v3 v4 d

v1 v2 v3 v4 v5

d u1 u1 u1 u1 u1

e d u2 u2 u2 u2

v1 e d u3 u3 u3

v1 v2 e d u4 u4

v1 v2 v3 e d u5

6-196

6 Intel® Math Kernel Library Reference Manual

where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the
vector defining H(i), and ui an element of the vector defining G(i).

p?ormbr
Multiplies a general matrix by one of the orthogonal
matrices from a reduction to bidiagonal form
determined by p?gebrd.

Syntax
call psormbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,

jc, descc, work, lwork, info)

call pdormbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,
jc, descc, work, lwork, info)

Description

If vect = 'Q', the routine overwrites the general real distributed m-by-n matrix
sub(C) = C(c:ic+m-1,jc:jc+n-1) with

 side = 'L' side = 'R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'T': QT sub(C) sub(C) QT

 If vect = 'P', the routine overwrites sub(C) with

 side = 'L' side = 'R'

trans = 'N': P sub(C) sub(C) P

trans = 'T': PTsub(C) sub(C) PT

Here Q and PT are the orthogonal distributed matrices determined by p?gebrd when reducing a
real distributed matrix A(ia:*,ja:*) to bidiagonal form: A(ia:*,ja:*) = Q B PT. Q and PT are
defined as products of elementary reflectors H(i) and G(i) respectively.

Let nq = m if side = 'L' and nq = n if side = 'R'. Thus nq is the order of the orthogonal matrix Q
or PT that is applied.

If vect = 'Q', A(ia:*,ja:*) is assumed to have been an nq-by-k matrix:

ScaLAPACK Routines 6

6-197

if nq > k, Q = H(1) H(2)... H(k);

if nq < k, Q = H(1) H(2)... H(nq-1).

If vect = 'P', A(ia:*,ja:*) is assumed to have been a k-by-nq matrix:

if k < nq, P = G(1) G(2)... G(k);

if k > nq, P = G(1) G(2)... G(nq-1).

Input Parameters

vect (global) CHARACTER.
if vect ='Q', then Q or QT is applied.
if vect ='P', then P or PT is applied.

side (global) CHARACTER.
if side ='L', then Q or QT, P or PT is applied from the left.
if side ='R', then Q or QT, P or PT is applied from the right.

trans (global) CHARACTER.
if trans ='N', no transpose, Q or P is applied.
if trans ='T', then QT or PT is applied.

m (global)
INTEGER. The number of rows in the distributed matrix sub (C).

n (global) INTEGER. The number of columns in the distributed matrix sub (C).

k (global) INTEGER.
If vect = 'Q', the number of columns in the original distributed matrix
reduced by p?gebrd;
If vect = 'P', the number of rows in the original distributed matrix reduced
by p?gebrd.

Constraints: k ≥ 0.

a (local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+min(nq,k)-1)) if vect='Q', and
(lld_a, LOCc(ja+nq-1)) if vect = 'P'.
nq = m if side = 'L', and nq = n otherwise.
The vectors which define the elementary reflectors H(i) and G(i), whose

6-198

6 Intel® Math Kernel Library Reference Manual

products determine the matrices Q and P, as returned by p?gebrd.
If vect = 'Q', lld_a > max(1,LOCr(ia+nq-1));
if vect = 'P', lld_a > max(1,LOCr(ia+min(nq,k)-1)).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Array, DIMENSION LOCc(ja+min(nq,k)-1), if vect = 'Q', and
LOCr(ia+min(nq,k)-1), if vect = 'P'.
tau(i) must contain the scalar factor of the elementary reflector H(i) or G(i),
which determines Q or P, as returned by pdgebrd in its array argument tauq
or taup. tau is tied to the distributed matrix A.

c (local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(jc+n-1)). Contains the local pieces of the distributed matrix sub (C).

ic,jc (global) INTEGER. The row and column indices in the global array c
indicating the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

work (local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:

if side = 'L'

nq = m;

 if((vect = 'Q' and nq > k) or (vect is not equal to 'Q' and nq > k)), iaa=ia;
jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;

else

iaa=ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcc=jc;

ScaLAPACK Routines 6

6-199

 end if

else if side = 'R', nq = n;

if((vect = 'Q' and nq > k) or (vect is not equal to 'Q' and nq > k)),

iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;

 else

iaa=ia; jaa=ja+1; mi=m; ni=n-1; icc=ic; jcc=jc+1;

 end if

end if

If vect = 'Q',

If side = 'L', lwork > max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) +
nb_a * nb_a

else if side = 'R',

lwork > max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 +
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq),
mpc0))*nb_a) + nb_a * nb_a * end if

else if vect is not equal to 'Q', if side = 'L',

lwork > max((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0 +
numroc(numroc(mi+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp),
nqc0))*mb_a) + mb_a *mb_a

else if side = 'R',

lwork > max((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a * mb_a

 end if

end if

where lcmp = lcm / NPROW, lcmq = lcm / NPCOL,
with lcm = ilcm(NPROW, NPCOL),

iroffa = mod(iaa-1, mb_a),

icoffa = mod(jaa-1, nb_a),

iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p (jaa, nb_a, MYCOL, csrc_a, NPCOL),

6-200

6 Intel® Math Kernel Library Reference Manual

mqa0 = numroc(mi+icoffa, nb_a, MYCOL, iacol, NPCOL),

npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),

iroffc = mod(icc-1, mb_c),

icoffc = mod(jcc-1, nb_c),

icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW,
and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

c On exit,
 if vect='Q', sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or sub(C)*Q' or
sub(C)*Q;
 if vect='P', sub(C) is overwritten by P*sub(C) or P'*sub(C) or sub(C)*P or
sub(C)*P'.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

ScaLAPACK Routines 6

6-201

p?unmbr
Multiplies a general matrix by one of the unitary
transformation matrices from a reduction to bidiagonal
form determined by p?gebrd.

Syntax
call cunmbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,

descc, work, lwork, info)

call zunmbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
descc, work, lwork, info)

Description

If vect = 'Q', the routine overwrites the general complex distributed m-by-n matrix sub(C) =
C(ic:ic+m-1,jc:jc+n-1) with

 side = 'L' side = 'R'

trans = 'N': Q sub(C) sub(C) Q

trans = 'C': QH sub(C) sub(C) QH

 If vect = 'P', the routine overwrites sub(C) with

 side = 'L' side = 'R'

trans = 'N': P sub(C) sub(C) P

trans = 'C': PHsub(C) sub(C) PH

Here Q and PH are the unitary distributed matrices determined by p?gebrd when reducing a
complex distributed matrix A(ia:*,ja:*) to bidiagonal form: A(ia:*,ja:*) = Q B PH. Q and PHare
defined as products of elementary reflectors H(i) and G(i) respectively.

Let nq = m if side = 'L' and nq = n if side = 'R'. Thus nq is the order of the unitary matrix Q or
PH that is applied.

If vect = 'Q', A(ia:*,ja:*) is assumed to have been an nq-by-k matrix:

if nq > k, Q = H(1) H(2)... H(k);

if nq < k, Q = H(1) H(2)... H(nq-1).

6-202

6 Intel® Math Kernel Library Reference Manual

If vect = 'P', A(ia:*,ja:*) is assumed to have been a k-by-nq matrix:

if k < nq, P = G(1) G(2)... G(k);

if k > nq, P = G(1) G(2)... G(nq-1).

Input Parameters

vect (global) CHARACTER.
if vect ='Q', then Q or QH is applied.
if vect ='P', then P or PH is applied.

side (global) CHARACTER.
if side ='L', then Q or QH, P or PH is applied from the left.
if side ='R', then Q or QH, P or PH is applied from the right.

trans (global) CHARACTER.
if trans ='N', no transpose, Q or P is applied.
if trans ='C', conjugate transpose, QH or PH is applied.

m (global)
INTEGER. The number of rows in the distributed matrix sub (C), m > 0.

n (global) INTEGER. The number of columns in the distributed matrix sub (C),
n > 0.

k (global) INTEGER.
If vect = 'Q', the number of columns in the original distributed matrix
reduced by p?gebrd;
If vect = 'P', the number of rows in the original distributed matrix reduced
by p?gebrd.

Constraints: k ≥ 0.

a (local)
COMPLEX for psormbr
DOUBLE COMPLEX for pdormbr.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+min(nq,k)-1)) if vect='Q', and
(lld_a, LOCc(ja+nq-1)) if vect = 'P'.
nq = m if side = 'L', and nq = n otherwise.
The vectors which define the elementary reflectors H(i) and G(i), whose
products determine the matrices Q and P, as returned by p?gebrd.
If vect = 'Q', lld_a > max(1,LOCr(ia+nq-1));
if vect = 'P', lld_a > max(1,LOCr(ia+min(nq,k)-1)).

ScaLAPACK Routines 6

6-203

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau (local)
COMPLEX for pcunmbr
DOUBLE COMPLEX for pzunmbr.
Array, DIMENSION LOCc(ja+min(nq,k)-1), if vect = 'Q', and
LOCr(ia+min(nq,k)-1), if vect = 'P'.
tau(i) must contain the scalar factor of the elementary reflector H(i) or G(i),
which determines Q or P, as returned by p?gebrd in its array argument tauq
or taup. tau is tied to the distributed matrix A.

c (local)
COMPLEX for pcunmbr
DOUBLE COMPLEX for pzunmbr.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(jc+n-1)). Contains the local pieces of the distributed matrix sub (C).

ic,jc (global) INTEGER. The row and column indices in the global array c indicating
the first row and the first column of the submatrix C, respectively.

descc (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix C.

work (local)
COMPLEX for pcunmbr
DOUBLE COMPLEX for pzunmbr.
Workspace array of dimension lwork.

lwork (local or global) INTEGER, dimension of work, must be at least:

if side = 'L'

nq = m;

 if((vect = 'Q' and nq > k) or (vect is not equal to 'Q' and nq > k)), iaa=ia;
jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;

else

iaa=ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcc=jc;

 end if

else if side = 'R', nq = n;

6-204

6 Intel® Math Kernel Library Reference Manual

if((vect = 'Q' and nq > k) or (vect is not equal to 'Q' and nq > k)),

iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;

 else

iaa=ia; jaa=ja+1; mi=m; ni=n-1; icc=ic; jcc=jc+1;

 end if

end if

If vect = 'Q',

If side = 'L', lwork > max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) +
nb_a * nb_a

else if side = 'R',

lwork > max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 +
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq),
mpc0))*nb_a) + nb_a * nb_a * end if

else if vect is not equal to 'Q', if side = 'L',

lwork > max((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0 +
numroc(numroc(mi+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp),
nqc0))*mb_a) + mb_a *mb_a

else if side = 'R',

lwork > max((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a * mb_a

 end if

end if

where lcmp = lcm / NPROW, lcmq = lcm / NPCOL,
with lcm = ilcm(NPROW, NPCOL),

iroffa = mod(iaa-1, mb_a),

icoffa = mod(jaa-1, nb_a),

iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),

iacol = indxg2p (jaa, nb_a, MYCOL, csrc_a, NPCOL),

mqa0 = numroc(mi+icoffa, nb_a, MYCOL, iacol, NPCOL),

npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),

ScaLAPACK Routines 6

6-205

iroffc = mod(icc-1, mb_c),

icoffc = mod(jcc-1, nb_c),

icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),

iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),

mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),

nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW,
and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

c On exit,
 if vect='Q', sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or sub(C)*Q' or
sub(C)*Q;
 if vect='P', sub(C) is overwritten by P*sub(C) or P'*sub(C) or sub(C)*P or
sub(C)*P'.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

6-206

6 Intel® Math Kernel Library Reference Manual

Generalized Symmetric-Definite Eigenproblems

This section describes ScaLAPACK routines that allow you to reduce the generalized
symmetric-definite eigenvalue problems (see Generalized Symmetric-Definite Eigenvalue
Problems in LAPACK chapters) to standard symmetric eigenvalue problem Cy = λy , which you
can solve by calling ScaLAPACK routines described earlier in this chapter (see Symmetric
Eigenproblems).

Table 6-7 lists these routines.

p?sygst
Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form.

Syntax
call pssygst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale,

info)

call pdsygst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale,
info)

Description

This routine reduces real symmetric-definite generalized eigenproblems to the standard form.

In the following sub(A) denotes A(ia:ia+n-1, ja:ja+n-1) and sub(B) denotes
B(ib:ib+n-1, jb:jb+n-1).

If ibtype = 1, the problem is

 sub(A)x = λsub(B)x,

and sub(A) is overwritten by inv(UT) sub(A)inv(U) or inv(L)sub(A)inv(LT).

Table 6-7 Computational Routines for Reducing Generalized Eigenproblems to Standard
Problems

Operation Real symmetric
matrices

Complex Hermitian
matrices

Reduce to
standard problems

p?sygst p?hegst

ScaLAPACK Routines 6

6-207

If ibtype = 2 or 3, the problem is

 sub(A)sub(B)x = λx or sub(B)sub(A)x = λx,

and sub(A) is overwritten by U sub(A)UT or LTsub(A)L.

sub(B) must have been previously factorized as UTU or LLT by p?potrf.

Input Parameters

ibtype (global) INTEGER. Must be 1 or 2 or 3.
If itype = 1, compute inv(UT)sub(A)inv(U) or inv(L)sub(A)inv(LT);
If itype = 2 or 3, compute Usub(A)UT or LTsub(A)L.

uplo (global)
CHARACTER. Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of sub(A) is stored and sub (B) is factored as
UTU.
If uplo = 'L', the lower triangle of sub (A) is stored and sub (B) is factored as
LLT.

n (global) INTEGER. The order of the matrices sub (A) and sub (B) (n ≥ 0).

a (local)
REAL for pssygst
DOUBLE PRECISION for pdsygst.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, the array contains the local pieces of the
n-by-n symmetric distributed matrix sub(A). If uplo = 'U', the leading n-by-n
upper triangular part of sub(A) contains the upper triangular part of the matrix,
and its strictly lower triangular part is not referenced. If uplo = 'L', the leading
n-by-n lower triangular part of sub(A) contains the lower triangular part of the
matrix, and its strictly upper triangular part is not referenced.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

b (local)
REAL for pssygst
DOUBLE PRECISION for pdsygst.
Pointer into the local memory to an array of dimension

6-208

6 Intel® Math Kernel Library Reference Manual

(lld_b, LOCc(jb+n-1)). On entry, the array contains the local pieces of the
triangular factor from the Cholesky factorization of sub (B) as returned by
p?potrf.

ib,jb (global) INTEGER. The row and column indices in the global array b
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

Output Parameters

a On exit, if info = 0, the transformed matrix, stored in the same format as
sub(A).

scale (global)
REAL for pssygst
DOUBLE PRECISION for pdsygst.

Amount by which the eigenvalues should be scaled to compensate for the
scaling performed in this routine. At present, scale is always returned as 1.0,
it is returned here to allow for future enhancement.

info (global) INTEGER.
If info = 0, the execution is successful.
If info <0, if the i-th argument is an array and the j-entry had an illegal
value, then info = -(i100+j), if the i-th argument is a scalar and had an
illegal value, then info = -i.

p?hegst
Reduces a Hermitian-definite generalized eigenvalue
problem to the standard form.

Syntax
call pchegst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale,

info)

call pzhegst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale,
info)

ScaLAPACK Routines 6

6-209

Description

This routine reduces complex Hermitian-definite generalized eigenproblems to the standard form.

In the following sub(A) denotes A(ia:ia+n-1, ja:ja+n-1) and
sub(B) denotes B(ib:ib+n-1, jb:jb+n-1).

If ibtype = 1, the problem is

 sub(A)x = λsub(B)x,

and sub(A) is overwritten by inv(UH) sub(A)inv(U) or inv(L)sub(A)inv(LH).

If ibtype = 2 or 3, the problem is

 sub(A)sub(B)x = λx or sub(B)sub(A)x = λx,

and sub(A) is overwritten by Usub(A)UH or LHsub(A)L.

sub(B) must have been previously factorized as UHU or LLHby p?potrf.

Input Parameters

ibtype (global) INTEGER. Must be 1 or 2 or 3.
If itype = 1, compute inv(UH)sub(A)inv(U) or inv(L)sub(A)inv(LH);
If itype = 2 or 3, compute Usub(A)UH or
 LHsub(A)L.

uplo (global)
CHARACTER. Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of sub(A) is stored and sub (B) is factored as
UHU.
If uplo = 'L', the lower triangle of sub (A) is stored and sub (B) is factored as
LLH.

n (global) INTEGER. The order of the matrices sub (A) and sub (B) (n ≥ 0).

a (local)
COMPLEX for pchegst
DOUBLE COMPLEX for pzhegst.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, the array contains the local pieces of the
n-by-n Hermitian distributed matrix sub(A). If uplo = 'U', the leading n-by-n
upper triangular part of sub(A) contains the upper triangular part of the matrix,

6-210

6 Intel® Math Kernel Library Reference Manual

and its strictly lower triangular part is not referenced. If uplo = 'L', the leading
n-by-n lower triangular part of sub(A) contains the lower triangular part of the
matrix, and its strictly upper triangular part is not referenced.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

b (local)
COMPLEX for pchegst
DOUBLE COMPLEX for pzhegst.
Pointer into the local memory to an array of dimension
(lld_b, LOCc(jb+n-1)). On entry, the array contains the local pieces of the
triangular factor from the Cholesky factorization of sub (B) as returned by
p?potrf.

ib,jb (global) INTEGER. The row and column indices in the global array b
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

Output Parameters

a On exit, if info = 0, the transformed matrix, stored in the same format as
sub(A).

scale (global)
REAL for pchegst
DOUBLE PRECISION for pzhegst.

Amount by which the eigenvalues should be scaled to compensate for the
scaling performed in this routine. At present, scale is always returned as 1.0,
it is returned here to allow for future enhancement.

info (global) INTEGER.
If info = 0, the execution is successful.
If info <0, if the i-th argument is an array and the j-entry had an illegal
value, then info = -(i100+j), if the i-th argument is a scalar and had an
illegal value, then info = -i.

ScaLAPACK Routines 6

6-211

Driver Routines
Table 6-8 lists ScaLAPACK driver routines available for solving systems of linear equations,
linear least-squares problems, standard eigenvalue and singular value problems, and generalized
symmetric definite eigenproblems.

Table 6-8 ScaLAPACK Driver Routines

Type of Problem
Matrix type,
storage scheme

Driver

Linear equations general
(partial pivoting)

p?gesv (simple driver)
p?gesvx (expert driver)

general band
(partial pivoting)

p?gbsv (simple driver)

general band
(no pivoting)

p?dbsv (simple driver)

general tridiagonal
(no pivoting)

p?dtsv (simple driver)

symmetric/Hermitian
positive-definite

p?posv (simple driver)
p?posvx (expert driver)

symmetric/Hermitian
positive-definite,
band

p?pbsv (simple driver)

symmetric/Hermitian
positive-definite,
tridiagonal

p?ptsv (simple driver)

Linear least
squares problem

general m-by-n p?gels

Symmetric
eigenvalue problem

symmetric/Hermitian p?syev (simple driver)
p?syevx / p?heevx
(expert driver)

Singular value
decomposition

general m-by-n p?gesvd

Generalized
symmetric definite
eigenvalue problem

symmetric/Hermitian,
one matrix also
positive-definite

p?sygvx / p?hegvx
(expert driver)

6-212

6 Intel® Math Kernel Library Reference Manual

p?gesv
Computes the solution to the system of linear equations
with a square distributed matrix and multiple
right-hand sides.

Syntax
call psgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pdgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pcgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

call pzgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

Description

The routine p?gesv computes the solution to a real or complex system of linear equations
sub(A)*X = sub(B), where sub(A) = A(ia:ia+n-1, ja:ja+n-1) is an n-by-n distributed matrix
and X and sub(B) = B(ib:ib+n-1, jb:jb+nrhs-1) are n-by-nrhs distributed matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor sub(A) as
sub(A) = P L U, where P is a permutation matrix, L is unit lower triangular, and U is upper
triangular. L and U are stored in sub(A). The factored form of sub(A) is then used to solve the
system of equations sub(A)*X = sub(B).

Input Parameters

n (global) INTEGER. The number of rows and columns to be operated on, that is,
the order of the distributed submatrix sub(A), (n ≥ 0).

nrhs (global) INTEGER. The number of right hand sides, that is, the number of
columns of the distributed submatrices B and X, (nrhs ≥ 0).

a,b (local)
REAL for psgesv
DOUBLE PRECISION for pdgesv
COMPLEX for pcgesv
DOUBLE COMPLEX for pzgesv.
Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)) and b(lld_b, LOCc(jb+nrhs-1)),
respectively.

ScaLAPACK Routines 6

6-213

On entry, the array a contains the local pieces of the n-by-n distributed matrix
sub(A) to be factored.

On entry, the array b contains the right hand side distributed matrix sub(B).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of sub(A), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

ib,jb (global) INTEGER. The row and column indices in the global array B
indicating the first row and the first column of sub(B), respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

Output Parameters

a Overwritten by the factors L and U from the factorization sub(A) = P L U; the
unit diagonal elements of L are not stored .

b Overwritten by the solution distributed matrix X.

ipiv (local) INTEGER array.
The dimension of ipiv is (LOCr(m_a)+ mb_a).
This array contains the pivoting information. The (local) row i of the matrix
was interchanged with the (global) row ipiv(i).
This array is tied to the distributed matrix A.

info (global) INTEGER. If info=0, the execution is successful.

info < 0:
if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

info > 0:
If info = k, U(ia+k-1,ja+k-1) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the solution could not be
computed.

6-214

6 Intel® Math Kernel Library Reference Manual

p?gesvx
Uses the LU factorization to compute the solution to the
system of linear equations with a square matrix A and
multiple right-hand sides, and provides error bounds on
the solution.

Syntax
call psgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,

descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, iwork, liwork, info)

call pdgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, iwork, liwork, info)

call pcgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, rwork, lrwork, info)

call pzgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
ferr, berr, work, lwork, rwork, lrwork, info)

Description

This routine uses the LU factorization to compute the solution to a real or complex system of
linear equations AX = B, where A denotes the n-by-n submatrix A(ia:ia+n-1, ja:ja+n-1), B
denotes the n-by-nrhs submatrix B(ib:ib+n-1, jb:jb+nrhs-1) and X denotes the n-by-nrhs
submatrix X(ix:ix+n-1, jx:jx+nrhs-1).

Error bounds on the solution and a condition estimate are also provided.

In the following description, af stands for the subarray af(iaf:iaf+n-1, jaf:jaf+n-1).

The routine p?gesvx performs the following steps:

1. If fact = 'E', real scaling factors R and C are computed to equilibrate
the system:

trans = 'N': diag(R)*A*diag(C) *diag(C)-1*X = diag(R)*B

trans = 'T': (diag(R)*A*diag(C))T *diag(R)-1*X = diag(C)*B

ScaLAPACK Routines 6

6-215

trans = 'C': (diag(R)*A*diag(C))H *diag(R)-1*X = diag(C)*B.

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if trans='N') or
diag(c)*B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', the LU decomposition is used to factor the matrix A (after equilibration if
fact = 'E') as A = P L U, where P is a permutation matrix, L is a unit lower triangular matrix, and
U is upper triangular.

3. The factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than relative machine precision, steps 4 - 6 are skipped.

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6. If equilibration was used, the matrix X is premultiplied by diag(C) (if trans = 'N') or diag(R) (if
trans = 'T' or 'C') so that it solves the original system before equilibration.

Input Parameters

fact (global) CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on entry,
and if not, whether the matrix A should be equilibrated before it is factored.

If fact = 'F' then, on entry, af and ipiv contain the factored form of A. If
equed is not 'N', the matrix A has been equilibrated with scaling factors given
by r and c. Arrays a, af, and ipiv are not modified.

If fact = 'N', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to af
and factored.

trans (global) CHARACTER*1. Must be 'N', 'T', or 'C'.

Specifies the form of the system of equations:

If trans = 'N', the system has the form A X = B
(No transpose);
If trans = 'T', the system has the form AT X = B (Transpose);
If trans = 'C', the system has the form AH X = B (Conjugate transpose);

n (global) INTEGER. The number of linear equations; the order of the submatrix
A (n ≥ 0).

6-216

6 Intel® Math Kernel Library Reference Manual

nrhs (global) INTEGER. The number of right hand sides; the number of columns of
the distributed submatrices B and X (nrhs ≥ 0).

a,af,b,work (local)
REAL for psgesvx
DOUBLE PRECISION for pdgesvx
COMPLEX for pcgesvx
DOUBLE COMPLEX for pzgesvx.
Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)), af(lld_af, LOCc(ja+n-1)),
b(lld_b, LOCc(jb+nrhs-1)), work(lwork), respectively.

The array a contains the matrix A. If fact = 'F' and equed is not 'N', then A
must have been equilibrated by the scaling factors in r and/or c.

The array af is an input argument if fact = 'F' . In this case it contains on
entry the factored form of the matrix A, i.e., the factors L and U from the
factorization A = P L U as computed by p?getrf. If equed is not 'N', then af
is the factored form of the equilibrated matrix A.

The array b contains on entry the matrix B whose columns are the right-hand
sides for the systems of equations.

work(*) is a workspace array.
The dimension of work is (lwork).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix
A(ia:ia+n-1, ja:ja+n-1), respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

iaf,jaf (global) INTEGER. The row and column indices in the global array af
indicating the first row and the first column of the subarray
af(iaf:iaf+n-1, jaf:jaf+n-1), respectively.

descaf (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix AF.

ib,jb (global) INTEGER. The row and column indices in the global array B
indicating the first row and the first column of the submatrix
B(ib:ib+n-1, jb:jb+nrhs-1), respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

ScaLAPACK Routines 6

6-217

ipiv (local) INTEGER array.
The dimension of ipiv is (LOCr(m_a)+ mb_a).
The array ipiv is an input argument if fact = 'F' .
On entry, it contains the pivot indices from the factorization A = P L U as
computed by p?getrf; (local) row i of the matrix was interchanged with the
(global) row ipiv(i).
This array must be aligned with A(ia:ia+n-1, *).

equed (global) CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact = 'F' . It specifies the form of equilibration
that was done:
If equed = 'N', no equilibration was done (always
true if fact = 'N');
If equed = 'R', row equilibration was done, that is, A has been premultiplied
by diag(r);
If equed = 'C', column equilibration was done, that is, A has been
postmultiplied by diag(c);
If equed = 'B', both row and column equilibration was done; A has been
replaced by diag(r)*A*diag(c).

r, c (local) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays, dimension LOCr(m_a)and LOCc(n_a), respectively.
The array r contains the row scale factors for A, and the array c contains the
column scale factors for A. These arrays are input arguments if fact = 'F' only;
otherwise they are output arguments.
If equed = 'R' or 'B', A is multiplied on the left by diag(r); if equed = 'N'
or 'C', r is not accessed.
If fact = 'F' and equed = 'R' or 'B', each element of r must be positive.

If equed = 'C' or 'B', A is multiplied on the right by diag(c); if equed = 'N'
or 'R', c is not accessed.
If fact = 'F' and equed = 'C' or 'B', each element of c must be positive.
Array r is replicated in every process column, and is aligned with the
distributed matrix A.
Array c is replicated in every process row, and is aligned with the distributed
matrix A.

ix,jx (global) INTEGER. The row and column indices in the global array X
indicating the first row and the first column of the submatrix
X(ix:ix+n-1, jx:jx+nrhs-1), respectively.

6-218

6 Intel® Math Kernel Library Reference Manual

descx (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix X.

lwork (local or global) INTEGER. The dimension of the array work ; must be at least
max(p?gecon(lwork), p?gerfs(lwork)) + LOCr(n_a) .

iwork (local, psgesvx/pdgesvx only) INTEGER. Workspace array.
The dimension of iwork is (liwork).

liwork (local, psgesvx/pdgesvx only) INTEGER. The dimension of the array
iwork , must be at least LOCr(n_a) .

rwork (local) REAL for pcgesvx;
DOUBLE PRECISION for pzgesvx.
Workspace array, used in complex flavors only.
The dimension of rwork is (lrwork).

lrwork (local or global, pcgesvx/pzgesvx only) INTEGER. The dimension of the
array rwork ; must be at least 2*LOCc(n_a) .

Output Parameters

x (local)
REAL for psgesvx
DOUBLE PRECISION for pdgesvx
COMPLEX for pcgesvx
DOUBLE COMPLEX for pzgesvx.
Pointer into the local memory to an array of local dimension
x(lld_x, LOCc(jx+nrhs-1)) .

If info = 0 , the array x contains the solution matrix X to the original system
of equations. Note that A and B are modified on exit if equed ≠ 'N', and the
solution to the equilibrated system is:
diag(C)-1*X, if trans = 'N' and equed = 'C' or 'B'; and diag(R)-1*X, if
trans = 'T' or 'C' and equed = 'R' or 'B'.

a Array a is not modified on exit if fact = 'F' or 'N', or if fact = 'E' and equed
= 'N'.
If equed ≠ 'N', A is scaled on exit as follows:
equed = 'R': A = diag(R)*A
equed = 'C': A = A*diag(c)
equed = 'B': A = diag(R)*A*diag(c)

ScaLAPACK Routines 6

6-219

af If fact = 'N' or 'E', then af is an output argument and on exit returns the
factors L and U from the factorization A = P L U of the original matrix A (if
fact = 'N') or of the equilibrated matrix A (if fact = 'E'). See the description
of a for the form of the equilibrated matrix.

b Overwritten by diag(R)* B if trans = 'N' and
equed = 'R' or 'B';
overwritten by diag(c)*B if trans = 'T' and equed = 'C' or 'B';
not changed if equed = 'N'.

r, c These arrays are output arguments if fact ≠ 'F' .
See the description of r, c in Input Arguments section.

rcond (global)
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). The routine sets rcond =0 if the estimate underflows;
in this case the matrix is singular (to working precision). However, anytime
rcond is small compared to 1.0,
for the working precision, the matrix may be poorly conditioned or even
singular.

ferr, berr (local)
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION LOCc(n_b) each. Contain the component-wise forward
and relative backward errors, respectively, for each solution vector.

Arrays ferr and berr are both replicated in every process row, and are
aligned with the matrices B and X.

ipiv If fact = 'N' or 'E', then ipiv is an output argument and on exit contains the
pivot indices from the factorization A = P L U of the original matrix A (if fact
= 'N') or of the equilibrated matrix A (if fact = 'E').

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

work(1) If info=0, on exit work(1) returns the minimum value of lwork required for
optimum performance.

iwork(1) If info=0, on exit iwork(1) returns the minimum value of liwork required
for optimum performance.

6-220

6 Intel® Math Kernel Library Reference Manual

rwork(1) If info=0, on exit rwork(1) returns the minimum value of lrwork required
for optimum performance.

info INTEGER. If info=0, the execution is successful.

info < 0: if the ith argument is an array and the jth entry had an illegal value,
then info = -(i*100+j); if the ith argument is a scalar and had an illegal
value, then info = -i.
If info = i, and i ≤ n, then U(i,i) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the solution and error bounds
could not be computed.
If info = i, and i = n +1, then U is nonsingular, but rcond is less than
machine precision. The factorization has been completed, but the matrix is
singular to working precision and the solution and error bounds have not been
computed.

p?gbsv
Computes the solution to the system of linear equations
with a general banded distributed matrix and multiple
right-hand sides.

Syntax
call psgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,

lwork, info)

call pdgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,
lwork, info)

call pcgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,
lwork, info)

call pzgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,
lwork, info)

Description

The routine p?gbsv computes the solution to a real or complex system of linear equations
 sub(A)* X = sub(B) ,
where sub(A) = A(1:n, ja:ja+n-1) is an n-by-n real/complex general banded distributed matrix
with bwl subdiagonals and bwu superdiagonals, and X and sub(B) = B(ib:ib+n-1, 1:nrhs)
are n-by-nrhs distributed matrices.

ScaLAPACK Routines 6

6-221

The LU decomposition with partial pivoting and row interchanges is used to factor sub(A) as
sub(A) = P L U Q, where P and Q are permutation matrices, and L and U are banded lower and
upper triangular matrices, respectively. The matrix Q represents reordering of columns for the sake
of parallelism, while P represents reordering of rows for numerical stability using classic partial
pivoting.

Input Parameters

n (global) INTEGER. The number of rows and columns to be operated on, that is,
the order of the distributed submatrix sub(A) (n ≥ 0).

bwl (global) INTEGER. The number of subdiagonals within the band of A,
(0≤ bwl ≤ n-1).

bwu (global) INTEGER. The number of superdiagonals within the band of A,
(0≤ bwu ≤ n-1).

nrhs (global) INTEGER. The number of right hand sides; the number of columns of
the distributed submatrix sub(B), (nrhs ≥ 0).

a, b (local)
REAL for psgbsv
DOUBLE PRECISION for pdgbsv
COMPLEX for pcgbsv
DOUBLE COMPLEX for pzgbsv.

Pointers into the local memory to arrays of local dimension
a(lld_a, LOCc(ja+n-1)) and
b(lld_b, LOCc(nrhs)), respectively.

On entry, the array a contains the local pieces of the global array A.

On entry, the array b contains the right hand side distributed matrix sub(B).

ja (global) INTEGER. The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.
If desca(dtype_) = 501, then dlen_ ≥ 7;
else if desca(dtype_) = 1, then dlen_ ≥ 9.

ib (global) INTEGER. The row index in the global array B that points to the first
row of the matrix to be operated on (which may be either all of B or a
submatrix of B).

6-222

6 Intel® Math Kernel Library Reference Manual

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

If descb(dtype_) = 502, then dlen_ ≥ 7;
else if descb(dtype_) = 1, then dlen_ ≥ 9.

work (local)
REAL for psgbsv
DOUBLE PRECISION for pdgbsv
COMPLEX for pcgbsv
DOUBLE COMPLEX for pzgbsv.

Workspace array of dimension (lwork).

lwork (local or global) INTEGER. The size of the array work, must be at least
lwork ≥ (NB+bwu)*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu) +
+ max(nrhs *(NB+2*bwl+4*bwu), 1).

Output Parameters

a On exit, contains details of the factorization.
Note that the resulting factorization is not the same factorization as returned
from LAPACK. Additional permutations are performed on the matrix for the
sake of parallelism.

b On exit, this array contains the local pieces of the solution distributed matrix
X.

ipiv (local) INTEGER array.
The dimension of ipiv must be at least desca(NB).
This array contains pivot indices for local factorizations. You should not alter
the contents between factorization and solve.

work(1) On exit, work(1) contains the minimum value of lwork required for optimum
performance.

info INTEGER. If info=0, the execution is successful.
info < 0:

if the ith argument is an array and the jth entry had an illegal value, then
info = -(i*100+j); if the ith argument is a scalar and had an illegal value,
then info = -i.

info > 0:
If info = k ≤ NPROCS, the submatrix stored on processor info and factored
locally was not nonsingular, and the factorization was not completed.

ScaLAPACK Routines 6

6-223

If info = k>NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not nonsingular, and the
factorization was not completed.

p?dbsv
Solves a general band system of linear equations.

Syntax
call psdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,

info)

call pddbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

call pcdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

call pzdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

Description

This routine solves the system of linear equations

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs)

where A(1:n, ja:ja+n-1) is an n-by-n real/complex banded diagonally dominant-like distributed
matrix with bandwidth bwl, bwu.

Gaussian elimination without pivoting is used to factor a reordering of the matrix into L U.

Input Parameters

n (global) INTEGER. The order of the distributed submatrix A, (n ≥ 0).

bwl (global) INTEGER.
Number of subdiagonals. 0 < bwl < n-1.

bwu (global) INTEGER.
Number of subdiagonals. 0 < bwu < n-1.

nrhs (global) INTEGER. The number of right-hand sides; the number of columns of
the distributed submatrix B, (nrhs ≥ 0).

6-224

6 Intel® Math Kernel Library Reference Manual

a (local).
REAL for psdbsv
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Pointer into the local memory to an array with first dimension
lld_a >(bwl+bwu+1) (stored in desca). On entry, this array contains the
local pieces of the distributed matrix.

ja (global) INTEGER. The index in the global array a that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array of dimension dlen.
if 1d type (dtype_a=501 or 502), dlen > 7;
if 2d type (dtype_a=1), dlen > 9.
The array descriptor for the distributed matrix A. Contains information of
mapping of A to memory.

b (local)
REAL for psdbsv
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Pointer into the local memory to an array of local lead dimension lld_b > NB.
On entry, this array contains the local pieces of the right hand sides
B(ib:ib+n-1, 1:nrhs).

ib (global) INTEGER. The row index in the global array b that points to the first
row of the matrix to be operated on (which may be either all of b or a
submatrix of B).

desb (global and local) INTEGER array of dimension dlen.
if 1d type (dtype_b =502), dlen >7;
if 2d type (dtype_b =1), dlen > 9.
The array descriptor for the distributed matrix B. Contains information of
mapping of B to memory.

work (local)
REAL for psdbsv
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Temporary workspace. This space may be overwritten in between calls to
routines. work must be the size given in lwork.

ScaLAPACK Routines 6

6-225

lwork (local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal
acceptable size will be returned in work(1) and an error code is returned.
lwork > NB (bwl+bwu)+6 max(bwl,bwu)*max(bwl,bwu)
+max((max(bwl,bwu)nrhs), max(bwl,bwu)max(bwl,bwu))

Output Parameters

a On exit, this array contains information containing details of the factorization.
Note that permutations are performed on the matrix, so that the factors
returned are different from those returned by LAPACK.

b On exit, this contains the local piece of the solutions distributed matrix X.

work On exit, work(1) contains the minimal lwork.

info (local) INTEGER. If info=0, the execution is successful.
< 0: If the i-th argument is an array and the j-entry had an illegal value, then
info = -(i*100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.
> 0: If info = k < NPROCS, the submatrix stored on processor info and
factored locally was not positive definite, and the factorization was not
completed.
If info = k > NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not positive definite, and
the factorization was not completed.

p?dtsv
Solves a general tridiagonal system of linear equations.

Syntax
call psdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork,info

call pddtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork,info

call pcdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork,info

call pzdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork,info

6-226

6 Intel® Math Kernel Library Reference Manual

Description

This routine solves a system of linear equations

 A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs)

where A(1:n, ja:ja+n-1) is an n-by-n complex tridiagonal diagonally dominant-like distributed
matrix.

Gaussian elimination without pivoting is used to factor a reordering of the matrix into L U.

Input Parameters

n (global) INTEGER. The order of the distributed submatrix A, (n ≥ 0).

nrhs INTEGER. The number of right hand sides; the number of columns of the
distributed matrix B, (nrhs ≥ 0).

dl (local).
REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.

Pointer to local part of global vector storing the lower diagonal of the matrix.
Globally, dl(1) is not referenced, and dl must be aligned with d. Must be of
size > desca(nb_).

d (local).
REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the main diagonal of the matrix.

du (local).
REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the upper diagonal of the matrix.
Globally, du(n) is not referenced, and du must be aligned with d.

ja (global) INTEGER. The index in the global array a that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

ScaLAPACK Routines 6

6-227

desca (global and local) INTEGER array of dimension dlen.
if 1d type (dtype_a=501 or 502), dlen >= 7;
if 2d type (dtype_a=1), dlen >= 9.
The array descriptor for the distributed matrix A. Contains information of
mapping of A to memory.

b (local)
REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer into the local memory to an array of local lead dimension lld_b > NB.
On entry, this array contains the local pieces of the right hand sides
B(ib:ib+n-1, 1:nrhs).

ib (global) INTEGER. The row index in the global array b that points to the first
row of the matrix to be operated on (which may be either all of b or a
submatrix of B).

desb (global and local) INTEGER array of dimension dlen.
if 1d type (dtype_b =502), dlen >7;
if 2d type (dtype_b =1), dlen > 9.
The array descriptor for the distributed matrix B. Contains information of
mapping of B to memory.

work (local).

REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Temporary workspace. This space may be overwritten in between calls to
routines. work must be the size given in lwork.

lwork (local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal
acceptable size will be returned in work(1) and an error code is returned.
lwork > (12*NPCOL+3*NB)+max((10+2*min(100,nrhs))*NPCOL+4*nrhs,
8*NPCOL).

Output Parameters

dl On exit, this array contains information containing the factors of the matrix.

6-228

6 Intel® Math Kernel Library Reference Manual

d On exit, this array contains information containing the factors of the matrix.
Must be of size > desca(nb_).

du On exit, this array contains information containing the factors of the matrix.
Must be of size > desca(nb_).

b On exit, this contains the local piece of the solutions distributed matrix X.

work On exit, work(1) contains the minimal lwork.

info (local) INTEGER. If info=0, the execution is successful.
< 0: If the i-th argument is an array and the j-entry had an illegal value, then
info = -(i*100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.
> 0: If info = k < NPROCS, the submatrix stored on processor info and
factored locally was not positive definite, and the factorization was not
completed.
If info = k > NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not positive definite, and
the factorization was not completed.

p?posv
Solves a symmetric positive definite system of linear
equations.

Syntax
call psposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pdposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pcposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

call pzposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

Description

This routine computes the solution to a real/complex system of linear equations

 sub(A) * X = sub(B),

ScaLAPACK Routines 6

6-229

where sub(A) denotes A(ia:ia+n-1,ja:ja+n-1) and is an n-by-n symmetric/Hermitian distributed
positive definite matrix and X and sub(B) denoting B(ib:ib+n-1,jb:jb+nrhs-1) are n-by-nrhs
distributed matrices. The Cholesky decomposition is used to factor sub(A) as

sub(A) = UT * U, if uplo = 'U', or

sub(A) = L * LT, if uplo = 'L',

where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of
sub(A) is then used to solve the system of equations.

Input Parameters
uplo (global).CHARACTER. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of sub(A) is stored.
n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number of columns of the
distributed submatrix sub(B), (nrhs ≥ 0).

a (local)
REAL for psposv
DOUBLE PRECISION for pdposv
COMPLEX for pcposv
COMPLEX*16 for pzposv.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains the local pieces of the
n-by-n symmetric distributed matrix sub(A) to be factored.
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains the
upper triangular part of the matrix, and its strictly lower triangular part is not
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular part of the distributed matrix, and its strictly upper triangular
part is not referenced.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

b (local)
REAL for psposv
DOUBLE PRECISION for pdposv
COMPLEX for pcposv

6-230

6 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for pzposv.
Pointer into the local memory to an array of dimension
(lld_b, LOC(jb+nrhs-1)). On entry, the local pieces of the right hand sides
distributed matrix sub(B).

ib,jb (global) INTEGER. The row and column indices in the global array b
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

Output Parameters

a On exit, if info = 0, this array contains the local pieces of the factor U or L
from the Cholesky factorization sub(A) = UHU or LLH.

b On exit, if info = 0, sub (B) is overwritten by the solution distributed matrix
X.

info (global) INTEGER.
If info =0, the execution is successful.
If info < 0: If the i-th argument is an array and the j-entry had an illegal
value, then info = -(i*100+j), if the i-th argument is a scalar and had an
illegal value, then info = -i.
If info > 0: If info = k, the leading minor of order k,
A(ia:ia+k-1,ja:ja+k-1) is not positive definite, and the factorization could
not be completed, and the solution has not been computed.

p?posvx
Solves a symmetric or Hermitian positive definite
system of linear equations.

Syntax
call psposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,

equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr,
work, lwork, iwork, liwork, info)

call pdposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr,
work, lwork, iwork, liwork, info)

ScaLAPACK Routines 6

6-231

call pcposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr,
work, lwork, iwork, liwork, info)

call pzposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr,
work, lwork, iwork, liwork, info)

Description

This routine uses the Cholesky factorization A=UTU or A=LLT to compute the solution to a real or
complex system of linear equations

A(ia:ia+n-1,ja:ja+n-1) * X = B(ib:ib+n-1,jb:jb+nrhs-1),

 where A(ia:ia+n-1,ja:ja+n-1) is a n-by-n matrix and X and B(ib:ib+n-1,jb:jb+nrhs-1) are
n-by-nrhs matrices.

Error bounds on the solution and a condition estimate are also provided.

In the following comments y denotes Y(iy:iy+m-1,jy:jy+k-1) a m-by-k matrix where y can be
a, af, b and x.

The routine p?posvx performs the following steps:

1. If fact = 'E', real scaling factors s are computed to equilibrate
the system:

 diag(sr)*A*diag(sc) *inv(diag(sc))*X = diag(sr)*B

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if
equilibration is used, A is overwritten by diag(sr)*A*diag(sc) and B by diag(sr)*B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after
equilibration if fact = 'E') as

A = UT U, if uplo = ‘U’, or
A = L LT , if uplo = ‘L’,
where U is an upper triangular matrix and L is a lower triangular matrix.

3. The factored form of A is used to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision, steps 4-6 are skipped

4. The system of equations is solved for X using the factored form of A.

5. Iterative refinement is applied to improve the computed solution matrix and calculate error
bounds and backward error estimates for it.

6-232

6 Intel® Math Kernel Library Reference Manual

6. If equilibration was used, the matrix X is premultiplied by diag(sr) so that it solves the original
system before equilibration.

Input Parameters

fact (global) CHARACTER. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix A is supplied on entry,
and if not, whether the matrix A should be equilibrated before it is factored.

If fact = 'F': on entry, af contains the factored form of A. If equed = 'Y',
the matrix A has been equilibrated with scaling factors given by s.
a and af will not be modified.

If fact = 'N', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to af
and factored.

uplo (global)
CHARACTER. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored.

n (global) INTEGER. The order of the distributed submatrix sub(A), (n ≥ 0).

nrhs (global) INTEGER. The number of right-hand sides; the number of columns of
the distributed submatrices B and X, (nrhs ≥ 0).

a (local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension
(lld_a, LOCc(ja+n-1)). On entry, the symmetric/Hermitian matrix A,
except if fact = 'F' and equed = 'Y', then A must contain the equilibrated
matrix diag(sr)*A*diag(sc). If uplo = 'U', the leading n-by-n upper triangular
part of A contains the upper triangular part of the matrix A, and the strictly
lower triangular part of A is not referenced. If uplo = 'L', the leading n-by-n
lower triangular part of A contains the lower triangular part of the matrix A,
and the strictly upper triangular part of A is not referenced. A is not modified if
fact = 'F' or 'N', or if fact = 'E' and equed = 'N' on exit.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

ScaLAPACK Routines 6

6-233

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

af (local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension
(lld_af, LOCc(ja+n-1)).
If fact = 'F', then af is an input argument and on entry contains the triangular
factor U or L from the Cholesky factorization A = UT*U or A = L*LT, in the
same storage format as A. If equed .ne. 'N', then af is the factored form of the
equilibrated matrix diag(sr)*A*diag(sc).

 iaf,jaf (global) INTEGER. The row and column indices in the global array af
indicating the first row and the first column of the submatrix AF, respectively.

descaf (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix AF.

equed (global).CHARACTER. Must be 'N' or 'Y'.
equed is an input argument if fact = 'F' . It specifies the form of equilibration
that was done:
If equed = 'N', no equilibration was done (always
true if fact = 'N');
If equed = 'Y', equilibration was done and A has been replaced by
diag(sr)*A*diag(sc).

sr (local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Array, DIMENSION (lld_a).
The array s contains the scale factors for A. This array is an input argument if
fact = 'F' only; otherwise it is an output argument.
If equed = 'N', s is not accessed.
If fact = 'F' and equed = 'Y', each element of s must be positive.

b (local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx

6-234

6 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension
(lld_b, LOCc(jb+nrhs-1)). On entry, the n-by-nrhs right-hand side
matrix B.

ib,jb (global) INTEGER. The row and column indices in the global array b
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

x (local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension
(lld_x, LOCc(jx+nrhs-1)).

ix,jx (global) INTEGER. The row and column indices in the global array x
indicating the first row and the first column of the submatrix X, respectively.

descx (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix X.

 work (local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Workspace array, DIMENSION (lwork);

lwork (local or global)
INTEGER.

The dimension of the array work. lwork is local input and must be at least
lwork = max(p?pocon(lwork), p?porfs(lwork)) + LOCr(n_a).
lwork = 3*desca(lld_)

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

ScaLAPACK Routines 6

6-235

liwork (local or global)
INTEGER. The dimension of the array iwork. liwork is local input and must
be at least liwork = desca(lld_) liwork = LOCr(n_a).
If liwork = -1, then liwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

 Output Parameters

a On exit, if fact = 'E' and equed = 'Y', a is overwritten by
diag(sr)*a*diag(sc).

af If fact = 'N', then af is an output argument and on exit returns the triangular
factor U or L from the Cholesky factorization A = UT*U or A = L*LT of the
original matrix A.
If fact = 'E', then af is an output argument and on exit returns the triangular
factor U or L from the Cholesky factorization A = UT*U or A = L*LT of the
equilibrated matrix A (see the description of A for the form of the equilibrated
matrix).

equed If fact ≠ 'F' , then equed is an output argument. It specifies the form of
equilibration that was done (see the description of equed in Input Arguments
section).

sr This array is an output argument if fact ≠ 'F' .
See the description of sr in Input Arguments section.

sc This array is an output argument if fact ≠ 'F' .
See the description of sc in Input Arguments section.

b On exit, if equed = 'N', b is not modified; if trans = 'N' and equed = 'R' or 'B',
b is overwritten by diag(r)*b; if trans = 'T' or 'C' and equed = 'C' or 'B', b is
overwritten by diag(c)*b.

x (local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.

6-236

6 Intel® Math Kernel Library Reference Manual

If info = 0 the n-by-nrhs solution matrix X to the original system of
equations. Note that A and B are modified on exit if equed .ne. 'N', and the
solution to the equilibrated system is inv(diag(sc))*X if trans = 'N' and
equed = 'C' or 'B', or inv(diag(sr))*X if trans = 'T' or 'C' and equed = 'R' or
'B'.

rcond (global)
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after
equilibration (if done). If rcond is less than the machine precision (in
particular, if rcond = 0), the matrix is singular to working precision. This
condition is indicated by a return code of info > 0.

ferr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(LOC,n_b). The estimated forward error
bounds for each solution vector X(j) (the j-th column of the solution matrix
X). If xtrue is the true solution, ferr(j) bounds the magnitude of the largest
entry in (X(j) - xtrue) divided by the magnitude of the largest entry in X(j).
The quality of the error bound depends on the quality of the estimate of
norm(inv(A)) computed in the code; if the estimate of norm(inv(A)) is accurate,
the error bound is guaranteed.

berr (local)
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(LOC,n_b).
The componentwise relative backward error of each solution vector X(j) (the
smallest relative change in any entry of A or B that makes X(j) an exact
solution).

info (global) INTEGER.
If info=0, the execution is successful.
< 0: if info = -i, the i-th argument had an illegal value
> 0: if info = i, and i is <= n: if info = i, the leading minor of order i of a
is not positive definite, so the factorization could not be completed, and the
solution and error bounds could not be computed.
= n+1: rcond is less than machine precision. The factorization has been
completed, but the matrix is singular to working precision, and the solution and
error bounds have not been computed.

ScaLAPACK Routines 6

6-237

p?pbsv
Solves a symmetric/Hermitian positive definite banded
system of linear equations.

Syntax
call pspbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,

info)

call pdpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

call pcpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

call pzpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,
info)

Description

This routine solves a system of linear equations

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs),

where A(1:n, ja:ja+n-1) is an n-by-n real/complex banded symmetric positive definite distributed
matrix with bandwidth bw.

Cholesky factorization is used to factor a reordering of the matrix into L L'.

Input Parameters
uplo (global) CHARACTER. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular of A is stored.
If uplo = 'U', the upper triangular A is stored
If uplo = 'L', the lower triangular of A is stored.

n (global) INTEGER. The order of the distributed matrix A, (n ≥ 0).
bw (global) INTEGER. The number of subdiagonals in L or U. 0< bw < n-1.

nrhs (global) INTEGER. The number of right-hand sides;
the number of columns in B, (nrhs ≥ 0).

a (local).
REAL for pspbsv
DOUBLE PRECISION for pdpbsv
COMPLEX for pcpbsv

6-238

6 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for pzpbsv.
Pointer into the local memory to an array with first dimension
lld_a >(bw+1) (stored in desca).
On entry, this array contains the local pieces of the distributed matrix sub(A) to
be factored.

ja (global) INTEGER. The index in the global array a that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

b (local)
REAL for pspbsv
DOUBLE PRECISION for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Pointer into the local memory to an array of local lead dimension lld_b>NB.
On entry, this array contains the local pieces of the right hand sides
B(ib:ib+n-1, 1:nrhs).

ib (global) INTEGER. The row index in the global array b that points to the first
row of the matrix to be operated on (which may be either all of b or a
submatrix of B).

desb (global and local) INTEGER array of dimension dlen.
if 1D type (dtype_b =502), dlen >7;
if 2D type (dtype_b =1), dlen > 9.
The array descriptor for the distributed matrix B. Contains information of
mapping of B to memory.

work (local).

REAL for pspbsv
DOUBLE PRECISION for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Temporary workspace. This space may be overwritten in between calls to
routines. work must be the size given in lwork.

lwork (local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal
acceptable size will be returned in work(1) and an error code is returned.
lwork > (NB+2*bw)*bw +max((bw*nrhs), bw*bw)

ScaLAPACK Routines 6

6-239

Output Parameters

a On exit, this array contains information containing details of the factorization.
Note that permutations are performed on the matrix, so that the factors
returned are different from those returned by LAPACK.

b On exit, contains the local piece of the solutions distributed matrix X.

work On exit, work(1) contains the minimal lwork.

info (global).
INTEGER. If info=0, the execution is successful.
< 0: If the i-th argument is an array and the j-entry had an illegal value, then
info = -(i*100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.
> 0: If info = k < NPROCS, the submatrix stored on processor info and
factored locally was not positive definite, and the factorization was not
completed.
If info = k > NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not positive definite, and
the factorization was not completed.

p?ptsv
Solves a symmetric or Hermitian positive definite
tridiagonal system of linear equations.

Syntax
call psptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

call pdptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

call pcptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

call pzptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

Description

This routine solves a system of linear equations

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs)

6-240

6 Intel® Math Kernel Library Reference Manual

where A(1:n, ja:ja+n-1) is an n-by-n real tridiagonal symmetric positive definite distributed
matrix.

Cholesky factorization is used to factor a reordering of the matrix into L L'.

Input Parameters
n (global) INTEGER. The order of matrix A (n ≥ 0).

nrhs (global) INTEGER. The number of right-hand sides; the number of columns of
the distributed submatrix B (nrhs ≥ 0).

d (local)
REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer to local part of global vector storing the main diagonal of the matrix.

e (local)
REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer to local part of global vector storing the upper diagonal of the matrix.
Globally, du(n) is not referenced, and du must be aligned with d.

ja (global) INTEGER.The index in the global array A that points to the start of the
matrix to be operated on (which may be either all of A or a submatrix of A).

desca (global and local) INTEGER array of dimension dlen.
if 1d type (dtype_a=501 or 502), dlen >= 7;
if 2d type (dtype_a=1), dlen >= 9.
The array descriptor for the distributed matrix A. Contains information of
mapping of A to memory.

b (local)
REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer into the local memory to an array of local lead dimension lld_b>NB.
On entry, this array contains the local pieces of the right hand sides
B(ib:ib+n-1, 1:nrhs).

ScaLAPACK Routines 6

6-241

ib (global) INTEGER. The row index in the global array b that points to the first
row of the matrix to be operated on (which may be either all of b or a
submatrix of B).

desb (global and local) INTEGER array of dimension dlen.
if 1d type (dtype_b =502), dlen >7;
if 2d type (dtype_b =1), dlen > 9.
The array descriptor for the distributed matrix B. Contains information of
mapping of B to memory.

work (local).

REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Temporary workspace. This space may be overwritten in between calls to
routines. work must be the size given in lwork.

lwork (local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal
acceptable size will be returned in work(1) and an error code is returned.
lwork > (12*NPCOL+3*NB)+max((10+2*min(100,nrhs))*NPCOL+4*nrhs,
8*NPCOL).

Output Parameters

d On exit, this array contains information containing the factors of the matrix.
Must be of size > desca(nb_).

e On exit, this array contains information containing the factors of the matrix.
Must be of size > desca(nb_).

b On exit, this contains the local piece of the solutions distributed matrix X.

work On exit, work(1) contains the minimal lwork.

info (local) INTEGER. If info=0, the execution is successful.
< 0: If the i-th argument is an array and the j-entry had an illegal value, then
info = -(i*100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.
> 0: If info = k < NPROCS, the submatrix stored on processor info and
factored locally was not positive definite, and the factorization was not
completed.

6-242

6 Intel® Math Kernel Library Reference Manual

If info = k > NPROCS, the submatrix stored on processor info-NPROCS
representing interactions with other processors was not positive definite, and
the factorization was not completed.

p?gels
Solves overdetermined or underdetermined linear
systems involving a matrix of full rank.

Syntax
call psgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,

work, lwork, info)

call pdgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
work, lwork, info)

call pcgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
work, lwork, info)

call pzgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
work, lwork, info)

Description

This routine solves overdetermined or underdetermined real/ complex linear systems involving an
m-by-n matrix sub(A) = A(ia:ia+m-1,ja:ja+n-1), or its transpose/ conjugate-transpose, using a
QR or LQ factorization of
sub(A). It is assumed that sub(A) has full rank.

The following options are provided:

1. If trans = 'N' and m ≥ n: find the least squares solution of an overdetermined system, that is,
solve the least squares problem

minimize || sub (B) -sub(A) X ||

2. If trans = 'N' and m < n: find the minimum norm solution of an underdetermined system
sub(A) X = sub(B).

3. If trans = 'T' and m ≥ n: find the minimum norm solution of an undetermined system sub(A)T X
= sub(B).

ScaLAPACK Routines 6

6-243

4. If trans = 'T' and m < n: find the least squares solution of an overdetermined system, that is,
solve the least squares problem

minimize || sub(B) - sub(A)T X ||

where sub(B) denotes B(ib:ib+m-1, jb:jb+nrhs-1) when trans = 'N' and
B(ib:ib+n-1, jb:jb+nrhs-1) otherwise. Several right hand side vectors b and solution vectors x
can be handled in a single call;
When when trans = 'N', the solution vectors are stored as the columns of the n-by-nrhs right
hand side matrix sub(B) and the m-by-nrhs right hand side matrix sub(B) otherwise.

Input Parameters

trans (global) CHARACTER. Must be 'N', or'T'.
If trans = 'N', the linear system involves matrix
sub(A);
If trans = 'T', the linear system involves the transposed matrix AT (for real
flavors only).

m (global) INTEGER. The number of rows in the distributed submatrix sub (A)
(m ≥ 0).

n (global) INTEGER. The number of columns in the distributed submatrix sub (A)
(n ≥ 0).

nrhs (global) INTEGER. The number of right-hand sides; the number of columns in
the distributed submatrices sub(B) and X. (nrhs ≥ 0).

a (local)
REAL for psgels
DOUBLE PRECISION for pdgels
COMPLEX for pcgels
DOUBLE COMPLEX for pzgels.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, contains the m-by-n matrix A.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

b (local)
REAL for psgels
DOUBLE PRECISION for pdgels
COMPLEX for pcgels

6-244

6 Intel® Math Kernel Library Reference Manual

DOUBLE COMPLEX for pzgels.
Pointer into the local memory to an array of local dimension
(lld_b, LOCc(jb+nrhs-1)). On entry, this array contains the local pieces of
the distributed matrix B of right-hand side vectors, stored columnwise;
sub(B) is m-by-nrhs if trans='N', and n-by-nrhs otherwise.

ib,jb (global) INTEGER. The row and column indices in the global array b
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B.

work (local)
REAL for psgels
DOUBLE PRECISION for pdgels
COMPLEX for pcgels
DOUBLE COMPLEX for pzgels.
Workspace array with dimension lwork.

lwork (local or global)
INTEGER.The dimension of the array work
lwork is local input and must be at least
lwork >= ltau + max(lwf, lws) where
if m > n, then
ltau = numroc(ja+min(m,n)-1, nb_a, MYCOL, csrc_a, NPCOL),
lwf = nb_a * (mpa0 + nqa0 + nb_a)
lws = max((nb_a*(nb_a-1))/2, (nrhsqb0 + mpb0)*nb_a) + nb_a * nb_a
else
ltau = numroc(ia+min(m,n)-1, mb_a, MYROW, rsrc_a, NPROW),
lwf = mb_a * (mpa0 + nqa0 + mb_a)
lws = max((mb_a*(mb_a-1))/2, (npb0 + max(nqa0 +
numroc(numroc(n+iroffb, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp),
nrhsqb0))*mb_a) + mb_a * mb_a

End if
where lcmp = lcm / NPROW with lcm = ilcm(NPROW, NPCOL),

iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol= indxg2p(ja, nb_a, MYROW, rsrc_a, NPROW)
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffb = mod(ib-1, mb_b),

ScaLAPACK Routines 6

6-245

icoffb = mod(jb-1, nb_b),
ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b,
NPROW),
ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),
mpb0 = numroc(m+iroffb, mb_b, MYROW, icrow, NPROW),
nqb0 = numroc(n+icoffb, nb_b, MYCOL, ibcol, NPCOL),

ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, If m > n, sub(A) is overwritten by the details of its QR factorization as
returned by p?geqrf; if m < n, sub(A) is overwritten by details of its LQ
factorization as returned by p?gelqf.

b On exit, sub(B) is overwritten by the solution vectors, stored columnwise: if
trans = 'N' and m > n, rows 1 to n of sub(B) contain the least squares solution
vectors; the residual sum of squares for the solution in each column is given by
the sum of squares of elements n+1 to m in that column;
if trans = 'N' and m < n, rows 1 to n of sub(B) contain the minimum norm
solution vectors;
if trans = 'T' and m > n, rows 1 to m of sub(B) contain the minimum norm
solution vectors;
if trans = 'T' and m < n, rows 1 to m of sub(B) contain the least squares
solution vectors; the residual sum of squares for the solution in each column is
given by the sum of squares of elements m+1 to n in that column.

work(1) On exit work(1) contains the minimum value of lwork required for optimum
performance.

info (global) INTEGER.
 = 0: the execution is successful.
 < 0: if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
then info = -i.

6-246

6 Intel® Math Kernel Library Reference Manual

p?syev
Computes selected eigenvalues and eigenvectors of a
symmetric matrix.

Syntax
call pssyev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work,

lwork, info)

call pdsyev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work,
lwork, info)

Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
by calling the recommended sequence of ScaLAPACK routines.
In its present form, the routine assumes a homogeneous system and makes no checks for
consistency of the eigenvalues or eigenvectors across the different processes. Because of this, it is
possible that a heterogeneous system may return incorrect results without any error messages.

Input Parameters

np = the number of rows local to a given process.

nq = the number of columns local to a given process.

jobz (global).CHARACTER. Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors:
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

uplo (global).CHARACTER. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric matrix A
is stored:
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n (global) INTEGER. The number of rows and columns of the matrix A, (n ≥ 0).

a (local)
REAL for pssyev
DOUBLE PRECISION for pdsyev
Block cyclic array of global dimension (n,n) and local dimension

ScaLAPACK Routines 6

6-247

(lld_a, LOCc(ja+n-1)). On entry, the symmetric matrix A. If uplo = 'U',
only the upper triangular part of A is used to define the elements of the
symmetric matrix. If uplo = 'L', only the lower triangular part of A is used to
define the elements of the symmetric matrix.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

iz,jz (global) INTEGER. The row and column indices in the global array z
indicating the first row and the first column of the submatrix Z, respectively.

descz (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix Z.

work (local)
REAL for pssyev.
DOUBLE PRECISION for pdsyev.
Array, DIMENSION (lwork).

lwork (local)
INTEGER. See below for definitions of variables used to define lwork.
If no eigenvectors are requested (jobz = 'N') then
lwork > 5*n + sizesytrd + 1, where
 sizesytrd = the workspace requirement for p?sytrd and
is max(NB * (np +1), 3 * NB).
If eigenvectors are requested (jobz = 'V') then the amount of workspace
required to guarantee that all eigenvectors are computed is:
qrmem = 2*n-2
lwmin = 5*n + n*ldc + max(sizemqrleft, qrmem) + 1

 Variable definitions:
NB = desca(mb_) = desca(nb_) = * descz(mb_) = descz(nb_)
nn = max(n, NB, 2)
desca(rsrc_) = desca(rsrc_) = descz(rsrc_) = * descz(csrc_) = 0
np = numroc(nn, NB, 0, 0, NPROW)
nq = numroc(max(n, NB, 2), NB, 0, 0, NPCOL)
nrc = numroc(n, NB, myprowc, 0, NPROCS)
ldc = max(1, nrc)
sizemqrleft = the workspace requirement for p?ormtr when its side
argument is 'L'.
With myprowc defined when a new context is created as:

6-248

6 Intel® Math Kernel Library Reference Manual

call blacs_get(desca(ctxt_), 0, contextc) call
blacs_gridinit(contextc, 'R', NPROCS, 1) call
blacs_gridinfo(contextc, nprowc, npcolc, myprowc, mypcolc)

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum and optimal size for all work arrays.
Each of these values is returned in the first entry of the corresponding work
array, and no error message is issued by pxerbla.

Output Parameters

a On exit, the lower triangle (if uplo='L') or the upper triangle (if uplo='U') of
A, including the diagonal, is destroyed.

w (global).
REAL for pssyev
DOUBLE PRECISION for pdsyev
Array, DIMENSION (n).
On normal exit, the first m entries contain the selected eigenvalues in ascending
order.

z (local).
REAL for pssyev
DOUBLE PRECISION for pdsyev
Array, global dimension (n, n), local dimension (lld_z, LOCc(jz+n-1)).
If jobz = 'V', then on normal exit the first m columns of z contain the
orthonormal eigenvectors of the matrix corresponding to the selected
eigenvalues. If jobz = 'N', then z is not referenced.

work(1) On output, work(1) returns the workspace needed to guarantee completion. If
the input parameters are incorrect, work(1) may also be incorrect.
If jobz = 'N' work(1) = minimal (optimal) amount of workspace
If jobz = 'V' work(1) = minimal workspace required to generate all the
eigenvectors.

info (global)
INTEGER.
If info = 0, the execution is successful.

If info < 0: If the i-th argument is an array and the j-entry had an illegal
value, then info = -(i*100+j),
 if the i-th argument is a scalar and had an illegal value, then info = -i.

ScaLAPACK Routines 6

6-249

If info > 0:
If info= 1 through n, the i-th eigenvalue did not converge in ?steqr2 after a
total of 30n iterations.
If info= n+1, then p?syev has detected heterogeneity by finding that
eigenvalues were not identical across the process grid. In this case, the
accuracy of the results from p?syev cannot be guaranteed.

p?syevx
Computes selected eigenvalues and, optionally,
eigenvectors of a symmetric matrix.

Syntax
call pssyevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,

abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork,
ifail, iclustr, gap, info)

call pdsyevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,
abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork,
ifail, iclustr, gap, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric
matrix A by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and
eigenvectors can be selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Input Parameters

np = the number of rows local to a given process.
nq = the number of columns local to a given process.

jobz (global).CHARACTER*1. Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors:
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

6-250

6 Intel® Math Kernel Library Reference Manual

range (global).CHARACTER*1. Must be 'A', 'V', or 'I'.
If range ='A', all eigenvalues will be found.
If range ='V', all eigenvalues in the half-open interval
 [vl, vu] will be found.
If range ='I', the eigenvalues with indices il through iu will be found.

uplo (global).CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric matrix A
is stored:
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

n (global) INTEGER. The number of rows and columns of the matrix A, (n ≥ 0).

a (local).
REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
Block cyclic array of global dimension (n,n) and local dimension
(lld_a, LOCc(ja+n-1)). On entry, the symmetric matrix A. If uplo = 'U',
only the upper triangular part of A is used to define the elements of the
symmetric matrix. If uplo = 'L', only the lower triangular part of A is used to
define the elements of the symmetric matrix.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

vl, vu (global)
REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
If range ='V', the lower and upper bounds of the interval to be searched for
eigenvalues; vl ≤ vu.
Not referenced if range ='A'or 'I'.

il, iu (global)
INTEGER. If range ='I', the indices of the smallest and largest eigenvalues
to be returned.
Constraints:
il > 1
min(il,n) < iu < n
Not referenced if range ='A'or 'V'.

ScaLAPACK Routines 6

6-251

abstol (global).
REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
If jobz='V', setting abstol to p?lamch(context, 'U') yields the most
orthogonal eigenvectors.

The absolute error tolerance for the eigenvalues. An approximate eigenvalue is
accepted as converged when it is determined to lie in an interval [a,b] of width
less than or equal to
abstol + eps * max(|a|,|b|),
where eps is the machine precision. If abstol is less than or equal to zero,
then eps*norm(T) will be used in its place, where norm(T) is the 1-norm of the
tridiagonal matrix obtained by reducing A to tridiagonal form.

Eigenvalues will be computed most accurately when abstol is set to twice the
underflow threshold 2*p?lamch('S') not zero.If this routine returns with
((mod(info,2).ne.0).or. * (mod(info/8,2).ne.0)), indicating that some
eigenvalues or eigenvectors did not converge, try setting abstol to
2*p?lamch('S').

orfac (global).
REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that
correspond to eigenvalues which are within tol=orfac*norm(A) of each
other are to be reorthogonalized. However, if the workspace is insufficient (see
lwork), tol may be decreased until all eigenvectors to be reorthogonalized
can be stored in one process. No reorthogonalization will be done if orfac
equals zero. A default value of 103 is used if orfac is negative. orfac should
be identical on all processes.

iz,jz (global) INTEGER. The row and column indices in the global array z
indicating the first row and the first column of the submatrix Z, respectively.

descz (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix Z.descz(ctxt_) must equal desca(ctxt_).

work (local)
REAL for pssyevx.
DOUBLE PRECISION for pdsyevx.
Array, DIMENSION (lwork).

6-252

6 Intel® Math Kernel Library Reference Manual

lwork (local) INTEGER. The dimension of the array work.
See below for definitions of variables used to define lwork.
If no eigenvectors are requested (jobz = 'N') then
lwork > 5 * n + max(5 * nn, NB * (np0 + 1)).
If eigenvectors are requested (jobz = 'V') then the amount of workspace
required to guarantee that all eigenvectors are computed is:

lwork >= 5*n + max(5*nn, np0 * mq0 + 2 * NB * NB) +iceil(neig,
NPROW*NPCOL)*nn

The computed eigenvectors may not be orthogonal if the minimal workspace is
supplied and orfac is too small. If you want to guarantee orthogonality (at the
cost of potentially poor performance) you should add the following to lwork:
 (clustersize-1)*n
where clustersize is the number of eigenvalues in the largest cluster, where
a cluster is defined as a set of close eigenvalues:
{w(k),...,w(k+clustersize-1) |
 w(j+1) < w(j)) + orfac*2*norm(A)}

 Variable definitions:
neig = number of eigenvectors requested
NB = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_)
nn = max(n, NB, 2)
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0
 np0 = numroc(nn, NB, 0, 0, NPROW)
mq0 = numroc(max(neig, NB, 2), NB, 0, 0, NPCOL) iceil(x, y) is a
ScaLAPACK function returning ceiling(x/y)

 When lwork is too small:
If lwork is too small to guarantee orthogonality, p?syevx attempts to
maintain orthogonality in the clusters with the smallest spacing between the
eigenvalues.
If lwork is too small to compute all the eigenvectors requested, no
computation is performed and info=-23 is returned. Note that when
range='V', p?syevx does not know how many eigenvectors are requested
until the eigenvalues are computed. Therefore, when range='V' and as long as
lwork is large enough to allow p?syevx to compute the eigenvalues,
p?syevx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality & performance:
Greater performance can be achieved if adequate workspace is provided. On
the other hand, in some situations, performance can decrease as the workspace
provided increases above the workspace amount shown below:

ScaLAPACK Routines 6

6-253

For optimal performance, greater workspace may be needed, that is,
lwork > max(lwork, 5*n + nsytrd_lwopt)
Where:
lwork, as defined previously, depends upon the number of eigenvectors
requested, and
nsytrd_lwopt = n + 2*(anb+1)*(4*nps+2) + (nps + 3) * nps

anb = pjlaenv(desca(ctxt_), 3, 'p?syttrd', 'L', 0, 0, 0, 0)
sqnpc = int(sqrt(dble(NPROW * NPCOL)))
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)

numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

For large n, no extra workspace is needed, however the biggest boost in
performance comes for small n, so it is wise to provide the extra workspace
(typically less than a Megabyte per process).

If clustersize > n/sqrt(NPROW*NPCOL), then providing enough space to
compute all the eigenvectors orthogonally will cause serious degradation in
performance. In the limit (that is, clustersize = n-1) p?stein will perform
no better than ?stein on 1 processor.
For clustersize = n/sqrt(NPROW*NPCOL) reorthogonalizing all
eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time will grow as the
square of the cluster size, all other factors remaining equal and assuming
enough workspace. Less workspace means less reorthogonalization but faster
execution.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the size required for optimal performance for all
work arrays. Each of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued by pxerbla.

iwork (local) INTEGER. Workspace array.

liwork (local) INTEGER, dimension of iwork.
liwork > 6 * nnp
Where: nnp = max(n, NPROW*NPCOL + 1, 4)
If liwork = -1, then liwork is global input and a workspace query is

6-254

6 Intel® Math Kernel Library Reference Manual

assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo =
'U') of A, including the diagonal, is overwritten.

m (global) INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n.

w (global).
REAL for pssyevx
DOUBLE PRECISION for pdsyevx
Array, DIMENSION (n).
The first m elements contain the selected eigenvalues in ascending order.

z (local).
REAL for pssyevx
DOUBLE PRECISION for pdsyevx
Array, global dimension (n, n),
local dimension (lld_z, LOCc(jz+n-1))
If jobz ='V', then on normal exit the first m columns of z contain the
orthonormal eigenvectors of the matrix corresponding to the selected
eigenvalues. If an eigenvector fails to converge, then that column of z contains
the latest approximation to the eigenvector, and the index of the eigenvector is
returned in ifail.
If jobz = 'N', then z is not referenced.

work(1) On exit, returns workspace adequate workspace to allow optimal performance.

iwork(1) On return, iwork(1) contains the amount of integer workspace required

ifail (global) INTEGER.Array, DIMENSION (n).
If jobz ='V', then on normal exit, the first m elements of ifail are zero. If
(mod(info,2).ne.0) on exit, then ifail contains the indices of the
eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

iclustr (global) INTEGER.
Array, DIMENSION (2*NPROW*NPCOL)
This array contains indices of eigenvectors corresponding to a cluster of
eigenvalues that could not be reorthogonalized due to insufficient workspace
(see lwork, orfac and info).Eigenvectors corresponding to clusters of

ScaLAPACK Routines 6

6-255

eigenvalues indexed iclustr(2*i-1) to iclustr(2*i), could not be
reorthogonalized due to lack of workspace. Hence the eigenvectors
corresponding to these clusters may not be orthogonal. iclustr() is a zero
terminated array. (iclustr(2*k).ne.0.and. iclustr(2*k+1).eq.0) if and
only if k is the number of clusters.
iclustr is not referenced if jobz = 'N'

gap (global)
REAL for pssyevx
DOUBLE PRECISION for pdsyevx
Array, DIMENSION (NPROW*NPCOL)
This array contains the gap between eigenvalues whose eigenvectors could not
be reorthogonalized. The output values in this array correspond to the clusters
indicated by the array iclustr. As a result, the dot product between
eigenvectors corresponding to the ith cluster may be as high as (C * n) /
gap(i) where C is a small constant.

info (global) INTEGER.
If info = 0, the execution is successful.
If info< 0:
If the i-th argument is an array and the j-entry had an illegal value, then info
= -(i*100+j), if the i-th argument is a scalar and had an illegal value, then
info = -i.
If info > 0: if (mod(info,2).ne.0), then one or more eigenvectors failed to
converge. Their indices are stored in ifail. Ensure
abstol=2.0*p?lamch('U')
if (mod(info/2,2).ne.0),then eigenvectors corresponding to one or more
clusters of eigenvalues could not be reorthogonalized because of insufficient
workspace.The indices of the clusters are stored in the array iclustr.
if (mod(info/4,2).ne.0), then space limit prevented p?syevx from computing
all of the eigenvectors between vl and vu. The number of eigenvectors
computed is returned in nz.
if (mod(info/8,2).ne.0), then p?stebz failed to compute eigenvalues. Ensure
abstol=2.0*p?lamch('U').

6-256

6 Intel® Math Kernel Library Reference Manual

p?heevx
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian matrix.

Syntax
call pcheevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,

abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork,
iwork, liwork, ifail, iclustr, gap, info)

call pzheevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,
abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork,
iwork, liwork, ifail, iclustr, gap, info)

Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix A by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and
eigenvectors can be selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Input Parameters

np = the number of rows local to a given process.
nq = the number of columns local to a given process.

jobz (global).CHARACTER*1. Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors:
If jobz ='N', then only eigenvalues are computed.
If jobz ='V', then eigenvalues and eigenvectors are computed.

range (global).CHARACTER*1. Must be 'A', 'V', or 'I'.
If range ='A', all eigenvalues will be found.
If range ='V', all eigenvalues in the half-open interval
 [vl, vu] will be found.
If range ='I', the eigenvalues with indices il through iu will be found.

uplo (global).CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the Hermitian matrix A
is stored:
If uplo = 'U', a stores the upper triangular part of A.
If uplo = 'L', a stores the lower triangular part of A.

ScaLAPACK Routines 6

6-257

n (global) INTEGER. The number of rows and columns of the matrix A, (n ≥ 0).

a (local).
COMPLEX for pcheevx
DOUBLE COMPLEX for pzheevx.
Block cyclic array of global dimension (n,n) and local dimension
(lld_a, LOCc(ja+n-1)). On entry, the Hermitian matrix A. If uplo = 'U',
only the upper triangular part of A is used to define the elements of the
symmetric matrix. If uplo = 'L', only the lower triangular part of A is used to
define the elements of the Hermitian matrix.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.If desca(ctxt_) is incorrect, p?heevx cannot
guarantee correct error reporting

vl, vu (global)
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
If range ='V', the lower and upper bounds of the interval to be searched for
eigenvalues;
Not referenced if range ='A'or 'I'.

il, iu (global)
INTEGER. If range ='I', the indices of the smallest and largest eigenvalues
to be returned.
Constraints:
il > 1
min(il,n) < iu < n
Not referenced if range ='A'or 'V'.

abstol (global).
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
If jobz='V', setting abstol to p?lamch(context, 'U') yields the most
orthogonal eigenvectors.

The absolute error tolerance for the eigenvalues. An approximate eigenvalue is
accepted as converged when it is determined to lie in an interval [a,b] of width
less than or equal to
abstol + eps * max(|a|,|b|),

6-258

6 Intel® Math Kernel Library Reference Manual

where eps is the machine precision. If abstol is less than or equal to zero,
then eps*norm(T) will be used in its place, where norm(T) is the 1-norm of the
tridiagonal matrix obtained by reducing A to tridiagonal form.

Eigenvalues will be computed most accurately when abstol is set to twice the
underflow threshold 2*p?lamch('S') not zero.If this routine returns with
((mod(info,2).ne.0).or. (mod(info/8,2).ne.0)), indicating that some
eigenvalues or eigenvectors did not converge, try setting abstol to
2*p?lamch('S').

orfac (global).
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that
correspond to eigenvalues which are within tol=orfac*norm(A) of each
other are to be reorthogonalized. However, if the workspace is insufficient (see
lwork), tol may be decreased until all eigenvectors to be reorthogonalized
can be stored in one process. No reorthogonalization will be done if orfac
equals zero. A default value of 103 is used if orfac is negative. orfac should
be identical on all processes.

iz,jz (global) INTEGER. The row and column indices in the global array z
indicating the first row and the first column of the submatrix Z, respectively.

descz (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix Z.descz(ctxt_) must equal desca(ctxt_).

work (local)
COMPLEX for pcheevx
DOUBLE COMPLEX for pzheevx.
Array, DIMENSION (lwork).

lwork (local).
INTEGER. The dimension of the array work.
If only eigenvalues are requested:
lwork > n + max(NB * (np0 + 1), 3)
If eigenvectors are requested:
lwork > n + (np0+ mq0 + NB) * NB
with nq0 = numroc(nn, NB, 0, 0, NPCOL).

lwork >= 5*n + max(5*nn, np0 * mq0 + 2 * NB * NB) +iceil(neig,
NPROW*NPCOL)*nn

ScaLAPACK Routines 6

6-259

For optimal performance, greater workspace is needed, that is
lwork > max(lwork, nhetrd_lwork)
where lwork is as defined above, and
nhetrd_lwork = n + 2*(anb+1)*(4*nps+2) + (nps + 1) * nps

ictxt = desca(ctxt_)
anb = pjlaenv(ictxt, 3, 'pchettrd', 'L', 0, 0, 0, 0)
sqnpc = sqrt(dble(NPROW * NPCOL))
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the size required for optimal performance for all
work arrays. Each of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued by pxerbla.

rwork (local)
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Workspace array, DIMENSION (lrwork).

lrwork (local)
INTEGER.The dimension of the array work.
See below for definitions of variables used to define lwork.
If no eigenvectors are requested (jobz = 'N') then lrwork > 5 * nn + 4* n
If eigenvectors are requested (jobz = 'V') then the amount of workspace
required to guarantee that all eigenvectors are computed is:

lrwork > 4*n + max(5*nn, np0 * mq0 + 2 * NB * NB) +iceil(neig,
NPROW*NPCOL)*nn

The computed eigenvectors may not be orthogonal if the minimal workspace is
supplied and orfac is too small. If you want to guarantee orthogonality (at the
cost of potentially poor performance) you should add the following to lrwork:
 (clustersize-1)*n
where clustersize is the number of eigenvalues in the largest cluster, where
a cluster is defined as a set of close eigenvalues:
{w(k),...,w(k+clustersize-1) |
 w(j+1) < w(j) + orfac*2*norm(A)}

 Variable definitions:
neig = number of eigenvectors requested
NB = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_)
nn = max(n, NB, 2)
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0

6-260

6 Intel® Math Kernel Library Reference Manual

 np0 = numroc(nn, NB, 0, 0, NPROW)
mq0 = numroc(max(neig, NB, 2), NB, 0, 0, NPCOL) iceil(x, y) is a
ScaLAPACK function returning ceiling(x/y)

 When lrwork is too small:
If lwork is too small to guarantee orthogonality, p?heevx attempts to
maintain orthogonality in the clusters with the smallest spacing between the
eigenvalues.
If lwork is too small to compute all the eigenvectors requested, no
computation is performed and info=-23 is returned. Note that when
range='V', p?heevx does not know how many eigenvectors are requested
until the eigenvalues are computed. Therefore, when range='V' and as long as
lwork is large enough to allow p?heevx to compute the eigenvalues,
p?heevx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality & performance:
If clustersize > n/sqrt(NPROW*NPCOL), then providing enough space to
compute all the eigenvectors orthogonally will cause serious degradation in
performance. In the limit (that is, clustersize = n-1) p?stein will perform
no better than ?stein on 1 processor.
For clustersize = n/sqrt(NPROW*NPCOL) reorthogonalizing all
eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time will grow as the
square of the cluster size, all other factors remaining equal and assuming
enough workspace. Less workspace means less reorthogonalization but faster
execution.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the size required for optimal performance for all
work arrays. Each of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued by pxerbla.

iwork (local) INTEGER. Workspace array.

liwork (local) INTEGER, dimension of iwork.
liwork > 6 * nnp
Where: nnp = max(n, NPROW*NPCOL + 1, 4)
If liwork = -1, then liwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

ScaLAPACK Routines 6

6-261

Output Parameters

a On exit, the lower triangle (if uplo = 'L') or
the upper triangle (if uplo = 'U') of A, including the diagonal, is overwritten.

m (global) INTEGER. The total number of eigenvalues found;
0 ≤ m ≤ n.

nz (global) INTEGER.Total number of eigenvectors computed. 0 <nz <m.
The number of columns of z that are filled.
If jobz.ne. 'V', nz is not referenced.
If jobz.eq. 'V', nz = m unless the user supplies insufficient space and
p?heevx is not able to detect this before beginning computation. To get all the
eigenvectors requested, the user must supply both sufficient space to hold the
eigenvectors in z (m.le. descz(n_)) and sufficient workspace to compute
them. (See lwork).p?heevx is always able to detect insufficient space
without computation unless range.eq. 'V'.

w (global).
REAL for pcheevx
DOUBLE PRECISION for pzheevx
Array, DIMENSION (n).
The first m elements contain the selected eigenvalues in ascending order.

z (local).
COMPLEX for pcheevx
DOUBLE COMPLEX for pzheevx
Array, global dimension (n, n),
local dimension (lld_z, LOCc(jz+n-1))
If jobz ='V', then on normal exit the first m columns of z contain the
orthonormal eigenvectors of the matrix corresponding to the selected
eigenvalues. If an eigenvector fails to converge, then that column of z contains
the latest approximation to the eigenvector, and the index of the eigenvector is
returned in ifail.
If jobz = 'N', then z is not referenced.

work(1) On exit, returns workspace adequate workspace to allow optimal performance.

rwork (local).

REAL for pcheevx
DOUBLE PRECISION for pzheevx
Array, DIMENSION (lrwork).
On return, rwork(1) contains the optimal amount of workspace required for
efficient execution.

6-262

6 Intel® Math Kernel Library Reference Manual

if jobz='N' rwork(1) = optimal amount of workspace required to compute
eigenvalues efficiently.
if jobz='V' rwork(1) = optimal amount of workspace required to compute
eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.
If range='V', it is assumed that all eigenvectors may be required.

iwork(1) (local)
On return, iwork(1) contains the amount of integer workspace required.

ifail (global) INTEGER.
Array, DIMENSION (n).
If jobz ='V', then on normal exit, the first m elements of ifail are zero. If
(mod(info,2).ne.0) on exit, then ifail contains the indices of the
eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.

iclustr (global) INTEGER.
Array, DIMENSION (2*NPROW*NPCOL)
This array contains indices of eigenvectors corresponding to a cluster of
eigenvalues that could not be reorthogonalized due to insufficient workspace
(see lwork, orfac and info).Eigenvectors corresponding to clusters of
eigenvalues indexed iclustr(2*i-1) to iclustr(2*i), could not be
reorthogonalized due to lack of workspace. Hence the eigenvectors
corresponding to these clusters may not be orthogonal. iclustr() is a zero
terminated array. (iclustr(2*k).ne.0.and. iclustr(2*k+1).eq.0) if and
only if k is the number of clusters.
iclustr is not referenced if jobz = 'N'

gap (global)
REAL for pcheevx
DOUBLE PRECISION for pzheevx
Array, DIMENSION (NPROW*NPCOL)
This array contains the gap between eigenvalues whose eigenvectors could not
be reorthogonalized. The output values in this array correspond to the clusters
indicated by the array iclustr. As a result, the dot product between
eigenvectors corresponding to the ith cluster may be as high as (C * n) /
gap(i) where C is a small constant.

info (global) INTEGER.
If info = 0, the execution is successful.
If info< 0:
If the i-th argument is an array and the j-entry had an illegal value, then info
= -(i*100+j), if the i-th argument is a scalar and had an illegal value, then

ScaLAPACK Routines 6

6-263

info = -i.
If info > 0:
if (mod(info,2).ne.0), then one or more eigenvectors failed to converge. Their
indices are stored in ifail. Ensure abstol=2.0*p?lamch('U')
if (mod(info/2,2).ne.0),then eigenvectors corresponding to one or more
clusters of eigenvalues could not be reorthogonalized because of insufficient
workspace.The indices of the clusters are stored in the array iclustr.
if (mod(info/4,2).ne.0), then space limit prevented p?syevx from computing
all of the eigenvectors between vl and vu. The number of eigenvectors
computed is returned in nz.
if (mod(info/8,2).ne.0), then p?stebz failed to compute eigenvalues. Ensure
abstol=2.0*p?lamch('U').

p?gesvd
Computes the singular value decomposition of a
general matrix, optionally computing the left and/or
right singular vectors.

Syntax
call psgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu,

vt, ivt, jvt, descvt, work, lwork, info)

call pdgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu,
vt, ivt, jvt, descvt, work, lwork, info)

Description

This routine computes the singular value decomposition (SVD) of an m-by-n matrix A, optionally
computing the left and/or right singular vectors. The SVD is written
 A = U Σ VT

where Σ is an m-by-n matrix which is zero except for its min(m,n) diagonal elements, U is an
m-by-m orthogonal matrix, and V is an n-by-n orthogonal matrix. The diagonal elements of Σ are
the singular values of Aand the columns of U and V are the corresponding right and left singular
vectors, respectively. The singular values are returned in array s in decreasing order and only the
first min(m,n) columns of U and rows of vt = VT are computed.

6-264

6 Intel® Math Kernel Library Reference Manual

Input Parameters

mp = number of local rows in A and U
nq = number of local columns in A and VT
size = min(m,n)
sizeq = number of local columns in U
sizep = number of local rows in VT

jobu (global).CHARACTER*1.
Specifies options for computing all or part of the
matrix U.

If jobu ='V', the first size columns of U (the left singular vectors) are
returned in the array u;
if jobu ='N', no columns of U (no left singular vectors) are computed.

jobvt (global) CHARACTER*1.
Specifies options for computing all or part of the
matrix VT.

If jobvt ='V', the first size rows of VT (the right singular vectors) are
returned in the array vt;
if jobvt ='N', no rows of VT(no right singular vectors) are computed.

m (global) INTEGER. The number of rows of the matrix A (m ≥ 0).

n (global) INTEGER. The number of columns in A (n ≥ 0).

a (local).
DOUBLE PRECISION for psgesvd and pdgesvd
Block cyclic array, global dimension (m, n), local dimension (mp, nq).

work(lwork) is a workspace array.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

iu,ju (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix U, respectively.

descu (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix U.

ivt,jvt (global) INTEGER. The row and column indices in the global array vt
indicating the first row and the first column of the submatrix VT, respectively.

ScaLAPACK Routines 6

6-265

descvt (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix VT.

work (local)
DOUBLE PRECISION for psgesvd and pdgesvd
Workspace array, dimension (lwork)

lwork (local)
INTEGER. The dimension of the array work;

lwork > 2 + 6*sizeb + max(watobd, wbdtosvd),

where sizeb = max(m,n), and watobd and wbdtosvd refer, respectively, to
the workspace required to bidiagonalize the matrix A and to go from the
bidiagonal matrix to the singular value decomposition U S VT.

For watobd, the following holds:

watobd = max(max(wpslange,wpsgebrd),
max(wpslared2d,wpslared1d)),

where wpslange, wpslared1d, wpslared2d, wpsgebrd are the workspaces
required respectively for the subprograms pslange, pslared1d,
pslared2d, psgebrd. Using the standard notation

mp = numroc(m, mb, MYROW, desca(ctxt_), NPROW),
nq = numroc(n, NB, MYCOL, desca(lld_), NPCOL),

the workspaces required for the above subprograms are

wpslange = mp,
wpslared1d = nq0,
wpslared2d = mp0,
wpsgebrd = NB*(mp + nq + 1) + nq,

where nq0 and mp0 refer, respectively, to the values obtained at MYCOL = 0 and
MYROW = 0. In general, the upper limit for the workspace is given by a
workspace required on processor (0,0):
 watobd < NB*(mp0 + nq0 + 1) + nq0.

In case of a homogeneous process grid this upper limit can be used as an
estimate of the minimum workspace for every processor.

For wbdtosvd, the following holds:

wbdtosvd = size*(wantu*nru + wantvt*ncvt) + max(wsbdsqr,
max(wantu*wpsormbrqln, wantvt*wpsormbrprt)),

6-266

6 Intel® Math Kernel Library Reference Manual

where

1, if left(right) singular vectors are wanted wantu(wantvt) = 0,otherwise
and wsbdsqr, wpsormbrqln and wpsormbrprt refer respectively to the
workspace required for the subprograms sbdsqr, p?ormbr(qln), and
p?ormbr(prt), where qln and prt are the values of the arguments vect,
side, and trans in the call to p?ormbr. nru is equal to the local number of
rows of the matrix U when distributed 1-dimensional "column" of processes.
Analogously, ncvt is equal to the local number of columns of the matrix VT
when distributed across 1-dimensional "row" of processes. Calling the
LAPACK procedure sbdsqr requires

wsbdsqr = max(1, 2*size + (2*size - 4)* max(wantu, wantvt))

on every processor. Finally,

wpsormbrqln = max((NB*(NB-1))/2,
(sizeq+mp)*NB)+NB*NB,
wpsormbrprt = max((mb*(mb-1))/2,
(sizep+nq)*mb)+mb*mb,

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the minimum size for the work array. The required
workspace is returned as the first element of work and no error message is
issued by pxerbla.

Output Parameters

a On exit, the contents of a are destroyed.

s (global).
DOUBLE PRECISION for psgesvd and pdgesvd.
Array, DIMENSION (size).
Contains the singular values of A sorted so that
s(i) ≥ s(i+1).

u (local).
DOUBLE PRECISION for psgesvd and pdgesvd
local dimension (mp, sizeq), global dimension (m, size)
if jobu = 'V', u contains the first min(m,n) columns of U If jobu ='N'or 'O',
u is not referenced.

ScaLAPACK Routines 6

6-267

vt (local)
DOUBLE PRECISION for psgesvd and pdgesvd
local dimension (sizep, nq), global dimension (size, n)
if jobvt = 'V',VT contains the first size rows of VT

If jobu ='N',VT is not referenced.

work On exit, if info = 0, then work(1) returns the required minimal size of
lwork.

rwork On exit (for complex flavors), if info > 0, rwork(1:min(m,n)-1) contains the
unconverged superdiagonal elements of an upper bidiagonal matrix B whose
diagonal is in s (not necessarily sorted). B satisfies A = u * B * vt, so it has the
same singular values as A, and singular vectors related by u and vt.

info (global) INTEGER.
If info = 0, the execution is successful.
If info < 0, If info= -i, the ith parameter had an illegal value.
If info >0 i, then if p?bdsqr did not converge,
If info = min(m,n) + 1, then p?gesvd has detected heterogeneity by finding
that eigenvalues were not identical across the process grid. In this case, the
accuracy of the results from p?gesvd cannot be guaranteed.

6-268

6 Intel® Math Kernel Library Reference Manual

p?sygvx
Computes selected eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem.

Syntax
call pssygvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb,

descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz,
work, lwork, iwork, liwork, ifail, iclustr, gap, info)

call pdsygvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb,
descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz,
work, lwork, iwork, liwork, ifail, iclustr, gap, info)

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized
symmetric-definite eigenproblem, of the form
 sub(A)x = λ sub(B)x, sub(A) sub(B)x = λ x, or sub(B) sub(A)x = λ x.

Here sub(A) denoting A(ia:ia+n-1, ja:ja+n-1) is assumed to symmetric and sub(B) denoting
B(ib:ib+n-1, jb:jb+n-1) is also positive definite.

Input Parameters

ibtype (global) INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if ibtype = 1, the problem type is
 sub(A)x = λ sub(B)x;
if ibtype = 2, the problem type is
sub(A)sub(B)x = λ x;
if ibtype = 3, the problem type is
sub(B) sub(A)x = λ x.

jobz (global).CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

range (global).
CHARACTER*1. Must be 'A' or 'V' or 'I'.

ScaLAPACK Routines 6

6-269

If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues in the interval: [vl, vu]
If range ='I', the routine computes eigenvalues with indices il through iu.

uplo (global).
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles of sub(A) and sub (B);
If uplo = 'L', arrays a and b store the lower triangles of sub(A) and sub (B).

n (global).
INTEGER. The order of the matrices sub(A) and sub (B) n ≥ 0.

a (local)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains the local pieces of the
n-by-n symmetric distributed matrix sub(A). If uplo = 'U', the leading n-by-n
upper triangular part of sub(A) contains the upper triangular part of the
matrix.If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains
the lower triangular part of the matrix.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.If desca(ctxt_) is incorrect, p?sygvx cannot
guarantee correct error reporting.

b (local).
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Pointer into the local memory to an array of dimension
(lld_b, LOCc(jb+n-1)). On entry, this array contains the local pieces of the
n-by-n symmetric distributed matrix sub(B). If uplo = 'U', the leading n-by-n
upper triangular part of sub(B) contains the upper triangular part of the matrix.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular part of the matrix.

ib,jb (global) INTEGER. The row and column indices in the global array b
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B. descb(ctxt_) must be equal to
desca(ctxt_).

6-270

6 Intel® Math Kernel Library Reference Manual

vl, vu (global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
If range ='V', the lower and upper bounds of the interval to be searched for
eigenvalues.

If range ='A' or 'I', vl and vu are not referenced.

il, iu (global)
INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: il> 1, min (il, n) < iu < n .

If range ='A' or 'V', il and iu are not referenced.

abstol (global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
If jobz='V', setting abstol to p?lamch(context, 'U') yields the most
orthogonal eigenvectors.
The absolute error tolerance for the eigenvalues. An approximate eigenvalue is
accepted as converged when it is determined to lie in an interval [a,b] of width
less than or equal to

abstol + eps * max(|a|,|b|),

where eps is the machine precision. If abstol is less than or equal to zero,
then eps*norm(T) will be used in its place, where norm(T) is the 1-norm of the
tridiagonal matrix obtained by reducing A to tridiagonal form.

Eigenvalues will be computed most accurately when abstol is set to twice the
underflow threshold 2*p?lamch('S') not zero. If this routine returns with
((mod(info,2).ne.0).or. * (mod(info/8,2).ne.0)), indicating that some
eigenvalues or eigenvectors did not converge, try setting abstol to
2*p?lamch('S').

orfac (global).
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that
correspond to eigenvalues which are within tol=orfac*norm(A) of each
other are to be reorthogonalized. However, if the workspace is insufficient (see
lwork), tol may be decreased until all eigenvectors to be reorthogonalized

ScaLAPACK Routines 6

6-271

can be stored in one process. No reorthogonalization will be done if orfac
equals zero. A default value of 10-3 is used if orfac is negative. orfac should
be identical on all processes.

iz,jz (global) INTEGER. The row and column indices in the global array z
indicating the first row and the first column of the submatrix Z, respectively.

descz (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix Z.descz(ctxt_) must equal desca(ctxt_).

work (local)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Workspace array, dimension of the (lwork)

lwork (local)
INTEGER.
See below for definitions of variables used to define lwork.
If no eigenvectors are requested (jobz = 'N') then lwork > 5 * n + max(5 * nn,
NB * (np0 + 1)).
If eigenvectors are requested (jobz = 'V') then the amount of workspace
required to guarantee that all eigenvectors are computed is:

lwork >= 5*n + max(5*nn, np0 * mq0 + 2 * NB * NB) +iceil(neig,
NPROW*NPCOL)*nn

The computed eigenvectors may not be orthogonal if the minimal workspace is
supplied and orfac is too small. If you want to guarantee orthogonality (at the
cost of potentially poor performance) you should add the following to lwork:
 (clustersize-1)*n
where clustersize is the number of eigenvalues in the largest cluster, where
a cluster is defined as a set of close eigenvalues:
{w(k),...,w(k+clustersize-1) |
 w(j+1) < w(j) + orfac*2*norm(A)}

Variable definitions:
neig = number of eigenvectors requested
NB = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_)
nn = max(n, NB, 2)
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0
 np0 = numroc(nn, NB, 0, 0, NPROW)
mq0 = numroc(max(neig, NB, 2), NB, 0, 0, NPCOL) iceil(x, y) is a
ScaLAPACK function returning ceiling(x/y)

6-272

6 Intel® Math Kernel Library Reference Manual

When lwork is too small:
If lwork is too small to guarantee orthogonality, p?syevx attempts to
maintain orthogonality in the clusters with the smallest spacing between the
eigenvalues.
If lwork is too small to compute all the eigenvectors requested, no
computation is performed and info=-23 is returned. Note that when
range='V', p?sygvx does not know how many eigenvectors are requested
until the eigenvalues are computed. Therefore, when range='V'and as long as
lwork is large enough to allow p?sygvx to compute the eigenvalues,
p?sygvx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality & performance:
Greater performance can be achieved if adequate workspace is provided. On
the other hand, in some situations, performance can decrease as the workspace
provided increases above the workspace amount shown below:

For optimal performance, greater workspace may be needed, that is,
lwork > max(lwork, 5*n + nsytrd_lwopt, nsygst_lwopt),
where:
lwork, as defined previously, depends upon the number of eigenvectors
requested, and
nsytrd_lwopt = n + 2*(anb+1)*(4*nps+2) + (nps + 3) * nps

nsygst_lwopt = 2*np0*NB + nq0*NB + NB*NB
anb = pjlaenv(desca(ctxt_), 3, p?syttrd', 'L', 0, 0, 0, 0)
sqnpc = int(sqrt(dble(NPROW * NPCOL)))
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)
NB = desca(mb_)
np0 =numroc(n, NB, 0, 0, NPROW)
nq0 = numroc(n, NB, 0, 0, NPCOL)

numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

For large n, no extra workspace is needed, however the biggest boost in
performance comes for small n, so it is wise to provide the extra workspace
(typically less than a Megabyte per process).

If clustersize > n/sqrt(NPROW*NPCOL), then providing enough space to
compute all the eigenvectors orthogonally will cause serious degradation in
performance. In the limit (that is, clustersize = n-1) p?stein will

ScaLAPACK Routines 6

6-273

perform no better than ?stein on 1 processor.
For clustersize = n/sqrt(NPROW*NPCOL) reorthogonalizing all
eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time will grow as the
square of the cluster size, all other factors remaining equal and assuming
enough workspace. Less workspace means less reorthogonalization but faster
execution.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the size required for optimal performance for all
work arrays. Each of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued by pxerbla.

 iwork (local) INTEGER. Workspace array.

liwork (local) INTEGER, dimension of iwork.
liwork > 6 * nnp
Where:
 nnp = max(n, NPROW*NPCOL + 1, 4)
If liwork = -1, then liwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if jobz = 'V', then if info = 0, sub(A) contains the distributed matrix
Z of eigenvectors. The eigenvectors are normalized as follows:
if ibtype = 1 or 2,
ZT*sub(B)*Z = i;
if ibtype = 3, ZT*inv(sub(B))*Z = i.
If jobz = 'N', then on exit the upper triangle (if uplo='U') or the lower triangle
(if uplo='L') of sub(A), including the diagonal, is destroyed.

b On exit, if info ≤ n, the part of sub(B) containing the matrix is overwritten by
the triangular factor U or L from the Cholesky factorization sub(B) = UTU or
 sub(B) = L LT.

m (global)
INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n.

6-274

6 Intel® Math Kernel Library Reference Manual

nz (global)
INTEGER.
Total number of eigenvectors computed. 0 < nz < m. The number of columns
of z that are filled.
If jobz.ne. 'V', nz is not referenced.
If jobz.eq. 'V', nz = m unless the user supplies insufficient space and
p?sygvx is not able to detect this before beginning computation. To get all the
eigenvectors requested, the user must supply both sufficient space to hold the
eigenvectors in z (m.le. descz(n_)) and sufficient workspace to compute
them. (See lwork below.) p?sygvx is always able to detect insufficient space
without computation unless
range.eq. 'V'.

w (global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Array, DIMENSION (n).
On normal exit, the first m entries contain the selected eigenvalues in
ascending order.

z (local).
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
global dimension (n, n), local dimension (lld_z, LOCc(jz+n-1)).
If jobz = 'V', then on normal exit the first m columns of z contain the
orthonormal eigenvectors of the matrix corresponding to the selected
eigenvalues. If an eigenvector fails to converge, then that column of z contains
the latest approximation to the eigenvector, and the index of the eigenvector is
returned in ifail.
If jobz = 'N', then z is not referenced.

work ifjobz='N' work(1) = optimal amount of workspace required to compute
eigenvalues efficiently
if jobz = 'V' work(1) = optimal amount of workspace required to compute
eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.
If range='V', it is assumed that all eigenvectors may be required.

ifail (global)
INTEGER.
 Array, DIMENSION (n).
ifail provides additional information when info.ne. 0

ScaLAPACK Routines 6

6-275

If (mod(info/16,2).ne.0) then ifail(1) indicates the order of the smallest
minor which is not positive definite. If (mod(info,2).ne.0) on exit, then ifail
contains the indices of the eigenvectors that failed to converge.

If neither of the above error conditions hold and jobz = 'V', then the first m
elements of ifail are set to zero.

iclustr (global)
INTEGER.
Array, DIMENSION (2*NPROW*NPCOL).This array contains indices of
eigenvectors corresponding to a cluster of eigenvalues that could not be
reorthogonalized due to insufficient workspace (see lwork, orfac and info).
Eigenvectors corresponding to clusters of eigenvalues indexed
iclustr(2*i-1) to iclustr(2*i), could not be reorthogonalized due to lack
of workspace. Hence the eigenvectors corresponding to these clusters may not
be orthogonal. iclustr() is a zero terminated array.
(iclustr(2*k).ne.0.and. iclustr(2*k+1).eq.0) if and only if k is the
number of clusters iclustr is not referenced if jobz = 'N'.

gap (global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Array, DIMENSION (NPROW*NPCOL).
This array contains the gap between eigenvalues whose eigenvectors could not
be reorthogonalized. The output values in this array correspond to the clusters
indicated by the array iclustr. As a result, the dot product between
eigenvectors corresponding to the ith cluster may be as high as
(C * n) / gap(i), where C is a small constant.

info (global)
INTEGER.
If info = 0, the execution is successful.
If info <0: the ith argument is an array and the j-entry had an illegal value,
then info = -(i*100+j), if the i-th argument is a scalar and had an illegal
value, then info = -i.
If info > 0:
if (mod(info,2).ne.0), then one or more eigenvectors failed to converge. Their
indices are stored in ifail.
if (mod(info,2,2).ne.0),then eigenvectors corresponding to one or more
clusters of eigenvalues could not be reorthogonalized because of insufficient
workspace. The indices of the clusters are stored in the array iclustr.
if (mod(info/4,2).ne.0), then space limit prevented p?sygvx from computing
all of the eigenvectors between vl and vu. The number of eigenvectors

6-276

6 Intel® Math Kernel Library Reference Manual

computed is returned in nz.
 if (mod(info/8,2).ne.0), then p?stebz failed to compute eigenvalues.
 if (mod(info/16,2).ne.0), then B was not positive definite. ifail(1)
indicates the order of the smallest minor which is not positive definite.

p?hegvx
Computes selected eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
definite eigenproblem.

Syntax
call pchegvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb,

descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz,
work, lwork, rwork, lrwork, iwork, liwork, ifail, iclustr, gap, info)

call pzhegvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb,
descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz,
work, lwork, rwork, lrwork, iwork, liwork, ifail, iclustr, gap, info)

Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex
generalized Hermitian-definite eigenproblem, of the form
 sub (A)x = λ sub(B)x, sub (A)sub(B)x = λ x, or sub(B)sub (A)x = λ x.

Here sub (A) denoting A(ia:ia+n-1, ja:ja+n-1) and sub(B) are assumed to be Hermitian and
sub(B) denoting B(ib:ib+n-1, jb:jb+n-1) is also positive definite.

Input Parameters

ibtype (global) INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if ibtype = 1, the problem type is
 sub(A)x = λ sub(B)x;
if ibtype = 2, the problem type is
sub(A)sub(B)x = λ x;
if ibtype = 3, the problem type is
sub(B) sub(A)x = λ x.

ScaLAPACK Routines 6

6-277

jobz (global).CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If jobz ='V', then compute eigenvalues and eigenvectors.

range (global).
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues in the interval: [vl, vu]
If range ='I', the routine computes eigenvalues with indices il through iu.

uplo (global).
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays a and b store the upper triangles of sub(A) and sub (B);
If uplo = 'L', arrays a and b store the lower triangles of sub(A) and sub (B).

n (global).
INTEGER. The order of the matrices sub(A) and sub (B), (n ≥ 0).

a (local)
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
Pointer into the local memory to an array of dimension
(lld_a, LOCc(ja+n-1)). On entry, this array contains the local pieces of the
n-by-n Hermitian distributed matrix sub(A). If uplo = 'U', the leading n-by-n
upper triangular part of sub(A) contains the upper triangular part of the matrix.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains the
lower triangular part of the matrix.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.If desca(ctxt_) is incorrect, p?hegvx cannot
guarantee correct error reporting.

b (local).
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
Pointer into the local memory to an array of dimension
(lld_b, LOCc(jb+n-1)). On entry, this array contains the local pieces of the
n-by-n Hermitian distributed matrix sub(B). If uplo = 'U', the leading n-by-n
upper triangular part of sub(B) contains the upper triangular part of the matrix.
If uplo = 'L', the leading n-by-n lower triangular part of sub(B) contains the
lower triangular part of the matrix.

6-278

6 Intel® Math Kernel Library Reference Manual

ib,jb (global) INTEGER. The row and column indices in the global array b
indicating the first row and the first column of the submatrix B, respectively.

descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix B. descb(ctxt_) must be equal to
desca(ctxt_).

vl, vu (global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
If range ='V', the lower and upper bounds of the interval to be searched for
eigenvalues.

If range ='A' or 'I', vl and vu are not referenced.

il, iu (global)
INTEGER.
If range ='I', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: il > 1, min (il, n) < iu < n

If range ='A' or 'V', il and iu are not referenced.

abstol (global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
If jobz='V', setting abstol to p?lamch(context, 'U') yields the most
orthogonal eigenvectors.
The absolute error tolerance for the eigenvalues. An approximate eigenvalue is
accepted as converged when it is determined to lie in an interval [a,b] of width
less than or equal to

abstol + eps * max(|a|,|b|),

where eps is the machine precision. If abstol is less than or equal to zero,
then eps*norm(T) will be used in its place, where norm(T) is the 1-norm of the
tridiagonal matrix obtained by reducing A to tridiagonal form.

Eigenvalues will be computed most accurately when abstol is set to twice the
underflow threshold 2*p?lamch('S') not zero. If this routine returns with
((mod(info,2).ne.0).or. * (mod(info/8,2).ne.0)), indicating that some
eigenvalues or eigenvectors did not converge, try setting abstol to
2*p?lamch('S').

ScaLAPACK Routines 6

6-279

orfac (global).
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that
correspond to eigenvalues which are within tol=orfac*norm(A) of each
other are to be reorthogonalized. However, if the workspace is insufficient (see
lwork), tol may be decreased until all eigenvectors to be reorthogonalized
can be stored in one process. No reorthogonalization will be done if orfac
equals zero. A default value of 10-3 is used if orfac is negative.
orfac should be identical on all processes.

iz,jz (global) INTEGER. The row and column indices in the global array z
indicating the first row and the first column of the submatrix Z, respectively.

descz (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix Z.descz(ctxt_) must equal desca(ctxt_).

work (local)
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
Workspace array, dimension (lwork)

lwork (local).
INTEGER. The dimension of the array work.
If only eigenvalues are requested:
lwork > n + max(NB * (np0 + 1), 3)
If eigenvectors are requested:
lwork > n + (np0+ mq0 + NB) * NB
with nq0 = numroc(nn, NB, 0, 0, NPCOL).

For optimal performance, greater workspace is needed, that is
lwork > max(lwork, n, nhetrd_lwopt, nhegst_lwopt)
where lwork is as defined above, and
nhetrd_lwork = 2*(anb+1)*(4*nps+2) + (nps + 1) * nps
nhegst_lwopt = 2*np0*NB + nq0*NB + NB*NB

NB = desca(mb_)
np0 = numroc(n, NB, 0, 0, NPROW)
nq0 = numroc(n, NB, 0, 0, NPCOL)
ictxt = desca(ctxt_)
anb = pjlaenv(ictxt, 3, 'p?hettrd', 'L', 0, 0, 0, 0)
sqnpc = sqrt(dble(NPROW * NPCOL))
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)

6-280

6 Intel® Math Kernel Library Reference Manual

numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function MYROW, MYCOL,
NPROW, and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is assumed;
the routine only calculates the size required for optimal performance for all
work arrays. Each of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued by pxerbla.

 rwork (local)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Workspace array, DIMENSION (lrwork).

lrwork (local)
INTEGER.The dimension of the array rwork.
See below for definitions of variables used to define lrwork.
If no eigenvectors are requested (jobz = 'N') then lrwork > 5 * nn + 4* n
If eigenvectors are requested (jobz = 'V') then the amount of workspace
required to guarantee that all eigenvectors are computed is:

lrwork > 4*n + max(5*nn, np0 * mq0) +
iceil(neig, NPROW*NPCOL)*nn

The computed eigenvectors may not be orthogonal if the minimal workspace is
supplied and orfac is too small. If you want to guarantee orthogonality (at the
cost of potentially poor performance) you should add the following to lrwork:
 (clustersize-1)*n
where clustersize is the number of eigenvalues in the largest cluster, where
a cluster is defined as a set of close eigenvalues:
{w(k),...,w(k+clustersize-1) |
 w(j+1) < w(j) + orfac*2*norm(A)}

 Variable definitions:
neig = number of eigenvectors requested
NB = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_)
nn = max(n, NB, 2)
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0
 np0 = numroc(nn, NB, 0, 0, NPROW)
mq0 = numroc(max(neig, NB, 2), NB, 0, 0, NPCOL) iceil(x, y) is a
ScaLAPACK function returning ceiling(x/y)

ScaLAPACK Routines 6

6-281

 When lrwork is too small:
If lwork is too small to guarantee orthogonality, p?hegvx attempts to
maintain orthogonality in the clusters with the smallest spacing between the
eigenvalues.
If lwork is too small to compute all the eigenvectors requested, no
computation is performed and info=-25 is returned. Note that when
range='V', p?hegvx does not know how many eigenvectors are requested
until the eigenvalues are computed. Therefore, when range='V'and as long as
lwork is large enough to allow p?hegvx to compute the eigenvalues,
p?hegvx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality & performance:
If clustersize > n/sqrt(NPROW*NPCOL), then providing enough space to
compute all the eigenvectors orthogonally will cause serious degradation in
performance. In the limit (that is, clustersize = n-1) p?stein will perform
no better than ?stein on 1 processor.
For clustersize = n/sqrt(NPROW*NPCOL) reorthogonalizing all
eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize > n/sqrt(NPROW*NPCOL) execution time will grow as the
square of the cluster size, all other factors remaining equal and assuming
enough workspace. Less workspace means less reorthogonalization but faster
execution.

If lwork = -1, then lrwork is global input and a workspace query is assumed;
the routine only calculates the size required for optimal performance for all
work arrays. Each of these values is returned in the first entry of the
corresponding work arrays, and no error message is issued by pxerbla.

iwork (local) INTEGER. Workspace array.

liwork (local) INTEGER, dimension of iwork.
liwork > 6 * nnp
Where: nnp = max(n, NPROW*NPCOL + 1, 4)
If liwork = -1, then liwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a On exit, if jobz = 'V', then if info = 0, sub(A) contains the distributed matrix
Z of eigenvectors.
The eigenvectors are normalized as follows:

6-282

6 Intel® Math Kernel Library Reference Manual

if ibtype = 1 or 2, ZH*sub(B)*Z = i;
if ibtype = 3, ZH*inv(sub(B))*Z = i.
If jobz = 'N', then on exit the upper triangle (if uplo='U') or the lower triangle
(if uplo='L') of sub(A), including the diagonal, is destroyed.

b On exit, if info ≤ n, the part of sub(B) containing the matrix is overwritten by
the triangular factor U or L from the Cholesky factorization sub(B) = UHU or
 sub(B) = L LH.

m (global)
INTEGER. The total number of eigenvalues found,
0 ≤ m ≤ n.

nz (global)
INTEGER.
Total number of eigenvectors computed. 0 < nz < m. The number of columns
of z that are filled.
 If jobz.ne. 'V', nz is not referenced.
If jobz.eq. 'V', nz = m unless the user supplies insufficient space and
p?hegvx is not able to detect this before beginning computation. To get all the
eigenvectors requested, the user must supply both sufficient space to hold the
eigenvectors in z (m.le. descz(n_)) and sufficient workspace to compute
them. (See lwork below.) p?hegvx is always able to detect insufficient space
without computation unless
range.eq. 'V'.

w (global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Array, DIMENSION (n).
On normal exit, the first m entries contain the selected eigenvalues in
ascending order.

z (local).
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
global dimension (n, n), local dimension (lld_z, LOCc(jz+n-1)).
If jobz = 'V', then on normal exit the first m columns of z contain the
orthonormal eigenvectors of the matrix corresponding to the selected
eigenvalues. If an eigenvector fails to converge, then that column of z contains
the latest approximation to the eigenvector, and the index of the eigenvector is
returned in ifail.
If jobz = 'N', then z is not referenced.

ScaLAPACK Routines 6

6-283

work On exit, work(1) returns the optimal amount of workspace.

rwork On exit, rwork(1) contains the amount of workspace required for optimal
efficiency
if jobz='N' rwork(1) = optimal amount of workspace required to compute
eigenvalues efficiently
if jobz='V' rwork(1) = optimal amount of workspace required to compute
eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.
If range='V', it is assumed that all eigenvectors may be required when
computing optimal workspace.

ifail (global)
INTEGER.
 Array, DIMENSION (n).
ifail provides additional information when
info.ne. 0
If (mod(info/16,2).ne.0) then ifail(1) indicates the order of the smallest
minor which is not positive definite. If (mod(info,2).ne.0) on exit, then
ifail(1) contains the indices of the eigenvectors that failed to converge.

If neither of the above error conditions hold and
jobz = 'V', then the first m elements of ifail are set to zero.

iclustr (global)
INTEGER.

Array, DIMENSION (2*NPROW*NPCOL).This array contains indices of
eigenvectors corresponding to a cluster of eigenvalues that could not be
reorthogonalized due to insufficient workspace (see lwork, orfac and info).
Eigenvectors corresponding to clusters of eigenvalues indexed
iclustr(2*i-1) to iclustr(2*i), could not be reorthogonalized due to lack
of workspace. Hence the eigenvectors corresponding to these clusters may not
be orthogonal. iclustr() is a zero terminated array.
(iclustr(2*k).ne.0.and. iclustr(2*k+1).eq.0) if and only if k is the
number of clusters iclustr is not referenced if jobz = 'N'.

gap (global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Array, DIMENSION (NPROW*NPCOL).
This array contains the gap between eigenvalues whose eigenvectors could not
be reorthogonalized. The output values in this array correspond to the clusters

6-284

6 Intel® Math Kernel Library Reference Manual

indicated by the array iclustr. As a result, the dot product between
eigenvectors corresponding to the ith cluster may be as high as (C * n) /
gap(i) where C is a small constant.

info (global)
INTEGER.
If info = 0, the execution is successful.
If info <0: the ith argument is an array and the j-entry had an illegal value,
then info = -(i*100+j), if the i-th argument is a scalar and had an illegal
value, then info = -i.
If info > 0:
if (mod(info,2).ne.0), then one or more eigenvectors failed to converge. Their
indices are stored in ifail.
if (mod(info,2,2).ne.0), then eigenvectors corresponding to one or more
clusters of eigenvalues could not be reorthogonalized because of insufficient
workspace. The indices of the clusters are stored in the array iclustr.
if (mod(info/4,2).ne.0), then space limit prevented p?sygvx from computing
all of the eigenvectors between vl and vu. The number of eigenvectors
computed is returned in nz.
 if (mod(info/8,2).ne.0), then p?stebz failed to compute eigenvalues.
 if (mod(info/16,2).ne.0), then B was not positive definite. ifail(1)
indicates the order of the smallest minor which is not positive definite.

7-1

ScaLAPACK Auxiliary
and Utility Routines 7

This chapter describes the Intel® Math Kernel Library implementation of ScaLAPACK Auxiliary
Routines and Utility Functions and Routines. The library includes routines for both real and
complex data.

Routine naming conventions, mathematical notation, and matrix storage schemes used for
ScaLAPACK auxiliary and utility routines are the same as described in previous chapters. Some
routines and functions may have combined character codes, such as sc or dz. For example, the
routine pscsum1 uses a complex input array and returns a real value.

Auxiliary Routines

NOTE. ScaLAPACK routines are provided with Intel® Cluster MKL product
only which is a superset of Intel MKL.

Table 7-1 ScaLAPACK Auxiliary Routines

Routine Name Data
Types

Description

p?lacgv c,z Conjugates a complex vector.

p?max1 c,z Finds the index of the element whose real part has maximum
absolute value (similar to the Level 1 PBLAS p?amax, but using
the absolute value to the real part).

?combamax1 c,z Finds the element with maximum real part absolute value and its
corresponding global index.

7-2

7 Intel® Math Kernel Library Reference Manual

p?sum1 sc,dz Forms the 1-norm of a complex vector similar to Level 1 PBLAS
p?asum, but using the true absolute value.

p?dbtrsv s,d,c,z Computes an LU factorization of a general tridiagonal matrix
with no pivoting. The routine is called by p?dbtrs.

p?dttrsv s,d,c,z Computes an LU factorization of a general band matrix, using
partial pivoting with row interchanges. The routine is called by
p?dttrs.

p?gebd2 s,d,c,z Reduces a general rectangular matrix to real bidiagonal form by
an orthogonal/unitary transformation (unblocked algorithm).

p?gehd2 s,d,c,z Reduces a general matrix to upper Hessenberg form by an
orthogonal/unitary similarity transformation (unblocked
algorithm).

p?gelq2 s,d,c,z Computes an LQ factorization of a general rectangular matrix
(unblocked algorithm).

p?geql2 s,d,c,z Computes a QL factorization of a general rectangular matrix
(unblocked algorithm).

p?geqr2 s,d,c,z Computes a QR factorization of a general rectangular matrix
(unblocked algorithm).

p?gerq2 s,d,c,z Computes an RQ factorization of a general rectangular matrix
(unblocked algorithm).

p?getf2 s,d,c,z Computes an LU factorization of a general matrix, using partial
pivoting with row interchanges (local blocked algorithm).

p?labrd s,d,c,z Reduces the first nb rows and columns of a general rectangular
matrix A to real bidiagonal form by an orthogonal|unitary
transformation, and returns auxiliary matrices that are needed to
apply the transformation to the unreduced part of A.

p?lacon s,d,c,z Estimates the 1-norm of a square matrix, using the reverse
communication for evaluating matrix-vector products.

p?laconsb s,d Looks for two consecutive small subdiagonal elements.

p?lacp2 s,d,c,z Copies all or part of a distributed matrix to another distributed
matrix.

p?lacp3 s,d Copies from a global parallel array into a local replicated array or
vice versa.

p?lacpy s,d,c,z Copies all or part of one two-dimensional array to another.

p?laevswp s,d,c,z Moves the eigenvectors from where they are computed to
ScaLAPACK standard block cyclic array.

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

ScaLAPACK Auxiliary and Utility Routines 7

7-3

p?lahrd s,d,c,z Reduces the first nb columns of a general rectangular matrix A
so that elements below the kth subdiagonal are zero, by an
orthogonal/unitary transformation, and returns auxiliary matrices
that are needed to apply the transformation to the unreduced
part of A.

p?laiect s,d,c,z Exploits IEEE arithmetic to accelerate the computations of
eigenvalues. (C interface function).

p?lange s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element, of a general
rectangular matrix.

p?lanhs s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element, of an upper
Hessenberg matrix.

p?lansy,
p?lanhe

s,d,c,z
/c,z

Returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element of a real symmetric
or complex Hermitian matrix.

p?lantr s,d,c,z Returns the value of the 1-norm, Frobenius norm, infinity-norm,
or the largest absolute value of any element, of a triangular
matrix.

p?lapiv s,d,c,z Applies a permutation matrix to a general distributed matrix,
resulting in row or column pivoting.

p?laqge s,d,c,z Scales a general rectangular matrix, using row and column
scaling factors computed by p?geequ.

p?laqsy s,d,c,z Scales a symmetric/Hermitian matrix, using scaling factors
computed by p?poequ.

p?lared1d s,d Redistributes an array assuming that the input array bycol is
distributed across rows and that all process columns contain the
same copy of bycol.

p?lared2d s,d Redistributes an array assuming that the input array byrow is
distributed across columns and that all process rows contain the
same copy of byrow .

p?larf s,d,c,z Applies an elementary reflector to a general rectangular matrix.

p?larfb s,d,c,z Applies a block reflector or its transpose/conjugate-transpose to
a general rectangular matrix.

p?larfc c,z Applies the conjugate transpose of an elementary reflector to a
general matrix.

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

7-4

7 Intel® Math Kernel Library Reference Manual

p?larfg s,d,c,z Generates an elementary reflector (Householder matrix).

p?larft s,d,c,z Forms the triangular vector T of a block reflector H=I-VTVH.

p?larz s,d,c,z Applies an elementary reflector as returned by p?tzrzf to a
general matrix.

p?larzb s,d,c,z Applies a block reflector or its transpose/conjugate-transpose as
returned by p?tzrzf to a general matrix.

p?larzc c,z Applies (multiplies by) the conjugate transpose of an elementary
reflector as returned by p?tzrzf to a general matrix.

p?larzt s,d,c,z Forms the triangular factor T of a block reflector H=I-VTVH as
returned by p?tzrzf.

p?lascl s,d,c,z Multiplies a general rectangular matrix by a real scalar defined
as Cto/Cfrom .

p?laset s,d,c,z Initializes the off-diagonal elements of a matrix to and the
diagonal elements to .

p?lasmsub s,d Looks for a small subdiagonal element from the bottom of the
matrix that it can safely set to zero.

p?lassq s,d,c,z Updates a sum of squares represented in scaled form.

p?laswp s,d,c,z Performs a series of row interchanges on a general rectangular
matrix.

p?latra s,d,c,z Computes the trace of a general square distributed matrix.

p?latrd s,d,c,z Reduces the first nb rows and columns of a
symmetric/Hermitian matrix A to real tridiagonal form by an
orthogonal/unitary similarity transformation.

p?latrz s,d,c,z Reduces an upper trapezoidal matrix to upper triangular form by
means of orthogonal/unitary transformations.

p?lauu2 s,d,c,z Computes the product UUH or LHL, where U and L are upper
or lower triangular matrices (local unblocked algorithm).

p?lauum s,d,c,z Computes the product UUH or LHL, where U and L are upper
or lower triangular matrices.

p?lawil s,d Forms the Wilkinson transform.

p?org2l/p?ung2l s,d,c,z Generates all or part of the orthogonal/unitary matrix Q from a
QL factorization determined by p?geqlf (unblocked
algorithm).

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

α
β

ScaLAPACK Auxiliary and Utility Routines 7

7-5

p?org2r/p?ung2r s,d,c,z Generates all or part of the orthogonal/unitary matrix Q from a
QR factorization determined by p?geqrf (unblocked
algorithm).

p?orgl2/p?ungl2 s,d,c,z Generates all or part of the orthogonal/unitary matrix Q from an
LQ factorization determined by p?gelqf (unblocked
algorithm).

p?orgr2/p?ungr2 s,d,c,z Generates all or part of the orthogonal/unitary matrix Q from an
RQ factorization determined by p?gerqf (unblocked
algorithm).

p?orm2l/p?unm2l s,d,c,z Multiplies a general matrix by the orthogonal/unitary matrix from
a QL factorization determined by p?geqlf (unblocked
algorithm).

p?orm2r/p?unm2r s,d,c,z Multiplies a general matrix by the orthogonal/unitary matrix from
a QR factorization determined by p?geqrf (unblocked
algorithm).

p?orml2/p?unml2 s,d,c,z Multiplies a general matrix by the orthogonal/unitary matrix from
an LQ factorization determined by p?gelqf (unblocked
algorithm).

p?ormr2/p?unmr2 s,d,c,z Multiplies a general matrix by the orthogonal/unitary matrix from
an RQ factorization determined by p?gerqf (unblocked
algorithm).

p?pbtrsv s,d,c,z Solves a single triangular linear system via frontsolve or
backsolve where the triangular matrix is a factor of a banded
matrix computed by p?pbtrf.

p?pttrsv s,d,c,z Solves a single triangular linear system via frontsolve or
backsolve where the triangular matrix is a factor of a tridiagonal
matrix computed by p?pttrf.

p?potf2 s,d,c,z Computes the Cholesky factorization of a symmetric/Hermitian
positive definite matrix (local unblocked algorithm).

p?rscl s,d,cs,
zd

Multiplies a vector by the reciprocal of a real scalar.

p?sygs2/p?hegs2 s,d,c,z Reduces a symmetric/Hermitian definite generalized
eigenproblem to standard form, using the factorization results
obtained from p?potrf (local unblocked algorithm).

p?sytd2/p?hetd2 s,d,c,z Reduces a symmetric/Hermitian matrix to real symmetric
tridiagonal form by an orthogonal/unitary similarity
transformation (local unblocked algorithm).

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

7-6

7 Intel® Math Kernel Library Reference Manual

p?lacgv
Conjugates a complex vector.

Syntax
call pclacgv(n, x, ix, jx, descx, incx)

call pzlacgv(n, x, ix, jx, descx, incx)

p?trti2 s,d,c,z Computes the inverse of a triangular matrix (local unblocked
algorithm).

?lamsh s,d Sends multiple shifts through a small (single node) matrix to
maximize the number of bulges that can be sent through.

?laref s,d Applies Householder reflectors to matrices on either their rows
or columns.

?lasorte s,d Sorts eigenpairs by real and complex data types.

?lasrt2 s,d Sorts numbers in increasing or decreasing order.

?stein2 s,d Computes the eigenvectors corresponding to specified
eigenvalues of a real symmetric tridiagonal matrix, using inverse
iteration.

?dbtf2 s,d,c,z Computes an LU factorization of a general band matrix with no
pivoting (local unblocked algorithm).

?dbtrf s,d,c,z Computes an LU factorization of a general band matrix with no
pivoting (local blocked algorithm).

?dttrf s,d,c,z Computes an LU factorization of a general tridiagonal matrix
with no pivoting (local blocked algorithm).

?dttrsv s,d,c,z Solves a general tridiagonal system of linear equations using the
LU factorization computed by ?dttrf.

?pttrsv s,d,c,z Solves a symmetric (Hermitian) positive-definite tridiagonal
system of linear equations, using the LDLH factorization
computed by ?pttrf.

?steqr2 s,d Computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the implicit QL or QR
method.

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name Data
Types

Description

ScaLAPACK Auxiliary and Utility Routines 7

7-7

Description

The routine conjugates a complex vector of length n, sub(x), where sub(x) denotes
X(ix,jx:jx+n-1) if incx = descx(m_) and X(ix:ix+n-1,jx) if incx = 1.

Input Parameters

n (global) INTEGER. The length of the distributed vector sub(x).

x (local).
COMPLEX for pclacgv
COMPLEX*16 for pzlacgv.
Pointer into the local memory to an array of DIMENSION (lld_x,*). On
entry the vector to be conjugated
x(i) = X(ix+(jx-1)*m_x +(i-1)*incx), 1 < i < n.

ix (global) INTEGER.The row index in the global array x indicating the
first row
of sub(x).

jx (global) INTEGER. The column index in the global array x indicating
the first column of sub(x).

descx (global and local) INTEGER.
Array, DIMENSION (dlen_). The array descriptor for the distributed
matrix X.

incx (global) INTEGER.The global increment for the elements of X. Only
two values of incx are supported in this version, namely 1 and m_x.
incx must not be zero.

Output Parameters

x (local). On exit the conjugated vector.

7-8

7 Intel® Math Kernel Library Reference Manual

p?max1
Finds the index of the element whose real part has
maximum absolute value (similar to the Level 1 PBLAS
p?amax, but using the absolute value to the real part).

Syntax
call pcmax1(n, amax, indx, x, ix, jx, descx, incx)

call pzmax1(n, amax, indx, x, ix, jx, descx, incx)

Description

This routine computes the global index of the maximum element in absolute value of a distributed
vector sub(x). The global index is returned in indx and the value is returned in amax,
where sub(x) denotes X(ix:ix+n-1,jx) if incx = 1,
 X(ix,jx:jx+n-1) if incx = m_x.

Input Parameters

 n (global) pointer to INTEGER.
The number of components of the distributed vector sub(x). n > 0.

x (local)
COMPLEX for pcmax1.
COMPLEX*16 for pzmax1
Array containing the local pieces of a distributed matrix of dimension of
at least
((jx-1)*m_x + ix + (n - 1)*abs(incx)). This array
contains the entries of the distributed vector sub (x).

ix (global) INTEGER.The row index in the global array X indicating the
first row of sub(x).

jx (global) INTEGER. The column index in the global array X indicating
the first column of sub(x)

descx (global and local) INTEGER.
Array, DIMENSION (dlen_). The array descriptor for the distributed
matrix X.

ScaLAPACK Auxiliary and Utility Routines 7

7-9

incx (global) INTEGER.The global increment for the elements of X. Only two
values of incx are supported in this version, namely 1 and m_x. incx
must not be zero.

Output Parameters

amax (global output) pointer to REAL.The absolute value of the largest entry
of the distributed vector sub(x) only in the scope of sub(x).

indx (global output) pointer to INTEGER.The global index of the element of
the distributed vector sub(x) whose real part has maximum absolute
value.

?combamax1
Finds the element with maximum real part absolute
value and its corresponding global index.

Syntax
call ccombamax1(v1, v2)

call zcombamax1(v1, v2)

Description

This routine finds the element having maximum real part absolute value as well as its
corresponding global index.

Input Parameters

 v1 (local)
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1
Array, DIMENSION 2.
The first maximum absolute value element and its global index. v1(1) =
amax,
v1(2) = indx.

v2 (local)
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1

7-10

7 Intel® Math Kernel Library Reference Manual

Array, DIMENSION 2.
The second maximum absolute value element and its global index.
v21(1) = amax,
v2(2) = indx.

Output Parameters

v1 (local). The first maximum absolute value element and its global index.
v1(1) = amax,
v1(2) = indx.

p?sum1
Forms the 1-norm of a complex vector similar to Level 1
PBLAS p?asum, but using the true absolute value.

Syntax
call pscsum1(n, asum, x, ix, jx, descx, incx)

call pdzsum1(n, asum, x, ix, jx, descx, incx)

Description

This routine returns the sum of absolute values of a complex distributed vector sub(x) in asum,

 where sub(x) denotes X(ix:ix+n-1,jx:jx), if incx = 1,
 X(ix:ix, jx:jx+n-1), if incx = m_x.

Based on p?asum from the Level 1 PBLAS. The change is to use the 'genuine' absolute value.

Input Parameters

n (global) pointer to INTEGER.
The number of components of the distributed vector sub(x). n > 0.

x (local)
COMPLEX for pscsum1
COMPLEX*16 for pdzsum1.
Array containing the local pieces of a distributed matrix of dimension of

ScaLAPACK Auxiliary and Utility Routines 7

7-11

at least
((jx-1)*m_x + ix + (n - 1)*abs(incx)). This array
contains the entries of the distributed vector sub (x).

ix (global) INTEGER.The row index in the global array X indicating the
first row of sub(x).

jx (global) INTEGER. The column index in the global array X indicating
the first column of sub(x)

descx (global and local) INTEGER.
Array, DIMENSION 8. The array descriptor for the distributed matrix X.

incx (global) INTEGER.The global increment for the elements of X. Only two
values of incx are supported in this version, namely 1 and m_x.

Output Parameters

asum (local) Pointer to REAL.
The sum of absolute values of the distributed vector sub(x) only in its
scope.

p?dbtrsv
Computes an LU factorization of a general triangular
matrix with no pivoting. The routine is called by
p?dbtrs.

Syntax
call psdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,

laf, work, lwork, info)

call pddbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pcdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pzdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

7-12

7 Intel® Math Kernel Library Reference Manual

Description

This routines solves a banded triangular system of linear equations

 A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs) or

 A(1:n, ja:ja+n-1)T * X = B(ib:ib+n-1, 1:nrhs) (for real flavors);
 A(1:n, ja:ja+n-1)H * X = B(ib:ib+n-1, 1:nrhs) (for complex flavors),

 where A(1:n, ja:ja+n-1) is a banded triangular matrix factor produced by the Gaussian
elimination code PD@(dom_pre)BTRF and is stored in A(1:n, ja:ja+n-1) and af. The matrix
stored in A(1:n, ja:ja+n-1) is either upper or lower triangular according to uplo, and the choice
of solving A(1:n, ja:ja+n-1) or A(1:n, ja:ja+n-1)T is dictated by the user by the parameter
trans.

Routine p?dbtrf must be called first.

Input Parameters

uplo (global) CHARACTER.
If uplo= 'U', the upper triangle of A(1:n, ja:ja+n-1) is stored,
if uplo = 'L', the lower triangle of A(1:n, ja:ja+n-1) is stored.

trans (global) CHARACTER.

If trans ='N', solve with A(1:n, ja:ja+n-1),
if trans ='C', solve with conjugate transpose A(1:n, ja:ja+n-1).

n (global) INTEGER. The order of the distributed submatrix A; (n ≥ 0).

bwl (global) INTEGER.
Number of subdiagonals. 0 < bwl < n-1.

bwu (global) INTEGER.
Number of subdiagonals. 0 < bwu < n-1.

nrhs (global) INTEGER. The number of right-hand sides; the number of
columns of the distributed submatrix B (nrhs ≥ 0).

a (local).
REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Pointer into the local memory to an array with first DIMENSION
lld_a >(bwl+bwu+1) (stored in desca). On entry, this array contains

ScaLAPACK Auxiliary and Utility Routines 7

7-13

the local pieces of the n-by-n unsymmetric banded distributed Cholesky
factor L or
LTA(1:n, ja:ja+n-1).
This local portion is stored in the packed banded format used in
LAPACK. Please see the Application Notes below and the ScaLAPACK
manual for more detail on the format of distributed matrices.

ja (global) INTEGER. The index in the global array a that points to the start
of the matrix to be operated on (which may be either all of A or a
submatrix of A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
if 1d type (dtype_a = 501 or 502), dlen > 7;
if 2d type (dtype_a = 1), dlen > 9.
The array descriptor for the distributed matrix A. Contains information
of mapping of A to memory.

b (local)
REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Pointer into the local memory to an array of local lead DIMENSION
lld_b > nb. On entry, this array contains the local pieces of the right
hand sides
B(ib:ib+n-1, 1:nrhs).

ib (global) INTEGER. The row index in the global array b that points to the
first row of the matrix to be operated on (which may be either all of b or
a submatrix of B).

desb (global and local) INTEGER array of DIMENSION (dlen_).
if 1d type (dtype_b =502), dlen >7;
if 2d type (dtype_b =1), dlen > 9.
The array descriptor for the distributed matrix B. Contains information
of mapping B to memory.

laf (local) INTEGER. Size of user-input Auxiliary Filling space af.
laf must be > nb*(bwl+bwu)+6*max(bwl, bwu)*max(bwl, bwu). If
laf is not large enough, an error code is returned and the minimum
acceptable size will be returned in af(1).

work (local).

7-14

7 Intel® Math Kernel Library Reference Manual

REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Temporary workspace. This space may be overwritten in between calls
to routines. work must be the size given in lwork.

lwork (local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal
acceptable size will be returned in work(1) and an error code is returned.
lwork > max(bwl, bwu)*nrhs.

Output Parameters

a (local).
This local portion is stored in the packed banded format used in
LAPACK. Please see the Application Notes below and the ScaLAPACK
manual for more detail on the format of distributed matrices.

b On exit, this contains the local piece of the solutions distributed matrix
X.

af (local).

REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Auxiliary Filling Space. Filling is created during the factorization
routine p?dbtrf and this is stored in af. If a linear system is to be
solved using p?dbtrf after the factorization routine, af must not be
altered after the factorization.

work On exit, work(1) contains the minimal lwork.

info (local).INTEGER. If info = 0, the execution is successful.
< 0: If the i-th argument is an array and the j-entry had an illegal value,
then
info = - (i*100+j), if the i-th argument is a scalar and had an illegal
value, then info = -i.

ScaLAPACK Auxiliary and Utility Routines 7

7-15

p?dttrsv
Computes an LU factorization of a general band
matrix, using partial pivoting with row interchanges.
The routine is called by p?dttrs.

Syntax
call psdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,

work, lwork, info)

call pddttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pcdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pzdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

Description

This routine solves a tridiagonal triangular system of linear equations

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs) or

 A(1:n, ja:ja+n-1)T * X = B(ib:ib+n-1, 1:nrhs) for real flavors;
 A(1:n, ja:ja+n-1)H * X = B(ib:ib+n-1, 1:nrhs) for complex flavors,

 where A(1:n, ja:ja+n-1) is a tridiagonal matrix factor produced by the Gaussian elimination
code PS@(dom_pre)TTRF and is stored in A(1:n, ja:ja+n-1) and af.

 The matrix stored in A(1:n, ja:ja+n-1) is either upper or lower triangular according to uplo,
and the choice of solving A(1:n, ja:ja+n-1) or A(1:n, ja:ja+n-1)T is dictated by the user by
the parameter trans.

Routine p?dttrf must be called first.

Input Parameters

uplo (global) CHARACTER.
If uplo= 'U', the upper triangle of A(1:n, ja:ja+n-1) is stored,
if uplo = 'L', the lower triangle of A(1:n, ja:ja+n-1) is stored.

trans (global) CHARACTER.

7-16

7 Intel® Math Kernel Library Reference Manual

If trans ='N', solve with A(1:n, ja:ja+n-1),
if trans ='C', solve with conjugate transpose A(1:n, ja:ja+n-1).

n (global) INTEGER. The order of the distributed submatrix A; (n ≥ 0).

nrhs (global) INTEGER. The number of right-hand sides; the number of
columns of the distributed submatrix B(ib:ib+n-1, 1:nrhs). (nrhs ≥
0).

dl (local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the lower diagonal of the
matrix. Globally, dl(1) is not referenced, and dl must be aligned with d.
Must be of size > desca(nb_).

d (local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the main diagonal of the
matrix.

du (local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the upper diagonal of the
matrix. Globally, du(n) is not referenced, and du must be aligned with d.

ja (global) INTEGER. The index in the global array a that points to the start
of the matrix to be operated on (which may be either all of A or a
submatrix of A).

desca (global and local). INTEGER array of DIMENSION (dlen_).
if 1d type (dtype_a = 501 or 502), dlen > 7;
if 2d type (dtype_a = 1), dlen > 9.
The array descriptor for the distributed matrix A. Contains information
of mapping of A to memory.

ScaLAPACK Auxiliary and Utility Routines 7

7-17

b (local)
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer into the local memory to an array of local lead DIMENSION
lld_b > nb. On entry, this array contains the local pieces of the right
hand sides B(ib:ib+n-1, 1:nrhs).

ib (global).INTEGER. The row index in the global array b that points to the
first row of the matrix to be operated on (which may be either all of b or
a submatrix of B).

desb (global and local).INTEGER array of DIMENSION (dlen_).
if 1d type (dtype_b = 502), dlen >7;
if 2d type (dtype_b = 1), dlen > 9.
The array descriptor for the distributed matrix B. Contains information
of mapping B to memory.

laf (local).INTEGER.Size of user-input Auxiliary Filling space af.
laf must be > 2*(nb+2). If laf is not large enough, an error code is
returned and the minimum acceptable size will be returned in af(1).

work (local).

REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Temporary workspace. This space may be overwritten in between calls
to routines. work must be the size given in lwork.

lwork (local or global).INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal
acceptable size will be returned in work(1) and an error code is returned.
lwork > 10*npcol+4*nrhs.

Output Parameters

dl (local).
On exit, this array contains information containing the factors of the
matrix.

7-18

7 Intel® Math Kernel Library Reference Manual

d On exit, this array contains information containing the factors of the
matrix.
Must be of size > desca (nb_).

b On exit, this contains the local piece of the solutions distributed
matrix X.

af (local).

REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Auxiliary Filling Space. Filling is created during the factorization
routine p?dttrf and this is stored in af. If a linear system is to be
solved using p?dttrs after the factorization routine, af must not be
altered after the factorization.

work On exit, work(1) contains the minimal lwork.

info (local). INTEGER.
If info=0, the execution is successful.
if info< 0: If the i-th argument is an array and the j-entry had an illegal
value, then info = - (i*100+j), if the i-th argument is a scalar and
had an illegal value, then info = -i.

p?gebd2
Reduces a general rectangular matrix to real
bidiagonal form by an orthogonal/unitary
transformation (unblocked algorithm).

Syntax
call psgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pdgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pcgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

call pzgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)

ScaLAPACK Auxiliary and Utility Routines 7

7-19

Description

This routine reduces a real/complex general m-by-n distributed matrix sub(A) = A(ia:ia+m-1,
ja:ja+n-1) to upper or lower bidiagonal form B by an orthogonal/unitary transformation:

 Q' * sub(A) * P = B.

If m > n, B is the upper bidiagonal; if m < n, B is the lower bidiagonal.

Input Parameters

m (global) INTEGER.
The number of rows of the distributed submatrix sub(A). (m > 0).

n (global) INTEGER. The order of the distributed submatrix sub(A). (n ≥
0).

a (local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)). On entry, this array contains the local pieces of
the general distributed matrix
sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A,
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

work (local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > max(mpa0, nqa0
), where

7-20

7 Intel® Math Kernel Library Reference Manual

nb = mb_a = nb_a, iroffa = mod(ia-1, nb)
iarow = indxg2p (ia, nb, myrow, rsrc_a, nprow),
iacol = indxg2p (ja, nb, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, nb, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb, mycol, iacol, npcol).

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a (local).
On exit, if m > n, the diagonal and the first superdiagonal of sub(A) are
overwritten with the upper bidiagonal matrix B; the elements below the
diagonal, with the array tauq, represent the orthogonal/unitary matrix Q
as a product of elementary reflectors, and the elements above the first
superdiagonal, with the array taup, represent the orthogonal matrix P as
a product of elementary reflectors.
If m < n, the diagonal and the first subdiagonal are overwritten with the
lower bidiagonal matrix B; the elements below the first subdiagonal,
with the array tauq, represent the orthogonal/unitary matrix Q as a
product of elementary reflectors, and the elements above the diagonal,
with the array taup, represent the orthogonal matrix P as a product of
elementary reflectors. See Applications Notes below.

d (local)
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array, DIMENSION LOCc(ja+min(m,n)-1) if m > n;
LOCr(ia+min(m,n)-1) otherwise. The distributed diagonal elements of
the bidiagonal matrix B:
d(i) = a(i,i). d is tied to the distributed matrix A.

ScaLAPACK Auxiliary and Utility Routines 7

7-21

e (local)
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array, DIMENSION LOCc(ja+min(m,n)-1) if m > n;
LOCr(ia+min(m,n)-2) otherwise. The distributed diagonal elements of
the bidiagonal matrix B:
if m > n, e(i) = a(i, i+1) for i = 1, 2, ... , n-1;
if m < n, e(i) = a(i+1, i) for i = 1, 2, ..., m-1. e is tied to the distributed
matrix A.

tauq (local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array, DIMENSION LOCc(ja+min(m,n)-1). The scalar factors of the
elementary reflectors which represent the orthogonal/unitary
matrix Q. tauq is tied to the distributed matrix A.

taup (local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array, DIMENSION LOCr(ia+min(m,n)-1). The scalar factors of the
elementary reflectors which represent the orthogonal/unitary
matrix P. taup is tied to the distributed matrix A.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
If info = 0, the execution is successful.
if info < 0: If the i-th argument is an array and the j-entry had an
illegal value, then info = - (i*100+j), if the i-th argument is a scalar
and had an illegal value, then info = -i.

Application Notes

The matrices Q and P are represented as products of elementary reflectors:

If m > n,

7-22

7 Intel® Math Kernel Library Reference Manual

 Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)

Each H(i) and G(i) has the form:

H(i) = I - tauq *v *v' and G(i) = I - taup *u*u',

where tauq and taup are real/complex scalars, and v and u are real/complex vectors.
v(1:i-1) = 0, v(i) = 1, and v(i+i:m) is stored on exit in

A(ia+i-ia+m-1,ja+i-1);
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
A(ia+i-1,ja+i+1:ja+n-1);
tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).

If m < n,

v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
A(ia+i+1:ia+m-1, ja+i-1);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
A(ia+i-1,ja+i:ja+n-1);
tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).

The contents of sub(A) on exit are illustrated by the following examples:

m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):

where d and e denote diagonal and off-diagonal elements of B, vi denotes an element of the
vector defining H(i), and ui an element of the vector defining G(i).

d e u1 u1 u1
v1 d e u2 u2
v1 v2 d e u3

v1 v2 v3 d e
v1 v2 v3 v4 d
v1 v2 v3 v4 v5

d u1 u1 u1 u1 u1

e d u2 u2 u2 u2
v1 e d u3 u3 u3
v1 v2 e d u4 u4

v1 v2 v3 e d u5

ScaLAPACK Auxiliary and Utility Routines 7

7-23

p?gehd2
Reduces a general matrix to upper Hessenberg form by
an orthogonal/unitary similarity transformation
(unblocked algorithm).

Syntax
call psgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pdgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pcgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

call pzgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine reduces a real/complex general distributed matrix sub(A) to upper Hessenberg form H
by an orthogonal/unitary similarity transformation: Q' * sub(A) * Q = H, where sub(A) =
A(ia+n-1:ia+n-1,ja+n-1:ja+n-1).

Input Parameters

n (global) INTEGER. The order of the distributed submatrix A. (n ≥ 0).

ilo, ihi (global) INTEGER. It is assumed that sub(A) is already upper triangular
in rows ia:ia+ilo-2 and ia+ihi:ia+n-1 and columns
ja:ja+jlo-2 and ja+jhi:ja+n-1. See Application Notes for further
information.
If n > 0, 1 < ilo < ihi < n; otherwise set ilo = 1, ihi = n.

a (local).

REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)). On entry, this array contains the local pieces of
the n-by-n general distributed matrix sub(A) to be reduced.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix A,
respectively.

7-24

7 Intel® Math Kernel Library Reference Manual

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

work (local).
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global). INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > nb + max(npa0,
nb), where
nb = mb_a = nb_a, iroffa = mod(ia-1, nb)
iarow = indxg2p (ia, nb, myrow, rsrc_a, nprow),
npa0 = numroc (ihi+iroffa, nb, myrow, iarow, nprow).

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a (local).On exit, the upper triangle and the first subdiagonal of sub(A) are
overwritten with the upper Hessenberg matrix H, and the elements
below the first subdiagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary reflectors. See
Application Notes below.

tau (local).
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
Array, DIMENSION LOCc(ja+n-2) The scalar factors of the elementary
reflectors (see Application Notes below). Elements ja:ja+ilo-2 and
ja+ihi:ja+n-2 of tau are set to zero. tau is tied to the distributed
matrix A.

ScaLAPACK Auxiliary and Utility Routines 7

7-25

work On exit, work(1) returns the minimal and optimal lwork.

info (local).INTEGER.
If info = 0, the execution is successful.
if info < 0: If the i-th argument is an array and the j-entry had an
illegal value, then info = - (i*100+j), if the i-th argument is a scalar
and had an illegal value, then info = -i.

Application Notes

The matrix Q is represented as a product of (ihi-ilo) elementary reflectors

Q = H(ilo) H(ilo+1) . . . H(ihi-1).

Each H(i) has the form

H(i) = I - tau *v *v',

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i) = 0, v(i+1) = 1
and v(ihi+1:n) = 0; v(i+2:ihi) is stored on exit in A(ia+ilo+i:ia+ihi-1, ia+ilo+i-2),
and tau in tau(ja+ilo+i-2).

The contents of A(ia:ia+n-1,ja:ja+n-1) are illustrated by the following example, with n = 7,
ilo = 2 and ihi = 6:

on entry on exit

where a denotes an element of the original matrix sub(A), h denotes a modified element of the
upper Hessenberg matrix H, and vi denotes an element of the vector defining H(ja+ilo+i-2).

a a a a a a a

 a a a a a a

 a a a a a a

 a a a a a a

 a a a a a a

 a a a a a a

 a

a a h h h h a

 a h h h h a

 h h h h h h

 v2 h h h h h

 v2 v3 h h h h

 v2 v3 v4 h h h

 a

7-26

7 Intel® Math Kernel Library Reference Manual

p?gelq2
Computes an LQ factorization of a general rectangular
matrix (unblocked algorithm).

Syntax
call psgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine computes an LQ factorization of a real/complex distributed m-by-n matrix
sub(A) = A(ia:ia+m-1,ja:ja+n-1) = L *Q.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m > 0).

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)). On entry, this array contains the local pieces of
the m-by-n distributed matrix
sub(A) which is to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A,
respectively.

ScaLAPACK Auxiliary and Utility Routines 7

7-27

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

work (local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > nq0 + max(1, mp0
), where

 iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a (local).
On exit, the elements on and below the diagonal of sub(A) contain the m
by min(m,n) lower trapezoidal matrix L (L is lower triangular if m < n);
the elements above the diagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary reflectors (see
Application Notes below).

tau (local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.

7-28

7 Intel® Math Kernel Library Reference Manual

Array, DIMENSION LOCr(ia+min(m, n)-1). This array contains the
scalar factors of the elementary reflectors. tau is tied to the
distributed matrix A.

work On exit, work(1) returns the minimal and optimal lwork.

info (local).INTEGER.
If info = 0, the execution is successful.
if info < 0: If the i-th argument is an array and the j-entry had an
illegal value, then info = - (i*100+j), if the i-th argument is a scalar
and had an illegal value, then info = -i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ia+k-1) H(ia+k-2) . . . H(ia) for real flavors,
Q = H(ia+k-1)' H(ia+k-2)' . . . H(ia)' for complex flavors,

where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v',

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1;
v(i+1:n) (for real flavors) or conjg(v(i+1:n)) (for complex flavors) is stored on exit in
A(ia+i-1,ja+i:ja+n-1), and tau in TAU(ia+i-1).

p?geql2
Computes a QL factorization of a general rectangular
matrix (unblocked algorithm).

Syntax
call psgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)

ScaLAPACK Auxiliary and Utility Routines 7

7-29

Description

The routine computes a QL factorization of a real/complex distributed m-by-n matrix
sub(A) = A(ia:ia+m-1,ja:ja+n-1) = Q *L.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m > 0).

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
Pointer into the local memory to an array of DIMENSION (lld_a,LOCc
(ja+n-1)). On entry, this array contains the local pieces of the
m-by-n distributed matrix
sub(A) which is to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A,
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

work (local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > mp0 + max(1,
nq0), where
iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),

7-30

7 Intel® Math Kernel Library Reference Manual

iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a (local).
On exit, if m > n, the lower triangle of the distributed submatrix
A(ia+m-n:ia+m-1, ja:ja+n-1) contains the n-by-n lower
triangular matrix L; if m < n, the elements on and below the (n-m)-th
superdiagonal contain the m-by-n lower trapezoidal matrix L; the
remaining elements, with the array tau, represent the orthogonal/
unitary matrix Q as a product of elementary reflectors (see Application
Notes below).

tau (local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
Array, DIMENSION LOCc(ja+n-1). This array contains the scalar
factors of the elementary reflectors. tau is tied to the distributed matrix
A.

work On exit, work(1) returns the minimal and optimal lwork.

info (local).INTEGER.
If info = 0, the execution is successful.
if info < 0: If the i-th argument is an array and the j-entry had an
illegal value, then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
then info = -i.

ScaLAPACK Auxiliary and Utility Routines 7

7-31

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ja+k-1) . . . H(ja+1) H(ja), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v',

where tau is a real/complex scalar, and v is a real/complex vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(ia:ia+m-k+i-2, ja+n-k+i-1), and tau in TAU(ja+n-k+i-1).

p?geqr2
Computes a QR factorization of a general rectangular
matrix (unblocked algorithm).

Syntax
call psgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine computes a QR factorization of a real/complex distributed m-by-n matrix
sub(A) = A(ia:ia+m-1,ja:ja+n-1) = Q *R.

Input Parameters

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m > 0).

n (global).INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). (n ≥ 0).

7-32

7 Intel® Math Kernel Library Reference Manual

a (local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc
(ja+n-1)). On entry, this array contains the local pieces of the
m-by-n distributed matrix
sub(A) which is to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A,
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

work (local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global). INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > mp0 + max(1,
nq0), where
iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

ScaLAPACK Auxiliary and Utility Routines 7

7-33

Output Parameters

a (local).
On exit, the elements on and above the diagonal of sub(A) contain the
min(m,n) by n upper trapezoidal matrix R (R is upper triangular if m >
n); the elements below the diagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary reflectors (see
Application Notes below).

tau (local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
Array, DIMENSION LOCc(ja+min(m,n)-1). This array contains the
scalar factors of the elementary reflectors. tau is tied to the distributed
matrix A.

work On exit, work(1) returns the minimal and optimal lwork.

info (local).INTEGER.
If info = 0, the execution is successful.
if info < 0:

If the i-th argument is an array and the j-entry had an illegal value, then
info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value, then
info = -i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

 Q = H(ja) H(ja+1) . . . H(ja+k-1), where k = min(m,n).

Each H(i) has the form

H(j) = I - tau * v * v',

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and
v(i) = 1; v(i+1:m) is stored on exit in A(ia+i:ia+m-1,ja+i-1), and tau in TAU(ja+i-1).

7-34

7 Intel® Math Kernel Library Reference Manual

p?gerq2
Computes an RQ factorization of a general rectangular
matrix (unblocked algorithm).

Syntax
call psgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

call psgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)

Description

This routine computes an RQ factorization of a real/complex distributed m-by-n matrix
sub(A) = A(ia:ia+m-1,ja:ja+n-1) = R*Q.

Input Parameters

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m > 0).

n (global).INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
Pointer into the local memory to an array of DIMENSION
(lld_a,LOCc(ja+n-1)). On entry, this array contains the local
pieces of the m-by-n distributed matrix
sub(A) which is to be factored.

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A,
respectively.

ScaLAPACK Auxiliary and Utility Routines 7

7-35

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

work (local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
This is a workspace array of DIMENSION (lwork).

lwork (local or global). INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > nq0 + max(1, mp0
), where

 iroff = mod (ia-1, mb_a), icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a (local).
On exit, if m < n, the upper triangle of A(ia+m-n:ia+m-1,
ja:ja+n-1) contains the m-by-m upper triangular matrix R; if m > n,
the elements on and above the (m-n)-th subdiagonal contain the m-by-n
upper trapezoidal matrix R; the remaining elements, with the array tau,
represent the orthogonal/ unitary matrix Q as a product of elementary
reflectors (see Application Notes below).

tau (local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2

7-36

7 Intel® Math Kernel Library Reference Manual

COMPLEX*16 for pzgeqr2.
Array, DIMENSION LOCr(ia+m -1). This array contains the scalar
factors of the elementary reflectors. tau is tied to the distributed
matrix A.

work On exit, work(1) returns the minimal and optimal lwork.

info (local).INTEGER.
If info = 0, the execution is successful.
if info < 0: If the i-th argument is an array and the j-entry had an
illegal value, then info = - (i*100+j), if the i-th argument is a scalar
and had an illegal value, then info = -i.

Application Notes

The matrix Q is represented as a product of elementary reflectors

Q = H(ia) H(ia+1) . . . H(ia+k-1) for real flavors,
Q = H(ia)' H(ia+1)' . . . H(ia+k-1)' for complex flavors,

where k = min(m, n).

Each H(i) has the form

H(i) = I - tau *v *v',

where tau is a real/complex scalar, and v is a real/complex vector with v(n-k+i+1:n) = 0 and
v(n-k+i) = 1; v(1:n-k+i-1) for real flavors or conjg(v(1:n-k+i-1)) for complex flavors is
stored on exit in A(ia+m-k+i-1, ja:ja+n-k+i-2), and tau in TAU(ia+m-k+i-1).

p?getf2
Computes an LU factorization of a general matrix,
using partial pivoting with row interchanges (local
blocked algorithm).

Syntax
call psgetf2(m, n, a, ia, ja, desca, ipiv, info)

call pdgetf2(m, n, a, ia, ja, desca, ipiv, info)

call pcgetf2(m, n, a, ia, ja, desca, ipiv, info)

ScaLAPACK Auxiliary and Utility Routines 7

7-37

call pzgetf2(m, n, a, ia, ja, desca, ipiv, info)

Description

This routine computes an LU factorization of a general m-by-n distributed matrix
sub(A) = A(ia:ia+m-1,ja:ja+n-1) using partial pivoting with row interchanges.

The factorization has the form sub(A) = P * L * U, where P is a permutation matrix, L is lower
triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular
(upper trapezoidal if m < n). This is the right-looking Parallel Level 2 BLAS version of the
algorithm.

Input Parameters

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m > 0).

n (global).INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). (nb_a - mod(ja-1,
nb_a) ≥ n ≥ 0).

a (local).
REAL for psgetf2
DOUBLE PRECISION for pdgetf2
COMPLEX for pcgetf2
COMPLEX*16 for pzgetf2.
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)). On entry, this array contains the local pieces of
the m-by-n distributed matrix
sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

7-38

7 Intel® Math Kernel Library Reference Manual

Output Parameters

ipiv (local).INTEGER.
Array, DIMENSION (LOCr(m_a) + mb_a). This array contains the
pivoting information. ipiv(i) -> The global row that local row i was
swapped with. This array is tied to the distributed matrix A.

info (local). INTEGER.
If info = 0: successful exit.
If info < 0:
if the i-th argument is an array and the j-entry had an illegal value, then
info = - (i*100+j),
if the i-th argument is a scalar and had an illegal value, then info =
-i.
If info > 0: If info = k, u(ia+k-1, ja+k-1) is exactly zero. The
factorization has been completed, but the factor u is exactly singular, and
division by zero will occur if it is used to solve a system of equations.

p?labrd
Reduces the first nb rows and columns of a general
rectangular matrix A to real bidiagonal form by an
orthogonal|unitary transformation, and returns
auxiliary matrices that are needed to apply the
transformation to the unreduced part of A.

call pslabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
iy, jy, descy, work)

call pdlabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
iy, jy, descy, work)

call pclabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
iy, jy, descy, work)

call pzlabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
iy, jy, descy, work)

ScaLAPACK Auxiliary and Utility Routines 7

7-39

Description

This routine reduces the first nb rows and columns of a real/complex general m-by-n distributed
matrix sub(A) = A(ia:ia+m-1,ja:ja+n-1) to upper or lower bidiagonal form by an
orthogonal/unitary transformation Q' * A * P, and returns the matrices X and Y necessary to apply
the transformation to the unreduced part of sub(A).

If m > n, sub(A) is reduced to upper bidiagonal form;
if m < n, sub(A) is reduced to lower bidiagonal form.

This is an auxiliary routine called by p?gebrd.

Input Parameters

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m > 0).

n (global).INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). (n ≥ 0).

nb (global) INTEGER. The number of leading rows and columns of sub(A)
to be reduced.

a (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)). On entry, this array contains the local pieces of
the general distributed matrix
sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

ix,jx (global) INTEGER. The row and column indices in the global array x
indicating the first row and the first column of the submatrix sub(X),
respectively.

7-40

7 Intel® Math Kernel Library Reference Manual

descx (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix X.

iy,jy (global) INTEGER. The row and column indices in the global array y
indicating the first row and the first column of the submatrix sub(Y),
respectively.

descy (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix Y.

work (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Workspace array, DIMENSION (lwork)
lwork > nb_a + nq,
with nq = numroc(n + mod(ia-1, nb_y), nb_y, mycol,
iacol, npcol) iacol = indxg2p (ja, nb_a,
mycol, csrc_a, npcol)

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

a (local)
On exit, the first nb rows and columns of the matrix are overwritten; the
rest of the distributed matrix sub(A) is unchanged.
If m > n, elements on and below the diagonal in the first nb columns,
with the array tauq, represent the orthogonal/unitary matrix Q as a
product of elementary reflectors; and elements above the diagonal in the
first nb rows, with the array taup, represent the orthogonal/unitary
matrix P as a product of elementary reflectors.

If m < n, elements below the diagonal in the first nb columns, with the
array tauq, represent the orthogonal/unitary matrix Q as a product of
elementary reflectors, and elements on and above the diagonal in the
first nb rows, with the array taup, represent the orthogonal/unitary
matrix P as a product of elementary reflectors. See Application Notes
below.

ScaLAPACK Auxiliary and Utility Routines 7

7-41

e (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Array, DIMENSION LOCr(ia+min(m,n)-1) if m > n;
LOCc(ja+min(m,n)-2) otherwise. The distributed off-diagonal
elements of the bidiagonal distributed matrix B:
if m > n, E(i) = A(ia+i-1, ja+i) for i = 1, 2, ..., n-1;
if m < n, E(i) = A(ia+i, ja+i-1) for i = 1, 2, ..., m-1.
E is tied to the distributed matrix A.

tauq, taup (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Array DIMENSION LOCc(ja+min(m, n)-1) for tauq, DIMENSION
LOCr(ia+min(m, n)-1) for taup. The scalar factors of the elementary
reflectors which represent the orthogonal/unitary matrix Q for tauq, P
for taup. tauq and taup are tied to the distributed matrix A. See
Application Notes below.

x (local)
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Pointer into the local memory to an array of DIMENSION (lld_x, nb).
On exit, the local pieces of the distributed m-by-nb matrix
X(ix:ix+m-1, jx:jx+nb-1) required to update the unreduced part of
sub(A).

y (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Pointer into the local memory to an array of DIMENSION (lld_y, nb).
On exit, the local pieces of the distributed n-by-nb matrix Y(iy:iy+n-1,
jy:jy+nb-1) required to update the unreduced part of sub(A).

7-42

7 Intel® Math Kernel Library Reference Manual

Application Notes

The matrices Q and P are represented as products of elementary reflectors:

 Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb)

Each H(i) and G(i) has the form:

H(i) = I - tauq *v *v' and G(i) = I - taup *u *u',

where tauq and taup are real/complex scalars, and v and u are real/complex vectors.

If m > n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in

A(ia+i-1:ia+m-1, ja+i-1); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
A(ia+i-1, ja+i:ja+n-1); tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).

If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in

A(ia+i+1:ia+m-1, ja+i-1); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
A(ia+i-1, ja+i:ja+n-1); tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).
The elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix U'
which are necessary, with X and Y, to apply the transformation to the unreduced part of the matrix,
using a block update of the form: sub(A) := sub(A) - V*Y' - X*U'. The contents of sub(A) on exit
are illustrated by the following examples with nb = 2:

m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):

where a denotes an element of the original matrix which is unchanged, vi denotes an element of
the vector defining H(i), and ui an element of the vector defining G(i).

1 1 u1 u1 u1

v1 1 1 u2 u2

v1 v2 a a a

v1 v2 a a a

v1 v2 a a a

v1 v2 a a a

1 u1 u1 u1 u1 u1

1 1 u2 u2 u2 u2

v1 1 a a a a

v1 v2 a a a a

v1 v2 a a a a

ScaLAPACK Auxiliary and Utility Routines 7

7-43

p?lacon
Estimates the 1-norm of a square matrix, using the
reverse communication for evaluating matrix-vector
products.

Syntax
call pslacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

call pdlacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

call pclacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

call pzlacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)

Description

This routine estimates the 1-norm of a square, real/unitary distributed matrix A. Reverse
communication is used for evaluating matrix-vector products. x and v are aligned with the
distributed matrix A, this information is implicitly contained within iv, ix, descv, and descx.

Input Parameters

n (global).INTEGER.
The length of the distributed vectors v and x.n > 0.

v (local).
REAL for pslacon
DOUBLE PRECISION for pdlacon
COMPLEX for pclacon
COMPLEX*16 for pzlacon
Pointer into the local memory to an array of DIMENSION
LOCr(n+mod(iv-1, mb_v)). On the final return, v = a*w,
where est = norm(v)/norm(w) (w is not returned).

iv,jv (global) INTEGER. The row and column indices in the global array v
indicating the first row and the first column of the submatrix V,
respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix V.

7-44

7 Intel® Math Kernel Library Reference Manual

x (local).
REAL for pslacon
DOUBLE PRECISION for pdlacon
COMPLEX for pclacon
COMPLEX*16 for pzlacon
Pointer into the local memory to an array of DIMENSION
LOCr(n+mod(ix-1, mb_x)).

ix,jx (global) INTEGER. The row and column indices in the global array x
indicating the first row and the first column of the submatrix X,
respectively.

descx (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix X.

isgn (local).INTEGER.
Array, DIMENSION LOCr(n+mod(ix-1, mb_x)). isgn is aligned with x
and v.

kase (local).INTEGER.
On the initial call to p?lacon, kase should be 0.

Output Parameters

x (local).
On an intermediate return, X should be overwritten by
A *X, if kase=1,
A' *X, if kase=2,

p?lacon must be re-called with all the other parameters unchanged.

est (global).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors

kase (local) INTEGER.
On an intermediate return, kase will be 1 or 2, indicating whether X
should be overwritten by A * X or A' * X. On the final return from
p?lacon, kase will again be 0.

ScaLAPACK Auxiliary and Utility Routines 7

7-45

p?laconsb
Looks for two consecutive small subdiagonal elements.

call pslaconsb(a, desca, i, l, m, h44, h33, h43h34, buf, lwork)

call pdlaconsb(a, desca, i, l, m, h44, h33, h43h34, buf, lwork)

Description

This routine looks for two consecutive small subdiagonal elements by analyzing the effect of
starting a double shift QR iteration given by h44, h33, and h43h34 to see if this process makes a
subdiagonal negligible.

Input Parameters

a (global).
REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
Array, DIMENSION (desca (lld_),*). On entry, the Hessenberg matrix
whose tridiagonal part is being scanned. Unchanged on exit.

desca (global and local) INTEGER.
Array of DIMENSION (dlen_). The array descriptor for the distributed
matrix A.

i (global) INTEGER.
The global location of the bottom of the unreduced submatrix of A.
Unchanged on exit.

l (global) INTEGER.
The global location of the top of the unreduced submatrix of A.
Unchanged on exit.

h44, h33

h43h34 (global).
REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
These three values are for the double shift QR iteration.

7-46

7 Intel® Math Kernel Library Reference Manual

lwork (global) INTEGER.
This must be at least
7*ceil(ceil((i-l)/hbl) /lcm(nprow, npcol)). Here lcm is least
common multiple and nprowxnpcol is the logical grid size.

Output Parameters

m (global).
On exit, this yields the starting location of the QR double shift. This will
satisfy:
l < m < i-2.

buf (local).
REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
Array of size lwork.

lwork (global).
On exit, lwork is the size of the work buffer.

p?lacp2
Copies all or part of a distributed matrix to another
distributed matrix.

Syntax
call pslacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pdlacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pclacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pzlacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

Description

This routine copies all or part of a distributed matrix A to another distributed matrix B. No
communication is performed, p?lacp2 performs a local copy sub(A) := sub(B), where sub(A)
denotes A(ia:ia+m-1,ja:ja+n-1) and sub(B) denotes B(ib:ib+m-1,jb:jb+n-1).

p?lacp2 requires that only dimension of the matrix operands is distributed.

ScaLAPACK Auxiliary and Utility Routines 7

7-47

Input Parameters

uplo (global) CHARACTER.
Specifies the part of the distributed matrix sub(A) to be copied:
 = 'U': Upper triangular part is copied; the strictly lower triangular part
of sub(A) is not referenced;
 = 'L': Lower triangular part is copied; the strictly upper triangular part
of sub(A) is not referenced.
Otherwise, all of the matrix sub(A) is copied.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m > 0).

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for pslacp2
DOUBLE PRECISION for pdlacp2
COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)). On entry, this array contains the local pieces of
the m-by-n distributed matrix
sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

ib,jb (global) INTEGER. The row and column indices in the global array B
indicating the first row and the first column of sub(B), respectively.

descb (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix B.

Output Parameters

b (local).
REAL for pslacp2
DOUBLE PRECISION for pdlacp2

7-48

7 Intel® Math Kernel Library Reference Manual

COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of DIMENSION (lld_b,
LOCc(jb+n-1)). This array contains on exit the local pieces of the
distributed matrix sub(B) set as follows:

if uplo = 'U', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
1<i<j, 1<j<n;
if uplo = 'L', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
j<i<m, 1<j<n;

otherwise, B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
1<i<m, 1<j<n.

p?lacp3
Copies from a global parallel array into a local
replicated array or vice versa.

Syntax
call pslacp3(m, i, a, desca, b, ldb, ii, jj, rev)

call pdlacp3(m, i, a, desca, b, ldb, ii, jj, rev)

Description

This is an auxiliary routine that copies from a global parallel array into a local replicated array or
vise versa. Note that the entire submatrix that is copied gets placed on one node or more. The
receiving node can be specified precisely, or all nodes can receive, or just one row or column of
nodes.

Input Parameters

m (global) INTEGER.m is the order of the square submatrix that is copied.
m > 0. Unchanged on exit.

i (global) INTEGER.
A(i, i) is the global location that the copying starts from. Unchanged on
exit.

ScaLAPACK Auxiliary and Utility Routines 7

7-49

a (global).
REAL for pslacp3
DOUBLE PRECISION for pdlacp3
Array, DIMENSION (desca(lld_),*). On entry, the parallel matrix to be
copied into or from.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

b (local).
REAL for pslacp3
DOUBLE PRECISION for pdlacp3
Array, DIMENSION (ldb, m).
If rev = 0, this is the global portion of the array A(i:i+m-1, i:i+m-1).
If rev = 1, this is the unchanged on exit.

ldb (local) INTEGER.
The leading dimension of B.

ii (global) INTEGER
By using rev 0 and 1, data can be sent out and returned again. If rev =
0, then ii is destination row index for the node(s) receiving the
replicated B.
If ii > 0, jj > 0, then node (ii, jj) receives the data.
If ii = -1, jj > 0, then all rows in column jj receive the data.
If ii > 0, jj = -1, then all cols in row ii receive the data.
f ii = -1, jj = -1, then all nodes receive the data.
If rev !=0, then ii is the source row index for the node(s) sending the
replicated B.

jj (global) INTEGER.Similar description as ii above.

rev (global) INTEGER.
Use rev = 0 to send global A into locally replicated B (on node
(ii,jj)).
Use rev != 0 to send locally replicated B from node (ii,jj) to its
owner (which changes depending on its location in A) into the global A.

Output Parameters

a (global). On exit, if rev = 1, the copied data. Unchanged on exit if
rev = 0.

b (local). If rev = 1, this is unchanged on exit.

7-50

7 Intel® Math Kernel Library Reference Manual

p?lacpy
Copies all or part of one two-dimensional array to
another.

Syntax
call pslacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pdlacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pclacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

call pzlacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)

Description

This routine copies all or part of a distributed matrix A to another distributed matrix B. No
communication is performed, p?lacpy performs a local copy sub(A) := sub(B), where sub(A)
denotes A(ia:ia+m-1,ja:ja+n-1) and sub(B) denotes B(ib:ib+m-1,jb:jb+n-1).

Input Parameters

uplo (global). CHARACTER.
Specifies the part of the distributed matrix sub(A) to be copied:
 = 'U': Upper triangular part is copied; the strictly lower triangular part
of sub(A) is not referenced;
 = 'L': Lower triangular part is copied; the strictly upper triangular part
of sub(A) is not referenced.
Otherwise: all of the matrix sub(A) is copied.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m > 0).

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.

ScaLAPACK Auxiliary and Utility Routines 7

7-51

Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)). On entry, this array contains the local pieces of
the distributed matrix
sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

ib,jb (global) INTEGER. The row and column indices in the global array B
indicating the first row and the first column of sub(B) respectively.

descb (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

Output Parameters

b (local).
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.
Pointer into the local memory to an array of DIMENSION (lld_b,
LOCc(jb+n-1)). This array contains on exit the local pieces of the
distributed matrix sub(B) set as follows:

if uplo = 'U', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
1<i<j, 1<j<n;
if uplo = 'L', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
j<i<m, 1<j<n;

otherwise, B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
1<i<m, 1<j<n.

7-52

7 Intel® Math Kernel Library Reference Manual

p?laevswp
Moves the eigenvectors from where they are computed
to ScaLAPACK standard block cyclic array.

Syntax
call pslaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,

lrwork)

call pdlaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,
lrwork)

call pclaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,
lrwork)

call pzlaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,
lrwork)

Description

This routine moves the eigenvectors (potentially unsorted) from where they are computed, to a
ScaLAPACK standard block cyclic array, sorted so that the corresponding eigenvalues are sorted.

Input Parameters

np = the number of rows local to a given process.

nq = the number of columns local to a given process.

n (global). INTEGER.
The order of the matrix A. n > 0.

zin (local).
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp.
Array, DIMENSION (ldzi, nvs(iam)). The eigenvectors on input. Each
eigenvector resides entirely in one process. Each process holds a
contiguous set of nvs(iam) eigenvectors. The first eigenvector which
the process holds is:
sum for i=[0, iam-1) of nvs(i).

ldzi (local) INTEGER.The leading dimension of the zin array.

ScaLAPACK Auxiliary and Utility Routines 7

7-53

iz, jz (global) INTEGER.The row and column indices in the global array Z
indicating the first row and the first column of the submatrix Z,
respectively.

descz (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix Z.

nvs (global) INTEGER.
Array, DIMENSION(nprocs+1)
nvs(i) = number of processes number of eigenvectors held by processes
[0, i-1)
nvs(1) = number of eigen vectors held by [0, 1-1) = 0
nvs(nprocs+1) = number of eigen vectors held by [0, nprocs) = total
number of eigenvectors.

key (global) INTEGER.
Array, DIMENSION (n). Indicates the actual index (after sorting) for each
of the eigenvectors.

rwork (local).
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp.
Array, DIMENSION (lrwork).

lrwork (local) INTEGER.
Dimension of work.

Output Parameters

z (local).
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp.
Array, global DIMENSION (n, n), local DIMENSION (descz(dlen_),
nq). The eigenvectors on output. The eigenvectors are distributed in a
block cyclic manner in both dimensions, with a block size of nb.

7-54

7 Intel® Math Kernel Library Reference Manual

p?lahrd
Reduces the first nb columns of a general rectangular
matrix A so that elements below the kthsubdiagonal are
zero, by an orthogonal/unitary transformation, and
returns auxiliary matrices that are needed to apply the
transformation to the unreduced part of A.

Syntax
call pslahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

call pdlahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

call pclahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

call pzlahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)

Description

The routines reduces the first nb columns of a real general n-by-(n-k+1) distributed matrix
A(ia:ia+n-1, ja:ja+n-k) so that elements below the k-th subdiagonal are zero. The reduction
is performed by an orthogonal/unitary similarity transformation Q' * A * Q. The routine returns the
matrices V and T which determine Q as a block reflector I - V*T*V', and also the matrix
Y = A * V * T.

This is an auxiliary routine called by p?gehrd. In the following comments sub(A) denotes
A(ia:ia+n-1, ja:ja+n-1).

Input Parameters

n (global) INTEGER. The order of the distributed submatrix sub(A). n ≥ 0.

k (global) INTEGER. The offset for the reduction. Elements below the k-th
subdiagonal in the first nb columns are reduced to zero.

nb (global) INTEGER. The number of columns to be reduced.

a (local).
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Pointer into the local memory to an array of DIMENSION (lld_a,

ScaLAPACK Auxiliary and Utility Routines 7

7-55

LOCc(ja+n-k)). On entry, this array contains the the local pieces of
the n-by-(n-k+1) general distributed matrix A(ia:ia+n-1,
ja:ja+n-k).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

iy,jy (global) INTEGER. The row and column indices in the global array Y
indicating the first row and the first column of the submatrix sub(Y),
respectively.

descy (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix Y.

work (local).
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, DIMENSION (nb).

Output Parameters

a (local).
On exit, the elements on and above the k-th subdiagonal in the first nb
columns are overwritten with the corresponding elements of the reduced
distributed matrix; the elements below the k-th subdiagonal, with the
array tau, represent the matrix Q as a product of elementary reflectors.
The other columns of A(ia:ia+n-1, ja:ja+n-k) are unchanged. See
Application Notes below.

tau (local).

REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, DIMENSION LOCc(ja+n-2).
The scalar factors of the elementary reflectors (see Application Notes
below). tau is tied to the distributed matrix A.

7-56

7 Intel® Math Kernel Library Reference Manual

t (local).
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, DIMENSION (nb_a, nb_a)
The upper triangular matrix T.

y (local).
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Pointer into the local memory to an array of DIMENSION (lld_y, nb_a).
On exit, this array contains the local pieces of the n-by-nb distributed
matrix Y.
lld_y > LOCr(ia+n-1).

Application Notes

The matrix Q is represented as a product of nb elementary reflectors

 Q = H(1) H(2) . . . H(nb).

Each H(i) has the form

H(i) = i - tau *v * v',

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i+k-1) = 0,
v(i+k) = 1; v(i+k+1:n) is stored on exit in A(ia+i+k:ia+n-1, ja+i-1), and tau in
TAU(ja+i-1).

The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with T
and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form:
A(ia:ia+n-1, ja:ja+n-k) := (I-V*T*V')*(A(ia:ia+n-1, ja:ja+n-k)-Y*V'). The contents of
A(ia:ia+n-1, ja:ja+n-k) on exit are illustrated by the following example with n = 7, k = 3, and
nb = 2:

ScaLAPACK Auxiliary and Utility Routines 7

7-57

where a denotes an element of the original matrix A(ia:ia+n-1, ja:ja+n-k), h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector
defining H(i).

p?laiect
Exploits IEEE arithmetic to accelerate the
computations of eigenvalues. (C interface function).

Syntax
void pslaiect(float *sigma, int *n, float *d, int *count);

void pdlaiectb(float *sigma, int *n, float *d, int *count);

void pdlaiectl(float *sigma, int *n, float *d, int *count);

Description

This routine computes the number of negative eigenvalues of (A- σI). This implementation of the
Sturm Sequence loop exploits IEEE arithmetic and has no conditionals in the innermost loop. The
signbit for real routine pslaiect is assumed to be bit 32. Double precision routines pdlaiectb
and pdlaiectl differ in the order of the double precision word storage and, consequently, in the
signbit location. For pdlaiectb, the double precision word is stored in the big-endian word order
and the signbit is assumed to be bit 32. For pdlaiectl, the double precision word is stored in the
little-endian word order and the signbit is assumed to be bit 64.

Note that all arguments are call-by-reference so that this routine can be directly called from
Fortran code.

This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable values.

a h a a a

a h a a a

a h a a a

h h a a a

v1 h a a a

v1 v2 a a a

v1 v2 a a a

7-58

7 Intel® Math Kernel Library Reference Manual

Input Parameters

sigma REAL for pslaiect
DOUBLE PRECISION for pdlaiectb/pdlaiectl.
The shift. p?laiect finds the number of eigenvalues less than equal to
sigma.

n INTEGER.

The order of the tridiagonal matrix T. n > 1.

d REAL for pslaiect
DOUBLE PRECISION for pdlaiectb/pdlaiectl.
Array of DIMENSION (2n - 1).
On entry, this array contains the diagonals and the squares of the
off-diagonal elements of the tridiagonal matrix T. These elements are
assumed to be interleaved in memory for better cache performance. The
diagonal entries of T are in the entries d(1), d(3), ..., d(2n-1), while the
squares of the off-diagonal entries are
d(2), d(4), ..., d(2n-2). To avoid overflow, the matrix must be scaled so
that its largest entry is no greater than overflow(1/2) * underflow(1/4) in
absolute value, and for greatest accuracy, it should not be much smaller
than that.

Output Parameters

n INTEGER.

The count of the number of eigenvalues of T less than or equal to sigma.

p?lange
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element, of a general rectangular matrix.

Syntax
val = pslange(norm, m, n, a, ia, ja, desca, work)

val = pdlange(norm, m, n, a, ia, ja, desca, work)

val = pclange(norm, m, n, a, ia, ja, desca, work)

val = pzlange(norm, m, n, a, ia, ja, desca, work)

ScaLAPACK Auxiliary and Utility Routines 7

7-59

Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the
element of largest absolute value of a distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1).

p?lange returns the value

(max(abs(A(i,j))), norm = 'M' or 'm' with ia < i < ia+m-1,
(and ja < j < ja+n-1,

(

(norm1(sub(A)), norm = '1', 'O' or 'o'

(

(normI(sub(A)), norm = 'I' or 'i'

(

(normF(sub(A)), norm = 'F', 'f', 'E' or 'e',

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix
(square root of sum of squares). Note that max(abs(A(i,j))) is not a matrix norm.

Input Parameters

norm (global) CHARACTER.
Specifies the value to be returned in p?lange as described above.

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). When m = 0, p?lange is set to zero. m >
0.

n (global). INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). When n = 0, p?lange is
set to zero. n > 0.

a (local).
REAL for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange
COMPLEX*16 for pzlange.

7-60

7 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)) containing the local pieces of the distributed matrix
sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

work (local).
REAL for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange
COMPLEX*16 for pzlange.
Array DIMENSION (lwork).
lwork > 0 if norm = 'M' or 'm' (not referenced),
 nq0 if norm = '1', 'O' or 'o',
 mp0 if norm = 'I' or 'i',
 0 if norm = 'F', 'f', 'E' or 'e' (not referenced),

 where
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

val The value returned by the fuction.

ScaLAPACK Auxiliary and Utility Routines 7

7-61

p?lanhs
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element, of an upper Hessenberg matrix.

Syntax
val = pslanhs(norm, n, a, ia, ja, desca, work)

val = pdlanhs(norm, n, a, ia, ja, desca, work)

val = pclanhs(norm, n, a, ia, ja, desca, work)

val = pzlanhs(norm, n, a, ia, ja, desca, work)

Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the
element of largest absolute value of a distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1).

p?lanhs returns the value

(max(abs(A(i,j))), norm = 'M' or 'm' with ia < i < ia+m-1,
(and ja < j < ja+n-1,

(

(norm1(sub(A)), norm = '1', 'O' or 'o'

(

(normI(sub(A)), norm = 'I' or 'i'

(

(normF(sub(A)), norm = 'F', 'f', 'E' or 'e',

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix
(square root of sum of squares). Note that max(abs(A(i,j))) is not a matrix norm.

Input Parameters

norm (global) CHARACTER.
Specifies the value to be returned in p?lange as described above.

7-62

7 Intel® Math Kernel Library Reference Manual

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). When n = 0, p?lanhs is
set to zero. n > 0.

a (local).
REAL for pslanhs
DOUBLE PRECISION for pdlanhs
COMPLEX for pclanhs
COMPLEX*16 for pzlanhs
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)) containing the local pieces of the distributed matrix
sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

work (local).
REAL for pslanhs
DOUBLE PRECISION for pdlanhs
COMPLEX for pclanhs
COMPLEX*16 for pzlanh.
Array, DIMENSION (lwork).
lwork > 0 if norm = 'M' or 'm' (not referenced),
 nq0 if norm = '1', 'O' or 'o',
 mp0 if norm = 'I' or 'i',
 0 if norm = 'F', 'f', 'E' or 'e' (not referenced),
where
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

ScaLAPACK Auxiliary and Utility Routines 7

7-63

Output Parameters

val The value returned by the fuction.

p?lansy, p?lanhe
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element, of a real symmetric or a complex Hermitian
matrix.

Syntax
val = pslansy(norm, uplo, n, a, ia, ja, desca, work)

val = pdlansy(norm, uplo, n, a, ia, ja, desca, work)

val = pclansy(norm, uplo, n, a, ia, ja, desca, work)

val = pzlansy(norm, uplo, n, a, ia, ja, desca, work)

val = pclanhe(norm, uplo, n, a, ia, ja, desca, work)

val = pzlanhe(norm, uplo, n, a, ia, ja, desca, work)

Description

The functions return the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the
element of largest absolute value of a distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1).

p?lansy, p?lanhe return the value

(max(abs(A(i,j))), norm = 'M' or 'm' with ia < i < ia+m-1,
(and ja < j < ja+n-1,

(

(norm1(sub(A)), norm = '1', 'O' or 'o'

(

(normI(sub(A)), norm = 'I' or 'i'

(

(normF(sub(A)), norm = 'F', 'f', 'E' or 'e',

7-64

7 Intel® Math Kernel Library Reference Manual

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix
(square root of sum of squares). Note that max(abs(A(i,j))) is not a matrix norm.

Input Parameters

norm (global) CHARACTER.
Specifies the value to be returned in p?lange as described above.

uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric
matrix
sub(A) is to be referenced.

 = 'U': Upper triangular part of sub(A) is referenced,
 = 'L': Lower triangular part of sub(A) is referenced.

n (global) INTEGER.
The number of columns to be operated on i.e the number of columns of
the distributed submatrix sub(A). When n = 0, p?lansy is set to zero. n
> 0.

a (local).
REAL for pslansy
DOUBLE PRECISION for pdlansy
COMPLEX for pclansy, pclanhe
COMPLEX*16 for pzlansy, pzlanhe.
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)) containing the local pieces of the distributed matrix
sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains
the upper triangular matrix which norm is to be computed, and the
strictly lower triangular part of this matrix is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains
the lower triangular matrix which norm is to be computed, and the
strictly upper triangular part of sub(A) is not referenced.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

ScaLAPACK Auxiliary and Utility Routines 7

7-65

work (local).
REAL for pslansy
DOUBLE PRECISION for pdlansy
COMPLEX for pclansy, pclanhe
COMPLEX*16 for pzlansy, pzlanhe.
Array DIMENSION (lwork).
lwork > 0 if norm = 'M' or 'm' (not referenced),
 2*nq0+np0+ldw if norm = '1', 'O' or 'o', 'I' or 'i',

where ldw is given by:
if(nprow.ne.npcol) then
 ldw = mb_a*ceil(ceil(np0/mb_a)/(lcm/nprow))
else

 ldw = 0
end if

 0 if norm = 'F', 'f', 'E' or 'e' (not referenced),

 where lcm is the least common multiple of nprow and npcol
lcm = ilcm(nprow, npcol) and ceil denotes the ceiling operation
(iceil).
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

val The value returned by the fuction.

7-66

7 Intel® Math Kernel Library Reference Manual

p?lantr
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element, of a triangular matrix.

Syntax
val = pslantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)

val = pdlantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)

val = pclantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)

val = pzlantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)

Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the
element of largest absolute value of a trapezoidal or triangular distributed matrix
sub(A) = A(ia:ia+m-1, ja:ja+n-1).

p?lantr returns the value

(max(abs(A(i,j))), norm = 'M' or 'm' with ia < i < ia+m-1,
(and ja < j < ja+n-1,

(

(norm1(sub(A)), norm = '1', 'O' or 'o'

(

(normI(sub(A)), norm = 'I' or 'i'

(

(normF(sub(A)), norm = 'F', 'f', 'E' or 'e',

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the
infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix
(square root of sum of squares). Note that max(abs(A(i,j))) is not a matrix norm.

ScaLAPACK Auxiliary and Utility Routines 7

7-67

Input Parameters

norm (global) CHARACTER.
Specifies the value to be returned in p?lantr as described above.

uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric
matrix
sub(A) is to be referenced.

 = 'U': Upper trapezoidal,
 = 'L': Lower trapezoidal.

Note that sub(A) is triangular instead of trapezoidal if m = n.

diag (global) CHARACTER.
Specifies whether or not the distributed matrix sub(A) has unit diagonal.
= 'N': Non-unit diagonal.
= 'U': Unit diagonal.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). When m = 0, p?lantr is set to zero. m >
0.

n (global) INTEGER.
The number of columns to be operated on i.e the number of columns of
the distributed submatrix sub(A). When n = 0, p?lantr is set to zero. n
> 0.

a (local).
REAL for pslantr
DOUBLE PRECISION for pdlantr
COMPLEX for pclantr
COMPLEX*16 for pzlantr.
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)) containing the local pieces of the distributed matrix
sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

7-68

7 Intel® Math Kernel Library Reference Manual

work (local).
REAL for pslantr
DOUBLE PRECISION for pdlantr
COMPLEX for pclantr
COMPLEX*16 for pzlantr.
Array DIMENSION (lwork).
lwork > 0 if norm = 'M' or 'm' (not referenced),
 nq0 if norm = '1', 'O' or 'o',
 mp0 if norm = 'I' or 'i',
 0 if norm = 'F', 'f', 'E' or 'e' (not referenced),

 where lcm is the least common multiple of nprow and npcol
lcm = ilcm(nprow, npcol) and ceil denotes the ceiling operation
(iceil).
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

val The value returned by the fuction.

p?lapiv
Applies a permutation matrix to a general distributed
matrix, resulting in row or column pivoting.

Syntax
call pslapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,

descip, iwork)

call pdlapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
descip, iwork)

call pclapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
descip, iwork)

ScaLAPACK Auxiliary and Utility Routines 7

7-69

call pzlapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
descip, iwork)

Description

This routine applies either P (permutation matrix indicated by ipiv) or inv(P) to a general
m-by-n distributed matrix sub(A) = A(ia:ia+m-1, ja:ja+n-1), resulting in row or column
pivoting. The pivot vector may be distributed across a process row or a column. The pivot vector
should be aligned with the distributed matrix A. This routine will transpose the pivot vector, if
necessary.

For example, if the row pivots should be applied to the columns of sub(A), pass rowcol='C' and
pivroc='C'.

Input Parameters

direc (global) CHARACTER*1.
Specifies in which order the permutation is applied:
= 'F' (Forward). Applies pivots Forward from top of matrix.
 Computes P*sub(A).
= 'B' (Backward) Applies pivots Backward from bottom of matrix.
 Computes inv(P)*sub(A).

rowcol (global) CHARACTER*1.
Specifies if the rows or columns are to be permuted:
 = 'R' Rows will be permuted,
 = 'C' Columns will be permuted.

pivroc (global) CHARACTER*1.
Specifies whether ipiv is distributed over a process row or column:
= 'R' ipiv is distributed over a process row,
= 'C' ipiv is distributed over a process column.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). When m = 0, p?lapiv is set to zero. m >
0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). When n = 0, p?lapiv is
set to zero. n > 0.

7-70

7 Intel® Math Kernel Library Reference Manual

a (local).
REAL for pslapiv
DOUBLE PRECISION for pdlapiv
COMPLEX for pclapiv
COMPLEX*16 for pzlapiv.

Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)) containing the local pieces of the distributed matrix
sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

ipiv (local).INTEGER.
Array, DIMENSION (lipiv) where lipiv is when rowcol='R' or 'r':

> LOCr(ia+m-1) + mb_a if pivroc='C' or 'c',
> LOCc(m + mod(jp-1, nb_p)) if pivroc='R' or 'r', and,

when rowcol='C' or 'c':

> LOCr (n + mod(ip-1, mb_p)) if pivroc='C' or 'c',
> LOCc (ja+n-1) + nb_a if pivroc='R' or 'r'.

This array contains the pivoting information. ipiv(i) is the global row
(column), local row (column) i was swapped with. When rowcol='R'
or 'r' and pivroc='C' or 'c', or rowcol='C' or 'c' and pivroc='R' or 'r',
the last piece of this array of size mb_a (resp. nb_a) is used as
workspace. In those cases, this array is tied to the distributed matrix A.

ip,jp (global) INTEGER. The row and column indices in the global array P
indicating the first row and the first column of the submatrix sub(P),
respectively.

descip (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed vector ipiv.

iwork (local). INTEGER.
Array, DIMENSION (ldw), where ldw is equal to the workspace
necessary for transposition, and the storage of the tranposed ipiv :

Let lcm be the least common multiple of nprow and npcol.

ScaLAPACK Auxiliary and Utility Routines 7

7-71

If(rowcol.eq.'r' .and. pivroc.eq.'r') then
 If(nprow.eq.npcol) then
 ldw = LOCr(n_p + mod(jp-1, nb_p)) + nb_p
 else
 ldw = LOCr(n_p + mod(jp-1, nb_p)) +
 nb_p * ceil(ceil(LOCc(n_p)/nb_p) /
(lcm/npcol))
 end if
else if(rowcol.eq.'c' .and. pivroc.eq.'c') then
 if(nprow.eq.npcol) then
 ldw = LOCc(m_p + mod(ip-1, mb_p)) + mb_p
 else

 ldw = LOCc(m_p + mod(ip-1, mb_p)) +
 mb_p * ceil(ceil(LOCr(m_p)/mb_p) /
(lcm/nprow))

 end if
else
 iwork is not referenced.

end if.

Output Parameters

a (local).
On exit, the local pieces of the permuted distributed submatrix.

p?laqge
Scales a general rectangular matrix, using row and
column scaling factors computed by p?geequ .

Syntax
call pslaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

call pdlaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

call pclaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

call pzlaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

7-72

7 Intel® Math Kernel Library Reference Manual

Description

This routine equilibrates a general m-by-n distributed matrix
sub(A) = A(ia:ia+m-1, ja:ja+n-1) using the row and scaling factors in the vectors r and c
computed by p?geequ.

Input Parameters

m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m > 0).

n (global). INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). (n ≥ 0).

a (local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)). On entry, this array contains the distributed
matrix sub(A).

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

r (local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Array, DIMENSION LOCr(m_a). The row scale factors for sub(A). r is
aligned with the distributed matrix A, and replicated across every
process column. r is tied to the distributed matrix A.

c (local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge

ScaLAPACK Auxiliary and Utility Routines 7

7-73

COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Array, DIMENSION LOCc(n_a). The row scale factors for sub(A). c is
aligned with the distributed matrix A, and replicated across every
process column. c is tied to the distributed matrix A.

rowcnd (local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
The global ratio of the smallest r(i) to the largest r(i), ia < i <
ia+m-1.

colcnd (local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
The global ratio of the smallest c(i) to the largest r(i), ia < i <
ia+n-1.

amax (global).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Absolute value of largest distributed submatrix entry.

Output Parameters

a (local).
On exit, the equilibrated distributed matrix. See equed for the form of
the equilibrated distributed submatrix.

equed (global) CHARACTER.

Specifies the form of equilibration that was done.

= 'N': No equilibration
= 'R': Row equilibration, that is, sub(A) has been pre-multiplied by
diag(r(ia:ia+m-1)),
= 'C': Column equilibration, that is, sub(A) has been post-multiplied by

7-74

7 Intel® Math Kernel Library Reference Manual

diag(c(ja:ja+n-1)),
= 'B': Both row and column equilibration, that is, sub(A) has been
replaced by diag(r(ia:ia+m-1)) * sub(A) * diag(c(ja:ja+n-1)).

p?laqsy
Scales a symmetric/Hermitian matrix, using scaling
factors computed by p?poequ .

Syntax
call pslaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

call pdlaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

call pclaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

call pzlaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

Description

This routine equilibrates a symmetric distributed matrix sub(A) = A(ia:ia+n-1, ja:ja+n-1)
using the scaling factors in the vectors sr and sc. The scaling factors are computed by p?poequ .

Input Parameters

uplo (global) CHARACTER.
Specifies the upper or lower triangular part of the symmetric distributed
matrix sub(A)is to be referenced:
 = 'U': Upper triangular part;
 = 'L': Lower triangular part.

n (global) INTEGER. The order of the distributed submatrix sub(A). n ≥ 0.

a (local).
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Pointer into the local memory to an array of DIMENSION
(lld_a,LOCc(ja+n-1)). On entry, this array contains the local
pieces of the distributed matrix sub(A). On entry, the local pieces of the
distributed symmetric matrix sub(A).

ScaLAPACK Auxiliary and Utility Routines 7

7-75

If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains
the upper triangular part of the matrix, and the strictly lower triangular
part of sub(A) is not referenced.

If uplo = 'L', the leading n-by-n lower triangular part of sub(A) contains
the lower triangular part of the matrix, and the strictly upper triangular
part of sub(A) is not referenced.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the submatrix sub(A),
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

sr (local)
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Array, DIMENSION LOCr(m_a). The scale factors for A(ia:ia+m-1,
ja:ja+n-1). sr is aligned with the distributed matrix A, and replicated
across every process column. sr is tied to the distributed matrix A.

sc (local)
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Array, DIMENSION LOCc(m_a). The scale factors for A (ia:ia+m-1,
ja:ja+n-1). sr is aligned with the distributed matrix A, and replicated
across every process column. sr is tied to the distributed matrix A.

scond (global).
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Ratio of the smallest sr(i) (respectively sc(j)) to the largest sr(i)
(respectively sc(j)), with ia < i < ia+n-1 and ja < j <
ja+n-1.

7-76

7 Intel® Math Kernel Library Reference Manual

amax (global).
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Absolute value of largest distributed submatrix entry.

Output Parameters

a On exit, if equed = 'Y', the equilibrated matrix:
diag(sr(ia:ia+n-1)) * sub(A) * diag(sc(ja:ja+n-1)).

equed (global) CHARACTER*1.

Specifies whether or not equilibration was done.
= 'N': No equilibration.
= 'Y': Equilibration was done, that is, sub(A) has been replaced by:
diag(sr(ia:ia+n-1)) * sub(A) * diag(sc(ja:ja+n-1)).

p?lared1d
Redistributes an array assuming that the input array,
bycol, is distributed across rows and that all process
columns contain the same copy of bycol.

Syntax
call pslared1d(n, ia, ja, desc, bycol, byall, work, lwork)

call pdlared1d(n, ia, ja, desc, bycol, byall, work, lwork)

Description

This routine redistributes a 1D array. It assumes that the input array bycol is distributed across
rows and that all process column contain the same copy of bycol. The output array byall is
identical on all processes and contains the entire array.

Input Parameters

np = Number of local rows in bycol()

ScaLAPACK Auxiliary and Utility Routines 7

7-77

n (global). INTEGER.
The number of elements to be redistributed. n > 0.

ia,ja (global) INTEGER. ia, ja must be equal to 1.

desc (global and local) INTEGER array, DIMENSION 8. A 2D array descirptor,
which describes bycol.

bycol (local).
REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclared1d
COMPLEX*16 for pzlared1d.
Distributed block cyclic array global DIMENSION (n), local DIMENSION
np. bycol is distributed across the process rows. All process columns
are assumed to contain the same value.

work (local).
REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclared1d
COMPLEX*16 for pzlared1d.
DIMENSION (lwork). Used to hold the buffers sent from one process to
another.

lwork (local) INTEGER.
The size of the work array. lwork > numroc(n, desc(nb_), 0, 0,
npcol).

Output Parameters

byall (global).
REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclared1d
COMPLEX*16 for pzlared1d.
Global DIMENSION(n), local DIMENSION (n). byall is exactly
duplicated on all processes. It contains the same values as bycol, but it
is replicated across all processes rather than being distributed.

7-78

7 Intel® Math Kernel Library Reference Manual

p?lared2d
Redistributes an array assuming that the input array
byrow is distributed across columns and that all
process rows contain the same copy of byrow.

Syntax
call pslared2d(n, ia, ja, desc, byrow, byall, work, lwork)

call pdlared2d(n, ia, ja, desc, byrow, byall, work, lwork)

Description

This routine redistributes a 1D array. It assumes that the input array byrow is distributed across
columns and that all process rows contain the same copy of byrow. The output array byall will
be identical on all processes and will contain the entire array.

Input Parameters

np = Number of local rows in byrow()

n (global) INTEGER.
The number of elements to be redistributed. n > 0.

ia,ja (global) INTEGER. ia, ja must be equal to 1.

desc (global and local) INTEGER array, DIMENSION (dlen_). A 2D array
descirptor, which describes byrow.

byrow (local).
REAL for pslared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
Distributed block cyclic array global DIMENSION (n), local DIMENSION
np. bycol is distributed across the process columns. All process rows
are assumed to contain the same value.

work (local).
REAL for pslared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d

ScaLAPACK Auxiliary and Utility Routines 7

7-79

COMPLEX*16 for pzlared2d.
DIMENSION (lwork). Used to hold the buffers sent from one process to
another.

lwork (local).INTEGER.
The size of the work array. lwork > numroc(n, desc(nb_), 0, 0,
npcol).

Output Parameters

byall (global).
REAL for pslared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
Global DIMENSION(n), local DIMENSION (n). byall is exactly
duplicated on all processes. It contains the same values as bycol, but it
is replicated across all processes rather than being distributed.

p?larf
Applies an elementary reflector to a general
rectangular matrix.

Syntax
call pslarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pdlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pclarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pzlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

Description

This routine applies a real/complex elementary reflector Q (or QT) to a real/complex m-by-n
distributed matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is
represented in the form

Q = I - tau * v * v',

where tau is a real/complex scalar and v is a real/complex vector.

7-80

7 Intel® Math Kernel Library Reference Manual

If tau = 0, then Q is taken to be the unit matrix.

Input Parameters

side (global) CHARACTER.
 = 'L': form Q * sub(C),
 = 'R': form sub(C) * Q, Q = QT.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m > 0).

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). (n ≥ 0).

v (local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Pointer into the local memory to an array of DIMENSION (lld_v,*)
containing the local pieces of the distributed vectors V representing the
Householder transformation Q,

v(iv:iv+m-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+m-1) if side = 'L' and incv = m_v,
v(iv:iv+n-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+n-1) if side = 'R' and incv = m_v.

The vector v is the representation of Q. v is not used if tau = 0.

iv,jv (global) INTEGER. The row and column indices in the global array V
indicating the first row and the first column of the submatrix sub(V),
respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix V.

incv (global) INTEGER. The global increment for the elements of v. Only
two values of incv are supported in this version, namely 1 and m_v.
incv must not be zero.

tau (local).
REAL for pslarf
DOUBLE PRECISION for pdlarf

ScaLAPACK Auxiliary and Utility Routines 7

7-81

COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Array, DIMENSION LOCc(jv) if incv = 1, and LOCr(iv) otherwise.
This array contains the Householder scalars related to the Householder
vectors.
tau is tied to the distributed matrix v.

c (local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Pointer into the local memory to an array of DIMENSION (lld_c,
LOCc(jc+n-1)), containing the local pieces of sub(C).

ic,jc (global) INTEGER. The row and column indices in the global array c
indicating the first row and the first column of the submatrix sub(C),
respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix C.

work (local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Array, DIMENSION (lwork).

 If incv = 1,
 if side = 'L',
 if ivcol = iccol,
 lwork > nqc0
 else
 lwork > mpc0 + max(1, nqc0)
 end if
 else if side = 'R',
 lwork > nqc0 + max(max(1, mpc0), numroc(
numroc(n +
icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq))
 end if

else if incv = m_v,
 if side = 'L',

7-82

7 Intel® Math Kernel Library Reference Manual

 lwork > mpc0 + max(max(1, nqc0), numroc(
numroc(m+iroffc,mb_v,0,0,nprow),mb_v,0,0, lcmp))
 else if side = 'R',
 if ivrow = icrow,
 lwork > mpc0
 else

 lwork > nqc0 + max(1, mpc0)
 end if
 end if

end if,

where lcm is the least common multiple of nprow and npcol and lcm
= ilcm(nprow, npcol), lcmp = lcm / nprow, lcmq = lcm /
npcol,

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),

iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling
the subroutine blacs_gridinfo.

Output Parameters

c (local).
On exit, sub(C) is overwritten by the Q * sub(C) if side = 'L',
 or sub(C) * Q if side = 'R'.

p?larfb
Applies a block reflector or its
transpose/conjugate-transpose to a general rectangular
matrix.

Syntax
call pslarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic,

jc, descc, work)

ScaLAPACK Auxiliary and Utility Routines 7

7-83

call pdlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic,
jc, descc, work)

call pclarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic,
jc, descc, work)

call pzlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic,
jc, descc, work)

Description

This routine applies a real/complex block reflector Q or its transpose QT/conjugate transpose QH
to a real/complex distributed m-by-n matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1) from the left or
the right.

Input Parameters

side (global).CHARACTER.

if side = 'L': apply Q or QT for real flavors/QH for complex flavors
from the left;

if side = 'R': apply Q or QTfor real flavors/QH for complex flavors from
the right.

trans (global).CHARACTER.

if trans= 'N': No transpose, apply Q;

for real flavors, if trans= 'T': Transpose, apply QT

for complex flavors, if trans= 'C': Conjugate transpose, apply QH;

direct (global) CHARACTER.
Indicates how Q is formed from a product of elementary reflectors.

if direct = 'F': Q = H(1) H(2) . . . H(k) (Forward)
if direct = 'B': Q = H(k) . . . H(2) H(1) (Backward)

storev (global) CHARACTER.
Indicates how the vectors that define the elementary reflectors are
stored:
if storev = 'C': Columnwise
if storev = 'R': Rowwise.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(C). (m > 0).

7-84

7 Intel® Math Kernel Library Reference Manual

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(C). (n ≥ 0).

k (global) INTEGER.
The order of the matrix T.

v (local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of DIMENSION
(lld_v, LOCc(jv+k-1)) if storev = 'C',
(lld_v, LOCc(jv+m-1)) if storev = 'R' and side = 'L',
(lld_v, LOCc(jv+n-1)) if storev = 'R' and side = 'R'.
Contains the local pieces of the distributed vectors V representing the
Householder transformation.

If storev = 'C' and side = 'L', lld_v >max(1,LOCr(iv+m-1));
if storev = 'C' and side = 'R', lld_v > max(1,LOCr(iv+n-1));
if storev = 'R', lld_v > LOCr(jv+k-1).

iv,jv (global) INTEGER. The row and column indices in the global array V
indicating the first row and the first column of the submatrix sub(V),
respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix V.

c (local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of DIMENSION (lld_c,
LOCc(jc+n-1)), containing the local pieces of sub(C).

ic,jc (global) INTEGER. The row and column indices in the global array C
indicating the first row and the first column of the submatrix sub(C),
respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix C.

ScaLAPACK Auxiliary and Utility Routines 7

7-85

work (local).

REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Workspace array, DIMENSION (lwork).

If storev = 'C',
 if side = 'L',
 lwork > (nqc0 + mpc0) * k
 else if side = 'R',
 lwork > (nqc0 + max(npv0 + numroc(numroc(n +
icoffc,

 nb_v, 0, 0, npcol), nb_v, 0, 0, lcmq),
 mpc0)) * k

 end if
else if storev = 'R',
 if side = 'L',
 lwork > (mpc0 + max(mqv0 + numroc(numroc(
m+iroffc,
 mb_v, 0, 0, nprow), mb_v, 0, 0, lcmp),
 nqc0)) * k

 else if side = 'R',
 lwork > (mpc0 + nqc0) * k
 end if

 end if,
where lcmq = lcm / npcol with lcm = iclm(nprow, npcol),

iroffv = mod(iv-1, mb_v), icoffv = mod(jv-1, nb_v),
ivrow = indxg2p(iv, mb_v, myrow, rsrc_v, nprow),
ivcol = indxg2p(jv, nb_v, mycol, csrc_v, npcol),
MqV0 = numroc(m+icoffv, nb_v, mycol, ivcol, npcol),
NpV0 = numroc(n+iroffv, mb_v, myrow, ivrow, nprow),

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MpC0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
NpC0 = numroc(n+icoffc, mb_c, myrow, icrow, nprow),
NqC0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),

7-86

7 Intel® Math Kernel Library Reference Manual

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

c (local).
On exit, sub(C) is overwritten by the Q * sub(C), or Q' *sub(C) or sub(C
)*Q or sub(C)*Q'.

p?larfc
Applies the conjugate transpose of an elementary
reflector to a general matrix.

Syntax
call pclarfc(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pzlarfc(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

Description

This routine applies a complex elementary reflector QH to a complex m-by-n distributed matrix
sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is represented in the
form

Q = i - tau * v * v',

where tau is a complex scalar and v is a complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Input Parameters

side (global).CHARACTER.

if side = 'L': form QH*sub (C) ;

if side = 'R': form sub (C)*QH .

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(C). m > 0.

ScaLAPACK Auxiliary and Utility Routines 7

7-87

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(C). n ≥ 0.

v (local).

COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Pointer into the local memory to an array of DIMENSION (lld_v,*)
containing the local pieces of the distributed vectors v representing the
Householder transformation Q,

v(iv:iv+m-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+m-1) if side = 'L' and incv = m_v,
v(iv:iv+n-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+n-1) if side = 'R' and incv = m_v.

The vector v is the representation of Q. v is not used if tau = 0.

iv,jv (global) INTEGER. The row and column indices in the global array V
indicating the first row and the first column of the submatrix sub(V),
respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix V.

 incv (global) INTEGER.
The global increment for the elements of v. Only two values of incv are
supported in this version, namely 1 and m_v.
incv must not be zero.

tau (local)
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Array, DIMENSION LOCc(jv) if incv = 1, and LOCr(iv) otherwise.
This array contains the Householder scalars related to the Householder
vectors.
tau is tied to the distributed matrix V.

c (local).
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Pointer into the local memory to an array of DIMENSION (lld_c,
LOCc(jc+n-1)), containing the local pieces of sub(C).

7-88

7 Intel® Math Kernel Library Reference Manual

ic,jc (global) INTEGER. The row and column indices in the global array C
indicating the first row and the first column of the submatrix sub(C),
respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix C.

work (local).

COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Workspace array, DIMENSION (lwork).

If incv = 1,
 if side = 'L',
 if ivcol = iccol,
 lwork > nqc0
 else
 lwork > mpc0 + max(1, nqc0)
 end if
 else if side = 'R',
 lwork > nqc0 + max(max(1, mpc0), numroc(numroc(
 n+icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq))
 end if
 else if incv = m_v,
 if side = 'L',
 lwork > mpc0 + max(max(1, nqc0), numroc(
numroc(

 m+iroffc,mb_v,0,0,nprow),mb_v,0,0,lcmp
))
 else if side = 'R',
 if ivrow = icrow,
 lwork > mpc0
 else
 lwork > nqc0 + max(1, mpc0)
 end if
 end if

 end if,

where lcm is the least common multiple of nprow and npcol and
lcm = ilcm(nprow, npcol), lcmp = lcm / nprow,
lcmq = lcm / npcol,

ScaLAPACK Auxiliary and Utility Routines 7

7-89

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

c (local). On exit, sub(C) is overwritten by the QH * sub(C) if side = 'L',
 or sub(C) * QH if side = 'R'.

p?larfg
Generates an elementary reflector (Householder
matrix).

Syntax
call pslarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

call pdlarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

call pclarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

call pzlarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

Description

This routine generates a real/complex elementary reflector H of order n, such that

H * sub(X) = H * (x(iax, jax)) = (alpha), H' * H = i,
 (x) (0)

where alpha is a scalar (a real scalar - for complex flavors), and sub(X) is an (n-1)-element
real/complex distributed vector X(ix:ix+n-2, jx) if incx = 1 and X(ix, jx:jx+n-2) if incx =
descx(m_). H is represented in the form

H = I - tau * (1) * (1 v') ,

 (v)

7-90

7 Intel® Math Kernel Library Reference Manual

where tau is a real/complex scalar and v is a real/complex (n-1)-element vector. Note that H is not
Hermitian.

If the elements of sub(X) are all zero (and X(iax, jax) is real for complex flavors), then tau = 0
and H is taken to be the unit matrix.

Otherwise 1 < real(tau) < 2 and abs(tau-1) < 1.

Input Parameters

n (global) INTEGER.
The global order of the elementary reflector. n > 0.

iax, jax (global) INTEGER.
The global row and column indices in x of X(iax, jax).

x (local).

REAL for pslarfg
DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.

Pointer into the local memory to an array of DIMENSION (lld_x, *).
This array contains the local pieces of the distributed vector sub(X).
Before entry, the incremented array sub(X) must contain vector x.

ix,jx (global) INTEGER.
The row and column indices in the global array X indicating the first row
and the first column of sub(X), respectively.

 descx (global and local) INTEGER.
Array of DIMENSION (dlen_). The array descriptor for the distributed
matrix X.

incx (global) INTEGER.
The global increment for the elements of x. Only two values of incx are
supported in this version, namely 1 and m_x.
incx must not be zero.

Output Parameters

alpha (local).

ScaLAPACK Auxiliary and Utility Routines 7

7-91

REAL for pslafg
DOUBLE PRECISION for pdlafg
COMPLEX for pclafg
COMPLEX*16 for pzlafg.

On exit, alpha is computed in the process scope having the vector
sub(X).

x (local).
On exit, it is overwritten with the vector v.

tau (local).

REAL for pslarfg
DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.

Array, DIMENSION LOCc(jx) if incx = 1, and LOCr(ix) otherwise.
This array contains the Householder scalars related to the Householder
vectors.

tau is tied to the distributed matrix X.

p?larft
Forms the triangular vector T of a block reflector
H=I-VTVH.

Syntax
call pslarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pdlarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pclarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pzlarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

Description

This routine forms the triangular factor T of a real/complex block reflector H of order n, which is
defined as a product of k elementary reflectors.

7-92

7 Intel® Math Kernel Library Reference Manual

If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column
of the distributed matrix V, and

H = I - V * T * V'

If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of
the distributed matrix V, and

H = I - V' * T * V.

Input Parameters

 direct (global) CHARACTER*1.
Specifies the order in which the elementary reflectors are multiplied to
form the block reflector:

if direct = 'F': H = H(1) H(2) . . . H(k) (Forward)

if direct = 'B': H = H(k) . . . H(2) H(1) (Backward).

storev (global) CHARACTER*1.
Specifies how the vectors that define the elementary reflectors are stored
(See Application Notes below):

if storev = 'C': columnwise;
if storev = 'R': rowwise.

n (global) INTEGER.
The order of the block reflector H. n > 0.

k (global) INTEGER.
The order of the triangular factor T (= the number of elementary
reflectors).
1 < k < mb_v (= nb_v).

 v REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.

ScaLAPACK Auxiliary and Utility Routines 7

7-93

Pointer into the local memory to an array of local DIMENSION
(LOCr(iv+n-1), LOCc(jv+k-1)) if storev = 'C', and
(LOCr(iv+k-1), LOCc(jv+n-1)) if storev = 'R'.
The distributed matrix V contains the Householder vectors.
(See Application Notes below).

iv,jv (global) INTEGER. The row and column indices in the global array v
indicating the first row and the first column of the submatrix sub(V),
respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix V.

tau (local)
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Array, DIMENSION LOCr(iv+k-1) if incv = m_v, and LOCc(jv+k-1)
otherwise. This array contains the Householder scalars related to the
Householder vectors.

tau is tied to the distributed matrix V.

work (local).

REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Workspace array, DIMENSION (k*(k-1)/2).

Output Parameters

v REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.

t (local)

REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.

7-94

7 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (nb_v,nb_v) if storev = 'Col', and (mb_v,mb_v)
otherwise. Contains the k-by-k triangular factor of the block reflector
associated with v.
If direct = 'F', t is upper triangular;
if direct = 'B', t is lower triangular.

Application Notes

The shape of the matrix V and the storage of the vectors that define the H(i) is best illustrated by
the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the
corresponding array elements are modified but restored on exit. The rest of the array is not used.

direct = 'F' and storev = 'C': direct = 'F' and storev = 'R':

V(iv:iv+n-1, V(iv:iv+k-1,
 jv:jv+k-1) = jv:jv+n-1) =

direct = 'B' and storev = 'C': direct = 'B' and storev = 'R':

V(iv:iv+n-1, V(iv:iv+k-1,
 jv:jv+k-1) = jv:jv+n-1) =

p?larz
Applies an elementary reflector as returned by
p?tzrzf to a general matrix.

Syntax
call pslarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,

work)

1

v1 1

v1 v2 1

v1 v2 v3

v1 v2 v3

1 v1 v1 v1 v1

 1 v2 v2 v2

 1 v3 v3

v1 v2 v3

v1 v2 v3

1 v2 v3

 1 v3

 1

v1 v1 1

v2 v2 v2 1

v3 v3 v3 v3 1

ScaLAPACK Auxiliary and Utility Routines 7

7-95

call pdlarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

call pclarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

call pzlarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

Description

This routine applies a real/complex elementary reflector Q (or QT) to a real/complex m-by-n
distributed matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is
represented in the form

Q = I - tau * v * v',

where tau is a real/complex scalar and v is a real/complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Q is a product of k elementary reflectors as returned by p?tzrzf.

Input Parameters

side (global) CHARACTER.

if side = 'L': form Q* sub(C) ,

if side = 'R': form sub (C)*Q, Q=QT (for real flavors).

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(C). (m > 0).

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(C). (n ≥ 0).

l (global). INTEGER.
The columns of the distributed submatrix sub(A) containing the
meaningful part of the Householder reflectors. If side = 'L', m > l > 0,
if side = 'R', n > l > 0.

v (local).

7-96

7 Intel® Math Kernel Library Reference Manual

REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Pointer into the local memory to an array of DIMENSION (lld_v,*)
containing the local pieces of the distributed vectors v representing the
Householder transformation Q,

v(iv:iv+l-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+l-1) if side = 'L' and incv = m_v,
v(iv:iv+l-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+l-1) if side = 'R' and incv = m_v.

The vector v in the representation of Q. v is not used if tau = 0.

iv,jv (global) INTEGER. The row and column indices in the global array V
indicating the first row and the first column of the submatrix sub(V),
respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix V.

 incv (global) INTEGER.
The global increment for the elements of v. Only two values of incv are
supported in this version, namely 1 and m_v.

incv must not be zero.

tau (local)
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Array, DIMENSION LOCc(jv) if incv = 1, and LOCr(iv) otherwise.
This array contains the Householder scalars related to the Householder
vectors.

tau is tied to the distributed matrix V.

c (local).
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz

ScaLAPACK Auxiliary and Utility Routines 7

7-97

COMPLEX*16 for pzlarz.
Pointer into the local memory to an array of DIMENSION (lld_c,
LOCc(jc+n-1)), containing the local pieces of sub(C).

ic,jc (global) INTEGER. The row and column indices in the global array C
indicating the first row and the first column of the submatrix sub(C),
respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix C.

work (local).

REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Array, DIMENSION (lwork)

If incv = 1,
 if side = 'L',
 if ivcol = iccol,
 lwork > NqC0
 else
 lwork > MpC0 + max(1, NqC0)
 end if

else if side = 'R',
 lwork > NqC0 + max(max(1, MpC0), numroc(numroc(
 n+icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq))
 end if
else if incv = m_v,
 if side = 'L',
 lwork > MpC0 + max(max(1, NqC0), numroc(numroc(
m+iroffc,mb_v,0,0,nprow),mb_v,0,0,lcmp))
else if side = 'R',
 if ivrow = icrow,
 lwork > MpC0
 else

 lwork > NqC0 + max(1, MpC0)
 end if
 end if

end if,

7-98

7 Intel® Math Kernel Library Reference Manual

where lcm is the least common multiple of nprow and npcol and
lcm = ilcm(nprow, npcol), lcmp = lcm / nprow,
lcmq = lcm / npcol,

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),

mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

c (local). On exit, sub(C) is overwritten by the Q * sub(C) if side = 'L', or
sub(C) * Q if side = 'R'.

p?larzb
Applies a block reflector or its
transpose/conjugate-transpose as returned by
p?tzrzf to a general matrix.

Syntax
call pslarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,

ic, jc, descc, work)

call pdlarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,
ic, jc, descc, work)

call pclarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,
ic, jc, descc, work)

call pzlarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,
ic, jc, descc, work)

ScaLAPACK Auxiliary and Utility Routines 7

7-99

Description

This routine applies a real/complex block reflector Q or its transpose QT (conjugate transpose QH
for complex flavors) to a real/complex distributed m-by-n matrix
sub(C) = C(ic:ic+m-1, jc:jc+n-1) from the left or the right.

Q is a product of k elementary reflectors as returned by p?tzrzf.

Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters

side (global) CHARACTER.

if side = 'L': apply Q or QT (QH for complex flavors) from the Left;

if side = 'R': apply Q or QT (QH for complex flavors) from the Right.

trans (global) CHARACTER.

if trans= 'N': No transpose, apply Q;
if trans= 'T': Transpose, apply QT(real flavors);
if trans= 'C': Conjugate transpose, apply QH (complex flavors).

direct (global) CHARACTER.
Indicates how H is formed from a product of elementary reflectors.

if direct = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
if direct = 'B': H = H(k) . . . H(2) H(1) (Backward)

storev (global) CHARACTER.
Indicates how the vectors that define the elementary reflectors are
stored:

if storev = 'C': Columnwise (not supported yet).
if storev = 'R': Rowwise.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(C). m > 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(C). n ≥ 0.

k (global) INTEGER.
The order of the matrix T. (= the number of elementary reflectors whose
product defines the block reflector).

7-100

7 Intel® Math Kernel Library Reference Manual

l (global) INTEGER.
The columns of the distributed submatrix sub(A) containing the
meaningful part of the Householder reflectors.

If side = 'L', m > l > 0,
if side = 'R', n > l > 0.

v (local).

REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.

Pointer into the local memory to an array of DIMENSION
(lld_v, LOCc(jv+m-1)) if side = 'L',
(lld_v, LOCc(jv+m-1)) if side = 'R'.
It contains the local pieces of the distributed vectors V representing the
Householder transformation as returned by p?tzrzf.

lld_v > LOCr(iv+k-1).

iv,jv (global) INTEGER. The row and column indices in the global array V
indicating the first row and the first column of the submatrix sub(V),
respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix V.

t (local)

REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Array, DIMENSION mb_v by mb_v.

The lower triangular matrix T in the representation of the block reflector.

c (local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.

ScaLAPACK Auxiliary and Utility Routines 7

7-101

Pointer into the local memory to an array
of DIMENSION (lld_c, LOCc(jc+n-1)).
On entry, the m-by-n distributed matrix sub(C).

ic,jc (global) INTEGER. The row and column indices in the global array c
indicating the first row and the first column of the submatrix sub(C),
respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix C.

work (local).

REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Array, DIMENSION (lwork).

If storev = 'C',
 if side = 'L',
 lwork >(NqC0 + MpC0) * k
 else if side = 'R',
 lwork > (NqC0 + max(NpV0 + numroc(numroc(
n+icoffc, nb_v, 0, 0, npcol),
nb_v, 0, 0, lcmq), mpc0)) * k

 end if
 else if storev = 'R',
 if side = 'L',
 lwork > (mpc0 + max(mqv0 + numroc(numroc(
m+iroffc,

 mb_v, 0, 0, nprow), mb_v, 0, 0, lcmp),

 nqc0)) * k
 else if side = 'R',
 lwork > (MpC0 + NqC0) * k
 end if
 end if,

where lcmq = lcm / npcol with lcm = iclm(nprow, npcol
),

7-102

7 Intel® Math Kernel Library Reference Manual

iroffv = mod(iv-1, mb_v), icoffv = mod(jv-1, nb_v),
ivrow = indxg2p(iv, mb_v, myrow, rsrc_v, nprow),
ivcol = indxg2p(jv, nb_v, mycol, csrc_v, npcol),

MqV0 = numroc(m+icoffv, nb_v, mycol, ivcol, npcol),
NpV0 = numroc(n+iroffv, mb_v, myrow, ivrow, nprow),

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c
),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),

MpC0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
NpC0 = numroc(n+icoffc, mb_c, myrow, icrow, nprow),
NqC0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

c (local). On exit, sub(C) is overwritten by the Q * sub(C) or Q' *sub(C)
or sub(C)*Q or sub(C)*Q'.

p?larzc
Applies (multiplies by) the conjugate transpose of an
elementary reflector as returned by p?tzrzf to a
general matrix.

Syntax
call pclarzc(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc,

descc, work)

call pzlarzc(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc,
descc, work)

Description

This routine applies a complex elementary reflector QH to a complex m-by-n distributed matrix
sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is represented in the
form

ScaLAPACK Auxiliary and Utility Routines 7

7-103

Q = i - tau * v * v',

where tau is a complex scalar and v is a complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Q is a product of k elementary reflectors as returned by p?tzrzf.

Input Parameters

side (global) CHARACTER.

if side = 'L': form QH *sub (C);
if side = 'R': form sub (C)*QH .

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(C). m > 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(C). n ≥ 0.

l (global) INTEGER.

The columns of the distributed submatrix sub(A) containing the
meaningful part of the Householder reflectors.

If side = 'L', m > l > 0,
if side = 'R', n > l > 0.

v (local).

COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Pointer into the local memory to an array of DIMENSION (lld_v,*)
containing the local pieces of the distributed vectors v representing the
Householder transformation Q,

v(iv:iv+l-1, jv) if side = 'L' and incv = 1,
v(iv, jv:jv+l-1) if side = 'L' and incv = m_v,
v(iv:iv+l-1, jv) if side = 'R' and incv = 1,
v(iv, jv:jv+l-1) if side = 'R' and incv = m_v.

The vector v in the representation of Q. v is not used if tau = 0.

7-104

7 Intel® Math Kernel Library Reference Manual

iv,jv (global) INTEGER. The row and column indices in the global array V
indicating the first row and the first column of the submatrix sub(V),
respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix V.

 incv (global). INTEGER.
The global increment for the elements of v. Only two values of incv are
supported in this version, namely 1 and m_v.

incv must not be zero.

tau (local)
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Array, DIMENSION LOCc(jv) if incv = 1, and LOCr(iv) otherwise.
This array contains the Householder scalars related to the Householder
vectors.

tau is tied to the distributed matrix V.

c (local).
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Pointer into the local memory to an array of DIMENSION (lld_c,
LOCc(jc+n-1)), containing the local pieces of sub(C).

ic,jc (global) INTEGER. The row and column indices in the global array C
indicating the first row and the first column of the submatrix sub(C),
respectively.

descc (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix C.

work (local).

If incv = 1,
 if side = 'L',
 if ivcol = iccol,
 lwork > NqC0
 else
 lwork > MpC0 + max(1, NqC0)
 end if
 else if side = 'R',
 lwork > nqc0 + max(max(1, mpc0), numroc(numroc(

ScaLAPACK Auxiliary and Utility Routines 7

7-105

 n+icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq)
)
 end if

 else if incv = m_v,
 if side = 'L',
 lwork > mpc0 + max(max(1, nqc0), numroc(
numroc(

 m+iroffc,mb_v,0,0,nprow
),mb_v,0,0,lcmp))

 else if side = 'R',
 if ivrow = icrow,
 lwork > mpc0
 else
 lwork > nqc0 + max(1, mpc0)
 end if
 end if
 end if,

where lcm is the least common multiple of nprow and npcol and
lcm = ilcm(nprow, npcol), lcmp = lcm / nprow,
lcmq = lcm / npcol,

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c
),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),

MpC0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
NqC0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;

myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

Output Parameters

c (local). On exit, sub(C) is overwritten by the QH * sub(C) if side = 'L',
or sub(C) * QH if side = 'R'.

7-106

7 Intel® Math Kernel Library Reference Manual

p?larzt
Forms the triangular factor T of a block reflector
H=I-VTVH as returned by p?tzrzf.

Syntax
call pslarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pdlarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pclarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

call pzlarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

Description

This routine forms the triangular factor T of a real/complex block reflector H of order > n, which is
defined as a product of k elementary reflectors as returned by p?tzrzf.

If direct = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

If direct = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

If storev = 'C', the vector which defines the elementary reflector H(i) is stored in the i-th column
of the array v, and

H = i - v * t * v'.

If storev = 'R', the vector which defines the elementary reflector H(i) is stored in the i-th row of
the array v, and

H = i - v' * t * v.

Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters

direct (global) CHARACTER.
Specifies the order in which the elementary reflectors are multiplied to
form the block reflector:

if direct = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
if direct = 'B': H = H(k) . . . H(2) H(1) (Backward).

ScaLAPACK Auxiliary and Utility Routines 7

7-107

storev (global) CHARACTER.
Specifies how the vectors which define the elementary reflectors are
stored:

if storev = 'C': columnwise (not supported yet);
if storev = 'R': rowwise.

n (global). INTEGER.
The order of the block reflector H. n > 0.

k (global). INTEGER.
The order of the triangular factor T (= the number of elementary
reflectors).
1 < k < mb_v (= nb_v).

 v REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Pointer into the local memory to an array of local DIMENSION
(LOCr(iv+k-1), LOCc(jv+n-1)).

The distributed matrix V contains the Householder vectors.
See Application Notes below.

iv,jv (global) INTEGER. The row and column indices in the global array V
indicating the first row and the first column of the submatrix sub(V),
respectively.

descv (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix V.

tau (local)
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Array, DIMENSION LOCr(iv+k-1) if incv = m_v, and LOCc(jv+k-1)
otherwise. This array contains the Householder scalars related to the
Householder vectors.

tau is tied to the distributed matrix V.

work (local).
REAL for pslarzt
DOUBLE PRECISION for pdlarzt

7-108

7 Intel® Math Kernel Library Reference Manual

COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Workspace array, DIMENSION (k*(k-1)/2).

Output Parameters

v REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.

t (local)

REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Array, DIMENSION (mb_v, mb_v). It contains the k-by-k triangular factor
of the block reflector associated with v. t is lower triangular.

Application Notes

The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by
the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the
corresponding array elements are modified but restored on exit. The rest of the array is not used.

direct = 'F' and storev = 'C':

v

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

. . .

. . .

1 . .

 1 .

 1

=

ScaLAPACK Auxiliary and Utility Routines 7

7-109

direct = 'F' and storev = 'R':

direct = 'B' and storev = 'C':

direct = 'B' and storev = 'R':

V

v1 v1 v1 v1 v1

v2 v2 v2 v2 v2

v3 v3 v3 v3 v3

. . . . 1

. . . 1

. . 1

        

v

1

. 1

. . 1

. . .

. . .

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

v1 v2 v3

=

V

1
. 1 . . .

. . 1 . .

v1 v1 v1 v1 v1

v2 v2 v2 v2 v2

v3 v3 v3 v3 v3

        

7-110

7 Intel® Math Kernel Library Reference Manual

p?lascl
Multiplies a general rectangular matrix by a real scalar
defined as Cto/Cfrom .

Syntax
call pslascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)

call pdlascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)

call pclascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)

call pzlascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)

Description

This routine multiplies the m-by-n real/complex distributed matrix sub(A) denoting
A(ia:ia+m-1, ja:ja+n-1) by the real/complex scalar cto/cfrom. This is done without
over/underflow as long as the final result cto * A(i,j) / cfrom does not over/underflow.
type specifies that sub(A) may be full, upper triangular, lower triangular or upper Hessenberg.

Input Parameters

type (global) CHARACTER.

type indices of the storage type of the input distributed matrix.
if type = 'G': sub(A) is a full matrix,
if type = 'L': sub(A) is a lower triangular matrix,
if type = 'U': sub(A) is an upper triangular matrix,
if type = 'H': sub(A) is an upper Hessenberg matrix.

cfrom,cto (global)

REAL for pslascl/pclascl
DOUBLE PRECISION for pdlascl/pzlascl.

The distributed matrix sub(A) is multiplied by cto/cfrom . A(i,j) is
computed without over/underflow if the final result cto * A(i,j) /
cfrom can be represented without over/underflow. cfrom must be
nonzero.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). m > 0.

ScaLAPACK Auxiliary and Utility Routines 7

7-111

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). n ≥ 0.

a (local input/local output)

REAL for pslascl
DOUBLE PRECISION for pdlascl
COMPLEX for pclascl
COMPLEX*16 for pzlascl.

Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)).

This array contains the local pieces of the distributed matrix sub(A).

ia, ja (global) INTEGER.
The column and row indices in the global array A indicating the first
row and column of the submatrix sub(A), respectively.

desca (global and local) INTEGER .
Array of DIMENSION (dlen_).The array descriptor for the distributed
matrix A.

Output Parameters

a (local). On exit, this array contains the local pieces of the distributed
matrix multiplied by cto/cfrom.

info (local) INTEGER.

if info = 0: the execution is successful.

if info < 0: If the i-th argument is an array and the j-entry had an
illegal value, then info = -(i*100+j),
 if the i-th argument is a scalar and had an illegal value,
then info = -i.

7-112

7 Intel® Math Kernel Library Reference Manual

p?laset
Initializes the off-diagonal elements of a matrix to
and the diagonal elements to .

Syntax
call pslaset(uplo, m, n, alpha, beta, a, ia, ja, desca)

call pdlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)

call pclaset(uplo, m, n, alpha, beta, a, ia, ja, desca)

call pzlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)

Description

This routine initializes an m-by-n distributed matrix sub(A) denoting A(ia:ia+m-1,ja:ja+n-1)
to beta on the diagonal and alpha on the offdiagonals.

Input Parameters

uplo (global) CHARACTER.

Specifies the part of the distributed matrix sub(A) to be set:

if uplo = 'U': upper triangular part is set; the strictly lower triangular
part of sub(A) is not changed;

if uplo = 'L': lower triangular part is set; the strictly upper triangular
part of sub(A) is not changed.

Otherwise: all of the matrix sub(A) is set.

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). (m > 0).

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). (n ≥ 0).

α
β

ScaLAPACK Auxiliary and Utility Routines 7

7-113

alpha (global).
REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.

The constant to which the offdiagonal elements are to be set.

beta (global).
REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.

The constant to which the diagonal elements are to be set.

Output Parameters

a (local).

REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.

Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)). This array contains the local pieces of the distributed
matrix sub(A) to be set. On exit, the leading m-by-n submatrix sub(A) is
set as follows:

if uplo = 'U', A(ia+i-1,ja+j-1) = alpha, 1 < i < j-1, 1 < j< n,
if uplo = 'L', A(ia+i-1,ja+j-1) = alpha, j+1 < i < m, 1 < j <
n,
otherwise, A(ia+i-1,ja+j-1) = alpha, 1 < i < m, 1 < j < n,
ia+i.ne.ja+j,
and, for all uplo, A(ia+i-1,ja+i-1) = beta, 1 < i < min(m,n).

ia, ja (global) INTEGER.
The column and row indices in the global array A indicating the first
row and column of the submatrix sub(A), respectively.

desca (global and local) INTEGER .

Array of DIMENSION (dlen_). The array descriptor for the distributed
matrix A.

7-114

7 Intel® Math Kernel Library Reference Manual

p?lasmsub
Looks for a small subdiagonal element from the bottom
of the matrix that it can safely set to zero.

Syntax
call pslasmsub(a, desca, i, l, k, smlnum, buf, lwork)

call pdlasmsub(a, desca, i, l, k, smlnum, buf, lwork)

Description

This routine looks for a small subdiagonal element from the bottom of the matrix that it can safely
set to zero. This routine does a global maximum and must be called by all processes.

Input Parameters

a (global)

REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
Array, DIMENSION (desca(lld_),*).
On entry, the Hessenberg matrix whose tridiagonal part is being
scanned. Unchanged on exit.

desca (global and local) INTEGER.
Array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

i (global) INTEGER. The global location of the bottom of the unreduced
submatrix of A. Unchanged on exit.

l (global) INTEGER. The global location of the top of the unreduced
submatrix of A. Unchanged on exit.

smlnum (global)

REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
On entry, a “small number” for the given matrix. Unchanged on exit.

ScaLAPACK Auxiliary and Utility Routines 7

7-115

lwork (global) INTEGER.
On exit, lwork is the size of the work buffer.
This must be at least 2*ceil(ceil((i-l)/hbl) /lcm(nprow,npcol)
). Here lcm is least common multiple, and nprow x npcol is the
logical grid size.

Output Parameters

k (global) INTEGER.
On exit, this yields the bottom portion of the unreduced submatrix. This
will satisfy: l < m < i-1.

buf (local).

REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
Array of size lwork.

p?lassq
Updates a sum of squares represented in scaled form.

Syntax
call pslassq(n, x, ix, jx, descx, incx, scale, sumsq)

call pdlassq(n, x, ix, jx, descx, incx, scale, sumsq)

call pclassq(n, x, ix, jx, descx, incx, scale, sumsq)

call pzlassq(n, x, ix, jx, descx, incx, scale, sumsq)

Description

This routine returns the values scl and smsq such that

 scl2 * smsq = x(1)2 + ... + x(n)2 + scale2 *sumsq,

where x(i) = sub(x) = x(ix + (jx-1)*descx(m_) + (i - 1)*incx) for pslassq/pdlassq and
x(i) = sub(x) = abs(x(ix + (jx-1)*descx(m_) + (i - 1)*incx) for pclassq/pzlassq.
For real routines pslassq/pdlassq the value of sumsq is assumed to be non-negative and scl
returns the value
 scl = max(scale, abs(x(i))).

7-116

7 Intel® Math Kernel Library Reference Manual

For complex routines pclassq/pzlassq the value of sumsq is assumed to be at least unity and
the value of ssq will then satisfy
 1.0 ≤ ssq ≤ sumsq + 2n

Value scale is assumed to be non-negative and scl returns the value

 scl = max(scale, abs(real(x(i))), abs(aimag(x(i)))).
 i

For all routines p?lassq values scale and sumsq must be supplied in scale and sumsq
respectively, and scale and sumsq are overwritten by scl and ssq respectively.

All routines p?lassq make only one pass through the vector sub(x).

Input Parameters

n (global) INTEGER. The length of the distributed vector sub(x).

x REAL for pslassq
DOUBLE PRECISION for pdlassq
COMPLEX for pclassq
COMPLEX*16 for pzlassq.
The vector for which a scaled sum of squares is computed:
x(ix + (jx-1)*m_x + (i - 1)*incx), 1 ≤ i ≤ n.

ix (global) INTEGER.
The row index in the global array X indicating the first row of sub(X).

jx (global) INTEGER.
The column index in the global array X indicating the first column of
sub(X).

descx (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix X.

incx (global) INTEGER.
The global increment for the elements of X. Only two values of incx are
supported in this version, namely 1 and m_x. The argument incx must
not equal zero.

scale (local).
REAL for pslassq/pclassq
DOUBLE PRECISION for pdlassq/pzlassq.
On entry, the value scale in the equation above.

ScaLAPACK Auxiliary and Utility Routines 7

7-117

sumsq (local) REAL for pslassq/pclassq
DOUBLE PRECISION for pdlassq/pzlassq.
On entry, the value sumsq in the equation above.

Output Parameters

scale (local). On exit, scale is overwritten with scl , the scaling factor for the
sum of squares.

sumsq (local). On exit, sumsq is overwritten with the value smsq, the basic
sum of squares from which scl has been factored out.

p?laswp
Performs a series of row interchanges on a general
rectangular matrix.

Syntax
call pslaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

call pdlaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

call pclaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

call pzlaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

Description

This routine performs a series of row or column interchanges on the distributed matrix
sub(A)=A(ia:ia+n-1, ja:ja+n-1). One interchange is initiated for each of rows or columns k1
through k2 of sub(A). This routine assumes that the pivoting information has already been
broadcast along the process row or column. Also note that this routine will only work for k1-k2
being in the same mb (or nb) block. If you want to pivot a full matrix, use p?lapiv.

Input Parameters

direc (global) CHARACTER.

Specifies in which order the permutation is applied:
= 'F' (Forward)
= 'B' (Backward).

7-118

7 Intel® Math Kernel Library Reference Manual

rowcol (global) CHARACTER.
Specifies if the rows or columns are permuted:
 = 'R' (Rows)
 = 'C' (Columns).

n (global) INTEGER.
If rowcol='R', the length of the rows of the distributed
matrix A(*, ja:ja+n-1) to be permuted;
If rowcol='C', the length of the columns of the distributed
matrix A(ia:ia+n-1, *) to be permuted;

a (local) .
REAL for pslaswp
DOUBLE PRECISION for pdlaswp
COMPLEX for pclaswp
COMPLEX*16 for pzlaswp.
Pointer into the local memory to an array of DIMENSION (lld_a, *).
On entry, this array contains the local pieces of the distributed matrix to
which the row/columns interchanges will be applied.

ix (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

jx (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

k1 (global) INTEGER. The first element of ipiv for which a row or column
interchange will be done.

k2 (global) INTEGER. The last element of ipiv for which a row or column
interchange will be done.

ipiv (local) INTEGER.
Array, DIMENSION LOCr(m_a)+mb_a for row pivoting and
LOCr(n_a)+nb_a for column pivoting. This array is tied to the matrix
A, ipiv(k)=l implies rows (or columns) k and l are to be interchanged.

ScaLAPACK Auxiliary and Utility Routines 7

7-119

Output Parameters

a (local).
REAL for pslaswp
DOUBLE PRECISION for pdlaswp
COMPLEX for pclaswp
COMPLEX*16 for pzlaswp.
On exit, the permuted distributed matrix.

p?latra
Computes the trace of a general square distributed
matrix.

Syntax
val = pslatra(n, a, ia, ja, desca)

val = pdlatra(n, a, ia, ja, desca)

val = pclatra(n, a, ia, ja, desca)

val = pzlatra(n, a, ia, ja, desca)

Description

This function computes the trace of an n-by-n distributed matrix sub(A) denoting
A(ia:ia+n-1, ja:ja+n-1). The result is left on every process of the grid.

Input Parameters

n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of
the distributed submatrix sub(A). n > 0.

a (local).
REAL for pslatra
DOUBLE PRECISION for pdlatra
COMPLEX for pclatra
COMPLEX*16 for pzlatra.
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)) containing the local pieces of the distributed matrix, the
trace of which is to be computed.

7-120

7 Intel® Math Kernel Library Reference Manual

ia,ja (global) INTEGER. The row and column indices respectively in the
global array A indicating the first row and the first column of the
submatrix sub(A), respectively.

desca (global and local) INTEGER array of DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

Output Parameters

val The value returned by the fuction.

p?latrd
Reduces the first nb rows and columns of a
symmetric/Hermitian matrix A to real tridiagonal form
by an orthogonal/unitary similarity transformation.

Syntax
call pslatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,

work)

call pdlatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,
work)

call pclatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,
work)

call pzlatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,
work)

Description

This routine reduces nb rows and columns of a real symmetric or complex Hermitian matrix
sub(A)= A(ia:ia+n-1, ja:ja+n-1) to symmetric/complex tridiagonal form by an
orthogonal/unitary similarity transformation Q' * sub(A)* Q, and returns the matrices V and W,
which are needed to apply the transformation to the unreduced part of sub(A).
If uplo = 'U', p?latrd reduces the last nb rows and columns of a matrix, of which the upper
triangle is supplied;
if uplo = 'L', p?latrd reduces the first nb rows and columns of a matrix, of which the lower
triangle is supplied.

This is an auxiliary routine called by p?sytrd/p?hetrd.

ScaLAPACK Auxiliary and Utility Routines 7

7-121

Input Parameters

uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix sub(A) is stored:
= 'U': Upper triangular
= 'L': Lower triangular.

n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of
the distributed submatrix sub(A). n > 0.

nb (global) INTEGER.
The number of rows and columns to be reduced.

a REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)).
On entry, this array contains the local pieces of the symmetric/Hermitian
distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains
the upper triangular part of the matrix, and its strictly lower triangular
part is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of sub(A)
contains the lower triangular part of the matrix, and its strictly upper
triangular part is not referenced.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

iw (global) INTEGER.
The row index in the global array W indicating the first row of sub(W).

7-122

7 Intel® Math Kernel Library Reference Manual

jw (global) INTEGER.
The column index in the global array W indicating the first column of
sub(W).

descw (global and local) INTEGER array of DIMENSION (dlen_). The array
descriptor for the distributed matrix W.

work (local) .
REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Workspace array of DIMENSION (nb_a).

Output Parameters

a (local) On exit, if uplo = 'U', the last nb columns have been reduced to
tridiagonal form, with the diagonal elements overwriting the diagonal
elements of sub(A); the elements above the diagonal with the array tau
represent the orthogonal/unitary matrix Q as a product of elementary
reflectors;
if uplo = 'L', the first nb columns have been reduced to tridiagonal
form, with the diagonal elements overwriting the diagonal elements of
sub(A); the elements below the diagonal with the array tau represent the
orthogonal/unitary matrix Q as a product of elementary reflectors.

d (local).
REAL for pslatrd/pclatrd
DOUBLE PRECISION for pdlatrd/pzlatrd.
Array, DIMENSION LOCc(ja+n-1).
The diagonal elements of the tridiagonal matrix T: d(i) = a(i,i). d is tied
to the distributed matrix A.

e (local) .
REAL for pslatrd/pclatrd
DOUBLE PRECISION for pdlatrd/pzlatrd.
Array, DIMENSION LOCc(ja+n-1) if uplo = 'U', LOCc(ja+n-2)
otherwise.
The off-diagonal elements of the tridiagonal matrix T:
e(i) = a(i, i +1) if uplo = 'U',
e(i) = a(i +1, i) if uplo = 'L'.
e is tied to the distributed matrix A.

ScaLAPACK Auxiliary and Utility Routines 7

7-123

tau (local).
REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Array, DIMENSION LOCc(ja+n-1).
This array contains the scalar factors tau of the elementary reflectors.
tau is tied to the distributed matrix A.

w (local) .
REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Pointer into the local memory to an array of DIMENSION (lld_w, nb_w).
This array contains the local pieces of the n-by-nb_w matrix W required
to update the unreduced part of sub(A).

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

 Q = H(n) H(n-1) . . . H(n-nb+1)

Each H(i) has the form

 H(i) = I - tau*v*v' ,

where tau is a real/complex scalar, and v is a real/complex vector with v(i:n) = 0 and
v(i-1) = 1; v(1:i-1) is stored on exit in A(ia:ia+i-1, ja+i), and tau in tau(ja+i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors

 Q = H(1) H(2) . . . H(nb) .

Each H(i) has the form

 H(i) = I - tau*v*v' ,

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i) = 0 and
v(i+1) = 1; v(i+2:n) is stored on exit in A(ia+i+1:ia+n-1, ja+i-1), and tau in tau(ja+i-1).

7-124

7 Intel® Math Kernel Library Reference Manual

The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to
apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian rank-2k
update of the form:
sub(A) := sub(A) - vw' - wv'.

The contents of a on exit are illustrated by the following examples with
n = 5 and nb = 2:

if uplo = 'U': if uplo = 'L':

where denotes a diagonal element of the reduced matrix, denotes an element of the original
matrix that is unchanged, and vi denotes an element of the vector defining H(i).

p?latrs
Solves a triangular system of equations with the scale
factor set to prevent overflow.

Syntax
call pslatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,

scale, cnorm, work)

call pdlatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)

call pclatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)

call pzlatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)

a a a v4 v5

 a a v4 v5

 a 1 v5

 d 1

 d

d

1 d

v1 1 a

v1 v2 a a

v1 v2 a a a

d a

ScaLAPACK Auxiliary and Utility Routines 7

7-125

Description

This routine solves a triangular system of equations Ax = σb, ATx = σb, or AHx = σb, where σ is a
scale factor set to prevent overflow. The description of the routine will be extended in the future
releases.

Input Parameters

uplo CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

trans CHARACTER*1.
Specifies the operation applied to A.
= 'N': Solve Ax = σ b (no transpose)
= 'T': Solve ATx = σ b (transpose)
= 'C': Solve AHx = σ b (conjugate transpose)

diag CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular

normin CHARACTER*1.
Specifies whether cnorm has been set or not.
= 'Y': cnorm contains the column norms on entry;
= 'N': cnorm is not set on entry. On exit, the norms will be computed and
stored in cnorm.

n INTEGER.
The order of the matrix A. n ≥ 0

a REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs
Array, DIMENSION (lda, n). Contains the triangular matrix A. If uplo
= 'U', the leading n-by-n upper triangular part of the array a contains the
upper triangular matrix, and the strictly lower triangular part of a is not
referenced. If uplo = 'L', the leading n-by-n lower triangular part of the
array a contains the lower triangular matrix, and the strictly upper
triangular part of a is not referenced. If diag = 'U', the diagonal
elements of a are also not referenced and are assumed to be 1.

7-126

7 Intel® Math Kernel Library Reference Manual

ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A,
respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

x REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs
Array, DIMENSION (n). On entry, the right hand side b of the triangular
system.

ix (global) INTEGER.The row index in the global array x indicating the
first row
of sub(x).

jx (global) INTEGER. The column index in the global array x indicating
the first column of sub(x).

descx (global and local) INTEGER.
Array, DIMENSION (dlen_). The array descriptor for the distributed
matrix X.

cnorm REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs.
Array, DIMENSION (n). If normin = 'Y', cnorm is an input argument and
cnorm (j) contains the norm of the off-diagonal part of the j-th column
of A. If trans = 'N', cnorm (j) must be greater than or equal to the
infinity-norm, and if trans = 'T' or 'C', cnorm(j) must be greater than or
equal to the 1-norm.

work (local).
REAL for pslatrs
DOUBLE PRECISION for pdlatrs
COMPLEX for pclatrs
COMPLEX*16 for pzlatrs.
Temporary workspace.

Output Parameters

x On exit, x is overwritten by the solution vector x.

scale REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs.
Array, DIMENSION (lda, n). The scaling factor s for the triangular

ScaLAPACK Auxiliary and Utility Routines 7

7-127

system as described above.
If scale = 0, the matrix A is singular or badly scaled, and the vector x is
an exact or approximate solution to Ax = 0.

cnorm If normin = 'N', cnorm is an output argument and cnorm(j) returns the
1-norm of the off-diagonal part of the j-th column of A.

p?latrz
Reduces an upper trapezoidal matrix to upper
triangular form by means of orthogonal/unitary
transformations.

Syntax
call pslatrz(m, n, l, a, ia, ja, desca, tau, work)

call pdlatrz(m, n, l, a, ia, ja, desca, tau, work)

call pclatrz(m, n, l, a, ia, ja, desca, tau, work)

call pzlatrz(m, n, l, a, ia, ja, desca, tau, work)

Description

This routine reduces the m-by-n (m ≤ n) real/complex upper trapezoidal matrix
sub(A) = [A(ia:ia+m-1, ja:ja+m-1) A(ia:ia+m-1, ja+n-l:ja+n-1)]
to upper triangular form by means of orthogonal/unitary transformations.

The upper trapezoidal matrix sub(A) is factored as

sub(A) = (R 0)*Z,

where Z is an n-by-n orthogonal/unitary matrix and R is an m-by-m upper triangular matrix.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(A). m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(A). n ≥ 0.

7-128

7 Intel® Math Kernel Library Reference Manual

l (global) INTEGER.
The number of columns of the distributed submatrix sub(A) containing
the meaningful part of the Householder reflectors. l > 0.

a (local).
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Pointer into the local memory to an array
of DIMENSION (lld_a, LOCc(ja+n-1)).
On entry, the local pieces of the m-by-n distributed matrix sub(A),
which is to be factored.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

work (local).
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.

Workspace array, DIMENSION (lwork).
lwork > nq0 + max(1, mp0), where

 iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),

numroc, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

ScaLAPACK Auxiliary and Utility Routines 7

7-129

Output Parameters

a On exit, the leading m-by-m upper triangular part of sub(A) contains the
upper triangular matrix R, and elements n-l+1 to n of the first m rows
of sub(A), with the array tau, represent the orthogonal/unitary matrix Z
as a product of m elementary reflectors.

tau (local).
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Array, DIMENSION (LOCr(ja+m-1)). This array contains the scalar
factors of the elementary reflectors. tau is tied to the distributed
matrix A.

Application Notes

The factorization is obtained by Householder's method. The k-th transformation matrix, Z(k),
which is used (or, in case of complex routines, whose conjugate transpose is used) to introduce
zeros into the (m - k + 1)-th row of sub(A), is given in the form

 ,

where T(k) = I - tau* u(k)* u(k)', ,

 tau is a scalar and z(k) is an (n-m)-element vector. tau and z(k)
 are chosen to annihilate the elements of the k-th row of sub(A).
 The scalar tau is returned in the k-th element of tau and the vector
 u(k) in the k-th row of sub(A), such that the elements of z(k) are
 in a(k, m + 1), ..., a(k, n). The elements of R are returned in
 the upper triangular part of sub(A).

 Z is given by

 Z = Z(1) Z(2) ... Z(m).

Z k() I 0

0 T k()
=

u k()
1

0

z k()

=

7-130

7 Intel® Math Kernel Library Reference Manual

p?lauu2
Computes the product UUH or LHL, where U and L are
upper or lower triangular matrices (local unblocked
algorithm).

Syntax
call pslauu2(uplo, n, a, ia, ja, desca)

call pdlauu2(uplo, n, a, ia, ja, desca)

call pclauu2(uplo, n, a, ia, ja, desca)

call pzlauu2(uplo, n, a, ia, ja, desca)

Description

This routine computes the product UU' or L'L, where the triangular factor U or L is stored in the
upper or lower triangular part of the distributed matrix
sub(A)= A(ia:ia+n-1, ja:ja+n-1).

If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor U in
sub(A).
If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor L in
sub(A).

This is the unblocked form of the algorithm, calling BLAS Level 2 Routines. No communication
is performed by this routine, the matrix to operate on should be strictly local to one process.

Input Parameters

uplo (global) CHARACTER*1.
Specifies whether the triangular factor stored in the matrix sub(A) is
upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular.

n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of
the triangular factor U or L. n ≥ 0.

ScaLAPACK Auxiliary and Utility Routines 7

7-131

a (local).
REAL for pslauu2
DOUBLE PRECISION for pdlauu2
COMPLEX for pclauu2
COMPLEX*16 for pzlauu2.
Pointer into the local memory to an array of DIMENSION
(lld_a, LOCc(ja+n-1).
On entry, the local pieces of the triangular factor U or L.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

Output Parameters

a (local) On exit, if uplo = 'U', the upper triangle of the distributed matrix
sub(A) is overwritten with the upper triangle of the product UU'; if
uplo = 'L', the lower triangle of sub(A) is overwritten with the lower
triangle of the product L'L.

p?lauum
Computes the product UUH or LHL, where U and L are
upper or lower triangular matrices.

Syntax
call pslauum(uplo, n, a, ia, ja, desca)

call pdlauum(uplo, n, a, ia, ja, desca)

call pclauum(uplo, n, a, ia, ja, desca)

call pzlauum(uplo, n, a, ia, ja, desca)

7-132

7 Intel® Math Kernel Library Reference Manual

Description

This routine computes the product UU' or L'L, where the triangular factor U or L is stored in the
upper or lower triangular part of the matrix sub(A)= A(ia:ia+n-1, ja:ja+n-1).

If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor U in
sub(A).
If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor L in
sub(A).

This is the blocked form of the algorithm, calling Level 3 PBLAS.

Input Parameters

uplo (global) CHARACTER*1.
Specifies whether the triangular factor stored in the matrix sub(A) is
upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular.

n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of
the triangular factor U or L. n ≥ 0.

a (local) .
REAL for pslauum
DOUBLE PRECISION for pdlauum
COMPLEX for pclauum
COMPLEX*16 for pzlauum.
Pointer into the local memory to an array of DIMENSION
(lld_a, LOCc(ja+n-1). On entry, the local pieces of the triangular
factor U or L.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

ScaLAPACK Auxiliary and Utility Routines 7

7-133

Output Parameters

a (local) On exit, if uplo = 'U', the upper triangle of the distributed matrix
sub(A) is overwritten with the upper triangle of the product UU' ; if
uplo = 'L', the lower triangle of sub(A) is overwritten with the lower
triangle of the product L'L.

p?lawil
Forms the Wilkinson transform.

Syntax
call pslawil(ii, jj, m, a, desca, h44, h33, h43h34, v)

call pdlawil(ii, jj, m, a, desca, h44, h33, h43h34, v)

Description

This routine gets the transform given by h44, h33, and h43h34 into v starting at row m.

Input Parameters

ii (global) INTEGER.
Row owner of h(m+2, m+2).

jj (global) INTEGER.
Column owner of h(m+2, m+2).

m (global) INTEGER.
On entry, the location from where the transform starts (row m).
Unchanged on exit.

a (global).
REAL for pslawil
DOUBLE PRECISION for pdlawil
Array, DIMENSION (desca(lld_),*). On entry, the Hessenberg matrix.
Unchanged on exit.

desca (global and local) INTEGER.
Array of DIMENSION (dlen_). The array descriptor for the distributed
matrix A. Unchanged on exit.

7-134

7 Intel® Math Kernel Library Reference Manual

h44, h33, h43h34 (global)
REAL for pslawil
DOUBLE PRECISION for pdlawil
These three values are for the double shift QR iteration. Unchanged on
exit.

Output Parameters

v (global).
REAL for pslawil
DOUBLE PRECISION for pdlawil
Array of size 3 that contains the transform on output.

p?org2l/p?ung2l
Generates all or part of the orthogonal/unitary matrix
Q from a QL factorization determined by p?geqlf
(unblocked algorithm).

Syntax
call psorg2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorg2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine p?org2l/p?ung2l generates an m-by-n real/complex distributed matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal columns, which is defined as the last n columns of
a product of k elementary reflectors of order m:

Q = H(k) . . . H(2) H(1) as returned by p?geqlf.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix Q. m ≥ 0.

ScaLAPACK Auxiliary and Utility Routines 7

7-135

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix Q. m ≥ n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
n ≥ k ≥ 0.

a REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Pointer into the local memory to an array,
DIMENSION (lld_a, LOCc(ja+n-1).
On entry, the j-th column must contain the vector that defines the
elementary reflector H(j), ja+n-k ≤ j ≤ ja+n-k, as returned by
p?geqlf in the k columns of its distributed matrix argument
A(ia:*,ja+n-k:ja+n-1).

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

tau (local).
REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Array, DIMENSION LOCc(ja+n-1).
This array contains the scalar factor tau(j) of the elementary reflector
H(j), as returned by p?geqlf.

work (local).
REAL for psorg2l
DOUBLE PRECISION for pdorg2l

7-136

7 Intel® Math Kernel Library Reference Manual

COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > mpa0 + max(1,
nqa0), where iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1,
nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a On exit, this array contains the local pieces of the m-by-n distributed
matrix Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

ScaLAPACK Auxiliary and Utility Routines 7

7-137

p?org2r/p?ung2r
Generates all or part of the orthogonal/unitary matrix
Q from a QR factorization determined by p?geqrf
(unblocked algorithm).

Syntax
call psorg2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorg2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcung2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzung2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine p?org2r/p?ung2r generates an m-by-n real/complex matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal columns, which is defined as the first n columns of
a product of k elementary reflectors of order m

 Q = H(1) H(2) . . . H(k)

as returned by p?geqrf.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix Q. m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix Q. m ≥ n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
n ≥ k ≥ 0.

a REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX for pcung2r
COMPLEX*16 for pzung2r.

7-138

7 Intel® Math Kernel Library Reference Manual

Pointer into the local memory to an array,
DIMENSION (lld_a, LOCc(ja+n-1).
On entry, the j-th column must contain the vector that defines the
elementary reflector H(j), ja ≤ j ≤ ja+k-1, as returned by
p?geqrf in the k columns of its distributed matrix argument
A(ia:*,ja:ja+k-1).

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

tau (local).
REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX for pcung2r
COMPLEX*16 for pzung2r.
Array, DIMENSION LOCc(ja+k-1).
This array contains the scalar factor tau(j) of the elementary reflector
H(j), as returned by p?geqrf. This array is tied to the distributed
matrix A.

work (local).
REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX for pcung2r
COMPLEX*16 for pzung2r.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > mpa0 + max(1,
nqa0), where iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1,
nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).

ScaLAPACK Auxiliary and Utility Routines 7

7-139

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a On exit, this array contains the local pieces of the m-by-n distributed
matrix Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

p?orgl2/p?ungl2
Generates all or part of the orthogonal/unitary matrix
Q from an LQ factorization determined by p?gelqf
(unblocked algorithm).

Syntax
call psorgl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcungl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

7-140

7 Intel® Math Kernel Library Reference Manual

Description

The routine p?orgl2/p?ungl2 generates a m-by-n real/complex matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the first m rows of a
product of k elementary reflectors of order n

 Q = H(k) . . . H(2) H(1) (for real flavors),
 Q = H(k)' . . . H(2)' H(1)' (for complex flavors)

as returned by p?gelqf.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix Q. m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix Q. n ≥ m ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
m ≥ k ≥ 0.

a REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Pointer into the local memory to an array,
DIMENSION (lld_a, LOCc(ja+n-1).
On entry, the i-th row must contain the vector that defines the
elementary reflector H(i), ia ≤ i ≤ ia+k-1, as returned by
p?gelqf in the k rows of its distributed matrix argument
A(ia:ia+k-1,ja:*).

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

ScaLAPACK Auxiliary and Utility Routines 7

7-141

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

tau (local).
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Array, DIMENSION LOCr(ja+k-1).
This array contains the scalar factors tau(i) of the elementary reflectors
H(i), as returned by p?gelqf. This array is tied to the distributed
matrix A.

work (local).
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > nqa0 + max(1, mpa0
), where iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a On exit, this array contains the local pieces of the m-by-n distributed
matrix Q.

work On exit, work(1) returns the minimal and optimal lwork.

7-142

7 Intel® Math Kernel Library Reference Manual

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

p?orgr2/p?ungr2
Generates all or part of the orthogonal/unitary matrix
Q from an RQ factorization determined by p?gerqf
(unblocked algorithm).

Syntax
call psorgr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pdorgr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pcungr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

call pzungr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

Description

The routine p?orgr2/p?ungr2 generates an m-by-n real/complex matrix Q denoting
A(ia:ia+m-1,ja:ja+n-1) with orthonormal rows, which is defined as the last m rows of a
product of k elementary reflectors of order n

Q = H(1) H(2) . . . H(k) (for real flavors)
Q = H(1)' H(2)' . . . H(k)' (for complex flavors)

as returned by p?gerqf.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix Q. m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix Q. n ≥ m ≥ 0.

ScaLAPACK Auxiliary and Utility Routines 7

7-143

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
m ≥ k ≥ 0.

a REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX for pcungr2
COMPLEX*16 for pzungr2.
Pointer into the local memory to an array,
DIMENSION (lld_a, LOCc(ja+n-1).
On entry, the i-th row must contain the vector that defines the
elementary reflector H(i), ia+m-k ≤ i ≤ ia+m-1, as returned by
p?gerqf in the k rows of its distributed matrix argument
A(ia+m-k:ia+m-1,ja:*).

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

tau (local).
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Array, DIMENSION LOCr(ja+m-1).
This array contains the scalar factors tau(i) of the elementary reflectors
H(i), as returned by p?gerqf. This array is tied to the distributed
matrix A.

work (local).
REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX for pcungr2
COMPLEX*16 for pzungr2.
Workspace array, DIMENSION (lwork).

7-144

7 Intel® Math Kernel Library Reference Manual

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least lwork > nqa0 + max(1, mpa0
), where iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprowv, and npcol can be determined by calling
the subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a On exit, this array contains the local pieces of the m-by-n distributed
matrix Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

ScaLAPACK Auxiliary and Utility Routines 7

7-145

p?orm2l/p?unm2l
Multiplies a general matrix by the orthogonal/unitary
matrix from a QL factorization determined by p?geqlf
(unblocked algorithm).

Syntax
call psorm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,

work, lwork, info)

call pdorm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine p?orm2l/p?unm2l overwrites the general real/complex m-by-n distributed matrix
sub (C)=C(ic:ic+m-1,jc:jc+n-1) with

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

 Q = H(k) . . . H(2) H(1)

as returned by p?geqlf . Q is of order m if side = 'L' and of order n if side = 'R'.

side = 'L' side = 'R'

trans = 'N' Q*sub (C) sub (C)*Q

trans = 'T' (for real flavors) QT * sub(C) sub(C)*QT

trans = 'C' (for complex flavors) QH * sub(C) sub(C)*QH

7-146

7 Intel® Math Kernel Library Reference Manual

Input Parameters

side (global) CHARACTER.
= 'L': apply Q or QT (for real flavors)/QH(for complex flavors) from the
left,
= 'R': apply Q or QT (for real flavors)/QH(for complex flavors) from the
right.

trans (global) CHARACTER.
= 'N': apply Q (No transpose)
= 'T': apply QT (Transpose, for real flavors)
= 'C': apply QH (Conjugate transpose, for complex flavors)

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(C). m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(C). n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a (local).
REAL for psorm2l
DOUBLE PRECISION for pdorm2l
COMPLEX for pcunm2l
COMPLEX*16 for pzunm2l.
Pointer into the local memory to an array, DIMENSION (lld_a,
LOCc(ja+k-1).
On entry, the j-th row must contain the vector that defines the
elementary reflector H(j), ja ≤ j ≤ ja+k-1, as returned by
p?geqlf in the k columns of its distributed matrix argument
A(ia:*,ja:ja+k-1). The argument A(ia:*,ja:ja+k-1) is modified
by the routine but restored on exit.
If side = 'L', lld_a ≥ max(1, LOCr(ia+m-1)),
If side = 'R', lld_a ≥ max(1, LOCr(ia+n-1)).

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ScaLAPACK Auxiliary and Utility Routines 7

7-147

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

tau (local).
REAL for psorm2l
DOUBLE PRECISION for pdorm2l
COMPLEX for pcunm2l
COMPLEX*16 for pzunm2l.
Array, DIMENSION LOCc(ja+n-1). This array contains the scalar factor
tau(j) of the elementary reflector H(j), as returned by p?geqlf. This
array is tied to the distributed matrix A.

c (local).
REAL for psorm2l
DOUBLE PRECISION for pdorm2l
COMPLEX for pcunm2l
COMPLEX*16 for pzunm2l.
Pointer into the local memory to an array, DIMENSION (lld_c,
LOCc(jc+n-1)).On entry, the local pieces of the distributed matrix sub
(C).

ic (global) INTEGER.
The row index in the global array C indicating the first row of sub(C).

jc (global) INTEGER.
The column index in the global array C indicating the first column of
sub(C).

descc (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix C.

work (local).
REAL for psorm2l
DOUBLE PRECISION for pdorm2l
COMPLEX for pcunm2l
COMPLEX*16 for pzunm2l.
Workspace array, DIMENSION (lwork).
On exit, work(1) returns the minimal and optimal lwork.

7-148

7 Intel® Math Kernel Library Reference Manual

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least
if side = 'L', lwork ≥ mpc0 + max(1, nqc0),
if side = 'R', lwork ≥ nqc0 + max(max(1, mpc0), numroc
(numroc(n+icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0,
lcmq)),

where lcmq = lcm / npcol with lcm = iclm(nprow, npcol),

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
Mqc0 = numroc(m+icoffc, nb_c, mycol, icrow, nprow),
Npc0 = numroc(n+iroffc, mb_c, myrow, iccol, npcol),

ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c On exit, sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or sub(C)*Q'
or sub(C)*Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

ScaLAPACK Auxiliary and Utility Routines 7

7-149

p?orm2r/p?unm2r
Multiplies a general matrix by the orthogonal/unitary
matrix from a QR factorization determined by p?geqrf
(unblocked algorithm).

Syntax
call psorm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,

work, lwork, info)

call pdorm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine p?orm2r/p?unm2r overwrites the general real/complex m-by-n distributed matrix
sub (C)=C(ic:ic+m-1,jc:jc+n-1) with

NOTE. The distributed submatrices A(ia:*, ja:*) and
C(ic:ic+m-1,jc:jc+n-1) must verify some alignment properties,
namely the following expressions should be true:
If side = 'L', (mb_a.eq.mb_c .AND. iroffa.eq.iroffc .AND.
iarow.eq.icrow)
If side = 'R', (mb_a.eq.nb_c .AND. iroffa.eq.iroffc).

side = 'L' side = 'R'

trans = 'N' Q*sub (C) sub (C)*Q

trans = 'T' (for real flavors) QT * sub(C) sub(C)*QT

trans = 'C' (for complex flavors) QH * sub(C) sub(C)*QH

7-150

7 Intel® Math Kernel Library Reference Manual

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary
reflectors

 Q = H(k) . . . H(2) H(1)

as returned by p?geqrf . Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

side (global) CHARACTER.
= 'L': apply Q or QT (for real flavors)/QH(for complex flavors) from the
left,
= 'R': apply Q or QT (for real flavors)/QH(for complex flavors) from the
right.

trans (global) CHARACTER.
= 'N': apply Q (No transpose)
= 'T': apply QT (Transpose, for real flavors)
= 'C': apply QH (Conjugate transpose, for complex flavors)

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(C). m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(C). n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a (local).
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Pointer into the local memory to an array, DIMENSION (lld_a,
LOCc(ja+k-1).
On entry, the j-th column must contain the vector that defines the
elementary reflector H(j), ja ≤ j ≤ ja+k-1, as returned by
p?geqrf in the k columns of its distributed matrix argument

ScaLAPACK Auxiliary and Utility Routines 7

7-151

A(ia:*,ja:ja+k-1). The argument A(ia:*,ja:ja+k-1) is modified
by the routine but restored on exit.
If side = 'L', lld_a ≥ max(1, LOCr(ia+m-1)),
If side = 'R', lld_a ≥ max(1, LOCr(ia+n-1)).

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

tau (local).
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Array, DIMENSION LOCc(ja+k-1). This array contains the scalar
factors tau(j) of the elementary reflector H(j), as returned by
p?geqrf. This array is tied to the distributed matrix A.

c (local).
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Pointer into the local memory to an array, DIMENSION (lld_c,
LOCc(jc+n-1)).
On entry, the local pieces of the distributed matrix sub (C).

ic (global) INTEGER.
The row index in the global array C indicating the first row of sub(C).

jc (global) INTEGER.
The column index in the global array C indicating the first column of
sub(C).

descc (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix C.

7-152

7 Intel® Math Kernel Library Reference Manual

work (local).
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least
if side = 'L', lwork ≥ mpc0 + max(1, nqc0),
if side = 'R', lwork ≥ nqc0 + max(max(1, mpc0), numroc
(numroc(n+icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0,
lcmq)),

where lcmq = lcm / npcol with lcm = iclm(nprow, npcol),

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
Mqc0 = numroc(m+icoffc, nb_c, mycol, icrow, nprow),
Npc0 = numroc(n+iroffc, mb_c, myrow, iccol, npcol),

ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c On exit, sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or sub(C)*Q'
or sub(C)*Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

ScaLAPACK Auxiliary and Utility Routines 7

7-153

p?orml2/p?unml2
Multiplies a general matrix by the orthogonal/unitary
matrix from an LQ factorization determined by
p?gelqf (unblocked algorithm).

Syntax
call psorml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,

work, lwork, info)

call pdorml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine p?orml2/p?unml2 overwrites the general real/complex m-by-n distributed matrix
sub (C)=C(ic:ic+m-1,jc:jc+n-1) with

NOTE. The distributed submatrices A(ia:*, ja:*) and
C(ic:ic+m-1,jc:jc+n-1) must verify some alignment properties,
namely the following expressions should be true:
If side = 'L', (mb_a.eq.mb_c .AND. iroffa.eq.iroffc .AND.
iarow.eq.icrow)
If side = 'R', (mb_a.eq.nb_c .AND. iroffa.eq.iroffc).

side = 'L' side = 'R'

trans = 'N' Q*sub (C) sub (C)*Q

trans = 'T' (for real flavors) QT * sub(C) sub(C)*QT

trans = 'C' (for complex flavors) QH * sub(C) sub(C)*QH

7-154

7 Intel® Math Kernel Library Reference Manual

where Q is a real orthogonal or complex unitary distributed matrix defined as the product of k
elementary reflectors

 Q = H(k) . . . H(2) H(1) (for real flavors)
 Q = H(k)' . . . H(2)' H(1)' (for complex flavors)

as returned by p?gelqf . Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

side (global) CHARACTER.
= 'L': apply Q or QT (for real flavors)/QH(for complex flavors) from the
left,
= 'R': apply Q or QT (for real flavors)/QH(for complex flavors) from the
right.

trans (global) CHARACTER.
= 'N': apply Q (No transpose)
= 'T': apply QT (Transpose, for real flavors)
= 'C': apply QH (Conjugate transpose, for complex flavors)

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(C). m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(C). n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a (local).
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Pointer into the local memory to an array, DIMENSION
(lld_a, LOCc(ja+m-1) if side=’L’,
(lld_a, LOCc(ja+n-1) if side=’R’,
where lld_a ≥ max (1, LOCr(ia+k-1)).

ScaLAPACK Auxiliary and Utility Routines 7

7-155

On entry, the i-th row must contain the vector that defines the
elementary reflector H(i), ia ≤ i ≤ ia+k-1, as returned by
p?gelqf in the k rows of its distributed matrix argument
A(ia:ia+k-1, ja:*). The argument A(ia:ia+k-1, ja:*) is modified
by the routine but restored on exit.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

tau (local) .
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Array, DIMENSION LOCc(ia+k-1). This array contains the scalar
factors tau(i) of the elementary reflector H(i), as returned by
p?gelqf. This array is tied to the distributed matrix A.

c (local).
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Pointer into the local memory to an array, DIMENSION (lld_c,
LOCc(jc+n-1)). On entry, the local pieces of the distributed matrix sub
(C).

ic (global) INTEGER.
The row index in the global array C indicating the first row of sub(C).

jc (global) INTEGER.
The column index in the global array C indicating the first column of
sub(C).

descc (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix C.

7-156

7 Intel® Math Kernel Library Reference Manual

work (local).
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least
if side = 'L', lwork ≥ mqc0 + max(max(1, npc0), numroc
(numroc(m+icoffc, mb_a, 0, 0, nprow), mb_a, 0, 0,
lcmp)),
if side = 'R', lwork ≥ npc0 + max(1, mqc0),

where lcmp = lcm / nprow with lcm = iclm(nprow, npcol),

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
Mpc0 = numroc(m+icoffc, mb_c, mycol, icrow, nprow),
Nqc0 = numroc(n+iroffc, nb_c, myrow, iccol, npcol),

ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c On exit, sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or sub(C)*Q'
or sub(C)*Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

ScaLAPACK Auxiliary and Utility Routines 7

7-157

p?ormr2/p?unmr2
Multiplies a general matrix by the orthogonal/unitary
matrix from an RQ factorization determined by
p?gerqf (unblocked algorithm).

Syntax
call psormr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,

work, lwork, info)

call pdormr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pcunmr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

call pzunmr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
work, lwork, info)

Description

The routine p?ormr2/p?unmr2 overwrites the general real/complex m-by-n distributed matrix
sub (C)=C(ic:ic+m-1,jc:jc+n-1) with

NOTE. The distributed submatrices A(ia:*, ja:*) and
C(ic:ic+m-1,jc:jc+n-1) must verify some alignment properties,
namely the following expressions should be true:
If side = 'L', (nb_a.eq.mb_c . AND. icoffa.eq.iroffc)
If side = 'R', (nb_a.eq.nb_c .AND. icoffa.eq.icoffc .AND.
iacol.eq.iccol).

side = 'L' side = 'R'

trans = 'N' Q*sub (C) sub (C)*Q

trans = 'T' (for real flavors) QT * sub(C) sub(C)*QT

trans = 'C' (for complex flavors) QH * sub(C) sub(C)*QH

7-158

7 Intel® Math Kernel Library Reference Manual

where Q is a real orthogonal or complex unitary distributed matrix defined as the product of k
elementary reflectors

 Q = H(1) H(2) . . . H(k) (for real flavors)
 Q = H(1)' H(2)' . . . H(k)' (for complex flavors)

as returned by p?gerqf . Q is of order m if side = 'L' and of order n if side = 'R'.

Input Parameters

side (global) CHARACTER.
= 'L': apply Q or QT (for real flavors)/QH(for complex flavors) from the
left,
= 'R': apply Q or QT (for real flavors)/QH(for complex flavors) from the
right.

trans (global) CHARACTER.
= 'N': apply Q (No transpose)
= 'T': apply QT (Transpose, for real flavors)
= 'C': apply QH (Conjugate transpose, for complex flavors)

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the
distributed submatrix sub(C). m ≥ 0.

n (global) INTEGER.
The number of columns to be operated on, that is, the number of
columns of the distributed submatrix sub(C). n ≥ 0.

k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix
Q.
If side = 'L', m ≥ k ≥ 0;
if side = 'R', n ≥ k ≥ 0.

a (local).
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Pointer into the local memory to an array, DIMENSION
(lld_a, LOCc(ja+m-1) if side=’L’,
(lld_a, LOCc(ja+n-1) if side=’R’,
where lld_a ≥ max (1, LOCr(ia+k-1)).

ScaLAPACK Auxiliary and Utility Routines 7

7-159

On entry, the i-th row must contain the vector that defines the
elementary reflector H(i), ia ≤ i ≤ ia+k-1, as returned by
p?gerqf in the k rows of its distributed matrix argument
A(ia:ia+k-1, ja:*). The argument A(ia:ia+k-1, ja:*) is modified
by the routine but restored on exit.

ia (global) INTEGER.
The row index in the global array A indicating the first row of sub(A).

ja (global) INTEGER.
The column index in the global array A indicating the first column of
sub(A).

desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

tau (local) .
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Array, DIMENSION LOCc(ia+k-1). This array contains the scalar
factors tau(i) of the elementary reflector H(i), as returned by
p?gerqf. This array is tied to the distributed matrix A.

c (local).
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Pointer into the local memory to an array, DIMENSION (lld_c,
LOCc(jc+n-1)). On entry, the local pieces of the distributed matrix sub
(C).

ic (global) INTEGER.
The row index in the global array C indicating the first row of sub(C).

jc (global) INTEGER.
The column index in the global array C indicating the first column of
sub(C).

descc (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix C.

7-160

7 Intel® Math Kernel Library Reference Manual

work (local).
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Workspace array, DIMENSION (lwork).

lwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least
if side = 'L', lwork ≥ mpc0 + max(max(1, nqc0), numroc
(numroc(m+iroffc, mb_a, 0, 0, nprow), mb_a, 0, 0,
lcmp)),
if side = 'R', lwork ≥ nqc0 + max(1, mpc0),

where lcmp = lcm / nprow with lcm = iclm(nprow, npcol),

iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
Mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
Nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),

ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c On exit, sub(C) is overwritten by Q*sub(C) or Q'*sub(C) or sub(C)*Q'
or sub(C)*Q.

work On exit, work(1) returns the minimal and optimal lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

ScaLAPACK Auxiliary and Utility Routines 7

7-161

p?pbtrsv
Solves a single triangular linear system via frontsolve
or backsolve where the triangular matrix is a factor of a
banded matrix computed by p?pbtrf.

Syntax
call pspbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,

laf, work, lwork, info)

call pdpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pcpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pzpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

Description

The routine p?pbtrsv solves a banded triangular system of linear equations

 A(1:n, ja:ja+n-1)*X = B(jb:jb+n-1, 1:nrhs)
 or
 A(1:n, ja:ja+n-1)T *X = B(jb:jb+n-1, 1:nrhs) for real flavors,
 A(1:n, ja:ja+n-1)H *X = B(jb:jb+n-1, 1:nrhs) for complex flavors,

NOTE. The distributed submatrices A(ia:*, ja:*) and
C(ic:ic+m-1,jc:jc+n-1) must verify some alignment properties,
namely the following expressions should be true:
If side = 'L', (nb_a.eq.mb_c . AND. icoffa.eq.iroffc)
If side = 'R', (nb_a.eq.nb_c .AND. icoffa.eq.icoffc .AND.
iacol.eq.iccol).

7-162

7 Intel® Math Kernel Library Reference Manual

where A(1:n, ja:ja+n-1) is a banded triangular matrix factor produced by the Cholesky
factorization code p?pbtrf and is stored in A(1:n, ja:ja+n-1) and af. The matrix stored in
A(1:n, ja:ja+n-1) is either upper or lower triangular according to uplo, and the choice of
solving A(1:n, ja:ja+n-1) or A(1:n, ja:ja+n-1)T for real flavors and A(1:n, ja:ja+n-1)H for
complex flavors respectively is dictated by the user by the parameter trans.

Routine p?pbtrf must be called first.

Input Parameters

uplo (global) CHARACTER. Must be 'U' or 'L'.

If uplo = 'U', upper triangle of A(1:n, ja:ja+n-1) is stored;
If uplo = 'L', lower triangle of A(1:n, ja:ja+n-1) is stored.

trans (global) CHARACTER. Must be 'N' or 'T' or 'C'.

If trans = 'N', solve with A(1:n, ja:ja+n-1);

If trans = 'T' or 'C' for real flavors, solve with A(1:n,
ja:ja+n-1)T.

If trans = 'C' for complex flavors, solve with
conjugate_transpose (A(1:n, ja:ja+n-1)).

n (global) INTEGER. The number of rows and columns to be operated on,
that is, the order of the distributed submatrix A(1:n, ja:ja+n-1). n ≥
0.

bw (global) INTEGER. The number of subdiagonals in 'L' or 'U', 0 ≤ bw
≤ n-1.

nrhs (global) INTEGER. The number of right hand sides; the number of
columns of the distributed submatrix B(jb:jb+n-1, 1:nrhs); nrhs ≥
0.

a (local).

REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
Pointer into the local memory to an array with the first DIMENSION
lld_a ≥ (bw+1), stored in desca.

On entry, this array contains the local pieces of the n-by-n symmetric
banded distributed Cholesky factor L or LTA(1:n, ja:ja+n-1).

ScaLAPACK Auxiliary and Utility Routines 7

7-163

This local portion is stored in the packed banded format used in
LAPACK. Please see the Application Notes below and the ScaLAPACK
manual for more detail on the format of distributed matrices.

ja (global) INTEGER. The index in the global array A that points to the
start of the matrix to be operated on (which may be either all of A or a
submatrix of A).

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.
If 1D type (dtype_a = 501), then dlen ≥ 7;
If 2D type (dtype_a = 1), then dlen ≥ 9.
Contains information on mapping of A to memory. Please, see
ScaLAPACK manual for full description and options.

b (local).
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
Pointer into the local memory to an array of local lead DIMENSION
lld_b ≥ nb.
On entry, this array contains the local pieces of the right hand sides
B(jb:jb+n-1, 1:nrhs).

ib (global) INTEGER. The row index in the global array B that points to the
first row of the matrix to be operated on (which may be either all of B or
a submatrix of B).

descb (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix B.

If 1D type (dtype_b = 502), then dlen ≥ 7;
If 2D type (dtype_b = 1), then dlen ≥ 9.
Contains information on mapping of B to memory. Please, see
ScaLAPACK manual for full description and options.

laf (local) INTEGER. The size of user-input auxiliary Fillin space af.
Must be laf ≥ (nb+2*bw)*bw .
If laf is not large enough, an error code will be returned and the
minimum acceptable size will be returned in af(1).

work (local).
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv

7-164

7 Intel® Math Kernel Library Reference Manual

COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
The array work is a temporary workspace array of DIMENSION lwork.
This space may be overwritten in between calls to routines.

lwork (local or global) INTEGER. The size of the user-input workspace work,
must be at least lwork ≥ bw*nrhs. If lwork is too small, the minimal
acceptable size will be returned in work(1) and an error code is
returned.

Output Parameters

af (local) .
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
The array af is of DIMENSION laf. It contains auxiliary Fillin space.
Fillin is created during the factorization routine p?pbtrf and this is
stored in af. If a linear system is to be solved using p?pbtrs after the
factorization routine, af must not be altered after the factorization.

b On exit, this array contains the local piece of the solutions distributed
matrix X.

work(1) On exit, work(1) contains the minimum value of lwork.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

Application Notes

If the factorization routine and the solve routine are to be called separately to solve various sets of
right-hand sides using the same coefficient matrix, the auxiliary space af must not be altered
between calls to the factorization routine and the solve routine.

The best algorithm for solving banded and tridiagonal linear systems depends on a variety of
parameters, especially the bandwidth. Currently, only algorithms designed for the case
N/P >> bw are implemented. These algorithms go by many names, including Divide and Conquer,
Partitioning, domain decomposition-type, etc.

ScaLAPACK Auxiliary and Utility Routines 7

7-165

Algorithm description: Divide and Conquer. *

The Divide and Conquer algorithm assumes the matrix is narrowly banded compared with the
number of equations. In this situation, it is best to distribute the input matrix A one-dimensionally,
with columns atomic and rows divided amongst the processes. The basic algorithm divides the
banded matrix up into P pieces with one stored on each processor, and then proceeds in 2 phases
for the factorization or 3 for the solution of a linear system.

1. Local Phase: The individual pieces are factored independently and in parallel. These
factors are applied to the matrix creating fill-in, which is stored in a non-inspectable way
in auxiliary space af. Mathematically, this is equivalent to reordering the matrix A as
 P A PT and then factoring the principal leading submatrix of size equal to the sum of the
sizes of the matrices factored on each processor. The factors of these submatrices
overwrite the corresponding parts of A in memory.

2. Reduced System Phase: A small (bw* (P-1)) system is formed representing interaction
of the larger blocks and is stored (as are its factors) in the space af. A parallel Block
Cyclic Reduction algorithm is used. For a linear system, a parallel front solve followed
by an analogous backsolve, both using the structure of the factored matrix, are
performed.

3. Backsubsitution Phase: For a linear system, a local backsubstitution is performed on
each processor in parallel.

p?pttrsv
Solves a single triangular linear system via frontsolve
or backsolve where the triangular matrix is a factor of a
tridiagonal matrix computed by p?pttrf .

Syntax
call pspttrsv(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,

work, lwork, info)

call pdpttrsv(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
work, lwork, info)

call pcpttrsv(uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

call pzpttrsv(uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af,
laf, work, lwork, info)

7-166

7 Intel® Math Kernel Library Reference Manual

Description

This routine solves a tridiagonal triangular system of linear equations

 A(1:n, ja:ja+n-1)*X = B(jb:jb+n-1, 1:nrhs)
 or
 A(1:n, ja:ja+n-1)T *X = B(jb:jb+n-1, 1:nrhs) for real flavors,
 A(1:n, ja:ja+n-1)H *X = B(jb:jb+n-1, 1:nrhs) for complex flavors,

where A(1:n, ja:ja+n-1) is a tridiagonal triangular matrix factor produced by the Cholesky
factorization code p?pttrf and is stored in A(1:n, ja:ja+n-1) and af. The matrix stored in
A(1:n, ja:ja+n-1) is either upper or lower triangular according to uplo, and the choice of
solving A(1:n, ja:ja+n-1) or A(1:n, ja:ja+n-1)T for real flavors and A(1:n, ja:ja+n-1)H for
complex flavors respectively is dictated by the user by the parameter trans.

Routine p?pttrf must be called first.

Input Parameters

uplo (global) CHARACTER. Must be 'U' or 'L'.

If uplo = 'U', upper triangle of A(1:n, ja:ja+n-1) is stored;
If uplo = 'L', lower triangle of A(1:n, ja:ja+n-1) is stored.

trans (global) CHARACTER. Must be 'N' or 'C'.

If trans = 'N', solve with A(1:n, ja:ja+n-1);
if trans = 'C' (for complex flavors), solve with
conjugate_transpose (A(1:n, ja:ja+n-1)).

n (global) INTEGER. The number of rows and columns to be operated on,
that is, the order of the distributed submatrix A(1:n, ja:ja+n-1). n ≥
0.

nrhs (global) INTEGER. The number of right hand sides; the number of
columns of the distributed submatrix B(jb:jb+n-1, 1:nrhs); nrhs ≥
0.

d (local)

REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.

Pointer to the local part of the global vector storing the main diagonal of
the matrix; must be of size ≥ desca(nb_).

ScaLAPACK Auxiliary and Utility Routines 7

7-167

e (local)

REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.

Pointer to the local part of the global vector storing the upper diagonal of
the matrix; must be of size ≥ desca(nb_). Globally, du(n) is not
referenced, and du must be aligned with d.

ja (global) INTEGER. The index in the global array A that points to the
start of the matrix to be operated on (which may be either all of A or a
submatrix of A).

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.
If 1D type (dtype_a = 501 or 502), then dlen ≥ 7;
If 2D type (dtype_a = 1), then dlen ≥ 9.
Contains information on mapping of A to memory. Please, see
ScaLAPACK manual for full description and options.

b (local).
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer into the local memory to an array of local lead DIMENSION
lld_b ≥ nb.
On entry, this array contains the local pieces of the right hand sides
B(jb:jb+n-1, 1:nrhs).

ib (global) INTEGER. The row index in the global array B that points to the
first row of the matrix to be operated on (which may be either all of B or
a submatrix of B).

descb (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix B.

If 1D type (dtype_b = 502), then dlen ≥ 7;
If 2D type (dtype_b = 1), then dlen ≥ 9.
Contains information on mapping of B to memory. Please, see
ScaLAPACK manual for full description and options.

7-168

7 Intel® Math Kernel Library Reference Manual

laf (local) INTEGER. The size of user-input auxiliary Fillin space af.
Must be laf ≥ (nb+2*bw)*bw .
If laf is not large enough, an error code will be returned and the
minimum acceptable size will be returned in af(1).

work (local).
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
The array work is a temporary workspace array of DIMENSION lwork.
This space may be overwritten in between calls to routines.

lwork (local or global) INTEGER. The size of the user-input workspace work,
must be at least lwork ≥ (10+2*min(100, nrhs))*npcol+4*nrhs. If
lwork is too small, the minimal acceptable size will be returned in
work(1) and an error code is returned.

Output Parameters

d, e (local).
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
On exit, these arrays contain information containing the factors of the
matrix.

af (local).
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
The array af is of DIMENSION laf. It contains auxiliary Fillin space.
Fillin is created during the factorization routine p?pbtrf and this is
stored in af. If a linear system is to be solved using p?pttrs after the
factorization routine, af must not be altered after the factorization.

b On exit, this array contains the local piece of the solutions distributed
matrix X.

work(1) On exit, work(1) contains the minimum value of lwork.

ScaLAPACK Auxiliary and Utility Routines 7

7-169

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

p?potf2
Computes the Cholesky factorization of a
symmetric/Hermitian positive definite matrix (local
unblocked algorithm).

Syntax
call pspotf2(uplo, n, a, ia, ja, desca, info)

call pdpotf2(uplo, n, a, ia, ja, desca, info)

call pcpotf2(uplo, n, a, ia, ja, desca, info)

call pzpotf2(uplo, n, a, ia, ja, desca, info)

Description

This routine computes the Cholesky factorization of a real symmetric or complex Hermitian
positive definite distributed matrix sub (A)=A(ia:ia+n-1,ja:ja+n-1).

The factorization has the form
sub (A) = U' U , if uplo = 'U', or
sub (A) = L L', if uplo = 'L',
where U is an upper triangular matrix and L is lower triangular.

Input Parameters

 uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored.
= 'U': Upper triangle of sub (A) is stored;
= 'L': Lower triangle of sub (A) is stored.

n (global) INTEGER. The number of rows and columns to be operated on,
that is, the order of the distributed submatrix sub (A). n ≥ 0.

7-170

7 Intel® Math Kernel Library Reference Manual

a (local).
REAL for pspotf2
DOUBLE PRECISION or pdpotf2
COMPLEX for pcpotf2
COMPLEX*16 for pzpotf2.
Pointer into the local memory to an array of DIMENSION (lld_a,
LOCc(ja+n-1)) containing the local pieces of the n-by-n symmetric
distributed matrix sub(A) to be factored.
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains
the upper triangular matrix and the strictly lower triangular part of this
matrix is not referenced. If uplo = 'L', the leading n-by-n lower
triangular part of sub(A) contains the lower triangular matrix and the
strictly upper triangular part of sub(A) is not referenced.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

Output Parameters

a (local). On exit,
if uplo = 'U', the upper triangular part of the distributed matrix contains
the Cholesky factor U;
if uplo = 'L', the lower triangular part of the distributed matrix contains
the Cholesky factor L.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.
> 0: if info = k, the leading minor of order k is not positive definite,
and the factorization could not be completed.

ScaLAPACK Auxiliary and Utility Routines 7

7-171

p?rscl
Multiplies a vector by the reciprocal of a real scalar.

Syntax
call psrscl(n, sa, sx, ix, jx, descx, incx)

call pdrscl(n, sa, sx, ix, jx, descx, incx)

call pcsrscl(n, sa, sx, ix, jx, descx, incx)

call pzdrscl(n, sa, sx, ix, jx, descx, incx)

Description

This routine multiplies an n-element real/complex vector sub(x) by the real scalar 1/a. This is
done without overflow or underflow as long as the final result sub(x)/a does not overflow or
underflow.

sub(x) denotes x(ix:ix+n-1, jx:jx), if incx = 1,
 and x(ix:ix, jx:jx+n-1), if incx = m_x.

Input Parameters

 n (global) INTEGER.
The number of components of the distributed vector sub(x). n ≥ 0.

sa REAL for psrscl/pcsrscl
DOUBLE PRECISION for pdrscl/pzdrscl.
The scalar a that is used to divide each component of the vector x. This
argument must be ≥ 0, or the subroutine will divide by zero.

sx REAL for psrscl
DOUBLE PRECISION for pdrscl
COMPLEX for pcsrscl
COMPLEX*16 for pzdrscl.
Array containing the local pieces of a distributed matrix of DIMENSION
of at least ((jx-1)*m_x + ix + (n-1)*abs(incx)).
This array contains the entries of the distributed vector sub(x).

ix (global) INTEGER.The row index of the submatrix of the distributed
matrix X to operate on.

7-172

7 Intel® Math Kernel Library Reference Manual

jx (global) INTEGER. The column index of the submatrix of the distributed
matrix X to operate on.

descx (global and local). INTEGER.
Array of DIMENSION 8. The array descriptor for the distributed matrix
X.

incx (global) INTEGER.
The increment for the elements of X. This version supports only two
values of incx, namely 1 and m_x.

Output Parameters

sx On exit, the result x/a.

p?sygs2/p?hegs2
Reduces a symmetric/Hermitian definite generalized
eigenproblem to standard form, using the factorization
results obtained from p?potrf (local unblocked
algorithm).

Syntax
call pssygs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

call pdsygs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

call pchegs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

call pzhegs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)

Description

The routine p?sygs2/p?hegs2 reduces a real symmetric-definite or a complex
Hermitian-definite generalized eigenproblem to standard form.

sub(A) denotes A(ia:ia+n-1, ja:ja+n-1) and sub(B) denotes B(ib:ib+n-1, jb:jb+n-1).

If ibtype = 1, the problem is

 sub(A)x = λsub(B)x,

and sub(A) is overwritten by

ScaLAPACK Auxiliary and Utility Routines 7

7-173

inv(UT)*sub(A)*inv(U) or inv(L)*sub(A)*inv(LT) for real flavors and
inv(UH)*sub(A)*inv(U) or inv(L)*sub(A)*inv(LH) for complex flavors.

If ibtype = 2 or 3, the problem is

 sub(A)sub(B)x = λx or sub(B)sub(A)x =λx,

and sub(A) is overwritten

by U*sub(A)*UT or L**T*sub(A)*L for real flavors and
by U*sub(A)*UH or L**H*sub(A)*L for complex flavors.

sub(B) must have been previously factorized as UTU or L L T (for real flavors) or as UHU or LL H
(for complex flavors) by p?potrf.

Input Parameters

ibtype (global) INTEGER.
= 1: compute inv(UT)*sub(A)*inv(U) or inv(L)*sub(A)*inv(LT) for real
subroutines and inv(UH)*sub(A)*inv(U) or inv(L)*sub(A)*inv(LH) for
complex subroutines;
= 2 or 3: compute U*sub(A)*UT or LT*sub(A)*L for real subroutines
and by U*sub(A)*UH or LH*sub(A)*L for complex subroutines.

uplo (global) CHARACTER
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix sub(A) is stored, and how sub(B) is
factorized.
= 'U': Upper triangular of sub(A) is stored and sub(B) is factorized as
UTU (for real subroutines) or as UHU (for complex subroutines).
= 'L': Lower triangular of sub(A) is stored and sub(B) is factorized as L
LT (for real subroutines) or as L LH (for complex subroutines)

n (global) INTEGER.
The order of the matrices sub(A) and sub(B). n ≥ 0.

a (local).
REAL for pssygs2
DOUBLE PRECISION for pdsygs2
COMPLEX for pchegs2
COMPLEX*16 for pzhegs2.
Pointer into the local memory to
an array, DIMENSION (lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the n-by-n

7-174

7 Intel® Math Kernel Library Reference Manual

symmetric/Hermitian distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains
the upper triangular part of the matrix, and the strictly lower triangular
part of sub(A) is not referenced. If uplo = 'L', the leading n-by-n lower
triangular part of sub(A) contains the lower triangular part of the matrix,
and the strictly upper triangular part of sub(A) is not referenced.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

b (local).
REAL for pssygs2
DOUBLE PRECISION for pdsygs2
COMPLEX for pchegs2
COMPLEX*16 for pzhegs2.
Pointer into the local memory to
an array, DIMENSION (lld_b, LOCc(jb+n-1)).
On entry, this array contains the local pieces of the triangular factor from
the Cholesky factorization of sub(B) as returned by p?potrf.

ib,jb (global) INTEGER. The row and column indices in the global array B
indicating the first row and the first column of the sub(B), respectively.

descb (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix B.

Output Parameters

a (local). On exit, if info = 0, the transformed matrix is stored in the same
format as sub(A).

info INTEGER.
= 0: successful exit.
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

ScaLAPACK Auxiliary and Utility Routines 7

7-175

p?sytd2/p?hetd2
Reduces a symmetric/Hermitian matrix to real
symmetric tridiagonal form by an orthogonal/unitary
similarity transformation (local unblocked algorithm).

Syntax
call pssytd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pdsytd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pchetd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

call pzhetd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

Description

The routine p?sytd2/p?hetd2 reduces a real symmetric/complex Hermitian matrix sub(A) to
symmetric/Hermitian tridiagonal form T by an orthogonal/unitary similarity transformation:
Q' sub(A)Q = T, where sub(A) = A(ia:ia+n-1, ja:ja+n-1).

Input Parameters

uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix sub(A) is stored:
= 'U': Upper triangular
= 'L': Lower triangular

n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of
the distributed submatrix sub(A). n ≥ 0.

a (local).
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
Pointer into the local memory to
an array, DIMENSION (lld_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the n-by-n
symmetric/Hermitian distributed matrix sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of sub(A) contains

7-176

7 Intel® Math Kernel Library Reference Manual

the upper triangular part of the matrix, and the strictly lower triangular
part of sub(A) is not referenced. If uplo = 'L', the leading n-by-n lower
triangular part of sub(A) contains the lower triangular part of the matrix,
and the strictly upper triangular part of sub(A) is not referenced.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

work (local).
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
The array work is a temporary workspace array of DIMENSION lwork.

Output Parameters

a On exit, if uplo = 'U', the diagonal and first superdiagonal of sub(A) are
overwritten by the corresponding elements of the tridiagonal matrix T,
and the elements above the first superdiagonal, with the array tau,
represent the orthogonal/unitary matrix Q as a product of elementary
reflectors;
if uplo = 'L', the diagonal and first subdiagonal of a are overwritten by
the corresponding elements of the tridiagonal matrix T, and the elements
below the first subdiagonal, with the array tau, represent the
orthogonal/unitary matrix Q as a product of elementary reflectors. See
the Application Notes below.

d (local).
REAL for pssytd2/pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array, DIMENSION (LOCc(ja+n-1)).
The diagonal elements of the tridiagonal matrix T:
d(i) = a(i,i); d is tied to the distributed matrix A.

e (local).
REAL for pssytd2/pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array, DIMENSION (LOCc(ja+n-1)), if uplo = 'U', LOCc(ja+n-2)
otherwise.
The off-diagonal elements of the tridiagonal matrix T:

ScaLAPACK Auxiliary and Utility Routines 7

7-177

e(i) = a(i,i+1) if uplo = 'U',
e(i) = a(i+1,i) if uplo = 'L'.
e is tied to the distributed matrix A.

tau (local).
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
Array, DIMENSION (LOCc(ja+n-1)).
The scalar factors of the elementary reflectors.
tau is tied to the distributed matrix A.

work(1) On exit, work(1) returns the minimal and optimal value of lwork.

lwork (local or global) INTEGER.
The dimension of the workspace array work.
lwork is local input and must be at least lwork ≥ 3n .

If lwork = -1, then lwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

info (local) INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors

 Q = H(n-1) . . . H(2) H(1)

Each H(i) has the form

 H(i) = I - tau*v*v',

where tau is a real/complex scalar, and v is a real/complex vector with v(i+1:n) = 0 and
v(i) = 1; v(1:i-1) is stored on exit in A(ia:ia+i-2, ja+i), and tau in TAU(ja+i-1).

If uplo = 'L', the matrix Q is represented as a product of elementary reflectors

7-178

7 Intel® Math Kernel Library Reference Manual

 Q = H(1) H(2) . . . H(n-1).

Each H(i) has the form

 H(i) = I - tau*v*v' ,

where tau is a real/complex scalar, and v is a real/complex vector with v(1:i) = 0 and
v(i+1) = 1; v(i+2:n) is stored on exit in A(ia+i+1:ia+n-1, ja+i-1), and tau in TAU(ja+i-1).

The contents of sub (A) on exit are illustrated by the following examples with
n = 5:

if uplo = 'U': if uplo = 'L':

where and denotes diagonal and off-diagonal elements of T, and denotes an element of
the vector defining H(i).

NOTE. The distributed submatrix sub(A) must verify some alignment
properties, namely the following expression should be true:
(mb_a.eq.nb_a . AND. iroffa.eq.icoffa) with
iroffa = mod(ia - 1, mb_a) and icoffa = mod(ja - 1, nb_a).

d e v2 v3 v4

 d e v3 v4

 d e v4

 d e

 d

d

e d

v1 e d

v1 v2 e d

v1 v2 v3 e d

d e vi

ScaLAPACK Auxiliary and Utility Routines 7

7-179

p?trti2
Computes the inverse of a triangular matrix (local
unblocked algorithm).

Syntax
call pstrti2(uplo, diag, n, a, ia, ja, desca, info)

call pdtrti2(uplo, diag, n, a, ia, ja, desca, info)

call pctrti2(uplo, diag, n, a, ia, ja, desca, info)

call pztrti2(uplo, diag, n, a, ia, ja, desca, info)

Description

This routine computes the inverse of a real/complex upper or lower triangular block matrix sub (A)
= A(ia:ia+n-1, ja:ja+n-1).

This matrix should be contained in one and only one process memory space (local operation).

Input Parameters

uplo (global) CHARACTER*1.
Specifies whether the matrix sub (A) is upper or lower triangular.
= 'U': sub (A) is upper triangular
= 'L': sub (A) is lower triangular.

diag (global) CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N': sub (A) is non-unit triangular
= 'U': sub (A) is unit triangular.

n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of
the distributed submatrix sub(A). n ≥ 0.

a (local).
REAL for pstrti2
DOUBLE PRECISION for pdtrti2
COMPLEX for pctrti2
COMPLEX*16 for pztrti2.
Pointer into the local memory to
an array, DIMENSION (lld_a, LOCc(ja+n-1)).

7-180

7 Intel® Math Kernel Library Reference Manual

On entry, this array contains the local pieces of the triangular matrix
sub(A).
If uplo = 'U', the leading n-by-n upper triangular part of the matrix
sub(A) contains the upper triangular part of the matrix, and the strictly
lower triangular part of sub(A) is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of the matrix
sub(A) contains the lower triangular part of the matrix, and the strictly
upper triangular part of sub(A) is not referenced.
If diag = 'U', the diagonal elements of sub(A) are not referenced either
and are assumed to be 1.

ia,ja (global) INTEGER. The row and column indices in the global array A
indicating the first row and the first column of the sub(A), respectively.

desca (global and local) INTEGER array, DIMENSION (dlen_). The array
descriptor for the distributed matrix A.

Output Parameters

a On exit, the (triangular) inverse of the original matrix, in the same
storage format.

info INTEGER.
= 0: successful exit
< 0: if the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100),
 if the i-th argument is a scalar and had an illegal value,
 then info = -i.

?lamsh
Sends multiple shifts through a small (single node)
matrix to maximize the number of bulges that can be
sent through.

Syntax
call slamsh(s, lds, nbulge, jblk, h, ldh, n, ulp)

call dlamsh(s, lds, nbulge, jblk, h, ldh, n, ulp)

ScaLAPACK Auxiliary and Utility Routines 7

7-181

Description

This routine sends multiple shifts through a small (single node) matrix to see how small
consecutive subdiagonal elements are modified by subsequent shifts in an effort to maximize the
number of bulges that can be sent through. The subroutine should only be called when there are
multiple shifts/bulges (nbulge > 1) and the first shift is starting in the middle of an unreduced
Hessenberg matrix because of two or more small consecutive subdiagonal elements.

 Input Parameters

s (local) INTEGER.
REAL for slamsh
DOUBLE PRECISION for dlamsh

Array, DIMENSION (lds,*).
On entry, the matrix of shifts. Only the 2x2 diagonal of s is referenced.
It is assumed that s has jblk double shifts (size 2).

lds (local) INTEGER.
On entry, the leading dimension of S; unchanged on exit.
1 < nbulge ≤ jblk ≤ lds/2.

nbulge (local) INTEGER.
On entry, the number of bulges to send through h (> 1).
nbulge should be less than the maximum determined (jblk).
1 < nbulge ≤ jblk ≤ lds/2.

jblk (local) INTEGER.
On entry, the leading dimension of S; unchanged on exit.

h (local) INTEGER.
REAL for slamsh
DOUBLE PRECISION for dlamsh
Array, DIMENSION (lds, n).
On entry, the local matrix to apply the shifts on.
h should be aligned so that the starting row is 2.

ldh (local) INTEGER.
On entry, the leading dimension of H; unchanged on exit.

n (local) INTEGER.
On entry, the size of H. If all the bulges are expected to go through, n
should be at least 4nbulge+2. Otherwise, nbulge may be reduced by
this routine.

7-182

7 Intel® Math Kernel Library Reference Manual

ulp (local).
REAL for slamsh
DOUBLE PRECISION for dlamsh
On entry, machine precision. Unchanged on exit.

Output Parameters

s On exit, the data is rearranged in the best order for applying.

nbulge On exit, the maximum number of bulges that can be sent through.

h On exit, the data is destroyed.

?laref
Applies Householder reflectors to matrices on either
their rows or columns.

Syntax
call slaref(type, a, lda, wantz, z, ldz, block, irow1, icol1, istart, istop,

itmp1, itm2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)

call dlaref(type, a, lda, wantz, z, ldz, block, irow1, icol1, istart, istop,
itmp1, itm2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)

Description

This routine applies one or several Householder reflectors of size 3 to one or two matrices (if
column is specified) on either their rows or columns.

Input Parameters

type (global) CHRACTER*1.
If type = 'R', apply reflectors to the rows of the matrix (apply from
left).
Otherwise, apply reflectors to the columns of the matrix. Unchanged on
exit.

ScaLAPACK Auxiliary and Utility Routines 7

7-183

a (global).
REAL for slaref
DOUBLE PRECISION for dlaref
Array, DIMENSION (lda, *). On entry, the matrix to receive the
reflections.

lda (local) INTEGER.
On entry, the leading dimension of A; unchanged on exit.

wantz (global) LOGICAL.
If wantz =.TRUE., apply any column reflections to Z as well.
If wantz =.FALSE., do no additional work on Z.

z (global).
REAL for slaref
DOUBLE PRECISION for dlaref
Array, DIMENSION (ldz, *). On enrty, the second matrix to receive
column reflections.

ldz (local) INTEGER.
On entry, the leading dimension of Z; unchanged on exit.

block (global) LOGICAL.
= .TRUE. : apply several reflectors at once and read their data from the
vecs array;
= .FALSE.: apply the single reflector given by v2, v3, t1, t2, and t3.

 ipow1 (local) INTEGER.
On entry, the local row element of the matrix A.

 icol1 (local) INTEGER.
On entry, the local column element of the matrix A.

istart (global) INTEGER.
Specifies the "number" of the first reflector.
istart is used as an index into vecs if block is set. istart is ignored
if block is .FALSE..

istop (global) INTEGER.
Specifies the "number" of the last reflector.
istop is used as an index into vecs if block is set. istop is ignored if
block is .FALSE..

 itmp1 (local) INTEGER.
Starting range into A. For rows, this is the local first column. For
columns, this is the local first row.

7-184

7 Intel® Math Kernel Library Reference Manual

 itmp2 (local) INTEGER.
Ending range into A. For rows, this is the local last column. For columns,
this is the local last row.

liloz , lihiz (local). INTEGER.
Serve the same purpose as itmp1, itmp2 but for Z when wantz is set.

vecs (global).
REAL for slaref
DOUBLE PRECISION for dlaref.
Array of size 3*n (matrix size). This array holds the size 3 reflectors one
after another and is only accessed when block is .TRUE.

v2,v3,t1,t2,t3 (global) INTEGER.
REAL for slaref
DOUBLE PRECISION for dlaref.
These parameters hold information on a single size 3 Householder
reflector and are read when block is .FALSE., and overwritten when
block is .TRUE..

Output Parameters

a On exit, the updated matrix.

z Changed only if wantz is set. If wantz is .FALSE., z is not referenced.

ipow1 Undefined.

icol1 Undefined.

v2,v3,t1,t2,t3 These parameters are read when block is .FALSE., and overwritten
when block is .TRUE..

?lasorte
Sorts eigenpairs by real and complex data types.

Syntax
call slasorte(s, lds, j, out, info)

call dlasorte(s, lds, j, out, info)

ScaLAPACK Auxiliary and Utility Routines 7

7-185

Description

This routine sorts eigenpairs so that real eigenpairs are together and complex eigenpairs are
together. This helps to employ 2x2 shifts easily since every 2nd subdiagonal is guaranteed to be
zero. This routine does no parallel work and makes no calls.

 Input Parameters

s (local) INTEGER.
REAL for slasorte
DOUBLE PRECISION for dlasorte

Array, DIMENSION (lds).
On entry, a matrix already in Schur form.

lds (local) INTEGER.
On entry, the leading dimension of the array s; unchanged on exit.

j (local) INTEGER.
On entry, the order of the matrix S; unchanged on exit.

out (local) INTEGER.
REAL for slasorte
DOUBLE PRECISION for dlasorte

Array, DIMENSION (jx2).
The work buffer required by the routine.

info (local) INTEGER.
Set, if the input matrix had an odd number of real eigenvalues and things
could not be paired or if the input matrix S was not originally in Schur
form. 0 indicates successful completion.

Output Parameters

s On exit, the diagonal blocks of S have been rewritten to pair the
eigenvalues. The resulting matrix is no longer similar to the input.

out Work buffer.

7-186

7 Intel® Math Kernel Library Reference Manual

?lasrt2
Sorts numbers in increasing or decreasing order.

Syntax
call slasrt2(id, n, d, key, info)

call dlasrt2(id, n, d, key, info)

Description

This routine is modified LAPACK routine ?lasrt, which sorts the numbers in d in increasing
order (if id = 'I') or in decreasing order (if id = 'D'). It uses Quick Sort, reverting to Insertion
Sort on arrays of size ≤ 20. Dimension of stack limits n to about 232.

Input Parameters

id CHARACTER*1.
 = 'I': sort d in increasing order;
 = 'D': sort d in decreasing order.

n INTEGER. The length of the array d.

d REAL for slasrt2
DOUBLE PRECISION for dlasrt2.
Array, DIMENSION (n).
On entry, the array to be sorted.

key INTEGER.
Array, DIMENSION (n).
On entry, key contains a key to each of the entries in d().
Typically, key(i) = i for all i .

Output Parameters

d On exit, d has been sorted into increasing order
(d(1) ≤ ... ≤ d(n)) or into decreasing order
(d(1) ≥ ... ≥ d(n)), depending on id.

info INTEGER.
 = 0: successful exit
 < 0: if info = -i, the i-th argument had an illegal value.

ScaLAPACK Auxiliary and Utility Routines 7

7-187

key On exit, key is permuted in exactly the same manner as d() was
permuted from input to output. Therefore, if key(i) = i for all i upon
input, then
d_out(i) = d_in(key(i)).

?stein2
Computes the eigenvectors corresponding to specified
eigenvalues of a real symmetric tridiagonal matrix,
using inverse iteration.

Syntax
call sstein2(n, d, e, m, w, iblock, isplit, orfac, z, ldz,
 work, iwork, ifail, info)

call dstein2(n, d, e, m, w, iblock, isplit, orfac, z, ldz,
 work, iwork, ifail, info)

Description

This routine is a modified LAPACK routine ?stein. It computes the eigenvectors of a real
symmetric tridiagonal matrix T corresponding to specified eigenvalues, using inverse iteration.

The maximum number of iterations allowed for each eigenvector is specified by an internal
parameter maxits (currently set to 5).

Input Parameters

n INTEGER. The order of the matrix T (n ≥ 0).

m INTEGER. The number of eigenvectors to be found (0 ≤ m ≤ n).

d, e, w REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*), DIMENSION (n).
The n diagonal elements of the tridiagonal matrix T.

e(*), DIMENSION (n).
The (n-1) subdiagonal elements of the tridiagonal matrix T, in elements
1 to n-1. e(n) need not be set.

7-188

7 Intel® Math Kernel Library Reference Manual

w(*), DIMENSION (n).
The first m elements of w contain the eigenvalues for which eigenvectors
are to be computed. The eigenvalues should be grouped by split-off
block and ordered from smallest to largest within the block. (The output
array w from ?stebz with ORDER = 'B' is expected here).

The dimension of w must be at least max(1, n).

iblock INTEGER.
Array, DIMENSION (n).
The submatrix indices associated with the corresponding eigenvalues in
w ; iblock(i) = 1, if eigenvalue w(i) belongs to the first submatrix
from the top,
iblock(i) = 2, if eigenvalue w(i) belongs to the second submatrix, etc.
(The output array iblock from ?stebz is expected here).

isplit INTEGER.
Array, DIMENSION (n).
The splitting points, at which T breaks up into submatrices. The first
submatrix consists of rows/columns 1 to isplit(1), the second
submatrix consists of rows/columns isplit(1)+1 through isplit(2),
etc. (The output array isplit from ?stebz is expected here).

orfac REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
orfac specifies which eigenvectors should be orthogonalized.
Eigenvectors that correspond to eigenvalues which are within orfac*||
T || of each other are to be orthogonalized.

ldz INTEGER. The leading dimension of the output array z; ldz ≥ max(1,
n).

work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Workspace array, DIMENSION (5n).

iwork INTEGER.
Workspace array, DIMENSION (n).

Output Parameters

z REAL for sstein2
DOUBLE PRECISION for dstein2
Array, DIMENSION (ldz, m).

ScaLAPACK Auxiliary and Utility Routines 7

7-189

The computed eigenvectors. The eigenvector associated with the
eigenvalue w(i) is stored in the i-th column of z. Any vector that fails to
converge is set to its current iterate after maxits iterations.

ifail INTEGER. Array, DIMENSION (m).
On normal exit, all elements of ifail are zero. If one or more
eigenvectors fail to converge after maxits iterations, then their indices
are stored in the array ifail.

info INTEGER.
info = 0, the exit is successful.
info < 0: if info = -i, the i-th had an illegal value.
info > 0: if info = i, then i eigenvectors failed to converge in maxits
iterations. Their indices are stored in the array ifail.

?dbtf2
Computes an LU factorization of a general band matrix
with no pivoting (local unblocked algorithm).

Syntax
call sdbtf2(m, n, kl, ku, ab, ldab, info)

call ddbtf2(m, n, kl, ku, ab, ldab, info)

call cdbtf2(m, n, kl, ku, ab, ldab, info)

call zdbtf2(m, n, kl, ku, ab, ldab, info)

Description

This routine computes an LU factorization of a general real/complex m-by-n band matrix A
without using partial pivoting with row interchanges.

This is the unblocked version of the algorithm, calling BLAS Routines and Functions.

Input Parameters

m INTEGER. The number of rows of the matrix A (m ≥ 0).

n INTEGER. The number of columns in A (n ≥ 0).

kl INTEGER. The number of sub-diagonals within the band of A (kl ≥ 0).

7-190

7 Intel® Math Kernel Library Reference Manual

ku INTEGER. The number of super-diagonals within the band of A (ku ≥ 0).

ab REAL for sdbtf2
DOUBLE PRECISION for ddbtf2
COMPLEX for cdbtf2
COMPLEX*16 for zdbtf2.
Array, DIMENSION (ldab,n).
The matrix A in band storage, in rows kl+1 to 2kl+ku+1; rows 1 to kl
of the array need not be set. The j-th column of A is stored in the j-th
column of the array ab as follows: ab(kl+ku+1+i-j,j) = A(i,j) for
max(1,j-ku) < i < min(m,j+kl).

ldab INTEGER. The leading dimension of the array ab.
(ldab ≥ 2kl + ku +1).

Output Parameters

ab On exit, details of the factorization: U is stored as an upper triangular
band matrix with kl+ku superdiagonals in rows 1 to kl+ku+1, and the
multipliers used during the factorization are stored in rows kl+ku+2 to
2*kl+ku+1. See the Application Notes below for further details.

info INTEGER.
= 0: successful exit
< 0: if info = - i, the i-th argument had an illegal value,
> 0: if info = + i, u(i,i) is 0. The factorization has been completed, but
the factor U is exactly singular. Division by 0 will occur if you use the
factor U for solving a system of linear equations.

Application Notes

The band storage scheme is illustrated by the following example, when m = n = 6, kl = 2,
 ku = 1:

 on entry on exit

* a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 *
a31 a42 a53 a64 * *

* u12 u23 u34 u45 u56

u11 u22 u33 u44 u55 u66

m21 m32 m43 m54 m65 *
m31 m42 m53 m64 * *

ScaLAPACK Auxiliary and Utility Routines 7

7-191

The routine does not use array elements marked *; elements marked + need not be set on entry, but
the routine requires them to store elements of U, because of fill-in resulting from the row
interchanges.

?dbtrf
Computes an LU factorization
of a general band matrix with no pivoting (local
blocked algorithm).

Syntax
call sdbtrf(m, n, kl, ku, ab, ldab, info)

call ddbtrf(m, n, kl, ku, ab, ldab, info)

call cdbtrf(m, n, kl, ku, ab, ldab, info)

call zdbtrf(m, n, kl, ku, ab, ldab, info)

Description

This routine computes an LU factorization of a real m-by-n band matrix A without using partial
pivoting or row interchanges.

This is the blocked version of the algorithm, calling BLAS Routines and Functions.

Input Parameters

m INTEGER. The number of rows of the matrix A. m ≥ 0.

n INTEGER. The number of columns in A. n ≥ 0.

kl INTEGER. The number of sub-diagonals within the band of A. kl ≥ 0.

ku INTEGER. The number of super-diagonals within the band of A. ku ≥ 0.

ab REAL for sdbtrf
DOUBLE PRECISION for ddbtrf
COMPLEX for cdbtrf
COMPLEX*16 for zdbtrf.
Array, DIMENSION (ldab,n).
The matrix A in band storage, in rows kl+1 to 2kl+ku+1; rows 1 to kl

7-192

7 Intel® Math Kernel Library Reference Manual

of the array need not be set. The j-th column of A is stored in the j-th
column of the array ab as follows: ab(kl+ku+1+i-j,j) = A(i,j) for
max(1,j-ku) < i < min(m,j+kl).

ldab INTEGER. The leading dimension of the array ab.
(ldab ≥ 2kl + ku +1).

Output Parameters

ab On exit, details of the factorization: U is stored as an upper triangular
band matrix with kl+ku superdiagonals in rows 1 to kl+ku+1, and the
multipliers used during the factorization are stored in rows kl+ku+2 to
2*kl+ku+1. See the Application Notes below for further details.

info INTEGER.
= 0: successful exit
< 0: if info = - i, the i-th argument had an illegal value,
> 0: if info = + i, u(i,i) is 0. The factorization has been completed, but
the factor U is exactly singular. Division by 0 will occur if you use the
factor U for solving a system of linear equations.

Application Notes

The band storage scheme is illustrated by the following example, when m = n = 6, kl = 2,
ku = 1:
 on entry on exit

The routine does not use array elements marked *.

* a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 *

a31 a42 a53 a64 * *

* u12 u23 u34 u45 u56

u11 u22 u33 u44 u55 u66

m21 m32 m43 m54 m65 *

m31 m42 m53 m64 * *

ScaLAPACK Auxiliary and Utility Routines 7

7-193

?dttrf
Computes an LU factorization of a general tridiagonal
matrix with no pivoting (local blocked algorithm).

Syntax
call sdttrf(n, dl, d, du, info)

call ddttrf(n, dl, d, du, info)

call cdttrf(n, dl, d, du, info)

call zdttrf(n, dl, d, du, info)

Description

This routine computes an LU factorization of a real or complex tridiagonal matrix A using
elimination without partial pivoting.

The factorization has the form A = LU, where L is a product of unit lower bidiagonal matrices and
U is upper triangular with nonzeros only in the main diagonal and first superdiagonal.

Input Parameters

n INTEGER. The order of the matrix A. n ≥ 0.

dl, d, du REAL for sdttrf
DOUBLE PRECISION for ddttrf
COMPLEX for cdttrf
COMPLEX*16 for zdttrf.
Arrays containing elements of A.
The array dl of DIMENSION (n - 1) contains the sub-diagonal elements
of A.
The array d of DIMENSION n contains the diagonal elements of A.
The array du of DIMENSION (n - 1) contains the super-diagonal
elements of A.

Output Parameters

dl Overwritten by the (n-1) multipliers that define the matrix L from the LU
factorization of A.

d Overwritten by the n diagonal elements of the upper triangular matrix U
from the LU factorization of A.

7-194

7 Intel® Math Kernel Library Reference Manual

du Overwritten by the (n-1) elements of the first super-diagonal of U.

info INTEGER.
= 0: successful exit
< 0: if info = - i, the i-th argument had an illegal value,
> 0: if info = i, u(i,i) is exactly 0. The factorization has been
completed, but the factor U is exactly singular. Division by 0 will occur
if you use the factor U for solving a system of linear equations.

?dttrsv
Solves a general tridiagonal system of linear equations
using the LU factorization computed by ?dttrf.

Syntax
call sdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

call ddttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

call cdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

call zdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

Description

This routine solves one of the following systems of linear equations:

LX = B , LTX = B, or LHX = B,

UX = B , UTX = B, or U HX = B

with factors of the tridiagonal matrix A from the LU factorization computed by ?dttrf.

Input Parameters

uplo CHARACTER*1.
Specifies whether to solve with L or U.

trans CHARACTER. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', then AX = B is solved for X (no transpose).
If trans = 'T', then ATX = B is solved for X (transpose).
If trans = 'C', then AHX = B is solved for X (conjugate transpose).

ScaLAPACK Auxiliary and Utility Routines 7

7-195

n INTEGER. The order of the matrix A. n ≥ 0.

nrhs INTEGER. The number of right-hand sides, that is, the number of
columns in the matrix B (nrhs ≥ 0).

dl,d,du,b REAL for sdttrsv
DOUBLE PRECISION for ddttrsv
COMPLEX for cdttrsv
COMPLEX*16 for zdttrsv.
Arrays of DIMENSIONs: dl(n - 1), d(n), du(n - 1), b(ldb,nrhs).
The array dl contains the (n - 1) multipliers that define the matrix L
from the LU factorization of A.
The array d contains n diagonal elements of the upper triangular matrix
U from the LU factorization of A.
The array du contains the (n - 1) elements of the first
super-diagonal of U.
On entry, the array b contains the right-hand side matrix B.

ldb INTEGER. The leading dimension of the array b; ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER. If info=0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

?pttrsv
Solves a symmetric (Hermitian) positive-definite
tridiagonal system of linear equations, using the LDLH
factorization computed by ?pttrf.

Syntax
call spttrsv(trans, n, nrhs, d, e, b, ldb, info)

call dpttrsv(trans, n, nrhs, d, e, b, ldb, info)

call cpttrsv(uplo, trans, n, nrhs, d, e, b, ldb, info)

call zpttrsv(uplo, trans, n, nrhs, d, e, b, ldb, info)

7-196

7 Intel® Math Kernel Library Reference Manual

Description

This routine solves one of the triangular systems:

 LTX = B, or LX = B for real flavors,
 or
 LX = B, or LHX = B,
 UX = B, or UHX = B for complex flavors,

where L (or U for complex flavors) is the Cholesky factor of a Hermitian positive-definite
tridiagonal matrix A such that

A = LDLH (computed by spttrf/dpttrf)

 or

A = UHDU or A = LDLH (computed by cpttrf/zpttrf).

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the
tridiagonal matrix A is stored and the form of the factorization:

If uplo = 'U', e is the superdiagonal of U, and A = U'DU;
If uplo = 'L', e is the subdiagonal of L, and A = LDL'.

The two forms are equivalent, if A is real.

trans CHARACTER.
Specifies the form of the system of equations:

for real flavors:
if trans = 'N': LX = B (no transpose)
if trans = 'T': LTX = B (transpose)

for complex flavors:
if trans = 'N': LX = B (no transpose)
if trans = 'N': LX = B (no transpose)
if trans = 'C': UHX = B (conjugate transpose)
if trans = 'C': LHX = B (conjugate transpose)

n INTEGER. The order of the tridiagonal matrix A. n ≥ 0.

nrhs INTEGER. The number of right hand sides, that is, the number of
columns of the matrix B. nrhs ≥ 0.

ScaLAPACK Auxiliary and Utility Routines 7

7-197

d REAL array, DIMENSION (n). The n diagonal elements of the diagonal
matrix D from the factorization computed by ?pttrf.

e COMPLEX array, DIMENSION (n-1). The (n-1) off-diagonal elements of
the unit bidiagonal factor U or L from the factorization computed by
?pttrf. See uplo.

b COMPLEX array, DIMENSION (ldb, nrhs).
On entry, the right hand side matrix B.

ldb INTEGER.
The leading dimension of the array b.
ldb ≥ max(1, n).

Output Parameters

b On exit, the solution matrix X.

info INTEGER.
= 0: successful exit
< 0: if info = -i, the i-th argument had an illegal value.

?steqr2
Computes all eigenvalues and, optionally, eigenvectors
of a symmetric tridiagonal matrix using the implicit QL
or QR method.

Syntax
call ssteqr2(compz, n, d, e, z, ldz, nr, work, info)

call dsteqr2(compz, n, d, e, z, ldz, nr, work, info)

Description

This routine is a modified version of LAPACK routine ?steqr. The routine ?steqr2 computes
all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit
QL or QR method. ?steqr2 is modified from ?steqr to allow each ScaLAPACK process
running ?steqr2 to perform updates on a distributed matrix Q. Proper usage of ?steqr2 can be
gleaned from examination of ScaLAPACK routine p?syev.

7-198

7 Intel® Math Kernel Library Reference Manual

Input Parameters

compz CHARACTER*1. Must be 'N' or 'I'.

If compz ='N', the routine computes eigenvalues only.
If compz ='I', the routine computes the eigenvalues and eigenvectors
of the tridiagonal matrix T.
z must be initialized to the identity matrix by p?laset or ?laset
prior to entering this subroutine.

n INTEGER. The order of the matrix T. n ≥ 0.

d,e,work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d contains the diagonal elements of T.
The dimension of d must be at least max(1, n).

e contains the (n-1) subdiagonal elements of T.
The dimension of e must be at least max(1, n-1).

work is a workspace array.
The dimension of work is max(1, 2*n-2).
If compz = 'N', then work is not referenced.

z (local)
REAL for ssteqr2
DOUBLE PRECISION for dsteqr2
Array, global DIMENSION (n, n), local DIMENSION (ldz, nr).
If compz ='V', then z contains the orthogonal matrix used in the
reduction to tridiagonal form.

ldz INTEGER. The leading dimension of the array z. Constrains:
ldz ≥ 1,
ldz ≥ max(1, n), if eigenvectors are desired.

nr INTEGER. nr = max(1, numroc(n, nb, myprow, 0, nprocs)).
If compz = 'N', then nr is not referenced.

Output Parameters

d REAL array, DIMENSION (n), for ssteqr2.
DOUBLE PRECISION array, DIMENSION (n), for dsteqr2.
On exit, the eigenvalues in ascending order, if info = 0.
See also info.

ScaLAPACK Auxiliary and Utility Routines 7

7-199

e REAL array, DIMENSION (n-1), for ssteqr2.
DOUBLE PRECISION array, DIMENSION (n-1), for dsteqr2.
On exit, e has been destroyed.

z (local)
REAL for ssteqr2
DOUBLE PRECISION for dsteqr2
Array, global DIMENSION (n, n), local DIMENSION (ldz, nr).
On exit, if info = 0, then, if compz = 'V', z contains the orthonormal
eigenvectors of the original symmetric matrix, and if compz = 'I', z
contains the orthonormal eigenvectors of the symmetric tridiagonal
matrix.
If compz = 'N', then z is not referenced.

info INTEGER.
info = 0, the exit is successful.
info < 0: if info = -i, the i-th had an illegal value.
info > 0: the algorithm has failed to find all the eigenvalues in a total of
30n iterations; if info = i, then i elements of e have not converged to
zero; on exit, d and e contain the elements of a symmetric tridiagonal
matrix, which is orthogonally similar to the original matrix.

7-200

7 Intel® Math Kernel Library Reference Manual

Utility Functions and Routines
This section describes ScaLAPACK utility functions and routines. Summary information about
these routines is given in the following table:

p?labad
Returns the square root of the underflow and overflow
thresholds if the exponent-range is very large.

Syntax
call pslabad(ictxt, small, large)

call pdlabad(ictxt, small, large)

Description

This routine takes as input the values computed by p?lamch for underflow and overflow, and
returns the square root of each of these values if the log of large is sufficiently large. This
subroutine is intended to identify machines with a large exponent range, such as the Crays, and
redefine the underflow and overflow limits to be the square roots of the values computed by
p?lamch. This subroutine is needed because p?lamch does not compensate for poor arithmetic in
the upper half of the exponent range, as is found on a Cray.

In addition, this routine performs a global minimization and maximization on these values, to
support heterogeneous computing networks.

Table 7-2 ScaLAPACK Utility Functions and Routines

Routine
Name

Data
Types Description

p?labad s,d Returns the square root of the underflow and overflow thresholds if
the exponent-range is very large.

p?lachkieee s,d Performs a simple check for the features of the IEEE standard. (C
interface function).

p?lamch s,d Determines machine parameters for floating-point arithmetic.

p?lasnbt s,d Computes the position of the sign bit of a floating-point number. (C
interface function).

pxerbla Error handling routine called by ScaLAPACK routines.

ScaLAPACK Auxiliary and Utility Routines 7

7-201

Input Parameters

ictxt (global) INTEGER.
The BLACS context handle in which the computation takes place.

small (local).
REAL PRECISION for pslabad.
DOUBLE PRECISION for pdlabad.
On entry, the underflow threshold as computed by p?lamch.

large (local).
REAL PRECISION for pslabad.
DOUBLE PRECISION for pdlabad.
On entry, the overflow threshold as computed by p?lamch.

Output Parameters

small (local).
On exit, if log10(large) is sufficiently large, the square root of
small, otherwise unchanged.

large (local).
On exit, if log10(large) is sufficiently large, the square root of
large, otherwise unchanged.

p?lachkieee
Performs a simple check for the features of the IEEE
standard. (C interface function).

Syntax
void pslachkieee(int *isieee, float *rmax, float *rmin);

void pdlachkieee(int *isieee, float *rmax, float *rmin);

Description

This routine performs a simple check to make sure that the features of the IEEE standard are
implemented. In some implementations, p?lachkieee may not return.

Note that all arguments are call-by-reference so that this routine can be directly called from
Fortran code.

7-202

7 Intel® Math Kernel Library Reference Manual

This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable values.

Input Parameters

rmax (local).
REAL for pslachkieee
DOUBLE PRECISION for pdlachkieee
The overflow threshold (= ?lamch ('O')).

rmin (local).
REAL for pslachkieee
DOUBLE PRECISION for pdlachkieee
The underflow threshold (= ?lamch ('U')).

Output Parameters

isieee (local) INTEGER.
On exit, isieee = 1 implies that all the features of the IEEE standard
that we rely on are implemented.
On exit, isieee = 0 implies that some the features of the IEEE
standard that we rely on are missing.

p?lamch
Determines machine parameters for floating-point
arithmetic.

Syntax
val = pslamch(ictxt, cmach)

val = pdlamch(ictxt, cmach)

Description

This function determines single precision machine parameters.

Input Parameters.

ictxt (global) INTEGER.The BLACS context handle in which the
computation takes place.

ScaLAPACK Auxiliary and Utility Routines 7

7-203

cmach (global) CHARACTER*1.
Specifies the value to be returned by p?lamch:
= 'E' or 'e', p?lamch := eps
= 'S' or 's , p?lamch := sfmin
= 'B' or 'b', p?lamch := base
= 'P' or 'p', p?lamch := eps*base
= 'N' or 'n', p?lamch := t
= 'R' or 'r', p?lamch := rnd
= 'M' or 'm', p?lamch := emin
= 'U' or 'u', p?lamch := rmin
= 'L' or 'l', p?lamch := emax
= 'O' or 'o', p?lamch := rmax,

where

eps = relative machine precision
sfmin = safe minimum, such that 1/sfmin does not overflow
base = base of the machine
prec = eps*base
t = number of (base) digits in the mantissa
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
emin = minimum exponent before (gradual) underflow
rmin = underflow threshold - base(emin-1)

emax = largest exponent before overflow
rmax = overflow threshold - (baseemax)*(1-eps).

Output Parameter

val Value returned by the fuction.

p?lasnbt
Computes the position of the sign bit of a floating-point
number. (C interface function).

Syntax
void pslasnbt(int *ieflag);

void pdlasnbt(int *ieflag);

7-204

7 Intel® Math Kernel Library Reference Manual

Description

This routine finds the position of the signbit of a single/double precision floating point number.
This routine assumes IEEE arithmetic, and hence, tests only the 32nd bit (for single precision) or
32nd and 64th bits (for double precision) as a possibility for the signbit. sizeof(int) is assumed
equal to 4 bytes.

If a compile time flag (NO_IEEE) indicates that the machine does not have IEEE arithmetic,
ieflag = 0 is returned.

Output Parameters

ieflag INTEGER.
This flag indicates the position of the signbit of any single/double
precision floating point number.
ieflag = 0, if the compile time flag NO_IEEE indicates that the
machine does not have IEEE arithmetic, or if sizeof(int) is different
from 4 bytes. ieflag = 1 indicates that the signbit is the 32nd bit for a
single precision routine.
In the case of a double precision routine:
ieflag = 1 indicates that the signbit is the 32nd bit (Big Endian).
ieflag = 2 indicates that the signbit is the 64th bit (Little Endian).

pxerbla
Error handling routine called by ScaLAPACK routines.

Syntax
call pxerbla(ictxt, srname, info)

Description

This routine is an error handler for the ScaLAPACK routines. It is called by a ScaLAPACK routine
if an input parameter has an invalid value.
A message is printed. Program execution is not terminated. For the ScaLAPACK driver and
computational routines, a RETURN statement is issued following the call to pxerbla. Control
returns to the higher-level calling routine, and it is left to the user to determine how the program
should proceed. However, in the specialized low-level ScaLAPACK routines (auxiliary routines

ScaLAPACK Auxiliary and Utility Routines 7

7-205

that are Level 2 equivalents of computational routines), the call to pxerbla() is immediately
followed by a call to BLACS_ABORT() to terminate program execution since recovery from an
error at this level in the computation is not possible.

It is always good practice to check for a nonzero value of info on return from a ScaLAPACK
routine.
Installers may consider modifying this routine in order to call system-specific exception-handling
facilities.

Input Parameters

ictxt (global) INTEGER.
The BLACS context handle, indicating the global context of the
operation. The context itself is global.

srname (global) CHARACTER*6.
The name of the routine which called pxerbla.

info (global) INTEGER.
The position of the invalid parameter in the parameter list of the calling
routine.

8-1

Sparse Solver Routines 8
Intel® Math Kernel Library (Intel® MKL) provides a user-callable linear sparse solver software to
solve real or complex, symmetric, structurally symmetric or non-symmetric, positive definite,
indefinite or Hermitian sparse linear system of equations.

The terms and concepts required to understand the use of the Intel MKL sparse solver subroutines
are discussed in the Linear Solvers Basics appendix. If you are familiar with linear sparse solvers
and sparse matrix storage schemes, you can omit reading these sections and go directly to the
interface descriptions. The direct sparse solver PARDISO* is described in the section that follows.
After that, two alternative interfaces (direct sparse solver and iterative sparse solver) that consists
of several Intel MKL routines implementing the step-by-step solution process is described.

PARDISO - Parallel Direct Sparse Solver Interface
This section describes the interface to the shared-memory multiprocessing parallel direct sparse
solver known as PARDISO. The interface is Fortran, but can be called from C programs by
observing Fortran parameter passing and naming conventions used by the supported compilers and
operating systems. A discussion of the algorithms used in PARDISO and more information on the
solver can be found at http://www.computational.unibas.ch/cs/scicomp.

The PARDISO package is a high-performance, robust, memory efficient and easy to use software
for solving large sparse symmetric and unsymmetric linear systems of equations on shared
memory multiprocessors. The solver uses a combination of left- and right-looking Level-3 BLAS
supernode techniques [Schenk00-2]. In order to improve sequential and parallel sparse numerical
factorization performance, the algorithms are based on a Level-3 BLAS update and pipelining
parallelism is exploited with a combination of left- and right-looking supernode techniques
[Schenk00], [Schenk01], [Schenk02], [Schenk03]. The parallel pivoting methods allow complete
supernode pivoting in order to compromise numerical stability and scalability during the
factorization process. For sufficiently large problem sizes, numerical experiments demonstrate that

8-2

8 Intel® Math Kernel Library Reference Manual

the scalability of the parallel algorithm is nearly independent of the shared-memory
multiprocessing architecture and a speedup of up to seven using eight processors has been
observed.

PARDISO supports, as illustrated in Figure 8-1, a wide range of sparse matrix types and computes
the solution of real or complex, symmetric, structurally symmetric or unsymmetric, positive
definite, indefinite or Hermitian sparse linear system of equations on shared-memory
multiprocessing architectures.

You can find example code that uses PARDISO interface routine to solve systems of linear
equations in PARDISO Code Examples section in the Appendix C.

Figure 8-1 Sparse Matrices That Can be Solved With PARDISO

PARDISO

Symmetric

Indefinite Pos.definite Indefinite Pos.definite

Unsymmetric

Real Hermitian Complex Real Complex

Sparse Solver Routines 8

8-3

pardiso
Calculates the solution of a set of sparse linear
equations with multiple right-hand sides.

Syntax

Fortran:
call pardiso(pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

perm, nrhs, iparm, msglvl, b, x, error)

C:
pardiso(pt, &maxfct, &mnum, &mtype, &phase, &n, a, ia, ja, perm, &nrhs,

iparm, &msglvl, b, x, &error);

(An underscore may or may not be required after “pardiso“ depending on the OS and compiler
conventions for that OS).

Interface:
SUBROUTINE pardiso(pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

 perm, nrhs, iparm, msglvl, b, x, error)

INTEGER*4 pt(64)

INTEGER*4 maxfct, mnum, mtype, phase, n, nrhs, error,

 ia(*), ja(*), perm(*), iparm(*)

REAL*8 a(*), b(n,nrhs), x(n,nrhs)

Note that the above interface is given for the 32-bit architectures. For 64-bit architectures, the
argument pt(64) must be defined as INTEGER*8 type.

Description

PARDISO calculates the solution of a set of sparse linear equations

 AX = B

with multiple right-hand sides, using a parallel LU, LDL or LLT factorization, where A is an n-by-n
matrix and X and B are n-by-nrhs matrices. PARDISO performs the following analysis steps
depending on the structure of the input matrix A.

8-4

8 Intel® Math Kernel Library Reference Manual

Symmetric Matrices: The solver first computes a symmetric fill-in reducing permutation P
based on either the minimum degree algorithm [Liu85] or the nested dissection algorithm from the
METIS package [Karypis98] (included with Intel MKL), followed by the parallel left-right
looking numerical Cholesky factorization [Schenk00-2] of PAPT = LLT for symmetric
positive-definite matrices, or PAPT = LDLT for symmetric indefinite matrices. The solver uses
diagonal pivoting or 1x1 and 2x2 Bunch and Kaufman pivoting for symmetric indefinite matrices
and an approximation of X is found by forward and backward substitution and iterative
refinements.

The coefficient matrix is perturbed whenever numerically acceptable 1x1 and 2x2 pivots cannot be
found within the diagonal supernode block. One or two passes of iterative refinements may be
required to correct the effect of the perturbations. This restricting notion of pivoting with iterative
refinements is effective for highly indefinite symmetric systems. Furthermore the accuracy of this
method is for a large set of matrices from different applications areas as accurate as a direct
factorization method that uses complete sparse pivoting techniques [Schenk04]. Another
possibility to improve the pivoting accuracy is to use symmetric weighted matchings algorithms.
These methods identify large entries in the coefficient matrix A that, if permuted close to the
diagonal, permit the factorization process to identify more acceptable pivots and proceed with
fewer pivot perturbations. The methods are based on maximum weighted matchings and improve
the quality of the factor in a complementary way to the alternative idea of using more complete
pivoting techniques.

The inertia is also computed for real symmetric indefinite matrices.

Structurally Symmetric Matrices: The solver first computes a symmetric fill-in reducing
permutation P followed by the parallel numerical factorization of PAPT = QLUT . The solver uses
partial pivoting in the supernodes and an approximation of X is found by forward and backward
substitution and iterative refinements.

Unsymmetric Matrices: The solver first computes a non-symmetric permutation PMPS and
scaling matrices Dr and Dc with the aim to place large entries on the diagonal which enhances
greatly the reliability of the numerical factorization process [Duff99]. In the next step the solver
computes a fill-in reducing permutation P based on the matrix PMPSA + (PMPSA)T followed by the
parallel numerical factorization
 QLUR = PPMPSDrADcP
with supernode pivoting matrices Q and R. When the factorization algorithm reaches a point where
it cannot factorize the supernodes with this pivoting strategy, it uses a pivoting perturbation
strategy similar to [Li99]. The magnitude of the potential pivot is tested against a constant
threshold of ε = α ⋅ ||A2||∞ , where ε is the machine precision A2 = PPMPSDrADc, and ||A2||∞ is the
infinity norm of the scaled and permuted matrix A. Therefore any tiny pivots encountered during
elimination are set to the sign(lii) ⋅ ε ⋅ ||A2||∞ — this trades off some numerical stability for the ability
to keep pivots from getting too small. Although many failures could render the factorization

Sparse Solver Routines 8

8-5

well-defined but essentially useless, in practice it is observed that the diagonal elements are rarely
modified for a large class of matrices. The result of this pivoting approach is that the factorization
is, in general, not exact and iterative refinement may be needed.

Direct-Iterative Preconditioning for Unsymmetric Linear Systems. The solver also allows
a combination of direct and iterative methods [Sonn89] in order to accelerate the linear solution
process for transient simulation. A majority of applications of sparse solvers require solutions of
systems with gradually changing values of the nonzero coefficient matrix, but the same identical
sparsity pattern. In these applications, the analysis phase of the solvers has to be performed only
once and the numerical factorizations are the important time-consuming steps during the
simulation. PARDISO uses a numerical factorization A = LU for the first system and applies these
exact factors L and U for the next steps in a preconditioned Krylow-Subspace iteration. If the
iteration does not converge, the solver will automatically switch back to the numerical
factorization. This method can be applied for unsymmetric matrices in PARDISO and the user can
select the method using only one input parameter. For further details see the parameter description
(iparm(4), iparm(20)).

The sparse data storage in PARDISO follows the scheme described in Sparse Matrix Storage
Formats section with ja standing for columns, ia for rowIndex, and a for values.
The algorithms in PARDISO require column indices ja to be increasingly ordered per row and the
presence of the diagonal element per row for any symmetric or structurally symmetric matrix. The
unsymmetric matrices need no diagonal elements in the PARDISO solver.

There are four tasks that PARDISO is capable of performing, namely analysis and symbolic
factorization, numerical factorization, forward and backward substitution including iterative
refinement and finally the termination to release all internal solver memory. When an input data
structure is not accessed in a call, a NULL pointer or any valid address can be passed as a place
holder for that argument.

Input Parameters

pt INTEGER*4 for 32-bit operating systems
INTEGER*8 for 64-bit operating systems.
Array, DIMENSION (64).

8-6

8 Intel® Math Kernel Library Reference Manual

On entry, this is the solver internal data address pointer. Theses addresses are passed
to the solver and all related internal memory management is organized through this
pointer.

maxfct INTEGER.
Maximal number of factors with identical nonzero sparsity structure that the user
would like to keep at the same time in memory. It is possible to store several different
factorizations with the same nonzero structure at the same time in the internal data
management of the solver. In most of the applications this value is equal to 1.
Note that PARDISO can process several matrices with identical matrix sparsity
pattern and is able to store the factors of these matrices at the same time. Matrices
with different sparsity structure can be kept in memory with different memory
address pointers pt.

mnum INTEGER.
Actual matrix for the solution phase. With this scalar you can define the matrix that
you would like to factorize. The value must be: 1 ≤ mnum ≤ maxfct.
In most of the applications this value is equal to 1.

mtype INTEGER.
This scalar value defines the matrix type. The solver PARDISO supports the
following matrices:

mtype = 1 real and structurally symmetric matrix
 = 2 real and symmetric positive definite matrix
 = -2 real and symmetric indefinite matrix
 = 3 complex and structurally symmetric matrix
 = 4 complex and Hermitian positive definite matrix
 = -4 complex and Hermitian indefinite matrix
 = 6 complex and symmetric matrix
 = 11 real and unsymmetric matrix
 = 13 complex and unsymmetric matrix

Note that this parameter influences the pivoting method.

NOTE. pt is an integer array with 64 entries. It is very important that the
pointer is initialized with zero at the first call of PARDISO. After that first call
you should never modify the pointer, as a serious memory leak can occur.
The integer length should be 4-byte on 32-bit operating systems and 8-byte
on 64-bit operating systems.

Sparse Solver Routines 8

8-7

phase INTEGER.
Controls the execution of the solver. It is a two-digit integer i j (10i +j, 1 ≤ i ≤ 3,
i < j ≤ 3 for normal execution modes). The i digit indicates the starting phase of
execution, and j indicates the ending phase. PARDISO has the following phases of
execution:

• Phase 1: Fill-reduction analysis and symbolic factorization

• Phase 2: Numerical factorization

• Phase 3: Forward and Backward solve including iterative refinements

• Termination and Memory Release Phase (phase ≤ 0)

If a previous call to the routine has computed information from previous phases,
execution may start at any phase. The phase parameter can have the following
values:

n INTEGER.
Number of equations. This is the number of equations in the sparse linear systems of
equations A X = B. Constraint: n > 0.

a REAL/COMPLEX
Array. Contains the nonzero values of the coefficient matrix A corresponding to the
indices in ja. The size of a is the same as that of ja and the coefficient matrix can be

 phase Solver Execution Steps

11 Analysis

12 Analysis, numerical factorization

13 Analysis, numerical factorization, solve, iterative refinement

22 Numerical factorization

23 Numerical factorization, solve, iterative refinement

33 Solve, iterative refinement

0 Release internal memory for L and U matrix number mnum

-1 Release all internal memory for all matrices

8-8

8 Intel® Math Kernel Library Reference Manual

either real or complex. The matrix must be stored in compressed sparse row format
with increasing values of ja for each row. Refer to values array description in
Sparse Matrix Storage Formats for more details.

ia INTEGER.
Array, dimension (n+1). For i≤ n, ia(i) points to the first column index of row i in
the array ja in compressed sparse row format. That is, ia(i) gives the index of the
element in array a that contains the first non-zero element from row i of A. The last
element ia(n+1) is taken to be equal to the number of non-zeros in A, plus one. Refer
to rowIndex array description in Sparse Matrix Storage Formats for more details.
The array ia is also accessed in all phases of the solution process. Note that the row
and columns numbers start from 1.

ja INTEGER
Array. ja(*)contains column indices of the sparse matrix A stored in compressed
sparse row format. The indices in each row must be sorted in increasing order.
The array ja is also accessed in all phases of the solution process. For symmetric
and structurally symmetric matrices it is assumed that zero diagonal elements are also
stored in the list of nonzeros in a and ja. For symmetric matrices, the solver needs
only the upper triangular part of the system as is shown for columns array in Sparse
Matrix Storage Formats.

perm INTEGER
Array, dimension (n). Holds the permutation vector of size n.
The array perm is defined as follows. Let A be the original matrix and B = PAPT be
the permuted matrix. Row (column) i of A is the perm(i) row (column) of B. The
numbering of the array must start by 1 and it must describe a permutation.

On entry, you can apply your own fill-in reducing ordering to the solver. The
permutation vector perm is only accessed if iparm(5) = 1.

nrhs INTEGER.
Number of right-hand sides that need to be solved for.

NOTE. The nonzeros of each row of the matrix A must be stored in
increasing order. For symmetric or structural symmetric matrices it is also
important that the diagonal elements are also available and stored in the
matrix. If the matrix is symmetric, then the array a is only accessed in the
factorization phase, in the triangular solution and iterative refinement phase.
Unsymmetric matrices are accessed in all phases of the solution process.

Sparse Solver Routines 8

8-9

iparm INTEGER
Array, dimension (64). This array is used to pass various parameters to PARDISO
and to return some useful information after the execution of the solver.
If iparm(1) = 0, then PARDISO fills iparm(1), and iparm(4) through
iparm(64) with default values and uses them. Note that there is no default values
for iparm(3) and this value must always be supplied by the user, whether
iparm(1) is 0 or 1.

Individual components of the iparm array are described below (some of them are
described in the “Output Parameters” section).

iparm(1) - use default values.

If iparm(1) = 0, then iparm(2) and iparm(4) through iparm(64) are filled with
default values, otherwise the user has to supply all values in iparm from iparm(2)
to iparm(64).

iparm(2) - fill-in reducing ordering.

iparm(2)controls the fill-in reducing ordering for the input matrix. If iparm(2) is
0, then the minimum degree algorithm is applied [Li99], if iparm(2)is 2, the solver
uses the nested dissection algorithm from the METIS package [Karypis98].
The default value of iparm(2)is 2.

iparm(3) - number of processors.

iparm(3) must contain the number of processors that are available for the parallel
execution. The number must be equal to the OpenMP environment variable
OMP_NUM_THREADS.

There is no default value for iparm(3).

iparm(4) - preconditioned CGS.

This parameter controls preconditioned CGS [Sonn89] for unsymmetric or structural
symmetric matrices and Conjugate-Gradients for symmetric matrices.
iparm(4) has the form

CAUTION. If the user has not explicitly set OMP_NUM_THREADS, then this
value can be set by the operating system to the maximal numbers of
processors on the system. It is therefore always recommended to control
the parallel execution of the solver by explicitly setting OMP_NUM_THREADS. If
less processors are available than specified, the execution may slow down
instead of speeding up.

8-10

8 Intel® Math Kernel Library Reference Manual

 iparm(4)= 10*L + K
The values K and L have the following meaning

Value K:

Value L:

The value L controls the stopping criterion of the Krylow-Subspace iteration:

εCGS = 10-L is used in the stopping criterion
 ||dxi|| / ||dx1|| < εCGS

with ||dxi|| = ||(LU)-1ri|| and ri is the residuum at iteration i of the preconditioned
Krylow-Subspace iteration.

Strategy: A maximum number of 150 iterations is fixed by expecting that the iteration
will converge before consuming half the factorization time. Intermediate convergence
rates and residuum excursions are checked and can terminate the iteration process.
If phase =23, then the factorization for a given A is automatically recomputed in
these cases where the Krylow-Subspace iteration failed, and the corresponding direct
solution is returned. Otherwise the solution from the preconditioned
Krylow-Subspace iteration is returned. Using phase =33 results in an error message
(error =4) if the stopping criteria for the Krylow-Subspace iteration can not be
reached. More information on the failure can be obtained from iparm(20).

The default is iparm(4)=0, and other values are only recommended for an advanced
user. iparm(4) must be greater or equal to zero.

Examples:

Value of K Description

0 The factorization is always computed as required by phase

1 CGS iteration replaces the computation of LU. The preconditioner is LU
that was computed at a previous step (the first step or last step with a
failure) in a sequence of solutions needed for identical sparsity
patterns.

2 CG iteration for symmetric matrices replaces the computation of LU.
The preconditioner is LU that was computed at a previous step (the first
step or last step with a failure) in a sequence of solutions needed for
identical sparsity patterns.

iparm(4) Description

31 LU-preconditioned CGS iteration with a stopping criterion of 10 -3 for
unsymmetric matrices

Sparse Solver Routines 8

8-11

iparm(5) - user permutation.

This parameter controls whether the user supplied fill-in reducing permutation is used
instead of the integrated multiple-minimum degree or nested dissection algorithms.

This option may be useful for testing reordering algorithms or adapting the code to
special applications problems (for instance, to move zero diagonal elements to the
end PAPT). For definition of the permutation, see description of the perm parameter.

The default value of iparm(5) is 0.

iparm(6)- write solution on x.

If iparm(6) is 0 (which is the default), then the array x contains the solution and the
value of b is not changed. If iparm(6) is 1, then the solver will store the solution on
the right hand side b.

Note that the array x is always used. The default value of iparm(6) is 0.

iparm(8) - iterative refinement steps.

On entry to the solve and iterative refinement step, iparm(8) should be set to the
maximum number of iterative refinement steps that the solver will perform. The
solver will not perform more than the absolute value of iparm(8) steps of iterative
refinement and will stop the process if a satisfactory level of accuracy of the solution
in terms of backward error has been achieved.

Note that if iparm(8) < 0, the accumulation of the residuum is using enhanced
precision real and complex data types. Perturbed pivots result in iterative refinement

(independent of iparm(8)=0) and the iteration number executed is reported on
iparm(7).

The solver will automatically perform two steps of iterative refinements when
perturbed pivots have been obtained during the numerical factorization and
iparm(8) was equal to zero.

The number of performed iterative refinement steps is reported on iparm(7).

The default value for iparm(8) is 0.

iparm(9)

61 LU-preconditioned CGS iteration with a stopping criterion of 10 -6 for
unsymmetric matrices

62 LU-preconditioned CGS iteration with a stopping criterion of 10 -6 for
symmetric matrices

iparm(4) Description

8-12

8 Intel® Math Kernel Library Reference Manual

This parameter is reserved for future use. Its value must be set to 0.

iparm(10) - pivoting perturbation.

This parameter instructs PARDISO how to handle small pivots or zero pivots for
unsymmetric matrices (mtype =11 or mtype =13) and symmetric matrices (mtype =
-2, mtype = - 4, or mtype = 6). For these matrices the solver uses a complete
supernode pivoting approach. When the factorization algorithm reaches a point where
it cannot factorize the supernodes with this pivoting strategy, it uses a pivoting
perturbation strategy similar to [Li99, [Schenk04]. The magnitude of the potential
pivot is tested against a constant threshold of
 ε = α ⋅ ||A2||∞ ,

where ε = 10 -iparm(10) and ||PPMPSDrADcP||∞ is the infinity norm of the scaled and
permuted matrix A. Any tiny pivots encountered during elimination are set to the
sign(lii) ⋅ ε ⋅ ||A2||∞ - this trades off some numerical stability for the ability to keep
pivots from getting too small. Small pivots are therefore perturbed with
ε = 10 -iparm(10) .
The default value of iparm(10)is 13, and therefore ε = 10 -13 for unsymmetric
matrices (mtype =11 or mtype =13). The default value of iparm(10)is 8, and
therefore ε = 10 -8 for symmetric indefinite matrices (mtype = -2, mtype = - 4, or
mtype = 6).

iparm(11) - scaling vectors.

PARDISO uses a maximum weight matching algorithm to permute large elements on
the diagonal and to scale the matrix so that the diagonal elements are equal to 1 and
the absolute value of the off-diagonal entries are less or equal to 1. This scaling
method is only applied to unsymmetric matrices (mtype =11 or mtype =13). The
scaling can also be used for symmetric indefinite matrices (mtype = -2, mtype = - 4,
or mtype = 6) in case that symmetric weighted matchings is applied
(iparm(13)=1).

It is recommended to use iparm(11)=1 (scaling) and iparm(13)=1 (matchings) for
highly indefinite symmetric matrices, for example from interior point optimizations
or saddle point problems. It is also very important to note that the user must provided
in the analysis phase (phase=11) the numerical values of the matrix A in case of
scalings and symmetric weighted matchings.

The default value of iparm(11) is 1 for unsymmetric matrices ((mtype =11 or mtype
=13). The default value of iparm(11) is 0 for symmetric matrices (mtype = -2,
mtype = - 4, or mtype = 6).

iparm(12)

Sparse Solver Routines 8

8-13

This parameter is reserved for future use. Its value must be set to 0.

iparm(13) - improved accuracy using (non-)symmetric weighted matchings.

PARDISO can use a maximum weighted matching algorithm to permute large
elements close the diagonal. This strategy adds an additional level of reliability to our
factorization methods and can be seen as a complement to the alternative idea of
using more complete pivoting techniques during the numerical factorization.

It is recommended to use iparm(11)=1 (scalings) and iparm(13)=1 (matchings)
for highly indefinite symmetric matrices, for example from interior point
optimizations or saddle point problems. It is also very important to note that the user
must provided in the analysis phase (phase=11) the numerical values of the matrix A
in case of scalings and symmetric weighted matchings.

The default value of iparm(13) is 1 for unsymmetric matrices ((mtype =11 or mtype
=13). The default value of iparm(13) is 0 for symmetric matrices (mtype = -2,
mtype = - 4, or mtype = 6).

iparm(18)

The solver will report the numbers of nonzeros on the factors if iparm(18) < 0 on
entry.

The default value of iparm(18) is -1.

iparm(19) - MFlops of factorization.

If iparm(19)< 0 on entry, the solver will report MFlop (10 6) that are necessary to
factor the matrix A. This will increase the reordering time.

The default value of iparm(19)is 0.

iparm(21) - pivoting for symmetric indefinite matrices.

iparm(21) controls the pivoting method for sparse symmetric indefinite matrices. If
iparm(21) is 0, then 1x1 diagonal pivoting is used. If iparm(21) is 1, then 1x1 and
2x2 Bunch and Kaufman pivoting will be used within the factorization process.

It is also recommended to use iparm(11)=1 (scalings) and iparm(13)=1
(matchings) for highly indefinite symmetric matrices, for example from interior point
optimizations or saddle point problems.

Bunch and Kaufman pivoting is available for matrices: mtype = -2, mtype = - 4, or
mtype = 6.

The default value of iparm(21)is 0.

8-14

8 Intel® Math Kernel Library Reference Manual

msglvl INTEGER.
Message level information. If msglvl = 0 then PARDISO generates no output,
if msglvl = 1 the solver prints statistical information to the screen.

b REAL/COMPLEX
Array, dimension (n,nrhs). On entry, contains the right hand side vector/matrix B.
Note that b is only accessed in the solution phase.

Output Parameters

pt This parameter contains internal address pointers.

iparm On output, some iparm values will report useful information, for example, numbers
of nonzeros in the factors, and so on.

iparm(7) - number of performed iterative refinement steps.

The number of iterative refinement steps that are actually performed during the solve
step.

iparm(14) - number of perturbed pivots.

After factorization, iparm(14) contains the number of perturbed pivots during the
elimination process for mtype =11, mtype =13, mtype = -2, mtype = - 4, or mtype
= 6.

iparm(15) - peak memory symbolic factorization.

The parameter iparm(15) provides the user with the total peak memory in KBytes
that the solver needed during the analysis and symbolic factorization phase. This
value is only computed in phase 1.

iparm(16) - permanent memory symbolic factorization.

The parameter iparm(16) provides the user with the permanent memory in KBytes
that the solver needed from the analysis and symbolic factorization phase in the
factorization and solve phases. This value is only computed in phase 1.

iparm(17) - memory numerical factorization and solution.

The parameter iparm(17) provides the user with the total double precision memory
consumption (KBytes) of the solver for the factorization and solve phases. This value
is only computed in phase 2.

Note that the total peak memory solver consumption is
max(iparm(15), iparm(16)+iparm(17)).

iparm(18) - number nonzeros in factors.

The solver will report the numbers of nonzeros on the factors if iparm(18) < 0 on

Sparse Solver Routines 8

8-15

entry.

iparm(19) - MFlops of factorization.

Number of operations in MFlop (10 6 operations) that are necessary to factor the
matrix A are returned to the user if iparm(19) < 0 on entry.

iparm(20) - CG/CGS diagnostics.

The value is used to give CG/CGS diagnostics (for example, the number of iterations
and cause of failure):

If iparm(20) > 0, CGS succeeded, and the number of iterations executed are
reported in iparm(20).

If iparm(20) < 0, iterations executed, but CG/CGS failed. The error report details
in iparm(20) are of the form:

iparm(20) = - it_cgs*10 - cgs_error.

If phase is 23, then the factors L, U are recomputed for the matrix A and the error
flag error should be zero in case of a successful factorization. If phase was 33, then
error = -4 will signal the failure.

Description of cgs_error is given in the below table:

iparm(22) - inertia: number of positive eigenvalues.

The parameter iparm(20)reports the number of positive eigenvalues for symmetric
indefinite matrices.

iparm(23) - inertia: number of negative eigenvalues.

The parameter iparm(23)reports the number of negative eigenvalues for symmetric
indefinite matrices.

iparm(24) to iparm(64)

These parameters are reserved for future use. Their values must be set to 0.

b On output, the array is replaced with the solution if iparm(6) = 1.

cgs_error Description

1 too large fluctuations of the residuum

2 ||dxmax_it_cgs/2|| too large (slow convergence)

3 stopping criterion not reached at max_it_cgs

4 perturbed pivots caused iterative refinement

5 factorization is too fast for this matrix. It is better to use the
factorization method with iparm(4) = 0

8-16

8 Intel® Math Kernel Library Reference Manual

x REAL/COMPLEX
Array, dimension (n,nrhs). On output, contains solution if iparm(6)= 0.
Note that x is only accessed in the solution phase.

error INTEGER.
The error indicator according to the below table:

error Information

0 no error

-1 input inconsistent

-2 not enough memory

-3 reordering problem

-4 zero pivot, numerical factorization or iterative refinement problem

-5 unclassified (internal) error

-6 preordering failed (matrix types 11, 13 only)

-7 diagonal matrix problem

Sparse Solver Routines 8

8-17

Direct Sparse Solver (DSS) Interface Routines
The Intel MKL supports an alternative to PARDISO interface for the direct sparse solver referred
to here as DSS interface. The DSS interface implements a group of user-callable routines that are
used in the step-by-step solving process and exploits the general scheme described in Linear
Solvers Basics for solving sparse systems of linear equations. This interface also includes one
routine for gathering statistics related to the solving process and an auxiliary routine for passing
character strings from Fortran routines to C routines.

The solving process is conceptually divided into six phases, as shown in Table 8-1 which lists the
names of the routines, grouped by phase, and describes their general use.

Table 8-1 DSS Interface Routines

Routine Description

dss_create Initializes the solver and creates the basic data
structures necessary for the solver. This routine must
be called before any other DSS routine.

dss_define_structure Used to inform the solver of the locations of the
non-zero elements of the array.

dss_reorder Based on the non-zero structure of the matrix, this
routine computes a permutation vector to reduce fill-in
during the factoring process.

dss_factor_real,
dss_factor_complex

Computes the LU, LDTt or LLT factorization of a real or
complex matrix.

dss_solve_real,
dss_solve_complex

Computes the solution vector for a system of equations
based on the factorization computed by the previous
phase.

dss_delete Deletes all of the data structures created during the
solutions process.

dss_statistics Returns statistics about various phases of the solving
process. Used to gather statistics in the following
areas: time taken to do reordering, time taken to do
factorization, problem solving duration, determinant of
a matrix, inertia of a matrix, and number of floating
point operations taken during factorization. Can be
invoked at any phase of the solving process after the
"reorder" phase, but before the "delete" phase. Note
that appropriate argument(s) must be supplied to this
routine to correspond to phase at which it is invoked.

mkl_cvt_to_null_terminated_str Used to pass character strings from Fortran routines to
C routines

8-18

8 Intel® Math Kernel Library Reference Manual

To find a single solution vector for a single system of equations with a single right hand side, the
Intel MKL DSS interface routines are invoked in the order in which they are listed in Table 8-1,
with the exception of dss_statistics, which is invoked as described in the table.

However, in certain applications it is necessary to produce solution vectors for multiple right-hand
sides for a given factorization and/or factor several matrices with the same non-zero structure.
Consequently, it is necessary to be able to invoke the Intel MKL sparse routines in an order other
than listed in the table. The following diagram in Figure 8-2 indicates the typical order(s) in which
the DSS interface routines can be invoked.

Figure 8-2 Typical Order for Invoking DSS Interface Routines

You can find example code that uses DSS interface routines to solve systems of linear equations in
Direct Sparse Solver Code Examples section in the Appendix C.

Sparse Solver Routines 8

8-19

Interface Description

As noted in Memory Allocation and Handles section, each DSS routine either reads or writes an
opaque data object called a handle. Because the declaration of a handle varies from language to
language, it is declared as being of type MKL_DSS_HANDLE in this documentation. You can refer to
Memory Allocation and Handles to determine the correct method for declaring a handle argument.

All other types in this documentation refer to the standard Fortran types, INTEGER, REAL,
COMPLEX, DOUBLE PRECISION, and DOUBLE COMPLEX.

C and C++ programmers should refer to Calling Sparse Solver Routines From C/C++ for
information on mapping Fortran types to C/C++ types.

Routine Options

All of the DSS routines have an integer argument (below referred to as opt) for passing various
options to the routines. The permissible values for opt should be specified using only the symbol
constants defined in the language-specific header files (see Implementation Details). All of the
routines accept options for setting the message and termination level as described in Table 8-2.
Additionally, all routines accept the option MKL_DSS_DEFAULTS, which establishes the
documented default options for each DSS routine.

The settings for message and termination level can be set on any call to a DSS routine. However,
once set to a particular level, they remain at that level until they are changed in another call to a
DSS routine.

Users can specify multiple options to a DSS routine by adding the options together. For example,
to set the message level to debug and the termination level to error for all DSS routines, use the
call:

CALL dss_create(handle, MKL_DSS_MSG_LVL_INFO + MKL_DSS_TERM_LVL_ERROR)

Table 8-2 Symbolic Names for the Message and Termination Level Options

Message Level Termination Level

MKL_DSS_MSG_LVL_SUCCESS MKL_DSS_TERM_LVL_SUCCESS

MKL_DSS_MSG_LVL_INFO MKL_DSS_TERM_LVL_INFO

MKL_DSS_MSG_LVL_WARNING MKL_DSS_TERM_LVL_WARNING

MKL_DSS_MSG_LVL_ERROR MKL_DSS_TERM_LVL_ERROR

MKL_DSS_MSG_LVL_FATAL MKL_DSS_TERM_LVL_FATAL

8-20

8 Intel® Math Kernel Library Reference Manual

User Data Arrays

Many of the DSS routines take arrays of user data as input. For example, user arrays are passed to
the routine dss_define_structure to describe the location of the non-zero entries in the
matrix. In order to minimize storage requirements and improve overall run-time efficiency, the
Intel MKL DSS routines do not make copies of the user input arrays.

DSS Routines

dss_create
Initializes the solver.

Syntax
dss_create(handle, opt)

Input Arguments

opt INTEGER. Options passing argument. The default value is
MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR .

Output Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

The routine dss_create is called to initialize the solver. After the call to dss_create, all
subsequent invocations of Intel MKL DSS routines should use the value of handle returned by
dss_create.

WARNING. Users cannot modify the contents of these arrays after they
are passed to one of the solver routines.

WARNING. Do not write the value of handle directly.

Sparse Solver Routines 8

8-21

Return Values
MKL_DSS_SUCCESS

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY

dss_define_structure
Communicates to the solver locations of non-zero
elements in the matrix.

Syntax
dss_define_structure(handle, opt, rowIndex, nRows, nCols, columns,

nNonZeros);

Input Arguments

opt INTEGER. Option passing argument. The default option for the matrix
structure is MKL_DSS_SYMMETRIC.

rowIndex INTEGER. Array of size min(nRows, nCols)+1. Defines the location
of non-zero entries in the matrix.

nRows INTEGER. Number of rows in the matrix.

nCols INTEGER. Number of columns in the matrix.

columns INTEGER. Array of size nNonZeros. Defines the location of non-zero
entries in the matrix.

nNonZeros INTEGER. Number of non-zero elements in the matrix.

Output Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

The routine dss_define_structure communicates to the solver the locations of the
nNonZeros number of non-zero elements in a matrix of size nRows by nCols.
Note that currently Intel MKL DSS software only operates on square matrices, so nRows must be
equal to nCols.

8-22

8 Intel® Math Kernel Library Reference Manual

To communicate the locations of non-zeros in the matrix, do the following:

1. Define the general non-zero structure of the matrix by specifying one of the following
values for the options argument opt:

MKL_DSS_SYMMETRIC_STRUCTURE

MKL_DSS_SYMMETRIC

MKL_DSS_NON_SYMMETRIC

2. Provide the actual locations of the non-zeros by means of the arrays rowIndex and
columns (see Sparse Matrix Storage Formats).

Return Values
MKL_DSS_SUCCESS

MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_COL_ERR

MKL_DSS_NOT_SQUARE

MKL_DSS_TOO_FEW_VALUES

MKL_DSS_TOO_MANY_VALUES

dss_reorder
Computes permutation vector that minimizes the fill-in
during the factorization phase.

Syntax
dss_reorder(handle, opt, perm)

NOTE. Currently, DSS software in Intel MKL does not directly support
non-symmetric matrices. Instead, when the MKL_DSS_NON_SYMMETRIC
option is specified, the solver will convert non-symmetric matrices into
symmetrically structured matrices by adding zeros in the appropriate
place.

Sparse Solver Routines 8

8-23

Input Arguments

opt INTEGER. Option passing argument. The default option for the
permutation type is MKL_DSS_AUTO_ORDER.

perm INTEGER. Array of length nRows. Contains a user-defined permutation
vector (accessed only if opt contains MKL_DSS_MY_ORDER).

Output Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

If opt contains the options MKL_DSS_AUTO_ORDER, then dss_reorder computes a permutation
vector that minimizes the fill-in during the factorization phase. For this option, the perm array is
never accessed.

If opt contains the option MKL_DSS_MY_ORDER, then the array perm is considered to be a
permutation vector supplied by the user. In this case, the array perm is of length nRows, where
nRows is the number of rows in the matrix as defined by the previous call to
dss_define_structure.

Return Values
MKL_DSS_SUCCESS

MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY

dss_factor_real,
dss_factor_complex
Compute the factorization of the matrix with previously
specified location.

Syntax
dss_factor_real(handle, opt, rValues)

dss_factor_complex(handle, opt, cValues)

8-24

8 Intel® Math Kernel Library Reference Manual

Input Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

opt INTEGER. Option passing argument. The default option for the matrix
type is MKL_DSS_POSITIVE_DEFINITE.

rValues DOUBLE PRECISION. Array of size nNonZeros. Contains real
non-zero elements of the matrix.

cValues DOUBLE COMPLEX. Array of size nNonZeros. Contains complex
non-zero elements of the matrix.

Description

These routines compute the factorization of the matrix whose non-zero locations were previously
specified by a call to dss_define_structure and whose non-zero values are given in the array
rValues or cValues. The arrays rValues and cValues are assumed to be of length
nNonZeros as defined in a previous call to dss_define_structure.

The opt argument should contain one of the following options:

MKL_DSS_POSITIVE_DEFINITE,
MKL_DSS_INDEFINITE,
MKL_DSS_HERMITIAN_POSITIVE_DEFINITE,
MKL_DSS_HERMITIAN_INDEFINITE ,

depending on whether the non-zero values in rValues and cValues describe a positive definite,
indefinite, or Hermitian matrix.

Return Values
MKL_DSS_SUCCESS

MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_OPTION_CONFLICT

MKL_DSS_OUT_OF_MEMORY

MKL_DSS_ZERO_PIVOT

Sparse Solver Routines 8

8-25

dss_solve_real,
dss_solve_complex
Compute the corresponding solutions vector and place
it in the output array.

Syntax
dss_solve_real(handle, opt, rRhsValues, nRhs, rSolValues)

dss_solve_complex(handle, opt, cRhsValues, nRhs, cSolValues)

Input Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

opt INTEGER. Option passing argument.

nRhs INTEGER. Number of the right-hand sides in the linear equation.

rRhsValues DOUBLE PRECISION. Array of size nRows by nRhs. Contains real
right-hand side vectors.

cRhsValues DOUBLE COMPLEX. Array of size nRows by nRhs. Contains complex
right-hand side vectors.

Output Arguments

rSolValues DOUBLE PRECISION. Array of size nCols by nRhs. Contains real
solution vectors.

cSolValues DOUBLE COMPLEX. Array of size nCols by nRhs. Contains complex
solution vectors.

Description

For each right hand side column vector defined in ?RhsValues (where ? is one of r or c), these
routines compute the corresponding solutions vector and place it in the array ?SolValues.

The lengths of the right-hand side and solution vectors, nCols and nRows respectively, are
assumed to have been defined in a previous call to dss_define_structure.

Return Values
MKL_DSS_SUCCESS

8-26

8 Intel® Math Kernel Library Reference Manual

MKL_DSS_STATE_ERR

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY

dss_delete
Deletes all of data structures created during the
solutions process.

Syntax
dss_delete(handle, opt)

Input Arguments

opt INTEGER. Options passing argument. The default value is
MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.

Output Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

The routine dss_delete is called to delete all of the data structures created during the solutions
process.

Return Values
MKL_DSS_SUCCESS

MKL_DSS_INVALID_OPTION

MKL_DSS_OUT_OF_MEMORY

Sparse Solver Routines 8

8-27

dss_statistics
Returns statistics about various phases of the solving
process.

Syntax
dss_statistics(handle, opt, statArr, retValues)

Input Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

opt INTEGER. Options passing argument.

statArr STRING. Input string that defines the type of the returned statistics. Can
include one or more of the following string constants (case of the input
string has no effect):

ReorderTime Amount of time taken to do the reordering.

FactorTime Amount of time taken to do the factorization.

SolveTime Amount of time taken to solve the problem after
factorization.

Determinant Determinant of the matrix A. For real matrices,
determinant is returned as det_pow, det_base in two
consecutive return array locations, where:

 and
.

For complex matrices, determinant is returned as
det_pow, det_re, det_im in three consecutive return
array locations, where:

 and
.

Inertia Inertia of a real symmetric matrix is defined to be a triplet
of nonnegative integers (p,n,z) where p is a number of
positive eigenvalues, n is number of negative eigenvalues,
and z is number of zero eigenvalues.

1.0 abs det_base() 10.0<≤
determinant det_base 10

det_pow⋅=

1.0 abs det_re() abs det_im() 10.0<+≤
determinant det_re, det_im() 10

det_pow⋅=

8-28

8 Intel® Math Kernel Library Reference Manual

Inertia will be returned as three consecutive return
array locations as p,n,z.

Computing Inertia is only recommended for stable
matrices. Unstable matrices can lead to incorrect results.

Inertia of a kxk real symmetric positive definite matrix
is always (k,0,0). Therefore Inertia is returned only in
cases of real symmetric indefinite matrices. For all other
matrix types, an error message is returned.

Flops Number of floating point operations performed during
factorization.

Output Arguments

retValues DOUBLE PRECISION. Value of the statistics returned.

Description

The dss_statistics routine returns statistics about various phases of the solving process.
Use this routine to gather statistics in the following areas:

— time taken to do reordering,

— time taken to do factorization,

— problem solving duration,

— determinant of a matrix,

— inertia of a matrix,

— number of floating point operations taken during factorization.

Statistics are returned corresponding to the specified input string. The value of the statistics is
returned in double precision in a return array allocated by user.

For multiple statistics, string constants separated by commas can be used as input. Return values
are put into the return array in the same order as specified in the input string.

NOTE. To avoid problems in passing strings from Fortran to C, Fortran
users must call the mkl_cvt_to_null_terminated_str routine
before calling dss_statistics. Refer to the description of
mkl_cvt_to_null_terminated_str for details.

Sparse Solver Routines 8

8-29

Statistics should only be requested at appropriate stages of the solving process. For example,
inquiring about FactorTime before a matrix is factored will lead to errors.

The following table shows the point at which each statistic can be called:

The example below illustrates the use of the dss_statistics routine.

Return Values

MKL_DSS_SUCCESS

MKL_DSS_STATISTICS_INVALID_MATRIX

Table 8-3 Statistics Calling Sequences

Type of
Statistics When to Call

ReorderTime After dss_reorder is completed successfully.

FactorTime After dss_factor_real or dss_factor_complex is completed
successfully.

SolveTime After dss_solve_real or dss_solve_complex is completed
successfully.

Determinant After dss_factor_real or dss_factor_complex is completed
successfully.

Inertia After dss_factor_real is completed successfully and matrix is real,
symmetric, and indefinite.

Flops After dss_factor_real or dss_factor_complex is completed
successfully.

Example 8-1 Finding "time used to reorder" and "inertia" of a matrix.

To find these values, call
dss_statistics(handle, opt, statArr, retValues),
where statArr is "ReorderTime,Inertia"

In this example, retValues will have the following values:

retValue[0] Time to reorder.

retValue[1] Positive Eigenvalues.

retValue[2] Negative Eigenvalues.

retValue[3] Zero Eigenvalues.

8-30

8 Intel® Math Kernel Library Reference Manual

MKL_DSS_STATISTICS_INVALID_STATE

MKL_DSS_STATISTICS_INVALID_STRING

mkl_cvt_to_null_terminated_str
Passes character strings from Fortran routines to C
routines.

Syntax
mkl_cvt_to_null_terminated_str(destStr, destLen, srcStr)

Input Arguments

destLen INTEGER. Length of the output array destStr.

srcStr STRING. Input string.

Output Arguments

destStr INTEGER. One-dimensional array of integer.

Description

The routine mkl_cvt_to_null_terminated_str is used to pass character strings from Fortran
routines to C routines. The strings are converted into integer arrays before being passed to C.
Using this routine avoids the problems that can occur on some platforms when passing strings
from Fortran to C. The use of this routine is highly recommended.

Sparse Solver Routines 8

8-31

Implementation Details

Several aspects of the Intel MKL DSS interface are platform-specific and language-specific. In
order to promote portability across platforms and ease of use across different languages, users are
encouraged to include one of the Intel MKL DSS language-specific header files. Currently, there
are three language specific header files:

• mkl_dss.f77 for F77 programs

• mkl_dss.f90 for F90 programs

• mkl_dss.h for C programs

These language-specific header files define symbolic constants for error returns, function options,
certain defined data types, and function prototypes.

Memory Allocation and Handles

In order to make the Intel MKL DSS routines as easy to use as possible, the routines do not require
the user to allocate any temporary working storage. Any storage required by the solver (that is not
a user input) is allocated by the solver itself. In order to allow multiple users to access the solver
simultaneously, the solver keeps track of the storage allocated for a particular application by using
an opaque data object called a handle.

Each of the Intel MKL DSS routines either creates, uses or deletes a handle. Consequently, user
programs must be able to allocate storage for a handle. The exact syntax for allocating storage for
a handle varies from language to language. To help standardize the handle declarations, the
language-specific header files declare constants and defined data types that should be used when
declaring a handle object in user code.

Fortran 90 programmers should declare a handle as:

INCLUDE "mkl_dss.f90"

TYPE(MKL_DSS_HANDLE) handle

NOTE. It is strongly recommended that you refer to the constants for
options, error returns, and message severities only by the symbolic
names that are defined in the header files. Use of the Intel MKL DSS
software without including one of the above header files is not
supported.

8-32

8 Intel® Math Kernel Library Reference Manual

C and C++ programmers should declare a handle as:

#include "mkl_dss.h"

_MKL_DSS_HANDLE_t handle;

Fortran 77 programmers using compilers that support eight byte integers, should declare a handle
as:

INCLUDE "mkl_dss.f77"

INTEGER*8 handle

Otherwise they should replace INTEGER*8 with DOUBLE PRECISION.

In addition to the necessary definition for the correct declaration of a handle, the include file also
defines the following:

• function prototypes for languages that support prototypes

• symbolic constants that are used for the error returns

• user options for the solver routines

• message severity.

Sparse Solver Routines 8

8-33

Iterative Sparse Solvers based on Reverse Communication
Interface (RCI ISS)

Conjugate Gradient Solver (RCI CG)

The Intel MKL supports an additional to PARDISO interface, namely, the RCI based CG interface
referred to here as RCI CG interface. The RCI CG interface implements a group of user-callable
routines that are used in the step-by-step solving process of a symmetric positive definite system
of linear algebraic equations and exploits the general RCI scheme described in [Dong95]. The
terms and concepts required to understand the use of the Intel MKL RCI CG subroutines are
discussed in the Linear Solvers Basics. RCI means that user himself must perform certain
operations for the solver (for example, matrix-vector multiplications). When the solver needs the
results of such operations, the user must pass them to the solver. This gives the great universality to
the solver as it is independent of the specific implementation of the operations like the
matrix-vector multiplication. However, this approach requires some additional work from the user.
To simplify this task, the user can use the built-in sparse matrix-vector multiplications and
triangular solvers routines (see “Sparse BLAS Level 2 and Level 3” in the Chapter 2).

The solving process is conceptually divided into four steps, as shown in the Table 8-4, that lists the
names of the routines, and describes their general use.

To find a single solution vector for a single system of equations with a single right hand side, the
Intel MKL RCI CG interface routines are normally invoked in the order in which they are listed in
Table 8-4, with the exception of dcg_get routine that can be invoked at any place in the code.
Advanced users can change that order if they need it. For others it is strongly recommended to
follow the above order of calls.

NOTE. This method may fail to compute the solution or compute the wrong
solution if the matrix of the system is not symmetric and/or positive definite.

Table 8-4 RCI CG Interface Routines

Routine Description

dcg_init Initializes the solver.

dcg_check Checks the consistency and correctness of the user
defined data.

dcg Computes the approximate solution vector.

dcg_get Retrieves the number of the current iteration.

8-34

8 Intel® Math Kernel Library Reference Manual

The following diagram in Figure 8-3 indicates the typical order(s) in which the RCI CG interface
routines can be invoked.

Figure 8-3 Typical Order for Invoking RCI CG Interface Routines

i n i t i a l i z e
 |
 |
 |
 c h a n g e p a r a m e t e r s (m a n u a l l y)
 |
 |
 |

c h e c k < - - +
 | |
 | |
 | |
 s o l v e < - - +
 | |
 | |
 | |
 g e t < - - - +

Sparse Solver Routines 8

8-35

Figure 8-4 shows the general scheme of using the RCI CG routines.

Figure 8-4 General Scheme of Using RCI CG Routines

...
generate matrix A
generate preconditioner C (optional)
 call dcg_init(N, x, b, RCI_request, ipar, dpar, tmp)
 change parameters in ipar, dpar
 call dcg_check(N, x, b, RCI_request, ipar, dpar, tmp)

1 call dcg(N, x, b, RCI_request, ipar, dpar, tmp)

 if (RCI_request.eq.1)

 multiply the matrix A by tmp(1:N,1) and put the result in tmp(1:N,2)

 It is possible to use MKL Sparse BLAS Level 2 subroutines for this operation

c proceed with CG iterations
 go to 1
 end
 if (RCI_request.eq.2)
 do the stopping test
 if (test not passed) then
c proceed with CG iterations
 go to 1
 else
c stop CG iterations
 go to 2
 end if
 end
 if (RCI_request.eq.3) (optional)
 multiply the preconditioner C by tmp(1:N,3) and put the result in
tmp(1:N,2)
c proceed with CG iterations
 go to 1
 end

2 call dcg_get(N, x, b, RCI_request, ipar, dpar, tmp, itercount)

 current iteration number is in itercount

 the computed approximation is in the array x

8-36

8 Intel® Math Kernel Library Reference Manual

You can find example code that uses RCI CG interface routines to solve systems of linear
equations in the “Iterative Sparse Solver Code Example” section in the Appendix C.

Interface Description

All types in this documentation refer to the standard Fortran types, INTEGER, and DOUBLE
PRECISION.

C and C++ programmers should refer to the section “Calling Sparse Solver Routines From
C/C++” for information on mapping Fortran types to C/C++ types.

Routines Options

All of the RCI CG routines have parameters for passing various options to the routines. The values
for these parameters should be specified very carefully (see “Common Parameters”), and they can
be changed during computations according to the user's needs.

User Data Arrays

Many of the RCI CG routines take arrays of user data as input. For example, user arrays are passed
to the routine dcg to compute the solution of a system of linear algebraic equations. In order to
minimize storage requirements and improve overall run-time efficiency, the Intel MKL RCI CG
routines do not make copies of the user input arrays.

Common Parameters

n - INTEGER, this parameter sets the size of the problem in the dcg_init routine. All other
routines uses ipar(1) parameter instead.

x - DOUBLE PRECISION array, this parameter contains the current approximation to the solution
vector. Before the first call to the dcg routine, it contains the initial approximation to the solution
vector.

NOTE. Users must provide correct and consistent parameters to the
subroutines to avoid fails or wrong results.

NOTE. The default and initial values listed below are assigned to the
parameters by the calling the dcg_init routine.

Sparse Solver Routines 8

8-37

b - DOUBLE PRECISION array, this parameter contains the right-hand side vector.

RCI_request - INTEGER, this parameter is used to inform about the result of work of the RCI
CG routines. The negative values of the parameter indicate that the routine is completed with
errors or warnings. The 0 value indicates the successful completion of the task. The positive values
mean that the user must perform certain actions, specifically:

RCI_request= 1 - multiply the matrix by tmp(1:N,1), put the result in tmp(1:N,2), and
return the control to the dcg routine;

RCI_request= 2 - perform the stopping test(s). If they fail, return the control to the dcg
routine. Otherwise, the solution is found and stored in the vector x;

RCI_request= 3 - apply the preconditioner to tmp(:,3), put the result in tmp(:,4), and
return the control to the dcg routine.

Note that the dcg_get routine does not change the parameter RCI_request. This allows user to
use this routine inside the Reverse Communication computations.

ipar(128) - INTEGER array, this parameter is used to specify the integer set of data for the RCI
CG computations:

ipar(1) - specifies the size of the problem. The dcg_init routine assignes ipar(1)=n.
There is no default value for this parameter.

ipar(2) -specifies the type of output for error and warning messages that are generated by
the RCI CG routines. The default value 6 means that all messages are displayed on the screen.
Otherwise the error and warning messages are written to the newly created files
dcg_errors.txt and dcg_check_warnings.txt respectively. Note that if ipar(6) and
ipar(7) parameters are set to 0, error and warning messages are not generated at all.

ipar(3) - contains the current stage of the RCI CG computations, the initial value is 1.

ipar(4) - contains the current iteration number, the initial value is 0.

ipar(5) - specifies the maximum number of iterations, the default value is min {150,n}.

NOTE. It is highly non-recommended to alter this variable during
computations.

8-38

8 Intel® Math Kernel Library Reference Manual

ipar(6) - if the value is not equal to 0, the routines output error messages in accordance with
the parameter ipar(2). Otherwise, the routines do not output error messages at all, but they
return a negative value of the parameter RCI_request. The default value is 1.

ipar(7) - if the value is not equal to 0, the routines output warning messages in accordance
with the parameter ipar(2). Otherwise, the routines do not output warning messages at all,
but they return a negative value of the parameter RCI_request. The default value is 1.

ipar(8) - if the value is not equal to 0, the dcg routine performs the stopping test for the
maximum number of iterations, namely, . Otherwise, the method is
stopped and corresponding value is assigned to the RCI_request. If the value is 0, the dcg
routine does not perform this stopping test. The default value is 1.

ipar(9) - if the value is not equal to 0, the dcg routine performs the residual stopping test,
namely, . Otherwise, the method is
stopped and corresponding value is assigned to the RCI_request. If the value is 0, the dcg
routine does not perform this stopping test. The default value is 0.

ipar(10) - if the value is not equal to 0, the dcg routine requests for the user defined
stopping test by setting RCI_request=2. If the value is 0, the dcg routine does not perform
the user defined stopping test. The default value is 1.

ipar(11) - if the value is equal to 0, the dcg routine runs the Conjugate Gradient method.
Otherwise, the routine runs the Preconditioned Conjugate Gradient method, and asks the user
to perform the preconditioning step by setting the parameter RCI_request=3. The default
value is 0.

ipar(12:128) are reserved and not used in the current RCI CG routines.

dpar(128) - DOUBLE PRECISION array, this parameter is used to specify the double precision
set of data for the RCI CG computations, specifically:

dpar(1) - specifies the relative tolerance, the default value is 1.0D-6;
dpar(2) - specifies the absolute tolerance, the default value is 0.0D-0;

NOTE. At least one of the parameters ipar(8)-ipar(10) must be set to 1.

NOTE. Advanced users can define the array in the code as follows:
 INTEGER ipar(11)

ipar 4() ipar 5()≤

dpar 5() dpar 4()≤ dpar 1() dpar 3()⋅ dpar 2()+=

Sparse Solver Routines 8

8-39

dpar(3) - specifies the square norm of initial residual (if it is computed in the dcg routine),
the initial value is 0;
dpar(4) - service variable, it is equal to dpar(1)*dpar(3)+dpar(2) (if it is computed in
the dcg routine), the initial value is 0;
dpar(5) - specifies the square norm of current residual, the initial value is 0;
dpar(6) - specifies the square norm of residual from the previous iteration step (if available),
the initial value is 0.
dpar(7) - contains the "alpha" parameter of the CG method, the initial value is 0.
dpar(8) - contains the "beta" parameter of the CG method, it is equal to
dpar(5)/dpar(6), the initial value is 0.
dpar(9:128) are reserved and not used in the current RCI CG routines.

tmp(N,4) - DOUBLE PRECISION array, this parameter is used to supply the double precision
temporary space for the RCI CG computations, specifically:

tmp(:,1) - specifies the current search direction. The initial value is 0.
tmp(:,2) - contains the matrix multiplied by the current search direction. The initial value is
0.
tmp(:,3) - contains the current residual. The initial value is 0.
tmp(:,4) - contains the inverse of the preconditioner applied to the current residual. There is
no initial value for this parameter.

NOTE. Advanced users can define this array in the code as follows:
 DOUBLE PRECISION dpar(8)

NOTE. Advanced users can define this array in the code as
 DOUBLE PRECISION tmp(N,3) if they run CG iterations only.

8-40

8 Intel® Math Kernel Library Reference Manual

RCI CG Routines

dcg_init
Initializes the solver.

Syntax
dcg_init(n, x, b, RCI_request, ipar, dpar, tmp)

Input Arguments

n INTEGER. Contains the size of the problem, and size of arrays x and b.

x DOUBLE PRECISION array of size n. Contains the initial approximation
to the solution vector. Normally it is equal to 0 or to b.

b DOUBLE PRECISION array of size n. Contains the right-hand side
vector.

Output Arguments

RCI_request INTEGER. Informs about the task completion.

ipar INTEGER array of size 128. Refer to the “Common Parameters”.

dpar DOUBLE PRECISION array of size 128. Refer to the “Common
Parameters”.

tmp DOUBLE PRECISION array of size (n,4). Refer to the “Common
Parameters”.

Sparse Solver Routines 8

8-41

Description

The routine dcg_init is called to initialize the solver. After initialization all subsequent
invocations of Intel MKL RCI CG routines can use the values of all parameters that are returned
by dcg_init. Advanced users can skip this step and set the values to these parameters directly in
the corresponding routines.

Return Values

RCI_request= 0 The routine completed task normally.

RCI_request= -1 The routine failed to complete the task.

dcg_check
Checks the consistency and correctness of the user
defined data.

Syntax
dcg_check(n, x, b, RCI_request, ipar, dpar, tmp)

Input Arguments

n INTEGER. Contains the size of the problem, and size of arrays x and b.

x DOUBLE PRECISION array of size n. Contains the initial approximation
to the solution vector. Normally it is equal to 0 or to b.

b DOUBLE PRECISION array of size n. Contains the right-hand side
vector.

WARNING. Users can modify the contents of these arrays after they
are passed to the solver routine only if they are sure that the values are
correct and consistent. Basic check for correctness and consistency can
be done by calling the dcg_check routine, but it does not guarantee that
the method will work correctly.

8-42

8 Intel® Math Kernel Library Reference Manual

Output Arguments

RCI_request INTEGER. Informs about the task completion.

ipar INTEGER array of size 128. Refer to the “Common Parameters”.

dpar DOUBLE PRECISION array of size 128. Refer to the “Common
Parameters”.

tmp DOUBLE PRECISION array of size (n,4). Refer to the “Common
Parameters”.

Description

The routine dcg_check checks the consistency and correctness of the parameters to be passed to
the solver routine dcg. However this operation does not guarantee that the method will be able to
produce the correct result. It only reduces the chance to make a mistake in the parameters of the
method. Advanced users can skip it if they are sure that the correct data is specified in the solver
parameters.
Note that the lengths of all vectors are assumed to have been defined in a previous call to
dcg_init subroutine.

Return Values

RCI_request= 0 The routine completed task normally.

RCI_request= -100 The routine is interrupted, errors occur.

RCI_request= -1 The routine returns some warning messages.

RCI_request= -10 The routine changed some parameters to make them consistent or
correct.

RCI_request= -11 The routine returns some warning messages and changed some
parameters.

dcg
Computes the approximate solution vector.

Syntax
dcg(n, x, b, RCI_request, ipar, dpar, tmp)

Sparse Solver Routines 8

8-43

Input Arguments

n INTEGER. Contains the size of the problem, and size of arrays x and b.

x DOUBLE PRECISION array of size n. Contains the initial approximation
to the solution vector.

b DOUBLE PRECISION array of size n. Contains the right-hand side
vector.

tmp DOUBLE PRECISION array of size (n,4). Refer to the “Common
Parameters”.

Output Arguments

RCI_request INTEGER. Informs about the task completion status.

x DOUBLE PRECISION array of size n. Contains the updated
approximation to the solution vector.

ipar INTEGER array of size 128. Refer to the “Common Parameters”.

dpar DOUBLE PRECISION array of size 128. Refer to the “Common
Parameters”.

tmp DOUBLE PRECISION array of size (n,4). Refer to the “Common
Parameters”.

Description

The routine dcg computes the approximate solution vector using the CG method [Young71]. The
value that was in the vector x before the first call, the routine dcg uses as an initial approximation
to the solution. The parameter RCI_request inform the user about task completion status and ask
for results of certain operations that are required to the solver.
Note that the lengths of all vectors are assumed to have been defined in a previous call to the
dcg_init routine.

Return Values

RCI_request= 0 The routine completed task normally, the solution is found and stored in
the vector x. This occurs only if the stopping tests are fully automatic.
For the user defined stopping tests, see the comments to the
RCI_request= 2.

RCI_request= -1 The routine is interrupted because the maximal number of iterations is
reached, but the relative stopping criterion is not satisfied (this occurs
only if both tests are requested by the user).

8-44

8 Intel® Math Kernel Library Reference Manual

RCI_request= -2 The routine is interrupted because the attempt to divide by zero occurs.
This happens if the matrix is (almost) non-positive definite.

RCI_request= -100 The routine is interrupted because the residual norm is invalid.
(Probably, the data in dpar(6)were altered outside of the routine, or the
dcg_check routine was not called).

RCI_request= -101 The routine is interrupted because it enters the infinite cycle. (Probably,
the data in lpar(8), lpar(9), lpar(10) were altered outside of the
routine, or the dcg_check routine was not called).

RCI_request= 1 Asks user to multiply the matrix by tmp(1:N,1), put the result in the
tmp(1:N,2), and return the control back to the routine dcg.

RCI_request= 2 Asks user to perform the stopping test(s). If they fail, the user should
return the control back to the dcg routine. Otherwise, the solution is
found and stored in the vector x.

RCI_request= 3 Asks user to apply the preconditioner to tmp(:,3), put the result in the
tmp(:,4), and return the control back to the routine dcg.

dcg_get
Retrieves the number of the current iteration.

Syntax
dcg_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)

Input Arguments

n INTEGER. Contains the size of the problem, and size of arrays x and b.

x DOUBLE PRECISION array of size n. Contains the initial approximation
vector to the solution.

b DOUBLE PRECISION array of size n. Contains the right-hand side
vector.

RCI_request INTEGER. Contains information on the task completion.

ipar INTEGER array of size 128. Refer to the “Common Parameters”.

Sparse Solver Routines 8

8-45

dpar DOUBLE PRECISION array of size 128. Refer to the “Common
Parameters”.

tmp DOUBLE PRECISION array of size (n,4). Refer to the “Common
Parameters”.

Output Arguments

itercount INTEGER argument. Contains the value of the current iteration number.

Description

The routine dcg_get is called to retrieve the current iteration number of the solutions process.

Return Values

The routine dcg_get does not return any value.

Implementation Details

Several aspects of the Intel MKL RCI CG interface are platform-specific and language-specific. In
order to promote portability across platforms and ease of use across different languages, users are
encouraged to include one of the Intel MKL RCI CG language-specific header files. Currently,
there is one language specific header file for C programs.

These language-specific header file defines function prototypes and they are the following:

void dcg_init(int *n, double *x, double *b, int *rci_request, int *ipar,
double *dpar, double *tmp);

void dcg_check(int *n, double *x, double *b, int *rci_request, int *ipar,
double *dpar, double *tmp);

void dcg(int *n, double *x, double *b, int *rci_request, int *ipar,
double *dpar, double *tmp);

void dcg_get(int *n, double *x, double *b, int *rci_request, int *ipar,
double *dpar, double *tmp, int *itercount);

NOTE. Use of the Intel MKL RCI CG software without including the
language specific header file is not supported.

8-46

8 Intel® Math Kernel Library Reference Manual

Calling Sparse Solver Routines From C/C++
The calling interface for all of the Intel MKL sparse solver routines is designed to be used easily
from Fortran 77 or Fortran 90. However, any of these routines can be invoked directly from C or
C++ if users are familiar with the inter-language calling conventions of their platforms. These
conventions include, but are not limited to, the argument passing mechanisms for the language, the
data type mappings from Fortran to C/C++ and how Fortran external names are decorated on the
platform.

In order to promote portability and to avoid having most users deal with these issues, the C header
files provide a set of macros and type definitions that are intended to hide the inter-language
calling conventions and provide an interface to the Intel MKL sparse solver routines that appears
natural for C/C++.

For example, consider a hypothetical library routine, foo, that takes real vector of length n, and
returns an integer status. Fortran users would access such a function as:

INTEGER n, status, foo

REAL x(*)

status = foo(x, n)

As noted above, for C users to invoke foo, they would need to know what C data types correspond
to Fortran types INTEGER and REAL; what argument passing mechanism the Fortran compiler
uses; and what, if any, name decoration the is performed by the Fortran compiler when generating
the external symbol foo.

However, by using the C specific header file, for example mkl_solver.h, the invocation of foo,
within a C program would look like:

#include "mkl_solver.h"

_INTEGER_t i, status;

_REAL_t x[];

status = foo(x, i);

Note that in the above example, the header file mkl_solver.h provides definitions for the types
_INTEGER_t and _REAL_t that correspond to the Fortran types INTEGER and REAL.

In order to ease the use of Intel MKL sparse solver routines from C and C++, the general approach
of providing C definitions of Fortran types is used throughout the library. Specifically, if an
argument or result from a sparse solver is documented as having the Fortran language specific type
XXX, then the C and C++ header files provide an appropriate C language type definitions for the
name _XXX_t.

Sparse Solver Routines 8

8-47

Caveat for C Users

One of the key differences between C/C++ and Fortran is the argument passing mechanisms for
the languages: Fortran programs use pass-by-reference semantics and C/C++ programs use
pass-by-value semantics. In the example in the previous section, the header file, mkl_solver.h,
attempts to hide this difference, by defining a macro, foo that takes the address of the appropriate
arguments. For example, on Tru64 UNIX, mkl_solver.h would define the macro as:

#define foo(a,b) foo_((a), &(b))

An important point to note when using the macro form of foo is how it deals with constants. If we
write foo(x, 10), this is translated into foo_(x, &10). In a strictly ANSI compliant C
compiler, it is not permissible to take the address of a constant, so a strictly conforming program
would look like:

_INTEGER_t iTen = 10;

_REAL_t * x;

status = foo(x, iTen);

However, some C compilers in a non-ANSI standard mode allow taking the address of a constant
for ease of use with Fortran programs. Thus, the form shown as foo(x, 10) is acceptable for
these compilers.

9-1

Vector Mathematical
Functions 9

This chapter describes Vector Mathematical Functions Library (VML), which is designed to
compute elementary functions on vector arguments. VML is an integral part of the Intel® MKL
Kernel Library and the VML terminology is used here for simplicity in discussing this group of
functions.

VML includes a set of highly optimized implementations of certain computationally expensive
core mathematical functions (power, trigonometric, exponential, hyperbolic etc.) that operate on
vectors.

Application programs that might significantly improve performance with VML include nonlinear
programming software, integrals computation, and many others. VML provides interfaces both for
FORTRAN and C languages.

VML functions are divided into the following groups according to the operations they perform:

• VML Mathematical Functions compute values of elementary functions (such as sine, cosine,
exponential, logarithm and so on) on vectors with unit increment indexing.

• VML Pack/Unpack Functions convert to and from vectors with positive increment indexing,
vector indexing and mask indexing (see Appendix B for details on vector indexing methods).

• VML Service Functions allow the user to set /get the accuracy mode, and set/get the error
code.

VML mathematical functions take an input vector as argument, compute values of the respective
elementary function element-wise, and return the results in an output vector.

9-2

9 Intel® Math Kernel Library Reference Manual

Data Types and Accuracy Modes
Mathematical and pack/unpack vector functions in VML have been implemented for vector
arguments of single and double precision real data. Both Fortran- and C-interfaces to all functions,
including VML service functions, are provided in the library. The differences in naming and
calling the functions for Fortran- and C-interfaces are detailed in the Function Naming
Conventions section below.

Each vector function from VML (for each data format) can work in two modes: High Accuracy
(HA) and Low Accuracy (LA). For many functions, using the LA version will improve
performance at the cost of accuracy.
For some cases, the advantage of relaxing the accuracy improves performance very little so the
same function is employed for both versions. Error behavior depends not only on whether the HA
or LA version is chosen, but also depends on the processor on which the software runs.
In addition, special value behavior may differ between the HA and LA versions of the functions.
Any information on accuracy behavior can be found in the Intel MKL Release Notes.

Switching between the two modes (HA and LA) is accomplished by using vmlSetMode(mode)
(see Table 9-11). The function vmlGetMode()will return the currently used mode. The High
Accuracy mode is used by default.

Function Naming Conventions
Full names of all VML functions include only lowercase letters for Fortran-interface, whereas for
C-interface names the lowercase letters are mixed with uppercase.

VML mathematical and pack/unpack function full names have the following structure:

v <p> <name> <mod>

The initial letter v is a prefix indicating that a function belongs to VML.
The <p> field is a precision prefix that indicates the data type:

s REAL for Fortran–interface, or float for C–interface

d DOUBLE PRECISION for Fortran–interface, or double for C–interface.

The <name> field indicates the function short name, with some of its letters in uppercase for
C-interface (see for example Table 9-2 or Table 9-10).

Vector Mathematical Functions 9

9-3

The <mod> field (written in uppercase for C-interface) is present in pack/unpack functions only; it
indicates the indexing method used:

i indexing with positive increment

v indexing with index vector

m indexing with mask vector.

VML service function full names have the following structure:

vml <name>

where vml is a prefix indicating that a function belongs to VML, and <name> is the function
short name, which includes some uppercase letters for C-interface (see Table 9-10).
To call VML functions from an application program, use conventional function calls. For example,
the VML exponential function for single precision data can be called as

call vsexp (n, a, y) for Fortran–interface, or

vsExp (n, a, y); for C–interface.

Functions Interface
The interface to VML functions includes function full names and the arguments list. The Fortran-
and C-interface descriptions for different groups of VML functions are given below. Note that
some functions (Div, Pow, and Atan2) have two input vectors a and b as their arguments,
while SinCos function has two output vectors y and z.

VML Mathematical Functions

Fortran:

call v<p><name>(n, a, y)

call v<p><name>(n, a, b, y)

call v<p><name>(n, a, y, z)

C:

v<p><name>(n, a, y);

v<p><name>(n, a, b, y);

v<p><name>(n, a, y, z);

9-4

9 Intel® Math Kernel Library Reference Manual

Pack Functions

Fortran:

call v<p>packi(n, a, inca, y)

call v<p>packv(n, a, ia, y)

call v<p>packm(n, a, ma, y)

C:

v<p>PackI(n, a, inca, y);

v<p>PackV(n, a, ia, y);

v<p>PackM(n, a, ma, y);

Unpack Functions

Fortran:

call v<p>unpacki(n, a, y, incy)

call v<p>unpackv(n, a, y, iy)

call v<p>unpackm(n, a, y, my)

C:

v<p>UnpackI(n, a, y, incy);

v<p>UnpackV(n, a, y, iy);

v<p>UnpackM(n, a, y, my);

Service Functions

Fortran:

oldmode = vmlsetmode(mode)

mode = vmlgetmode()

olderr = vmlseterrstatus (err)

err = vmlgeterrstatus()

olderr = vmlclearerrstatus()

oldcallback = vmlseterrorcallback(callback)

callback = vmlgeterrorcallback()

oldcallback = vmlclearerrorcallback()

C:

Vector Mathematical Functions 9

9-5

oldmode = vmlSetMode(mode);

mode = vmlGetMode(void);

olderr = vmlSetErrStatus(err);

err = vmlGetErrStatus(void);

olderr = vmlClearErrStatus(void);

oldcallback = vmlSetErrorCallBack(callback);

callback = vmlGetErrorCallBack(void);

oldcallback = vmlClearErrorCallBack(void);

Input Parameters

n number of elements to be calculated

a first input vector

b second input vector

inca vector increment for the input vector a

ia index vector for the input vector a

ma mask vector for the input vector a

incy vector increment for the output vector y

iy index vector for the output vector y

my mask vector for the output vector y

err error code

mode VML mode

callback address of the callback function

Output Parameters

y first output vector

z second output vector

err error code

mode VML mode

olderr former error code

oldmode former VML mode

9-6

9 Intel® Math Kernel Library Reference Manual

oldcallbackaddress of the former callback function

The data types of the parameters used in each function are specified in the respective function
description section. All VML mathematical functions can perform in-place operations, which
means that the same vector can be used as both input and output parameter. This holds true for
functions with two input vectors as well, in which case one of them may be overwritten with the
output vector. For functions with two output vectors, one of them may coincide with the input
vector.

Vector Indexing Methods
Current VML mathematical functions work only with unit increment. Arrays with other
increments, or more complicated indexing, can be accommodated by gathering the elements into a
contiguous vector and then scattering them after the computation is complete.
The three indexing methods used to gather/scatter the vector elements in VML are as follows:

• positive increment

• index vector

• mask vector.

The indexing method used in a particular function is indicated by the indexing modifier (see the
description of the <mod> field in Function Naming Conventions). For more information on
indexing methods see Vector Arguments in VML in Appendix B.

Error Diagnostics
The VML library has its own error handler. The only difference for C- and Fortran- interfaces is
that the Intel MKL error reporting routine xerbla can be called after the Fortran- interface VML
function encounters an error, and this routine gets information on VML_STATUS_BADSIZE and
VML_STATUS_BADMEM input errors (see Table 9-13).

The VML error handler has the following properties:

1. The Error Status (vmlErrStatus) global variable is set after each VML function call.
The possible values of this variable are shown in the Table 9-13.

2. Depending on the VML mode, the error handler function invokes:

• errno variable setting. The possible values are shown in the Table 9-1.

• writing error text information to the stderr stream

Vector Mathematical Functions 9

9-7

• raising the appropriate exception on error, if necessary

• calling the additional error handler callback function.

VML Mathematical Functions
This section describes VML functions which compute values of elementary mathematical
functions on real vector arguments with unit increment.
Each function group is introduced by its short name, a brief description of its purpose, and the
calling sequence for each type of data both for Fortran- and C-interfaces, as well as a description
of the input/output arguments.

For all VML mathematical functions, the input range of parameters is equal to the mathematical
range of definition in the set of defined values for the respective data type. Several VML functions,
specifically Div, Exp, Sinh, Cosh, and Pow, can result in an overflow. For these functions, the
respective input threshold values that mark off the precision overflow are specified in the function
description section. Note that in these specifications, FLT_MAX denotes the maximum number
representable in single precision data type, while DBL_MAX denotes the maximum number
representable in double precision data type.

Table 9-1 Set Values of the errno Variable

Value of errno Description

0 No errors are detected.

EINVAL The array dimension is not
positive.

EACCES NULL pointer is passed.

EDOM At least one of array values is
out of a range of definition.

ERANGE At least one of array values
caused a singularity, overflow
or underflow.

9-8

9 Intel® Math Kernel Library Reference Manual

Table 9-2 lists available mathematical functions and data types associated with them.

Table 9-2 VML Mathematical Functions

Type of
Distribution

Data
Types

Description

 Power and Root Functions

Inv s, d Inversion of the vector elements

Div s, d Divide elements of one vector by elements of second
vector

Sqrt s, d Square root of vector elements

InvSqrt s, d Inverse square root of vector elements

Cbrt s, d Cube root of vector elements

InvCbrt s, d Inverse cube root of vector elements

Pow s, d Each vector element raised to the specified power

Powx s, d Each vector element raised to the constant power

 Exponential and Logarithmic Functions

Exp s, d Exponential of vector elements

Ln s, d Natural logarithm of vector elements

Log10 s, d Denary logarithm of vector elements

 Trigonometric Functions

Cos s, d Cosine of vector elements

Sin s, d Sine of vector elements

SinCos s, d Sine and cosine of vector elements

Tan s, d Tangent of vector elements

Acos s, d Inverse cosine of vector elements

Asin s, d Inverse sine of vector elements

Atan s, d Inverse tangent of vector elements

Atan2 s, d Four-quadrant inverse tangent of elements of two
vectors

 Hyperbolic Functions

Cosh s, d Hyperbolic cosine of vector elements

Sinh s, d Hyperbolic sine of vector elements

Tanh s, d Hyperbolic tangent of vector elements

Vector Mathematical Functions 9

9-9

Inv
Performs element by element inversion of the vector.

Syntax

Fortran:

call vsinv(n, a, y)
call vdinv(n, a, y)

C:

vsInv(n, a, y);
vdInv(n, a, y);

Input Parameters

Acosh s, d Inverse hyperbolic cosine (nonnegative) of vector
elements

Asinh s, d Inverse hyperbolic sine of vector elements

Atanh s, d Computes inverse hyperbolic tangent of vector
elements.

 Special Functions

Erf s, d Error function value of vector elements

Erfc s, d Complementary error function value of vector
elements

Name Type Description

FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be
calculated

Table 9-2 VML Mathematical Functions (continued)

Type of
Distribution

Data
Types

Description

9-10

9 Intel® Math Kernel Library Reference Manual

Output Parameters

Div
Performs element by element division of vector a by
vector b.

Syntax

Fortran:

call vsdiv(n, a, b, y)

call vddiv(n, a, b, y)

C:

vsDiv(n, a, b, y);

vdDiv(n, a, b, y);

a REAL, INTENT(IN) for
vsinv

DOUBLE PRECISION,
INTENT(IN) for
vdinv

const float* for vsInv

const double* for
vdInv

Fortran: Array that specifies
the input vector a
C: Pointer to an array that
contains the input vector a

Name Type Description

FORTRAN C

y REAL
for vsinv

DOUBLE PRECISION
for vdinv

float* for vsInv

double* for vdInv

Fortran: Array that specifies the
output vector y
C: Pointer to an array that
contains the output vector y

Name Type Description

FORTRAN C

Vector Mathematical Functions 9

9-11

Input Parameters

Table 9-3 Precision Overflow Thresholds for Div Function

Output Parameters

Sqrt
Computes a square root of vector elements.

Syntax

Fortran:

call vssqrt(n, a, y)
call vdsqrt(n, a, y)

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a, b REAL, INTENT(IN) for
vsdiv

DOUBLE PRECISION,
INTENT(IN) for
vddiv

const float* for
vsDiv

const double* for
vdDiv

Fortran: Arrays that specify the input
vectors a and b
C: Pointers to arrays that contain the
input vectors a and b

Data Type Threshold Limitations on Input Parameters

single precision abs(a[i]) < abs(b[i]) * FLT_MAX

double precision abs(a[i]) < abs(b[i]) * DBL_MAX

Name Type Description
FORTRAN C

y REAL
for vsdiv

DOUBLE PRECISION
for vddiv

float* for vsDiv

double* for vdDiv

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

9-12

9 Intel® Math Kernel Library Reference Manual

C:

vsSqrt(n, a, y);
vdSqrt(n, a, y);

Input Parameters

Output Parameters

InvSqrt
Computes an inverse square root of vector elements.

Syntax

Fortran:

call vsinvsqrt(n, a, y)
call vdinvsqrt(n, a, y)

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vssqrt

DOUBLE PRECISION,
INTENT(IN) for
vdsqrt

const float* for
vsSqrt

const double* for
vdSqrt

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vssqrt

DOUBLE PRECISION
for vdsqrt

float* for vsSqrt

double* for vdSqrt

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Vector Mathematical Functions 9

9-13

C:

vsInvSqrt(n, a, y);
vdInvSqrt(n, a, y);

Input Parameters

Output Parameters

Cbrt
Computes a cube root
of vector elements.

Syntax

Fortran:

call vscbrt(n, a, y)
call vdcbrt(n, a, y)

C:

vsCbrt(n, a, y);
vdCbrt(n, a, y);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vsinvsqrt

DOUBLE PRECISION,
INTENT(IN) for
vdinvsqrt

const float* for
vsInvSqrt

const double* for
vdInvSqrt

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vsinvsqrt

DOUBLE PRECISION
for vdinvsqrt

float* for vsInvSqrt

double* for vdInvSqrt

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

9-14

9 Intel® Math Kernel Library Reference Manual

Input Parameters

Output Parameters

InvCbrt
Computes an inverse cube root
of vector elements.

Syntax

Fortran:

call vsinvcbrt(n, a, y)

call vdinvcbrt(n, a, y)

C:

vsInvCbrt(n, a, y);

vdInvCbrt(n, a, y);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vscbrt

DOUBLE PRECISION,
INTENT(IN) for
vdcbrt

const float* for
vsCbrt

const double* for
vdCbrt

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vscbrt

DOUBLE PRECISION
for vdcbrt

float* for vsCbrt

double* for vdCbrt

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Vector Mathematical Functions 9

9-15

Input Parameters

Output Parameters

Pow
Computes a to the power b
for elements of two vectors.

Syntax

Fortran:

call vspow(n, a, b, y)

call vdpow(n, a, b, y)

C:

vsPow(n, a, b, y);

vdPow(n, a, b, y);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vsinvcbrt

DOUBLE PRECISION,
INTENT(IN) for
vdinvcbrt

const float* for
vsInvCbrt

const double* for
vdInvCbrt

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vsinvcbrt

DOUBLE PRECISION
for vdinvcbrt

float* for vsInvCbrt

double* for vdInvCbrt

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

9-16

9 Intel® Math Kernel Library Reference Manual

Input Parameters

Table 9-4 Precision Overflow Thresholds for Pow Function

Output Parameters

Description

The function Pow has certain limitations on the input range of a and b parameters. Specifically, if
a[i] is positive, then b[i] may be arbitrary. For negative or zero a[i], the value of b[i] must
be integer (either positive or negative).

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a, b REAL, INTENT(IN) for
vspow

DOUBLE PRECISION,
INTENT(IN) for
vdpow

const float* for
vsPow

const double* for
vdPow

Fortran: Arrays that specify the input
vectors a and b
C: Pointers to arrays that contain the
input vectors a and b

Data Type Threshold Limitations on Input Parameters

single precision abs(a[i]) < (FLT_MAX) 1/b[i]

double precision abs(a[i]) < (DBL_MAX) 1/b[i]

Name Type Description
FORTRAN C

y REAL
for vspow

DOUBLE PRECISION
for vdpow

float* for vsPow

double* for vdPow

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Vector Mathematical Functions 9

9-17

Powx
Raises each element of a vector
to the constant power.

Syntax

Fortran:

call vspowx(n, a, b, y)

call vdpowx(n, a, b, y)

C:

vsPowx(n, a, b, y);

vdPowx(n, a, b, y);

Input Parameters

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vspowx

DOUBLE PRECISION,
INTENT(IN) for
vdpowx

const float* for
vsPowx

const double* for
vdPowx

Fortran: Array a that specifies the input
vector
C: Pointer to an array that contains the
input vector a

b REAL, INTENT(IN) for
vspowx

DOUBLE PRECISION,
INTENT(IN) for
vdpowx

const float for
vsPowx

const double for
vdPowx

Fortran: Scalar value b that is the
constant power
C: Constant value for power b

9-18

9 Intel® Math Kernel Library Reference Manual

Table 9-5 Precision Overflow Thresholds for Powx Function

Output Parameters

Description

The function Powx has certain limitations on the input range of a and b parameters. Specifically,
if a[i] is positive, then b may be arbitrary. For negative or zero a[i], the value of b must be
integer (either positive or negative).

Exp
Computes an exponential
of vector elements.

Syntax

Fortran:

call vsexp(n, a, y)
call vdexp(n, a, y)

C:

vsExp(n, a, y);
vdExp(n, a, y);

Data Type Threshold Limitations on Input Parameters

single precision abs(a[i]) < (FLT_MAX) 1/b

double precision abs(a[i]) < (DBL_MAX) 1/b

Name Type Description
FORTRAN C

y REAL
for vspowx

DOUBLE PRECISION
for vdpowx

float* for vsPowx

double* for vdPowx

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Vector Mathematical Functions 9

9-19

Input Parameters

Table 9-6 Precision Overflow Thresholds for Exp Function

Output Parameters

Ln
Computes natural logarithm
of vector elements.

Syntax

Fortran:

call vsln(n, a, y)
call vdln(n, a, y)

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vsexp

DOUBLE PRECISION,
INTENT(IN) for
vdexp

const float* for
vsExp

const double* for
vdExp

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Data Type Threshold Limitations on Input Parameters

single precision a[i] < Ln(FLT_MAX)

double precision a[i] < Ln(DBL_MAX)

Name Type Description
FORTRAN C

y REAL
for vsexp

DOUBLE PRECISION
for vdexp

float* for vsExp

double* for vdExp

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

9-20

9 Intel® Math Kernel Library Reference Manual

C:

vsLn(n, a, y);
vdLn(n, a, y);

Input Parameters

Output Parameters

Log10
Computes denary logarithm
of vector elements.

Syntax

Fortran:

call vslog10(n, a, y)
call vdlog10(n, a, y)

C:

vsLog10(n, a, y);
vdLog10(n, a, y);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vsln

DOUBLE PRECISION,
INTENT(IN) for
vdln

const float* for vsLn

const double* for
vdLn

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vsln

DOUBLE PRECISION
for vdln

float* for vsLn

double* for vdLn

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Vector Mathematical Functions 9

9-21

Input Parameters

Output Parameters

Cos
Computes cosine of vector elements.

Syntax

Fortran:

call vscos(n, a, y)
call vdcos(n, a, y)

C:

vsCos(n, a, y);
vdCos(n, a, y);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vslog10

DOUBLE PRECISION,
INTENT(IN) for
vdlog10

const float* for
vsLog10

const double* for
vdLog10

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vslog10

DOUBLE PRECISION
for vdlog10

float* for vsLog10

double* for vdLog10

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

9-22

9 Intel® Math Kernel Library Reference Manual

Input Parameters

Output Parameters

Sin
Computes sine of vector elements.

Syntax

Fortran:

call vssin(n, a, y)
call vdsin(n, a, y)

C:

vsSin(n, a, y);
vdSin(n, a, y);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vscos

DOUBLE PRECISION,
INTENT(IN) for
vdcos

const float* for
vsCos

const double* for
vdCos

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vscos

DOUBLE PRECISION
for vdcos

float* for vsCos

double* for vdCos

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Vector Mathematical Functions 9

9-23

Input Parameters

Output Parameters

SinCos
Computes sine and cosine
of vector elements.

Syntax

Fortran:

call vssincos(n, a, y, z)
call vdsincos(n, a, y, z)

C:

vsSinCos(n, a, y, z);
vdSinCos(n, a, y, z);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vssin

DOUBLE PRECISION,
INTENT(IN) for
vdsin

const float* for
vsSin

const double* for
vdSin

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vssin

DOUBLE PRECISION
for vdsin

float* for vsSin

double* for vdSin

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

9-24

9 Intel® Math Kernel Library Reference Manual

Input Parameters

Output Parameters

Tan
Computes tangent of vector elements.

Syntax

Fortran:

call vstan(n, a, y)
call vdtan(n, a, y)

C:

vsTan(n, a, y);
vdTan(n, a, y);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vssincos

DOUBLE PRECISION,
INTENT(IN) for
vdsincos

const float* for
vsSinCos

const double* for
vdSinCos

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y, z REAL
for vssincos

DOUBLE PRECISION
for vdsincos

float* for vsSinCos

double* for vdSinCos

Fortran: Arrays that specify the output
vectors y (for sine values) and z (for
cosine values)
C: Pointers to arrays that contain the
output vectors y (for sine
values) and z (for cosine values)

Vector Mathematical Functions 9

9-25

Input Parameters

Output Parameters

Acos
Computes inverse cosine
of vector elements.

Syntax

Fortran:

call vsacos(n, a, y)
call vdacos(n, a, y)

C:

vsAcos(n, a, y);
vdAcos(n, a, y);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vstan

DOUBLE PRECISION,
INTENT(IN) for
vdtan

const float* for
vsTan

const double* for
vdTan

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vstan

DOUBLE PRECISION
for vdtan

float* for vsTan

double* for vdTan

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

9-26

9 Intel® Math Kernel Library Reference Manual

Input Parameters

Output Parameters

Asin
Computes inverse sine
of vector elements.

Syntax

Fortran:

call vsasin(n, a, y)
call vdasin(n, a, y)

C:

vsAsin(n, a, y);
vdAsin(n, a, y);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vsacos

DOUBLE PRECISION,
INTENT(IN) for
vdacos

const float* for
vsAcos

const double* for
vdAcos

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vsacos

DOUBLE PRECISION
for vdacos

float* for vsAcos

double* for vdAcos

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Vector Mathematical Functions 9

9-27

Input Parameters

Output Parameters

Atan
Computes inverse tangent
of vector elements.

Syntax

Fortran:

call vsatan(n, a, y)
call vdatan(n, a, y)

C:

vsAtan(n, a, y);
vdAtan(n, a, y);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vsasin

DOUBLE PRECISION,
INTENT(IN) for
vdasin

const float* for
vsAsin

const double* for
vdAsin

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vsasin

DOUBLE PRECISION
for vdasin

float* for vsAsin

double* for vdAsin

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

9-28

9 Intel® Math Kernel Library Reference Manual

Input Parameters

Output Parameters

Atan2
Computes four-quadrant inverse tangent of elements of
two vectors.

Syntax

Fortran:

call vsatan2(n, a, b, y)
call vdatan2(n, a, b, y)

C:

vsAtan2(n, a, b, y);
vdAtan2(n, a, b, y);

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vsatan

DOUBLE PRECISION,
INTENT(IN) for
vdatan

const float* for
vsAtan

const double* for
vdAtan

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vsatan

DOUBLE PRECISION
for vdatan

float* for vsAtan

double* for vdAtan

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Vector Mathematical Functions 9

9-29

Input Parameters

Output Parameters

Description

The elements of the output vector y are computed as the four-quadrant arctangent
of a[i] / b[i].

Cosh
Computes hyperbolic cosine
of vector elements.

Syntax

Fortran:

call vscosh(n, a, y)

call vdcosh(n, a, y)

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a, b REAL, INTENT(IN) for
vsatan2

DOUBLE PRECISION,
INTENT(IN) for
vdatan2

const float* for
vsAtan2

const double* for
vdAtan2

Fortran: Arrays that specify the input
vectors a and b
C: Pointers to arrays that contain the
input vectors a and b

Name Type Description
FORTRAN C

y REAL
for vsatan2

DOUBLE PRECISION
for vdatan2

float* for vsAtan2

double* for vdAtan2

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

9-30

9 Intel® Math Kernel Library Reference Manual

C:

vsCosh(n, a, y);

vdCosh(n, a, y);

Input Parameters

Table 9-7 Precision Overflow Thresholds for Cosh Function

Output Parameters

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vscosh

DOUBLE PRECISION,
INTENT(IN) for
vdcosh

const float* for
vsCosh

const double* for
vdCosh

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Data Type Threshold Limitations on Input Parameters

single precision -Ln(FLT_MAX)-Ln2 < a[i] < Ln(FLT_MAX)+Ln2

double precision -Ln(DBL_MAX)-Ln2 < a[i] < Ln(DBL_MAX)+Ln2

Name Type Description
FORTRAN C

y REAL
for vscosh

DOUBLE PRECISION
for vdcosh

float* for vsCosh

double* for vdCosh

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Vector Mathematical Functions 9

9-31

Sinh
Computes hyperbolic sine
of vector elements.

Syntax

Fortran:

call vssinh(n, a, y)
call vdsinh(n, a, y)

C:

vsSinh(n, a, y);
vdSinh(n, a, y);

Input Parameters

Table 9-8 Precision Overflow Thresholds for Sinh Function

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vssinh

DOUBLE PRECISION,
INTENT(IN) for
vdsinh

const float* for
vsSinh

const double* for
vdSinh

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Data Type Threshold Limitations on Input Parameters

single precision -Ln(FLT_MAX)-Ln2 < a[i] < Ln(FLT_MAX)+Ln2

double precision -Ln(DBL_MAX)-Ln2 < a[i] < Ln(DBL_MAX)+Ln2

9-32

9 Intel® Math Kernel Library Reference Manual

Output Parameters

Tanh
Computes hyperbolic tangent
of vector elements.

Syntax

Fortran:

call vstanh(n, a, y)
call vdtanh(n, a, y)

C:

vsTanh(n, a, y);
vdTanh(n, a, y);

Input Parameters

Name Type Description
FORTRAN C

y REAL
for vssinh

DOUBLE PRECISION
for vdsinh

float* for vsSinh

double* for vdSinh

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vstanh

DOUBLE PRECISION,
INTENT(IN) for
vdtanh

const float* for
vsTanh

const double* for
vdTanh

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Vector Mathematical Functions 9

9-33

Output Parameters

Acosh
Computes inverse hyperbolic cosine
(nonnegative) of vector elements.

Syntax

Fortran:

call vsacosh(n, a, y)

call vdacosh(n, a, y)

C:

vsAcosh(n, a, y);

vdAcosh(n, a, y);

Input Parameters

Name Type Description
FORTRAN C

y REAL
for vstanh

DOUBLE PRECISION
for vdtanh

float* for vsTanh

double* for vdTanh

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vsacosh

DOUBLE PRECISION,
INTENT(IN) for
vdacosh

const float* for
vsAcosh

const double* for
vdAcosh

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

9-34

9 Intel® Math Kernel Library Reference Manual

Output Parameters

Asinh
Computes inverse hyperbolic sine
of vector elements.

Syntax

Fortran:

call vsasinh(n, a, y)
call vdasinh(n, a, y)

C:

vsAsinh(n, a, y);
vdAsinh(n, a, y);

Input Parameters

Name Type Description
FORTRAN C

y REAL
for vsacosh

DOUBLE PRECISION
for vdacosh

float* for vsAcosh

double* for vdAcosh

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vsasinh

DOUBLE PRECISION,
INTENT(IN) for
vdasinh

const float* for
vsAsinh

const double* for
vdAsinh

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Vector Mathematical Functions 9

9-35

Output Parameters

Atanh
Computes inverse hyperbolic tangent
of vector elements.

Syntax

Fortran:

call vsatanh(n, a, y)
call vdatanh(n, a, y)

C:

vsAtanh(n, a, y);
vdAtanh(n, a, y);

Input Parameters

Name Type Description
FORTRAN C

y REAL
for vsasinh

DOUBLE PRECISION
for vdasinh

float* for vsAsinh

double* for vdAsinh

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vsatanh

DOUBLE PRECISION,
INTENT(IN) for
vdatanh

const float* for
vsAtanh

const double* for
vdAtanh

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

9-36

9 Intel® Math Kernel Library Reference Manual

Output Parameters

Erf
Computes the error function value
of vector elements.

Syntax

Fortran:

call vserf(n, a, y)
call vderf(n, a, y)

C:

vsErf(n, a, y);
vdErf(n, a, y);

Input Parameters

Name Type Description
FORTRAN C

y REAL
for vsatanh

DOUBLE PRECISION
for vdatanh

float* for vsAtanh

double* for vdAtanh

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vserf

DOUBLE PRECISION,
INTENT(IN) for
vderf

const float* for
vsErf

const double* for
vdErf

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Vector Mathematical Functions 9

9-37

Output Parameters

Description

The function Erf computes the error function values for elements of the input vector a and writes
them to the output vector y.

The error function is defined as given by:

.

Erfc
Computes the complementary error function value of
vector elements.

Syntax

Fortran:

call vserfc(n, a, y)
call vderfc(n, a, y)

C:

vsErfc(n, a, y);
vdErfc(n, a, y);

Name Type Description
FORTRAN C

y REAL
for vserf

DOUBLE PRECISION
for vderf

float* for vsErf

double* for vdErf

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

erf x() 2

π
------- e t

2
– td

0

x

∫=

9-38

9 Intel® Math Kernel Library Reference Manual

Input Parameters

Output Parameters

Description

The function Erfc computes the error function values for elements of the input vector a and
writes them to the output vector y.

The error function is defined as given by:

or, in other words,

.

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vserfc

DOUBLE PRECISION,
INTENT(IN) for
vderfc

const float* for
vsErfc

const double* for
vdErfc

Fortran: Array that specifies the input
vector a
C: Pointer to an array that contains the
input vector a

Name Type Description
FORTRAN C

y REAL
for vserfc

DOUBLE PRECISION
for vderfc

float* for vsErfc

double* for vdErfc

Fortran: Array that specifies the output
vector y
C: Pointer to an array that contains the
output vector y

erfc x() 1 erf x()–=

erfc x() 2

π
------- e t

2
– td

x

∞

∫=

Vector Mathematical Functions 9

9-39

VML Pack/Unpack Functions
This section describes VML functions which convert vectors with unit increment to and from
vectors with positive increment indexing, vector indexing and mask indexing (see Appendix B for
details on vector indexing methods).

Table 9-9 lists available VML Pack/Unpack functions, together with data types and indexing
methods associated with them.

Table 9-9 VML Pack/Unpack Functions

Pack
Copies elements of an array
with specified indexing to
a vector with unit increment.

Syntax

Fortran:

call vspacki(n, a, inca, y)
call vspackv(n, a, ia, y)

call vspackm(n, a, ma, y)

call vdpacki(n, a, inca, y)

call vdpackv(n, a, ia, y)

call vdpackm(n, a, ma, y)

C:

vsPackI(n, a, inca, y);

vsPackV(n, a, ia, y);

Function Short
Name

Data
Types

Indexing
Methods

Description

Pack s, d I,V,M Gathers elements of arrays, indexed by different
methods.

Unpack s, d I,V,M Scatters vector elements to arrays with different
indexing.

9-40

9 Intel® Math Kernel Library Reference Manual

vsPackM(n, a, ma, y);

vdPackI(n, a, inca, y);

vdPackV(n, a, ia, y);

vdPackM(n, a, ma, y);

Input Parameters

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vspacki, vspackv,
vspackm

DOUBLE PRECISION,
INTENT(IN) for
vdpacki, vdpackv,
vdpackm

const float* for
vsPackI, vsPackV,
vsPackM

const double* for
vdPackI, vdPackV,
vdPackM

Fortran: Array, DIMENSION
at least (1 + (n-1)*inca) for
vspacki/vdpacki,
at least max(n,max(ia[j])), j=0, …, n-1
for vspackv/vdpackv,
at least n for vspackm/vdpackm.
Specifies the input vector a

C: Pointer to an array that contains the input
vector a. Size of the array must be:
at least (1 + (n-1)*inca) for
vsPackI/vdPackI,
at least max(n,max(ia[j])), j=0, …, n-1
for vsPackV/vdPackV,
at least n for vsPackM/vdPackM.

inca INTEGER, INTENT(IN) for
vspacki, vdpacki

int for
vsPackI, vdPackI

Increment for the elements of a

ia INTEGER, INTENT(IN) for
vspackv, vdpackv

const int* for
vsPackV, vdPackV

Fortran: Array, DIMENSION at least n.
Specifies the index vector for the elements of a
C: Pointer to an array of size at least n that
contains the index vector for the elements of a

ma INTEGER, INTENT(IN) for
vspackm, vdpackm

const int* for
vsPackM, vdPackM

Fortran: Array, DIMENSION at least n.
Specifies the mask vector for the elements of a
C: Pointer to an array of size at least n that
contains the mask vector for the elements of a

Vector Mathematical Functions 9

9-41

Output Parameters

Unpack
Copies elements of a vector with unit increment to an
array with specified indexing.

Syntax

Fortran:

call vsunpacki(n, a, y, incy)

call vsunpackv(n, a, y, iy)

call vsunpackm(n, a, y, my)

call vdunpacki(n, a, y, incy)

call vdunpackv(n, a, y, iy)

call vdunpackm(n, a, y, my)

C:

vsUnpackI(n, a, y, incy);

vsUnpackV(n, a, y, iy);

vsUnpackM(n, a, y, my);

vdUnpackI(n, a, y, incy);

vdUnpackV(n, a, y, iy);

vdUnpackM(n, a, y, my);

Name Type Description
FORTRAN C

y REAL
for vspacki, vspackv,
vspackm

DOUBLE PRECISION
for vdpacki, vdpackv,
vdpackm

float* for vsPackI,
vsPackV, vsPackM

double* for vdPackI,
vdPackV, vdPackM

Fortran: Array, DIMENSION at least n.
Specifies the output vector y
C: Pointer to an array of size at least n that
contains the output vector y

9-42

9 Intel® Math Kernel Library Reference Manual

Input Parameters

Name Type Description
FORTRAN C

n INTEGER, INTENT(IN) int Number of elements to be calculated

a REAL, INTENT(IN) for
vsunpacki, vsunpackv,
vsunpackm
DOUBLE PRECISION,
INTENT(IN) for
vdunpacki, vdunpackv,
vdunpackm

const float* for
vsUnpackI,
vsUnpackV,
vsUnpackM

const double* for
vdUnpackI,
vdUnpackV,
vdUnpackM

Fortran: Array, DIMENSION at least n.
Specifies the input vector a.

C: Pointer to an array that contains the input
vector a.

incy INTEGER, INTENT(IN) for
vsunpacki, vdunpacki

int for
vsUnpackI,
vdUnpackI

Increment for the elements of y

iy INTEGER, INTENT(IN) for
vsunpackv, vdunpackv

const int* for
vsUnpackV,
vdUnpackV

Fortran: Array, DIMENSION at least n.
Specifies the index vector for the elements of y
C: Pointer to an array of size at least n that
contains the index vector for the elements of y

my INTEGER, INTENT(IN) for
vsunpackm, vdunpackm

const int* for
vsUnpackM,
vdUnpackM

Fortran: Array, DIMENSION at least n.
Specifies the mask vector for the elements of y
C: Pointer to an array of size at least n that
contains the mask vector for the elements of y

Vector Mathematical Functions 9

9-43

Output Parameters

VML Service Functions
This section describes VML functions which allow the user to set /get the accuracy mode, and
set/get the error code. All these functions are available both in Fortran- and C- interfaces.
Table 9-10 lists available VML Service functions and their short description.

Name Type Description
FORTRAN C

y REAL
for vsunpacki,
vsunpackv,
vsunpackm

DOUBLE PRECISION
for vdunpacki,
vdunpackv,
vdunpackm

float* for vsUnpackI,
vsUnpackV,
vsUnpackM

double* for
vdUnpackI,
vdUnpackV,
vdUnpackM

Fortran: Array, DIMENSION
at least (1 + (n-1)*incy) for
vsunpacki/vdunpacki,
at least max(n,max(iy[j])), j=0, …, n-1
for vsunpackv/vdunpackv,
at least n for vsunpackm/vdunpackm.

C: Pointer to an array that contains the input
vector y. Size of the array must be:
at least (1 + (n-1)*incy) for
vsUnpackI/vdUnpackI,
at least max(n,max(iy[j])), j=0, …, n-1
for vsUnpackV/vdUnpackV,
at least n for vsUnpackM/vdUnpackM.

Table 9-10 VML Service Functions

Function Short Name Description

SetMode Sets the VML mode

GetMode Gets the VML mode

SetErrStatus Sets the VML error status

GetErrStatus Gets the VML error status

ClearErrStatus Clears the VML error status

SetErrorCallBack Sets the additional error handler callback
function

GetErrorCallBack Gets the additional error handler callback
function

ClearErrorCallBack Deletes the additional error handler callback
function

9-44

9 Intel® Math Kernel Library Reference Manual

SetMode
Sets a new mode for VML functions according to mode
parameter and stores the previous VML mode to
oldmode.

Syntax

Fortran:

oldmode = vmlsetmode(mode)

C:

oldmode = vmlSetMode(mode);

Input Parameters

Output Parameters

Description

The mode parameter is designed to control accuracy, FPU and error handling options. Table 9-11
lists values of the mode parameter. All other possible values of the mode parameter may be
obtained from these values by using bitwise OR (|) operation to combine one value for accuracy,
one for FPU, and one for error control options. The default value of the mode parameter is
VML_HA | VML_ERRMODE_DEFAULT. Thus, the current FPU control word (FPU precision and the
rounding method) is used by default.

If any VML mathematical function requires different FPU precision, or rounding method, it
changes these options automatically and then restores the former values. The mode parameter
enables you to minimize switching the internal FPU mode inside each VML mathematical

Name Type Description
FORTRAN C

mode INTEGER, INTENT(IN) int VML mode to be set

Name Type Description
FORTRAN C

oldmode INTEGER int Former VML mode

Vector Mathematical Functions 9

9-45

function that works with similar precision and accuracy settings. To accomplish this, set the mode
parameter to VML_FLOAT_CONSISTENT for single precision functions, or to
VML_DOUBLE_CONSISTENT for double precision functions. These values of the mode parameter
are the optimal choice for the respective function groups, as they are required for most of the VML
mathematical functions. After the execution is over, set the mode to VML_RESTORE if you need to
restore the previous FPU mode.

Examples

Several examples of calling the function vmlSetMode() with different values of the mode
parameter are given below:

Table 9-11 Values of the mode Parameter

Value of mode Description

 Accuracy Control
VML_HA High accuracy versions of VML functions will be

used

VML_LA Low accuracy versions of VML functions will be
used

 Additional FPU Mode Control
VML_FLOAT_CONSISTENT The optimal FPU mode (control word) for single

precision functions is set, and the previous FPU
mode is saved

VML_DOUBLE_CONSISTENT The optimal FPU mode (control word) for double
precision functions is set, and the previous FPU
mode is saved

VML_RESTORE The previously saved FPU mode is restored

 Error Mode Control
VML_ERRMODE_IGNORE No action is set for computation errors

VML_ERRMODE_ERRNO On error, the errno variable is set

VML_ERRMODE_STDERR On error, the error text information is written to
stderr

VML_ERRMODE_EXCEPT On error, an exception is raised

VML_ERRMODE_CALLBACK On error, an additional error handler function is
called

VML_ERRMODE_DEFAULT On error, the errno variable is set, an
exception is raised, and an additional error
handler function is called

9-46

9 Intel® Math Kernel Library Reference Manual

Fortran:

oldmode = vmlsetmode(VML_LA)

call vmlsetmode(IOR(VML_LA, IOR(VML_FLOAT_CONSISTENT,
 VML_ERRMODE_IGNORE)))

call vmlsetmode(VML_RESTORE)

C:

vmlSetMode(VML_LA);

vmlSetMode(VML_LA | VML_FLOAT_CONSISTENT | VML_ERRMODE_IGNORE);

vmlSetMode(VML_RESTORE);

GetMode
Gets the VML mode.

Syntax

Fortran:

mod = vmlgetmode()

C:

mod = vmlGetMode(void);

Output Parameters

Description

The function vmlGetMode() returns the VML mode parameter which controls accuracy, FPU
and error handling options. The mod variable value is some combination of the values listed in the
Table 9-11. You can obtain some of these values using the respective mask from the Table 9-12,
for example:

Fortran:

Name Type Description
FORTRAN C

mod INTEGER int Packed mode parameter

Vector Mathematical Functions 9

9-47

mod = vmlgetmode()

accm = IAND(mod, VML_ACCURACY_MASK)

fpum = IAND(mod, VML_FPUMODE_MASK)

errm = IAND(mod, VML_ERRMODE_MASK)

C:

accm = vmlGetMode(void)& VML_ACCURACY_MASK;

fpum = vmlGetMode(void)& VML_FPUMODE _MASK;

errm = vmlGetMode(void)& VML_ERRMODE _MASK;

SetErrStatus
Sets the new VML error status according to err and
stores the previous VML error status to olderr.

Syntax

Fortran:

olderr = vmlseterrstatus(err)

C:

olderr = vmlSetErrStatus(err);

Input Parameters

Table 9-12 Values of Mask for the mode Parameter

Value of mask Description

VML_ACCURACY_MASK Specifies mask for accuracy mode selection.

VML_FPUMODE_MASK Specifies mask for FPU mode selection.

VML_ERRMODE_MASK Specifies mask for error mode selection.

Name Type Description
FORTRAN C

err INTEGER, INTENT(IN) int VML error status to be set

9-48

9 Intel® Math Kernel Library Reference Manual

Output Parameters

Table 9-13 lists possible values of the err parameter.

Table 9-13 Values of the VML Error Status

Examples:
vmlSetErrStatus(VML_STATUS_OK);

vmlSetErrStatus(VML_STATUS_ERRDOM);

vmlSetErrStatus(VML_STATUS_UNDERFLOW);

GetErrStatus
Gets the VML error status.

Syntax

Fortran:

err = vmlgeterrstatus()

Name Type Description
FORTRAN C

olderr INTEGER int Former VML error status

Error Status Description

VML_STATUS_OK The execution was completed successfully.

VML_STATUS_BADSIZE The array dimension is not positive.

VML_STATUS_BADMEM NULL pointer is passed.

VML_STATUS_ERRDOM At least one of array values is out of a range
of definition.

VML_STATUS_SING At least one of array values caused a
singularity.

VML_STATUS_OVERFLOW An overflow has happened during the
calculation process.

VML_STATUS_UNDERFLOW An underflow has happened during the
calculation process.

Vector Mathematical Functions 9

9-49

C:

err = vmlGetErrStatus(void);

Output Parameters

ClearErrStatus
Sets the VML error status to VML_STATUS_OK and
stores the previous VML error status to olderr.

Syntax

Fortran:

olderr = vmlclearerrstatus()

C:

olderr = vmlClearErrStatus(void);

Output Parameters

Name Type Description
FORTRAN C

err INTEGER int VML error status

Name Type Description
FORTRAN C

olderr INTEGER int Former VML error status

9-50

9 Intel® Math Kernel Library Reference Manual

SetErrorCallBack
Sets the additional error handler callback function and
gets the old callback function.

Syntax

Fortran:

oldcallback = vmlseterrorcallback(callback)

C:

oldcallback = vmlSetErrorCallBack(callback);

Input Parameters

Fortran:

callback Address of the callback function.
The callback function has the following format:

INTEGER FUNCTION ERRFUNC(par)

 TYPE (ERROR_STRUCTURE) par

 ! ...

 ! user error processing

 ! ...

 ERRFUNC = 0

 ! if ERRFUNC = 0 - standard VML error handler
 ! is called after the callback

 ! if ERRFUNC != 0 - standard VML error handler
 ! is not called

END

The passed error structure is defined as follows:

TYPE ERROR_STRUCTURE
 SEQUENCE

 INTEGER*4 ICODE

 INTEGER*4 IINDEX

 REAL*8 DBA1

 REAL*8 DBA2

 REAL*8 DBR1

Vector Mathematical Functions 9

9-51

 REAL*8 DBR2

 CHARACTER(64) CFUNCNAME

 INTEGER*4 IFUNCNAMELEN

 END TYPE ERROR_STRUCTURE

C:

callback Pointer to the callback function.
The callback function has the following format:

static int __stdcall MyHandler(DefVmlErrorContext*
pContext)

{
 /* Handler body */
};

The passed error structure is defined as follows:

typedef struct _DefVmlErrorContext

{

 int iCode; /* Error status value */

 int iIndex; /* Index for bad array
element, or bad array
dimension, or bad
array pointer */

 double dbA1; * Error argument 1 */

 double dbA2; /* Error argument 2 */

 double dbR1; /* Error result 1 */

 double dbR2; /* Error result 2 */

 char cFuncName[64]; /* Function name */

 int iFuncNameLen; /* Length of function name*/

} DefVmlErrorContext;

9-52

9 Intel® Math Kernel Library Reference Manual

Output Parameters

Description

The callback function is called on each VML mathematical function error if
VML_ERRMODE_CALLBACK error mode is set (see Table 9-11).

Use the vmlSetErrorCallBack() function if you need to define your own callback function
instead of default empty callback function.

The input structure for a callback function contains the following information
about the encountered error:

• the input value which caused an error

• location (array index) of this value

• the computed result value

• error code

• name of the function in which the error occurred.

You can insert your own error processing into the callback function. This may include correcting
the passed result values in order to pass them back and resume computation. The standard error
handler is called after the callback function only if it returns 0.

GetErrorCallBack
Gets the additional error handler
callback function.

Syntax

Fortran:

fun = vmlgeterrorcallback()

Name Type Description
FORTRAN C

oldcallback INTEGER int Fortran: Address of the former callback function
C: Pointer to the former callback function

Vector Mathematical Functions 9

9-53

C:

fun = vmlGetErrorCallBack(void);

Output Parameters

Fortran:

fun Address of the callback function.

C:

fun Pointer to the callback function.

ClearErrorCallBack
Deletes the additional error handler callback function
and retrieves the former callback function.

Syntax

Fortran:

oldcallback = vmlclearerrorcallback()

C:

oldcallback = vmlClearErrorCallBack(void);

Output Parameters

Name Type Description
FORTRAN C

oldcallback INTEGER int Fortran: Address of the former callback function
C: Pointer to the former callback function

10-1

Statistical Functions 10
This chapter describes the part of Intel® MKL that is known as Vector Statistical Library (VSL)
that is designed for the purpose of

• generating vectors of pseudorandom and quasi-random numbers

• performing mathematical operations of convolution and correlation.

The corresponding functionality is described in the respective Random Number Generators and
Convolution and Correlation sections.

Random Number Generators
VSL provides a set of routines implementing commonly used pseudo- or quasi-random number
generators with continuous and discrete distribution. To speed up performance, all these routines
were developed using the calls to the highly optimized Basic Random Number Generators
(BRNGs) and the library of vector mathematical functions (VML, see Chapter , “Vector
Mathematical Functions”).

VSL provides interfaces both for FORTRAN and C languages.

NOTE. For FORTRAN interface, VSL provides both subroutine-style
interface and function-style interface. Default interface in this case is a
function-style interface. Subroutine-style interface is provided for backward
compatibility only. To use subroutine-style interface, manually include
mkl_vsl_subroutine.fi file instead of mkl_vsl.fi by changing the line
include ‘mkl_vsl.fi’ in include\mkl.fi with the line include
‘mkl_vsl_subroutine.fi’.

10-2

10 Intel® Math Kernel Library Reference Manual

Function-style interface, unlike subroutine-style interface, allows user to get error status of each
routine.

All VSL routines can be classified into three major categories:

• Transformation routines for different types of statistical distributions, for example, uniform,
normal (Gaussian), binomial, etc. These routines indirectly call basic random number
generators, which are either pseudorandom number generators or quasi-random number
generators. Detailed description of the generators can be found in “Distribution Generators”
section.

• Service routines to handle random number streams: create, initialize, delete, copy, save to a
binary file, load from a binary file, get the index of a basic generator. The description of these
routines can be found in “Service Routines” section.

• Registration routines for basic pseudorandom generators and routines that obtain properties of
the registered generators (see “Advanced Service Routines” section).

The last two categories are referred to as service routines.

Conventions
In this chapter no specific differentiation is made between random, pseudorandom, and
quasi-random numbers, as well as between random, pseudorandom, and quasi-random number
generators unless the context requires otherwise. For details, refer to ‘Random Numbers’ section in
VSL Notes document provided with Intel MKL.

All generators of nonuniform distributions, both discrete and continuous, are built on the basis of
the uniform distribution generators, called Basic Random Number Generators (BRNGs). The
pseudorandom numbers with nonuniform distribution are obtained through an appropriate
transformation of the uniformly distributed pseudorandom numbers. Such transformations are
referred to as generation methods. For a given distribution, several generation methods can be
used. See VSL Notes for the description of methods available for each generator.

The stream descriptor specifies which BRNG should be used in a given transformation method.
See ‘Random Streams and RNGs in Parallel Computation’ section of VSL Notes.

The term computational node means a logical or physical unit that can process data in parallel.

Mathematical Notation
The following notation is used throughout the text:

Statistical Functions 10

10-3

N The set of natural numbers N = {1, 2, 3 ...}.

Z The set of integers Z = {... -3, -2, -1, 0, 1, 2, 3 ...}.

R The set of real numbers.

The floor of a (the largest integer less than or equal to a).

 ⊕ or xor Bitwise exclusive OR.

 or Binomial coefficient or combination
(α ∈ R, α ≥ 0; k ∈ N ∪ {0}).

For α > k binomial coefficient is defined as

If α < k, then

Cumulative Gaussian distribution function

defined over - ∞ < x < + ∞.

Φ(-∞) = 0, Φ(+∞) = 0.

The complete gamma function

where α > 0.

a

Cα
k α

k 
 

Cα
0 1.=

Cα
k α α 1–() ... α k– 1+()

k!
--- .=

Cα
k 0.=

Φ x()

Φ x() 1

2π
---------- exp y

2

2
------– 

  yd

∞–

x

∫=

Γ α()

Γ α() t
α 1–

e
t–
t,d

0

∞

∫=

10-4

10 Intel® Math Kernel Library Reference Manual

Naming Conventions
The names of all VSL functions in FORTRAN are lowercase; names in C may contain both
lowercase and uppercase letters.

The names of generator routines have the following structure:

where v is the prefix of a VSL vector function, and the field <type of result> is either s, d, or
i and specifies one of the following types:

Prefixes s and d apply to continuous distributions only, prefix i applies only to discrete case. The
prefix rng indicates that the routine is a random generator, and the <distribution> field
specifies the type of statistical distribution.

B(p,q) The complete beta function

where p > 0 and q > 0.

LCG(a,c,m) Linear Congruential Generator xn+1 = (axn + c) mod m ,
where a is called the multiplier, c is called the increment
and m is called the modulus of the generator.

MCG(a,m) Multiplicative Congruential Generator xn+1 = (axn) mod m
is a special case of Linear Congruential Generator,
where the increment c is taken to be 0.

GFSR(p,q) Generalized Feedback Shift Register Generator
xn = xn-p ⊕ xn-q .

v<type of result>rng<distribution> for FORTRAN-interface

v<type of result>Rng<distribution> for C-interface,

s REAL for FORTRAN-interface

float for C-interface

d DOUBLE PRECISION for FORTRAN-interface

double for C-interface

i INTEGER for FORTRAN-interface

int for C-interface

B p q,() t
p 1–

1 t–()q 1–
t,d

0

1

∫=

Statistical Functions 10

10-5

Names of service routines follow the template below:

vsl<name>,

where vsl is the prefix of a VSL service function. The field <name> contains a short function
name. For a more detailed description of service routines refer to “Service Routines” and
“Advanced Service Routines” sections.

Prototype of each generator routine corresponding to a given probability distribution fits the
following structure:

<function name>(method, stream, n, r, [<distribution parameters>]),
where

• method is the number specifying the method of generation. A detailed description of this
parameter can be found in “Distribution Generators” section. See the next page for method
name structure definition.

• stream defines the random stream descriptor and must have a nonzero value. Random
streams and their usage are discussed further in “Random Streams” and “Service Routines”.

• n defines the number of random values to be generated. If n is less than or equal to zero, no
values are generated. Furthermore, if n is negative, an error condition is set.

• r defines the destination array for the generated numbers. The dimension of the array must be
large enough to store at least n random numbers.

Additional parameters included into <distribution parameters> field are individual for
each generator routine and are described in detail in “Distribution Generators” section.

To invoke a distribution generator, use a call to the respective VSL routine. For example, to obtain
a vector r, composed of n independent and identically distributed random numbers with normal
(Gaussian) distribution, that have the mean value a and standard deviation sigma, write the
following:

for FORTRAN-interface

status = vsrnggaussian(method, stream, n, r, a, sigma)

for C-interface

status = vsRngGaussian(method, stream, n, r, a, sigma)

The name of a method parameter has the following structure:

VSL_METHOD_<precision><distribution>_<method>,

10-6

10 Intel® Math Kernel Library Reference Manual

where

Method name VSL_METHOD_<precision><distribution>_<method> should be used with
vsl<precision>Rng<distribution> function only, where

Table 10-1 provides specific predefined values of the method name. The third column contains
names of the functions that use the given method.

<precision> S for single precision continuous distribution

D for double precision continuous distribution

I for discrete distribution

<distribution> probability distribution

<method> method name.

<precision> s for single precision continuous distribution

d for double precision continuous distribution

i for discrete distribution

<distribution> probability distribution.

Table 10-1 Values of <method> in method parameter

Method Short Description Functions

STD Standard method. Currently there is only one
method for these functions.

Uniform (continuous),
Uniform (discrete),
UniformBits

BOXMULLER BOXMULLER generates normally distributed
random number x thru the pair of uniformly
distributed numbers u1 and u2 according to the
formula:

Gaussian, GaussianMV

BOXMULLER2 BOXMULLER2 generates normally distributed
random numbers x1 and x2 thru the pair of
uniformly distributed numbers u1 and u2
according to the formulas:

Gaussian, GaussianMV

x 2lnu1– 2πu2sin=

x1 2lnu1– 2πu2sin=

x2 2lnu1– 2πu2cos=

Statistical Functions 10

10-7

ICDF Inverse cumulative distribution function method. Exponential, Laplace,
Weibull, Cauchy, Rayleigh,
Lognormal, Gumbel,
Bernoulli, Geometric

GNORM For α > 1, a gamma distributed random number
is generated as a cube of properly scaled
normal random number;
for 0.6 ≤ α < 1, a gamma distributed random
number is generated using rejection from
Weibull distribution;

for α < 0.6, a gamma distributed random
number is obtained using transformation of
exponential power distribution;
for α = 1, gamma distribution is reduced to
exponential distribution.

Gamma

CJA For min(p, q) > 1, Cheng method is used;
for min(p, q) < 1, Jöhnk method is used, if

q + K · p2+C ≤ 0 (K= 0.852..., C= -0.956...)
otherwise,
Atkinson switching algorithm is used;
for max(p, q) < 1, method of Jöhnk is used;
for min(p, q) < 1, max(p, q) > 1, Atkinson
switching algorithm is used (CJA stands for the
first letters of Cheng, Jöhnk, Atkinson);
for p = 1 or q = 1, inverse cumulative distribution
function method is used;
for p = 1 and q = 1, beta distribution is reduced
to uniform distribution.

Beta

BTPE Acceptance/rejection method for
ntrial · min(p,1 - p)≥ 30 with decomposition
into 4 regions:
- 2 parallelograms
- triangle
- left exponential tail
- right exponential tail

Binomial

H2PE Acceptance/rejection method for large mode of
distribution with decomposition into 3 regions:
- rectangular
- left exponential tail
- right exponential tail

Hypergeometric

Table 10-1 Values of <method> in method parameter (continued)

Method Short Description Functions

10-8

10 Intel® Math Kernel Library Reference Manual

Basic Generators
VSL provides the following BRNGs, which differ in speed and other properties:

• the 32-bit multiplicative congruential pseudorandom number generator
MCG(1132489760, 231 - 1) [L’Ecuyer99]

• the 32-bit generalized feedback shift register pseudorandom number generator
GFSR(250,103) [Kirkpatrick81]

• the combined multiple recursive pseudorandom number generator MRG-32k3a
[L’Ecuyer99a]

• the 59-bit multiplicative congruential pseudorandom number generator MCG(1313, 259) from
NAG Numerical Libraries [NAG]

• Wichmann-Hill pseudorandom number generator (a set of 273 basic generators) from NAG
Numerical Libraries [NAG]

PTPE Acceptance/rejection method for λ ≥ 27 with
decomposition into 4 regions:
- 2 parallelograms
- triangle
- left exponential tail
- right exponential tail;

otherwise, table lookup method is used.

Poisson

POISNORM for λ ≥ 1, method based on Poisson inverse
CDF approximation by Gaussian inverse CDF;
for λ < 1, table lookup method is used.

Poisson, PoissonV

NBAR Acceptance/rejection method for

with decomposition into

5 regions:
- rectangular
- 2 trapezoid
- left exponential tail
- right exponential tail

NegBinomial

Table 10-1 Values of <method> in method parameter (continued)

Method Short Description Functions

a 1–() 1 p–()⋅
p

--------------------------------------- 100≥

Statistical Functions 10

10-9

• Mersenne Twister pseudorandom number generator MT19937 [Matsumoto98] with period
length 219937-1 of the produced sequence

• Set of 1024 Mersenne Twister pseudorandom number generators MT2203 [Matsumoto98],
[Matsumoto2000]. Each of them generates a sequence of period length equal to 22203-1.
Parameters of the generators provide mutual independence of the corresponding sequences.

Besides these pseudorandom number generators, VSL provides two basic quasi-random number
generators:

• Sobol quasi-number generator [Sobol76], [Bratley88], which works in dimensions from 1 up
to 40.

• Niederreiter quasi-random number generator [Bratley92], which works in dimensions from 1
up to 318.

Comparative performance analysis of the generators and some testing results can be found in VSL
Notes.

VSL provides means of registration of such user-designed generators through the steps described
in “Advanced Service Routines” section.

For some basic generators, VSL provides two methods of creating independent random streams in
multiprocessor computations, which are the leapfrog method and the block-splitting method.
These sequence splitting methods are also useful in sequential Monte Carlo.

In addition, MT2203 pseudorandom number generator is a set of 1024 generators designed to
create up to 1024 independent random sequences, which might be used in parallel Monte Carlo
simulations. Another generator that has the same feature is Wichmann-Hill. It allows creating up
to 273 independent random streams. The properties of the generators designed for parallel
computations are discussed in detail in [Coddington94].

You may want to design and use your own basic generators. VSL provides means of registration of
such user-designed generators through the steps described in “Advanced Service Routines”
section.

There is also an option to utilize externally generated random numbers in VSL distribution
generator routines. For this purpose VSL provides three additional basic random number
generators:

— for external random data packed in 32-bit integer array

— for external random data stored in double precision floating-point array; data is supposed
to be uniformly distributed over (a,b) interval

10-10

10 Intel® Math Kernel Library Reference Manual

— for external random data stored in single precision floating-point array; data is supposed
to be uniformly distributed over (a,b) interval.

Such basic generators are called the abstract basic random number generators.

See VSL Notes for a more detailed description of the generator properties.

BRNG Parameter Definition
Predefined values for the brng input parameter are as follows:

See VSL Notes for detailed description.

Table 10-2 Values of brng parameter

Value Short Description

VSL_BRNG_MCG31 A 31-bit multiplicative congruential generator.

VSL_BRNG_R250 A generalized feedback shift register generator.

VSL_BRNG_MRG32K3A A combined multiple recursive generator with two
components of order 3.

VSL_BRNG_MCG59 A 59-bit multiplicative congruential generator.

VSL_BRNG_WH A set of 273 Wichmann-Hill combined multiplicative
congruential generators.

VSL_BRNG_MT19937 A Mersenne Twister pseudorandom number
generator.

VSL_BRNG_MT2203 A set of 1024 Mersenne Twister pseudorandom
number generators.

VSL_BRNG_SOBOL A 32-bit Gray code-based generator producing
low-discrepancy sequences for dimensions

1 ≤ s ≤ 40.

VSL_BRNG_NIEDERR A 32-bit Gray code-based generator producing
low-discrepancy sequences for dimensions
1 ≤ s ≤ 318.

VSL_BRNG_IABSTRACT An abstract random number generator for integer
arrays.

VSL_BRNG_DABSTRACT An abstract random number generator for double
precision floating-point arrays.

VSL_BRNG_SABSTRACT An abstract random number generator for single
precision floating-point arrays.

Statistical Functions 10

10-11

Random Streams
Random stream (or stream) is an abstract source of pseudo- and quasi-random sequences of
uniform distribution. Users have no direct access to these sequences and operate with stream state
descriptors only. A stream state descriptor, which holds state descriptive information for a
particular BRNG, is a necessary parameter in each routine of a distribution generator. Only the
distribution generator routines operate with random streams directly. See VSL Notes for details.

User can create unlimited number of random streams by VSL Service Routines like NewStream
and utilize them in any distribution generator to get the sequence of numbers of given probability
distribution. When they are no longer needed, the streams should be deleted calling service routine
DeleteStream.

VSL provides service functions SaveStreamF and LoadStreamF to save random stream
descriptive data to a binary file and to read this data from a binary file respectively. See VSL Notes
for detailed description.

Data Types
FORTRAN:

TYPE VSL_STREAM_STATE

 INTEGER*4 descriptor1
 INTEGER*4 descriptor2

END TYPE VSL_STREAM_STATE

C:

typedef (void*) VSLStreamStatePtr;

See “Advanced Service Routines” for the format of the stream state structure for user-designed
generators.

NOTE. Random streams associated with abstract basic random number
generator are called the abstract random streams. See VSL Notes for
detailed description of abstract streams and their use.

10-12

10 Intel® Math Kernel Library Reference Manual

Error Reporting
VSL routines return status codes of the performed operation to report errors and warnings to the
calling program. Thus, it is up to the application to perform error-related actions and/or recover
from the error. The status codes are of integer type and have the following format:

VSL_ERROR_<ERROR_NAME> - indicates VSL errors

VSL_WARNING_<WARNING_NAME> - indicates VSL warnings.

VSL errors are of negative values while warnings are of positive values. The status code of zero
value indicates that the operation is completed successfully: VSL_ERROR_OK (or synonymic
VSL_STATUS_OK).

Table 10-3 Status Codes and Messages

Status Code Message

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_BAD_ARG Input argument value is not valid.

VSL_ERROR_NULL_PTR Input pointer argument is NULL.

VSL_ERROR_MEM_FAILURE System cannot allocate memory.

VSL_ERROR_INVALID_BRNG_INDEX BRNG index is not valid.

VSL_ERROR_BRNGS_INCOMPATIBLE Two BRNGs are not compatible for the operation.

VSL_ERROR_LEAPFROG_UNSUPPORTED BRNG does not support Leapfrog method.

VSL_ERROR_SKIPAHEAD_UNSUPPORTED BRNG does not support Skip-Ahead method.

VSL_ERROR_BAD_STREAM The random stream is invalid.

VSL_ERROR_FILE_OPEN Indicates an error in opening the file.

VSL_ERROR_FILE_READ Indicates an error in reading the file.

VSL_ERROR_FILE_WRITE Indicates an error in writing the file.

VSL_ERROR_FILE_CLOSE Indicates an error in closing the file.

VSL_ERROR_BAD_FILE_FORMAT File format is unknown.

VSL_ERROR_UNSUPPORTED_FILE_VER File format version is not supported.

VSL_ERROR_BRNG_TABLE_FULL Registration cannot be completed due to lack of free entries
in the table of registered BRNGs.

VSL_ERROR_BAD_STREAM_STATE_SIZE The value in StreamStateSize field is bad.

VSL_ERROR_BAD_WORD_SIZE The value in WordSize field is bad.

VSL_ERROR_BAD_NSEEDS The value in NSeeds field is bad.

Statistical Functions 10

10-13

Service Routines
Stream handling comprises routines for creating, deleting, or copying the streams and getting the
index of a basic generator. A random stream can also be saved to and then read from a binary file.
Table 10-4 lists all available service routines

VSL_ERROR_BAD_NBITS The value in NBits field is bad.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an invalid
number of updated entries in a buffer, that is, < 0 or >nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns zero as the
number of updated entries in a buffer.

VSL_ERROR_INVALID_ABSTRACT_STREAM The abstract random stream is invalid.

Table 10-4 Service Routines

Routine Short Description

NewStream Creates and initializes a random stream.

NewStreamEx Creates and initializes a random stream for the
generators with multiple initial conditions.

iNewAbstractStream Creates and initializes an abstract random stream
for integer arrays.

dNewAbstractStream Creates and initializes an abstract random stream
for double precision floating-point arrays.

sNewAbstractStream Creates and initializes an abstract random stream
for single precision floating-point arrays.

DeleteStream Deletes previously created stream.

CopyStream Copies a stream to another stream.

CopyStreamState Creates a copy of a random stream state.

SaveStreamF Writes a stream to a binary file.

LoadStreamF Reads a stream from a binary file.

LeapfrogStream Initializes the stream by the leapfrog method to
generate a subsequence of the original sequence.

SkipAheadStream Initializes the stream by the skip-ahead method.

Table 10-3 Status Codes and Messages (continued)

Status Code Message

10-14

10 Intel® Math Kernel Library Reference Manual

Most of the generator-based work comprises three basic steps:

1. Creating and initializing a stream (NewStream, NewStreamEx, CopyStream,
CopyStreamState, LeapfrogStream, SkipAheadStream).

2. Generating random numbers with given distribution, see “Distribution Generators”.

3. Deleting the stream (DeleteStream).

Note that you can concurrently create multiple streams and obtain random data from one or several
generators by using the stream state. You must use the DeleteStream function to delete all the
streams afterwards.

NewStream
Creates and initializes a random stream.

Syntax

Fortran:

status = vslnewstream(stream, brng, seed)

C:

status = vslNewStream(&stream, brng, seed);

GetStreamStateBrng Obtains the index of the basic generator
responsible for the generation of a given random
stream.

GetNumRegBrngs Obtains the number of currently registered basic
generators.

NOTE. In the above table, the vsl prefix in the function names is
omitted. In the function reference this prefix is always used in function
prototypes and code examples.

Table 10-4 Service Routines (continued)

Routine Short Description

Statistical Functions 10

10-15

Description

For a basic generator with number brng, this function creates a new stream and initializes it with a
32-bit seed. The seed is an initial value used to select a particular sequence generated by the basic
generator brng. The function is also applicable for generators with multiple initial conditions. See
VSL Notes for a more detailed description of stream initialization for different basic generators.

Input Parameters

Output Parameters

NOTE. This function is not applicable for abstract basic random number
generators. Please use vsliNewAbstractStream,
vslsNewAbstractStream or vsldNewAbstractStream to utilize integer,
single-precision or double-precision external random data respectively.

Name Type Description

FORTRAN C

brng INTEGER,
INTENT(IN)

int Index of the basic generator to initialize the stream. See
Table 10-2 for specific value.

seed INTEGER,
INTENT(IN)

unsigned
int

Initial condition of the stream. In the case of a
quasi-random number generator seed parameter is used to
set the dimension. If the dimension is greater than the
dimension that brng can support or is less than 1, then the
dimension is assumed to be equal to 1.

Name Type Description

FORTRAN C

stream TYPE(VSL_STREAM_STATE),
INTENT(OUT)

VSLStreamStatePtr* Stream state descriptor

10-16

10 Intel® Math Kernel Library Reference Manual

Return Values

NewStreamEx
Creates and initializes a random stream for generators
with multiple initial conditions.

Syntax

Fortran:

status = vslnewstreamex(stream, brng, n, params)

C:

status = vslNewStreamEx(&stream, brng, n, params);

Description

This function provides an advanced tool to set the initial conditions for a basic generator if its
input arguments imply several initialization parameters. Initial values are used to select a
particular sequence generated by the basic generator brng. Whenever possible, use NewStream,
which is analogous to vslNewStreamEx except that it takes only one 32-bit initial condition. In
particular, vslNewStreamEx may be used to initialize the state table in Generalized Feedback
Shift Register Generators (GFSRs). A more detailed description of this issue can be found in VSL
Notes.

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_INVALID_BRNG_INDEX BRNG index is invalid.

VSL_ERROR_MEM_FAILURE System cannot allocate memory for stream.

NOTE. This function is not applicable for abstract basic random number
generators. Please use vsliNewAbstractStream,
vslsNewAbstractStream or vsldNewAbstractStream to utilize integer,
single-precision or double-precision external random data respectively.

Statistical Functions 10

10-17

Input Parameters

Output Parameters

Return Values

Name Type Description

FORTRAN C

brng INTEGER,
INTENT(IN)

int Index of the basic generator to initialize the stream. See
Table 10-2 for specific value.

n INTEGER,
INTENT(IN)

unsigned
int

Number of initial conditions contained in params

params INTEGER,
INTENT(IN)

const
unsigned
int

Array of initial conditions necessary for the basic generator
brng to initialize the stream. In the case of a quasi-random
number generator only the first element in params
parameter is used to set the dimension. If the dimension is
greater than the dimension that brng can support or is
less than 1, then the dimension is assumed to be
equal to 1.

Name Type Description

FORTRAN C

stream TYPE(VSL_STREAM_STATE),
INTENT(OUT)

VSLStreamStatePtr* Stream state descriptor

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_INVALID_BRNG_INDEX BRNG index is invalid.

VSL_ERROR_MEM_FAILURE System cannot allocate memory for stream.

10-18

10 Intel® Math Kernel Library Reference Manual

iNewAbstractStream
Creates and initializes an abstract random stream for
integer arrays.

Syntax

Fortran:

status = vslinewabstractstream(stream, n, ibuf, icallback)

C:

status = vsliNewAbstractStream(&stream, n, ibuf, icallback);

Description

This function creates a new abstract stream and associates it with an integer array ibuf and user’s
callback function icallback that is intended for updating of ibuf content.

Input Parameters

Name Type Description

FORTRAN C

n INTEGER,
INTENT(IN)

int Size of the array ibuf

ibuf INTEGER,
INTENT(IN)

unsigned
int*

Array of n 32-bit integers

icallback See Note
below

See Note
below

Fortran : Address of the callback function used for ibuf
update
C : Pointer to the callback function used for ibuf update

Statistical Functions 10

10-19

Output Parameters

Note:

Format of the callback function in Fortran:

INTEGER FUNCTION IUPDATEFUNC[C](stream, n, ibuf, nmin, nmax, idx)

Format of the callback function in C:

int iUpdateFunc(VSLStreamStatePtr stream, int* n, unsigned int ibuf[],
int* nmin, int* nmax, int* idx);

The callback function returns the number of elements in the array actually updated by the function.
Table 10-5 gives the description of the callback function parameters.

Name Type Description

FORTRAN C

stream TYPE(VSL_STREAM_STATE),
INTENT(OUT)

VSLStreamStatePtr*Descriptor of the stream state
structure

TYPE(VSL_STREAM_STATE),POINTER :: stream[reference]

INTEGER(KIND=4),INTENT(IN) :: n[reference]

INTEGER(KIND=4),INTENT(OUT) :: ibuf[reference](0:n-1)

INTEGER(KIND=4),INTENT(IN) :: nmin[reference]

INTEGER(KIND=4),INTENT(IN) :: nmax[reference]

INTEGER(KIND=4),INTENT(IN) :: idx[reference]

Table 10-5 icallback Callback Function Parameters

Parameters Short Description

stream Abstract stream descriptor

n Size of ibuf

ibuf Array of random numbers
associated with the stream
stream

10-20

10 Intel® Math Kernel Library Reference Manual

Return Values

dNewAbstractStream
Creates and initializes an abstract random stream for
double precision floating-point arrays.

Syntax

Fortran:

status = vsldnewabstractstream(stream, n, dbuf, a, b, dcallback)

C:

status = vsldNewAbstractStream(&stream, n, dbuf, a, b, dcallback);

Description

This function creates a new abstract stream for double precision floating-point arrays with random
numbers of the uniform distribution over interval (a,b). The function associates the stream with a
double precision array dbuf and user’s callback function dcallback that is intended for updating
of dbuf content.

nmin Minimal quantity of numbers to
update

nmax Maximal quantity of numbers
that can be updated

idx Position in cyclic buffer ibuf to
start update 0 ≤ idx < n .

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_BAD_ARG Parameter n is not positive.

VSL_ERROR_MEM_FAILURE System cannot allocate memory for stream.

VSL_ERROR_NULL_PTR Either buffer or callback function parameter is a NULL
pointer.

Table 10-5 icallback Callback Function Parameters

Parameters Short Description

Statistical Functions 10

10-21

Input Parameters

Output Parameters

Note:

Format of the callback function in Fortran:

INTEGER FUNCTION DUPDATEFUNC[C](stream, n, dbuf, nmin, nmax, idx)

Name Type Description

FORTRAN C

n INTEGER,
INTENT(IN)

int Size of the array dbuf

dbuf DOUBLE
PRECISION,
INTENT(IN)

double* Array of n double precision floating-point random numbers
with uniform distribution over interval (a,b)

a DOUBLE
PRECISION,
INTENT(IN)

double Left boundary a

b DOUBLE
PRECISION,
INTENT(IN)

double Right boundary b

dcallback See Note
below

See Note
below

Fortran : Address of the callback function used for update
of the array dbuf
C : Pointer to the callback function used for update of the
array dbuf

Name Type Description

FORTRAN C

stream TYPE(VSL_STREAM_STATE),
INTENT(OUT)

VSLStreamStatePtr*Descriptor of the stream state
structure

TYPE(VSL_STREAM_STATE),POINTER :: stream[reference]

INTEGER(KIND=4),INTENT(IN) :: n[reference]

REAL(KIND=8), INTENT(OUT) :: dbuf[reference](0:n-1)

INTEGER(KIND=4),INTENT(IN) :: nmin[reference]

10-22

10 Intel® Math Kernel Library Reference Manual

Format of the callback function in C:

int dUpdateFunc(VSLStreamStatePtr stream, int* n, double dbuf[], int*
nmin, int* nmax, int* idx);

The callback function returns the number of elements in the array actually updated by the function.
Table 10-6 gives the description of the callback function parameters.

Return Values

INTEGER(KIND=4),INTENT(IN) :: nmax[reference]

INTEGER(KIND=4),INTENT(IN) :: idx[reference]

Table 10-6 dcallback Callback Function Parameters

Parameters Short Description

stream Abstract stream descriptor

n Size of dbuf

dbuf Array of random numbers
associated with the stream
stream

nmin Minimal quantity of numbers to
update

nmax Maximal quantity of numbers
that can be updated

idx Position in cyclic buffer dbuf to
start update 0 ≤ idx < n .

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_BAD_ARG Parameter n is not positive.

VSL_ERROR_MEM_FAILURE System cannot allocate memory for stream.

VSL_ERROR_NULL_PTR Either buffer or callback function parameter is a NULL
pointer.

Statistical Functions 10

10-23

sNewAbstractStream
Creates and initializes an abstract random stream for
single precision floating-point arrays.

Syntax

Fortran:

status = vslsnewabstractstream(stream, n, sbuf, a, b, scallback)

C:

status = vslsNewAbstractStream(&stream, n, sbuf, a, b, scallback);

Description

This function creates a new abstract stream for single precision floating-point arrays with random
numbers of the uniform distribution over interval (a,b). The function associates the stream with a
single precision array sbuf and user’s callback function scallback that is intended for updating
of sbuf content.

Input Parameters

Name Type Description

FORTRAN C

n INTEGER,
INTENT(IN)

int Size of the array sbuf

sbuf REAL,
INTENT(IN)

float* Array of n single precision floating-point random numbers
with uniform distribution over interval (a,b)

a REAL,
INTENT(IN)

float Left boundary a

b REAL,
INTENT(IN)

float Right boundary b

scallback See Note
below

See Note
below

Fortran : Address of the callback function used for update of
the array sbuf
C : Pointer to the callback function used for update of the
array sbuf

10-24

10 Intel® Math Kernel Library Reference Manual

Output Parameters

Note:

Format of the callback function in Fortran:INTEGER FUNCTION SUPDATEFUNC[C](stream,
n, sbuf, nmin, nmax, idx)

Format of the callback function in C:

int sUpdateFunc(VSLStreamStatePtr stream, int* n, float sbuf[], int*
nmin, int* nmax, int* idx);

The callback function returns the number of elements in the array actually updated by the function.
Table 10-7 gives the description of the callback function parameters.

Name Type Description

FORTRAN C

stream TYPE(VSL_STREAM_STATE),
INTENT(OUT)

VSLStreamStatePtr*Descriptor of the stream state
structure

TYPE(VSL_STREAM_STATE),POINTER :: stream[reference]

INTEGER(KIND=4),INTENT(IN) :: n[reference]

REAL(KIND=4), INTENT(OUT) :: sbuf[reference](0:n-1)

INTEGER(KIND=4),INTENT(IN) :: nmin[reference]

INTEGER(KIND=4),INTENT(IN) :: nmax[reference]

INTEGER(KIND=4),INTENT(IN) :: idx[reference]

Table 10-7 scallback Callback Function Parameters

Parameters Short Description

stream Abstract stream descriptor

n Size of sbuf

sbuf Array of random numbers
associated with the stream
stream

nmin Minimal quantity of numbers to
update

nmax Maximal quantity of numbers
that can be updated

Statistical Functions 10

10-25

Return Values

DeleteStream
Deletes a random stream.

Syntax

Fortran:

status = vsldeletestream(stream)

C:

status = vslDeleteStream(&stream);

Description

This function deletes the random stream created by one of the initialization functions.

idx Position in cyclic buffer sbuf to
start update 0 ≤ idx < n .

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_BAD_ARG Parameter n is not positive.

VSL_ERROR_MEM_FAILURE System cannot allocate memory for stream.

VSL_ERROR_NULL_PTR Either buffer or callback function parameter is a NULL
pointer.

Table 10-7 scallback Callback Function Parameters (continued)

Parameters Short Description

10-26

10 Intel® Math Kernel Library Reference Manual

Input/Output Parameters

Return Values

CopyStream
Creates a copy of a random stream.

Syntax

Fortran:

status = vslcopystream(newstream, srcstream)

C:

status = vslCopyStream(&newstream, srcstream);

Description

The function creates an exact copy of srcstream and stores its descriptor to newstream.

Name Type Description

FORTRAN C

stream TYPE(VSL_STREAM_STATE),
INTENT(OUT)

VSLStreamStatePtr* Fortran: stream state descriptor.
Must have non-zero value. After
the stream is successfully
deleted, the descriptor becomes
invalid.
C: stream state descriptor. Must
have non-zero value. After the
stream is successfully deleted,
the pointer is set to NULL.

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream parameter is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

Statistical Functions 10

10-27

Input Parameters

Output Parameters

Return Values

CopyStreamState
Creates a copy of a random stream state.

Syntax

Fortran:

status = vslcopystreamstate(deststream, srcstream)

Name Type Description

FORTRAN C

srcstream TYPE(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the
stream to be copied
C: pointer to the stream state
structure to be copied

Name Type Description

FORTRAN C

newstream TYPE(VSL_STREAM_STATE),
INTENT(OUT)

VSLStreamStatePtr*Copied stream descriptor

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR srcstream parameter is a NULL pointer.

VSL_ERROR_BAD_STREAM srcstream is not a valid random stream.

VSL_ERROR_MEM_FAILURE System cannot allocate memory for newstream.

10-28

10 Intel® Math Kernel Library Reference Manual

C:

status = vslCopyStreamState(deststream, srcstream);

Description

The function copies a stream state from srcstream to the existing deststream stream. Both the
streams should be generated by the same basic generator. En error message is generated when the
index of the BRNG that produced deststream stream differs from the index of the BRNG that
generated srcstream stream.

Unlike CopyStream function, which creates a new stream and copies both the stream state and
other data from srcstream, the function CopyStreamState copies only srcstream stream
state data to the generated deststream stream.

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

srcstream TYPE(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the
destination stream where the
state of scrstream stream is
copied
C: pointer to the stream state
structure, from which the state
structure is copied

Name Type Description

FORTRAN C

deststreamTYPE(VSL_STREAM_STATE),
INTENT(OUT)

VSLStreamStatePtr Fortran: descriptor of the
stream with the state to be
copied
C: pointer to the stream state
structure where the stream
state is copied

Statistical Functions 10

10-29

Return Values

SaveStreamF
Writes random stream descriptive data to binary file.

Syntax

Fortran:

errstatus = vslsavestreamf(stream, fname)

C:

errstatus = vslSaveStreamF(stream, fname);

Description

This function writes the random stream descriptive data to the binary file. Random stream
descriptive data is saved to the binary file with the name fname. Random stream stream must be
a valid stream created by NewStream-like or CopyStream-like service routines. If the stream
cannot be saved to the file, errstatus has a non-zero value. Random stream can be read from the
binary file using LoadStreamF function.

Input Parameters

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR Either srcstream or deststream is a NULL pointer.

VSL_ERROR_BAD_STREAM Either srcstream or deststream is not a valid
random stream.

VSL_ERROR_BRNGS_INCOMPATIBLE BRNG associated with srcstream is not compatible
with BRNG associated with deststream.

Name Type Description

FORTRAN C

stream TYPE(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Random stream to be written to
the file

10-30

10 Intel® Math Kernel Library Reference Manual

Output Parameters

Return Values

fname CHARACTER(*),
INTENT(IN)

char* Fortran: file name specified as a
C-style null-terminated string
C: file name specified as a
Fortran-style character string

Name Type Description

FORTRAN C

errstatus INTEGER int Error status of the operation

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR Either fname or stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_FILE_OPEN Indicates an error in opening the file.

VSL_ERROR_FILE_WRITE Indicates an error in writing the file.

VSL_ERROR_FILE_CLOSE Indicates an error in closing the file.

VSL_ERROR_MEM_FAILURE System cannot allocate memory for internal needs.

Name Type Description

FORTRAN C

Statistical Functions 10

10-31

LoadStreamF
Creates new stream and reads stream descriptive data
from binary file.

Syntax

Fortran:

errstatus = vslloadstreamf(stream, fname)

C:

errstatus = vslLoadStreamF(&stream, fname);

Description

This function creates a new stream and reads stream descriptive data from the binary file. A new
random stream is created using the stream descriptive data from the binary file with the name
fname. If the stream cannot be read (for example, I/O error occurs or the file format is invalid),
errstatus has a non-zero value. To save random stream to the file, use SaveStreamF function.

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

fname CHARACTER(*),
INTENT(IN)

char* Fortran: file name specified as a
C-style null-terminated string
C: file name specified as a
Fortran-style character string

Name Type Description

FORTRAN C

stream TYPE(VSL_STREAM_STATE),
INTENT(OUT)

VSLStreamStatePtr* Fortran: descriptor of a new
random stream
C: pointer to a new random
stream

10-32

10 Intel® Math Kernel Library Reference Manual

Return Values

LeapfrogStream
Initializes a stream using the leapfrog method.

Syntax

Fortran:

status = vslleapfrogstream(stream, k, nstreams)

C:

status = vslLeapfrogStream(stream, k, nstreams);

Description

The function allows generating random numbers in a random stream with non-unit stride. This
feature is particularly useful in distributing random numbers from original stream across
nstreams buffers without generating the original random sequence with subsequent manual

errstatus INTEGER int Error status of the operation

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR fname is a NULL pointer.

VSL_ERROR_FILE_OPEN Indicates an error in opening the file.

VSL_ERROR_FILE_WRITE Indicates an error in writing the file.

VSL_ERROR_FILE_CLOSE Indicates an error in closing the file.

VSL_ERROR_MEM_FAILURE System cannot allocate memory for internal needs.

VSL_ERROR_BAD_FILE_FORMAT Unknown file format.

VSL_ERROR_UNSUPPORTED_FILE_VER File format version is unsupported.

Name Type Description

FORTRAN C

Statistical Functions 10

10-33

distribution. One of the important applications of the leapfrog method is splitting the original
sequence into non-overlapping subsequences across nstreams computational nodes. The
function initializes the original random stream (see Figure 10-1) to generate random numbers for
the computational node k, 0 ≤ k < nstreams, where nstreams is the largest number of
computational nodes used.

The leapfrog method is supported only for those basic generators that allow splitting elements by
the leapfrog method, which is more efficient than simply generating them by a generator with
subsequent manual distribution across computational nodes. See VSL Notes for details.

For quasi-random basic generators the leapfrog method allows generating individual components
of quasi-random vectors instead of whole quasi-random vectors. In this case nstreams parameter
should be equal to the dimension of the quasi-random vector while k parameter should be the
index of a component to be generated (0 ≤ k < nstreams). Other parameters values are not
allowed.

The following code examples illustrate the initialization of three independent streams using the
leapfrog method:

Figure 10-1 Leapfrog Method

Example 10-1 FORTRAN Code for Leapfrog Method

…
TYPE(VSL_STREAM_STATE) ::stream1
TYPE(VSL_STREAM_STATE) ::stream2
TYPE(VSL_STREAM_STATE) ::stream3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st node stream

2nd node stream

3rd node stream

nstream = 3

At node 1 the stream contains 1, 4, 7, 10, 13, 16, 19, …
At node 2 the stream contains 2, 5, 8, 11, 14, 17, 20, …
At node 3 the stream contains 3, 6, 9, 12, 15, 18, 21, …

10-34

10 Intel® Math Kernel Library Reference Manual

! Creating 3 identical streams
status = vslnewstream(stream1, VSL_BRNG_MCG31, 174)
status = vslcopystream(stream2, stream1)
status = vslcopystream(stream3, stream1)

! Leapfrogging the streams
status = vslleapfrogstream(stream1, 0, 3)
status = vslleapfrogstream(stream2, 1, 3)
status = vslleapfrogstream(stream3, 2, 3)

! Generating random numbers
…
! Deleting the streams
status = vsldeletestream(stream1)
status = vsldeletestream(stream2)
status = vsldeletestream(stream3)
…

Example 10-2 C Code for Leapfrog Method

…
VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;

/* Creating 3 identical streams */
status = vslNewStream(&stream1, VSL_BRNG_MCG31, 174);
status = vslCopyStream(&stream2, stream1);
status = vslCopyStream(&stream3, stream1);

/* Leapfrogging the streams */
status = vslLeapfrogStream(stream1, 0, 3);
status = vslLeapfrogStream(stream2, 1, 3);
status = vslLeapfrogStream(stream3, 2, 3);

/* Generating random numbers */
…
/* Deleting the streams */
status = vslDeleteStream(&stream1);
status = vslDeleteStream(&stream2);
status = vslDeleteStream(&stream3);
…

Example 10-1 FORTRAN Code for Leapfrog Method (continued)

Statistical Functions 10

10-35

Input Parameters

Return Values

SkipAheadStream
Initializes a stream using the block-splitting method.

Syntax

Fortran:

status = vslskipaheadstream(stream, nskip)

C:

status = vslSkipAheadStream(stream, nskip);

Name Type Description

FORTRAN C

stream TYPE(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream
to which leapfrog method is
applied
C: pointer to the stream state
structure to which leapfrog
method is applied

k INTEGER, INTENT(IN) int Index of the computational node,
or stream number

nstreams INTEGER, INTENT(IN) int Largest number of
computational nodes, or stride

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_LEAPFROG_UNSUPPORTED BRNG does not support Leapfrog method.

10-36

10 Intel® Math Kernel Library Reference Manual

Description

This function skips a given number of elements in a random stream. This feature is particularly
useful in distributing random numbers from original random stream across different computational
nodes. If the largest number of random numbers used by a computational node is nskip, then the
original random sequence may be split by SkipAheadStream into non-overlapping blocks of
nskip size so that each block corresponds to the respective computational node. The number of
computational nodes is unlimited. This method is known as the block-splitting method or as the
skip-ahead method. (see Figure 10-2).

The skip-ahead method is supported only for those basic generators that allow skipping elements
by the skip-ahead method, which is more efficient than simply generating them by generator with
subsequent manual skipping. See VSL Notes for details.

Please note that for quasi-random basic generators the skip-ahead method works with components
of quasi-random vectors rather than with whole quasi-random vectors. Thus to skip NS
quasi-random vectors, set nskip parameter equal to the NS*DIMEN, where DIMEN is the
dimension of quasi-random vector.

Figure 10-2 Block-Splitting Method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st node stream

2nd node stream

3rd node stream

At node 1 the stream contains 1, 2, 3, 4, 5, 6, 7.
At node 2 the stream contains 8, 9, 10, 11, 12, 13, 14.
At node 3 the stream contains 15, 16, 17, 18, 19, 20, 21.

nskip=7

Statistical Functions 10

10-37

The following code examples illustrate how to initialize three independent streams using
SkipAheadStream function:

Example 10-3 FORTRAN Code for Block-Splitting Method

…
TYPE(VSL_STREAM_STATE) ::stream1
TYPE(VSL_STREAM_STATE) ::stream2
TYPE(VSL_STREAM_STATE) ::stream3

! Creating the 1st stream
status = vslnewstream(stream1, VSL_BRNG_MCG31, 174)

! Skipping ahead by 7 elements the 2nd stream
status = vslcopystream(stream2, stream1);
status = vslskipaheadstream(stream2, 7);

! Skipping ahead by 7 elements the 3rd stream
status = vslcopystream(stream3, stream2);
status = vslskipaheadstream(stream3, 7);

! Generating random numbers
…
! Deleting the streams
status = vsldeletestream(stream1)
status = vsldeletestream(stream2)
status = vsldeletestream(stream3)
…

Example 10-4 C Code for Block-Splitting Method

VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;

/* Creating the 1st stream */
status = vslNewStream(&stream1, VSL_BRNG_MCG31, 174);

/* Skipping ahead by 7 elements the 2nd stream */
status = vslCopyStream(&stream2, stream1);
status = vslSkipAheadStream(stream2, 7);

/* Skipping ahead by 7 elements the 3rd stream */
status = vslCopyStream(&stream3, stream2);
status = vslSkipAheadStream(stream3, 7);

/* Generating random numbers */
…
/* Deleting the streams */
status = vslDeleteStream(&stream1);

10-38

10 Intel® Math Kernel Library Reference Manual

Input Parameters

Return Values

GetStreamStateBrng
Returns index of a basic generator used for generation
of a given random stream.

Syntax

Fortran:

brng = vslgetstreamstatebrng(stream)

status = vslDeleteStream(&stream2);
status = vslDeleteStream(&stream3);
…

Name Type Description

FORTRAN C

stream TYPE(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream
to which block-splitting method
is applied
C: pointer to the stream state
structure to which block-splitting
method is applied

nskip INTEGER, INTENT(IN) int Number of skipped elements

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_SKIPAHEAD_UNSUPPORTED BRNG does not support Skip-Ahead method.

Example 10-4 C Code for Block-Splitting Method (continued)

Statistical Functions 10

10-39

C:

brng = vslGetStreamStateBrng(stream);

Description

This function retrieves the index of a basic generator used for generation of a given random
stream.

Input Parameters

Output Parameters

Return Values

Name Type Description

FORTRAN C

stream TYPE(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream
state
C: pointer to the stream state
structure

Name Type Description

FORTRAN C

brng INTEGER int Index of the basic generator
assigned for the generation of
stream ; negative in case of an
error

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

10-40

10 Intel® Math Kernel Library Reference Manual

GetNumRegBrngs
Obtains the number of currently registered basic
generators.

Syntax

Fortran:

nregbrngs = vslgetnumregbrngs()

C:

nregbrngs = vslGetNumRegBrngs(void);

Description

This function obtains the number of currently registered basic generators. Whenever user registers
a user-designed basic generator, the number of registered basic generators is incremented. The
maximum number of basic generators that can be registered is determined by
VSL_MAX_REG_BRNGS parameter.

Output Parameters

Name Type Description

FORTRAN C

nregbrngs INTEGER int Number of basic generators registered at the
moment of the function call

Statistical Functions 10

10-41

Distribution Generators
This section contains description of VSL routines for generating random numbers with different
types of distribution. Each function group is introduced by the type of underlying distribution and
contains a short description of its functionality, as well as specifications of the call sequence for
both FORTRAN and C-interface and the explanation of input and output parameters.
Table 10-8 and Table 10-9 list the random number generator routines, together with used data
types, output distributions, and sets correspondence between data types of the generator routines
and called basic random number generators.

Table 10-8 Continuous Distribution Generators

Type of
Distribution

Data
Types

BRNG
Data Type

Description

Uniform s, d s, d Uniform continuous distribution on the interval [a,b].

Gaussian s, d s, d Normal (Gaussian) distribution.

GaussianMV s, d s, d Multivariate normal (Gaussian) distribution.

Exponential s, d s, d Exponential distribution.

Laplace s, d s, d Laplace distribution (double exponential
distribution).

Weibull s, d s, d Weibull distribution.

Cauchy s, d s, d Cauchy distribution.

Rayleigh s, d s, d Rayleigh distribution.

Lognormal s, d s, d Lognormal distribution.

Gumbel s, d s, d Gumbel (extreme value) distribution.

Gamma s, d s, d Gamma distribution.

Beta s, d s, d Beta distribution.

Table 10-9 Discrete Distribution Generators

Type of
Distribution

Data
Types

BRNG
Data Type

Description

Uniform i d Uniform discrete
distribution on the interval
[a,b).

UniformBits i i Generator of integer
random values with
uniform bit distribution.

Bernoulli i s Bernoulli distribution.

10-42

10 Intel® Math Kernel Library Reference Manual

Continuous Distributions
This section describes routines for generating random numbers with continuous distribution.

Uniform
Generates random numbers with uniform distribution.

Syntax

Fortran:

status = vsrnguniform(method, stream, n, r, a, b)

status = vdrnguniform(method, stream, n, r, a, b)

C:

status = vsRngUniform(method, stream, n, r, a, b);

status = vdRngUniform(method, stream, n, r, a, b);

Geometric i s Geometric distribution.

Binomial i d Binomial distribution.

Hypergeometric i d Hypergeometric
distribution.

Poisson i s (for VSL_METHOD_IPOISSON_POISNORM)

s (for distribution parameter λ ≥ 27) and

d (for λ < 27) (for
VSL_METHOD_IPOISSON_PTPE)

Poisson distribution.

PoissonV i s Poisson distribution with
varying mean.

NegBinomial i d Negative binomial
distribution, or Pascal
distribution.

Table 10-9 Discrete Distribution Generators (continued)

Type of
Distribution

Data
Types

BRNG
Data Type

Description

Statistical Functions 10

10-43

Description

This function generates random numbers uniformly distributed over the interval [a, b], where a,
b are the left and right bounds of the interval, respectively, and a, b ∈ R ; a > b.

The probability density function is given by:

,

The cumulative distribution function is as follows:

,

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method; dummy and set
to 0 in case of uniform distribution.
The specific values are as follows:
VSL_METHOD_SUNIFORM_STD
VSL_METHOD_DUNIFORM_STD
Standard method. Currently there is
only one method for this distribution
generator.

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream
state structure.
C: pointer to the stream state
structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

fa b, x()
1

b a–
------------- , x a b,[]∈

 0, x a b,[]∉





= ∞ – x +∞. < <

Fa b, x()

 0, x a<

x a–
b a–
------------- , a x≤ b<

1, x b≥





= ∞ – x +∞. < <

10-44

10 Intel® Math Kernel Library Reference Manual

Output Parameters

a REAL, INTENT(IN) for
vsrnguniform

DOUBLE PRECISION,
INTENT(IN) for
vdrnguniform

float for
vsRngUniform

double for
vdRngUniform

Left bound a

b REAL, INTENT(IN) for
vsrnguniform

DOUBLE PRECISION,
INTENT(IN) for
vdrnguniform

float for
vsRngUniform

double for
vdRngUniform

Right bound b

Name Type Description

FORTRAN C

r REAL, INTENT(OUT) for
vsrnguniform

DOUBLE PRECISION,
INTENT(OUT) for
vdrnguniform

float* for
vsRngUniform

double* for
vdRngUniform

Vector of n random numbers uniformly
distributed over the interval [a,b]

Name Type Description

FORTRAN C

Statistical Functions 10

10-45

Return Values

Gaussian
Generates normally distributed random numbers.

Syntax

Fortran:

status = vsrnggaussian(method, stream, n, r, a, sigma)

status = vdrnggaussian(method, stream, n, r, a, sigma)

C:

status = vsRngGaussian(method, stream, n, r, a, sigma);

status = vdRngGaussian(method, stream, n, r, a, sigma);

Description

This function generates random numbers with normal (Gaussian) distribution with mean value a
and standard deviation σ, where a, σ ∈ R ; σ > 0.

The probability density function is given by:

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

 fa σ, x() 1

σ 2π
-------------- x a–()2

2σ2
--------------------–

 
 
 

exp= ∞ – x +∞. < <

10-46

10 Intel® Math Kernel Library Reference Manual

The cumulative distribution function is as follows:

The cumulative distribution function can be expressed in terms of standard normal
distribution Φ(x) as

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific values are as
follows:
VSL_METHOD_SGAUSSIAN_BOXMULLER
VSL_METHOD_SGAUSSIAN_BOXMULLER2
VSL_METHOD_DGAUSSIAN_BOXMULLER
VSL_METHOD_DGAUSSIAN_BOXMULLER2
See brief description of the methods
BOXMULLER and BOXMULLER2 in Table 10-1

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be generated

a REAL, INTENT(IN) for
vsrnggaussian

DOUBLE PRECISION,
INTENT(IN) for
vdrnggaussian

float for
vsRngGaussian

double for
vdRngGaussian

Mean value a

sigma REAL, INTENT(IN) for
vsrnggaussian

DOUBLE PRECISION,
INTENT(IN) for
vdrnggaussian

float for
vsRngGaussian

double for
vdRngGaussian

Standard deviation σ

Fa σ, x()
1

σ 2π
-------------- y a–()2

2σ2
--------------------–

 
 
 

exp y,d
∞–

x

∫= ∞ – x +∞. < <

Fa σ, x()

Fa σ, x() Φ x a–() σ⁄().=

Statistical Functions 10

10-47

Output Parameters

Return Values

GaussianMV
Generates random numbers from multivariate normal
distribution.

Syntax

Fortran:

status = vsrnggaussianmv(method, stream, n, r, dimen, mstorage, a, t)

status = vdrnggaussianmv(method, stream, n, r, dimen, mstorage, a, t)

C:

status = vsRngGaussianMV(method, stream, n, r, dimen, mstorage, a, t);

status = vdRngGaussianMV(method, stream, n, r, dimen, mstorage, a, t);

Name Type Description

FORTRAN C

r REAL, INTENT(OUT) for
vsrnggaussian

DOUBLE PRECISION,
INTENT(OUT) for
vdrnggaussian

float* for
vsRngGaussian

double* for
vdRngGaussian

Vector of n normally distributed random
numbers

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

10-48

10 Intel® Math Kernel Library Reference Manual

Description

This function generates random numbers with d-variate normal (Gaussian) distribution with mean
value a and variance-covariance matrix C, where a ∈ Rd ; C is a d x d symmetric
positive-definite matrix.

The probability density function is given by:

,

where x ∈ Rd .

Matrix C can be represented as C = TTT, where T is a lower triangular matrix - Cholesky factor of
C.

Instead of variance-covariance matrix C the generation routines require Cholesky factor of C in
input. To compute Cholesky factor of matrix C, the user may call MKL LAPACK routines for
matrix factorization: ?potrf or ?pptrf for
v?RngGaussianMV/v?rnggaussianmv routines (? means either s or d for single and double
precision respectively). See Application Notes for more details.

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific values are
as follows:
VSL_METHOD_SGAUSSIANMV_BOXMULLER
VSL_METHOD_SGAUSSIANMV_BOXMULLER2
VSL_METHOD_DGAUSSIANMV_BOXMULLER
VSL_METHOD_DGAUSSIANMV_BOXMULLER2
See brief description of the methods
BOXMULLER and BOXMULLER2 in Table 10-1

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be generated

 fa C, x() 1

det 2πC()
-------------------------- 1/2 x a–()TC 1–

x a–()–()exp=

Statistical Functions 10

10-49

dimen INTEGER, INTENT(IN) int Dimension d (d ≥ 1) of output random
vectors

mstorageINTEGER, INTENT(IN) int Fortran: Matrix storage scheme for upper
triangular matrix TT. The routine supports
three matrix storage schemes:
• VSL_MATRIX_STORAGE_FULL – all

d x d elements of the matrix TT are
passed, however, only the upper triangle
part is actually used in the routine.

• VSL_MATRIX_STORAGE_PACKED –
upper triangle elements of TT are packed
by rows into a one-dimensional array.

• VSL_MATRIX_STORAGE_DIAGONAL –
only diagonal elements of TT are
passed.

C: Matrix storage scheme for lower triangular
matrix T. The routine supports three matrix
storage schemes:
• VSL_MATRIX_STORAGE_FULL – all

d x d elements of the matrix T are
passed, however, only the lower triangle
part is actually used in the routine.

• VSL_MATRIX_STORAGE_PACKED –
lower triangle elements of T are packed
by rows into a one-dimensional array.

• VSL_MATRIX_STORAGE_DIAGONAL –
only diagonal elements of T are passed.

a REAL, INTENT(IN) for
vsrnggaussianmv

DOUBLE PRECISION,
INTENT(IN) for
vdrnggaussianmv

float* for
vsRngGaussianMV

double* for
vdRngGaussianMV

Mean vector a of dimension d

t REAL, INTENT(IN) for
vsrnggaussianmv

DOUBLE PRECISION,
INTENT(IN) for
vdrnggaussianmv

float* for
vsRngGaussianMV

double* for
vdRngGaussianMV

Fortran: Elements of the upper triangular
matrix passed according to the matrix TT

storage scheme mstorage.

C: Elements of the lower triangular matrix
passed according to the matrix T storage
scheme mstorage.

Name Type Description

FORTRAN C

10-50

10 Intel® Math Kernel Library Reference Manual

Output Parameters

Application Notes

Since matrices are stored in Fortran by columns, while in C they are stored by rows, the usage of
MKL factorization routines (assuming Fortran matrices storage) in combination with multivariate
normal RNG (assuming C matrix storage) is slightly different in C and Fortran. The following
tables help in using these routines in C and Fortran. For further information please refer to the
appropriate VSL example file.

Name Type Description

FORTRAN C

r REAL, INTENT(OUT) for
vsrnggaussianmv

DOUBLE PRECISION,
INTENT(OUT) for
vdrnggaussianmv

float* for
vsRngGaussianMV

double* for
vdRngGaussianMV

Array of n random vectors of dimension
dimen

Table 10-10 Using Cholesky Factorization Routines in Fortran

Matrix Storage Scheme Variance-Covariance
Matrix Argument

Factorization
Routine

UPLO
Parameter in
Factorization
Routine

Result of
Factorization
as Input
Argument for
RNG

VSL_MATRIX_STORAGE_FULL C in Fortran
two-dimensional array

spotrf for
vsrnggaussianmv

dpotrf for
vdrnggaussianmv

‘U’ Upper triangle
of TT. Lower
triangle is not
used.

VSL_MATRIX_STORAGE_PACKED Lower triangle of C
packed by columns
into one-dimensional
array

spptrf for
vsrnggaussianmv

dpptrf for
vdrnggaussianmv

‘L’ Upper triangle
of TTpacked by
rows into
one-dimension
al array.

Statistical Functions 10

10-51

Return Values

Table 10-11 Using Cholesky Factorization Routines in C

Matrix Storage Scheme Variance-Covariance
Matrix Argument

Factorization
Routine

UPLO
Parameter in
Factorization
Routine

Result of
Factorization
as Input
Argument for
RNG

VSL_MATRIX_STORAGE_FULL C in C
two-dimensional array

spotrf for
vsRngGaussianMV

dpotrf for
vdRngGaussianMV

‘U’ Upper triangle
of TT. Lower
triangle is not
used.

VSL_MATRIX_STORAGE_PACKED Lower triangle of C
packed by columns
into one-dimensional
array

spptrf for
vsRngGaussianMV

dpptrf for
vdRngGaussianMV

‘L’ Upper triangle
of TTpacked by
rows into
one-dimension
al array.

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

10-52

10 Intel® Math Kernel Library Reference Manual

Exponential
Generates exponentially distributed random numbers.

Syntax

Fortran:

status = vsrngexponential(method, stream, n, r, a, beta)

status = vdrngexponential(method, stream, n, r, a, beta)

C:

status = vsRngExponential(method, stream, n, r, a, beta);

status = vdRngExponential(method, stream, n, r, a, beta);

Description

This function generates random numbers with exponential distribution that has displacement a and
scalefactor β, where a, β ∈ R ; β > 0.

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

 fa β, x()
1
β
--- x a–()–() β⁄(), x a≥exp

0, x a<





= ∞ – x +∞ < <

Fa β, x()
1 x a–()–() β⁄(), x a≥exp–

 0, x a<



= ∞ – x +∞ < <

Statistical Functions 10

10-53

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific values
are as follows:
VSL_METHOD_SEXPONENTIAL_ICDF
VSL_METHOD_DEXPONENTIAL_ICDF
Inverse cumulative distribution function
method

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

a REAL, INTENT(IN) for
vsrngexponential

DOUBLE PRECISION,
INTENT(IN) for
vdrngexponential

float for
vsRngExponential

double for
vdRngExponential

Displacement a

beta REAL, INTENT(IN) for
vsrngexponential

DOUBLE PRECISION,
INTENT(IN) for
vdrngexponential

float for
vsRngExponential

double for
vdRngExponential

Scalefactor β

Name Type Description

FORTRAN C

r REAL, INTENT(OUT) for
vsrngexponential

DOUBLE PRECISION,
INTENT(OUT) for
vdrngexponential

float* for
vsRngExponential

double* for
vdRngExponential

Vector of n exponentially distributed
random numbers

10-54

10 Intel® Math Kernel Library Reference Manual

Return Values

Laplace
Generates random numbers with Laplace distribution.

Syntax

Fortran:

status = vsrnglaplace(method, stream, n, r, a, beta)

status = vdrnglaplace(method, stream, n, r, a, beta)

C:

status = vsRngLaplace(method, stream, n, r, a, beta);

status = vdRngLaplace(method, stream, n, r, a, beta);

Description

This function generates random numbers with Laplace distribution with mean value (or average) a
and scalefactor β, where a, β ∈ R ; β > 0.
The scalefactor value determines the standard deviation as

 .

The probability density function is given by:

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

σ β 2=

Statistical Functions 10

10-55

, .

The cumulative distribution function is as follows:

, .

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific
values are as follows:
VSL_METHOD_SLAPLACE_ICDF
VSL_METHOD_DLAPLACE_ICDF
Inverse cumulative distribution
function method

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream
state structure.
C: pointer to the stream state
structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

a REAL, INTENT(IN) for
vsrnglaplace

DOUBLE PRECISION,
INTENT(IN) for
vdrnglaplace

float for
vsRngLaplace

double for
vdRngLaplace

Mean value a

 fa β, x() 1

2β
---------- x a–

β
----------------– 

 exp= ∞ – x +∞ < <

Fa β, x()

1
2
--- x a–

β
----------------– 

  , x a<exp

1
1
2
--- x a–

β
----------------– 

  exp– , x a≥








= ∞ – x +∞ < <

10-56

10 Intel® Math Kernel Library Reference Manual

Output Parameters

Return Values

beta REAL, INTENT(IN) for
vsrnglaplace

DOUBLE PRECISION,
INTENT(IN) for
vdrnglaplace

float for
vsRngLaplace

double for
vdRngLaplace

Scalefactor β

Name Type Description

FORTRAN C

r REAL, INTENT(OUT) for
vsrnglaplace

DOUBLE PRECISION,
INTENT(OUT) for
vdrnglaplace

float* for
vsRngLaplace

double* for
vdRngLaplace

Vector of n Laplace distributed random
numbers

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

Name Type Description

FORTRAN C

Statistical Functions 10

10-57

Weibull
Generates Weibull distributed random numbers.

Syntax

Fortran:

status = vsrngweibull(method, stream, n, r, alpha, a, beta)

status = vdrngweibull(method, stream, n, r, alpha, a, beta)

C:

status = vsRngWeibull(method, stream, n, r, alpha, a, beta);

status = vdRngWeibull(method, stream, n, r, alpha, a, beta);

Description

This function generates Weibull distributed random numbers with displacement a, scalefactor β,
and shape α, where α, β, a ∈ R ; α > 0 , β > 0.

The probability density function is given by:

The cumulative distribution function is as follows:

, .

 fa α β, , x()
α
βα
------ x a–()α 1– x a–

β
------------- 
  α

– 
  , x a≥exp

 0, x a<





=

Fa α β, , x()
1

x a–
β

------------- 
  α

– 
  , x a≥exp–

 0, x a<





= ∞ – x +∞ < <

10-58

10 Intel® Math Kernel Library Reference Manual

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific
values are as follows:
VSL_METHOD_SWEIBULL_ICDF
VSL_METHOD_DWEIBULL_ICDF
Inverse cumulative distribution
function method

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream
state structure.
C: pointer to the stream state
structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

alpha REAL, INTENT(IN) for
vsrngweibull

DOUBLE PRECISION,
INTENT(IN) for
vdrngweibull

float for
vsRngWeibull

double for
vdRngWeibull

Shape α

a REAL, INTENT(IN) for
vsrngweibull

DOUBLE PRECISION,
INTENT(IN) for
vdrngweibull

float for
vsRngWeibull

double for
vdRngWeibull

Displacement a

beta REAL, INTENT(IN) for
vsrngweibull

DOUBLE PRECISION,
INTENT(IN) for
vdrngweibull

float for
vsRngWeibull

double for
vdRngWeibull

Scalefactor β

Statistical Functions 10

10-59

Output Parameters

Return Values

Cauchy
Generates Cauchy distributed random values.

Syntax

Fortran:

status = vsrngcauchy(method, stream, n, r, a, beta)

status = vdrngcauchy(method, stream, n, r, a, beta)

C:

status = vsRngCauchy(method, stream, n, r, a, beta);

status = vdRngCauchy(method, stream, n, r, a, beta);

Name Type Description

FORTRAN C

r REAL, INTENT(OUT) for
vsrngweibull

DOUBLE PRECISION,
INTENT(OUT) for
vdrngweibull

float* for
vsRngWeibull

double* for
vdRngWeibull

Vector of n Weibull distributed random
numbers

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

10-60

10 Intel® Math Kernel Library Reference Manual

Description

This function generates Cauchy distributed random numbers with displacement a and scalefactor
β, where a, β ∈ R ; β > 0.

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific
values are as follows:
VSL_METHOD_SCAUCHY_ICDF
VSL_METHOD_DCAUCHY_ICDF
Inverse cumulative distribution
function method

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream
state structure.
C: pointer to the stream state
structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

fa β, x() 1

πβ 1
x a–

β
------------- 
  2

+ 
 

---= ∞ – x +∞ < <

Fa β, x() 1
2
--- 1

π
---arctan

x a–
β

------------- 
 += ∞ – x +∞ < <

Statistical Functions 10

10-61

Output Parameters

Return Values

a REAL, INTENT(IN) for
vsrngcauchy

DOUBLE PRECISION,
INTENT(IN) for
vdrngcauchy

float for
vsRngCauchy

double for
vdRngCauchy

Displacement a

beta REAL, INTENT(IN) for
vsrngcauchy

DOUBLE PRECISION,
INTENT(IN) for
vdrngcauchy

float for
vsRngCauchy

double for
vdRngCauchy

Scalefactor β

Name Type Description

FORTRAN C

r REAL, INTENT(OUT) for
vsrngcauchy

DOUBLE PRECISION,
INTENT(OUT) for
vdrngcauchy

float* for
vsRngCauchy

double* for
vdRngCauchy

Vector of n Cauchy distributed random
numbers

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

Name Type Description

FORTRAN C

10-62

10 Intel® Math Kernel Library Reference Manual

Rayleigh
Generates Rayleigh distributed random values.

Syntax

Fortran:

status = vsrngrayleigh(method, stream, n, r, a, beta)

status = vdrngrayleigh(method, stream, n, r, a, beta)

C:

status = vsRngRayleigh(method, stream, n, r, a, beta);

status = vdRngRayleigh(method, stream, n, r, a, beta);

Description

This function generates Rayleigh distributed random numbers with displacement a and
scalefactor β, where a, β ∈ R ; β > 0.

Rayleigh distribution is a special case of Weibull distribution, where the shape parameter α = 2.

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

 fa β, x()
2 x a–()

β2
--------------------- x a–()

β2

2
– 
  , x a≥exp

 0, x a<





= ∞ – x +∞ < <

Fa β, x()
1 x a–()

β2

2
– 
  , x a≥exp–

 0, x a<





= ∞ – x +∞ < <

Statistical Functions 10

10-63

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific
values are as follows:
VSL_METHOD_SRAYLEIGH_ICDF
VSL_METHOD_DRAYLEIGH_ICDF
Inverse cumulative distribution
function method

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream
state structure.
C: pointer to the stream state
structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

a REAL, INTENT(IN) for
vsrngrayleigh

DOUBLE PRECISION,
INTENT(IN) for
vdrngrayleigh

float for
vsRngRayleigh

double for
vdRngRayleigh

Displacement a

beta REAL, INTENT(IN) for
vsrngrayleigh

DOUBLE PRECISION,
INTENT(IN) for
vdrngrayleigh

float for
vsRngRayleigh

double for
vdRngRayleigh

Scalefactor β

Name Type Description

FORTRAN C

r REAL, INTENT(OUT) for
vsrngrayleigh

DOUBLE PRECISION,
INTENT(OUT) for
vdrngrayleigh

float* for
vsRngRayleigh

double* for
vdRngRayleigh

Vector of n Rayleigh distributed random
numbers

10-64

10 Intel® Math Kernel Library Reference Manual

Return Values

Lognormal
Generates lognormally distributed random numbers.

Syntax

Fortran:

status = vsrnglognormal(method, stream, n, r, a, sigma, b, beta)

status = vdrnglognormal(method, stream, n, r, a, sigma, b, beta)

C:

status = vsRngLognormal(method, stream, n, r, a, sigma, b, beta);

status = vdRngLognormal(method, stream, n, r, a, sigma, b, beta);

Description

This function generates lognormally distributed random numbers with average of distribution a
and standard deviation σ of subject normal distribution, displacement b, and scalefactor β, where
a, σ, b, β ∈ R ; σ > 0 , β > 0.

The probability density function is given by:

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

Statistical Functions 10

10-65

The cumulative distribution function is as follows:

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific
values are as follows:
VSL_METHOD_SLOGNORMAL_ICDF
VSL_METHOD_DLOGNORMAL_ICDF
Inverse cumulative distribution
function method

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream
state structure.
C: pointer to the stream state
structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

a REAL, INTENT(IN) for
vsrnglognormal

DOUBLE PRECISION,
INTENT(IN) for
vdrnglognormal

float for
vsRngLognormal

double for
vdRngLognormal

Average a of the subject normal
distribution

sigma REAL, INTENT(IN) for
vsrnglognormal

DOUBLE PRECISION,
INTENT(IN) for
vdrnglognormal

float for
vsRngLognormal

double for
vdRngLognormal

Standard deviation σ of the subject
normal distribution

 fa σ b β, , , x()
1

σ x b–() 2π
--------------------------------- x b–() β⁄() a–ln[]2

2σ2
--–

 
 
 

, x b>exp

 0, x b≤





=

Fa σ b β, , , x()
Φ x b–() β⁄() a–ln() σ⁄(), x b>
 0, x b≤




=

10-66

10 Intel® Math Kernel Library Reference Manual

Output Parameters

b REAL, INTENT(IN) for
vsrnglognormal

DOUBLE PRECISION,
INTENT(IN) for
vdrnglognormal

float for
vsRngLognormal

double for
vdRngLognormal

Displacement b

beta REAL, INTENT(IN) for
vsrnglognormal

DOUBLE PRECISION,
INTENT(IN) for
vdrnglognormal

float for
vsRngLognormal

double for
vdRngLognormal

Scalefactor β

Name Type Description

FORTRAN C

r REAL, INTENT(OUT)
for vsrnglognormal

DOUBLE PRECISION,
INTENT(OUT) for
vdrnglognormal

float* for
vsRngLognormal

double* for
vdRngLognormal

Vector of n lognormally distributed
random numbers

Name Type Description

FORTRAN C

Statistical Functions 10

10-67

Return Values

Gumbel
Generates Gumbel distributed random values.

Syntax

Fortran:

status = vsrnggumbel(method, stream, n, r, a, beta)

status = vdrnggumbel(method, stream, n, r, a, beta)

C:

status = vsRngGumbel(method, stream, n, r, a, beta);

status = vdRngGumbel(method, stream, n, r, a, beta);

Description

This function generates Gumbel distributed random numbers with displacement a and scalefactor
β, where a, β ∈ R ; β > 0.

The probability density function is given by:

The cumulative distribution function is as follows:

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

 fa β, x() 1
β
--- x a–

β
------------- 
  x a–() β⁄()exp–(),expexp= ∞ – x +∞. < <

Fa β, x() 1 x a–() β⁄()exp–(),exp–= ∞ – x +∞. < <

10-68

10 Intel® Math Kernel Library Reference Manual

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific
values are as follows:
VSL_METHOD_SGUMBEL_ICDF
VSL_METHOD_DGUMBEL_ICDF
Inverse cumulative distribution function
method

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

a REAL, INTENT(IN) for
vsrnggumbel

DOUBLE PRECISION,
INTENT(IN) for
vdrnggumbel

float for
vsRngGumbel

double for
vdRngGumbel

Displacement a

beta REAL, INTENT(IN) for
vsrnggumbel

DOUBLE PRECISION,
INTENT(IN) for
vdrnggumbel

float for
vsRngGumbel

double for
vdRngGumbel

Scalefactor β

Name Type Description

FORTRAN C

r REAL, INTENT(OUT) for
vsrnggumbel

DOUBLE PRECISION,
INTENT(OUT) for
vdrnggumbel

float* for
vsRngGumbel

double* for
vdRngGumbel

Vector of n random numbers with Gumbel
distribution

Statistical Functions 10

10-69

Return Values

Gamma
Generates gamma distributed random values.

Syntax

Fortran:

status = vsrnggamma(method, stream, n, r, alpha, a, beta)

status = vdrnggamma(method, stream, n, r, alpha, a, beta)

C:

status = vsRngGamma(method, stream, n, r, alpha, a, beta);

status = vdRngGamma(method, stream, n, r, alpha, a, beta);

Description

This function generates random numbers with gamma distribution that has shape parameter α,
displacement a, and scale parameter β, where α, β, and a ∈ R ; α > 0, β > 0.

The probability density function is given by:

,

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

fα a β, , x()
1

Γ α()βα
------------------- x a–()α 1–

e
x a–()– β⁄

 x a≥,

 0, x a<





= ∞– x ∞,< <

10-70

10 Intel® Math Kernel Library Reference Manual

where Γ(α) is the complete gamma function.

The cumulative distribution function is as follows:

,

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific
values are as follows:
VSL_METHOD_SGAMMA_GNORM
VSL_METHOD_DGAMMA_GNORM
Acceptance/rejection method using
random numbers with Gaussian
distribution. See brief description of
the method GNORM in Table 10-1

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream
state structure
C: pointer to the stream state
structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

alpha REAL, INTENT(IN) for
vsrnggamma

DOUBLE PRECISION,
INTENT(IN) for
vdrnggamma

float for
vsRngGamma

double for
vdRngGamma

Shape α

a REAL, INTENT(IN) for
vsrnggamma

DOUBLE PRECISION,
INTENT(IN) for
vdrnggamma

float for
vsRngGamma

double for
vdRngGamma

Displacement a

Fα a β, , x()
1

Γ α()βα

a

x

∫ y a–()α 1–
e

y a–()– β⁄
dy x a≥,

 0 x a<,







= ∞– x ∞.< <

Statistical Functions 10

10-71

Output Parameters

Return Values

beta REAL, INTENT(IN) for
vsrnggamma

DOUBLE PRECISION,
INTENT(IN) for
vdrnggamma

float for
vsRngGamma

double for
vdRngGamma

Scalefactor β

Name Type Description

FORTRAN C

r REAL, INTENT(OUT)
for vsrnggamma
DOUBLE PRECISION,
INTENT(OUT) for
vdrnggamma

float* for
vsRngGamma

double* for
vdRngGamma

Vector of n random numbers with
gamma distribution

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

Name Type Description

FORTRAN C

10-72

10 Intel® Math Kernel Library Reference Manual

Beta
Generates beta distributed random values.

Syntax

Fortran:

status = vsrngbeta(method, stream, n, r, p, q, a, beta)

status = vdrngbeta(method, stream, n, r, p, q, a, beta)

C:

status = vsRngBeta(method, stream, n, r, p, q, a, beta);

status = vdRngBeta(method, stream, n, r, p, q, a, beta);

Description

This function generates random numbers with beta distribution that has shape parameters p and q,
displacement a, and scale parameter β, where p, q, a, and β ∈ R ; p > 0, q > 0, β > 0.

The probability density function is given by:

,

where Β(p, q) is the complete beta function.

The cumulative distribution function is as follows:

,

fp q a β, , , x()
1

B p q,()βp q 1–+
-- x a–()p 1– β a x–+()q 1–

 a x a β+<≤,

 0, x a x a β+≥,<





= ∞– x ∞,< <

Fp q a β, , , x()

 0 x a<,

1

B p q,()βp q 1–+
--

a

x

∫ y a–()p 1– β a y–+()q 1–
dy a x a β+<≤,

 1, x a β+≥







= ∞– x ∞.< <

Statistical Functions 10

10-73

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific
values are as follows:
VSL_METHOD_SBETA_CJA
VSL_METHOD_DBETA_CJA
See brief description of the method
CJA in Table 10-1

stream TYPE
(VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream
state structure
C: pointer to the stream state
structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

p REAL, INTENT(IN) for
vsrngbeta

DOUBLE PRECISION,
INTENT(IN) for
vdrngbeta

float for
vsRngBeta

double for
vdRngBeta

Shape p

q REAL, INTENT(IN) for
vsrngbeta

DOUBLE PRECISION,
INTENT(IN) for
vdrngbeta

float for
vsRngBeta

double for
vdRngBeta

Shape q

a REAL, INTENT(IN) for
vsrngbeta

DOUBLE PRECISION,
INTENT(IN) for
vdrngbeta

float for
vsRngBeta

double for
vdRngBeta

Displacement a

beta REAL, INTENT(IN) for
vsrngbeta

DOUBLE PRECISION,
INTENT(IN) for
vdrngbeta

float for
vsRngBeta

double for
vdRngBeta

Scalefactor β

10-74

10 Intel® Math Kernel Library Reference Manual

Output Parameters

Return Values

Name Type Description

FORTRAN C

r REAL, INTENT(OUT) for
vsrngbeta

DOUBLE PRECISION,
INTENT(OUT) for
vdrngbeta

float* for
vsRngBeta

double* for
vdRngBeta

Vector of n random numbers with beta
distribution

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

Statistical Functions 10

10-75

Discrete Distributions
This section describes routines for generating random numbers with discrete distribution.

Uniform
Generates random numbers uniformly distributed over
the interval [a, b) .

Syntax

Fortran:

status = virnguniform(method, stream, n, r, a, b)

C:

status = viRngUniform(method, stream, n, r, a, b);

Description

This function generates random numbers uniformly distributed over the interval [a, b), where a, b
are the left and right bounds of the interval respectively, and a, b ∈ Z; a < b.

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, x ∈ R.

P X k=() 1
b a–
-------------= k a a 1, … , b 1–+,{ }∈

Fa b, x()

 0, x a<

x a– 1+
b a–

----------------------------- , a x b<≤

1, x b≥





=

10-76

10 Intel® Math Kernel Library Reference Manual

Input Parameters

Output Parameters

Return Values

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method; dummy and set to
0 in case of uniform distribution. The
specific value is as follows:
VSL_METHOD_IUNIFORM_STD
Standard method. Currently there is
only one method for this distribution
generator.

stream TYPE (VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

a INTEGER, INTENT(IN) int Left interval bound a

b INTEGER, INTENT(IN) int Right interval bound b

Name Type Description

FORTRAN C

r INTEGER,
INTENT(OUT)

int* Vector of n random numbers uniformly
distributed over the interval [a,b)

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

Statistical Functions 10

10-77

UniformBits
Generates integer random values with uniform bit
distribution.

Syntax

Fortran:

status = virnguniformbits(method, stream, n, r)

C:

status = viRngUniformBits(method, stream, n, r);

Description

This function generates integer random values with uniform bit distribution.The generators of
uniformly distributed numbers can be represented as recurrence relations over integer values in
modular arithmetic. Apparently, each integer can be treated as a vector of several bits. In a truly
random generator, these bits are random, while in pseudorandom generators this randomness can
be violated. For example, a well known drawback of linear congruential generators is that lower
bits are less random than higher bits (for example, see [Knuth81]). For this reason, care should be
taken when using this function. Typically, in a 32-bit LCG only 24 higher bits of an integer value
can be considered random. See VSL Notes for details.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

10-78

10 Intel® Math Kernel Library Reference Manual

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method; dummy and set to
0. The specific value is as follows:
VSL_METHOD_IUNIFORMBITS_STD
Standard method. Currently there is
only one method for this distribution
generator.

stream TYPE (VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

Statistical Functions 10

10-79

Output Parameters

Return Values

Name Type Description

FORTRAN C

r INTEGER,
INTENT(OUT)

unsigned int* Fortran: Vector of n random integer
numbers. If the stream was generated by
a 64 or a 128-bit generator, each integer
value is represented by two or four
elements of r respectively. The number of
bytes occupied by each integer is
contained in the field wordsize of the
structure VSL_BRNG_PROPERTIES. The
total number of bits that are actually used
to store the value are contained in the field
nbits of the same structure. See
“Advanced Service Routines” for a more
detailed discussion of
VSLBrngProperties.

C: Vector of n random integer numbers. If
the stream was generated by a 64 or a
128-bit generator, each integer value is
represented by two or four elements of r
respectively. The number of bytes
occupied by each integer is contained in
the field WordSize of the structure
VSLBrngProperties. The total number
of bits that are actually used to store the
value are contained in the field NBits of
the same structure. See “Advanced Service
Routines” for a more detailed discussion of
VSLBrngProperties.

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

10-80

10 Intel® Math Kernel Library Reference Manual

Bernoulli
Generates Bernoulli distributed random values.

Syntax

Fortran:

status = virngbernoulli(method, stream, n, r, p)

C:

status = viRngBernoulli(method, stream, n, r, p);

Description

This function generates Bernoulli distributed random numbers with probability p of a single trial
success, where p ∈ R; 0 ≤ p ≤ 1.

A variate is called Bernoulli distributed, if after a trial it is equal to 1 with probability of success p,
and to 0 with probability 1–p.

The probability distribution is given by:

,

.

The cumulative distribution function is as follows:

, x ∈ R.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

P X 1=() p=

P X 0=() 1 p–=

Fp x()
 0, x 0<

1 p– , 0 x 1<≤
1, x 1≥






=

Statistical Functions 10

10-81

Input Parameters

Output Parameters

Return Values

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific value
is as follows:
VSL_METHOD_IBERNOULLI_ICDF
Inverse cumulative distribution function
method.

stream TYPE (VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

p DOUBLE PRECISION,
INTENT(IN)

double Success probability p of a trial

Name Type Description

FORTRAN C

r INTEGER,
INTENT(OUT)

int* Vector of n Bernoulli distributed random
values

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

10-82

10 Intel® Math Kernel Library Reference Manual

Geometric
Generates geometrically distributed random values.

Syntax

Fortran:

status = virnggeometric(method, stream, n, r, p)

C:

status = viRngGeometric(method, stream, n, r, p);

Description

This function generates geometrically distributed random numbers with probability p of a single
trial success, where p ∈ R; 0 < p < 1.

A geometrically distributed variate represents the number of independent Bernoulli trials
preceding the first success. The probability of a single Bernoulli trial success is p.

The probability distribution is given by:

, k ∈ {0, 1, 2, ...}.

The cumulative distribution function is as follows:

 x ∈ R.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

P X k=() p 1 p–()k⋅=

Fp x()
 0, x 0<

1 1 p–() x 1+
– , x 0≥




=

Statistical Functions 10

10-83

Input Parameters

Output Parameters

Return Values

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific value
is as follows:
VSL_METHOD_IGEOMETRIC_ICDF
Inverse cumulative distribution function
method.

stream TYPE (VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

p DOUBLE PRECISION,
INTENT(IN)

double Success probability p of a trial

Name Type Description

FORTRAN C

r INTEGER,
INTENT(OUT)

int* Vector of n geometrically distributed
random values

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

10-84

10 Intel® Math Kernel Library Reference Manual

Binomial
Generates binomially distributed random numbers.

Syntax

Fortran:

status = virngbinomial(method, stream, n, r, ntrial, p)

C:

status = viRngBinomial(method, stream, n, r, ntrial, p);

Description

This function generates binomially distributed random numbers with number of independent
Bernoulli trials m, and with probability p of a single trial success, where p ∈ R; 0 ≤ p ≤ 1, m ∈ N.

A binomially distributed variate represents the number of successes in m independent Bernoulli
trials with probability of a single trial success p.

The probability distribution is given by:

, k ∈ {0, 1, ..., m}.

The cumulative distribution function is as follows:

, x ∈ R.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

P X k=() Cm
kp

k
1 p–()m k–

=

Fm p, x()

 0, x 0<

Cm
kp

k
1 p–()m k–

k 0=

x

∑ , 0 x m<≤

1, x m≥







=

Statistical Functions 10

10-85

Input Parameters

Output Parameters

Return Values

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific value
is as follows:
VSL_METHOD_IBINOMIAL_BTPE
See brief description of the BTPE
method in Table 10-1.

stream TYPE (VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

ntrials INTEGER, INTENT(IN) int Number of independent trials m

p DOUBLE PRECISION,
INTENT(IN)

double Success probability p of a single trial

Name Type Description

FORTRAN C

r INTEGER,
INTENT(OUT)

int* Vector of n binomially distributed random
values

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

10-86

10 Intel® Math Kernel Library Reference Manual

Hypergeometric
Generates hypergeometrically distributed random
values.

Syntax

Fortran:

status = virnghypergeometric(method, stream, n, r, l, s, m)

C:

status = viRngHypergeometric(method, stream, n, r, l, s, m);

Description

This function generates hypergeometrically distributed random values with lot size l, size of
sampling s, and number of marked elements in the lot m, where l, m, s ∈ N ∪ {0}; l ≥ max(s, m).

Consider a lot of l elements comprising m “marked” and l-m “unmarked“ elements. A trial
sampling without replacement of exactly s elements from this lot helps to define the
hypergeometric distribution, which is the probability that the group of s elements contains exactly
k marked elements.

The probability distribution is given by:)

,

k ∈ {max(0, s + m - l), ..., min(s, m)}

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

P X k=()
Cm
kCl m–

s k–

Cl
s

---------------------=

Statistical Functions 10

10-87

The cumulative distribution function is as follows:

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific value is as
follows:
VSL_METHOD_IHYPERGEOMETRIC_H2PE
See brief description of the H2PE method in
Table 10-1.

stream TYPE (VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be generated

l INTEGER, INTENT(IN) int Lot size l

s INTEGER, INTENT(IN) int Size of sampling without replacement s

m INTEGER, INTENT(IN) int Number of marked elements m

Name Type Description

FORTRAN C

r INTEGER,
INTENT(OUT)

int* Vector of n hypergeometrically distributed
random values

Fl s m, , x()

 0, x max 0, s m l–+()<

Cm
kCl m–

s k–

Cl
s

k max 0 s m l–+,()=

x

∑ , max 0, s m l–+() x min s m,()≤ ≤

1, x min s m,()>







=

10-88

10 Intel® Math Kernel Library Reference Manual

Return Values

Poisson
Generates Poisson distributed random values.

Syntax

Fortran:

status = virngpoisson(method, stream, n, r, lambda)

C:

status = viRngPoisson(method, stream, n, r, lambda);

Description

This function generates Poisson distributed random numbers with distribution parameter λ, where
λ ∈ R; λ > 0.

The probability distribution is given by:

,

k ∈ {0, 1, 2, ...}.

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

P X k=() λke λ–

k!
---------------=

Statistical Functions 10

10-89

The cumulative distribution function is as follows:

,

x ∈ R.

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific values
are as follows:
VSL_METHOD_IPOISSON_PTPE
VSL_METHOD_IPOISSON_POISNORM
See brief description of the PTPE and
POISNORM methods in Table 10-1.

stream TYPE (VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

lambda DOUBLE PRECISION,
INTENT(IN)

double Distribution parameter λ

Fλ x()
λke λ–

k!

k 0=

x

∑ , x 0≥

 0, x 0<





=

10-90

10 Intel® Math Kernel Library Reference Manual

Output Parameters

Return Values

PoissonV
Generates Poisson distributed random values with
varying mean.

Syntax

Fortran:

status = virngpoissonv(method, stream, n, r, lambda)

C:

status = viRngPoissonV(method, stream, n, r, lambda);

Name Type Description

FORTRAN C

r INTEGER,
INTENT(OUT)

int* Vector of n Poisson distributed random
values

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

Statistical Functions 10

10-91

Description

This function generates n Poisson distributed random numbers xi(i = 1, ..., n) with distribution
parameter λi, where λi ∈ R; λi > 0.

The probability distribution is given by:

, k ∈ {0, 1, 2, ...}.

The cumulative distribution function is as follows:

,

x ∈ R.

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific value is
as follows:
VSL_METHOD_IPOISSONV_POISNORM
See brief description of the POISNORM
method in Table 10-1.

stream TYPE (VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

lambda DOUBLE PRECISION,
INTENT(IN)

double* Array of n distribution parameters λi

P Xi k=()
λi
k

exp λi–()
k!

-----------------------------=

Fλi
x()

λi
k
e

λi–

k!

k 0=

x

∑ , x 0≥

 0, x 0<





=

10-92

10 Intel® Math Kernel Library Reference Manual

Output Parameters

Return Values

NegBinomial
Generates random numbers with negative binomial
distribution.

Syntax

Fortran:

status = virngnegbinomial(method, stream, n, r, a, p)

C:

status = viRngNegBinomial(method, stream, n, r, a, p);

Name Type Description

FORTRAN C

r INTEGER,
INTENT(OUT)

int* Vector of n Poisson distributed random
values

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

Statistical Functions 10

10-93

Description

This function generates random numbers with negative binomial distribution and distribution
parameters a and p, where p, a ∈ R; 0 < p < 1; a > 0.

If the first distribution parameter a ∈ N, this distribution is the same as Pascal distribution.
If a ∈ N, the distribution can be interpreted as the expected time of a-th success in a sequence of
Bernoulli trials, when the probability of success is p.

The probability distribution is given by:

, k ∈ {0, 1, 2, ...}.

The cumulative distribution function is as follows:

,

x ∈ R.

Input Parameters

Name Type Description

FORTRAN C

method INTEGER, INTENT(IN) int Generation method. The specific value is
as follows:
VSL_METHOD_INEGBINOMIAL_NBAR
See brief description of the NBAR
method in Table 10-1.

stream TYPE (VSL_STREAM_STATE),
INTENT(IN)

VSLStreamStatePtr Fortran: descriptor of the stream state
structure.
C: pointer to the stream state structure

n INTEGER, INTENT(IN) int Number of random values to be
generated

P X k=() Ca k 1–+
k p

a
1 p–()k=

Fa p, x()
Ca k 1–+
k p

a
1 p–()k

k 0=

x

∑ , x 0≥

 0, x 0< 





=

10-94

10 Intel® Math Kernel Library Reference Manual

Output Parameters

Return Values

a DOUBLE PRECISION,
INTENT(IN)

double The first distribution parameter a

p DOUBLE PRECISION,
INTENT(IN)

double The second distribution parameter p

Name Type Description

FORTRAN C

r INTEGER,
INTENT(OUT)

int* Vector of n random values with negative
binomial distribution.

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_NULL_PTR stream is a NULL pointer.

VSL_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an
invalid number of updated entries in a buffer,
that is, < 0 or > nmax.

VSL_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as
the number of updated entries in a buffer.

Name Type Description

FORTRAN C

Statistical Functions 10

10-95

Advanced Service Routines
This section describes service routines for registering a user-designed basic generator
(RegisterBrng) and for obtaining properties of the previously registered basic generators
(GetBrngProperties). See VSL Notes (“Basic Generators” section of VSL Structure chapter)
for substantiation of the need for several basic generators including user-defined BRNGs.

Data types

The routines of this section refer to a structure defining the properties of the basic generator. This
structure is described in Fortran as follows:

TYPE VSL_BRNG_PROPERTIES

END TYPE VSL_BRNG_PROPERTIES

The C version is as follows:

typedef struct _VSLBRngProperties {

INTEGER streamstatesize

INTEGER nseeds

INTEGER includeszero

INTEGER wordsize

INTEGER nbits

INTEGER initstream

INTEGER sbrng

INTEGER dbrng

INTEGER ibrng

int StreamStateSize;

int NSeeds;

int IncludesZero;

int WordSize;

int NBits;

InitStreamPtr InitStream;

sBRngPtr sBRng;

dBRngPtr dBRng;

10-96

10 Intel® Math Kernel Library Reference Manual

} VSLBRngProperties;

The following table provides brief descriptions of the fields engaged in the above structure:

iBRngPtr iBRng;

Table 10-12 Field Descriptions

Field Short Description

FORTRAN: streamstatesize

C: StreamStateSize

The size, in bytes, of the stream state structure for a given basic
generator.

FORTRAN: nseeds

C: NSeeds

The number of 32-bit initial conditions (seeds) necessary to initialize
the stream state structure for a given basic generator.

FORTRAN: includeszero

C: IncludesZero

Flag value indicating whether the generator can produce a random 01.

1. Certain types of generators, for example, generalized feedback shift registers can potentially generate a random 0. On the other hand,
generators like multiplicative congruential generators never generate such a number. In most cases this information is irrelevant because the
chance of generating a zero value is small. However, in certain non-uniform distribution generators the possibility for a basic generator to
produce a random zero may lead to generation of an infinitely large number (overflow). Even though the software handles overflows correctly,
so that they may be interpreted as +∞ and −∞, the user has to be careful and verify the final results. If an infinitely large number may affect the
computation, the user should either remove such numbers from the generated vector, or use safe generators, which do not produce random 0.

FORTRAN: wordsize

C: WordSize

Machine word size, in bytes, used in integer-value computations.
Possible values: 4, 8, and 16 for 32, 64, and 128-bit generators,
respectively.

FORTRAN: nbits

C: NBits

The number of bits required to represent a random value in integer
arithmetic. Note that, for instance, 48-bit random values are stored to
64-bit (8 byte) memory locations. In this case, wordsize/WordSize
is equal to 8 (number of bytes used to store the random value), while
nbits/NBits contains the actual number of bits occupied by the
value (in this example, 48).

FORTRAN: initstream

C: InitStream

Contains the pointer to the initialization routine of a given basic
generator.

FORTRAN: sbrng

C: sBRng

Contains the pointer to the basic generator of single precision real
numbers uniformly distributed over the interval (a,b) (REAL in
FORTRAN and float in C).

FORTRAN: dbrng

C: dBRng

Contains the pointer to the basic generator of double precision real
numbers uniformly distributed over the interval (a,b) (DOUBLE
PRECISION in FORTRAN and double in C).

FORTRAN: ibrng

C: iBRng

Contains the pointer to the basic generator of integer numbers with
uniform bit distribution2 (INTEGER in FORTRAN and unsigned int
in C).

2. A specific generator that permits operations over single bits and bit groups of random numbers.

Statistical Functions 10

10-97

RegisterBrng
Registers user-defined basic generator.

Syntax

Fortran:

brng = vslregisterbrng(properties)

C:

brng = vslRegisterBrng(&properties);

Description

An example of a registration procedure can be found in the respective directory of VSL examples.

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

properties TYPE(VSL_BRNG_PROPERTIES),
INTENT(IN)

VSLBrngProperties* Pointer to the structure
containing properties of
the basic generator to
be registered

Name Type Description

FORTRAN C

brng INTEGER,
INTENT(OUT)

int Number (index) of the registered basic
generator; used for identification. Negative
values indicate the registration error.

10-98

10 Intel® Math Kernel Library Reference Manual

Return Values

GetBrngProperties
Returns structure with properties of a given basic
generator.

Syntax

Fortran:

status = vslgetbrngproperties(brng, properties)

C:

status = vslGetBrngProperties(brng, &properties);

Input Parameters

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_BRNG_TABLE_FULL Registration cannot be completed due to lack of free
entries in the table of registered BRNGs.

VSL_ERROR_BAD_STREAM_STATE_SIZE Bad value in StreamStateSize field.

VSL_ERROR_BAD_WORD_SIZE Bad value in WordSize field.

VSL_ERROR_BAD_NSEEDS Bad value in NSeeds field.

VSL_ERROR_BAD_NBITS Bad value in NBits field.

VSL_ERROR_NULL_PTR At least one of the fields iBrng, dBrng, sBrng or
InitStream is a NULL pointer.

Name Type Description

FORTRAN C

brng INTEGER, INTENT(IN) int Number (index) of the registered basic
generator; used for identification. See
specific values in Table 10-2. Negative
values indicate the registration error.

Statistical Functions 10

10-99

Output Parameters

Return Values

Formats for User-Designed Generators
To register a user-designed basic generator using RegisterBrng function, you need to pass the
pointer iBrng to the integer-value implementation of the generator; the pointers sBrng and
dBrng to the generator implementations for single and double precision values, respectively; and
pass the pointer InitStream to the stream initialization routine. This section contains
recommendations on defining such functions with input and output arguments. An example of the
registration procedure for a user-designed generator can be found in the respective directory of
VSL examples.

The respective pointers are defined as follows:

Name Type Description

FORTRAN C

properties TYPE(VSL_BRNG_PROPERTIES),
INTENT(OUT)

VSLBrngProperties* Pointer to the structure
containing properties of
the generator with
number brng

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

VSL_ERROR_INVALID_BRNG_INDEX BRNG index is invalid.

typedef int (*InitStreamPtr)(int method, void * stream, int n,
const unsigned int params[]);

typedef int (*sBRngPtr)(void * stream, int n, float r[], float

a, float b);

typedef int (*dBRngPtr)(void * stream, int n, double r[], double
a, double b);

10-100

10 Intel® Math Kernel Library Reference Manual

InitStream

C:

int MyBrngInitStream(int method, VSLStreamStatePtr stream,

int n, const unsigned int params[]);

{

/* Initialize the stream */

…

} /* MyBrngInitStream */

Description

The initialization routine of a user-designed generator must initialize stream according to the
specified initialization method, initial conditions params and the argument n. The value of
method determines the initialization method to be used.

• If method is equal to 0, the initialization is by the standard generation method, which must be
supported by all basic generators. In this case the function assumes that the stream structure
was not previously initialized. The value of n is used as the actual number of 32-bit values
passed as initial conditions through params. Note, that the situation when the actual number
of initial conditions passed to the function is not sufficient to initialize the generator is not an
error. Whenever it occurs, the basic generator must initialize the missing conditions using
default settings.

• If method is equal to 1, the generation is by the leapfrog method, where n specifies the
number of computational nodes (independent streams). Here the function assumes that the
stream was previously initialized by the standard generation method. In this case params
contains only one element, which identifies the computational node. If the generator does not
support the leapfrog method, the function must return the error code
VSL_ERROR_LEAPFROG_UNSUPPORTED.

typedef int (*iBRngPtr)(void * stream, int n, unsigned int
r[]);

Statistical Functions 10

10-101

• If method is equal to 2, the generation is by the block-splitting method. Same as above, the
stream is assumed to be previously initialized by the standard generation method; params is
not used, n identifies the number of skipped elements. If the generator does not support the
block-splitting method, the function must return the error code
VSL_ERROR_SKIPAHEAD_UNSUPPORTED.

For a more detailed description of the leapfrog and the block-splitting methods, refer to the
description of LeapfrogStream and SkipAheadStream, respectively.

Stream state structure is individual for every generator. However, each structure has a number of
fields that are the same for all the generators:

C:

typedef struct

{

unsigned int Reserved1[2];

unsigned int Reserved2[2];

[fields specific for the given generator]

} MyStreamState;

The fields Reserved1 and Reserved2 are reserved for private needs only, and must not be
modified by the user. When including specific fields into the structure, follow the rules below:

• The fields must fully describe the current state of the generator. For example, the state of a
linear congruential generator can be identified by only one initial condition;

• If the generator can use both the leapfrog and the block-splitting methods, additional fields
should be introduced to identify the independent streams. For example, in LCG(a, c, m), apart
from the initial conditions, two more fields should be specified: the value of the multiplier ak
and the value of the increment (ak-1)c/(a-1).

For a more detailed discussion, refer to [Knuth81], and [Gentle98]. An example of the registration
procedure can be found in the respective directory of VSL examples.

iBRng

C:

void iMyBrng(VSLStreamStatePtr stream, int n,
unsigned int r[])

{

10-102

10 Intel® Math Kernel Library Reference Manual

int i; /* Loop variable */

/* Generating integer random numbers */

/* Pay attention to word size needed to

store only random number */

for(i = 0; i < n; i++)

{

 r[i] = …;

}

/* Update stream state */

…

return errcode;

} /* iMyBrng */

sBRng

C:

void sMyBrng(VSLStreamStatePtr stream, int n, float r[],

 float a, float b)

{

int i; /* Loop variable */

/* Generating float (a,b) random numbers */

for (i = 0; i < n; i++)

{

 r[i] = …;

}

NOTE. When using 64 and 128-bit generators, consider digit
capacity to store the numbers to the random vector r correctly. For
example, storing one 64-bit value requires two elements of r, the first
to store the lower 32 bits and the second to store the higher 32 bits.
Similarly, use 4 elements of r to store a 128-bit value.

Statistical Functions 10

10-103

/* Update stream state */

…

return errcode;

} /* sMyBrng */

dBRng

C:

void dMyBrng(VSLStreamStatePtr stream, int n, double r[],

 double a, double b)

{

int i; /* Loop variable */

/* Generating double (a,b) random numbers */

for (i = 0; i < n; i++)

{

 r[i] = …;

}

/* Update stream state */

…

return errcode;

} /* dMyBrng */

10-104

10 Intel® Math Kernel Library Reference Manual

Convolution and Correlation

Overview
VSL provides a set of routines intended to perform linear convolution and correlation
transformations for single and double precision data.

For correct definition of implemented operations, see Mathematical Notation and Definitions
section.

The current implementation provides:

• Fourier algorithms for one-dimensional single precision data

• Direct algorithms for one-dimensional single and double precision data

• Direct algorithms for multi-dimensional single and double precision data.

One-dimensional algorithms cover the following functions from the IBM ESSL library:

SCONF, SCORF

SCOND, SCORD

SDCON, SDCOR

DDCON, DDCOR

SDDCON, SDDCOR.

Special wrappers are designed to simulate these ESSL functions. The wrappers are provided as
sample sources for FORTRAN and C. To reuse them, use the following directories:

${MKL}/examples/vslc/essl/vsl_wrappers

${MKL}/examples/vslf/essl/vsl_wrappers

Additionally, you can browse the examples demonstrating the calculation of the ESSL functions
through the wrappers. You can find the examples in the following directories:

${MKL}/examples/vslc/essl

${MKL}/examples/vslf/essl

Convolution and correlation API provides interfaces for FORTRAN-90 and C/89 languages.
You may use the C/89 interface also with later versions of C or C++, or FORTRAN-90 interface
with programs written in FORTRAN-95. Note that there is no FORTRAN-77 support.

Statistical Functions 10

10-105

Convolution and correlation API is implemented through task objects, or tasks. Task object is a
data structure, or descriptor, which holds parameters that determine the specific convolution or
correlation operation. Such parameters may be precision, type, and number of dimensions of user
data, an identifier of the computation algorithm to be used, shapes of data arrays, and so on.

All Intel MKL convolution and correlation routines process task objects in one way or another:
either create a new task descriptor, change the parameter settings, compute mathematical results of
the convolution or correlation using the stored parameters, or perform other operations.
Accordingly, all routines are split into the following groups:

Task Constructors - routines that create a new task object descriptor and set up most common
parameters.

Task Editors - routines that can set or modify some parameter settings in the existing task
descriptor.

Task Execution Routines - compute results of the convolution or correlation operation over the
actual input data, using the operation parameters held in the task descriptor.

Task Copy - routines used to make several copies of the task descriptor.

Task Destructors - routines that delete task objects and free the memory.

When the task is executed or copied for the first time, a special process runs which is called task
commitment. During this process, consistency of task parameters is checked and the required work
data are prepared. If the parameters are consistent, the task is tagged as committed successfully.
The task remains committed until you edit its parameters. Hence, the task can be executed multiple
times after a single commitment process. Since the task commitment process may include costly
intermediate calculations such as preparation of Fourier transform of input data, launching the
process only once can help speed up overall performance.

Naming Conventions
The names of FORTRAN routines in the convolution and correlation API are written in lowercase,
while the names of FORTRAN types and constants are written in uppercase. The names are not
case-sensitive.

In C, the names of routines, types, and constants are case-sensitive and can be lowercase and
uppercase.

The names of routines have the following structure:

vsl[datatype]{Conv|Corr}<base name> for C-interface

10-106

10 Intel® Math Kernel Library Reference Manual

where vsl is a prefix indicating that the routine belongs to Vector Statistical Library of Intel
MKL.

The field [datatype]is optional. If present, the symbol specifies the type of the input and output
data and can be either s (for single precision real type) or d (for double precision real type).

The prefix Conv or Corr specifies whether the routine refers to convolution or correlation task,
respectively.

The <base name> field specifies a particular functionality that the routine is designed for, for
example, NewTask, DeleteTask.

Data Types
All convolution or correlation routines use the following types for specifying data objects:

Generic integer type (without specifying the byte size) is used for all integer data.

vsl[datatype]{conv|corr}<base name> for FORTRAN-interface

NOTE. In this chapter, routines are often referred to by their base name
when this does not lead to ambiguity. In the routine reference, the full name
is always used in prototypes and code examples.

Type Data Object

FORTRAN C

TYPE(VSL_CONV_TASK) VSLConvTaskPtr Pointer to a task descriptor for
convolution

TYPE(VSL_CORR_TASK) VSLCorrTaskPtr Pointer to a task descriptor for
correlation

REAL*4 float Input/output user data in single
precision

REAL*8 double Input/output user data in double
precision

INTEGER int All other data

Statistical Functions 10

10-107

Parameters
Basic parameters held by the task descriptor are assigned values when the task object is created,
copied, or modified by task editors.
Parameters of the correlation or convolution task are initially set up by task constructors when the
task object is created. Parameter changes or additional settings are made by task editors. More
parameters which define location of the data being convolved need to be specified when the task
execution routine is invoked.

According to how the parameters are passed or assigned values, all of them can be categorized as
either explicit (directly passed as routine parameters when a task object is created or executed) or
optional (assigned some default or implicit values during task construction).

The following table lists all applicable parameters used in the Intel MKL convolution and
correlation API.

NOTE. The actual size of the generic integer type is platform-dependent.
The appropriate byte size for integers must be chosen at the stage of
compiling your software.

Table 10-13 Convolution and Correlation Task Parameters

Name Category Type
Default Value
Label Description

job explicit integer Implied by the
constructor name

Specifies whether the task relates to
convolution or correlation

type explicit integer Implied by the
constructor name

Specifies the type (real or complex) of the
input/output data. Set to real in the current
version.

precision explicit integer Implied by the
constructor name

Specifies precision (single or double) of the
input/output data to be provided in arrays
x,y,z.

kind optional integer “linear” Specifies whether the task relates to
computing linear or circular
convolution/correlation

10-108

10 Intel® Math Kernel Library Reference Manual

mode explicit integer None Specifies whether the convolution/correlation
computation should be done via Fourier
transforms, or by a direct method, or by
automatically choosing between the two. See
SetMode for the list of named constants for
this parameter.

method optional integer “auto“ Hints at a particular computation method if
several methods are available for the given
mode. Setting this parameter to “auto“ means
that software will choose the best available
method.

internal_
precision

optional integer Set equal to the
value of
precision

Specifies precision of internal calculations.
Can enforce double precision calculations
even when input/output data are single
precision. See SetInternalPrecision for the list
of named constants for this parameter.

dims explicit integer None Specifies the rank (number of dimensions) of
the user data provided in arrays x,y,z. Can
be in the range from 1 to 7.

x,y explicit real
arrays

None Specify input data arrays. See Data Allocation
for more information.

z explicit real
array

None Specifies output data array. See Data
Allocation for more information.

xshape,
yshape,
zshape

explicit integer
arrays

None Define shapes of the arrays x, y, z. See
Data Allocation for more information.

xstride,
ystride,
zstride

explicit integer
arrays

None Define strides within arrays x, y, z, that is
specify the physical location of the input and
output data in these arrays. See Data
Allocation for more information.

start optional integer
array

Undefined Defines the first element of the mathematical
result that will be stored to output array z.See
SetStart and Data Allocation for more
information.

decimation optional integer
array

Undefined Defines how to thin out the mathematical
result that will be stored to output array z.See
SetDecimation and Data Allocation for more
information.

Table 10-13 Convolution and Correlation Task Parameters (continued)

Name Category Type
Default Value
Label Description

Statistical Functions 10

10-109

Task Status
Task status is an integer value which is zero if no error has been detected while processing the task,
or a specific non-zero error code otherwise. Negative status values are used for errors, and positive
values are reserved for warnings.

An error can be caused by bad parameter values, system fault like memory allocation failure, or
can be an internal error self-detected by the software.

Each task descriptor contains the current status of the task. When creating a task object,
constructor assigns the VSL_STATUS_OK status to the task. When processing the task afterwards,
other routines such as editors of executors can change the task status if an error occurs and write a
corresponding error code into the task status field.

Note that at the stage of creating a task or editing its parameters, the set of parameters may be
inconsistent. The parameter consistency check is only performed during the task commitment
operation which is implicitly invoked before task execution or task copying. If an error is detected
at this stage, task execution or task copying is terminated and the task descriptor saves the
corresponding error code. Once an error occurs, any further attempts to process that task
descriptor will be terminated and the task will keep the same error code.

Normally, every convolution or correlation function (except DeleteTask) returns the status
assigned to the task while performing the function operation.

The status codes are given symbolic names defined in the respective header files. For C/C++, these
names are defined as macros via #define statements, and for FORTRAN as integer constants via
PARAMETER operators, for example:

C/C++: #define VSL_STATUS_OK 0

F90/F95: INTEGER,PARAMETER:: VSL_STATUS_OK = 0

Task Constructors
Task constructors are routines intended for creating a new task descriptor and setting up basic
parameters. This means that no additional parameter adjustment is typically required and other
routines can use the task object.

Intel MKL implementation of the convolution and correlation API provides two different forms of
constructors: a general form and an X-form. X-form constructors work in the same way as the
general form but also assign particular data to the first operand vector used in convolution or
correlation operation (stored in array x).

10-110

10 Intel® Math Kernel Library Reference Manual

Using X-form constructors is recommended when you need to compute multiple convolutions or
correlations with the same data vector held in array x against different vectors held in array y.
This helps improve performance by eliminating unnecessary overhead in repeated computation of
intermediate data required for the operation.

For each constructor routine there is also an associated one-dimensional version which exploits the
algorithmic and computational benefits provided by the simplicity of the data structures for
one-dimensional case.

The Table 10-14 lists available task constructors:

NewTask
Creates a new convolution or correlation task
descriptor for multidimensional case.

Syntax

Fortran:

status = vslsconvnewtask(task, mode, dims, xshape, yshape, zshape)

NOTE. If constructor fails to create a task descriptor, it returns NULL task
pointer.

Table 10-14 Task Constructors

Routine Description

NewTask Creates a new convolution or correlation task
descriptor for a multidimensional case.

NewTask1D Creates a new convolution or correlation task
descriptor for a one-dimensional case.

NewTaskX Creates a new convolution or correlation task
descriptor as an X-form for a multidimensional
case.

NewTaskX1D Creates a new convolution or correlation task
descriptor as an X-form for a one-dimensional
case.

Statistical Functions 10

10-111

status = vsldconvnewtask(task, mode, dims, xshape, yshape, zshape)

status = vslscorrnewtask(task, mode, dims, xshape, yshape, zshape)

status = vsldcorrnewtask(task, mode, dims, xshape, yshape, zshape)

C:

status = vslsConvNewTask(task, mode, dims, xshape, yshape, zshape);

status = vsldConvNewTask(task, mode, dims, xshape, yshape, zshape);

status = vslsCorrNewTask(task, mode, dims, xshape, yshape, zshape);

status = vsldCorrNewTask(task, mode, dims, xshape, yshape, zshape);

Description

Each NewTask constructor creates a new convolution or correlation task descriptor with the user
specified values for explicit parameters. The optional parameters are set to their default values (see
Table 10-13).

The parameters xshape, yshape, and zshape define the shapes of the input and output data
provided by the arrays x, y, and z, respectively. Each shape parameter is an array of integers
with its length equal to the value of dims.
You explicitly assign the shape parameters when calling the constructor. If the value of the
parameter dims is 1, then xshape, yshape, zshape are equal to the number of elements read
from the arrays x and y or stored to the array z. Note that values of shape parameters may differ
from physical shapes of arrays x, y, and z if non-trivial strides are assigned.

If constructor fails to create a task descriptor, it returns NULL task pointer.

Input Parameters

Name Type Description

FORTRAN C

mode INTEGER int Specifies whether convolution/correlation
calculation must be performed by using a
direct algorithm or through Fourier transform
of the input data. See Table 10-16 for a list of
possible values.

dims INTEGER int Rank of user data. Specifies number of
dimensions for the input and output arrays x,
y, and z used during the execution stage.
Must be in the range from 1 to 7. The value is
explicitly assigned by the constructor.

10-112

10 Intel® Math Kernel Library Reference Manual

Output Parameters

NewTask1D
Creates a new convolution or correlation task
descriptor for one-dimensional case.

Syntax

Fortran:

status = vslsconvnewtask1d(task, mode, xshape, yshape, zshape)

status = vsldconvnewtask1d(task, mode, xshape, yshape, zshape)

xshape INTEGER,
DIMENSION(*)

int[] Defines the shape of the input data for the
source array x. See Data Allocation for
more information.

yshape INTEGER,
DIMENSION(*)

int[] Defines the shape of the input data for the
source array y. See Data Allocation for more
information.

zshape INTEGER,
DIMENSION(*)

int[] Defines the shape of the output data to be
stored in array z. See Data Allocation for
more information.

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for vslsconvnewtask,
vsldconvnewtask

TYPE(VSL_CORR_TASK)
for vslscorrnewtask,
vsldcorrnewtask

VSLConvTaskPtr* for
vslsConvNewTask,
vsldConvNewTask

VSLCorrTaskPtr* for
vslsCorrNewTask,
vsldCorrNewTask

Pointer to the task descriptor if
created successfully or NULL pointer
otherwise.

status INTEGER int Set to VSL_STATUS_OK if the task
is created successfully or set to
non-zero error code otherwise.

Name Type Description

FORTRAN C

Statistical Functions 10

10-113

status = vslscorrnewtask1d(task, mode, xshape, yshape, zshape)

status = vsldcorrnewtask1d(task, mode, xshape, yshape, zshape)

C:

status = vslsConvNewTask1D(task, mode, xshape, yshape, zshape);

status = vsldConvNewTask1D(task, mode, xshape, yshape, zshape);

status = vslsCorrNewTask1D(task, mode, xshape, yshape, zshape);

status = vsldCorrNewTask1D(task, mode, xshape, yshape, zshape);

Description

Each NewTask1D constructor creates a new convolution or correlation task descriptor with the
user specified values for explicit parameters. The optional parameters are set to their default values
(see Table 10-13).
Unlike NewTask, these routines represent a special one-dimensional version of the constructor
which assumes that the value of the parameter dims is 1.
The parameters xshape, yshape, and zshape are equal to the number of elements read from the
arrays x and y or stored to the array z.You explicitly assign the shape parameters when calling the
constructor.

Input Parameters

Name Type Description

FORTRAN C

mode INTEGER int Specifies whether convolution/correlation
calculation must be performed by using a
direct algorithm or through Fourier transform
of the input data. See Table 10-16 for a list of
possible values.

xshape INTEGER int Defines the length of the input data sequence
for the source array x. See Data Allocation
for more information.

yshape INTEGER int Defines the length of the input data sequence
for the source array y. See Data Allocation
for more information.

zshape INTEGER int Defines the length of the output data
sequence to be stored in array z. See Data
Allocation for more information.

10-114

10 Intel® Math Kernel Library Reference Manual

Output Parameters

NewTaskX
Creates a new convolution or correlation task
descriptor for multidimensional case and assigns
source data to the first operand vector.

Syntax

Fortran:

status = vslsconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)

status = vsldconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)

status = vslscorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)

status = vsldcorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)

C:

status = vslsConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x,
xstride);

status = vsldConvNewTaskX(task, mode, dims, xshape, yshape, zshape, x,
xstride);

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for vslsconvnewtask1d,
vsldconvnewtask1d

TYPE(VSL_CORR_TASK)
for vslscorrnewtask1d,
vsldcorrnewtask1d

VSLConvTaskPtr* for
vslsConvNewTask1D,
vsldConvNewTask1D

VSLCorrTaskPtr* for
vslsCorrNewTask1D,
vsldCorrNewTask1D

Pointer to the task descriptor if
created successfully or NULL
pointer otherwise.

status INTEGER int Set to VSL_STATUS_OK if the
task is created successfully or set
to non-zero error code otherwise.

Statistical Functions 10

10-115

status = vslsCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x,
xstride);

status = vsldCorrNewTaskX(task, mode, dims, xshape, yshape, zshape, x,
xstride);

Description

Each NewTaskX constructor creates a new convolution or correlation task descriptor with the user
specified values for explicit parameters. The optional parameters are set to their default values (see
Table 10-13).

Unlike NewTask, these routines represent the so called X-form version of the constructor, which
means that in addition to creating the task descriptor they assign particular data to the first operand
vector in array x used in convolution or correlation operation. The task descriptor created by the
NewTaskX constructor keeps the pointer to the array x all the time, that is, until the task object is
deleted by one of the destructor routines (see DeleteTask).

Using this form of constructors is recommended when you need to compute multiple convolutions
or correlations with the same data vector in array x against different vectors in array y. This helps
improve performance by eliminating unnecessary overhead in repeated computation of
intermediate data required for the operation.

The parameters xshape, yshape, and zshape define the shapes of the input and output data
provided by the arrays x, y, and z, respectively. Each shape parameter is an array of integers
with its length equal to the value of dims.
You explicitly assign the shape parameters when calling the constructor. If the value of the
parameter dims is 1, then xshape, yshape, zshape are equal to the number of elements read
from the arrays x and y or stored to the array z. Note that values of shape parameters may differ
from physical shapes of arrays x, y, and z if non-trivial strides are assigned.

The stride parameter xstride specifies the physical location of the input data in the array x.
 In a one-dimensional case, stride is an interval between locations of consecutive elements of the
array. For example, if the value of the parameter xstride is s, then only every sth element of the
array x will be used to form the input sequence. The stride value must be positive or negative but
not zero.

10-116

10 Intel® Math Kernel Library Reference Manual

Input Parameters

Name Type Description

FORTRAN C

mode INTEGER int Specifies whether convolution/correlation
calculation must be performed by using a
direct algorithm or through Fourier transform
of the input data. See Table 10-16 for a list of
possible values.

dims INTEGER int Rank of user data. Specifies number of
dimensions for the input and output arrays x,
y, and z used during the execution stage.
Must be in the range from 1 to 7. The value is
explicitly assigned by the constructor.

xshape INTEGER,
DIMENSION(*)

int[] Defines the shape of the input data for the
source array x. See Data Allocation for
more information.

yshape INTEGER,
DIMENSION(*)

int[] Defines the shape of the input data for the
source array y. See Data Allocation for more
information.

zshape INTEGER,
DIMENSION(*)

int[] Defines the shape of the output data to be
stored in
array z. See Data Allocation for more
information.

x REAL*4,
DIMENSION (*) for
single precision
flavors,

REAL*8,
DIMENSION (*) for
double precision
flavors

float[] for single
precision flavors

double[] for double
precision flavors

Pointer to the array containing input data for
the first operand vector. See Data Allocation
for more information.

xstride INTEGER,
DIMENSION (*)

int[] Strides for input data in the arrayx.

Statistical Functions 10

10-117

Output Parameters

NewTaskX1D
Creates a new convolution or correlation task
descriptor for one-dimensional case and assigns source
data to the first operand vector.

Syntax

Fortran:

status = vslsconvnewtaskx1d(task, mode, xshape, yshape, zshape, x, xstride)

status = vsldconvnewtaskx1d(task, mode, xshape, yshape, zshape, x, xstride)

status = vslscorrnewtaskx1d(task, mode, xshape, yshape, zshape, x, xstride)

status = vsldcorrnewtaskx1d(task, mode, xshape, yshape, zshape, x, xstride)

C:

status = vslsConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);

status = vsldConvNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);

status = vslsCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);

status = vsldCorrNewTaskX1D(task, mode, xshape, yshape, zshape, x, xstride);

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for vslsconvnewtaskx,
vsldconvnewtaskx

TYPE(VSL_CORR_TASK)
for vslscorrnewtaskx,
vsldcorrnewtaskx

VSLConvTaskPtr* for
vslsConvNewTaskX,
vsldConvNewTaskX

VSLCorrTaskPtr* for
vslsCorrNewTaskX,
vsldCorrNewTaskX

Pointer to the task descriptor if
created successfully or NULL
pointer otherwise.

status INTEGER int Set to VSL_STATUS_OK if the
task is created successfully or set
to non-zero error code otherwise.

10-118

10 Intel® Math Kernel Library Reference Manual

Description

Each NewTaskX1D constructor creates a new convolution or correlation task descriptor with the
user specified values for explicit parameters. The optional parameters are set to their default values
(see Table 10-13).

These routines represent a special one-dimensional version of the so called X-form of the
constructor. This assumes that the value of the parameter dims is 1 and that in addition to creating
the task descriptor, constructor routines assign particular data to the first operand vector in array x
used in convolution or correlation operation. The task descriptor created by the NewTaskX1D
constructor keeps the pointer to the array x all the time, that is, until the task object is deleted by
one of the destructor routines (see DeleteTask).

Using this form of constructors is recommended when you need to compute multiple convolutions
or correlations with the same data vector in array x against different vectors in array y. This helps
improve performance by eliminating unnecessary overhead in repeated computation of
intermediate data required for the operation.

The parameters xshape, yshape, and zshape are equal to the number of elements read from the
arrays x and y or stored to the array z.You explicitly assign the shape parameters when calling the
constructor.

The stride parameter xstride specifies the physical location of the input data in the array x and is
an interval between locations of consecutive elements of the array. For example, if the value of the
parameter xstride is s, then only every sth element of the array x will be used to form the input
sequence. The stride value must be positive or negative but not zero.

Input Parameters

Name Type Description

FORTRAN C

mode INTEGER int Specifies whether convolution/correlation
calculation must be performed by using a
direct algorithm or through Fourier transform
of the input data. See Table 10-16 for a list of
possible values.

xshape INTEGER int Defines the length of the input data sequence
for the source array x. See Data Allocation
for more information.

Statistical Functions 10

10-119

Output Parameters

yshape INTEGER int Defines the length of the input data sequence
for the source array y. See Data Allocation
for more information.

zshape INTEGER int Defines the length of the output data
sequence to be stored in array z. See Data
Allocation for more information.

x REAL*4,
DIMENSION (*)
for single precision
flavors,

REAL*8,
DIMENSION (*) for
double precision
flavors

float[] for single
precision flavors

double[] for double
precision flavors

Pointer to the array containing input data for
the first operand vector. See Data Allocation
for more information.

xstride INTEGER int Stride for input data sequence in the arrayx.

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for vslsconvnewtaskx1d,
vsldconvnewtaskx1d

TYPE(VSL_CORR_TASK)
for vslscorrnewtaskx1d,
vsldcorrnewtaskx1d

VSLConvTaskPtr* for
vslsConvNewTaskX1D,
vsldConvNewTaskX1D

VSLCorrTaskPtr* for
vslsCorrNewTaskX1D,
vsldCorrNewTaskX1D

Pointer to the task descriptor if
created successfully or NULL
pointer otherwise.

status INTEGER int Set to VSL_STATUS_OK if the
task is created successfully or
set to non-zero error code
otherwise.

Name Type Description

FORTRAN C

10-120

10 Intel® Math Kernel Library Reference Manual

Task Editors
Task editors in convolution and correlation API of the Intel MKL are routines intended for setting
up or changing the following task parameters (see Table 10-13):

• mode

• internal_precision

• start

• decimation.

For setting up or changing each of the above parameters, a separate routine exists.

After applying any of the editor routines to change the task descriptor settings, the task loses its
commitment status and will go through the full commitment process again during the next
execution or copy operation. This is motivated by the fact that the currently stored work data
computed during the last commitment process may become invalid with respect to new parameter
settings. For more information about task commitment, see Overview.

Table 10-15 lists available task editors.

NOTE. Fields of the task descriptor structure are accessible only through
the set of task editor routines provided with the software.

Table 10-15 Task Editors

Routine Description

SetMode Changes the value of the parameter mode for the operation of
convolution or correlation.

SetInternalPrecision Changes the value of the parameter internal_precision
for the operation of convolution or correlation.

SetStart Sets the value of the parameter start for the operation of
convolution or correlation.

SetDecimation Sets the value of the parameter decimation for the operation
of convolution or correlation.

Statistical Functions 10

10-121

SetMode
Changes the value of the parameter mode in the
convolution or correlation task descriptor.

Syntax

Fortran:

status = vslconvsetmode(task, newmode)

status = vslcorrsetmode(task, newmode)

C:

status = vslConvSetMode(task, newmode);

status = vslCorrSetMode(task, newmode);

Description
The routine changes the value of the parameter mode for the operation of convolution or
correlation. This parameter defines whether the computation should be done via Fourier
transforms of the input/output data or using a direct algorithm. Initial value for mode is assigned
by a task constructor.

Predefined values for the mode parameter are as follows:

NOTE. You can use the NULL task pointer in calls to editor routines. In this
case, the routine will be terminated and no system crash will occur.

Table 10-16 Values of mode Parameter

Value Purpose

VSL_CONV_MODE_FFT Compute convolution by using fast Fourier transform.

VSL_CORR_MODE_FFT Compute correlation by using fast Fourier transform.

VSL_CONV_MODE_DIRECT Compute convolution directly.

VSL_CORR_MODE_DIRECT Compute correlation directly.

VSL_CONV_MODE_AUTO Automatically choose direct or Fourier mode for convolution.

10-122

10 Intel® Math Kernel Library Reference Manual

Input Parameters

Output Parameters

SetInternalPrecision
Changes the value of the parameter
internal_precision in the convolution or
correlation task descriptor.

Syntax

Fortran:

status = vslconvsetinternalprecision(task, precision)

status = vslcorrsetinternalprecision(task, precision)

C:

status = vslConvSetInternalPrecision(task, precision);

VSL_CORR_MODE_AUTO Automatically choose direct or Fourier mode for correlation.

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for vslconvsetmode

TYPE(VSL_CORR_TASK)
for vslcorrsetmode

VSLConvTaskPtr
for vslConvSetMode

VSLCorrTaskPtr
for vslCorrSetMode

Pointer to the task descriptor.

newmode INTEGER int New value of the parameter mode.

Name Type Description

FORTRAN C

status INTEGER int Current status of the task.

Table 10-16 Values of mode Parameter (continued)

Value Purpose

Statistical Functions 10

10-123

status = vslCorrSetInternalPrecision(task, precision);

Description

The routine changes the value of the parameter internal_precision for the operation of
convolution or correlation. This parameter defines whether the internal computations of the
convolution or correlation result should be done in single or double precision. Initial value for
internal_precision is assigned by a task constructor and set to either “single” or “double”
according to the particular flavor of the constructor used.

Changing the internal_precision can be useful if the default setting of this parameter was
“single” but you want to calculate the result with double precision even if input and output data are
represented in single precision.

Predefined values for the internal_precision input parameter are as follows:

Input Parameters

Table 10-17 Values of internal_precision Parameter

Value Purpose

VSL_CONV_PRECISION_SINGLE Compute convolution with single precision.

VSL_CORR_PRECISION_SINGLE Compute correlation with single precision.

VSL_CONV_PRECISION_DOUBLE Compute convolution with double precision.

VSL_CORR_PRECISION_DOUBLE Compute correlation with double precision.

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for
vslconvsetinternalprecision

TYPE(VSL_CORR_TASK)
for
vslcorrsetinternalprecision

VSLConvTaskPtr
for
vslConvSetInternalPrecision

VSLCorrTaskPtr
for
vslCorrSetInternalPrecision

Pointer to the
task
descriptor.

precision INTEGER int New value of
the
parameter
internal_
precision.

10-124

10 Intel® Math Kernel Library Reference Manual

Output Parameters

SetStart
Changes the value of the parameter start in the
convolution or correlation task descriptor.

Syntax

Fortran:

status = vslconvsetstart(task, start)

status = vslcorrsetstart(task, start)

C:

status = vslConvSetStart(task, start);

status = vslCorrSetStart(task, start);

Description

The routine sets the value of the parameter start for the operation of convolution or correlation.
In a one-dimensional case, this parameter points to the first element in the mathematical result that
should be stored in the output array. In a multidimensional case, start is an array of indices and
its length is equal to the number of dimensions specified by the parameter dims. For more
information about the definition and effect of this parameter, see Data Allocation.

During the initial task descriptor construction, the default value for start is undefined and this
parameter is not used. Hence, the only way to set and use the start parameter is via assigning it
some value by one of the SetStart routines.

Name Type Description

FORTRAN C

status INTEGER int Current status of the task.

Statistical Functions 10

10-125

Input Parameters

Output Parameters

SetDecimation
Changes the value of the parameter decimation in
the convolution or correlation task descriptor.

Syntax

Fortran:

status = vslconvsetdecimation(task, decimation)

status = vslcorrsetdecimation(task, decimation)

C:

status = vslConvSetDecimation(task, decimation);

status = vslCorrSetDecimation(task, decimation);

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for vslconvsetstart

TYPE(VSL_CORR_TASK)
for vslcorrsetstart

VSLConvTaskPtr for
vslConvSetStart

VSLCorrTaskPtr for
vslCorrSetStart

Pointer to the task descriptor.

start INTEGER, DIMENSION (*)int[] New value of the parameter
start.

Name Type Description

FORTRAN C

status INTEGER int Current status of the task.

10-126

10 Intel® Math Kernel Library Reference Manual

Description

The routine sets the value of the parameter decimation for the operation of convolution or
correlation.

This parameter determines how to thin out the mathematical result of convolution or correlation
before writing it into the output data array. For example, in a one-dimensional case, if
decimation = d >1, only every d-th element of the mathematical result is written to the output
array z.
In a multidimensional case, decimation is an array of indices and its length is equal to the
number of dimensions specified by the parameter dims. For more information about the definition
and effect of this parameter, see Data Allocation.

During the initial task descriptor construction, the default value for decimation is undefined and
this parameter is not used. Hence, the only way to set and use the decimation parameter is via
assigning it some value by one of the SetDecimation routines.

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for
vslconvsetdecimation

TYPE(VSL_CORR_TASK)
for
vslcorrsetdecimation

VSLConvTaskPtr for
vslConvSetDecimation

VSLCorrTaskPtr for
vslCorrSetDecimation

Pointer to the task descriptor.

start INTEGER, DIMENSION (*)int[] New value of the parameter
decimation.

Name Type Description

FORTRAN C

status INTEGER int Current status of the task.

Statistical Functions 10

10-127

Task Execution Routines
Task execution routines compute convolution or correlation results based on parameters held by
the task descriptor and on the supplied user data for input vectors.

Once created and adjusted, the task can be executed multiple times by applying to different
input/output data of the same type, precision, and shape.

Intel MKL implementation of the convolution and correlation API provides two different forms of
execution routines: a general form and an X-form. General form executors use the task descriptor
created by the general form constructor and expect to get two source data arrays x and y on input.
Alternatively, X-form executors use the task descriptor created by the X-form constructor and
expect to get only one source data array y on input because the first array x has been already
specified on the construction stage.

When the task is executed for the first time, the execution routine includes task commitment
operation, which involves two basic steps: parameters consistency check and preparation of
auxiliary data (for example, this might be the calculation of Fourier transform for input data).

For each execution routine there is also an associated one-dimensional version which exploits the
algorithmic and computational benefits provided by the simplicity of the data structures for
one-dimensional case.

If the task is executed successfully, the execution routine returns zero status code. If an error is
detected, the execution routine returns an error code which signals that a specific error has
occurred. In particular, an error status code is returned in the following cases:

• if the task pointer is NULL,

• if the task descriptor is corrupted,

• if calculation has failed for some other reason.

If an error occurs, the task descriptor stores the error code.

NOTE. You can use the NULL task pointer in calls to execution routines. In
this case, the routine will be terminated and no system crash will occur.

10-128

10 Intel® Math Kernel Library Reference Manual

The table below lists all task execution routines.

Exec
Computes convolution or correlation for
multidimensional case.

Syntax

Fortran:

status = vslsconvexec(task, x, xstride, y, ystride, z, zstride)

status = vsldconvexec(task, x, xstride, y, ystride, z, zstride)

status = vslscorrexec(task, x, xstride, y, ystride, z, zstride)

status = vsldcorrexec(task, x, xstride, y, ystride, z, zstride)

C:

status = vslsConvExec(task, x, xstride, y, ystride, z, zstride);

status = vsldConvExec(task, x, xstride, y, ystride, z, zstride);

status = vslsCorrExec(task, x, xstride, y, ystride, z, zstride);

status = vsldCorrExec(task, x, xstride, y, ystride, z, zstride);

Description

Each of the Exec routines computes convolution or correlation of the data provided by the arrays
x and y and then stores the results in the array z. Parameters of the operation are read from the task
descriptor created previously by a corresponding NewTask constructor and pointed to by task.
If task is NULL, no operation is done.

Table 10-18 Task Execution Routines

Routine Description

Exec Computes convolution or correlation for a multidimensional case.

Exec1D Computes convolution or correlation for a one-dimensional case.

ExecX Computes convolution or correlation as X-form for a multidimensional case.

ExecX1D Computes convolution or correlation as X-form for a one-dimensional case.

Statistical Functions 10

10-129

The stride parameters xstride, ystride, and zstride specify the physical location of the input
and output data in the arrays x, y, and z, respectively. In a one-dimensional case, stride is an
interval between locations of consecutive elements of the array. For example, if the value of the
parameter zstride is s, then only every sth element of the array z will be used to store the output
data. The stride value must be positive or negative but not zero.

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for vslsconvexec and
vsldconvexec

TYPE(VSL_CORR_TASK)
for vslscorrexec and
vsldcorrexec

VSLConvTaskPtr for
vslsConvExec and
vsldConvExec

VSLCorrTaskPtr for
vslsCorrExec and
vsldCorrExec

Pointer to the task descriptor.

x , y REAL*4, DIMENSION(*)
for vslsconvexec and
vslscorrexec

REAL*8, DIMENSION(*)
for vsldconvexec and
vsldcorrexec

float[] for
vslsConvExec and
vslsCorrExec

double[] for
vsldConvExec and
vsldCorrExec

Pointers to arrays containing
input data. See Data Allocation
for more information.

xstride,
ystride,
zstride

INTEGER, DIMENSION(*) int[] Strides for input and output
data. For more information,
see Data Allocation.

Name Type Description

FORTRAN C

z REAL*4, DIMENSION(*)
for vslsconvexec and
vslscorrexec

REAL*8, DIMENSION(*)
for vsldconvexec and
vsldcorrexec

float[] for
vslsConvExec and
vslsCorrExec

double[] for
vsldConvExec and
vsldCorrExec

Pointer to the array that stores
output data. See Data Allocation
for more information.

10-130

10 Intel® Math Kernel Library Reference Manual

Exec1D
Computes convolution or correlation for
one-dimensional case.

Syntax

Fortran:

status = vslsconvexec1d(task, x, xstride, y, ystride, z, zstride)

status = vsldconvexec1d(task, x, xstride, y, ystride, z, zstride)

status = vslscorrexec1d(task, x, xstride, y, ystride, z, zstride)

status = vsldcorrexec1d(task, x, xstride, y, ystride, z, zstride)

C:

status = vslsConvExec1D(task, x, xstride, y, ystride, z, zstride);

status = vsldConvExec1D(task, x, xstride, y, ystride, z, zstride);

status = vslsCorrExec1D(task, x, xstride, y, ystride, z, zstride);

status = vsldCorrExec1D(task, x, xstride, y, ystride, z, zstride);

Description

Each of the Exec1D routines computes convolution or correlation of the data provided by the
arrays x and y and then stores the results in the array z. These routines represent a special
one-dimensional version of the operation, assuming that the value of the parameter dims is 1.
Using this version of execution routines can help speed up performance in case of
one-dimensional data.

Parameters of the operation are read from the task descriptor created previously by a
corresponding NewTask1D constructor and pointed to by task. If task is NULL, no operation is
done.

status INTEGER int Set to VSL_STATUS_OK if the
task is executed successfully or
set to non-zero error code
otherwise.

Name Type Description

FORTRAN C

Statistical Functions 10

10-131

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for vslsconvexec1d and
vsldconvexec1d

TYPE(VSL_CORR_TASK)
for vslscorrexec1d and
vsldcorrexec1d

VSLConvTaskPtr for
vslsConvExec1D and
vsldConvExec1D

VSLCorrTaskPtr for
vslsCorrExec1D and
vsldCorrExec1D

Pointer to the task descriptor.

x , y REAL*4, DIMENSION(*)
for vslsconvexec1d and
vslscorrexec1d

REAL*8, DIMENSION(*)
for vsldconvexec1d and
vsldcorrexec1d

float[] for
vslsConvExec1D and
vslsCorrExec1D

double[] for
vsldConvExe1D and
vsldCorrExec1D

Pointers to arrays containing
input data. See Data Allocation
for more information.

xstride,
ystride,
zstride

INTEGER, DIMENSION(*) int[] Strides for input and output
data. For more information,
see Data Allocation.

Name Type Description

FORTRAN C

z REAL*4, DIMENSION(*)
for vslsconvexec1d and
vslscorrexec1d

REAL*8, DIMENSION(*)
for vsldconvexec1d and
vsldcorrexec1d

float[] for
vslsConvExec1D and
vslsCorrExec1D

double[] for
vsldConvExec1D and
vsldCorrExec1D

Pointer to the array that stores
output data. See Data Allocation
for more information.

status INTEGER int Set to VSL_STATUS_OK if the
task is executed successfully or
set to non-zero error code
otherwise.

10-132

10 Intel® Math Kernel Library Reference Manual

ExecX
Computes convolution or correlation for
multidimensional case with the fixed first operand
vector.

Syntax

Fortran:

status = vslsconvexecx(task, y, ystride, z, zstride)

status = vsldconvexecx(task, y, ystride, z, zstride)

status = vslscorrexecx(task, y, ystride, z, zstride)

status = vsldcorrexecx(task, y, ystride, z, zstride)

C:

status = vslsConvExecX(task, y, ystride, z, zstride);

status = vsldConvExecX(task, y, ystride, z, zstride);

status = vslsCorrExecX(task, y, ystride, z, zstride);

status = vsldCorrExecX(task, y, ystride, z, zstride);

Description

Each of the ExecX routines computes convolution or correlation of the data provided by the
arrays x and y and then stores the results in the array z. These routines represent a special version
of the operation, which assumes that the first operand vector was set on the task construction stage
and the task object keeps the pointer to the array x.

Parameters of the operation are read from the task descriptor created previously by a
corresponding NewTaskX constructor and pointed to by task. If task is NULL, no operation is
done.

Using this form of execution routines is recommended when you need to compute multiple
convolutions or correlations with the same data vector in array x against different vectors in array
y. This helps improve performance by eliminating unnecessary overhead in repeated computation
of intermediate data required for the operation.

Statistical Functions 10

10-133

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for vslsconvexecx and
vsldconvexecx

TYPE(VSL_CORR_TASK)
for vslscorrexecx and
vsldcorrexecx

VSLConvTaskPtr for
vslsConvExecX and
vsldConvExecX

VSLCorrTaskPtr for
vslsCorrExecX and
vsldCorrExecX

Pointer to the task descriptor.

x , y REAL*4, DIMENSION(*)
for vslsconvexecx and
vslscorrexecx

REAL*8, DIMENSION(*)
for vsldconvexecx and
vsldcorrexecx

float[] for
vslsConvExecX and
vslsCorrExecX

double[] for
vsldConvExeX and
vsldCorrExecX

Pointer to array containing
input data (for the second
operand vector). See Data
Allocation for more information.

xstride,
ystride,
zstride

INTEGER, DIMENSION(*) int[] Strides for input and output
data. For more information,
see Data Allocation.

Name Type Description

FORTRAN C

z REAL*4, DIMENSION(*)
for vslsconvexecx and
vslscorrexecx

REAL*8, DIMENSION(*)
for vsldconvexecx and
vsldcorrexecx

float[] for
vslsConvExecX and
vslsCorrExecX

double[] for
vsldConvExecX and
vsldCorrExecX

Pointer to the array that stores
output data. See Data Allocation
for more information.

status INTEGER int Set to VSL_STATUS_OK if the
task is executed successfully or
set to non-zero error code
otherwise.

10-134

10 Intel® Math Kernel Library Reference Manual

ExecX1D
Computes convolution or correlation for
one-dimensional case with the fixed first operand
vector.

Syntax

Fortran:

status = vslsconvexecx1d(task, y, ystride, z, zstride)

status = vsldconvexecx1d(task, y, ystride, z, zstride)

status = vslscorrexecx1d(task, y, ystride, z, zstride)

status = vsldcorrexecx1d(task, y, ystride, z, zstride)

C:

status = vslsConvExecX1D(task, y, ystride, z, zstride);

status = vsldConvExecX1D(task, y, ystride, z, zstride);

status = vslsCorrExecX1D(task, y, ystride, z, zstride);

status = vsldCorrExecX1D(task, y, ystride, z, zstride);

Description

Each of the ExecX1D routines computes convolution or correlation of one-dimensional (assuming
that dims =1) data provided by the arrays x and y and then stores the results in the array z. These
routines represent a special version of the operation, which expects that the first operand vector
was set on the task construction stage.

Parameters of the operation are read from the task descriptor created previously by a
corresponding NewTaskX1D constructor and pointed to by task. If task is NULL, no operation
is done.

Using this form of execution routines is recommended when you need to compute multiple
one-dimensional convolutions or correlations with the same data vector in array x against different
vectors in array y. This helps improve performance by eliminating unnecessary overhead in
repeated computation of intermediate data required for the operation.

Statistical Functions 10

10-135

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for vslsconvexecx1d and
vsldconvexecx1d

TYPE(VSL_CORR_TASK)
for vslscorrexecx1d and
vsldcorrexecx1d

VSLConvTaskPtr for
vslsConvExecX1D and
vsldConvExecX1D

VSLCorrTaskPtr for
vslsCorrExecX1D and
vsldCorrExecX1D

Pointer to the task descriptor.

x , y REAL*4, DIMENSION(*)
for vslsconvexecx1d and
vslscorrexecx1d

REAL*8, DIMENSION(*)
for vsldconvexecx1d and
vsldcorrexecx1d

float[] for
vslsConvExecX1D and
vslsCorrExecX1D

double[] for
vsldConvExeX1D and
vsldCorrExecX1D

Pointer to array containing
input data (for the second
operand vector). See Data
Allocation for more information.

xstride,
ystride,
zstride

INTEGER, DIMENSION(*) int[] Strides for input and output
data. For more information,
see Data Allocation.

Name Type Description

FORTRAN C

z REAL*4, DIMENSION(*)
for vslsconvexecx1d and
vslscorrexecx1d

REAL*8, DIMENSION(*)
for vsldconvexecx1d and
vsldcorrexec1d

float[] for
vslsConvExecX1D and
vslsCorrExecX1D

double[] for
vsldConvExecX1D and
vsldCorrExecX1D

Pointer to the array that stores
output data. See Data Allocation
for more information.

status INTEGER int Set to VSL_STATUS_OK if the
task is executed successfully or
set to non-zero error code
otherwise.

10-136

10 Intel® Math Kernel Library Reference Manual

Task Destructors
Task destructors are routines designed for deleting task objects and deallocating memory.

DeleteTask
Destroys the task object and frees the memory.

Syntax

Fortran:

errcode = vslconvdeletetask(task)

errcode = vslcorrdeletetask(task)

C:

errcode = vslConvDeleteTask(task);

errcode = vslCorrDeleteTask(task);

Description

Given a pointer to a task descriptor, this routine deletes the task descriptor object and frees the
memory allocated for the data structure. If the task holds a work memory, the latter is also freed.
The task pointer is set to NULL.

Note that if by some reason the task was not deleted successfully, the routine returns an error code.
This error code has no relation to the task status code and does not change it.

NOTE. You can use the NULL task pointer in calls to destructor routines. In
this case, the routine will be terminated and no system crash will occur.

Statistical Functions 10

10-137

Input Parameters

Output Parameters

Task Copy
The routines are designed for copying convolution and correlation task descriptors.

CopyTask
Copies a descriptor for convolution or correlation task.

Syntax

Fortran:

status = vslconvcopytask(newtask, srctask)

status = vslcorrcopytask(newtask, srctask)

C:

status = vslConvTaskCopy(newtask, srctask);

Name Type Description

FORTRAN C

task TYPE(VSL_CONV_TASK)
for vslconvdeletetask

TYPE(VSL_CORR_TASK)
for vslcorrdeletetask

VSLConvTaskPtr* for
vslConvDeleteTask

VSLCorrTaskPtr* for
vslCorrDeleteTask

Pointer to the task descriptor.

Name Type Description

FORTRAN C

errcode INTEGER int Contains 0 if the task object is
deleted successfully. Contains
error code if an error occurred.

10-138

10 Intel® Math Kernel Library Reference Manual

status = vslCorrTaskCopy(newtask, srctask);

Description

If a task object srctask already exists, you can use an appropriate CopyTask routine to make its
copy in newtask. After the copy operation, both source and new task objects will become
committed (see Overview for information about task commitment). If the source task was not
previously committed, the commitment operation for this task is implicitly invoked before copying
starts. If an error occurs during source task commitment, the task stores the error code in the status
field. If an error occurs during copy operation, the routine returns a NULL pointer instead of a
reference to a new task object.

Input Parameters

Output Parameters

Name Type Description

FORTRAN C

srctask TYPE(VSL_CONV_TASK)
for vslconvcopytask

TYPE(VSL_CORR_TASK)
for vslcorrcopytask

VSLConvTaskPtr for
vslConvCopyTask

VSLCorrTaskPtr for
vslCorrCopyTask

Pointer to the source task
descriptor.

Name Type Description

FORTRAN C

newtask TYPE(VSL_CONV_TASK)
for vslconvcopytask

TYPE(VSL_CORR_TASK)
for vslcorrcopytask

VSLConvTaskPtr* for
vslConvCopyTask

VSLCorrTaskPtr* for
vslCorrCopyTask

Pointer to the new task
descriptor.

status INTEGER int Current status of the source
task.

Statistical Functions 10

10-139

Usage Examples
This section demonstrates how you can use the Intel MKL routines to perform some common
convolution and correlation operations both for single threaded and multiple threaded calculations.
The following two sample functions scond1 and sconf1 simulate the convolution and correlation
functions SCOND and SCONF found in IBM ESSL* library. The functions assume single threaded
calculations and can be used with C or C++ compilers.

Example 10-5 Function scond1 for Single Threaded Calculations

#include "mkl_vsl.h"

int scond1(

 float h[], int inch,

 float x[], int incx,

 float y[], int incy,

 int nh, int nx, int iy0, int ny)

{

 int status;

 VSLConvTaskPtr task;

 vslsConvNewTask1D(&task,VSL_CONV_MODE_DIRECT,nh,nx,ny);

 vslConvSetStart(task, &iy0);

 status = vslsConvExec1D(task, h,inch, x,incx, y,incy);

 vslConvDeleteTask(&task);

 return status;

}

10-140

10 Intel® Math Kernel Library Reference Manual

Example 10-6 Function sconf1 for Single Threaded Calculations

#include "mkl_vsl.h"

int sconf1(

 int init,

 float h[], int inc1h,

 float x[], int inc1x, int inc2x,

 float y[], int inc1y, int inc2y,

 int nh, int nx, int m, int iy0, int ny,

 void* aux1, int naux1, void* aux2, int naux2)

{

 int status;

 /* assume that aux1!=0 and naux1 is big enough */

 VSLConvTaskPtr* task = (VSLConvTaskPtr*)aux1;

 if (init != 0)

 /* initialization: */

 status = vslsConvNewTaskX1D(task,VSL_CONV_MODE_FFT,

 nh,nx,ny, h,inc1h);

 if (init == 0) {

 /* calculations: */

 int i;

 vslConvSetStart(*task, &iy0);

 for (i=0; i<m; i++) {

 float* xi = &x[inc2x * i];

 float* yi = &y[inc2y * i];

 /* task is implicitly committed at i==0 */

 status = vslsConvExecX1D(*task, xi, inc1x, yi, inc1y);

 };

 };

 vslConvDeleteTask(task);

 return status;

}

Statistical Functions 10

10-141

Using Multiple Threads

For functions such as sconf1 described in the previous example, parallel calculations may be
more preferable instead of cycling. If m>1, you can use multiple threads for invoking the task
execution against different data sequences. For such cases, use task copy routines to create m
copies of the task object before the calculations stage and then run these copies with different
threads. Ensure that you make all necessary parameter adjustments for the task (using Task
Editors) before copying it.

The sample code for that can look like following:

if (init == 0) {

 int i, status, ss[M];

 VSLConvTaskPtr tasks[M];

 /* assume that M is big enough */

 . . .

 vslConvSetStart(*task, &iy0);

 . . .

 for (i=0; i<m; i++)

 /* implicit commitment at i==0 */

 vslConvCopyTask(&tasks[i],*task);

 . . .

Then, m threads may be started to execute different copies of the task:

. . .

 float* xi = &x[inc2x * i];

 float* yi = &y[inc2y * i];

 ss[i]=vslsConvExecX1D(tasks[i], xi,inc1x, yi,inc1y);

 . . .

And finally, after all threads have finished the calculations, overall status ought to be collected
from all task objects. The following code assumes signaling the first error found, if any:

 . . .

 for (i=0; i<m; i++) {

 status = ss[i];

 if (status != 0) /* 0 means "OK" */

 break;

 };

10-142

10 Intel® Math Kernel Library Reference Manual

 return status;

}; /* end if init==0 */

Execution routines modify the task internal state (fields of the task structure). Such modifications
may conflict with each other if different threads work with the same task object simultaneously.
This is the reason why different threads must use different copies of the task.

Mathematical Notation and Definitions
The following notation is necessary to explain the underlying mathematical definitions used in the
text:

Given series :

• series is defined as for every n=1,...,N

• series is defined as for every n=1,...,N

• series is defines as for every n=1,...,N

• series is defined as for every n=1,...,N

• inequality means that for every n=1,...,N.

A function u(p) is called a finite function if there exist series such that:

 implies .

Operations of convolution and correlation are only defined for finite functions.

The set of real numbers.

The set of integer numbers.

The set of N-dimensional series of integer numbers.

N-dimensional series of integers.

Function u with arguments from ZN and values from R.

The value of the function u for the argument p = (p1, ..., pN).

Function w is the convolution of the functions u, v.

Function w is the correlation of the functions u, v.

R -∞ +∞ ,()=

Z 0 1± 2± …, , ,{ }=

ZN Z …× Z×=

p p1 … pN, ,() ZN∈=

u:ZN R→

u p() u p1 … pN, ,()=

w u∗v=

w u v•=

p q, ZN∈

r p q+= rn pn qn+=

r p q–= rn pn qn–=

r sup p q,{ }= rn max pn qn,{ }=

r inf p q,{ }= rn min pn qn,{ }=

p q≤ pn qn≤

P
min

P
max, ZN∈

u p() 0≠ P
min

 p P
max≤ ≤

Statistical Functions 10

10-143

Consider functions u, v and series such that:

 implies

 implies

Definitions of linear correlation and linear convolution for functions u and v are given below.

Linear Convolution

If function w = u*v is the convolution of u and v, then:

w(r) ≠ 0 implies Rmin ≤ r ≤ Rmax

where Rmin = Pmin + Qmin and Rmax = Pmax + Qmax .

If Rmin ≤ r ≤ Rmax, then:

w(r) = ∑u(t) ⋅ v (r - t) is the sum for all t ∈ ZN such that Tmin ≤ t ≤ Tmax

where Tmin= sup{Pmin, r - Qmax} and Tmax= inf{Pmax, r - Qmin}.

Linear Correlation

If function w = u • v is the correlation of u and v, then:

w(r) ≠ 0 implies Rmin ≤ r ≤ Rmax

where Rmin = Qmin - Pmax and Rmax = Qmax - Pmin .

If Rmin ≤ r ≤ Rmax, then:

w(r) = ∑u(t) ⋅ v (r + t) is the sum for all t ∈ ZN such that Tmin ≤ t ≤ Tmax

where Tmin= sup{Pmin, Qmin- r } and Tmax= inf{Pmax, Qmax- r}.

Representation of the functions u, v, w as the input/output data for the Intel MKL convolution and
correlation functions is described in the Data Allocation section below.

Data Allocation
This section explains the relation between:

• mathematical finite functions u, v, w introduced in the section Mathematical Notation and
Definitions ;

• multi-dimensional input and output data vectors representing the functions u, v, w ;

• arrays x, y, z used to store the input and output data vectors in computer memory

P
min

P
max

Q
min

Q
max ZN∈, , ,

u p() 0≠ P
min

 p P
max≤ ≤

v q() 0≠ Q
min

 q Q
max≤ ≤

10-144

10 Intel® Math Kernel Library Reference Manual

The convolution and correlation routine parameters that determine the allocation of input and
output data are the following:

• Data arrays x, y, z

• Shape arrays xshape, yshape, zshape

• Strides within arrays xstride, ystride, zstride

• Parameters start, decimation

Finite Functions and Data Vectors

The finite functions u(p), v(q), and w(r) introduced above are represented as multi-dimensional
vectors of input and output data:

inputu(i1,…,idims) for u(p1,…,pN)

inputv(j1,…,jdims) for v(q1,…,qN)

output(k1,…,kdims) for w(r1,…,rN).

Parameter dims represents the number of dimensions and is equal to N.

The parameters xshape, yshape, and zshape define the shapes of input/output vectors:

inputu(i1,…,idims) is defined if 1 ≤ in ≤ xshape(n) for every n=1,…,dims

inputv(j1,…,jdims) is defined if 1 ≤ jn ≤ yshape(n) for every n=1,…,dims

output(k1,…,kdims) is defined if 1 ≤ kn ≤ zshape(n) for every n=1,…,dims.

Relation between the input vectors and the functions u and v is defined by the following formulas:

inputu(i1,…,idims)= u(p1,…,pN) where pn=Pn
min + (in-1) for every n

inputv(j1,…,jdims)= v(q1,…,qN) where qn=Qn
min + (jn-1) for every n.

Relation between the output vector and the function w(r) is similar (but only in the case when
parameters start and decimation are not defined):

output(k1,…,kdims)= w(r1,…,rN) where rn=Rn
min + (kn-1) for every n.

If the parameter start is defined, it must belong to the interval Rn
min ≤ start(n) ≤ Rn

max .
If defined, the start parameter replaces Rmin in the formula:

output(k1,…,kdims)=w(r1,…,rN) where rn=start(n) + (kn-1)

Statistical Functions 10

10-145

If the parameter decimation is defined, it changes the relation according to the following
formula:

output(k1,…,kdims)=w(r1,…,rN) where rn= Rn
min + (kn-1)*decimation(n)

If both parameters start and decimation are defined, the formula is as follows:

output(k1,…,kdims)=w(r1,…,rN) where rn=start(n) + (kn-1)*decimation(n)

The convolution and correlation software checks the values of zshape, start, and decimation
during task commitment. If rn exceeds Rn

max for some kn,n=1,…,dims, an error is raised.

Allocation of Data Vectors

Both parameter arrays x and y contain input data vectors in memory, while array z is intended for
storing output data vector. To access the memory, the convolution and correlation software uses
only pointers to these arrays and ignores the array shapes.

For parameters x, y, and z, you can provide one-dimensional arrays with the requirement that
actual length of these arrays be sufficient to store the data vectors.

The allocation of the input and output data inside the arrays x, y, and z is described below
assuming that the arrays are one-dimensional. Given multi-dimensional indices i, j, k ∈ ZN,
one-dimensional indices e, f, g ∈ Z are defined such that:

inputu(i1,…,idims) is allocated at x(e)

inputv(j1,…,jdims) is allocated at y(f)

output(k1,…,kdims) is allocated at z(g).

The indices e, f, and g are defined as follows:

e = 1 + ∑xstride(n)⋅ dx(n) (the sum is for all n=1,…,dims)

f = 1 + ∑ystride(n)⋅ dy(n) (the sum is for all n=1,…,dims)

g = 1 + ∑zstride(n)⋅ dz(n) (the sum is for all n=1,…,dims)

The distances dx(n), dy(n), and dz(n) depend on the signum of the stride:

dx(n) = in-1 if xstride(n)>0, or dx(n) = in-xshape(n) if xstride(n)<0

dy(n) = jn-1 if ystride(n)>0, or dy(n) = jn-yshape(n) if ystride(n)<0

dz(n) = kn-1 if zstride(n)>0, or dz(n) = kn-zshape(n) if zstride(n)<0

10-146

10 Intel® Math Kernel Library Reference Manual

The definitions of indices e, f, and g assume that indexes for arrays x, y, and z are started from
unity:

x(e) is defined for e=1,…,length(x)

y(f) is defined for f=1,…,length(y)

z(g) is defined for g=1,…,length(z)

Below is a detailed explanation about how elements of the multi-dimensional output vector are
stored in the array z for one-dimensional and two-dimensional cases.

One-dimensional case. If dims=1, then zshape is the number of the output values to be stored
in the array z. The actual length of array z may be greater than zshape elements.

If zstride>1, output values are stored with the stride: output(1) is stored to z(1),
output(2) is stored to z(1+zstride), and so on. Hence, the actual length of z must be at least
1+zstride*(zshape-1) elements or more.

If zstride<0, it still defines the stride between elements of array z. However, the order of the
used elements is the opposite. For the k-th output value, output(k) is stored in
z(1+|zstride|*(zshape-k)), where|zstride| is the absolute value of zstride. The
actual length of the array z must be at least 1+|zstride|*(zshape - 1) elements.

Two-dimensional case. If dims=2, the output data is a two-dimensional matrix. The value
zstride(1) defines the stride inside matrix columns, that is, the stride between the output(k1,
k2) and output(k1+1, k2) for every pair of indices k1, k2. On the other hand, zstride(2)
defines the stride between columns, that is, the stride between output(k1,k2) and
output(k1,k2+1).

If zstride(2)is greater than zshape(1), this causes sparse allocation of columns. If the value
of zstride(2) is smaller than zshape(1), this may result in the transposition of the output
matrix. For example, if zshape = (2,3), you can define zstride = (3,1) to allocate output
values like transposed matrix of the shape 3x2.

Whether zstride assumes this kind of transformations or not, you need to ensure that different
elements output (k1, ...,kdims)will be stored in different locations z(g).

11-1

Fourier Transform
Functions 11

This chapter describes the following implementations of Discrete Fourier transform functions
available in Intel® MKL:

— Discrete Fourier transform (DFT) functions for single-processor or shared-memory
systems (see DFT Functions below)

— Cluster DFT Functions for distributed-memory architectures (available with
Intel® Cluster MKL product only).

Both these groups of DFT functions present a uniform and easy-to-use Applications Programmer
Interface providing fast computation of DFT via the Fast Fourier Transform (FFT) algorithm.

For compatibility with previous versions of the library, Intel MKL continues to support the older
FFT interface described later in this chapter (see Fast Fourier Transforms (Deprecated)), but users
of this older code are encouraged to migrate to the new advanced DFT functions in their
application programs for both performance and features.

DFT Functions
The Discrete Fourier Transform function library of Intel MKL provides one-dimensional,
two-dimensional, and multi-dimensional (up to the order of 7) routines and both Fortran- and
C-interfaces for all transform functions.

NOTE. All applications requiring FFTs should use these sets of DFT
functions. These routines offer both high performance and broad
functionality.

11-2

11 Intel® Math Kernel Library Reference Manual

Unlike the older FFT routines, the DFT functions support mixed-redix transforms for lengths of
other than powers of 2.

The full list of DFT functions implemented in Intel MKL is given in the table below:

Description of DFT functions is followed by discussion of configuration settings (see
Configuration Settings) and various configuration parameters used.

Table 11-1 DFT Functions in Intel MKL

Function Name Operation

 Descriptor Manipulation Functions

DftiCreateDescriptor Allocates memory for the descriptor data structure and
instantiates it with default configuration settings.

DftiCommitDescriptor Performs all initialization that facilitates the actual DFT
computation.

DftiCopyDescriptor Copies an existing descriptor.

DftiFreeDescriptor Frees memory allocated for a descriptor.

 DFT Computation Functions

DftiComputeForward Computes the forward DFT.

DftiComputeBackward Computes the backward DFT.

 Descriptor Configuration Functions

DftiSetValue Sets one particular configuration parameter with the
specified configuration value.

DftiGetValue Gets the configuration value of one particular configuration
parameter.

 Status Checking Functions

DftiErrorClass Checks if the status reflects an error of a predefined class.

DftiErrorMessage Generates an error message.

Fourier Transform Functions 11

11-3

Computing DFT

DFT functions described later in this chapter are implemented in Fortran and C interface. Fortran
stands for Fortran 95. DFT interface relies critically on many modern features offered in Fortran
95 that have no counterpart in Fortran 77

The materials presented in this chapter assume the availability of native complex types in C as they
are specified in C9X.

You can find example code that uses DFT interface functions to compute transform results in
“DFT Code Examples” section in Appendix C.

For most common situations, we expect a DFT computation can be effected by four function calls.
The approach adopted in Intel MKL for DFT computation uses one single data structure, the
descriptor, to record flexible configuration whose parameters can be changed independently. This
results in enhanced functionality and ease of use.

The record of type DFTI_DESCRIPTOR, when created, contains information about the length and
domain of the DFT to be computed, as well as the setting of a rather large number of configuration
parameters. The default settings for all of these parameters include, for example, the following:

• the DFT to be computed does not have a scale factor;

• there is only one set of data to be transformed;

• the data is stored contiguously in memory;

• the computed result overwrites (in place) the input data; etc.

Should any one of these many default settings be inappropriate, they can be changed one-at-a-time
through the function DftiSetValue as illustrated in the Example C-18 and Example C-19.

DFT Interface

To use the DFT functions, you need to access the module MKL_DFTI through the "use" statement
in Fortran; or access the header file mkl_dfti.h through "include" in C.

The Fortran interface provides a derived type DFTI_DESCRIPTOR; a number of named constants
representing various names of configuration parameters and their possible values; and a number of
overloaded functions through the generic functionality of Fortran 95.

NOTE. Following the explicit function interface in Fortran, data array
must be defined as one-dimensional for any transformation type.

11-4

11 Intel® Math Kernel Library Reference Manual

The C interface provides a structure type DFTI_DESCRIPTOR, a macro definition

#define DFTI_DESCRIPTOR_HANDLE DFTI_DESCRIPTOR*;

a number of named constants of two enumeration types DFTI_CONFIG_PARAM and
DFTI_CONFIG_VALUE;
and a number of functions, some of which accept different number of input arguments.

There are four main categories of DFT functions in Intel MKL:

1. Descriptor Manipulation. There are four functions in this category. The first one,
DftiCreateDescriptor, creates a DFT descriptor whose storage is allocated dynamically
by the routine. This function configures the descriptor with default settings corresponding to a
few input values supplied by the user.

The second, DftiCommitDescriptor, "commits" the descriptor to all its setting. In
practice, this usually means that all the necessary precomputation will be performed. This
may include factorization of the input length and computation of all the required twiddle
factors. The third function, DftiCopyDescriptor, makes an extra copy of a descriptor, and
the fourth function, DftiFreeDescriptor, frees up all the memory allocated for the
descriptor information.

2. DFT Computation. There are two functions in this category. The first,
DftiComputeForward, effects a forward DFT computation, and the second function,
DftiComputeBackward, performs a backward DFT computation.

3. Descriptor configuration. There are two functions in this category. One function,
DftiSetValue, sets one specific value to one of the many configuration parameters that are
changeable (a few are not); the other, DftiGetValue, gets the current value of any one of
these configuration parameters (all are readable). These parameters, though many, are
handled one-at-a-time.

NOTE. Some of the functions and/or functionality described in the
subsequent sections of this chapter may not be supported by the
currently available implementation of the library. You can find the
complete list of the implementation-specific exceptions in the release
notes to your version of the library.

Fourier Transform Functions 11

11-5

4. Status Checking. The functions described in the three categories above return an integer
value denoting the status of the operation.
In particular, a non-zero return value always indicates a problem of some sort. Envisioned to
be further enhanced in later releases of Intel MKL, DFT interface at present provides for one
logical status class function, DftiErrorClass, and a simple status message generation
function, DftiErrorMessage.

Status Checking Functions

All of the descriptor manipulation, DFT computation, and descriptor configuration functions
return an integer value denoting the status of the operation. Two functions serve to check the
status. The first function is a logical function that checks if the status reflects an error of a
predefined class, and the second is an error message function that returns a character string.

ErrorClass
Checks if the status reflects an error of a predefined
class.

Syntax

Fortran:

Predicate = DftiErrorClass(Status, Error_Class)

C:

predicate = DftiErrorClass(status, error_class);

Description

DFT interface in Intel MKL provides a set of predefined error class listed in Table 11-2. These are
named constants and have the type INTEGER in Fortran and long in C.

Table 11-2 Predefined Error Class

Named Constants Comments

DFTI_NO_ERROR No error

DFTI_MEMORY_ERROR Usually associated with memory allocation

DFTI_INVALID_CONFIGURATION Invalid settings of one or more configuration parameters

11-6

11 Intel® Math Kernel Library Reference Manual

Note that the correct usage is to check if the status returns .TRUE. or .FALSE. through the use of
DftiErrorClass with a specific error class. Direct comparison of a status with the predefined
class is an incorrect usage. See Example C-20 on a correct use of the status checking functions.

Interface and prototype
//Fortran interface

INTERFACE DftiErrorClass

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

 FUNCTION some_actual_function_8(Status, Error_Class)

 LOGICAL some_actual_function_8

 INTEGER, INTENT(IN) :: Status, Error_Class

 END FUNCTION some_actual_function_8

END INTERFACE DftiErrorClass

/* C prototype */

long DftiErrorClass(long , long);

DFTI_INCONSISTENT_CONFIGURAT
ION

Inconsistent configuration or input parameters

DFTI_NUMBER_OF_THREADS_ERROR Number of OMP threads in the computation function is
not equal to the number of OMP threads in the
initialization stage (commit function)

DFTI_MULTITHREADED_ERROR Usually associated with OMP routine’s error return
value

DFTI_BAD_DESCRIPTOR Descriptor is unusable for computation

DFTI_UNIMPLEMENTED Unimplemented legitimate settings; implementation
dependent

DFTI_MKL_INTERNAL_ERROR Internal library error

DFTI_1D_LENGTH_EXCEEDS_INT32 Length of one of dimensions exceeds 232 -1 (4 bytes).

Table 11-2 Predefined Error Class (continued)

Named Constants Comments

Fourier Transform Functions 11

11-7

ErrorMessage
Generates an error message.

Syntax

Fortran:

ERROR_MESSAGE = DftiErrorMessage(Status)

C:

error_message = DftiErrorMessage(status);

Description

The error message function generates an error message character string. The maximum length of
the string in Fortran is given by the named constant DFTI_MAX_MESSAGE_LENGTH. The actual
error message is implementation dependent. In Fortran, the user needs to use a character string of
length DFTI_MAX_MESSAGE_LENGTH as the target. In C, the function returns a pointer to a
character string, that is, a character array with the delimiter ' 0'.

Example C-20 shows how this function can be implemented.

Interface and prototype
//Fortran interface

INTERFACE DftiErrorMessage

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

 FUNCTION some_actual_function_9(Status, Error_Class)

 CHARACTER(LEN=DFTI_MAX_MESSAGE_LENGTH) some_actual_function_9(Status)

 INTEGER, INTENT(IN) :: Status

 END FUNCTION some_actual_function_9

END INTERFACE DftiErrorMessage

/* C prototype */

11-8

11 Intel® Math Kernel Library Reference Manual

char *DftiErrorMessage(long);

Descriptor Manipulation

There are four functions in this category: create a descriptor, commit a descriptor, copy a
descriptor, and free a descriptor.

CreateDescriptor
Allocates memory for the descriptor data structure and
instantiates it with default configuration settings.

Syntax

Fortran:

Status = DftiCreateDescriptor(Desc_Handle, Precision, Forward_Domain,
Dimension, Length)

C:

status = DftiCreateDescriptor(&desc_handle, precision, forward_domain,
dimension, length);

Description

This function allocates memory for the descriptor data structure and instantiates it with all the
default configuration settings with respect to the precision, domain, dimension, and length of the
desired transform. The domain is understood to be the domain of the forward transform. Since
memory is allocated dynamically, the result is actually a pointer to the created descriptor. This
function is slightly different from the "initialization" routine in more traditional software packages
or libraries used for computing DFT. In all likelihood, this function will not perform any
significant computation work such as twiddle factors computation, as the default configuration
settings can still be changed upon user's request through the value setting function
DftiSetValue.

The precision and (forward) domain are specified through named constants provided in DFT
interface for the configuration values. The choices for precision are DFTI_SINGLE and
DFTI_DOUBLE; and the choices for (forward) domain are DFTI_COMPLEX and DFTI_REAL. See
Table 11-5 for the complete table of named constants for configuration values.

Fourier Transform Functions 11

11-9

Dimension is a simple positive integer indicating the dimension of the transform. Length is either
a simple positive integer for one-dimensional transform, or an integer array (pointer in C)
containing the positive integers corresponding to the lengths dimensions for multi-dimensional
transform.

The function returns DFTI_NO_ERROR when completes successfully. See
Status Checking Functions for more information on returned status.

Interface and prototype
!Fortran interface.

INTERFACE DftiCreateDescriptor

!Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the keyword INTERFACE

 FUNCTION some_actual_function_1D(Desc_Handle, Prec, Dom, Dim, Length)

 INTEGER :: some_actual_function_1D

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Prec, Dom

 INTEGER, INTENT(IN) :: Dim, Length

 END FUNCTION some_actual_function_1D

 FUNCTION some_actual_function_HIGHD(Desc_Handle, Prec, Dom, Dim, Length)

 INTEGER :: some_actual_function_HIGHD

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Prec, Dom

 INTEGER, INTENT(IN) :: Dim, Length(*)

 END FUNCTION some_actual_function_HIGHD

END INTERFACE DftiCreateDescriptor

Note that the function is overloaded as the actual argument for Length
can be a scalar or a a rank-one array.

/* C prototype */

11-10

11 Intel® Math Kernel Library Reference Manual

long DftiCreateDescriptor(DFTI_DESCRIPTOR_HANDLE *,
 DFTI_CONFIG_PARAM ,
 DFTI_CONFIG_PARAM ,
 long ,
 ...);

The variable arguments facility is used to cope with the argument for lengths that can be a scalar
(long), or an array (long *).

CommitDescriptor
Performs all initialization that facilitates the actual
DFT computation.

Syntax

Fortran:

Status = DftiCommitDescriptor(Desc_Handle)

C:

status = DftiCommitDescriptor(desc_handle);

Description

The interface requires a function that commits a previously created descriptor be invoked before
the descriptor can be used for DFT computations. Typically, this committal performs all
initialization that facilitates the actual DFT computation. For a modern implementation, it may
involve exploring many different factorizations of the input length to search for highly efficient
computation method.

Any changes of configuration parameters of a committed descriptor via the set value function (see
Descriptor Configuration) requires a re-committal of the descriptor before a computation function
can be invoked. Typically, this committal function call is immediately followed by a computation
function call (see DFT Computation).

The function returns DFTI_NO_ERROR when completes successfully. See
Status Checking Functions for more information on returned status.

Fourier Transform Functions 11

11-11

Interface and prototype
! Fortran interface

INTERFACE DftiCommitDescriptor

!Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the

!keyword INTERFACE

 FUNCTION some_actual function_1 (Desc_Handle)

 INTEGER :: some_actual function_1

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 END FUNCTION some_actual function_1

END INTERFACE DftiCommitDescriptor

/* C prototype */

long DftiCommitDescriptor(DFTI_DESCRIPTOR_HANDLE);

CopyDescriptor
Copies an existing descriptor.

Syntax

Fortran:

Status = DftiCopyDescriptor(Desc_Handle_Original, Desc_Handle_Copy)

C:

status = DftiCopyDescriptor(desc_handle_original, &desc_handle_copy);

Description

This function makes a copy of an existing descriptor and provides a pointer to it. The purpose is
that all information of the original descriptor will be maintained even if the original is destroyed
via the free descriptor function DftiFreeDescriptor.

11-12

11 Intel® Math Kernel Library Reference Manual

The function returns DFTI_NO_ERROR when completes successfully. See
Status Checking Functions for more information on returned status.

Interface and prototype
! Fortran interface

INTERFACE DftiCopyDescriptor

! Note that the body provided here is to illustrate the different

!argument list and types of dummy arguments. The interface

!does not guarantee what the actual function names are.

!Users can only rely on the function name following the

!keyword INTERFACE

 FUNCTION some_actual_function_2(Desc_Handle_Original,
 Desc_Handle_Copy)

 INTEGER :: some_actual_function_2

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Original, Desc_Handle_Copy

 END FUNCTION some_actual_function_2

END INTERFACE DftiCopyDescriptor

/* C prototype */

long DftiCopyDescriptor(DFTI_DESCRIPTOR_HANLDE, DFTI_DESCRIPTOR_HANDLE *);

FreeDescriptor
Frees memory allocated for a descriptor.

Syntax

Fortran:

Status = DftiFreeDescriptor(Desc_Handle)

C:

status = DftiFreeDescriptor(&desc_handle);

Fourier Transform Functions 11

11-13

Description

This function frees up all memory space allocated for a descriptor.

The function returns DFTI_NO_ERROR when completes successfully. See
Status Checking Functions for more information on returned status.

Interface and prototype
! Fortran interface

INTERFACE DftiFreeDescriptor

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

 FUNCTION some_actual_function_3(Desc_Handle)

 INTEGER :: some_actual_function_3

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 END FUNCTION some_actual_function_3

END INTERFACE DftiFreeDescriptor

/* C prototype */

long DftiFreeDescriptor(DFTI_DESCRIPTOR_HANDLE *);

11-14

11 Intel® Math Kernel Library Reference Manual

DFT Computation

There are two functions in this category: compute the forward transform, and compute the
backward transform.

ComputeForward
Computes the forward DFT.

Syntax

Fortran:

Status = DftiComputeForward(Desc_Handle, X_inout)

Status = DftiComputeForward(Desc_Handle, X_in, X_out)

C:

status = DftiComputeForward(desc_handle, x_inout);

status = DftiComputeForward(desc_handle, x_in, x_out);

Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT can
be performed. The DftiComputeForward function computes the forward DFT. This is the
transform using the factor

 .

Because of the flexibility in configuration, input data can be represented in various ways as well as
output result can be placed differently. Consequently, the number of input parameters as well as
their type vary. This variation is accommodated by the generic function facility of Fortran 95. Data
and result parameters are all declared as assumed-size rank-1 array DIMENSION(0:*).

The function returns DFTI_NO_ERROR when completes successfully. See

Status Checking Functions for more information on returned status.

Interface and prototype
//Fortran interface.

INTERFACE DftiComputeFoward

e i2π n⁄–

Fourier Transform Functions 11

11-15

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

 // One argument single precision complex

 FUNCTION some_actual_function_4_C(Desc_Handle, X)

 INTEGER :: some_actual_function_4_C

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 COMPLEX, INTENT(INOUT) :: X(*)

 END FUNCTION some_actual_function_4_C

 // One argument double precision complex

 FUNCTION some_actual_function_4_Z(Desc_Handle, X)

 INTEGER :: some_actual_function_4_Z

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 COMPLEX (Kind((0D0,0D0))), INTENT(INOUT) :: X(*)

 END FUNCTION some_actual_function_4_Z

 // One argument single precision real

 FUNCTION some_actual_function_4_R(Desc_Handle, X)

 INTEGER :: some_actual_function_4_R

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 REAL, INTENT(INOUT) :: X(*)

 END FUNCTION some_actual_function_4_R

 // One argument double precision real

 ...

 // Two argument single precision complex

 ...

 ...

 FUNCTION some_actual_function_4_CC(Desc_Handle, X_In, Y_Out)

 INTEGER :: some_actual_function_4_CC

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 COMPLEX, INTENT(IN) :: X_In

 COMPLEX, INTENT(OUT) :: Y_Out(*)

11-16

11 Intel® Math Kernel Library Reference Manual

 END FUNCTION some_actual_function_4_CC

END INTERFACE DftiComputeFoward

/* C prototype */

long DftiComputeForward(DFTI_DESCRIPTOR_HANDLE,
 void *,
 ...);

The implementations of DFT interface expect the data be treated as data stored linearly in memory
with a regular "stride" pattern (discussed more fully in Strides, see also [3]). The function expects
the starting address of the first element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly how many arguments
and of what type should be present. The implementation could use this information to check
against possible input inconsistency.

ComputeBackward
Computes the backward DFT.

Syntax

Fortran:

Status = DftiComputeBackward(Desc_Handle, X_inout)

Status = DftiComputeBackward(Desc_Handle, X_in, X_out)

C:

status = DftiComputeBackward(desc_handle, x_inout);

status = DftiComputeBackward(desc_handle, x_in, x_out);

Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT can
be performed. The DftiComputeBackward function computes the backward DFT.

This is the transform using the factor

. ei2π n⁄

Fourier Transform Functions 11

11-17

Because of the flexibility in configuration, input data can be represented in various ways as well as
output result can be placed differently. Consequently, the number of input parameters as well as
their type vary. This variation is accommodated by the generic function facility of Fortran 95. Data
and result parameters are all declared as assumed-size rank-1 array DIMENSION(0:*).
The function returns DFTI_NO_ERROR when completes successfully. See
Status Checking Functions for more information on returned status.

Interface and prototype
//Fortran interface.

INTERFACE DftiComputeBackward

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

 // One argument single precision complex

 FUNCTION some_actual_function_5_C(Desc_Handle, X)

 INTEGER :: some_actual_function_5_C

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 COMPLEX, INTENT(INOUT) :: X(*)

 END FUNCTION some_actual_function_5_C

 // One argument double precision complex

 FUNCTION some_actual_function_5_Z(Desc_Handle, X)

 INTEGER :: some_actual_function_5_Z

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 COMPLEX (Kind((0D0,0D0))), INTENT(INOUT) :: X(*)

 END FUNCTION some_actual_function_5_Z

 // One argument single precision real

 FUNCTION some_actual_function_5_R(Desc_Handle, X)

 INTEGER :: some_actual_function_5_R

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 REAL, INTENT(INOUT) :: X(*)

 END FUNCTION some_actual_function_5_R

 // One argument double precision real

11-18

11 Intel® Math Kernel Library Reference Manual

 ...

 // Two argument single precision complex

 ...

 ...

 FUNCTION some_actual_function_5_CC(Desc_Handle, X_In, Y_Out)

 INTEGER :: some_actual_function_5_CC

 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 COMPLEX, INTENT(IN) :: X_In(*)

 COMPLEX, INTENT(OUT) :: Y_Out(*)

 END FUNCTION some_actual_function_5_CCEND INTERFACE DftiComputeBackward
END INTERFACE DftiComputeBackward

/* C prototype */

long DftiComputeBackward(DFTI_DESCRIPTOR_HANDLE,
 void *,
 ...);

The implementations of DFT interface expect the data be treated as data stored linearly in memory
with a regular "stride" pattern (discussed more fully in Strides, see also [3]). The function expects
the starting address of the first element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly how many arguments
and of what type should be present. The implementation could use this information to check
against possible input inconsistency.

Descriptor Configuration

There are two functions in this category: the value setting function DftiSetValue sets one
particular configuration parameter to an appropriate value, and the value getting function
DftiGetValue reads the values of one particular configuration parameter. While all
configuration parameters are readable, a few of them cannot be set by user. Some of these contain
fixed information of a particular implementation such as version number, or dynamic information,
but nevertheless are derived by the implementation during execution of one of the functions. See
Configuration Settings for details.

Fourier Transform Functions 11

11-19

SetValue
Sets one particular configuration parameter with the
specified configuration value.

Syntax

Fortran:

Status = DftiSetValue(Desc_Handle, Config_Param, Config_Val)

C:

status = DftiSetValue(desc_handle, config_param, config_val);

Description

This function sets one particular configuration parameter with the specified configuration value.
The configuration parameter is one of the named constants listed in Table 11-3, and the
configuration value is the corresponding appropriate type, which can be a named constant or a
native type. See Configuration Settings for details of the meaning of the setting.

The function returns DFTI_NO_ERROR when completes successfully. See
Status Checking Functions for more information on returned status.

Interface and prototype
! Fortran interface

INTERFACE DftiSetValue

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

 FUNCTION some_actual_function_6_INTVAL(Desc_Handle, Config_Param, INTVAL)

 INTEGER :: some_actual_function_6_INTVAL

 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Config_Param

 INTEGER, INTENT(IN) :: INTVAL

11-20

11 Intel® Math Kernel Library Reference Manual

 END FUNCTION some_actual_function_6_INTVAL

 FUNCTION some_actual_function_6_SGLVAL(Desc_Handle, Config_Param, SGLVAL)

 INTEGER :: some_actual_function_6_SGLVAL

 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Config_Param

 REAL, INTENT(IN) :: SGLVAL

END FUNCTION some_actual_function_6_SGLVAL

 FUNCTION some_actual_function_6_DBLVAL(Desc_Handle, Config_Param, DBLVAL)

 INTEGER :: some_actual_function_6_DBLVAL

 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Config_Param

 REAL (KIND(0D0)), INTENT(IN) :: DBLVAL

 END FUNCTION some_actual_function_6_DBLVAL

 FUNCTION some_actual_function_6_INTVEC(Desc_Handle, Config_Param, INTVEC)

 INTEGER :: some_actual_function_6_INTVEC

 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Config_Param

 INTEGER, INTENT(IN) :: INTVEC(*)

 END FUNCTION some_actual_function_6_INTVEC

 FUNCTION some_actual_function_6_CHARS(Desc_Handle, Config_Param, CHARS)

 INTEGER :: some_actual_function_6_CHARS

 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Config_Param

 CHARCTER(*), INTENT(IN) :: CHARS

 END FUNCTION some_actual_function_6_CHARS

END INTERFACE DftiSetValue

/* C prototype */

Fourier Transform Functions 11

11-21

long DftiSetValue(DFTI_DESCRIPTOR_HANDLE,
 DFTI_CONFIG_PARAM ,
 ...);

GetValue
Gets the configuration value of one particular
configuration parameter.

Syntax

Fortran:

Status = DftiGetValue(Desc_Handle, Config_Param, Config_Val)

C:

status = DftiGetValue(desc_handle, config_param, &config_val);

Description

This function gets the configuration value of one particular configuration parameter. The
configuration parameter is one of the named constants listed in Table 11-3 and Table 11-4, and the
configuration value is the corresponding appropriate type, which can be a named constant or a
native type.

The function returns DFTI_NO_ERROR when completes successfully. See
Status Checking Functions for more information on returned status.

Interface and prototype
! Fortran interface

INTERFACE DftiGetValue

//Note that the body provided here is to illustrate the different

//argument list and types of dummy arguments. The interface

//does not guarantee what the actual function names are.

//Users can only rely on the function name following the

//keyword INTERFACE

 FUNCTION some_actual_function_7_INTVAL(Desc_Handle, Config_Param, INTVAL)

 INTEGER :: some_actual_function_7_INTVAL

11-22

11 Intel® Math Kernel Library Reference Manual

 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Config_Param

 INTEGER, INTENT(OUT) :: INTVAL

 END FUNCTION DFTI_GET_VALUE_INTVAL

 FUNCTION some_actual_function_7_SGLVAL(Desc_Handle, Config_Param, SGLVAL)

 INTEGER :: some_actual_function_7_SGLVAL

 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Config_Param

 REAL, INTENT(OUT) :: SGLVAL

 END FUNCTION some_actual_function_7_SGLVAL

 FUNCTION some_actual_function_7_DBLVAL(Desc_Handle, Config_Param, DBLVAL)

 INTEGER :: some_actual_function_7_DBLVAL

 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Config_Param

 REAL (KIND(0D0)), INTENT(OUT) :: DBLVAL

 END FUNCTION some_actual_function_7_DBLVAL

 FUNCTION some_actual_function_7_INTVEC(Desc_Handle, Config_Param, INTVEC)

 INTEGER :: some_actual_function_7_INTVEC

 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Config_Param

 INTEGER, INTENT(OUT) :: INTVEC(*)

 END FUNCTION some_actual_function_7_INTVEC

 FUNCTION some_actual_function_7_INTPNT(Desc_Handle, Config_Param, INTPNT)

 INTEGER :: some_actual_function_7_INTPNT

 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Config_Param

 INTEGER, DIMENSION(*), POINTER :: INTPNT

 END FUNCTION some_actual_function_7_INTPNT

 FUNCTION some_actual_function_7_CHARS(Desc_Handle, Config_Param, CHARS)

Fourier Transform Functions 11

11-23

 INTEGER :: some_actual_function_7_CHARS

 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

 INTEGER, INTENT(IN) :: Config_Param

 CHARCTER(*), INTENT(OUT):: CHARS

 END FUNCTION some_actual_function_7_CHARS

END INTERFACE DftiGetValue

/* C prototype */

long DftiGetValue(DFTI_DESCRIPTOR_HANDLE,
 DFTI_CONFIG_PARAM ,
 ...);

11-24

11 Intel® Math Kernel Library Reference Manual

Configuration Settings

Each of the configuration parameters is identified by a named constant in the MKL_DFTI module.
In C, these named constants have the enumeration type DFTI_CONFIG_PARAM. The list of
configuration parameters whose values can be set by user is given in Table 11-3; the list of
configuration parameters that are read-only is given in Table 11-4. All parameters are readable.
Most of these parameters are self-explanatory, while some others are discussed more fully in the
description of the relevant functions

Table 11-3 Settable Configuration Parameters

Named Constants Value Type Comments

Most common configurations, no default, must be set explicitly

DFTI_PRECISION Named constant Precision of computation

DFTI_FORWARD_DOMAIN Named constant Domain for the forward transform

DFTI_DIMENSION Integer scalar Dimension of the transform

DFTI_LENGTHS Integer scalar/array Lengths of each dimension

Common configurations including multiple transform and data representation

DFTI_NUMBER_OF_TRANSFORMS Integer scalar For multiple number of transforms

DFTI_FORWARD_SCALE Floating-point
scalar

Scale factor for forward transform

DFTI_BACKWARD_SCALE Floating-point
scalar

Scale factor for backward
transform

DFTI_PLACEMENT Named constant Placement of the computation
result

DFTI_COMPLEX_STORAGE Named constant Storage method, complex domain
data

DFTI_REAL_STORAGE Named constant Storage method, real domain data

DFTI_CONJUGATE_EVEN_STORAGE Named constant Storage method, conjugate even
domain data

DFTI_DESCRIPTOR_NAME Character string No longer than
DFTI_MAX_NAME_LENGTH

DFTI_PACKED_FORMAT Named constant Packed format, real domain data

DFTI_NUMBER_OF_USER_THREADS Integer scalar Number of user threads employing
the same descriptor for DFT
computation

Fourier Transform Functions 11

11-25

The configuration parameters are set by various values. Some of these values are specified by
native data types such as an integer value (for example, number of simultaneous transforms
requested), or a single-precision number (for example, the scale factor one would like to apply on
a forward transform).

Other configuration values are discrete in nature (for example, the domain of the forward
transform) and are thus provided in the DFTI module as named constants. In C, these named
constants have the enumeration type DFTI_CONFIG_VALUE. The complete list of named constants
used for this kind of configuration values is given in Table 11-5.

Configurations regarding stride of data

DFTI_INPUT_DISTANCE Integer scalar Multiple transforms, distance of
first elements

DFTI_OUTPUT_DISTANCE Integer scalar Multiple transforms, distance of
first elements

DFTI_INPUT_STRIDES Integer array Stride information of input data

DFTI_OUTPUT_STRIDES Integer array Stride information of output data

Advanced configuration

DFTI_ORDERING Named constant Scrambling of data order

DFTI_TRANSPOSE Named constant Scrambling of dimension

Table 11-4 Read-Only Configuration Parameters

Named Constants Value Type Comments

DFTI_COMMIT_STATUS Name constant Whether descriptor has been committed

DFTI_VERSION String Intel MKL library version number

Table 11-5 Named Constant Configuration Values

Named Constant Comments

DFTI_SINGLE Single precision

DFTI_DOUBLE Double precision

DFTI_COMPLEX Complex domain

DFTI_REAL Real domain

DFTI_INPLACE Output overwrites input

Table 11-3 Settable Configuration Parameters (continued)

Named Constants Value Type Comments

11-26

11 Intel® Math Kernel Library Reference Manual

Table 11-6 lists the possible values for those configuration parameters that are discrete in nature.

DFTI_NOT_INPLACE Output does not overwrite input

DFTI_COMPLEX_COMPLEX Storage method (see Storage schemes)

DFTI_REAL_REAL Storage method (see Storage schemes)

DFTI_COMPLEX_REAL Storage method (see Storage schemes)

DFTI_REAL_COMPLEX Storage method (see Storage schemes)

DFTI_COMMITTED Committal status of a descriptor

DFTI_UNCOMMITTED Committal status of a descriptor

DFTI_ORDERED Data ordered in both forward and backward domains

DFTI_BACKWARD_SCRAMBLED Data scrambled in backward domain (by forward transform)

DFTI_ALLOW Allows transportation if useful

DFTI_NONE Used to specify no transposition

DFTI_CCS_FORMAT Packed format, real data (see “Packed formats”)

DFTI_PACK_FORMAT Packed format, real data (see “Packed formats”)

DFTI_PERM_FORMAT Packed format, real data (see “Packed formats”)

DFTI_CCE_RORMAT Packed format, real data (see “Packed formats”)

DFTI_VERSION_LENGTH Number of characters for library version length

DFTI_MAX_NAME_LENGTH Maximum descriptor name length

DFTI_MAX_MESSAGE_LENGTH Maximum status message length

Table 11-6 Settings for Discrete Configuration Parameters

Named Constant Possible Values

DFTI_PRECISION DFTI_SINGLE, or

DFTI_DOUBLE (no default)

DFTI_FORWARD_DOMAIN DFTI_COMPLEX, or

DFTI_REAL

DFTI_PLACEMENT DFTI_INPLACE (default), or

DFTI_NOT_INPLACE

DFTI_COMPLEX_STORAGE DFTI_COMPLEX_COMPLEX (default)

DFTI_REAL_STORAGE DFTI_REAL_REAL (default), or

DFTI_REAL_COMPLEX

Table 11-5 Named Constant Configuration Values (continued)

Named Constant Comments

Fourier Transform Functions 11

11-27

Table 11-7 lists the default values of the settable configuration parameters.

DFTI_CONJUGATE_EVEN_STORAGE DFTI_COMPLEX_COMPLEX, or

DFTI_COMPLEX_REAL (default)

DFTI_PACKED_FORMAT DFTI_CCS_FORMAT (default), or

DFTI_PACK_FORMAT, or

DFTI_PERM_FORMAT, or

DFTI_CCE_FORMAT

Table 11-7 Default Configuration Values of Settable Parameters

Named Constants Default Value

DFTI_NUMBER_OF_TRANSFORMS 1

DFTI_NUMBER_OF_USER_THREADS 1

DFTI_FORWARD_SCALE 1.0

DFTI_BACKWARD_SCALE 1.0

DFTI_PLACEMENT DFTI_INPLACE

DFTI_COMPLEX_STORAGE DFTI_COMPLEX_COMPLEX

DFTI_REAL_STORAGE DFTI_REAL_REAL

DFTI_CONJUGATE_EVEN_STORAGE DFTI_COMPLEX_REAL

DFTI_PACKED_FORMAT DFTI_CCS_FORMAT

DFTI_DESCRIPTOR_NAME no name, string of zero length

DFTI_INPUT_DISTANCE 0

DFTI_OUTPUT_DISTANCE 0

DFTI_INPUT_STRIDES Tightly packed according to dimension, lengths, and
storage

DFTI_OUTPUT_STRIDES Same as above. See Strides for details

DFTI_ORDERING DFTI_ORDERED

DFTI_TRANSPOSE DFTI_NONE

Table 11-6 Settings for Discrete Configuration Parameters (continued)

Named Constant Possible Values

11-28

11 Intel® Math Kernel Library Reference Manual

Precision of transform

The configuration parameter DFTI_PRECISION denotes the floating-point precision in which the
transform is to be carried out. A setting of DFTI_SINGLE stands for single precision, and a setting
of DFTI_DOUBLE stands for double precision. The data is meant to be presented in this precision;
the computation will be carried out in this precision; and the result will be delivered in this
precision. This is one of the four settable configuration parameters that do not have default values.
The user must set them explicitly, most conveniently at the call to descriptor creation function
DftiCreateDescriptor.

Forward domain of transform

The general form of the discrete Fourier transform is

 (7.1)

for k1 = 0, ±1, ±2, ... , , where σ is an arbitrary real-valued scale factor and
δ =±1. The forward transform is defined by δ =1 and δ =−1. In most common situations, the
domain of the forward transform, that is, the set where the input (periodic) sequence

belongs, can be either the set of complex-valued sequences, real-valued sequences, and
complex-valued conjugate even sequences. The configuration parameter
DFTI_FORWARD_DOMAIN indicates the domain for the forward transform. Note that this implicitly
specifies the domain for the backward transform because of mathematical property of the DFT.
See Table 11-8 for details.

On transforms in the real domain, some software packages only offer one "real-to-complex"
transform. This in essence omits the conjugate even domain for the forward transform. The
forward domain configuration parameter DFTI_FORWARD_DOMAIN is the second of four
configuration parameters without default value.

Table 11-8 Correspondence of Forward and Backward Domain

Forward Domain Implied Backward Domain

Complex (DFTI_COMPLEX) Complex

Real (DFTI_REAL) Conjugate Even

zk1 k2 … kd, , , σ … wj1 j2 … jd, , ,
j1 0=

n1 1–

∑
j2 0=

n2 1–

∑
jd 0=

nd 1–

∑× δi2π jlkl nl⁄
l 1=

d

∑
 
 
 
 

exp=

kl 0 1 2 …,±,±,=

wj1 j2 … jd, , ,{ }

Fourier Transform Functions 11

11-29

Transform dimension and lengths

The dimension of the transform is a positive integer value represented in an integer scalar of
Integer data type in Fortran and long data type in C. For one-dimensional transform, the
transform length is specified by a positive integer value represented in an integer scalar of
Integer data type in Fortran and long data type in C. For multi-dimensional (≥ 2) transform,
the lengths of each of the dimension is supplied in an integer array (Integer data type in Fortran
and long data type in C). DFTI_DIMENSION and DFTI_LENGTHS are the remaining two of four
configuration parameters without default.

As mentioned, these four configuration parameters do not have default value. They are most
conveniently set at the descriptor creation function. They can only be set in the descriptor creation
function, and not by the function DftiSetValue.

Number of transforms

In some situations, the user may need to perform a number of DFT transforms of the same
dimension and lengths. The most common situation would be to transform a number of
one-dimensional data of the same length. This parameter has the default value of 1, and can be set
to positive integer value by an Integer data type in Fortran and long data type in C. Data sets
have no common elements. The distance parameter is obligatory if multiple number is more than
one.

Scale

The forward transform and backward transform are each associated with a scale factor of its
own with default value of 1. The user can set one or both of them via the two configuration
parameters DFTI_FORWARD_SCALE and DFTI_BACKWARD_SCALE. For example, for a
one-dimensional transform of length n, one can use the default scale of 1 for the forward transform
while setting the scale factor for backward transform to be 1/n, making the backward transform the
inverse of the forward transform.

The scale factor configuration parameter should be set by a real floating-point data type of the
same precision as the value for DFTI_PRECISION.

Placement of result

By default, the computational functions overwrite the input data with the output result. That is, the
default setting of the configuration parameter DFTI_PLACEMENT is DFTI_INPLACE. The user can
change that by setting it to DFTI_NOT_INPLACE. Data sets have no common elements.

σ

11-30

11 Intel® Math Kernel Library Reference Manual

Packed formats

The result of the forward transform (i.e. in the frequency-domain) of real data is represented in
several possible packed formats: Pack, Perm, CCS, or CCE. The data can be packed due to the
symmetry property of the DFT transform of a real data.

The CCE format stores the values of the first half of the output complex conjugate-even signal
resulted from the forward DFT. Note that the one-dimensional signal stored in CCE format is one
complex element longer. For multi-dimensional real transform, n1 * n2 * n3 * … * nk the
size of complex matrix in CCE format is (n1/2+1)* n2 * n3 * … * nk for Fortran and n1 *
n2 * … * (nk/2+1) for C.

The CCS format looks like the CCE format. It is the same format as CCE for one-dimensional
transform. The CCS format is slightly different for multi-dimensional real transform. In CCS
format, the output samples of the DFT are arranged as shown in Table 11-9 for one-dimensional
DFT, and in Table 11-10 for two-dimensional DFT.

The Pack format is a compact representation of a complex conjugate-symmetric sequence. The
disadvantage of this format is that it is not the natural format used by the real DFT algorithms
(“natural” in the sense that array is natural for complex DFTs). In Pack format, the output samples
of the DFT are arranged as shown in Table 11-9 for one-dimensional DFT and in Table 11-11 for
two-dimensional DFT.

The Perm format is an arbitrary permutation of the Pack format for even lengths and one is the
same as the Pack format for odd lengths. In Perm format, the output samples of the DFT are
arranged as shown in Table 11-9 for one-dimensional DFT and in Table 11-12 for
two-dimensional DFT

Table 11-9 Packed Format Output Samples

For (n = s•2)

DFT Real 0 1 2 3 ... n-2 n-1 n n+1

CCS R0 0 R1 I1 ... Rn/2-1 In/2-1 Rn/2 0

Pack R0 R1 I1 R2 ... In/2-1 Rn/2

Perm R0 Rn/2 R1 I1 ... Rn/2-1 In/2-1

For (n = s•2 + 1)

DFT Real 0 1 2 3 ... n-4 n-3 n-2 n-1 n n+1

CCS R0 0 R1 I1 ... Is-2 Rs-1 Is-1 Rs Is
Pack R0 R1 I1 R2 ... Rs-1 Is-1 Rs Is
Perm R0 R1 I1 R2 ... Rs-1 Is-1 Rs Is

Fourier Transform Functions 11

11-31

Note that Table 11-9 uses the following notation for complex data entries:

Rj = Re zj

Ij = Im zj

See also Table 11-13 and Table 11-14.

* n/u - not used

Note that in the Table 11-10 (n+2) columns are used for even n = k*2, while n columns are used
for odd n = k*2+1. In the latter case the first row is
z(1,1) 0 REz(1,2) IMz(1,2) … REz(1,k) IMz(1,k)

If m is even, the (m+1)-th row is
z(m/2+1,1) 0 REz(m/2+1,2) IMz(m/2+1,2) … REz(m/2+1,k) IMz(m/2+1,k)

Table 11-10 CCS Format Output Samples (Two-Dimensional Matrix (m+2)-by-(n+2))

For (m = s•2)

z(1,1) 0 REz(1,2) IMz(1,2) ... REz(1,k) IMz(1,k) z(1,k+1) 0

0 0 0 0 ... 0 0 0 0

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n) n/u n/u

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n) n/u n/u

... n/u n/u

REz(m/2,1) REz(m/2,2) REz(m/2,3) REz(m/2,4) ... REz(m/2,n-1) REz(m/2,n) n/u n/u

IMz(m/2,1) IMz(m/2,2) IMz(m/2,3) IMz(m/2,4) ... IMz(m/2,n-1) IMz(m/2,n) n/u n/u

z(m/2+1,1) 0 REz(m/2+1,2) IMz(m/2+1,2) ... REz(m/2+1,k) IMz(m/2+1,k) z(m/2+1,k+1) 0

0 0 0 0 ... 0 0 n/u n/u

For (m = s•2+1)

z(1,1) 0 REz(1,2) IMz(1,2) ... REz(1,k) IMz(1,k) z(1,k+1) 0

0 0 0 0 ... 0 0 0 0

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n) n/u n/u

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n) n/u n/u

... n/u n/u

REz(s,1) REz(s,2) REz(s,3) REz(s,4) ... REz(s,n-1) REz(s,n) n/u n/u

IMz(s,1) IMz(s,2) IMz(s,3) IMz(s,4) ... IMz(s,n-1) IMz(s,n) n/u n/u

11-32

11 Intel® Math Kernel Library Reference Manual

Table 11-11 Pack Format Output Samples (Two-Dimensional Matrix m-by-n)

For (m = s*2)

z(1,1) REz(1,2) IMz(1,2) REz(1,3) ... IMz(1,k) z(1,k+1)

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n)

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n)

...

REz(m/2,1) REz(m/2,2) REz(m/2,3) REz(m/2,4) ... REz(m/2,n-1) REz(m/2,n)

IMz(m/2,1) IMz(m/2,2) IMz(m/2,3) IMz(m/2,4) ... IMz(m/2,n-1) IMz(m/2,n)

z(m/2+1,1) REz(m/2+1,2) IMz(m/2+1,2) REz(m/2+1,3) ... IMz(m/2+1,k) z(m/2+1,k+1)

For (m = s*2+1)

z(1,1) REz(1,2) IMz(1,2) REz(1,3) ... IMz(1,k) z(1,n/2+1)

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n)

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n)

...

REz(s,1) REz(s,2) REz(s,3) REz(s,4) ... REz(s,n-1) REz(s,n)

IMz(s,1) IMz(s,2) IMz(s,3) IMz(s,4) ... IMz(s,n-1) IMz(s,n)

Table 11-12 Perm Format Output Samples (Two-Dimensional Matrix m-by-n)

For (m = s*2)

z(1,1) z(1,k+1) REz(1,2) IMz(1,2) ... REz(1,k) IMz(1,k)

z(m/2+1,1) z(m/2+1,k+1) REz(m/2+1,2) IMz(m/2+1,2) ... REz(m/2+1,k) IMz(m/2+1,k)

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n)

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n)

...

REz(m/2,1) REz(m/2,2) REz(m/2,3) REz(m/2,4) ... REz(m/2,n-1) REz(m/2,n)

IMz(m/2,1) IMz(m/2,2) IMz(m/2,3) IMz(m/2,4) ... IMz(m/2,n-1) IMz(m/2,n)

For (m = s*2+1)

z(1,1) z(1,k+1) REz(1,2) IMz(1,2) ... REz(1,k) IMz(1,k)

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n)

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n)

...

REz(s,1) REz(s,2) REz(s,3) REz(s,4) ... REz(s,n-1) REz(s,n)

IMz(s,1) IMz(s,2) IMz(s,3) IMz(s,4) ... IMz(s,n-1) IMz(s,n)

Fourier Transform Functions 11

11-33

Note that in the Table 11-11 and Table 11-12 for even number of columns n = k*2, while for
odd number of columns n = k*2+1 and the first row is
z(1,1) REz(1,2) IMz(1,2) … REz(1,k) IMz(1,k)

If m is even, the last row in Pack format and the second row in Perm format is
z(m/2+1,1) REz(m/2+1,2) IMz(m/2+1,2) … REz(m/2+1,k) IMz(m/2+1,k)

The tables for two-dimensional DFT use Fortran-interface conventions. For C-interface specifics
in storing packed data, see Storage schemes section below.
See also Table 11-15 and Table 11-16 for examples of Fortran-interface and C-interface formats.

Storage schemes

For each of the three domains DFTI_COMPLEX, DFTI_REAL, and DFTI_CONJUGATE_EVEN (for
the forward as well as the backward operator), a subset of the four storage schemes
DFTI_COMPLEX_COMPLEX, DFTI_COMPLEX_REAL, DFTI_REAL_COMPLEX, and
DFTI_REAL_REAL is provided. Specific examples are presented here to illustrate the storage
schemes. See the document [3] for the rationale behind this definition of the storage schemes.

Storage scheme for complex domain. This setting is recorded in the configuration parameter
DFTI_COMPLEX_STORAGE. The three values that can be set are DFTI_COMPLEX_COMPLEX,
DFTI_COMPLEX_REAL, and DFTI_REAL_REAL. Consider a one-dimensional n-length transform
of the form

 , C .

Assume the stride has default value (unit stride) and DFTI_PLACEMENT has the default in-place
setting.

DFTI_COMPLEX_COMPLEX storage scheme (by default). A typical usage will be as follows.

COMPLEX :: X(0:n-1)

...some other code...

Status = DftiComputeForward(Desc_Handle, X)

NOTE. The data is stored in the Fortran style only, that is, the real
and imaginary parts are stored side by side.

zk wje
i2πjk n⁄–

j 0=

n 1–

∑= wj zk ∈,

11-34

11 Intel® Math Kernel Library Reference Manual

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

X(k) = zk , k = 0,1,...,n-1 .

Storage scheme for the real and conjugate even domains. This setting for the storage
schemes for these domains is recorded in the configuration parameters DFTI_REAL_STORAGE and
DFTI_CONJUGATE_EVEN_STORAGE. Since a forward real domain corresponds to a conjugate
even backward domain, they are considered together. The example uses one-, two- and
three-dimensional real to conjugate even transforms. In-place computation is assumed whenever
possible (that is, when the input data type matches the output data type).

One-Dimensional Transform

Consider a one-dimensional n-length transform of the form

 , R, C .

There is a symmetry:

For even n: z(n/2+i) = conjg(z(n/2-i)), , and moreover z(0) and z(n/2)
are real values.

For odd n: z(m+i) = conjg(z(m-i+1)), , and moreover z(0) is real value.

m = floor(n/2).

zk wje
i2πjk n⁄–

j 0=

n 1–

∑= wj ∈ zk ∈

1 i n 2 1–⁄≤ ≤

1 i m≤ ≤

Fourier Transform Functions 11

11-35

Table 11-13 Comparison of the Storage Effects of Complex-to-Complex and
Real-to-Complex DFTs for Forward Transform

N=8

Input Vectors Output Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

w0 0.000000 w0 z0 0.000000 z0 z0 z0

w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) z4

w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Re(z1)

w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Im(z1)

w4 0.000000 w4 z4 0.000000 Re(z2) Im(z2) Re(z2)

w5 0.000000 w5 Re(z3) -Im(z3) Im(z2) Re(z3) Im(z2)

w6 0.000000 w6 Re(z2) -Im(z2) Re(z3) Im(z3) Re(z3)

w7 0.000000 w7 Re(z1) -Im(z1) Im(z3) z4 Im(z3)

z4

0.000000

N=7

Input Vectors Output Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

w0 0.000000 w0 z0 0.000000 z0 z0 z0

w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) Re(z1)

w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Im(z1)

w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Re(z2)

w4 0.000000 w4 Re(z3) -Im(z3) Re(z2) Im(z2) Im(z2)

11-36

11 Intel® Math Kernel Library Reference Manual

w5 0.000000 w5 Re(z2) -Im(z2) Im(z2) Re(z3) Re(z3)

w6 0.000000 w6 Re(z1) -Im(z1) Re(z3) Im(z3) Im(z3)

Im(z3)

N=7

Input Vectors Output Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

Fourier Transform Functions 11

11-37

Table 11-14 Comparison of the Storage Effects of Complex-to-Complex and
Complex-to-Real DFTs for Backward Transform

N=8
Output Vectors Input Vectors

Complex DFT
Real
DFT complex DFT

Complex Data
Real
Data Complex Data

Real Imaginary Real Imaginary CCS Pack Perm
w0 0.000000 w0 z0 0.000000 z0 z0 z0
w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) z4
w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Re(z1)
w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Im(z1)
w4 0.000000 w4 z4 Re(z2) Im(z2) Re(z2)
w5 0.000000 w5 Re(z3) -Im(z3) Im(z2) Re(z3) Im(z2)
w6 0.000000 w6 Re(z2) -Im(z2) Re(z3) Im(z3) Re(z3)
w7 0.00000 w7 Re(z1) -Im(z1) Im(z3) z4 Im(z3)

z4
0.000000

N=7

Output Vectors Input Vectors

Complex DFT
Real
DFT complex DFT real DFT

Complex Data
Real
Data Complex Data Real Data

Real Imaginary Real Imaginary CCS Pack Perm

w0 0.000000 w0 z0 0.000000 z0 z0 z0

w1 0.000000 w1 Re(z1) Im(z1) 0.000000 Re(z1) Re(z1)

w2 0.000000 w2 Re(z2) Im(z2) Re(z1) Im(z1) Im(z1)

w3 0.000000 w3 Re(z3) Im(z3) Im(z1) Re(z2) Re(z2)

w4 0.000000 w4 Re(z3) -Im(z3) Re(z2) Im(z2) Im(z2)

w5 0.000000 w5 Re(z2) -Im(z2) Im(z2) Re(z3) Re(z3)

w6 0.000000 w6 Re(z1) -Im(z1) Re(z3) Im(z3) Im(z3)

Im(z3)

11-38

11 Intel® Math Kernel Library Reference Manual

Assume that the stride has the default value (unit stride).

This complex conjugate-symmetric vector can be stored in the complex array of size m+1 or in the
real array of size 2m+2 or 2m depending on packed format.

Two-Dimensional Transform

Each of the real-to-complex routines computes the forward DFT of a two-dimensional real matrix
according to the mathematical equation

tk,l = cmplx(rk,l,0), where rk,l is a real input matrix, 0 ≤ k ≤ m-1, 0 ≤ l ≤ n-1.
The mathematical result zi,j, 0 ≤ i ≤ m-1, 0 ≤ j ≤ n-1, is the complex matrix of size (m,n).
Each column is the complex conjugate-symmetric vector as follows:

For even m:

for 0 ≤ j ≤ n-1,

z(m/2+i,j) = conjg(z(m/2-i,j)), 1 ≤ i ≤ m/2-1.

Moreover, z(0,j) and z(m/2,j) are real values for j=0 and j=n/2.

For odd m:

for 0 ≤ j ≤ n-1,

z(s+i,j) = conjg(z(s-i,j)), 1 ≤ i ≤ s-1 ,
where s = floor(m/2).

Moreover, z(0,j) are real values for j=0 and j=n/2.

This mathematical result can be stored in the real two-dimensional array of size:
(m+2,n+2) (CCS format), or
(m,n) (Pack or Perm formats), or
(2*(m/1+1), n) (CCE format, Fortran-interface),
((m, 2*(n/2+1)) (CCE format, C-interface)

or in the complex two-dimensional array of size:
(m/2+1, n) (CCE format, Fortran-interface),
(m, n/2+1) (CCE format, C-interface)

zi j, tk l, *wm
i– *k

*wn
j– *l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,

l 0=

n 1–

∑
k 0=

m 1–

∑=

Fourier Transform Functions 11

11-39

Since the multidimensional array data are arranged differently in Fortran and C (see Strides), the
output array that holds the computational result contains complex conjugate-symmetric columns
(for Fortran) or complex conjugate-symmetric rows (for C).

The following tables give examples of output data layout in Pack format for a forward
two-dimensional real-to-complex DFT of a 6-by-4 real matrix. Note that the same layout is used
for the input data of the corresponding backward complex-to-real DFT.

For the above example, the stride array is taken to be (0, 1, 6).

For the second example, the stride array is taken to be /0, 4, 1/.
See also Packed formats.

Three-Dimensional Transform

Each of the real-to-complex routines computes the forward DFT of a three-dimensional real
matrix according to the mathematical equation

Table 11-15 Fortran-interface Data Layout for a 6-by-4 Matrix

z(1,1) Re z(1,2) Im z(1,2) z(1,3)

Re z(2,1) Re z(2,2) Re z(2,3) Re z(2,4)

Im z(2,1) Im z(2,2) Im z(2,3) Im z(2,4)

Re z(3,1) Re z(3,2) Re z(3,3) Re z(3,4)

Im z(3,1) Im z(3,2) Im z(3,3) Im z(3,4)

z(4,1) Re z(4,2) Im z(4,2) z(4,3)

Table 11-16 C-interface Data Layout for a 6-by-4 Matrix

z(1,1) Re z(1,2) Im z(1,2) z(1,3)

Re z(2,1) Re z(2,2) Im z(2,2) Re z(2,3)

Im z(2,1) Re z(3,2) Im z(3,2) Im z(2,3)

Re z(3,1) Re z(4,2) Im z(4,2) Re z(3,3)

Im z(3,1) Re z(5,2) Im z(5,2) Im z(3,3)

z(4,1) Re z(6,2) Im z(6,2) z(4,3)

zi j q, , tp l s, ,
s 0=

k 1–

∑ *wm
i– *p

*wn
j– *l*wk

q– *s 0 i m 1 0 j n 1,–≤ ≤,–≤ ≤,

l 0=

n 1–

∑
p 0=

m 1–

∑=

11-40

11 Intel® Math Kernel Library Reference Manual

tp,l,s = cmplx(rp,l,s, 0), where rp,l,s is a real input matrix, 0 ≤ p ≤ m-1, 0 ≤ l ≤ n-1,
0 ≤ q ≤ k-1. The mathematical result zi,j,q , 0 ≤ i ≤ m-1, 0 ≤ j ≤ n-1, 0 ≤ q ≤ k-1 is the
complex matrix of size (m,n,k), which is a complex conjugate-symmetric, or conjugate even,
matrix as follows:

zm1,n1,k1 = conjg(zm-m1,n-n1,k-k1), where each dimension is periodic.

This mathematical result can be stored in the real three-dimensional array of size:

(m/2+1,n,k) (CCE format, Fortran-interface),
(m,n,k/2+1) (CCE format, C-interface).

Since the multidimensional array data are arranged differently in Fortran and C (see Strides), the
output array that holds the computational result contains complex conjugate-symmetric columns
(for Fortran) or complex conjugate-symmetric rows (for C).

Note 3D REAL DFT is implemented as out-of-place transform in the current version.

1. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_REAL for conjugate even domain (by
default). It is used for 1D and 2D REAL DFT. A typical usage is as follows:

// m = floor(n/2)

REAL :: X(0:2*m+1)

...some other code...

...assuming inplace...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Output data stored in one of formats: Pack, Perm or CCS (see Packed formats).

CCS format: X(2*k) = Re(zk) , X(2*k+1) = Im(zk) , k = 0,1,...,m.

Pack format: even n: X(0) = Re(z0), X(2*k-1) = Re(zk), X(2*k) = Im(zk),
k = 1,...,m-1, and X(n-1) = Re(zm)

odd n: X(0) = Re(z0), X(2*k-1) = Re(zk), X(2*k) = Im(zk), k = 1,...,m

0 q k 1–≤ ≤

Fourier Transform Functions 11

11-41

Perm format: even n: X(0) = Re(z0), X(1) = Re(zm), X(2*k) = Re(zk) , X(2*k+1) = Im(zk) ,
k = 1,...,m-1,

odd n: X(0) = Re(z0), X(2*k-1) = Re(zk), X(2*k) = Im(zk), k = 1,...,m.

2. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_REAL for conjugate even domain (by
default). It is used for 1D and 2D REAL DFT. A typical usage is as follows:

// m = floor(n/2)

REAL :: X(0:n-1)

REAL :: Y(0:2*m+1)

...some other code...

...assuming out-of-place...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Output data stored in one of formats: Pack, Perm or CCS (see Packed formats).

CCS format: Y(2*k) = Re(zk) , Y(2*k+1) = Im(zk) , k = 0,1,...,m.

Pack format: even n: Y(0) = Re(z0), Y(2*k-1) = Re(zk), Y(2*k) = Im(zk),
k = 1,...,m-1, and Y(n-1) = Re(zm)

odd n: Y(0) = Re(z0), Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), k = 1,...,m

Perm format: even n: Y(0) = Re(z0), Y(1) = Re(zm), Y(2*k) = Re(zk) ,
Y(2*k+1) = Im(zk) , k = 1,...,m-1,

odd n: Y(0) = Re(z0), Y(2*k-1) = Re(zk), Y(2*k) = Im(zk), k = 1,...,m.

Notice that if the stride of the output array is not set to the default value unit stride, the real and
imaginary parts of one complex element will be placed with this stride.

For example:

CCS format: Y(2*k*s) = Re(zk) , Y((2*k+1)*s) = Im(zk) , k = 0,1, ..., m, s - stride.

11-42

11 Intel® Math Kernel Library Reference Manual

3. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_COMPLEX for conjugate even domain. It
is used for 1D, 2D and 3D REAL DFT. The CCE format is set by default. A typical usage is as
follows:

// m = floor(n/2)

REAL :: X(0:n-1)

COMPLEX :: Y(0:m)

...some other code...

...out of place transform...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Y(k) = zk , k = 0,1,...,m .

4. DFTI_REAL_COMPLEX for real domain, DFTI_COMPLEX_COMPLEX for conjugate even
domain. It is not used in the current version. See Note on page 11-3. A typical usage is as follows:

// m = floor(n/2)

COMPLEX :: X(0:m)

...some other code...

...inplace transform...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj , j = 0,1,...,n-1 .

That is, the imaginary parts of X(j) are zero.

On output,

Y(k) = zk , k = 0,1,...,m .

where m is .n 2⁄

Fourier Transform Functions 11

11-43

Number of user threads

Customer application can be parallelized by using the following techniques:

1. You do not create threads in your application but specify the parallel mode within the DFT
module of Intel MKL. See Intel MKL Technical User Notes document for more information
on how to do this.

2. You create threads in application yourself and have each thread perform all stages of DFT
implementation including descriptor initialization, DFT computation, and descriptor
deallocation. In this case each descriptor is used only within its corresponding thread.

3. You create threads after initializing the DFT descriptor. This implies that threading is
employed for parallel DFT computation only, and the descriptor is freed after return from the
parallel region. In this case each thread uses the same descriptor.

For the first and second cases listed above, set the parameter DFTI_NUMBER_OF_USER_THREADS
to 1 (its default value), since each particular descriptor instance is used only in a single thread.

In case 3, you must use the DftiSetValue() function to set the
DFTI_NUMBER_OF_USER_THREADS to the actual number of DFT computation threads, because
multiple threads will be using the same descriptor. If this setting is not done, your program will
work incorrectly or fail, since the descriptor contains individual data for each thread.

See Example C-22, Example C-23, and Example C-24 in Appendix C.

Input and output distances

DFT interface in Intel MKL allows the computation of multiple number of transforms.
Consequently, the user needs to be able to specify the data distribution of these multiple sets of
data. This is accomplished by the distance between the first data element of the consecutive data
sets. This parameter is obligatory if multiple number is more than one. The parameter is a value of
Integer data type in Fortran and long data type in C. Data sets don’t have any common

WARNING.
1. It is not recommended to simultaneously parallelize your program and
employ the Intel MKL internal threading because this will slow down
performance. Note that in case 3 above, DFT computation is automatically
initiated in a single threading mode.
2. The number of threads must not be changed after DFT initialization by
the DftiCommitDescriptor() function is done. For example, do not use
the OMP function omp_set_max_threads() for this purpose.

11-44

11 Intel® Math Kernel Library Reference Manual

elements.The following example illustrates the specification. Consider computing the forward
DFT on three 32-length complex sequences stored in X(0:31, 1), X(0:31, 2), and X(0:31,
3). Suppose the results are to be stored in the locations Y(0:31, k), k = 1, 2, 3, of the array
Y(0:63, 3). Thus the input distance is 32, while the output distance is 64. Notice that the data
and result parameters in computation functions are all declared as assumed-size rank-1 array
DIMENSION(0:*). Therefore two-dimensional array must be transformed to one-dimensional
array by EQUIVALENCE statement or other facilities of Fortran. Here is the code fragment:

Complex :: X_2D(0:31,3), Y_2D(0:63, 3)

Complex :: X(96), Y(192)

Equivalence (X_2D, X)

Equivalence (Y_2D, Y)

...................

Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 32)

Status = DftiSetValue(Desc_Handle, DFTI_NUMBER_OF_TRANSFORMS, 3)

Status = DftiSetValue(Desc_Handle, DFTI_INPUT_DISTANCE, 32)

Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_DISTANCE, 64)

Status = DftiSetValue(Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor(Desc_Handle)

Status = DftiComputeForward(Desc_Handle, X, Y)

Status = DftiFreeDescriptor(Desc_Handle)

Strides

In addition to supporting transforms of multiple number of datasets, DFT interface supports
non-unit stride distribution of data within each data set. The parameter is an array of values of
Integer data type in Fortran and long data type in C. Consider the following situation where a
32-length DFT is to be computed on the sequence xj , . The actual location of these
values are in X(5), X(7), ..., X(67) of an array X(1:68). The stride accommodated by DFT
interface consists of a displacement from the first element of the data array L0, (4 in this case), and
a constant distance of consecutive elements L1 (2 in this case). Thus for the Fortran array X

xj = X(1 + L0 + L1 * j) = X(5 + L1 * j) .

This stride vector (4,2) is provided by a length-2 rank-1 integer array:

COMPLEX :: X(68)

INTEGER :: Stride(2)

...................

0 j 32<≤

Fourier Transform Functions 11

11-45

Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 32)

Stride = (/ 4, 2 /)

Status = DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDES, Stride)

Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDES, Stride)

Status = DftiCommitDescriptor(Desc_Handle)

Status = DftiComputeForward(Desc_Handle, X)

Status = DftiFreeDescriptor(Desc_Handle)

In general, for a d-dimensional transform, the stride is provided by a d +1-length integer vector
(L0, L1, L2, ..., Ld) with the meaning:

L0 = displacement from the first array element

L1 = distance between consecutive data elements in the first dimension

L2 = distance between consecutive data elements in the second dimension

 ... = ...

Ld = distance between consecutive data elements in the d-th dimension.

A d-dimensional data sequence

 , 0 ≤ ji < Ji, 1 ≤ i ≤ d

will be stored in the rank-1 array X by the mapping

 = X(first index + L0 + j1L1 + j2L2 + ... + jdLd) .

For multiple transforms, the value L0 applies to the first data sequence, and Lj, j = 1, 2,..., d apply
to all the data sequences.

In the case of a single one-dimensional sequence, L1 is simply the usual stride. The default setting
of strides in the general multi-dimensional situation corresponds to the case where the sequences
are distributed tightly into the array:

L1 = 1, L2= J1, L3 = J1J2 ,..., Ld =

Both the input data and output data have a stride associated with it. The default is set in accordance
with the data to be stored contiguously in memory in a way that is natural to the language.
See Example C-21 as an illustration on how to use the configuration parameters discussed above.

xj1 j2 … jd, , ,

xj1 j2 … jd, , ,

Ji

i 1=

d 1–

∏

11-46

11 Intel® Math Kernel Library Reference Manual

Ordering

It is well known that a number of FFT algorithms apply an explicit permutation stage that is time
consuming [4]. The exclusion of this step is similar to applying DFT to input data whose order is
scrambled, or allowing a scrambled order of the DFT results. In applications such as convolution
and power spectrum calculation, the order of result or data is unimportant and thus permission of
scrambled order is attractive if it leads to higher performance. Three following options are
available in Intel MKL:

1. DFTI_ORDERED: Forward transform data ordered, backward transform data ordered (default
option).

2. DFTI_BACKWARD_SCRAMBLED: Forward transform data ordered, backward transform data
scrambled.

Table 11-17 tabulates the effect on this configuration setting.

Note that meaning of the latter two options are "allow scrambled order if practical." There are
situations where in fact allowing out of order data gives no performance advantage, and thus an
implementation may choose to ignore the suggestion. Strictly speaking, the normal order is also a
scrambled order, the trivial one.

Transposition

This is an option that allows for the result of a high-dimensional transform to be presented in a
transposed manner. The default setting is DFTI_NONE and can be set to DFTI_ALLOW. Similar to
that of scrambled order, sometimes in higher dimension transform, performance can be gained if
the result is delivered in a transposed manner. DFT interface offers an option for the output be
returned in a transposed form if performance gain is possible. Since the generic stride specification
is naturally suited for representation of transposition, this option allows the strides for the output to
be possibly different from those originally specified by the user. Consider an example where a
two-dimensional result
 , 0 ≤ ji < ni,

Table 11-17 Scrambled Order Transform

DftiComputeForward DftiComputeBackward

DFTI_ORDERING Input → Output Input → Output

DFTI_ORDERED ordered → ordered ordered → ordered

DFTI_BACKWARD_SCRAMBLED ordered → scrambled scrambled → ordered

yj1 j2,

Fourier Transform Functions 11

11-47

 is expected. Originally the user specified that the result be distributed in the (flat) array Y in with
generic strides L1 = 1 and L2 = n1. With the transposition option, the computation may actually
return the result into Y with stride L1 = n2 and L2 = 1. These strides can be obtained from an
appropriate inquiry function. Note also that in dimension 3 and above, transposition means an
arbitrary permutation of the dimension.

11-48

11 Intel® Math Kernel Library Reference Manual

Cluster DFT Functions
This section describes the cluster Discrete Fourier Transform (DFT) functions implemented in
Intel MKL (available with Intel® Cluster MKL for Linux and Windows).

The cluster DFT function library was designed to perform Discrete Fourier Transform on a cluster,
that is, a group of computers interconnected via a network. Each computer (node) in the cluster
has its own memory and processor(s). Data interchanges between the nodes are provided by the
network.

One or more processes may be running in parallel on each cluster node. To organize
communication between different processes, the cluster DFT function library uses the Message
Passing Interface (MPI). Given the number of available MPI implementations (for example,
MPICH, Intel® MPI and others), the Cluster DFT works with MPI via a message-passing library
for linear algebra, called BLACS, to avoid dependence on a specific MPI implementation.

The cluster Discrete Fourier Transform function library of Intel MKL provides one-dimensional,
two-dimensional, and multi-dimensional (up to the order of 7) routines and both Fortran- and
C-interfaces for all transform functions.

To develop applications using cluster DFT, you should have basic knowledge and skills of MPI
programming.

The interfaces for Intel Cluster MKL DFT functions are very similar to the corresponding
interfaces for conventional MKL DFT Functions described earlier in this chapter. You can refer
there for details, as this section focuses only on the distinctions.

The full list of cluster DFT functions implemented in Intel MKL is given in the table below:

Table 11-18 Cluster DFT Functions in Intel MKL

Function Name Operation

 Descriptor Manipulation Functions

DftiCreateDescriptorDM Allocates memory for the descriptor data structure and
instantiates it with default configuration settings.

DftiCommitDescriptorDM Performs all initialization that facilitates the actual DFT
computation.

DftiFreeDescriptorDM Frees memory allocated for a descriptor.

 DFT Computation Functions

DftiComputeForwardDM Computes the forward DFT.

DftiComputeBackwardDM Computes the backward DFT.

Fourier Transform Functions 11

11-49

Computing Cluster DFT

The cluster DFT functions described later in this section are implemented in Fortran and C
interface. Fortran stands for Fortran 95.

Cluster DFT computation is performed by DftiComputeForwardDM and
DftiComputeBackwardDM functions, called in a program using MPI, which will be referred to as
MPI program. After an MPI program starts, a number of processes are created. MPI identifies each
process by its rank. The processes are independent of one another and communicate via MPI. A
function called in an MPI program is invoked in all the processes. Each process figures out what to
do using its rank. Input or output data for a cluster DFT transform is a sequence of complex values.
A cluster DFT computation function operates local part of the input data, i.e. some part of the data
to be operated in a particular process, as well as generates local part of the output data. Each
process performs its part of computations. Running in parallel and communicating through MPI,
they perform the entire DFT computation.

Input data is split into local parts using the function DftiFormInputDataDM and gathers local
parts of output data into the global array using DftiFormOutputDataDM. The algorithms used
for data distribution among processes impose a restriction on dimension lengths of the transform.

DftiFormInputDataDM Splits input data for each process.

DftiFormOutputDataDM Gathers data from each process, produces output data.

 Descriptor Configuration Functions

DftiSetValueDM Sets one particular configuration parameter with the
specified configuration value.

DftiGetValueDM Gets the configuration value of one particular
configuration parameter.

 Status Checking Functions

DftiErrorClass Checks if the status reflects an error of a predefined
class.

DftiErrorMessage Generates an error message.

Table 11-18 Cluster DFT Functions in Intel MKL (continued)

Function Name Operation

11-50

11 Intel® Math Kernel Library Reference Manual

The number of processes is specified at start of an MPI program. MPI-2 enables changing the
number of processes during execution.

DFT computations using Intel Cluster MKL DFT functions, should typically be effected by a
number of steps listed below:

1. Initiate MPI by calling MPI_Init in C or MPI_INIT in Fortran (the function must be called
prior to the call of any DFT function and any MPI function).

2. Allocate memory for the descriptor by calling DftiCreateDescriptorDM.

3. Specify a value(s) of configuration parameters by a call(s) to DftiSetValue.

4. Perform initialization that facilitates DFT computation by a call to
DftiCommitDescriptorDM.

5. Create arrays for local parts of input data and fill them with values by a call to
DftiFormInputDataDM.

6. Compute the transform by calling DftiComputeForwardDM or DftiComputeBackward.

7. Gather local parts of output data into the global array by a call to DftiFormOutputDataDM.

8. Release memory allocated for a descriptor by a call to DftiFreeDescriptorDM.

9. Finalize communication through MPI by calling MPI_Finalize in C or MPI_FINALIZE in
Fortran (the function must be called after the last call to a cluster DFT function and the last
call to an MPI function).

Several code examples of using the cluster DFT interface functions are given in section “Examples
for Cluster DFT Functions” in Appendix C.

NOTE. Length of the transform corresponding to the first dimension must
be divisible by the number of processes in the current implementation of
cluster DFT interface.

Fourier Transform Functions 11

11-51

Cluster DFT Interface

To use the cluster DFT functions, you need to access the module MKL_DFTI_DM through the "use"
statement in Fortran; or access the header file mkl_dfti_cluster.h through "include" in C.

The Fortran interface provides a derived type DFTI_DESCRIPTOR_DM; a number of named
constants representing various names of configuration parameters and their possible values; and a
number of overloaded functions through the generic functionality of Fortran 95.

The C interface provides a structure type DFTI_DESCRIPTOR_DM_HANDLE and a number of
functions, some of which accept a different number of input arguments.

To provide communication between parallel processes through MPI, the following include
statement must be also present in your code:

• Fortran:

INCLUDE ’mpif.h’
(for some MPI versions, the ’mpif90.h’header may be used instead).

• C:

#include "mpi.h"

There are four main categories of the cluster DFT functions in Intel MKL:

1. Descriptor Manipulation. There are three functions in this category. The first one,
DftiCreateDescriptorDM, creates a DFT descriptor whose storage is allocated
dynamically by the routine. The second, DftiCommitDescriptorDM, "commits" the
descriptor to all its settings. The third function, DftiFreeDescriptorDM, frees up all the
memory allocated for the descriptor information.

2. DFT Computation. There are four functions in this category. The first one,
DftiComputeForwardDM, effects a forward DFT computation, the second function,
DftiComputeBackwardDM, performs a backward DFT computation. The third function,
DftiFormInputDataDM, distributes input data among processes, and the fourth function,
DftiFormOutputDataDM, gathers data from each process and produces data output.

3. Descriptor Configuration. There are two functions in this category. One function,
DftiSetValueDM, sets one specific configuration value to one of the many configuration
parameters. The other, DftiGetValueDM, gets the current value of any of these configuration
parameters, all of which are readable. These parameters, though many, are handled one at a
time.

4. Status Checking. The functions described in the three categories above return an integer
value denoting the status of the operation. In particular, a non-zero return value always
indicates a problem of some sort. To check status of an operation, cluster DFT uses functions

11-52

11 Intel® Math Kernel Library Reference Manual

defined in the conventional DFT interface. Envisioned to be further enhanced in later releases
of Intel MKL, DFT interface at present provides for one logical status class function,
DftiErrorClass, and a simple status message generation function, DftiErrorMessage.

Descriptor Manipulation

There are three functions in this category: create a descriptor, commit a descriptor, and free a
descriptor.

CreateDescriptorDM
Allocates memory for the descriptor data structure and
instantiates it with default configuration settings.

Syntax

Fortran:

Status = DftiCreateDescriptorDM(comm, handle, v1, v2, dim, sizes)

C/C++:

status = DftiCreateDescriptorDM(comm, &handle, v1, v2, dim, sizes);

Input Parameters

comm MPI communicator, e.g. MPI_COMM_WORLD.

v1 Precision of the transform.

v2 Type of forward domain. Must be DFTI_COMPLEX for the current version.

dim Dimension of transform.

sizes Dimension lengths of the transform.

Output Parameters

handle Pointer to the handle of transform. If the function completes successfully, the
pointer to the created handle is stored in the variable.

Fourier Transform Functions 11

11-53

Description

This function allocates memory for the descriptor data structure and instantiates it with default
configuration settings with respect to the precision, domain, dimension, and length of the desired
transform. The domain is understood to be the domain of the forward transform. This function is
slightly different from the "initialization" routine in more traditional software packages or libraries
used for computing DFT. In all likelihood, this function will not perform any significant
computation work such as twiddle factors computation, as the default configuration settings can
still be changed upon user's request through the value setting function DftiSetValueDM.

The precision is specified through named constants provided in the interface for the configuration
values. The choices for precision are DFTI_SINGLE and DFTI_DOUBLE. It corresponds to
precision of input data, output data, and computation. A setting of DFTI_SINGLE indicates
single-precision floating-point data type and a setting of DFTI_DOUBLE indicates double-precision
floating-point data type.

Dimension is a simple positive integer indicating the dimension of the transform. In C/C++
context, lengths of the transform are passed as a pointer to the array of lengths, being integers of
type long. In Fortran context, lengths are passed in the INTEGER array.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. In this case the pointer to
the created handle is stored in handle. If the function fails, the return value contains error code.
To get extended error information, call the functions DftiErrorClass and
DftiErrorMessage.

Interface and Prototype
! Fortran Interface

INTERFACE DftiCreateDescriptorDM

INTEGER(4) FUNCTION DftiCreateDescriptorDM(comm, handle, v1, v2, dim, sz)

 INTEGER(4) :: comm

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: handle

 INTEGER(4) :: v1, v2

 INTEGER(4) :: dim

 INTEGER(4), DIMENSION(*) :: sz

END FUNCTION

END INTERFACE

11-54

11 Intel® Math Kernel Library Reference Manual

/* C/C++ prototype */

long DftiCreateDescriptorDM(MPI_Comm comm, DFTI_DESCRIPTOR_DM_HANDLE
*phandle, enum DFTI_CONFIG_VALUE v1, enum DFTI_CONFIG_VALUE v2, long dim,
long *sizes);

CommitDescriptorDM
Performs all initialization that facilitates the actual
DFT computation.

Syntax

Fortran:

Status = DftiCommitDescriptorDM(handle)

C/C++:

status = DftiCommitDescriptorDM(handle);

Input Parameters

handle Valid descriptor handle obtained from DftiCreateDescriptorDM.

Output Parameters

handle The “committed“ descriptor handle.

Description

The interface requires a function that commits a previously created descriptor be invoked before
the descriptor can be used for DFT computations. The DftiCommitDescriptorDM function
performs all initialization that facilitates the actual DFT computation. For a modern
implementation, it may involve exploring many different factorizations of the input length to
search for highly efficient computation method.

Any changes of configuration parameters of a committed descriptor via the set value function (see
Descriptor Configuration) requires a re-committal of the descriptor before a computation function
can be invoked. Typically, this committal function call is immediately followed by a computation
function call (see DFT Computation).

Fourier Transform Functions 11

11-55

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, the
return value contains error code. To get extended error information, call the functions
DftiErrorClass and DftiErrorMessage.

Interface and Prototype
! Fortran Interface

INTERFACE DftiCommitDescriptorDM

INTEGER(4) FUNCTION DftiCommitDescriptorDM(handle);

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: handle

END FUNCTION

END INTERFACE

/* C/C++ prototype */

long DftiCommitDescriptorDM(DFTI_DESCRIPTOR_DM_HANDLE handle);

FreeDescriptorDM
Frees memory allocated for a descriptor.

Syntax

Fortran:

Status = DftiFreeDescriptorDM(handle)

C/C++:

status = DftiFreeDescriptorDM(handle);

Input Parameters

handle Valid handle obtained from DftiCreateDescriptorDM.

11-56

11 Intel® Math Kernel Library Reference Manual

Description

This function frees up all memory allocated for a descriptor. Call the DftiFreeDescriptorDM
function to delete the descriptor handle. After the use of DftiFreeDescriptorDM the descriptor
handle is no longer valid.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, the
return value contains error code. To get extended error information, call the functions
DftiErrorClass and DftiErrorMessage.

Interface and Prototype
! Fortran Interface

INTERFACE DftiFreeDescriptorDM

INTEGER(4) FUNCTION DftiFreeDescriptorDM(handle)

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: handle

END FUNCTION

END INTERFACE

/* C/C++ prototype */

long DftiFreeDescriptorDM(DFTI_DESCRIPTOR_DM_HANDLE handle);

DFT Computation

There are four functions in this category: compute the forward transform, compute the backward
transform, form input data, and form output data.

ComputeForwardDM
Computes the forward Discrete Fourier Transform.

Syntax

Fortran:

Status = DftiComputeForwardDM(handle, in_X, out_X)

Fourier Transform Functions 11

11-57

C/C++:

status = DftiComputeForwardDM(handle, in_X, out_X);

Input Parameters

handle Valid descriptor handle.

in_X Array storing local part of input data.

Output Parameters

out_X Array storing local part of output data.

Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT can
be performed. The DftiComputeForwardDM function computes the forward DFT.

This is the transform using the factor . The computation is carried out by calling the
DftiComputeForward function. So, the functions have very much in common and details not
explicitly mentioned below can be found in the description of DftiComputeForward.

The valid descriptor handle is created by DftiCreateDescriptorDM and committed by
DftiCommitDescriptorDM.

Local part of input data is a part of the input (global) sequence of complex values (each complex
value consists of two real numbers: real part and imaginary part) that a particular process receives.
The input data should have been previously distributed among the processes using the
DftiFormInputDataDM function. Similarly, local part of output data is a part of the global
output data computed by the process. To complete the cluster DFT computation, the local part of
the output data should be gathered from the processes into the global array using the
DftiFormOutputDataDM function.

Size of memory to allocate for a local part of input or output data, measured in memory sizes
needed to store a complex value of the appropriate precision, must be
length1*length2*...*lengthN/nProc, where length1, ..., lengthN are the dimension lengths of the
transform and nProc is the number of processes.

The choices for precision of input and output data are the same as those for precision of transform:
the DFTI_SINGLE value of the DFTI_PRECISION configuration parameter indicates
single-precision floating-point data type and the DFTI_DOUBLE value indicates double-precision
floating-point data type.

e i2π n⁄–

11-58

11 Intel® Math Kernel Library Reference Manual

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, the
return value contains error code. To get extended error information, call the functions
DftiErrorClass and DftiErrorMessage.

Interface and Prototype
! Fortran Interface

INTERFACE DftiComputeForwardDM

INTEGER(4) FUNCTION DftiComputeForwardDM(h, in_X, out_X)

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

 COMPLEX(8), DIMENSION(*) :: in_x, out_X

END FUNCTION DftiComputeForwardDM

INTEGER(4) FUNCTION DftiComputeForwardDMs(h, in_X, out_X)

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

 COMPLEX(4), DIMENSION(*) :: in_x, out_X

END FUNCTION DftiComputeForwardDMs

END INTERFACE

/* C/C++ prototype */

long DftiComputeForwardDM(DFTI_DESCRIPTOR_DM_HANDLE handle, void *in_X,
void *out_X);

ComputeBackwardDM
Computes the backward Discrete Fourier Transform.

Syntax

Fortran:

Status = DftiComputeBackwardDM(handle, in_X, out_X)

C/C++:

status = DftiComputeBackwardDM(handle, in_X, out_X);

Fourier Transform Functions 11

11-59

Input Parameters

handle Valid descriptor handle.

in_X Array storing local part of input data.

Output Parameters

out_X Array storing local part of output data.

Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT can
be performed. The DftiComputeBackwardDM function computes the backward DFT.

This is the transform using the factor . The computation is carried out by calling the
DftiComputeBackward function. So, the functions have very much in common and details not
explicitly mentioned below, can be found in the description of DftiComputeBackward.

The valid descriptor handle is created by DftiCreateDescriptorDM and committed by
DftiCommitDescriptorDM.

Local part of input data is a part of the input (global) sequence of complex values (each complex
value consists of two real numbers: real part and imaginary part) that a particular process receives.
The input data should have been previously distributed among the processes using the
DftiFormInputDataDM function. Similarly, local part of output data is a part of the global
output data computed by the process. To complete the cluster DFT computation, the local part of
the output data should be gathered from the processes into the global array using the
DftiFormOutputDataDM function.

Size of memory to allocate for a local part of input or output data, measured in memory sizes
needed to store a complex value of the appropriate precision, must be
length1*length2*...*lengthN/nProc, where length1, ..., lengthN are the dimension lengths of the
transform and nProc is the number of processes.

The choices for precision of input and output data are the same as those for precision of transform:
the DFTI_SINGLE value of the DFTI_PRECISION configuration parameter indicates
single-precision floating-point data type and the DFTI_DOUBLE value indicates double-precision
floating-point data type.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, the
return value contains error code. To get extended error information, call the functions
DftiErrorClass and DftiErrorMessage.

ei2π n⁄

11-60

11 Intel® Math Kernel Library Reference Manual

Interface and Prototype
! Fortran Interface

INTERFACE DftiComputeBackwardDM

INTEGER(4) FUNCTION DftiComputeBackwardDM(h, in_X, out_X)

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

 COMPLEX(8), DIMENSION(*) :: in_x, out_X

END FUNCTION DftiComputeBackwardDM

INTEGER(4) FUNCTION DftiComputeBackwardDMs(h, in_X, out_X)

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

 COMPLEX(4), DIMENSION(*) :: in_x, out_X

END FUNCTION DftiComputeBackwardDMs

END INTERFACE

/* C/C++ prototype */

long DftiComputeBackwardDM(DFTI_DESCRIPTOR_DM_HANDLE handle, void *in_X,
void *out_X);

FormInputDataDM
Splits input data for each process.

Syntax

Fortran:

Status = DftiFormInputDataDM(handle, in_X, BUF)

C/C++:

status = DftiFormInputDataDM(handle, in_X, BUF);

Input Parameters

handle Valid descriptor handle.

in_X Global array of input data.

Fourier Transform Functions 11

11-61

Output Parameters

BUF Array storing local part of input data.

Description

The function creates local part of input data to be operated in a particular process. The array BUF
may be treated as an appropriate subset of in_X. A call to FormInputDataDM in an MPI program
distributes input data among the processes.

The parameters require the following memory sizes, measured in the ones needed to store a
complex value of the appropriate precision:

• length1*length2*...*lengthN for in_X

• length1*length2*...*lengthN/nProc for BUF,

where length1, ..., lengthN are the dimension lengths of the transform and nProc is the number of
processes.

The choices for precision of in_X and BUF are the same as those for precision of transform: the
DFTI_SINGLE value of the DFTI_PRECISION configuration parameter indicates single-precision
floating-point data type and the DFTI_DOUBLE value indicates double-precision floating-point
data type.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, the
return value contains error code. To get extended error information, call the functions
DftiErrorClass and DftiErrorMessage.

Interface and Prototype
! Fortran Interface

INTERFACE DftiFormInputDataDM

INTEGER(4) FUNCTION DftiFormInputDataDM(h, in_X, out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(8), DIMENSION(*) :: in_x, out_X

END FUNCTION

INTEGER(4) FUNCTION DftiFormInputDataDMs(h, in_X, out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(4), DIMENSION(*) :: in_x, out_X

END FUNCTION

11-62

11 Intel® Math Kernel Library Reference Manual

END INTERFACE

/* C/C++ prototype */

long DftiFormInputDataDM(DFTI_DESCRIPTOR_DM_HANDLE handle, void *in_X,

void *BUF);

FormOutputDataDM
Gathers data from each process, produces output data.

Syntax

Fortran:

Status = DftiFormOutputDataDM(handle, BUF, out_X)

C/C++:

status = DftiFormOutputDataDM(handle, BUF, out_X);

Input Parameters

handle Valid descriptor handle.

BUF Array storing local part of output data.

Output Parameters

out_X Global array of output data.

Description

This function copies local output data computed by a particular process to appropriate locations in
the global output array. So, a call to this function in an MPI program gathers local output data
among all processes and thus produces the result of the DFT.

The parameters BUF and out_X require the following memory sizes, measured in the ones needed
to store a complex value of the appropriate precision:

• length1*length2*...*lengthN/nProc for BUF

• length1*length2*...*lengthN for out_X,

Fourier Transform Functions 11

11-63

where length1, ..., lengthN are the dimension lengths of the transform and nProc is the number of
processes.

The choices for precision of BUF and out_X are the same as those for precision of transform: the
DFTI_SINGLE value of the DFTI_PRECISION configuration parameter indicates single-precision
floating-point data type and the DFTI_DOUBLE value indicates double-precision floating-point
data type.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, the
return value contains error code. To get extended error information, call the functions
DftiErrorClass and DftiErrorMessage.

Interface and Prototype
! Fortran Interface

INTERFACE DftiFormOutputDataDM

INTEGER(4) FUNCTION DftiFormOutputDataDM(h, in_X, out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(8), DIMENSION(*) :: in_X, out_X

END FUNCTION

INTEGER(4) FUNCTION DftiFormOutputDataDMs(h, in_X, out_X)

TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

COMPLEX(4), DIMENSION(*) :: in_X, out_X

END FUNCTION

END INTERFACE

/* C/C++ prototype */

long DftiFormOutputDataDM(DFTI_DESCRIPTOR_DM_HANDLE handle, void

*BUF,void *out_X);

Descriptor Configuration

There are two functions in this category: the value setting function DftiSetValue sets one
particular configuration parameter to an appropriate value, the value getting function
DftiGetValue reads the values of one particular configuration parameter. While all
configuration parameters are readable, a few of them cannot be set by user. Some of these contain

11-64

11 Intel® Math Kernel Library Reference Manual

fixed information of a particular implementation such as version number, or dynamic information,
but nevertheless are derived by the implementation during execution of one of the functions. See
Configuration Settings for details.

SetValueDM
Sets one particular configuration parameter with the
specified configuration value.

Syntax

Fortran:

Status = DftiSetValueDM(handle, param, ivalue)

Status = DftiSetValueDM(handle, param, rvalue)

C/C++:

status = DftiSetValueDM(handle, param, ivalue);

status = DftiSetValueDM(handle, param, rvalue);

Input Parameters

handle Valid descriptor handle.

param Name of a parameter to be set up in the descriptor handle. See Table 11-19 for
the list of available names.

ivalue Integer value of a parameter.

rvalue Double value of a parameter.

Output Parameters

handle The descriptor handle with the configuration parameter updated.

Description

This function sets one particular configuration parameter with the specified configuration value.
The configuration parameter is one of the named constants listed in the table below, and the
configuration value is the corresponding appropriate type. See Configuration Settings for details of
the meaning of the setting.

Fourier Transform Functions 11

11-65

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, the
return value contains error code. To get extended error information, call the functions
DftiErrorClass and DftiErrorMessage.

Interface and Prototype
! Fortran Interface

INTERFACE DftiSetValueDM

INTEGER(4) FUNCTION DftiSetValueDM(h, p, v)

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

 INTEGER(4) :: p, v

END FUNCTION

INTEGER(4) FUNCTION DftiSetValueDMd(h, p, v)

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

 INTEGER(4) :: p

 REAL(8) :: v

END FUNCTION

END INTERFACE

/* C/C++ prototype */

long DftiSetValueDM(DFTI_DESCRIPTOR_DM_HANDLE handle, enum
DFTI_CONFIG_PARAM param, long ivalue);

long DftiSetValueDM(DFTI_DESCRIPTOR_DM_HANDLE handle, enum
DFTI_CONFIG_PARAM param, double rvalue);

Table 11-19 Settable Configuration Parameters

Named constant Type of parameter Description

DFTI_FORWARD_SCALE double Scale factor of forward transform.

DFTI_BACKWARD_SCALE double Scale factor of backward transform.

11-66

11 Intel® Math Kernel Library Reference Manual

GetValueDM
Gets the configuration value of one particular
configuration parameter.

Syntax

Fortran:

Status = DftiGetValueDM(handle, param, ivalue)

Status = DftiGetValueDM(handle, param, rvalue)

C/C++:

status = DftiGetValueDM(handle, param, &pivalue);

status = DftiGetValueDM(handle, param, &prvalue);

Input Parameters

handle Valid descriptor handle.

param Name of a parameter to be retrieved from the descriptor handle.
See Table 11-20 for the list of available names.

ivalue Integer value of a parameter.

rvalue Double value of a parameter.

Output Parameters

pivalue Pointer to a buffer where the integer value of a parameter is stored.

prvalue Pointer to a buffer where the double value of a parameter is stored.

Fourier Transform Functions 11

11-67

Description

This function gets the configuration value of one particular configuration parameter. The
configuration parameter is one of the named constants listed in the table below, and the
configuration value is the corresponding appropriate type, which can be a named constant or a
native type.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, the
return value contains error code. To get extended error information, call the functions
DftiErrorClass and DftiErrorMessage.

Interface and Prototype
! Fortran Interface

INTERFACE DftiGetValueDM

INTEGER(4) FUNCTION DftiGetValueDM(h, p, v)

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

 INTEGER(4) :: p, v

END FUNCTION

INTEGER(4) FUNCTION DftiGetValueDMd(h, p, v)

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h

 INTEGER(4) :: p

 REAL(8) :: v

END FUNCTION

END INTERFACE

Table 11-20 Configuration Parameters of Cluster DFT Functions

Named Constant Type of parameter Description

DFTI_PRECISION long Precision of computation, input data and
output data.

DFTI_DIMENSION long Dimension of the transform

DFTI_LENGTHS long[n] Array of lengths of the transform. Number of
lengths corresponds to the dimension of the
transform.

DFTI_FORWARD_SCALE double Scale factor of forward transform.

DFTI_BACKWARD_SCALE double Scale factor of backward transform.

11-68

11 Intel® Math Kernel Library Reference Manual

/* C/C++ prototype */

long DftiGetValueDM(DFTI_DESCRIPTOR_DM_HANDLE handle, enum
DFTI_CONFIG_PARAM param, long * pivalue);

Fourier Transform Functions 11

11-69

Fast Fourier Transforms (Deprecated)
The FFT routines work with transforms of a power of 2 length and are supported to provide
compatibility with previous versions of the library.

This section contains the following major parts:

• One-dimensional FFTs

• Two-dimensional FFTs

Each part contains the description of three groups of the FFTs.

One-dimensional FFTs
The one-dimensional FFTs include the following groups:

• Complex-to-Complex Transforms

• Real-to-Complex Transforms

• Complex-to-Real Transforms.

All one-dimensional FFTs are in-place. The transform length must be a power of 2. The
complex-to-complex transform routines perform both forward and inverse transforms of a
complex vector. The real-to-complex transform routines perform forward transforms of a real
vector. The complex-to-real transform routines perform inverse transforms of a complex
conjugate-symmetric vector, which is packed in a real array.

Data Storage Types

Each FFT group contains two sets of FFTs having the similar functionality: one set is used for the
Fortran-interface and the other for the C-interface. The former set stores the complex data as a
Fortran complex data type, while the latter stores the complex data as float arrays of real and
imaginary parts separately. These sets are distinguished by naming the FFTs within each set. The

NOTE. The FFT functions described in this section have been deprecated
and remain in the library only for legacy reasons. They do not offer either
the level of performance or capabilities of the DFT functions described
earlier in this chapter and should not be used as no new development is
done on them. Please use DFT Functions instead.

11-70

11 Intel® Math Kernel Library Reference Manual

names of the FFTs used for the C-interface have the letter “c” added to the end of the FFTs’
Fortran names. For example, the names of the cfft1d/zfft1d FFTs for the corresponding
C-interface routines are cfft1dc/zfft1dc. All names of the C-type data items are lower case.

Table 11-21 lists the one-dimensional FFT routine groups and the data types associated with them.

Data Structure Requirements

For C-interface, storage of the complex-to-complex transform routines data requires separate float
arrays for the real and imaginary parts. The real-to-complex and complex-to-real pairs require a
single float input/output array.

The C-interface requires scalar values to be passed by value.

All transforms require additional memory to store the transform coefficients. When performing
multiple FFTs of the same dimension, the table of coefficients should be created only once and
then used on all the FFTs afterwards. Using the same table rather than creating it repeatedly for
each FFT produces an obvious performance gain.

Table 11-21 One-dimensional FFTs: Names and Data Types

Group

Stored as
Fortran
Complex
Data

Stored as C
Real Data

Data
Types Description

Complex-to
-Complex

cfft1d/
zfft1d

cfftldc/
zfftldc

c, z Transform complex data to complex
data.

Real-to-
Complex

scfft1d/
dzfft1d

scfft1dc/
dzfft1dc

sc, dz Transform forward real-to-complex data.
Complement csfft1d/zdfft1d and
csfft1dc/zdfft1dc FFTs.

Complex-
to-Real

csfft1d/
zdfft1d

csfft1dc/
zdfft1dc

cs, zd Transform inverse complex-to-real data.
Complement scfft1d/dzfft1d and
scfft1dc/dzfft1dc FFTs.

Fourier Transform Functions 11

11-71

Complex-to-Complex One-dimensional FFTs

Each of the complex-to-complex routines computes a forward or inverse FFT of a complex vector.
The forward FFT is computed according to the mathematical equation

The inverse FFT is computed according to the mathematical equation

where , i being the imaginary unit.

The operation performed by the complex-to-complex routines is determined by the value of the
isign parameter used by each of these routines.

If isign = -1, perform the forward FFT where input and output are in normal order.

If isign = +1, perform the inverse FFT where input and output are in normal order.

If isign = -2, perform the forward FFT where input is in normal order and output is in
bit-reversed order.

If isign = +2, perform the inverse FFT where input is in bit-reversed order and output is in
normal order.

If isign = 0, initialize FFT coefficients for both the forward and inverse FFTs.

The above equations apply to all FFTs with all data types indicated
in Table 11-21.

To compute a forward or inverse FFT of a given length, first initialize the coefficients by calling
the function with isign = 0. Thereafter, any number of transforms of the same length can be
computed by calling the function with isign = +1, -1, +2, -2.

zj rk*w
j*k–

0 j n 1–≤ ≤,

k 0=

n 1–

∑=

rj
1
n
- zk*w

j*k 0 j n 1–≤ ≤,

k 0=

n 1–

∑=

w
2πi
n

------exp=

11-72

11 Intel® Math Kernel Library Reference Manual

cfft1d/zfft1d (deprecated)
Fortran-interface routines. Compute the forward
or inverse FFT of a complex vector (in-place).

Syntax
call cfft1d(r, n, isign, wsave)

call zfft1d(r, n, isign, wsave)

Description

The operation performed by the cfft1d/zfft1d routines is determined by the value of isign.
See the equations of the operations for the Complex-to-Complex One-dimensional FFTs above.

Input Parameters

r COMPLEX for cfft1d
DOUBLE COMPLEX for zfft1d
Array, DIMENSION at least (n). Contains the complex vector on which the
transform is to be performed. Not referenced if isign = 0.

n INTEGER. Transform length; n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be performed:
if isign = 0, initialize the coefficients wsave;
if isign = -1, perform the forward FFT where input and output are in normal
order;
if isign = +1, perform the inverse FFT where input and output are in normal
order;
if isign = -2, perform the forward FFT where input is in normal order and
output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.

wsave COMPLEX for cfft1d
DOUBLE COMPLEX for zfft1d
Array, DIMENSION at least ((3*n)/2). If isign = 0, then wsave is an output
parameter. Otherwise, wsave contains the FFT coefficients initialized on a
previous call with isign = 0.

Fourier Transform Functions 11

11-73

Output Parameters

r Contains the complex result of the transform depending on isign. Does not
change if isign = 0.

wsave If isign = 0, wsave contains the initialized FFT coefficients. Otherwise,
wsave does not change.

cfft1dc/zfft1dc (deprecated)
C-interface routines. Compute the forward
or inverse FFT of a complex vector (in-place).

Syntax
void cfft1dc(float* r, float* i, int n, int isign, float* wsave);

void zfft1dc(double* r, double* i, int n, int isign, double* wsave);

Description

The operation performed by the cfft1dc/zfft1dc routines is determined by the value of
isign. See the equations of the operations for the Complex-to-Complex One-dimensional FFTs.

Input Parameters

r float* for cfft1dc
double* for zfft1dc
Pointer to an array of size at least (n). Contains the real parts of complex
vector to be transformed. Not referenced if isign = 0.

i float* for cfft1dc
double* for zfft1dc

Pointer to an array of size at least (n). Contains the imaginary parts of
complex vector to be transformed.

 Not referenced if isign = 0.

n int. Transform length; n must be a power of 2.

isign int. Flag indicating the type of operation to be performed:
if isign = 0, initialize the coefficients wsave;
if isign = -1, perform the forward FFT where input and output are in normal

11-74

11 Intel® Math Kernel Library Reference Manual

order;
if isign = +1, perform the inverse FFT where input and output are in normal
order;
if isign = -2, perform the forward FFT where input is in normal order and
output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.

wsave float* for cfft1dc
double* for zfft1dc
Pointer to an array of size at least (3*n). If isign = 0, then wsave is an
output parameter. Otherwise, wsave contains the FFT coefficients initialized
on a previous call with isign = 0.

Output Parameters

r Contains the real part of the transform depending on isign . Does not change
if isign = 0.

i Contains the imaginary part of the transform depending on isign . Does not
change if isign = 0.

wsave If isign = 0, wsave contains the initialized FFT coefficients. Otherwise,
wsave does not change.

Real-to-Complex One-dimensional FFTs

Each of the real-to-complex routines computes forward FFT of a real input vector according to the
mathematical equation

 for tk = cmplx(rk,0), where rk is the real input vector, .
The mathematical result zj, , is the complex conjugate-symmetric vector, where
z(n/2+i) = conjg(z(n/2-i)), , and moreover z(0) and z(n/2) are real
values.

This complex conjugate-symmetric (CCS) vector can be stored in the complex array of size
(n/2+1) or in the real array of size (n+2). The data storage of the CCS format is defined later for
Fortran-interface and C-interface routines separately.

zj tk*w
j*k–

0 j n 1–≤ ≤,

k 0=

n 1–

∑=

0 k n 1–≤ ≤
0 j n 1–≤ ≤

1 i n 2⁄ 1–≤ ≤

Fourier Transform Functions 11

11-75

Table 11-13 shows a comparison of the effects of performing the cfft1d/ zfft1d
complex-to-complex FFT on a vector of length n=8 in which all the imaginary elements are zeros,
with the real-to-complex scfft1d/zdfft1d FFT applied to the same vector. The advantage of
the latter approach is that only half of the input data storage is required and there is no need to zero
the imaginary part. The last two columns are stored in the real array of size (n+2) containing the
complex conjugate-symmetric vector in CCS format.

To compute a forward FFT of a given length, first initialize the coefficients by calling the routine
you are going to use with isign = 0. Thereafter, any number of real-to-complex and
complex-to-real transforms of the same length can be computed by calling that routine with the
isign value other than 0.

scfft1d/dzfft1d (deprecated)
Fortran-interface routines. Compute forward FFT of a
real vector and represent the complex
conjugate-symmetric result in CCS format (in-place).

Syntax
call scfft1d(r, n, isign, wsave)

Table 11-22 Comparison of the Storage Effects of Complex-to-Complex and
Real-to-Complex FFTs

Input Vectors Output Vectors

cfft1d scfft1d cfft1d scfft1d

Complex Data Real Data Complex Data Real Data

Real Imaginary Real Imaginary (Real) (Imaginary)

0.841471 0.000000 0.841471 1.543091 0.000000 1.543091 0.000000

0.909297 0.000000 0.909297 3.875664 0.910042 3.875664 0.910042

0.141120 0.000000 0.141120 -0.915560 -0.397326 -0.915560 -0.397326

-0.756802 0.000000 -0.756802 -0.274874 -0.121691 -0.274874 -0.121691

-0.958924 0.000000 -0.958924 -0.181784 0.000000 -0.181784 0.000000

-0.279415 0.000000 -0.279415 -0.274874 0.121691

0.656987 0.000000 0.656987 -0.915560 0.397326

0.989358 0.000000 0.989358 3.875664 -0.910042

11-76

11 Intel® Math Kernel Library Reference Manual

call dzfft1d(r, n, isign, wsave)

Description

The operation performed by the scfft1d/dzfft1d routines is determined by the value of
isign. See the equations of the operations for Real-to-Complex One-dimensional FFTs above.
These routines are complementary to the complex-to-real transform routines csfft1d/zdfft1d.

Input Parameters

r REAL for scfft1d
DOUBLE PRECISION for dzfft1d

Array, DIMENSION at least (n+2). First n elements contain the input vector to
be transformed. The elements r(n+1) and r(n+2) are used on output. The
array r is not referenced if isign = 0.

n INTEGER. Transform length; n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be performed:
if isign is 0, initialize the coefficients wsave;
if isign is not 0, perform the forward FFT.

wsave REAL for scfft1d
DOUBLE PRECISION for dzfft1d

Array, DIMENSION at least (2*n+4). If isign = 0, then wsave contains
output data. Otherwise, wsave contains coefficients required to perform the
FFT that has been initialized on a previous call to this routine or the
complementary complex-to-real FFT routine.

Output Parameters

r If isign = 0, r does not change. If isign is not 0, the output real-valued array
r(1:n+2) contains the complex conjugate-symmetric vector z(1:n) packed
in CCS format for Fortran interface.
The table below shows the relationship between them.

The full complex vector z(1:n) is defined by

z(i) = cmplx(r(2*i-1), r(2*i)),
1 ≤ i ≤ n/2+1,

r(1) r(2) r(3) r(4) ... r(n-1) r(n) r(n+1) r(n+2)

z(1) 0 REz(2) IMz(2) ... REz(n/2) IMz(n/2) z(n/2+1) 0

Fourier Transform Functions 11

11-77

z(n/2+i) = conjg(z(n/2+2-i)),
2 ≤ i ≤ n/2.

Then, z(1:n) is the forward FFT of a real input vector r(1:n).

wsave If isign = 0, wsave contains the coefficients required by the called routine.
Otherwise wsave does not change.

scfft1dc/dzfft1dc (deprecated)
C-interface routines. Compute forward FFT of a real
vector and represent the complex conjugate-
symmetric result in CCS format (in-place).

Syntax
void scfft1dc(float* r, int n, int isign, float* wsave);

void dzfft1dc(double* r, int n, int isign, double* wsave);

Description

The operation performed by the scfft1dc/dzfft1dc routines is determined by the value of
isign. See the equations of the operations for the Real-to-Complex One-dimensional FFTs
above.
These routines are complementary to the complex-to-real transform routines
csfft1dc/zdfft1dc.

Input Parameters

r float* for scfft1dc
double* for dzfft1dc

Pointer to an array of size at least (n+2). First n elements contain the input
vector to be transformed. The array r is not referenced if isign = 0.

n int. Transform length; n must be a power of 2.

isign int. Flag indicating the type of operation to be performed:

if isign is 0, initialize the coefficients wsave;

if isign is not 0, perform the forward FFT.

11-78

11 Intel® Math Kernel Library Reference Manual

wsave float* for scfft1dc
double* for dzfft1dc

Pointer to an array of size at least (2*n+4).
If isign = 0, then wsave contains output data. Otherwise, wsave contains
coefficients required to perform the FFT that has been initialized on a previous
call to this routine or the complementary complex-to-real FFT routine.

Output Parameters

r If isign = 0, r does not change. If isign is not 0, the output real-valued array
r(0:n+1) contains the complex conjugate-symmetric vector z(0:n-1)
packed in CCS format for C-interface.
The table below shows the relationship between them.

The full complex vector z(0:n-1) is defined by

z(i) = cmplx(r(i),r(n/2+1+i)), 0 ≤ i ≤ n/2,

z(n/2+i) = conjg(z(n/2-i)), 1 ≤ i ≤ n/2-1.
Then, z(0:n-1) is the forward FFT of the real input vector of length n.

wsave If isign = 0, wsave contains the coefficients required by the called routine.
Otherwise wsave does not change.

Complex-to-Real One-dimensional FFTs

Each of the complex-to-real routines computes a one-dimensional inverse FFT according to the
mathematical equation

The mathematical input is the complex conjugate-symmetric vector zj, , where
z(n/2+i) = conjg(z(n/2-i)), , and moreover z(0) and z(n/2) are real
values.

The mathematical result is tj = cmplx(rj,0), where rj is a real vector, .

r(0) r(1) r(2) ... r(n/2) r(n/2+1) r(n/2+2) ... r(n) r(n+1)

z(0) REz(1) REz(2) ... z(n/2) 0 IMz(1) ... IMz(n/2-1) 0

tj
1
n
- zk*w

j*k 0 j n 1–≤ ≤,

k 0=

n 1–

∑=

0 j n 1–≤ ≤
1 i n 2⁄ 1–≤ ≤

0 j n 1–≤ ≤

Fourier Transform Functions 11

11-79

Input to the complex-to-real transform routines is a real array of size (n+2), which contains the
complex conjugate-symmetric vector z(0:n-1) in CCS format (see Real-to-Complex
One-dimensional FFTs above).

Output of the complex-to-real routines is a real vector of size n.

Table 11-23 is identical to Table 11-13, except for reversing the input and output vectors. In the
complex-to-real routines the last two columns are stored in the input real array of size (n+2)
containing the complex conjugate-symmetric vector in CCS format.

To compute an inverse FFT of a given length, first initialize the coefficients by calling the routine
you are going to use with isign = 0. Thereafter, any number of real-to-complex and
complex-to-real transforms of the same length can be computed by calling the appropriate routine
with the isign value other than 0.

Table 11-23 Comparison of the Storage Effects of Complex-to-Real and
Complex-to-Complex FFTs

Output Vectors Input Vectors

cfft1d csfft1d cfft1d csfft1d

Complex Data Real Data Complex Data Real Data

Real Imaginary Real Imaginary (Real) (Imaginary)

0.841471 0.000000 0.841471 1.543091 0.000000 1.543091 0.000000

0.909297 0.000000 0.909297 3.875664 0.910042 3.875664 0.910042

0.141120 0.000000 0.141120 -0.915560 -0.397326 -0.915560 -0.397326

-0.756802 0.000000 -0.756802 -0.274874 -0.121691 -0.274874 -0.121691

-0.958924 0.000000 -0.958924 -0.181784 0.000000 -0.181784 0.000000

-0.279415 0.000000 -0.279415 -0.274874 0.121691

0.656987 0.000000 0.656987 -0.915560 0.397326

0.989358 0.000000 0.989358 3.875664 -0.910042

11-80

11 Intel® Math Kernel Library Reference Manual

csfft1d/zdfft1d (deprecated)
Fortran-interface routines. Compute inverse FFT of a
complex conjugate-symmetric vector packed in CCS
format (in-place).

Syntax
call csfft1d(r, n, isign, wsave)

call zdfft1d(r, n, isign, wsave)

Description

The operation performed by the csfft1d/zdfft1d routines is determined by the value of
isign. See the equations of the operations for the Complex-to-Real One-dimensional FFTs
above.

These routines are complementary to the real-to-complex transform routines scfft1d/dzfft1d.

Input Parameters

r REAL for csfft1d
DOUBLE PRECISION for zdfft1d

Array, DIMENSION at least (n+2).
Not referenced if isign = 0.

If isign is not 0, then r(1:n+2) contains the complex conjugate-symmetric
vector packed in CCS format for Fortran-interface.
The table below shows the relationship between them.

The full complex vector z(1:n) is defined by

z(i) = cmplx(r(2*i-1), r(2*i)),
1 ≤ i ≤ n/2+1,

z(n/2+i) = conjg(z(n/2+2-i)),
2 ≤ i ≤ n/2.

r(1) r(2) r(3) r(4) ... r(n-1) r(n) r(n+1) r(n+2)

z(1) 0 REz(2) IMz(2) ... REz(n/2) IMz(n/2) z(n/2+1) 0

Fourier Transform Functions 11

11-81

After the transform, r(1:n) contains the inverse FFT of the complex
conjugate-symmetric vector z(1:n).

n INTEGER. Transform length; n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be performed:
if isign is 0, initialize the coefficients wsave;
if isign is not 0, perform the inverse FFT.

wsave REAL for csfft1d
DOUBLE PRECISION for zdfft1d
Array, DIMENSION at least (2*n+4). If isign = 0, then wsave contains
output data. Otherwise, wsave contains coefficients required to perform the
FFT that has been initialized on a previous call to this routine or the
complementary real-to-complex FFT routine.

Output Parameters

r If isign is not 0, then r(1:n) is the real result of the inverse FFT of the
complex conjugate-symmetric vector z(1:n). Does not change if isign = 0.

wsave If isign = 0, wsave contains the coefficients required by the called routine.
Otherwise wsave does not change.

csfft1dc/zdfft1dc (deprecated)
C-interface routines.Compute inverse FFT
of a complex conjugate-symmetric vector
packed in CCS format (in-place).

Syntax
void csfft1dc(float* r, int n, int isign, float* wsave);

void zdfft1dc(double* r, int n, int isign, double* wsave);

Description

The operation performed by the csfft1dc/zdfft1dc routines is determined by the value of
isign. See the equations of the operations for the Complex-to-Real One-dimensional FFTs
above.

11-82

11 Intel® Math Kernel Library Reference Manual

These routines are complementary to the real-to-complex transform routines
scfft1dc/dzfft1dc.

Input Parameters

r float* for csfft1dc
double* for zdfft1dc

Pointer to an array of size at least (n+2). Not referenced if isign = 0.

If isign is not 0, then r(0:n+1) contains the complex conjugate-symmetric
vector packed in CCS format for C-interface.
The table below shows the relationship between them.

The full complex vector z(0:n-1) is defined by
z(i) = cmplx(r(i),r(n/2+1+i)), 0 ≤ i ≤ n/2,

z(n/2+i) = conjg(z(n/2-i)), 1 ≤ i ≤ n/2-1.
After the transform, r(0:n-1) is the inverse FFT of the complex
conjugate-symmetric vector z(0:n-1).

n int. Transform length; n must be a power of 2.

isign int. Flag indicating the type of operation to be performed:
if isign = 0, initialize the coefficients wsave;
if isign is not 0, perform the inverse FFT.

wsave float* for csfft1dc
double* for zdfft1dc
Pointer to an array of size at least (2*n+4).
If isign = 0, then wsave contains output data. Otherwise, wsave contains
coefficients required to perform the FFT that has been initialized on a previous
call to this routine or the complementary real-to-complex FFT routine.

Output Parameters

r If isign is not 0, then r(0:n-1) is the real result of the inverse FFT of the
complex conjugate-symmetric vector z(0:n-1). Does not change if
isign = 0.

wsave If isign = 0, wsave contains the coefficients required by the called routine.
Otherwise wsave does not change.

r(0) r(1) r(2) ... r(n/2) r(n/2+1) r(n/2+2) ... r(n) r(n+1)

z(0) REz(1) REz(2) ... z(n/2) 0 IMz(1) ... IMz(n/2-1) 0

Fourier Transform Functions 11

11-83

Two-dimensional FFTs
The two-dimensional FFTs are functionally the same as one-dimensional FFTs. They contain the
following groups:

• Complex-to-Complex Transforms

• Real-to-Complex Transforms

• Complex-to-Real Transforms.

All two-dimensional FFTs are in-place. Transform lengths must be a power of 2. The
complex-to-complex transform routines perform both forward and inverse transforms of a
complex matrix. The real-to-complex transform routines perform forward transforms of a real
matrix. The complex-to-real transform routines perform inverse transforms of a complex
conjugate-symmetric matrix, which is packed in a real array.

The naming conventions are also the same as those for one-dimensional FFTs, with “2d” replacing
“1d” in all cases. Table 11-24 lists the two-dimensional FFT routine groups and the data types
associated with them.

NOTE. These functions have been deprecated and should not be used as
no new development is done on them. Please use DFT Functions instead.

Table 11-24 Two-dimensional FFTs: Names and Data Types

Group

Stored as
FORTRAN
Complex
Data

Stored as C
Real Data

Data
Types Description

Complex-to-
Complex

cfft2d/
zfft2d

cfft2dc/
zfft2dc

c, z Transform complex data to complex
data.

Real-to-
Complex

scfft2d/
dzfft2d

scfft2dc/
dzfft2dc

sc, dz Transform forward real-to-complex data.
Complement csfft2d/zdfft2d and
csfft2dc/zdfft2dc FFTs.

Complex-
to-Real

csfft2d/
zdfft2d

csfft2dc/
zdfft2dc

cs, zd Transform inverse complex-to-real data.
Complement scfft2d/dzfft2d and
scfft2dc/dzfft2dc FFTs.

11-84

11 Intel® Math Kernel Library Reference Manual

The C-interface requires scalar values to be passed by value. The major difference between the
one-dimensional and two-dimensional FFTs is that your application does not need to provide
storage for transform coefficients.

The data storage types and data structure requirements are the same as for one-dimensional FFTs.
For more information, see the Data Storage Types and Data Structure Requirements sections at the
beginning of this chapter.

Complex-to-Complex Two-dimensional FFTs

Each of the complex-to-complex routines computes a forward or inverse FFT of a complex matrix
in-place.

The forward FFT is computed according to the mathematical equation

The inverse FFT is computed according to the mathematical equation

where , , i being the imaginary unit.

 The operation performed by the complex-to-complex routines is determined by the value of the
isign parameter.

If isign = -1, perform the forward FFT where input and output are in normal order.
If isign = +1, perform the inverse FFT where input and output are in normal order.
If isign = -2, perform the forward FFT where input is in normal order and output is in
bit-reversed order.
If isign = +2, perform the inverse FFT where input is in bit-reversed order and output is in
normal order.

The above equations apply to all FFTs with all data types indicated in Table 11-24.

zi j, rk l, *wm
i– *k

*wn
j– *l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,

l 0=

n 1–

∑
k 0=

m 1–

∑=

ri j,
1

m*n
------ zk l, *wm

i*k
*wn

j*l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,

l 0=

n 1–

∑
k 0=

m 1–

∑=

wm
2πi
m

------exp= wn
2πi
n

------exp=

Fourier Transform Functions 11

11-85

cfft2d/zfft2d (deprecated)
Fortran-interface routines. Compute the forward or
inverse FFT of a complex matrix (in-place).

Syntax
call cfft2d(r, m, n, isign)

call zfft2d(r, m, n, isign)

Description

The operation performed by the cfft2d/zfft2d routines is determined by the value of isign.
See the equations of the operations for Complex-to-Complex Two-dimensional FFTs.

Input Parameters

r COMPLEX for cfft2d
DOUBLE COMPLEX for zfft2d
Array, DIMENSION at least (m,n), with its leading dimension equal to m. This
array contains the complex matrix to be transformed.

m INTEGER. Column transform length (number of rows);
m must be a power of 2.

n INTEGER. Row transform length (number of columns); n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be performed:
if isign = -1, perform the forward FFT where input and output are in normal
order;
if isign = +1, perform the inverse FFT where input and output are in normal
order;
if isign = -2, perform the forward FFT where input is in normal order and
output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.

Output Parameters

r Contains the complex result of the transform depending on isign.

11-86

11 Intel® Math Kernel Library Reference Manual

cfft2dc/zfft2dc (deprecated)
C-interface routines. Compute the forward or inverse
FFT of a complex matrix (in-place).

Syntax
void cfft2dc(float* r, float* i, int m, int n, int isign);

void zfft2dc(double* r, double* i, int m, int n, int isign);

Description

The operation performed by the cfft2dc/zfft2dc routines is determined by the value of
isign. See the equations of the operations for the Complex-to-Complex Two-dimensional FFTs
above.

Input Parameters

r float* for cfft2dc
double* for zfft2dc

Pointer to a two-dimensional array of size at least (m,n), with its leading
dimension equal to n. The array contains the real parts of a complex matrix to
be transformed.

i float* for cfft2dc
double* for zfft2dc

Pointer to a two-dimensional array of size at least (m,n), with its leading
dimension equal to n. The array contains the imaginary parts of a complex
matrix to be transformed.

m int. Column transform length (number of rows); m must be a power of 2.

n int. Row transform length (number of columns); n must be a power of 2.

isign int. Flag indicating the type of operation to be performed:

if isign = -1, perform the forward FFT where input and output are in normal
order;
if isign = +1, perform the inverse FFT where input and output are in normal
order;
if isign = -2, perform the forward FFT where input is in normal order and

Fourier Transform Functions 11

11-87

output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.

Output Parameters

r Contains the real parts of the complex result depending on isign.

i Contains the imaginary parts of the complex depending on isign.

Real-to-Complex Two-dimensional FFTs

Each of the real-to-complex routines computes the forward FFT of a real matrix according to the
mathematical equation

tk,l = cmplx(rk,l,0), where rk,l is a real input matrix, 0 ≤ k ≤ m-1, 0 ≤ l ≤ n-1.
The mathematical result zi,j, 0 ≤ i ≤ m-1, 0 ≤ j ≤ n-1, is the complex matrix of size (m,n).
Each column is the complex conjugate-symmetric vector as follows:

for 0 ≤ j ≤ n-1,

z(m/2+i,j) = conjg(z(m/2-i,j)), 1 ≤ i ≤ m/2-1.
Moreover, z(0,j) and z(m/2,j) are real values for j=0 and j=n/2.

This mathematical result can be stored in the real two-dimensional array of size (m+2,n+2) or in
the complex two-dimensional array of size (m/2+1,n+1) for Fortran-interface and in the
complex two-dimensional array of size (m+1,n/2+1) for C-interface. The data storage of CCS
format is defined later for Fortran-interface and C-interface routines separately.

zi j, tk l, *wm
i– *k

*wn
j– *l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,

l 0=

n 1–

∑
k 0=

m 1–

∑=

11-88

11 Intel® Math Kernel Library Reference Manual

scfft2d/dzfft2d (deprecated)
Fortran-interface routines. Compute forward FFT of a
real matrix and represent the complex
conjugate-symmetric result in CCS format (in-place).

Syntax
call scfft2d(r, m, n)

call dzfft2d(r, m, n)

Description

See the equations of the operations for the Real-to-Complex Two-dimensional FFTs above.

These routines are complementary to the complex-to-real transform routines csfft2d/zdfft2d.

Input Parameters

r REAL for scfft2d
DOUBLE PRECISION for dzfft2d
Array, DIMENSION at least (m+2,n+2), with its leading dimension equal to
(m+2). The first m rows and n columns of this array contain the real matrix to
be transformed. Table 11-25 presents the input data layout.

m INTEGER. Column transform length (number of rows); m must be a power of 2.

n INTEGER. Row transform length (number of columns); n must be a power of 2.

Fourier Transform Functions 11

11-89

* n/u - not used

Output Parameters

r The output real array r(1:m+2,1:n+2) contains the complex conjugate-symmetric
matrix z(1:m,1:n) packed in CCS format for Fortran-interface as follows:

• Rows 1 and m+1 contain in n+2 locations the complex conjugate-symmetric vectors
z(1,j) and z(m/2+1,j) packed in CCS format (see Real-to-Complex
One-dimensional FFTs above).
The full complex vector z(1,j) is defined by:
z(1,j) = cmplx(r(1,2*j-1),r(1,2*j)), 1 ≤ j ≤ n/2+1,
z(1,n/2+1+j) = conjg(z(1,n/2+1-j)), 1 ≤ j ≤ n/2-1.
The full complex vector z(m/2+1,j) is defined by:
z(m/2+1,j) = cmplx(r(m+1,2*j-1),r(m+1,2*j)),
1 ≤ j ≤ n/2+1,
z(m/2+1,n/2+1+j) = conjg(z(m/2+1,n/2+1-j)),
1 ≤ j ≤ n/2-1;

• Rows from 3 to m contain in n locations complex vectors represented as
z(i+1,j) = cmplx(r(2*i+1,j),r(2*i+2,j)),
1 ≤ i ≤ m/2-1, 1 ≤ j ≤ n .

Table 11-25 Fortran-interface Real Data Storage for the Real-to-Complex
and Complex-to-Real Two-dimensional FFTs

r(1,1) r(1,2) ... r(1,n-1) r(1,n) n/u n/u

r(2,1) r(2,2) ... r(2,n-1) r(2,n) n/u n/u

r(3,1) r(3,2) ... r(3,n-1) r(3,n) n/u n/u

r(4,1) r(4,2) ... r(4,n-1) r(4,n) n/u n/u

...

r(m-1,1) r(m-1,2) ... r(m-1,n-1) r(m-1,n) n/u n/u

r(m,1) r(m,2) ... r(m,n-1) r(m,n) n/u n/u

n/u n/u ... n/u n/u n/u n/u

n/u n/u ... n/u n/u n/u n/u

11-90

11 Intel® Math Kernel Library Reference Manual

• The rest matrix elements can be obtained from
z(m/2+1+i,j) = conjg(z(m/2+1-i,j)),
1 ≤ i ≤ m/2-1, 1 ≤ j ≤ n .

The storage of the complex conjugate-symmetric matrix z for Fortran-interface is shown
in Table 11-26.

* n/u - not used

scfft2dc/dzfft2dc (deprecated)
C-interface routine. Compute forward FFT of a real
matrix and represent the complex conjugate-symmetric
result in CCS format (in-place).

Syntax
void scfft2dc(float* r, int m, int n);

void dzfft2dc(double* r, int m, int n);

Table 11-26 Fortran-interface Data Storage of CCS Format for the Real-to-Complex and
Complex-to-Real Two-Dimensional FFTs

z(1,1) 0 REz(1,2) IMz(1,2) ... REz(1,n/2) IMz(1,n/2) z(1,
 n/2+1)

0

0 0 0 0 ... 0 0 0 0

REz(2,1) REz(2,2) REz(2,3) REz(2,4) ... REz(2,n-1) REz(2,n) n/u n/u

IMz(2,1) IMz(2,2) IMz(2,3) IMz(2,4) ... IMz(2,n-1) IMz(2,n) n/u n/u

... n/u n/u

REz(m/2,1) REz(m/2,2) REz(m/2,3) REz(m/2,4) ... REz(m/2,
 n-1)

REz(m/2,
 n)

n/u n/u

IMz(m/2,1) IMz(m/2,2) IMz(m/2,3) IMz(m/2,4) ... IMz(m/2,
 n-1)

IMz(m/2,
 n)

n/u n/u

z(m/2+1,1) 0 REz(m/2+1,2) IMz(m/2+1,2) ... REz(m/2+1,
 n/2)

IMz(m/2+1,
 n/2)

z(m/2+1,
 n/2+1)

0

0 0 0 0 ... 0 0 n/u n/u

Fourier Transform Functions 11

11-91

Description

See the equations of the operations for the Real-to-Complex Two-dimensional FFTs above.

These routines are complementary to the complex-to-real transform routines
csfft2dc/zdfft2dc.

Input Parameters

r float* for scfft2dc
double* for dzfft2dc

Pointer to an array of size at least (m+2,n+2), with its leading dimension
equal to (n+2). The first m rows and n columns of this array contain the real
matrix to be transformed.

 Table 11-27 presents the input data layout.

m int. Column transform length;
m must be a power of 2.

n int. Row transform length;
n must be a power of 2.

 Output Parameters

r The output real array r(0:m+1,0:n+1) contains the complex conjugate-symmetric
matrix z(0:m-1,0:n-1) packed in CCS format for C-interface as follows:

Table 11-27 C-interface Real Data Storage for a Real-to-Complex
and Complex-to-Real Two-dimensional FFTs

r(0,0) r(0,1) ... r(0,n-2) r(0,n-1) n/u n/u

r(1,0) r(1,1) ... r(1,n-2) r(1,n-1) n/u n/u

r(2,0) r(2,1) ... r(2,n-2) r(2,n-1) n/u n/u

r(3,0) r(3,1) ... r(3,n-2) r(3,n-1) n/u n/u

...

r(m-2,0) r(m-2,1) ... r(m-2,n-2) r(m-2,n-1) n/u n/u

r(m-1,0) r(m-1,1) ... r(m-1,n-2) r(m-1,n-1) n/u n/u

n/u n/u ... n/u n/u n/u n/u

n/u n/u ... n/u n/u n/u n/u

11-92

11 Intel® Math Kernel Library Reference Manual

• Columns 0 and n/2 contain in m+2 locations the complex conjugate-symmetric
vectors z(i,0) and z(i,n/2) in CCS format (seeReal-to-Complex
One-dimensional FFTs above).
The full complex vector z(i,0) is defined by:
z(i,0) = cmplx(r(i,0),r(m/2+i+1,0)), 0 ≤ i ≤ m/2,
z(m/2+i,0) = conjg(z(m/2-i,0)), 1 ≤ i ≤ m/2-1.

The full complex vector z(i,n/2) is defined by:
z(i,n/2) = cmplx(r(i,n/2),r(m/2+i+1,n/2)), 0 ≤ i ≤ m/2,
z(m/2+i,n/2) = conjg(z(m/2-i,n/2)), 1 ≤ i ≤ m/2-1.

• Columns from 1 to n/2-1 contain real parts, and columns from n/2+2 to n contain
imaginary parts of complex vectors. These values for each vector are stored in m
locations represented as follows
z(i,j) = cmplx(r(i,j),r(i,n/2+1+j)),
0 ≤ i ≤ m-1, 1 ≤ j ≤ n/2-1.

• The rest matrix elements can be obtained from
z(i,n/2+j) = conjg(z(i,n/2-j)),
0 ≤ i ≤ m-1, 1 ≤ j ≤ n/2-1.

Table 11-28 shows the storage of the complex conjugate-symmetric matrix z for C-interface.

Fourier Transform Functions 11

11-93

Complex-to-Real Two-dimensional FFTs

Each of the complex-to-real routines computes a two-dimensional inverse FFT according to the
mathematical equation:

The mathematical input zi,j, , is a complex matrix of size (m,n).
Each column is the complex conjugate-symmetric vector as follows:

for 0 ≤ j ≤ n-1,
z(m/2+i,j) = conjg(z(m/2-i,j)), 1 ≤ i ≤ m/2-1.
Moreover, z(0,j) and z(m/2,j) are real values for j=0 and j=n/2.

Table 11-28 C-interface Data Storage of CCS Format for the Real-to-Complex and
Complex-to-Real Two-dimensional FFT

z(0,0) REz(0,1) ... REz(0,
 n/2-1)

z(0,n/2) 0 IMz(0,1) ... IMz(0,
 n/2-1)

0

REz(1,0) REz(1,1) ... REz(1,
 n/2-1)

REz(1,n/2) 0 IMz(1,1) ... IMz(1,
 n/2-1)

0

... 0 0

REz(m/2-1,
 0)

REz(m/2-1,
 1)

... REz(m/2-1,
 n/2-1)

REz(m/2-1,
 n/2)

0 IMz(m/2-1,
 1)

... IMz(m/2-1,
 n/2-1)

0

z(m/2,0) REz(m/2,1) ... REz(m/2,
 n/2-1)

z(m/2,n/2) 0 IMz(m/2,1) ... IMz(m/2,
 n/2-1)

0

0 REz(m/2+1,
 1)

... REz(m/2+1,
 n/2-1)

0 0 IMz(m/2+1,
 1)

... IMz(m/2+1,
 n/2-1)

0

IMz(1,0) REz(m/2+2,
 1)

... REz(m/2+2,
 n/2-1)

IMz(1,n/2) 0 IMz(m/2+2,
 1)

... IMz(m/2+2,
 n/2-1)

0

... 0 0

IMz(m/2-2,
 0)

REz(m-1,1) ... REz(m-1,
 n/2-1)

IMz(m/2-2,
 n/2)

0 IMz(m-1,1) ... IMz(m-1,
 n/2-1)

0

IMz(m/2-1,
 0)

n/u ... n/u IMz(m/2-1,
 n/2)

n/u n/u ... n/u n/u

0 n/u ... n/u 0 n/u n/u ... n/u n/u

ti j,
1

m*n
------ zk l, *wm

i*k
*wn

j*l 0 i m 1 0 j n 1–≤ ≤,–≤ ≤,

l 0=

n 1–

∑
k 0=

m 1–

∑=

0 i m 1 0 j n 1–≤ ≤,–≤ ≤

11-94

11 Intel® Math Kernel Library Reference Manual

This mathematical result can be stored in the real two-dimensional array of size (m+2,n+2) or in
the complex two-dimensional array of size (m/2+1,n+1) for Fortran-interface and in the
complex two-dimensional array of size (m+1,n/2+1) for C-interface. The data storage of CCS
format is defined later for Fortran-interface and C-interface routines separately.

The mathematical result of the transform is tk,l = cmplx(rk,l,0), where rk,l is the real
matrix, .

csfft2d/zdfft2d (deprecated)
Fortran-interface routine. Compute inverse FFT of a
complex conjugate-symmetric matrix packed in CCS
format (in-place).

Syntax
call csfft2d(r, m, n)

call zdfft2d(r, m, n)

Description

See the equations of the operations for the Complex-to-Real Two-dimensional FFTs above. These
routines are complementary to the real-to-complex transform routines scfft2d/dzfft2d.

Input Parameters

r SINGLE PRECISION REAL*4 for csfft2d
DOUBLE PRECISION REAL*8 for zdfft2d

Array, DIMENSION at least (m+2,n+2), with its leading dimension equal to
(m+2). This array contains the complex conjugate-symmetric matrix in CCS
format to be transformed. The input data layout is given in Table 11-26.

m INTEGER. Column transform length (number of rows); m must be a power of 2.

n INTEGER. Row transform length (number of columns); n must be a power of 2.

Output Parameters

r Contains the real result returned by the transform. For the output data layout,
see Table 11-25.

0 k m 1 0 l n 1–≤ ≤,–≤ ≤

Fourier Transform Functions 11

11-95

csfft2dc/zdfft2dc (deprecated)
C-interface routines. Compute inverse FFT of a
complex conjugate-symmetric matrix packed in CCS
format (in-place).

Syntax
void csfft2dc(float* r, int m, int n);

void zdfft2dc(double* r, int m, int n);

Description

See the equations of the operations for the Complex-to-Real Two-dimensional FFTs above. These
routines are complementary to the real-to-complex transform routines scfft2dc/dzfft2dc.

Input Parameters

r float* for csfft2dc
double* for zdfft2dc

Pointer to an array of size at least (m+2,n+2), with its leading dimension
equal to (n+2). This array contains the complex conjugate-symmetric matrix
in CCS format to be transformed. The input data layout is given in Table 11-28.

m int. Column transform length; m must be a power of 2.

n int. Row transform length; n must be a power of 2.

 Output Parameters

r Contains the real result returned by the transform. The output data layout is the
same as that for the input data of scfft2dc/dzfft2dc. See Table 11-27 for
the details.

12-1

Interval Linear Solvers 12
This chapter describes Intel MKL routines that can be used for:

- solving systems of interval linear equations Ax = b with an interval matrix A = (aij) and
interval right-hand side vector b = (bi);

- checking properties of interval matrices.

For more information on key concepts of interval linear systems, see Appendix A, “Linear Solvers
Basics”.

Routines described below are subdivided according to the problems they solve into the following
groups:

Routines for Fast Solution of Interval Systems

Routines for Sharp Solution of Interval Systems

Routines for Inverting Interval Matrices

Routines for Checking Properties of Interval Matrices

Auxiliary and Utility Routines

Table 12-1 contains the full list of Intel MKL routines for solving interval linear systems.

Table 12-1 Intel MKL Interval Linear Solver Routines

Routine Name Description

?trtrs Solves a triangular system of interval linear equations by backward
substitution procedure.

?gegas Solves a system of interval linear equations by interval Gauss method.

?gehss Solves a system of interval linear equations by interval Householder
method.

12-2

12 Intel® Math Kernel Library Reference Manual

Routine Naming Conventions
For the routines introduced below, the LAPACK-like naming conventions are used.
Specifically, all the routine names have the structure xxyyzzz, where the first letters xx indicate
the data types:

si real interval, single precision

di real interval, double precision

The third and fourth letters yy indicate the matrix type:

ge general

tr triangular

The last three letters zzz indicate the computational procedure performed by the routine:

trs backward substitution solver for triangular interval linear systems

gas interval Gauss solver for interval linear systems

hss interval Householder solver for interval linear systems

kws iterative Krawczyk solver for interval linear systems

gss interval Gauss-Seidel iteration solver for interval linear systems

hbs Hansen-Bliek-Rohn solver for interval linear systems

?gekws Solves a system of interval linear equations by Krawczyk iteration method.

?gegss Solves a system of interval linear equations by interval Gauss-Seidel
iteration.

?gehbs Solves a system of interval linear equations by Hansen-Bliek-Rohn
procedure.

?gepps Solves a system of interval linear equations by a parameter partitioning
method.

?trtri Computes inverse interval matrix to a triangular interval matrix.

?geszi Computes inverse interval matrix by Schulz interval iterative procedure.

?gerbr Tests regularity of an interval matrix by Ris-Beeck and Rex-Rohn criteria

?gesvr Tests regularity/singularity of an interval matrix by Rump and Rex-Rohn
singular value criteria.

?gemip Performs midpoint-inverse preconditioning of an interval linear system.

Table 12-1 Intel MKL Interval Linear Solver Routines (continued)

Routine Name Description

Interval Linear Solvers 12

12-3

pps parameter partitioning method-based solver for interval linear systems

tri inverting triangular interval matrix based on backward substitution

szi inverting general interval matrix by Schulz iterative method

rbr testing regularity/singularity of interval matrix by Ris-Beeck criterion

svr testing regularity/singularity of interval matrix by Rump and Rex-Rohn singular
 value criteria

mip midpoint-inverse preconditioning of interval linear system

The question mark in the routine group name corresponds to different character codes indicating
the data type (si or di). For example, ?trtri denotes the group name for either of the routines
sitrtri or ditrtri.

Routines for Fast Solution of Interval Systems

?trtrs
Solves a triangular system of interval linear equations
by backward substitution procedure.

Syntax
call sitrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

call ditrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb, info)

Description

The routine ?trtrs solves for X the following systems of interval linear equations with a
triangular matrix A and multiple right-hand sides stored in B:

, if trans = ’N’,

, if trans = ’T’ or ’C’.

The routine implements backward substitution algorithm and produces optimal enclosures of the
solution sets to interval linear systems, which is due to the simple structure of the matrix A.

AX B=

A
T
X B=

12-4

12 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER(1). Must be one of ’U’ , ’L’ , ’u’, or ’l’.
Indicates whether A is upper or lower triangular.
If uplo = ’U’or ’u’, then A is upper triangular.
If uplo = ’L’or ’l’, then A is lower triangular.

trans CHARACTER(1). Must be one of ’N’, ’T’, ’C’, ’n’, ’t’, or ’c’.
If trans = ’N’or ’n’, then is solved for X.
If trans = ’T’or ’C’or ’t’or ’c’, then is solved for X.

diag CHARACTER(1). Must be one of ’N’, ’U’, ’n’, or ’u’.
If diag = ’N’or ’n’, then A is not a unit triangular matrix.
If diag = ’U’or ’u’, then A is unit triangular: diagonal elements of A
are assumed to be 1 and not referenced in the array a.

n INTEGER. The order of A, the number of rows in B ().

nrhs INTEGER. The number of right-hand sides ().

a, b REAL for sitrtrs.
DOUBLE PRECISION for ditrtrs.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.
The array b contains the matrix B , whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max(1,n) and the second
dimension of b must be at least max(1,nrhs).

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

ldb INTEGER. The first dimension of b, ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER.
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

AX B=
A
T
X B=

n 0≥

nrhs 0≥

Interval Linear Solvers 12

12-5

?gegas
Solves a system of interval linear equations
by interval Gauss method.

Syntax
call sigegas(trans, n, nrhs, a, lda, b, ldb, info)

call digegas(trans, n, nrhs, a, lda, b, ldb, info)

Description

The routine ?gegas uses the interval Gauss method to compute an enclosure of the solution set to
the following interval linear system of equations:

, if trans = ’N’,

, if trans = ’T’ or ’C’.

Input Parameters

trans CHARACTER(1). Must be one of ’N’, ’T’, ’C’, ’n’, ’t’, or ’c’.
Indicates the form of the equations system:
If trans = ’N’or ’n’, then is solved for X.
If trans = ’T’or ’C’or ’t’or ’c’, then is solved for X.

n INTEGER. The order of A, the number of rows in B ().

nrhs INTEGER. The number of right-hand sides ().

a, b REAL for sigegas.
DOUBLE PRECISION for digegas.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.
The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max(1,n) and the second
dimension of b must be at least max(1,nrhs).

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

ldb INTEGER. The first dimension of b, ldb ≥ max(1, n).

AX B=

A
T
X B=

AX B=
A
T
X B=

n 0≥

nrhs 0≥

12-6

12 Intel® Math Kernel Library Reference Manual

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER.
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Example 12-1 Fortran 90 Code for Interval Gauss Method

The following piece of Fortran code presents an example of using the routine digegas to
compute, by an interval Gauss method, an enclosure of the solution set to the interval linear system
of equations:

--

.

USE INTERVAL_ARITHMETIC

.

TYPE(D_INTERVAL) :: A(2,2), B(2)

INTEGER :: N, INFO

CHARACTER(1) :: TRANS = ’n’

.

N = 2

A(1,1) = DINTERVAL(2.,3.); A(1,2) = DINTERVAL(0.,1.)

A(2,1) = DINTERVAL(1.,2.); A(2,2) = DINTERVAL(2.,3.)

B(1,1) = DINTERVAL(0.,120.); B(2,1) = DINTERVAL(60.,240.)

.

CALL DIGEGAS(TRANS, N, 1, A, 2, B, 2, INFO)

--

Note that assigning double-precision intervals to the entries of the matrix A and right-hand side
vector B is carried out by DINTERVAL function supplied by INTERVAL_ARITHMETIC module.

2 3,[] 0 1,[]
1 2,[] 2 3,[] 

 
 

x
0 120,[]
60 240,[] 

 =

Interval Linear Solvers 12

12-7

?gehss
Solves a system of interval linear equations
by interval Householder method.

Syntax
call sigehss(trans, n, nrhs, a, lda, b, ldb, info)

call digehss(trans, n, nrhs, a, lda, b, ldb, info)

Description

The routine ?gehss uses the interval Householder method to compute an enclosure of the
solution set to the following interval linear system of equations:

, if trans = ’N’,

, if trans = ’T’ or ’C’.

Input Parameters

trans CHARACTER(1). Must be one of ’N’, ’T’, ’C’, ’n’, ’t’, or ’c’.
Indicates the form of the equations system:
If trans = ’N’or ’n’, then is solved for X.
If trans = ’T’or ’C’or ’t’or ’c’, then is solved for X.

n INTEGER. The order of A, the number of rows in B ().

nrhs INTEGER. The number of right-hand sides ().

a, b REAL for sigehss.
DOUBLE PRECISION for digehss.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.
The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max(1,n) and the second
dimension of b must be at least max(1,nrhs).

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

ldb INTEGER. The first dimension of b, ldb ≥ max(1, n).

AX B=

A
T
X B=

AX B=
A
T
X B=

n 0≥

nrhs 0≥

12-8

12 Intel® Math Kernel Library Reference Manual

Output Parameters

b Overwritten by an enclosure of the solution matrix X.

info INTEGER.
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

?gekws
Solves a system of interval linear equations
by Krawczyk iteration method.

Syntax
call sigekws(trans, n, nrhs, a, lda, b, ldb, epsilon, info)

call digekws(trans, n, nrhs, a, lda, b, ldb, epsilon, info)

Description

The routine ?gekws uses the Krawczyk interval iteration to compute an enclosure of the solution
set to the following interval linear system of equations:

, if trans = ’N’,

, if trans = ’T’ or ’C’.

Input Parameters

trans CHARACTER(1). Must be one of ’N’, ’T’, ’C’, ’n’, ’t’, or ’c’.
Indicates the form of the equations system:
If trans = ’N’or ’n’, then is solved for X.
If trans = ’T’or ’C’or ’t’or ’c’, then is solved for X.

n INTEGER. The order of A, the number of rows in B ().

nrhs INTEGER. The number of right-hand sides ().

a, b REAL for sigekws.
DOUBLE PRECISION for digekws.
Arrays: a (lda,*), b (ldb,*).

AX B=

A
T
X B=

AX B=
A
T
X B=

n 0≥

nrhs 0≥

Interval Linear Solvers 12

12-9

The array a contains the matrix A.
The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

ldb INTEGER. The first dimension of b, ldb ≥ max(1, n).

epsilon REAL for sigekws.
DOUBLE PRECISION for digekws.
The prescribed accuracy of the estimate.

Output Parameters

b Overwritten by an enclosure of the solution matrix X.

info INTEGER.
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

Krawczyk interval iteration already incorporates midpoint inverse preconditioning, so that
additional application of ?gemip routines is not necessary and does not improve the overall
efficiency.

?gegss
Solves a system of interval linear equations
by interval Gauss-Seidel iteration.

Syntax
call sigegss(trans, n, nrhs, a, lda, b, ldb, encl, epsilon, nits, info)

call digegss(trans, n, nrhs, a, lda, b, ldb, encl, epsilon, nits, info)

Description

The routine ?gegss uses the interval Gauss-Seidel iteration to compute an enclosure of a portion
of the solution set to the following interval linear system of equations:

12-10

12 Intel® Math Kernel Library Reference Manual

, if trans = ’N’,

, if trans = ’T’ or ’C’.

See Interval Linear Solvers Code Examples in the Appendix C of this manual for example code on
using this routine.

Input Parameters

trans CHARACTER(1). Must be one of ’N’, ’T’, ’C’, ’n’, ’t’, or ’c’.
Indicates the form of the equations system:
If trans = ’N’or ’n’, then is solved for X.
If trans = ’T’or ’C’or ’t’or ’c’, then is solved for X.

n INTEGER. The order of A, the number of rows in B ().

nrhs INTEGER. The number of right-hand sides ().

a, b REAL for sigegss.
DOUBLE PRECISION for digegss.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.
The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

ldb INTEGER. The first dimension of b, ldb ≥ max(1, n).

encl REAL for sigegss.
DOUBLE PRECISION for digegss.
Array: encl (ldb,*).
The array encl defines the interval box bounding the portion of the
solution set that the routine estimates.

epsilon REAL for sigegss.
DOUBLE PRECISION for digegss.
The prescribed accuracy of the estimate.

nits INTEGER. The number of Gauss-Seidel iterations alloted, .

Output Parameters

b Overwritten by an enclosure of the solution matrix X.

AX B=

A
T
X B=

AX B=
A
T
X B=

n 0≥

nrhs 0≥

nits 0≥

Interval Linear Solvers 12

12-11

info INTEGER.
If info = 0, the execution is successful.
If info = i > 0, then the diagonal element a(i,i) of the matrix contains
zero. The execution of the routine did not fail, but it is recommended to
interchange the rows and/or columns of the matrix so as to exclude
zero-containing elements from its main diagonal.
If info = -i, the i-th parameter has an illegal value.

Application Notes

Interval Gauss-Seidel iteration is a local solver of interval linear systems, which means that it is
mainly intended for computing enclosures of portions of the solution set bounded by a given
interval box in the space Rn.

If the goal is to compute, by ?gegss, an enclosure of the entire solution set to an interval linear
system of equations, then its initial (crude) enclosure should be provided through encl argument.

?gehbs
Solves a system of interval linear equations
by Hansen-Bliek-Rohn procedure.

Syntax
call sigehbs(trans, n, a, lda, b, ldb, info)

call digehbs(trans, n, a, lda, b, ldb, info)

Description

The routine ?gehbs uses the Hansen-Bliek-Rohn procedure to compute an enclosure of the
solution set to the following interval linear system of equations:

, if trans = ’N’,

, if trans = ’T’ or ’C’.

See Interval Linear Solvers Code Examples in the Appendix C of this manual for example code on
using this routine.

AX B=

A
T
X B=

12-12

12 Intel® Math Kernel Library Reference Manual

Input Parameters

trans CHARACTER(1). Must be one of ’N’, ’T’, ’C’, ’n’, ’t’, or ’c’.
Indicates the form of the equations system:
If trans = ’N’or ’n’, then is solved for X.
If trans = ’T’or ’C’or ’t’or ’c’, then is solved for X.

n INTEGER. The order of A, the number of rows in B ().

a, b REAL for sigehbs.
DOUBLE PRECISION for digehbs.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.
The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

ldb INTEGER. The first dimension of b, ldb ≥ max(1, n).

Output Parameters

b Overwritten by the solution matrix X.

info INTEGER.
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

If the middle matrix of A is not close to a diagonal matrix, then the midpoint inverse
preconditioning by ?gemip routine may be necessary to correct the interval linear system and
yield better results.

AX B=
A
T
X B=

n 0≥

Interval Linear Solvers 12

12-13

Routines for Sharp Solution of Interval Systems

?gepps
Solves a system of interval linear equations
by a parameter partitioning method.

Syntax
call sigepps(trans, n, a, lda, b, ldb, cmpt, mode, estm, epsilon, nits,

info)

call digepps(trans, n, a, lda, b, ldb, cmpt, mode, estm, epsilon, nits,
info)

Description

The routine ?gepps uses the parameter partitioning (PPS) method to compute some (or all) of the
sharp outer component-wise estimates of the solution set to the following interval linear system of
equations:

, if trans = ’N’,

, if trans = ’T’ or ’C’.

Input Parameters

trans CHARACTER(1). Must be one of ’N’, ’T’, ’C’, ’n’, ’t’, or ’c’.
Indicates the form of the equations system:
If trans = ’N’or ’n’, then is solved for X.
If trans = ’T’or ’C’or ’t’or ’c’, then is solved for X.

n INTEGER. The order of A, the number of rows in B ().

a, b REAL for sigepps.
DOUBLE PRECISION for digepps.
Arrays: a (lda,*), b (ldb).
The array a contains the matrix A.
The array b contains the vector B of the right-hand sides for the system
of equations.

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

AX B=

A
T
X B=

AX B=
A
T
X B=

n 0≥

12-14

12 Intel® Math Kernel Library Reference Manual

ldb INTEGER. The first dimension of b, ldb ≥ max(1, n).

cmpt INTEGER. The number of the component of the solution set to be
estimated.

mode CHARACTER(1). Must be either ’L’ or ’U’(or the corresponding
lowercase letters).
Indicates how to estimate the solution set along the coordinate direction
specified by the parameter cmpt:
if mode = ’L’or ’l’, then the routine computes the lower estimate of
the solution set over the cmpt-th coordinate;
if mode = ’U’or ’u’, then the routine computes the upper estimate of
the solution set over the cmpt-th coordinate.

epsilon REAL for sigepps.
DOUBLE PRECISION for digepps.
The prescribed accuracy of the estimate.

nits INTEGER. The number of iterations of the PPS algorithm alloted,
.

Output Parameters

estm REAL for sigepps.
DOUBLE PRECISION for digepps.
Estimate of the solution set along the coordinate axis with the number
cmpt. If mode = ’L’, then estm represents the lower estimate of the
solution set. If mode = ’U’, then estm is equal to the upper estimate of
the solution set.

epsilon The actual precision of the estimate.

nits INTEGER. The number of iterations that the algorithm actually
executed.

info INTEGER. If info = 0, the execution is successful.
If info = i > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

Computing optimal (or sharp) enclosures of the solution sets to interval linear systems, as well as
enclosures that are guaranteed to be sharp within a prescribed accuracy, is known to be an NP-hard
problem. Therefore, a good choice of the parameters epsilon and nits becomes crucial for
effective work of ?gepps routines and for producing desired results.

nits 0≥

Interval Linear Solvers 12

12-15

With this in mind, the recommendation is to organize the whole solution process interactively as a
sequence of ?gepps routine calls, starting from a moderate nits and a rough epsilon and then
increasing nits and reducing epsilon until ?gepps still completes its execution.

Example 12-2 Fortran 90 Code for Parameter Partitioning (PPS) Method

Consider a sample problem that requires computing a sharp lower estimate (to within the accuracy
of, say, 1.E-4), along the first coordinate direction, of the solution set to the interval linear system

The problem can be solved by the following Fortran code that implements parameter partitioning
method (PPS-method) and uses sigepps routine:

--

.

USE INTERVAL_ARITHMETIC

.

INTEGER, PARAMETER :: LDA = 3, LDB = 3

INTEGER :: NITS, CMPT, INFO, I, J

CHARACTER(1) :: MODE = ’L’

REAL(4) :: EPS, ESTM

TYPE(S_INTERVAL) :: A(3,3), B(3)

.

DO I = 1, 3

DO J = 1, 3

IF(I/=J) THEN

 A(I,J) = SINTERVAL(0.,2.)

ELSE

 A(I,J) = SINTERVAL(3.5)

END IF

B(I) = SINTERVAL(-1.,1.)

END DO

3.5 0 2[,] 0 2[,]
0 2[,] 3.5 0 2[,]
0 2[,] 0 2[,] 3.5 

 
 
 
 

x
1– 1[,]
1– 1[,]
1– 1[,] 

 
 
 
 

=

12-16

12 Intel® Math Kernel Library Reference Manual

END DO

CMPT = 1

NITS = 100

Eps= 1.E-4

.

CALL SIGEPPS(’n’, 3, A, LDA, B, LDB, CMPT, MODE, ESTM, EPS, NITS, INFO)

--

To guarantee the completion of the algorithm, the value of the parameter NITS is set equal to 100
(iterations), which is enough for the above specific example. Note that assigning single-precision
intervals to the entries of the matrix A and right-hand side vector B is carried out by SINTERVAL
function supplied by INTERVAL_ARITHMETIC module.

Routines for Inverting Interval Matrices

?trtri
Computes inverse interval matrix
to a triangular interval matrix.

Syntax
call sitrtri(uplo, diag, n, a, lda, info)

call ditrtri(uplo, diag, n, a, lda, info)

Description

The routine ?trtri computes an interval enclosure of the inverse A-1 of an interval triangular
matrix A.

This routine implements a backward substitution algorithm and produces optimal enclosures of
the inverse interval matrix, which is due to the simple structure of the matrix to be inverted.

Interval Linear Solvers 12

12-17

Input Parameters

uplo CHARACTER(1). Must be one of ’U’ , ’L’ , ’u’, or ’l’.
Indicates whether A is upper or lower triangular.
If uplo = ’U’or ’u’, then A is upper triangular.
If uplo = ’L’or ’l’, then A is lower triangular.

diag CHARACTER(1). Must be one of ’N’, ’U’, ’n’, or ’u’.
If diag = ’N’or ’n’, then A is not a unit triangular matrix.
If diag = ’U’or ’u’, then A is unit triangular: diagonal elements of A
are assumed to be 1 and not referenced in the array a.

n INTEGER. The order of the matrix A ().

a REAL for sitrtri.
DOUBLE PRECISION for ditrtri.
Array: DIMENSION (lda,*).
Contains the matrix A.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

Output Parameters

a Overwritten by an interval n-by-n matrix that encloses the inverse matrix
A-1.

info INTEGER.
If info = 0, the execution was successful.
If info = -i, the i-th parameter has an illegal value.
If info = i, the i-th diagonal element of A contains zero, A is singular,
and its inversion could not be completed.

?geszi
Computes inverse interval matrix
by Schulz iterative method.

Syntax
call sigeszi(n, a, lda, info)

call digeszi(n, a, lda, info)

n 0≥

12-18

12 Intel® Math Kernel Library Reference Manual

Description

For a general interval square matrix A, the routine ?geszi computes an enclosure of the inverse
interval matrix A-1 by the Schulz iterative method. See Interval Linear Solvers Code Examples in
the Appendix C of this manual for example code on using this routine.

Input Parameters

n INTEGER. The order of the matrix A ().

a REAL for sigeszi.
DOUBLE PRECISION for digeszi.
Array: DIMENSION (lda,*).
Contains the matrix A.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

Output Parameters

a Overwritten by an enclosure of the inverse interval matrix A-1.

info INTEGER. If info = 0, the execution is successful.
If info = i > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

Schulz iteration implemented in ?geszi routine converges only provided that the interval matrix
A is not “too wide”. Otherwise, when Schulz iteration diverges, the result is set equal to the
interval matrix with the elements [-infty, +infty], where infty is computer infinity of the
corresponding kind.

n 0≥

Interval Linear Solvers 12

12-19

Routines for Checking Properties of Interval Matrices

?gerbr
Tests regularity of an interval matrix
by Ris-Beeck and Rex-Rohn criteria.

Syntax
call sigerbr(n, a, lda, sr, reg, info)

call digerbr(n, a, lda, sr, reg, info)

Description

The routine ?gerbr checks whether a general interval square matrix A is regular or singular by
using a combination of Ris-Beeck spectral criterion and Rex-Rohn test.

Input Parameters

n INTEGER. The order of the matrix A ().

a REAL for sigerbr.
DOUBLE PRECISION for digerbr.
Array: DIMENSION (lda,*).
Contains the matrix A.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

Output Parameters

sr REAL for sigerbr.
DOUBLE PRECISION for digerbr.
An upper estimate of the spectral radius of the matrix
(|(mid A)-1| ⋅ rad A).
This is an additional information about the matrix A, which is crucial for
the so-called strong regularity of A.

reg INTEGER. Displays the results of the singularity test.
If reg > 0, then A is regular.
If reg < 0, then A is singular.

n 0≥

12-20

12 Intel® Math Kernel Library Reference Manual

If reg = 0, then the result is undetermined, that is, the test was not
sufficiently sensitive to detect whether the matrix A is regular or
singular.

info INTEGER. If info = 0, the execution is successful.
If info = i > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

The test implemented in the routine ?gerbr is rather crude, and in critical cases further
investigation of the matrix A is recommended. However, the routine may help to determine (by
comparing the value of sr with 1) whether an interval matrix is strongly regular or not.

?gesvr
Tests regularity/singularity of an interval matrix
by Rump and Rex-Rohn singular value criteria.

Syntax
call sigesvr(n, a, lda, msr, rsr, reg, info)

call digesvr(n, a, lda, msr, rsr, reg, info)

Description

The routine ?gesvr checks whether a general interval square matrix A is regular or singular by
using Rump and Rex-Rohn singular value criteria.

Input Parameters

n INTEGER. The order of the matrix A ().

a REAL for sigesvr.
DOUBLE PRECISION for digesvr.
Array: DIMENSION (lda,*).
Contains the matrix A.
The second dimension of a must be at least max(1, n).

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

n 0≥

Interval Linear Solvers 12

12-21

Output Parameters

msr, rsr S_INTERVAL for sigesvr.
D_INTERVAL for digesvr.
Additional information about the matrix A.
The intervals represent the ranges of the singular spectra of the midpoint
matrix and radius matrix, respectively.

reg INTEGER. Displays results of the singularity test.
If reg > 0, then A is regular.
If reg < 0, then A is singular.
If reg = 0, then the result is undetermined, that is, the test was not
sufficiently sensitive to detect whether the matrix A is regular or
singular.

info INTEGER. If info = 0, the execution is successful.
If info = i > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

The routine ?gesvr implements a test that is only a sufficient condition for a matrix to be either
regular or singular. This means that in some boundary cases the test may prove not sensitive
enough to determine whether a given matrix is regular or singular, and the routine returns
reg = 0 on output.

12-22

12 Intel® Math Kernel Library Reference Manual

Example 12-3 Fortran 90 Code for Testing Regularity of Interval Matrix by Singular Value
Criteria

To test regularity of the interval matrix

by singular value criteria, the following piece of Fortran 90 code may be helpful:

--

.

USE INTERVAL_ARITHMETIC

.

INTEGER, PARAMETER :: LDA = 2, N = 2

TYPE(D_INTERVAL) :: A(LDA,N), MSR, RSR

INTEGER :: REG, INFO

.

A(1,1) = DINTERVAL(2.,4.); A(1,2) = DINTERVAL(-2.,1.)

A(2,1) = DINTERVAL(-1.,2.); A(2,2) = DINTERVAL(2.,4.)

.

CALL DIGESVR(N, A, LDA, MSR, RSR, REG, INFO)

--

Mutual disposition of the intervals MSR and RSR on the real axis can serve to some extent as a
measure of how large the regularity margin is (in case of MSR > RSR), or how far the matrix is from
the regular ones (in case of MSR < RSR).

2 4[,] 1– 2[,]
2– 1[,] 2 4[,] 

 
 

Interval Linear Solvers 12

12-23

Auxiliary and Utility Routines

?gemip
Performs midpoint-inverse preconditioning of an
interval linear system.

Syntax
call sigemip(n, nrhs, a, lda, b, ldb, info)

call digemip(n, nrhs, a, lda, b, ldb, info)

Description

The routine ?gemip performs midpoint-inverse preconditioning of the interval linear system
. This is done through multiplying both matrices A and B by the midpoint-inverse matrix

(mid A)-1 in computer (rounded) interval arithmetic.

Input Parameters

n INTEGER. The order of the matrix A.

nrhs INTEGER. The number of right-hand sides ().

a, b REAL for sigemip.
DOUBLE PRECISION for digemip.
Arrays: a (lda,*), b (ldb,*).
The array a contains the matrix A.
The array b contains the matrix B, whose columns are the right-hand
sides for the systems of equations.
The second dimension of a must be at least max(1,n) and the second
dimension of b must be at least max(1,nrhs).

lda INTEGER. The first dimension of a, lda ≥ max(1, n).

ldb INTEGER. The first dimension of b, ldb ≥ max(1, n).

Output Parameters

a Overwritten by the preconditioned matrix A.

b Overwritten by the preconditioned matrix B.

AX B=

nrhs 0≥

12-24

12 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info > 0, the execution is not successful.
If info = -i, the i-th parameter has an illegal value.

Application Notes

Preconditioning may sometimes extend applicability of the algorithms for the solution of interval
linear systems and/or improve the quality of the results produced by these algorithms.

In particular, interval Gauss method, interval Householder method and interval Gauss-Seidel
iteration applied to interval linear systems with “wide” matrices that are not diagonally dominant
should be preceded by preconditioning to yield better results. For Hansen-Bliek-Rohn procedure,
the midpoint-inverse preconditioning is recommended if the middle matrix of the system is far
from diagonal.

Example 12-4 Fortran 90 Code for Preconditioning Interval Linear System

The following piece of Fortran code presents an example of how you can perform preconditioning
of the interval linear system

and then solve it by using the interval Gauss method:

--

.

USE INTERVAL_ARITHMETIC

.

TYPE(D_INTERVAL) :: A(2,2), B(2,2)

INTEGER :: N = 2, NRHS = 2, LDA = 2, LDB = 2, INFO

CHARACTER(1) :: TRANS = ’n’

.

A(1,1) = DINTERVAL(2.,4.); A(1,2) = DINTERVAL(-2.,1.)

A(2,1) = DINTERVAL(-1.,2.); A(2,2) = DINTERVAL(2.,4.)

B(1,1) = DINTERVAL(0.,2.); B(2,1) = DINTERVAL(0.,2.)

B(1,2) = DINTERVAL(-2.,2.); B(2,2) = DINTERVAL(-2.,2.)

2 4,[] 2– 1,[]
1– 2,[] 2 4,[] 

 
 

x 0 2,[] 2– 2,[]
0 2,[] 2– 2,[] 

 
 

=

Interval Linear Solvers 12

12-25

.

CALL DIGEMIP(N, NRHS, A, LDA, B, LDB, INFO)

CALL DIGEGAS(TRANS, N, NRHS, A, LDA, B, LDB, INFO)

--

For more code examples on using this routine, see Interval Linear Solvers Code Examples in the
Appendix C of this manual.

13-1

Trigonometric Transform
Routines 13

In addition to Discrete Fourier Transform (DFT) interface, described in Chapter 11, Intel® Math
Kernel Library (Intel® MKL) supports the Real Discrete Trigonometric Transforms interface
referred to as TT interface. The interface implements a group of routines (TT routines) used to
compute sine, cosine, and staggered cosine transforms. TT interface provides much flexibility of
use: you can adjust routines to your particular needs at the cost of manual tuning routine
parameters or just call routines with default parameter values. Current Intel MKL implementation
of TT interface can be used in solving Partial Differential Equations and contains routines that are
helpful for Fast Poisson and similar solvers.

To describe Intel MKL TT interface, C convention will be used. Fortran users should refer to the
Implementation Details section.

The following section lists Trigonometric Transforms currently implemented in TT interface and
described in this chapter.

Transforms Implemented
TT routines allow computing the following transforms:

• Forward sine transform

 F k() 2

n
--- f i() kiπ

n
-------- k 1 … n 1–, ,=,sin

i 1=

n 1–

∑=

13-2

13 Intel® Math Kernel Library Reference Manual

• Backward sine transform

• Forward cosine transform

• Backward cosine transform

• Forward staggered cosine transform

• Backward staggered cosine transform

Sequence of Invoking TT Routines
Computation of a transform using TT interface is conceptually divided into four steps each of
which is performed via a dedicated routine. Table 13-1 lists names of the routines and briefly
describes their purpose and use.

NOTE. The size of the transform n must be even. Current implementation
of Trigonometric Transforms does not support transforms of odd size.

f i() F k() kiπ
n

-------- i 1 … n 1–, ,=,sin

k 1=

n 1–

∑=

F k() 1
n
--- f 0() kπ

n
------f n()cos+

2
n
--- f i() kiπ

n
-------- k 0 … n, ,=,cos

i 1=

n 1–

∑+=

f i() 1
2
--- F 0() iπ

n
-----F n()cos+ F k() kiπ

n
-------- i 0 … n, ,=,cos

k 1=

n 1–

∑+=

F k() 1
n
--- f 0() 2

n
--- f i() 2k 1+()iπ

2n
------------------------- k 0 … n 1–, ,=,cos

i 1=

n 1–

∑+=

f i() 1
2
--- F 0() F k() 2k 1+()iπ

2n
------------------------- i 0 … n 1.–, ,=,cos

k 1=

n 1–

∑+=

Trigonometric Transform Routines 13

13-3

Most of TT routines have versions operating with single-precision and double-precision data.
Names of such routines begin respectively with “s” and “d”. The wildcard “?” stands for either of
these symbols in routine names.

To find once a transformed vector for a particular input vector, the Intel MKL TT interface
routines are normally invoked in the order in which they are listed in Table 13-1.

The diagram in Figure 13-1 indicates the typical order in which TT interface routines can be
invoked in a general case (prefixes and suffixes in routine names are omitted).

Table 13-1 TT Interface Routines

Routine Description

?_init_trig_transform Initializes basic data structures of Trigonometric
Transforms.

?_commit_trig_transform Checks consistency and correctness of user-defined
data as well as creates a data structure to be used by
Intel MKL DFT interface1.

1. TT routines call Intel MKL DFT interface for better performance.

?_forward_trig_transform

?_backward_trig_transform

Computes a forward/backward Trigonometric
Transform of a specified type using the appropriate
formula (see Transforms Implemented).

free_trig_transform Cleans the memory used by a data structure needed
for calling DFT interface1.

NOTE. Though the order of invoking TT routines may be changed, it is
highly recommended to follow the above order of routine calls.

13-4

13 Intel® Math Kernel Library Reference Manual

A general scheme of using TT routines for double-precision computations is shown below. Similar
scheme holds for single-precision computations with the only difference in the initial letter of
routine names.

...

 d_init_trig_transform(&n, &tt_type, ipar, dpar, &ir);

/* Change parameters in ipar if necessary. */

/* Note that the result of the Transform will be in f ! If you want to
preserve

 the data stored in f, save them before this place in your code */

 d_commit_trig_transform(f, &handle, ipar, dpar, &ir);

 d_forward_trig_transform(f, &handle, ipar, dpar, &ir);

 d_backward_trig_transform(f, &handle, ipar, dpar, &ir);

 free_trig_transform(&handle, ipar, &ir);

/* here the user may clean the memory used by f, dpar, ipar */

...

Figure 13-1 Typical Order of Invoking TT Interface Routines

initialize
 |
 |<----------------+
 | |

change routine parameters (manually) |
 | |
 | |

 commit |
 | |
 |<----------------+
 | |

 forward/backward |
 | |
 |-----------------+
 |

 clean

Trigonometric Transform Routines 13

13-5

You can find examples of Fortran-90 and C code that use TT interface routines to solve
one-dimensional Helmholtz problem in the “Trigonometric Transforms Code Examples” section
in Appendix C.

Interface Description
All types in this documentation are standard C types: INT, FLOAT, and DOUBLE. Fortran-90 users
can call the routines with INTEGER, REAL, and DOUBLE PRECISION Fortran types, respectively
(see examples in the “Trigonometric Transforms Code Examples” section in Appendix C).

Routine Options

All TT routines have parameters that are used for passing various options to the routines. These
parameters are arrays ipar, dpar and spar. Values for these parameters should be specified
very carefully (see Common Parameters). You can change these values during computations to
meet your needs.

User Data Arrays

TT routines take arrays of user data as input. For example, user arrays are passed to the routine
d_forward_trig_transform to compute a forward Trigonometric Transform. To minimize
storage requirements and improve the overall run-time efficiency, Intel MKL TT routines do not
make copies of user input arrays.

NOTE. You must provide correct and consistent parameters to the routines
to avoid failure or wrong results.

NOTE. If you need a copy of your input data arrays, you should save them
yourself.

13-6

13 Intel® Math Kernel Library Reference Manual

TT Routines

The section gives detailed description of TT routines, their syntax, parameters and values they
return. Double-precision and single-precision versions of the same routine are described together.

TT routines call Intel MKL DFT interface, described in section “DFT Functions” in Chapter 11,
which enhances performance of the routines.

?_init_trig_transform
Initializes basic data structures of a Trigonometric
Transform.

Syntax
void d_init_trig_transform(int *pn, int *tt_type, int ipar[], double

dpar[], int *stat);

void s_init_trig_transform(int *pn, int *tt_type, int ipar[], float
spar[], int *stat);

Input Parameters

pn int*. Pointer to the size of the problem n, which should be an even positive integer.
Note that data vector of the transform, which other TT routines will use, must have
size n+1.

tt_type int*. Pointer to the type of transform to compute, defined via a set of named
constants. The following constants are available in the current implementation of TT
interface: MKL_SINE_TRANSFORM, MKL_COSINE_TRANSFORM and
MKL_STAGGERED_COSINE_TRANSFORM.

Output Parameters

ipar int array of size 128. Contains integer data needed for Trigonometric Transform
computations.

dpar double array of size 3n/2+1. Contains double-precision data needed for
Trigonometric Transform computations.

spar float array of size 3n/2+1. Contains single-precision data needed for Trigonometric
Transform computations.

Trigonometric Transform Routines 13

13-7

stat int*. Pointer to the routine completion status, which is also written to ipar[6]. The
status should be 0 to proceed to other TT routines.

Description

The routine initializes basic data structures for Trigonometric Transforms of appropriate precision.
After a call to ?_init_trig_transform, all subsequently invoked TT routines use values of
ipar and dpar (spar) array parameters returned by ?_init_trig_transform. The routine
initializes the entire array ipar. In the dpar or spar array, ?_init_trig_transform
initializes elements that do not depend upon the type of transform. For detailed description of
arrays ipar, dpar and spar, refer to the Common Parameters section.

You can skip calling the initialization routine in your code. For more information, see Caveat on
Parameter Modifications.

Return Values

*stat = 0 The routine completed the task normally. In general, to proceed with
computations, the routine should complete with this *stat value.

*stat = -99999 The routine failed to complete the task.

?_commit_trig_transform
Checks consistency and correctness of user’s data as
well as initializes certain data structures required to
perform the Trigonometric Transform.

Syntax
void d_commit_trig_transform (double f[], DFTI_DESCRIPTOR_HANDLE

*handle, int ipar[], double dpar[], int *stat);

void s_commit_trig_transform (float f[], DFTI_DESCRIPTOR_HANDLE *handle,
int ipar[], float spar[], int *stat);

13-8

13 Intel® Math Kernel Library Reference Manual

Input Parameters

f double for d_commit_trig_transform,
float for s_commit_trig_transform
array of size n+1, where n is the size of the problem. Contains data vector to be
transformed.

ipar int array of size 128. Contains integer data needed for Trigonometric Transform
computations.

dpar double array of size 3n/2+1. Contains double-precision data needed for
Trigonometric Transform computations. Most of the array elements are to be
initialized by the routine.

spar float array of size 3n/2+1. Contains single-precision data needed for Trigonometric
Transform computations. Most of the array elements are to be initialized by the
routine.

Output Parameters

handle DFTI_DESCRIPTOR_HANDLE*. Pointer to the data structure used by Intel MKL DFT
interface (for details, refer to the “DFT Interface” section in Chapter 11).

ipar Contains integer data needed for Trigonometric Transform computations. On output,
ipar[6] is updated with the *stat value.

dpar Contains double-precision data needed for Trigonometric Transform computations.
On output, the entire array is initialized.

spar Contains single-precision data needed for Trigonometric Transform computations.
On output, the entire array is initialized.

stat int*. Pointer to the routine completion status, which is also written to ipar[6].

Description

The routine ?_commit_trig_transform checks consistency and correctness of the parameters
to be passed to the transform routines ?_forward_trig_transform and/or
?_backward_trig_transform. The routine also initializes the following data structures:
*handle, dpar in case of d_commit_trig_transform, and spar in case of
s_commit_trig_transform. The ?_commit_trig_transform routine initializes only those
elements of dpar or spar that depend upon the type of transform, defined in the
?_init_trig_transform routine and passed to ?_commit_trig_transform with the ipar
array. The size of the problem n, which determines sizes of the array parameters, is also passed to

Trigonometric Transform Routines 13

13-9

the routine with the ipar array and defined in the previously called ?_init_trig_transform
routine. For detailed description of arrays ipar, dpar and spar, refer to the Common Parameters
section. The routine performs only a basic check for correctness and consistency of the
parameters. If you are going to modify parameters of TT routines, see the Caveat on Parameter
Modifications section. Unlike ?_init_trig_transform, you cannot skip calling this routine in
your code.

Return Values

*stat=11 The routine produced some warnings and made some changes in the
parameters to achieve their correctness and/or consistency. You may
proceed with computations by assigning ipar[6]=0 if you are sure that
the parameters are correct.

*stat=10 The routine made some changes in the parameters to achieve their
correctness and/or consistency. You may proceed with computations by
assigning ipar[6]=0 if you are sure that the parameters are correct.

*stat=1 The routine produced some warnings. You may proceed with
computations by assigning ipar[6]=0 if you are sure that the parameters
are correct.

*stat=0 The routine completed the task normally.

*stat=-100 The routine stopped for any of the following reasons:

• An error in the user's data was encountered.

• Data in ipar, dpar or spar parameters became incorrect and/or
inconsistent as a result of modifications.

*stat=-1000 The routine stopped because of DFT interface error.

*stat=-10000 The routine stopped as the initialization failed to complete or parameter
ipar[0] was altered by mistake.

NOTE. Although positive values of *stat usually indicate minor problems
with the input data and Trigonometric Transform computations can be
continued, it is highly recommended to investigate the problem first and
achieve *stat=0.

13-10

13 Intel® Math Kernel Library Reference Manual

?_forward_trig_transform
Computes the forward Trigonometric Transform of type
specified by a parameter.

Syntax
void d_forward_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE

*handle, int ipar[], double dpar[], int *stat);

void s_forward_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE *handle,
int ipar[], float spar[], int *stat);

Input Parameters

f double for d_forward_trig_transform,
float for s_forward_trig_transform
array of size n+1, where n is the size of the problem. At input, contains data vector to
be transformed.

handle DFTI_DESCRIPTOR_HANDLE*. Pointer to the data structure used by Intel MKL
DFT interface (for details, refer to the “DFT Interface” section in Chapter 11).

ipar int array of size 128. Contains integer data needed for Trigonometric Transform
computations.

dpar double array of size 3n/2+1. Contains double-precision data needed for
Trigonometric Transform computations.

spar float array of size 3n/2+1. Contains single-precision data needed for Trigonometric
Transform computations.

Output Parameters

f Contains the transformed vector on output.

ipar Contains integer data needed for Trigonometric Transform computations. On output,
ipar[6] is updated with the *stat value.

stat int*. Pointer to the routine completion status, which is also written to ipar[6].

Trigonometric Transform Routines 13

13-11

Description

The routine computes the forward Trigonometric Transform of type defined in the
?_init_trig_transform routine and passed to ?_forward_trig_transform with the ipar
array. The size of the problem n, which determines sizes of the array parameters, is also passed to
the routine with the ipar array and defined in the previously called ?_init_trig_transform
routine. Other data that facilitates the computation is created by ?_commit_trig_transform
and supplied in dpar or spar. For detailed description of arrays ipar, dpar and spar, refer to
the Common Parameters section. The routine has a commit step, which checks correctness and
consistency of the data. The transform is computed according to formulas given in the Transforms
Implemented section. The routine replaces the input vector f with the transformed vector.

Return Values

*stat=0 The routine completed the task normally.

*stat=-100 The routine stopped for any of the following reasons:

• An error in the user's data was encountered.

• Data in ipar, dpar or spar parameters became incorrect and/or
inconsistent as a result of modifications.

*stat=-1000 The routine stopped because of DFT interface error.

*stat=-10000 The routine stopped as its commit step failed to complete or the
parameter ipar[0] was altered by mistake.

NOTE. If you need a copy of the data vector f to be transformed, you
should make the copy before calling the ?_forward_trig_transform routine.

13-12

13 Intel® Math Kernel Library Reference Manual

?_backward_trig_transform
Computes the backward Trigonometric Transform of
type specified by a parameter.

Syntax
void d_backward_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE

*handle, int ipar[], double dpar[], int *stat);

void s_backward_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE
*handle, int ipar[], float spar[], int *stat);

Input Parameters

f double for d_backward_trig_transform,
float for s_backward_trig_transform array of size n+1, where n is the size of
the problem. At input, contains data vector to be transformed.

handle DFTI_DESCRIPTOR_HANDLE*. Pointer to the data structure used by Intel MKL DFT
interface (for details, refer to the “DFT Interface” section in Chapter 11).

ipar int array of size 128. Contains integer data needed for Trigonometric Transform
computations.

dpar double array of size 3n/2+1. Contains double-precision data needed for
Trigonometric Transform computations.

spar float array of size 3n/2+1. Contains single-precision data needed for Trigonometric
Transform computations.

Output Parameters

f Contains the transformed vector on output.

ipar Contains integer data needed for Trigonometric Transform computations. On output,
ipar[6] is updated with the *stat value.

stat int*. Pointer to the routine completion status, which is also written to ipar[6].

Trigonometric Transform Routines 13

13-13

Description

The routine computes the backward Trigonometric Transform of type defined in the
?_init_trig_transform routine and passed to ?_backward_trig_transform with the
ipar array. The size of the problem n, which determines sizes of the array parameters, is also
passed to the routine with the ipar array and defined in the previously called
?_init_trig_transform routine. Other data that facilitates the computation is created by
?_commit_trig_transform and supplied in dpar or spar. For detailed description of arrays
ipar, dpar and spar, refer to the Common Parameters section. The routine has a commit step,
which checks correctness and consistency of the data. The transform is computed according to
formulas given in the Transforms Implemented section. The routine replaces the input vector f
with the transformed vector.

Return Values

*stat=0 The routine completed the task normally.

*stat=-100 The routine stopped for any of the following reasons:

• An error in the user's data was encountered.

• Data in ipar, dpar or spar parameters became incorrect and/or
inconsistent as a result of modifications.

*stat=-1000 The routine stopped because of DFT interface error.

*stat=-10000 The routine stopped as its commit step failed to complete or the
parameter ipar[0] was altered by mistake.

NOTE. If you need a copy of the data vector f to be transformed, you
should make the copy before calling the ?_backward_trig_transform routine.

13-14

13 Intel® Math Kernel Library Reference Manual

free_trig_transform
Cleans the memory allocated for the data structure
used by DFT interface.

Syntax
void free_trig_transform(DFTI_DESCRIPTOR_HANDLE *handle, int ipar[], int

*stat);

Input Parameters

ipar int array of size 128. Contains integer data needed for Trigonometric Transform
computations (for details, refer to Common Parameters).

handle DFTI_DESCRIPTOR_HANDLE*. Pointer to the data structure used by Intel MKL DFT
interface (for details, refer to the “DFT Interface” section in Chapter 11).

Output Parameters

handle The pointed memory is released on output.

ipar Contains integer data needed for Trigonometric Transform computations. On output,
ipar[6] is updated with the *stat value.

stat int*. Pointer to the routine completion status, which is also written to ipar[6].

Description

The routine cleans the memory used by the *handle structure, needed for Intel MKL DFT
functions. If you need to release memory allocated for other parameters, you should include the
memory cleaning in your code.

Return Values

*stat=0 The routine completed the task normally.

*stat=-1000 The routine stopped because of DFT interface error.

*stat=-99999 The routine failed to complete the task.

Trigonometric Transform Routines 13

13-15

Common Parameters

This section provides description of array parameters that hold TT routine options: ipar, dpar
and spar.

ipar int array of size 128, holds integer data needed for Trigonometric Transform
computations. Its elements are described in Table 13-2:

NOTE. Initial values are assigned to the array parameters by the
appropriate ?_init_trig_transform and ?_commit_trig_transform
routines.

Table 13-2 Elements of the ipar Array

Index Description

0 Contains the size of the problem to solve. The ?_init_trig_transform
routine sets ipar[0]=n and all subsequently called TT routines use ipar[0] as
the size of the transform. Current implementation of TT interface supports
transforms of even size only.

1 Contains error messaging options:

• ipar[1]=-1 indicates that all error messages will be printed to the file
MKL_Trig_Transforms_log.txt in the folder from which the routine
is called. If the file does not exist, the routine tries to create it. If the attempt
fails, the routine prints information that the file cannot be created to the
standard output device.

• ipar[1]=0 indicates that no error messages will be printed.
• ipar[1]=1 is the default value. It indicates that all error messages will be

printed to the preconnected default output device (usually, screen).
In case of errors, any TT routine will assign a non-zero value to *stat
regardless of the ipar[1] setting.

2 through 4 Reserved for future use.

5 Contains the type of the transform. The ?_init_trig_transform routine
sets ipar[5]=*tt_type and all subsequently called TT routines use
ipar[5] as the type of the transform.

6 Contains the *stat value returned by the last completed TT routine. Used to
check that the previous call to a TT routine completed with *stat=0.

13-16

13 Intel® Math Kernel Library Reference Manual

Arrays dpar and spar are similar to each other and differ only in the data precision:

dpar double array of size 3n/2+1, holds data needed for double-precision routines to
perform TT computations. This array is initialized in the d_init_trig_transform
and d_commit_trig_transform routines.

7 Informs the ?_commit_trig_transform routines whether to initialize data
structures dpar (spar) and *handle. ipar[7]=0 indicates that the routine
should skip the initialization and only check correctness and consistency of the
parameters. Otherwise, the routine initializes the data structures. The default
value is 1.

The possibility to check correctness and consistency of input data without
initializing data structures dpar, spar and *handle prevents from losing
performance in a repeated use of the same transform for different data vectors.

Note that you can benefit from the opportunity that ipar[7] gives only if you are
sure to have supplied proper tolerance value in the dpar or spar array.
Otherwise, avoid tuning this parameter.

8 Contains message style options for TT routines. If ipar[8]=0 then TT routines
print all error and warning messages in Fortran-style notations. Otherwise, TT
routines print the messages in C-style notations. The default value is 1. When
selecting between these notations, you should mind that by default, numbering of
elements in C arrays starts from 0 and in Fortran, it starts from 1. For example, if
a part of a C-style message looks like “parameter ipar[0]=3 should be an even
integer”, then the corresponding Fortran-style message will be “parameter
ipar(1)=3 should be an even integer”. ipar[8] enables users to view messages
in a more convenient style.

9 through 127 Reserved for future use.

NOTE. You may declare the ipar array in your code as int ipar[9].
However, for compatibility with later versions of Intel MKL TT interface,
which may require more ipar values, it is highly recommended to declare
ipar as int ipar[128].

Table 13-2 Elements of the ipar Array (continued)

Index Description

Trigonometric Transform Routines 13

13-17

spar float array of size 3n/2+1, holds data needed for single-precision routines to
perform TT computations. This array is initialized in the s_init_trig_transform
and s_commit_trig_transform routines.

As dpar and spar have similar elements in respective positions, the elements are described
together in Table 13-3:

Table 13-3 Elements of the dpar and spar Arrays

Index Description

0 The element contains the first absolute tolerance used by the appropriate
?_commit_trig_transform routine. For a staggered cosine or a sine
transform, f[n] should be equal to 0.0 and for a sine transform, f[0] should be
equal to 0.0. The ?_commit_trig_transform routine checks if absolute
values of these parameters are below dpar[0]*n or spar[0]*n, depending on
the routine precision. You can suppress warnings resulting from tolerance checks
by setting dpar[0] or spar[0] to a sufficiently large number.

1 The element is reserved for future use.

2 through 3n/2 The elements contain tabulated values of trigonometric functions. Contents of the
elements depend upon the type of transform, stored in ipar[5]:

• If ipar[5]=MKL_SINE_TRANSFORM, then the array contains n/2
elements with tabulated sine values in n/2 successive array elements
starting from the third element (with index 2). The rest of the array is not
used in this transform.

• If ipar[5]=MKL_COSINE_TRANSFORM, then the array contains n
elements with tabulated cosine values in n successive array elements
starting from the third element (with index 2). The rest of the array is not
used in this transform.

• If ipar[5]=MKL_STAGGERED_COSINE_TRANSFORM, then the array
contains 3n/2-2 elements with tabulated sine and cosine values in 3n/2-2
successive array elements starting from the third element (with index 2).
The rest of the array is not used in this transform.

NOTE. You may define the array size depending upon the type of
transform.

13-18

13 Intel® Math Kernel Library Reference Manual

Caveat on Parameter Modifications

Flexibility of TT interface makes it possible to skip calling the ?_init_trig_transform routine and
initialize the basic data structures explicitly in your code. You may also need to modify contents of
ipar, dpar and spar arrays after initialization. When doing so, you should provide correct and
consistent data in the arrays. Mistakenly altered arrays cause errors or wrong computation. You
can perform basic check for correctness and consistency of parameters by calling the
?_commit_trig_transform routine but it does not guarantee the correct result of a transform,
it only reduces the chance of errors or wrong result.

However, in rare occurrences, even advanced users may fail to compute a transform using TT
routines after the parameter modifications.

Implementation Details
Several aspects of the Intel MKL TT interface are platform-specific and language-specific. To
promote portability across platforms and ease of use across different languages, users are provided
with Intel MKL TT language-specific header files to include in their code. Currently, the following
of them are available:

• mkl_trig_transforms.h, to be used together with mkl_dfti.h, for C programs.

• mkl_trig_transforms.f90, to be used toghether with mkl_dfti.f90, for Fortran-90
programs.

NOTE. To supply correct and consistent parameters to TT routines, you
should have considerable experience in using TT interface and good
understanding of elements that the ipar, spar and dpar arrays contain
and dependencies between values of these elements.

WARNING. The only way that guarantees proper computation of
Trigonometric Transforms is to follow a typical sequence of invoking the
routines and not change the default set of parameters. So, avoid
modifications of ipar, dpar and spar arrays unless a strong need arises.

Trigonometric Transform Routines 13

13-19

C-specific Header File

The C-specific header file defines the following function prototypes:

void d_init_trig_transform(int *, int *, int *, double *, int *);

void d_commit_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, int *,
double *, int *);

void d_forward_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, int *,
double *, int *);

void d_backward_trig_transform(double *, DFTI_DESCRIPTOR_HANDLE *, int
*, double *, int *);

void s_init_trig_transform(int *, int *, int *, float *, int *);

void s_commit_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, int *,
float *, int *);

void s_forward_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, int *,
float *, int *);

void s_backward_trig_transform(float *, DFTI_DESCRIPTOR_HANDLE *, int *,
float *, int *);

void free_trig_transform(DFTI_DESCRIPTOR_HANDLE *, int *, int *);

Fortran-Specific Header file

The Fortran-90-specific header file defines the following function prototypes:

SUBROUTINE D_INIT_TRIG_TRANSFORM(n, tt_type, ipar, dpar, stat)

 INTEGER, INTENT(IN) :: n, tt_type

 INTEGER, INTENT(INOUT) :: ipar(*)

 REAL(8), INTENT(INOUT) :: dpar(*)

 INTEGER, INTENT(OUT) :: stat

END SUBROUTINE D_INIT_TRIG_TRANSFORM

NOTE. Use of the Intel MKL TT software without including one of the
above header files is not supported.

13-20

13 Intel® Math Kernel Library Reference Manual

SUBROUTINE D_COMMIT_TRIG_TRANSFORM(f, handle, ipar, dpar, stat)

 REAL(8), INTENT(INOUT) :: f(*)

 TYPE(DFTI_DESCRIPTOR), POINTER :: handle

 INTEGER, INTENT(INOUT) :: ipar(*)

 REAL(8), INTENT(INOUT) :: dpar(*)

 INTEGER, INTENT(OUT) :: stat

END SUBROUTINE D_COMMIT_TRIG_TRANSFORM

SUBROUTINE D_FORWARD_TRIG_TRANSFORM(f, handle, ipar, dpar, stat)

 REAL(8), INTENT(INOUT) :: f(*)

 TYPE(DFTI_DESCRIPTOR), POINTER :: handle

 INTEGER, INTENT(INOUT) :: ipar(*)

 REAL(8), INTENT(INOUT) :: dpar(*)

 INTEGER, INTENT(OUT) :: stat

END SUBROUTINE D_FORWARD_TRIG_TRANSFORM

SUBROUTINE D_BACKWARD_TRIG_TRANSFORM(f, handle, ipar, dpar, stat)

 REAL(8), INTENT(INOUT) :: f(*)

 TYPE(DFTI_DESCRIPTOR), POINTER :: handle

 INTEGER, INTENT(INOUT) :: ipar(*)

 REAL(8), INTENT(INOUT) :: dpar(*)

 INTEGER, INTENT(OUT) :: stat

END SUBROUTINE D_BACKWARD_TRIG_TRANSFORM

SUBROUTINE S_INIT_TRIG_TRANSFORM(n, tt_type, ipar, spar, stat)

 INTEGER, INTENT(IN) :: n, tt_type

 INTEGER, INTENT(INOUT) :: ipar(*)

 REAL(4), INTENT(INOUT) :: spar(*)

 INTEGER, INTENT(OUT) :: stat

END SUBROUTINE S_INIT_TRIG_TRANSFORM

Trigonometric Transform Routines 13

13-21

SUBROUTINE S_COMMIT_TRIG_TRANSFORM(f, handle, ipar, spar, stat)

 REAL(4), INTENT(INOUT) :: f(*)

 TYPE(DFTI_DESCRIPTOR), POINTER :: handle

 INTEGER, INTENT(INOUT) :: ipar(*)

 REAL(4), INTENT(INOUT) :: spar(*)

 INTEGER, INTENT(OUT) :: stat

END SUBROUTINE S_COMMIT_TRIG_TRANSFORM

SUBROUTINE S_FORWARD_TRIG_TRANSFORM(f, handle, ipar, spar, stat)

 REAL(4), INTENT(INOUT) :: f(*)

 TYPE(DFTI_DESCRIPTOR), POINTER :: handle

 INTEGER, INTENT(INOUT) :: ipar(*)

 REAL(4), INTENT(INOUT) :: spar(*)

 INTEGER, INTENT(OUT) :: stat

END SUBROUTINE S_FORWARD_TRIG_TRANSFORM

SUBROUTINE S_BACKWARD_TRIG_TRANSFORM(f, handle, ipar, spar, stat)

 REAL(4), INTENT(INOUT) :: f(*)

 TYPE(DFTI_DESCRIPTOR), POINTER :: handle

 INTEGER, INTENT(INOUT) :: ipar(*)

 REAL(4), INTENT(INOUT) :: spar(*)

 INTEGER, INTENT(OUT) :: stat

END SUBROUTINE S_BACKWARD_TRIG_TRANSFORM

SUBROUTINE FREE_TRIG_TRANSFORM(handle, ipar, stat)

 INTEGER, INTENT(INOUT) :: ipar(*)

 TYPE(DFTI_DESCRIPTOR), POINTER :: handle

 INTEGER, INTENT(OUT) :: stat

END SUBROUTINE FREE_TRIG_TRANSFORM

13-22

13 Intel® Math Kernel Library Reference Manual

Calling Trigonometric Transform Routines from Fortran-90

The calling interface for all Intel MKL TT routines is designed to be easily used in C. However,
any of the TT routines can be invoked directly from Fortran-90 if users are familiar with the
inter-language calling conventions of their platforms.

The inter-language calling conventions include, but are not limited to, the argument passing
mechanisms for the language, the data type mappings from C to Fortran-90 and how C external
names are decorated on the platform.

To promote portability and make it unnecessary for a user to deal with the calling conventions
specifics, the Fortran-90 header file mkl_trig_transforms.f90, used together with
mkl_dfti.f90, declares a set of macros and introduces type definitions intended to hide the
inter-language calling conventions and provide an interface to TT routines that looks natural in
Fortran-90.

For example, consider a hypothetical library routine, foo, which takes a double-precision vector
of length n. C users would access such a function as:

int n;

double *x;

…

foo(x, &n);

As noted above, to invoke foo, Fortran-90 users would need to know what Fortran-90 data types
correspond to C types int and double (float in other cases), what argument-passing
mechanism the C compiler uses and what, if any, name decoration is performed by the C compiler
when generating the external symbol foo.

However, with the Fortran-90 header files mkl_trig_transforms.f90 and mkl_dfti.f90
included, the invocation of foo within a Fortran-90 program will look like:

use mkl_dfti

use mkl_trig_transforms

INTEGER n

DOUBLE PRECISION, ALLOCATABLE :: x

…

NOTE. Intel MKL TT interface cannot be invoked from Fortran-77 due to
restrictions imposed by the use of Intel MKL DFT interface.

Trigonometric Transform Routines 13

13-23

CALL FOO(x,n)

Note that in the above example, the header files mkl_dfti.f90 and
mkl_trig_transforms.f90 provide a definition for the subroutine FOO. To ease the use of TT
routines in Fortran-90, the general approach of providing Fortran-90 definitions of names is used
throughout the library. Specifically, if a name from a TT interface is documented as having the
C-specific name foo, then the Fortran-90 header files provide an appropriate Fortran-90 language
type definition FOO.

One of the key differences between Fortran-90 and C is the language argument-passing
mechanism: C programs use pass-by-value semantics and Fortran-90 programs use
pass-by-reference semantics. The Fortran-90 headers ensure proper treatment of this difference. In
particular, in the above example, the header files mkl_dfti.f90 and
mkl_trig_transforms.f90 hide the difference by defining a macro FOO that takes the address
of the appropriate arguments.

A-1

Linear Solvers Basics A
Many applications in science and engineering require the solution of a system of linear equations.
This problem is usually expressed mathematically by the matrix-vector equation,
Ax = b, where A is an m-by-n matrix, x is the n element column vector and b is the m element
column vector. The matrix A is usually referred to as the coefficient matrix, and the vectors x and
b are referred to as the solution vector and the right-hand side, respectively.

Basic concepts related to solving linear systems with sparse matrices are described in section
Sparse Linear Systems that follows.

If the coefficients in matrix A and right-hand sides in vector b are not defined exactly but rather
belong to known intervals, the system is called an interval linear system. Some basic definitions
and concepts used in solving interval linear systems are described in Interval Linear Systems
section below.

Sparse Linear Systems
In many real-life applications, most of the elements in A are zero. Such a matrix is referred to as
sparse. Conversely, matrices with very few zero elements are called dense. For sparse matrices,
computing the solution to the equation Ax = b can be made much more efficient with respect to
both storage and computation time, if the sparsity of the matrix can be exploited. The more an
algorithm can exploit the sparsity without sacrificing the correctness, the better the algorithm.

Generally speaking, computer software that finds solutions to systems of linear equations is called
a solver. A solver designed to work specifically on sparse systems of equations is called a sparse
solver. Solvers are usually classified into two groups - direct and iterative.

Iterative Solvers start with an initial approximation to a solution and attempt to estimate the
difference between the approximation and the true result. Based on the difference, an iterative
solver calculates a new approximation that is closer to the true result than the initial
approximation. This process is repeated until the difference between the approximation and the

A-2

A Intel® Math Kernel Library Reference Manual

true result is sufficiently small. The main drawback to iterative solvers is that the rate of
convergence depends greatly on the values in the matrix A. Consequently, it is not possible to
predict how long it will take for an iterative solver to produce a solution. In fact, for ill-conditioned
matrices, the iterative process will not converge to a solution at all. However, for well-conditioned
matrices it is possible for iterative solvers to converge to a solution very quickly. Consequently for
the right applications, iterative solvers can be very efficient.

Direct Solvers, on the other hand, often factor the matrix A into the product of two triangular
matrices and then perform a forward and backward triangular solve.

This approach makes the time required to solve a systems of linear equations relatively
predictable, based on the size of the matrix. In fact, for sparse matrices, the solution time can be
predicted based on the number of non-zero elements in the array A.

Matrix Fundamentals

A matrix is a rectangular array of either real or complex numbers. A matrix is denoted by a capital
letter; its elements are denoted by the same lower case letter with row/column subscripts. Thus, the
value of the element in row i and column j in matrix A is denoted by a(i,j).
For example, a 3 by 4 matrix A, is written as follows:

Note that with the above notation, we assume the standard Fortran programming language
convention of starting array indices at 1 rather than the C programming language convention of
starting them at 0.

A matrix in which all of the elements are real numbers is called a real matrix. A matrix that
contains at least one complex number is called a complex matrix.
A real or complex matrix A with the property that a(i,j) = a(j,i), is called a symmetric
matrix. A complex matrix A with the property that a(i,j) = conj(a(j,i)), is called a
Hermitian matrix. Note that programs that manipulate symmetric and Hermitian matrices need
only store half of the matrix values, since the values of the non-stored elements can be quickly
reconstructed from the stored values.

A matrix that has the same number of rows as it has columns is referred to as a square matrix. The
elements in a square matrix that have same row index and column index are called the diagonal
elements of the matrix, or simply the diagonal of the matrix.

A
a 1 1,() a 1 2,() a 1 3,() a 1 4,()
a 2 1,() a 2 2,() a 2 3,() a 2 4,()
a 3 1,() a 3 2,() a 3 3,() a 3 4,()

=

Linear Solvers Basics A

A-3

The transpose of a matrix A is the matrix obtained by “flipping” the elements of the array about its
diagonal. That is, we exchange the elements a(i,j) and a(j,i). For a complex matrix, if we
both flip the elements about the diagonal and then take the complex conjugate of the element, the
resulting matrix is called the Hermitian transpose or conjugate transpose of the original matrix.
The transpose and Hermitian transpose of a matrix A are denoted by AT and AH respectively.

A column vector, or simply a vector, is a matrix, and a row vector is a matrix.
A real or complex matrix A is said to be positive definite if the vector-matrix product xTAx is
greater than zero for all non-zero vectors x. A matrix that is not positive definite is referred to as
indefinite.

An upper (or lower) triangular matrix, is a square matrix in which all elements below (or above)
the diagonal are zero. A unit triangular matrix is an upper or lower triangular matrix with all 1’s
along the diagonal.

A matrix P is called a permutation matrix if, for any matrix A, the result of the matrix product PA
is identical to A except for interchanging the rows of A. For a square matrix, it can be shown that if
PA is a permutation of the rows of A, then APT is the same permutation of the columns of A.
Additionally, it can be shown that the inverse of P is PT.

In order to save space, a permutation matrix is usually stored as a linear array, called a permutation
vector, rather than as an array. Specifically, if the permutation matrix maps the i-th row of a matrix
to the j-th row, then the i-th element of the permutation vector is j.

A matrix with non-zero elements only on the diagonal is called a diagonal matrix. As is the case
with a permutation matrix, it is usually stored as a vector of values, rather than as a matrix.

Direct Method

For solvers that use the direct method, the basic technique employed in finding the solution of the
system Ax = b is to first factor A into triangular matrices. That is, find a lower triangular matrix L
and an upper triangular matrix U, such that A = LU. Having obtained such a factorization (usually
referred to as an LU decomposition or LU factorization), the solution to the original problem can
be rewritten as follows.

This leads to the following two-step process for finding the solution to the original system of
equations:

n 1× 1 n×

 Ax b
 LUx⇒ b
 Ux()⇒ b

=
=
=

A-4

A Intel® Math Kernel Library Reference Manual

1. Solve the systems of equations Ly = b.

2. Solve the system Ux = y.

Solving the systems Ly = b and Ux = y is referred to as a forward solve and a backward solve,
respectively.

If a symmetric matrix A is also positive definite, it can be shown that A can be factored as LLT
where L is a lower triangular matrix. Similarly, a Hermitian matrix, A, that is positive definite can
be factored as A = LLH. For both symmetric and Hermitian matrices, a factorization of this form is
called a Cholesky factorization.

In a Cholesky factorization, the matrix U in an LU decomposition is either LT or LH. Consequently,
a solver can increase its efficiency by only storing L, and one-half of A, and not computing U.
Therefore, users who can express their application as the solution of a system of positive definite
equations will gain a significant performance improvement over using a general representation.

For matrices that are symmetric (or Hermitian) but not positive definite, there are still some
significant efficiencies to be had. It can be shown that if A is symmetric but not positive definite,
then A can be factored as A = LDLT, where D is a diagonal matrix and L is a lower unit triangular
matrix. Similarly, if A is Hermitian, it can be factored as A = LDLH. In either case, we again only
need to store L, D, and half of A and we need not compute U. However, the backward solve phases
must be amended to solving LTx = D-1y rather than LTx = y.

Fill-In and Reordering of Sparse Matrices

Two important concepts associated with the solution of sparse systems of equations are fill-in and
reordering. The following example illustrates these concepts.

Consider the system of linear equation Ax = b, where A is the symmetric positive definite sparse
matrix defined by the following:

A

9
3
2
--- 6

3
4
--- 3

3
2
--- 1

2
--- * * *

6 * 12 * *

3
4
--- * *

5
8
--- *

3 * * * 16

b

1

2

3

4

5

= =

Linear Solvers Basics A

A-5

A star (*) is used to represent zeros and to emphasize the sparsity of A. The Cholesky factorization
of A is: A = LLT, where L is the following:

Notice that even though the matrix A is relatively sparse, the lower triangular matrix L has no zeros
below the diagonal. If we computed L and then used it for the forward and backward solve phase,
we would do as much computation as if A had been dense.

The situation of L having non-zeros in places where A has zeros is referred to as fill-in.
Computationally, it would be more efficient if a solver could exploit the non-zero structure of A in
such a way as to reduce the fill-in when computing L. By doing this, the solver would only need to
compute the non-zero entries in L. Toward this end, consider permuting the rows and columns of
A. As described in Matrix Fundamentals section, the permutations of the rows of A can be
represented as a permutation matrix, P. The result of permuting the rows is the product of P and A.
Suppose, in the above example, we swap the first and fifth row of A, then swap the first and fifth
columns of A, and call the resulting matrix B. Mathematically, we can express the process of
permuting the rows and columns of A to get B as B = PAPT. After permuting the rows and columns
of A, we see that B is given by the following:

L

3 * * * *

1
2
--- 1

2
--- * * *

2 2– 2 * *

1
4
--- 1

4–
------ 1

2–
------ 1

2
--- *

1 1– 2– 3– 1

=

B

16 * * * 3

*
1
2
--- * *

3
2

* * 12 * 6

* * *
5
8
--- 3

4

3
3
2
--- 6

3
4
--- 9

=

A-6

A Intel® Math Kernel Library Reference Manual

Since B is obtained from A by simply switching rows and columns, the numbers of non-zero
entries in A and B are the same. However, when we find the Cholesky factorization, B = LLT, we
see the following:

The fill-in associated with B is much smaller than the fill-in associated with A. Consequently, the
storage and computation time needed to factor B is much smaller than to factor A. Based on this,
we see that an efficient sparse solver needs to find permutation P of the matrix A, which minimizes
the fill-in for factoring B = PAPT, and then use the factorization of B to solve the original system of
equations.

Although the above example is based on a symmetric positive definite matrix and a Cholesky
decomposition, the same approach works for a general LU decomposition. Specifically, let P be a
permutation matrix, B = PAPT and suppose that B can be factored as B = LU. Then

It follows that if we obtain an LU factorization for B, we can solve the original system of equations
by a three step process:

1. Solve Ly = Pb.

2. Solve Uz = y.

3. Set x = PTz.

L

4 * * * *

*
1

2
------- * * *

* * 2 3() * *

* * *
10
4

---------- *

3
4
--- 3

2
------- 3

3

10

3
5

4

=

Ax b

 PA P
1–
P()x⇒ Pb

 PA P
T
P()x⇒ Pb

 PAP
T() Px()⇒ Pb

 B Px()⇒ Pb

 LU Px()⇒ Pb

=

=

=

=

=

=

Linear Solvers Basics A

A-7

If we apply this three-step process to the current example, we first need to perform the forward
solve of the systems of equation Ly = Pb:

This gives: , , , , .

The second step is to perform the backward solve, Uz = y. Or, in this case, since we are using a
Cholesky factorization, LTz = y.

This gives , 983, , 398, .

The third and final step is to set x = PTz. This gives , 983, , 398, .

4 * * * *

*
1

2
------- * * *

* * 2 3() * *

* * *
10
4

---------- *

3
4
--- 3

2
------- 3

3

10

3
5

4

*

y1

y2

y3

y4

y5

5

2

3

4

1

=

y
T 5

4
---= 2 2

3
2

------- 16

10

979 3
5
---–

12

4 * * *
3
4

*
1

2
------- * *

3

2

* * 2 3() * 3

* * *
10
4

---------- 3

10

* * * *

3
5

4

*

z1

z2

z3

z4

z5

5
4

2 2()

3
2

16

10

979 3
5
---–

12

=

z 123
2

---------=
1961
12

------------ 979–
3

x
T 979–

3
------------=

1961
12

------------ 123
2

A-8

A Intel® Math Kernel Library Reference Manual

Sparse Matrix Storage Formats

As discussed above, it is more efficient to store only the non-zeros of a sparse matrix. This
assumes that the sparsity is large, i.e., the number of non-zero entries is a small percentage of the
total number of entries. If there is only an occasional zero entry, the cost of exploiting the sparsity
actually slows down the computation when compared to simply treating the matrix as dense,
meaning that all the values, zero and non-zero, are used in the computation.

There are a number of common storage schemes used for sparse matrices, but most of the schemes
employ the same basic technique. That is, compress all of the non-zero elements of the matrix into
a linear array, and then provide some number of auxiliary arrays to describe the locations of the
non-zeros in the original matrix.

Storage Formats for the PARDISO Solver

The compression of the non-zeros of a sparse matrix A into a linear array is done by walking down
each column (column major format) or across each row (row major format) in order, and writing
the non-zero elements to a linear array in the order that they appear in the walk.

When storing symmetric matrices, it is necessary to store only the upper triangular half of the
matrix (upper triangular format) or the lower triangular half of the matrix (lower triangular
format).

The Intel MKL direct sparse solver uses a row major upper triangular storage format. That is, the
matrix is compressed row-by-row and for symmetric matrices only non-zeros in the upper
triangular half of the matrix are stored.

The Intel MKL storage format accepted for the PARDISO software for sparse matrices consists of
three arrays, which are called the values, columns, and rowIndex arrays. The following table
describes the arrays in terms of the values, row, and column positions of the non-zero elements in
a sparse matrix A.

values A real or complex array that contains the non-zero entries of A. The non-zero values
of A are mapped into the values array using the row major, upper triangular storage
mapping described above.

columns Element i of the integer array columns contains the number of the column in A that
contained the value in values(i).

rowIndex Element j of the integer array rowIndex gives the index into the values array that
contains the first non-zero element in a row j of A.

The length of the values and columns arrays is equal to the number of non-zeros in A.

Linear Solvers Basics A

A-9

Since the rowIndex array gives the location of the first non-zero within a row, and the non-zeros
are stored consecutively, then we would like to be able to compute the number of non-zeros in the
i-th row as the difference of rowIndex(i) and rowIndex(i+1).

In order to have this relationship hold for the last row of A, we need to add an entry (dummy entry)
to the end of rowIndex whose value is equal to the number of non-zeros in A, plus one. This
makes the total length of the rowIndex array one larger than the number of rows of A.

With the above in mind, consider storing the symmetric matrix discussed in the example from the
previous section.

In this case, A has nine non-zero elements, so the lengths of the values and columns arrays will
be nine. Also, since the matrix A has five rows, the rowIndex array is of length six. The actual
values for each of the arrays for the example matrix are as follows:

NOTE. The Intel MKL sparse storage scheme uses the Fortran
programming language convention of starting array indices at 1, rather
than the C programming language convention of starting at 0.

Table A-1 Storage Arrays for a Symmetric Example Matrix

values = (9 3/2 6 3/4 3 1/2 1/2 5/8 16)

columns = (1 2 3 4 5 2 3 4 5)

rowIndex = (1 6 7 8 9 10)

A

9
3
2
--- 6

3
4
--- 3

*
1
2
--- * * *

* *
1
2
--- * *

* * *
5
8
--- *

* * * * 16

=

A-10

A Intel® Math Kernel Library Reference Manual

For a non-symmetric or non-Hermitian array, all of the non-zeros need to be stored. Consider the
non-symmetric matrix B defined by the following:

We see that B has 13 non-zeros, and we store B as follows:

A symmetrically structured system of equations is one where the pattern of non-zeros is
symmetric. That is, a matrix has a symmetric structure if a(i,j) is non-zero if and only if a(j,i) is
non-zero.
From the point of view of the solver software, a non-zero element of a matrix is anything that is
stored in the values array. In that sense, we can turn any non-symmetric matrix into a
symmetrically structured matrix by carefully adding zeros to the values array.
For example, suppose we consider the matrix B to have the following set of non-zero entries:

Now B can be considered to be symmetrically structured with 15 non-zero entries.We would
represent the matrix as:

Table A-2 Storage Arrays for a Non-Symmetric Example Matrix

values = (1 -1 -3 -2 5 4 6 4 -4 2 7 8 -5)

columns = (1 2 4 1 2 3 4 5 1 3 4 2 5)

rowIndex = (1 4 6 9 12 14)

Table A-3 Storage Arrays for a Symmetrically Structured Example Matrix

values = (1 -1 -3 -2 5 0 4 6 4 -4 2 7 8 0 -5)

columns = (1 2 4 1 2 5 3 4 5 1 3 4 2 3 5)

rowIndex = (1 4 7 10 13 16)

B

1 1– * 3– *

2– 5 * * *

* * 4 6 4

4– * 2 7 *

* 8 * * 5–

=

B

1 1– * 3– *

2– 5 * * 0

* * 4 6 4

4– * 2 7 *

* 8 0 * 5–

=

Linear Solvers Basics A

A-11

Storage Format Restrictions. The storage format for the sparse solver must conform to two
important restrictions:

First, the non-zero values in a given row must be placed into the values array in the order in
which they occur in the row (from left to right). Second, no diagonal element can be omitted from
the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that when dealing with symmetric or structurally symmetric
matrices that have zeros on the diagonal, the zero diagonal elements must be explicitly represented
in the values array.

Sparse Storage Formats for Sparse BLAS Levels 2-3

This section describes in detail the sparse data structures supported in the current version of the
Intel MKL Sparse BLAS level 2 and 3.

CSR Format

The Intel MKL compressed sparse row (CSR) format for sparse matrices consists of four arrays,
which are called the values, columns, pointerB, and pointerE arrays. The following table
describes the arrays in terms of the values, row, and column positions of the non-zero elements in
a sparse matrix A.

values A real or complex array that contains the non-zero entries of A. The non-zero values
of A are mapped into the values array using the row major storage mapping
described above.

columns Element i of the integer array columns contains the number of the column in A that
contained the value in values(i).

pointerB Element j of this integer array gives the index into the values array that contains the
first non-zero element in a row j of A. Note that this index is equal to pointerB(j)
- pointerB(1)+1 .

pointerE An integer array contains row indices, such that pointerE(j)-pointerB(1) is the
index into the values array that contains the last non-zero element in a row j of A.

The length of the values and columns arrays is equal to the number of non-zeros in A.The
length of the pointerB and pointerE arrays is equal to the number of rows in A.

A-12

A Intel® Math Kernel Library Reference Manual

Previously defined matrix B

can be represented in the CSR format as:

This storage format is used in the NIST Sparse BLAS library [Rem05].

Note that the storage format accepted for the PARDISO software and described above (see Storage
Formats for the PARDISO Solver), is a variation of the CSR format. The PARDISO format has a
restriction - all non-zero elements are stored continuously, that is the set of non-zero elements in
the row J goes just after the set of non-zero elements in the row J-1.
There is no such restrictions in the CSR format. This advantage can be useful, for example, if there
is a need to operate with different submatrices of the matrix at the same time. In this case, it is
enough to define the arrays pointerB and pointerE for each needed submatrix so that all these
array are pointers to the one array values.

Comparing the array rowIndex from the Table A-2 with the arrays pointerB and pointerE
from the Table A-4 it is easy to see that
 pointerB(i) = rowIndex(i) for i=1, ..5;
 pointerE(i) = rowIndex(i+1) for i=1, ..5.

This gives the possibility to call a routine that has values, columns, pointerB and pointerE
as input parameters for a sparse matrix stored in the format accepted for PARDISO. For example,
a routine with the interface:

 Subroutine name_routine(…. , values, columns, pointerB, pointerE, …)
can be called with arguments values, columns, rowIndex in the following way:
 call name_routine(…. , values, columns, rowIndex, rowindex(2), …).

Table A-4 Storage Arrays for an Example Matrix in CSR Format

values = (1 -1 -3 -2 5 4 6 4 -4 2 7 8 -5)

columns = (1 2 4 1 2 3 4 5 1 3 4 2 5)

pointerB = (1 4 6 9 12)

pointerE = (4 6 9 12 14)

B

1 1– * 3– *

2– 5 * * *

* * 4 6 4

4– * 2 7 *

* 8 * * 5–

=

Linear Solvers Basics A

A-13

CSC Format

The compressed sparse column format (CSC), often called Harwell-Boeing sparse matrix format,
is similar to the CSR format, but the columns are used instead the rows. Or, in other words, CSC
format is equal to the CSR format for the transposed matrix.

By analogy with the CSR format Intel MKL Sparse BLAS level 2 library provides routines for two
variations of the CSC format.

Variation of this format accepted for the PARDISO software consists of three arrays, which are
called the values, rows, and colIndex arrays. The following table describes these arrays:

values A real or complex array that contains the non-zero entries of A. The non-zero
values of A are mapped into the values array using the column major storage
mapping described above.

rows Element i of the integer array rows contains the number of the row in A that
contained the value in values(i).

colIndex Element j of the integer array colIndex gives the index into the values
array that contains the first non-zero element in a column j of A.

The length of the values and rows arrays is equal to the number of non-zero elements in A.

For example, the sparse matrix B

NOTE. Intel MKL Sparse BLAS level 2 provide routines for both flavors of the
CSR format.

B

1 1– * 3– *

2– 5 * * *

* * 4 6 4

4– * 2 7 *

* 8 * * 5–

=

A-14

A Intel® Math Kernel Library Reference Manual

can be represented in the CSC format for PARDISO as follows:

Coordinate Format

The coordinate format is the most flexible and simplest format for the sparse matrix
representation. Only nonzero entries are provided, and the coordinates of each nonzero entry is
given explicitly. Many commercial libraries support the matrix-vector multiplication for the sparse
matrices in the coordinate format.

The Intel MKL coordinate format consists of three arrays, which are called the values, rows, and
column arrays, and a parameter nnz which is number of non-zero entries in A. All three arrays
have to be dimensioned as nnz. The following table describes the arrays in terms of the values,
row, and column positions of the non-zero elements in a sparse matrix A.

values A real or complex array that contains the non-zero entries of A given in any
order.

rows Element i of the integer array rows contains the number of the row in A that
contained the value in values(i).

columns Element i of the integer array columns contains the number of the column in
A that contained the value in values(i).

For example, the sparse matrix C

can be represented in the coordinate format as follows:

Table A-5 Storage Arrays for an Example Matrix in the Harwell-Boeing format

values = (1 -2 -4 -1 5 8 4 2 -3 6 7 4 -5)

rows = (1 2 4 1 2 5 3 4 1 3 4 3 5)

colIndex = (1 4 7 9 12 14)

Table A-6 Storage Arrays for an Example Matrix in case of the coordinate format

values = (1 -1 -3 -2 5 4 6 4 -4 2 7 8 -5)

rows = (1 1 1 2 2 3 3 3 4 4 4 5 5)

columns = (1 2 3 1 2 3 4 5 1 3 4 2 5)

C

1 1– 3– 0 0

2– 5 0 0 0

0 0 4 6 4

4– 0 2 7 0

0 8 0 0 5–

=

Linear Solvers Basics A

A-15

Diagonal Storage Scheme

If the matrix A has a few diagonals, then this structure can be used to reduce the amount of
information needed for the location of the non-zero elements. This storage scheme is particularly
useful in many applications where the matrix arises from a finite element or finite difference
discretization. The Intel MKL diagonal storage scheme consists of two arrays, which are called the
values and distance arrays, and parameters ndiag which is the number of non-empty
diagonals, and lval which is declared leading dimension in the calling (sub) program. The
following table describes the arrays values and distance:

values A real or complex two dimensional array is dimensioned as lval by ndiag. It
contains the non-zero diagonals of A. The key point of the storage is that each
element in values retains the row corresponding to the row in the original
matrix. In order to do so diagonals in the lower triangular part of A are padded
from the top, and those in the upper triangular part are padded from the bottom.
Note that the value of distance(i) is the number of elements to be padded
for diagonal i.

 distance An integer array is dimensioned as ndiag. Element i of the array integer
distance contains the distance between i-diagonal and the main diagonal.
The distance is positive if the diagonal is above the main diagonal, and
negative if the diagonal is below the main diagonal. The main diagonal has a
distance equal to zero.

The sparse matrix C given above can be stored in the diagonal storage scheme as follows:

distance = (-3 -1 0 1 2)

where the asterisks denote padded elements.

It is clear that the upper triangle or lower triangle can be stored if the matrix is symmetric,
hermitian, or skew-symmetric.

The diagonals can be stored in any order if the sparse diagonal representation is used for Intel
MKL sparse matrix-matrix or matrix-vector multiplication routines. However, all elements of the
array distance must be sorted in increasing order if the sparse diagonal representation is used for
Intel MKL sparse triangular solver routines.

values

* * 1 1– 3–

* 2– 5 0 0

* 0 4 6 4

4– 2 7 0 *

8 0 5– * *

=

A-16

A Intel® Math Kernel Library Reference Manual

Skyline Storage Scheme

The skyline storage scheme is important in the direct sparse solvers, and it is well suited for
Cholesky or LU decomposition when no pivoting is required.

The skyline storage scheme accepted in the Intel MKL can store only triangular matrix or
triangular part of the matrix. This variant consists of two arrays which are called values and
pointers arrays. The following table describes these arrays:

values A scalar array. It contains the set of elements from each row of A starting from
the first non-zero elements to and uncluding the diagonal element if the matrix
is lower triangular, and the set of elements from each column of A starting with
the first non-zero element down to and including the diagonal element.
Encountered zero elements are included in the sets.

 pointers An integer array is dimensioned as m+1, where m is the number of rows for
lower triangle (columns for the upper triangle). pointers(i) -
pointers(1)+1 points to the location in values of the first non-zero
element in row (column) i. The value of pointers(m+1) is set to the value
nnz+pointers(1), where nnz is the number of elements in the array
values.

Note that Intel MKL Sparse BLAS does not support general matrices for the routines operating
with the skyline storage format.

For example, the low triangle of the matrix C given above can be stored as follows:

values = (1 -2 5 4 -4 0 2 7 8 0 0 -5)
pointers = (1 2 4 5 9 13)

and the upper triangle of this matrix C can be stored as follows:

values = (1 -1 5 -3 0 4 6 7 4 0 -5)
pointers = (1 2 4 7 9 12)

This storage format is supported by the NIST Sparse BLAS library [Rem05].

Linear Solvers Basics A

A-17

Interval Linear Systems

Intervals

An interval is a compact connected subset of the real axis R. It is thus completely defined by two
numbers, namely, its lower endpoint and upper endpoint (sometimes called left endpoint and right
endpoint respectively), so that [a, b] denotes the interval . The set of all real
intervals is denoted by IR. In mathematical notation, taking the lower and upper endpoints of an
interval is usually denoted by

, .

In the discussion below, intervals and interval objects are denoted by boldface letters, while
underscores and overscores designate the lower and upper endpoints of the interval .

Every interval is uniquely determined by its midpoint,

,

and radius,

the latter being equivalent to the width . Intervals of the form [a, a] that have
equal lower and upper endpoints, that is, intervals of zero width, are called degenerate or point or
thin, and they coincide with usual real numbers so that it can be implied . On the contrary,
the intervals with nonzero width are called thick intervals.

Since intervals are sets, set-theoretical relations and operations between them are applicable, for
example, inclusion, intersection, and so on. In particular, a point is a member of the interval
a (written as) if . Also, the inclusion is defined as if and only if and

.

Intervals and interval objects (vectors, matrices, etc.) are a convenient tool to represent the
so-called bounded uncertainty and ambiguity, when only the lower and upper bounds of the
possible variation of some value are known. In this sense, intervals provide an alternative to
probabilistic and fuzzy approaches for describing quantitative uncertainty.

Arithmetic operations, such as addition, subtraction, multiplication and division, can be extended
to intervals according to the fundamental principle

, , (1)

which makes it possible to define the so-called classical interval arithmetic. Note that the empty
interval is often incorporated into the computer interval arithmetic structures.

x R∈ a x b≤ ≤{ }

inf a b,[] a= sup a b,[] b=

x x x,[]=

mid a
1
2
--- a a+()=

rad a
1
2
--- a a–()=

wid a a a–()=

R IR⊂

t R∈
t a∈ a t a≤ ≤ a b⊆ a b≥

a b≤

a∗b : a∗b a a b b∈,∈{ }= * + - . /, , ,{ }∈

∅[]

A-18

A Intel® Math Kernel Library Reference Manual

Interval vectors and matrices

An interval vector is an ordered tuple of intervals placed vertically (column vector) or horizontally
(row vector). So, if a1, a2, . . . , an are intervals, then

 is a column vector,

and

is a row vector.

The set of all interval n-vectors is denoted later in the text by IRn.

The interval vectors can be associated with their geometric images, namely rectangular boxes of
the space Rn, whose sides are parallel to the coordinate axes. For this reason, interval vectors are
often called boxes for brevity.

An interval matrix is a rectangular table composed of the intervals:

,

a

a1

a2

.

.

.

an 
 
 
 
 
 
 
 
 

=

a a1 a2
… an, , ,()=

x2

x1

A:

a11 a12
. . . a1n

a21 a22
. . . a2n

.

.

.

.

.

.

.
.

.

.

.

.

am1 am2
. . . amn 

 
 
 
 
 
 
 
 

=

Linear Solvers Basics A

A-19

or A = (aij). Interval vectors can be identified with interval matrices either of the size n × 1
(column vectors) or 1 × n (row vectors). The set of all interval m × n-matrices is denoted by
IRm×n. Arithmetic operations between interval vectors and matrices can be introduced on the basis
of the relation that generalizes (1) (see [Alefeld83], [Neumaier90]).

An interval square matrix is referred to as regular (nonsingular) if and only if all the
point matrices are regular (nonsingular), that is, have nonzero determinants. Otherwise, the
interval matrix is called singular, which means that it contains at least one singular
point matrix.

Generally, recognition of whether an interval matrix is regular or singular is an NP-hard problem,
which implies that there may be no relatively simple (polynomially complex) algorithms that
completely solve the problem in a reasonable time.

For practical needs, it is important to have a set of workable sufficient criteria for testing regularity
of a wide range of interval matrices. Intel MKL provides routines that implement Ris-Beeck
spectral criterion, Rump singular value criterion, as well as Rohn-Rex singular value criterion for
testing regularity/singularity of interval matrices.

Sometimes, a related property (called strong regularity) needs to be checked for interval matrices.
Strong regularity requires that the product of the interval matrix by its midpoint inverse is regular.
The routine ?gerbr enables to check the strong regularity judging by the value of its output
parameter sr.

Interval Linear Systems

Solving systems of linear algebraic equations of the form

 (2)

or, concisely,

with an m × n matrix A and a right-hand side m-vector b, is one of the key problems in science and
engineering. If aij and bi are not defined exactly but rather belong to known intervals aij and bi
respectively, the system is called an interval linear system and can be written as

A IR
n n×∈

A A∈
A IR

n n×∈

a11x1 a12x2 . . . a1nxn+ + + b1,=

a21x1 a22x2 . . . a2nxn+ + + b2,=

.

.

.

.
.

.

.

.

.

am1x1 an2x2 . . . amnxn+ + + bm,=











Ax b=

A-20

A Intel® Math Kernel Library Reference Manual

 (3)

with intervals aij and bi, or in a short form as

 (4)

with an interval matrix A = (aij) and interval right-hand side vector b = (bi).
An interval linear system (3)–(4) is considered as a set of point linear systems of the same form
Ax = b with the parameters aij and bi such that and .

When aij and bi are changing within intervals aij and bi, the solutions to the corresponding point
systems Ax = b with A = (aij) and b = (bi) form a set in the space Rn, namely

 (5)

The set (5), made up of solutions to all the point systems Ax = b with and , is called a
solution set to the interval linear system (3)–(4). Usually, the solution set is a solid polyhedron in
Rn for independent aij and bi, 1 ≤ i, j ≤ n, sometimes star-shaped as in the figure below.

.

NOTE. The above described set is often called a united solution set,
since there exist a variety of other solution sets to interval systems of equations
(see [Shary02]).

a11x1 a12x2 . . . a1nxn+ + + b1,=

a21x1 a22x2 . . . a2nxn+ + + b2,=

.

.

.

.
.

.

.

.

.

an1x1 an2x2 . . . amnxn+ + + bm,=











Ax b=

aij aij∈ bi bi∈

Ξ A b,() : x R
n∈ A∃ A∈() b∃ b∈() Ax b=(){ }.=

A A∈ b b∈

Ξ A b,()

x1

x2

Linear Solvers Basics A

A-21

An exact description of the solution set is practically impossible for dimensions n larger than
several tens, since its complexity grows exponentially with n. On the other hand, such an exact
description is not really necessary in most cases. Usually, one needs to compute some estimates, in
a prescribed sense, of the solution set. The most popular in practice is the following problem of
outer (by supersets) interval estimation:

For an interval system of linear equations
find an interval enclosure of the solution set . (6)

Frequently, a component-wise form of the problem (6) is considered:

For an interval system of linear equations
find estimates for from below, (7)
for from above, v = 1, 2, . . . , n.

In particular, Intel MKL ?gepps routines operate with this type of the problem statement.

The problem (6)–(7) is one of the historically first and most popular in modern interval analysis.
You can find an extensive bibliography on this problem, for example, in [Alefeld83], [Kearfott96],
[Neumaier90]).

Thus, solving an interval linear system is understood here as computing an outer interval estimate
of the solution set to an interval linear system (3)–(4). The matrix A of the system is usually
assumed to be square nonsingular.

Unlike classical computational linear algebra, solving interval linear systems proves to be very
computationally hard in general. Computing the optimal (smallest) interval enclosures of the
solution in (6), or, equivalently, computing exact estimates of the solution set in (7), is an NP-hard
problem (see [Kreinovich97]), if there are no restrictions on the widths of the intervals in the
system and/or the structure of nonzero elements in the matrix A. Moreover, the problem remains
NP-hard even if we weaken the requirements on the solution and compute estimates of the solution
sets that must be precise to within a predetermined absolute or relative accuracy.

From the practical standpoint, NP-hardness means that with a high probability a general problem
cannot be solved in polynomial time with respect to problem size.

For this reason, numerical algorithms employed in Intel MKL for solving interval linear systems
are divided into two classes depending on whether or not they provide a guaranteed accuracy of
the result. “Fast” algorithms work fast and compute an enclosure of the solution set in a reasonable
time, but without any accuracy assumptions. “Optimal”, or “sharp” algorithms may take a lot of
time to complete execution, but the results they obtain are less crude and may satisfy some
accuracy requirements.

Ax b=
Ξ A b,()

Ax b=
min xv x Ξ A b,()∈{ }

max xv x Ξ A b,()∈{ }

A-22

A Intel® Math Kernel Library Reference Manual

Intel MKL includes interval solver routines that implement algorithms of both types. For example,
fast methods, such as interval Gauss method, interval Householder method, Hansen-Bliek-Rohn
method, and Krawczyk iteration, are implemented in routines ?gegas, ?gehss, ?gehbs, and
?gekws, respectively. Parameter partitioning method (PPS-method) implemented in ?gepps
routine is an example of a sharp method. The routine ?trtrs is subsumed under both categories
due to a very special matrix structure.

Preconditioning

Preconditioning of interval linear system (4) is multiplying both the matrix A and the right-hand
side vector b by a point matrix, with the intension to improve the properties of the system. So the
system is substituted by the following system

where C is some square point matrix. Preconditioning is widely used in classical computational
linear algebra, and many interval solver algorithms (for example, interval Gauss method, interval
Gauss-Seidel method and some others) also require a suitable preconditioning prior to their use.

One of the widely used preconditioning methods for the interval linear systems is preconditioning
done by the inverse of the midpoint matrix, often called midpoint-inverse preconditioning. In Intel
MKL, the midpoint inverse preconditioning is implemented in the routine ?gemip.

Inverting interval matrices

Given an interval square matrix A, an enclosure for the set of all inverse point matrices in A is
called the inverse interval matrix A-1, that is,

.

In classical linear algebra, the solution to a system of linear algebraic equations with
square nonsingular matrix A can be expressed as the product of the inverse A-1 by the right-hand
side vector, or .

In interval analysis, the similar product also produces an enclosure for the solution set
 of the interval linear system . However, this method usually causes substantial

overestimation and is not recommended. Using specialized procedures for outer estimation of the
solution sets is preferable.

Nevertheless, computing tight enclosures for inverse interval matrices is essential in
sensitivity-like analysis of equation systems and the like.

Ax b=

CA()x Cb=

A
1–

A
1–

A A∈{ }⊇

Ax b=

x A
1–
b=

A 1– b
Ξ A b,() Ax b=

Linear Solvers Basics A

A-23

Computing the inverse interval matrix may be carried out as finding an enclosure for the solution
set of the following interval matrix equation

, where I is the identity matrix,

by applying n times (for every column of the matrix Y) any method to solve the interval linear
systems.

Note also that direct iterative procedures for finding the inverse interval matrix exist, such as
Schulz method (see [Herzberger94]), which is included into Intel MKL as ?geszi routine.

AY I=

B-1

Routine and Function
Arguments B

The major arguments in the BLAS routines are vector and matrix, whereas VML functions work
on vector arguments only.
The sections that follow discuss each of these arguments and provide examples.

Vector Arguments in BLAS
Vector arguments are passed in one-dimensional arrays. The array dimension (length) and vector
increment are passed as integer variables. The length determines the number of elements in the
vector. The increment (also called stride) determines the spacing between vector elements and the
order of the elements in the array in which the vector is passed.

A vector of length n and increment incx is passed in a one-dimensional array x whose values are
defined as

x(1), x(1+|incx|), ..., x(1+(n-1)* |incx|)

If incx is positive, then the elements in array x are stored in increasing order. If incx is negative,
the elements in array x are stored in decreasing order with the first element defined as
x(1+(n-1)* |incx|). If incx is zero, then all elements of the vector have the same value,
x(1). The dimension of the one-dimensional array that stores the vector must always be at least

idimx = 1 + (n-1)* |incx |

B-2

B Intel® Math Kernel Library Reference Manual

Example B-1 One-dimensional Real Array

Let x(1:7) be the one-dimensional real array
x = (1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0).
If incx =2 and n = 3, then the vector argument with elements in order from first to
last is (1.0, 5.0, 9.0).
If incx = -2 and n = 4, then the vector elements in order from first to last is (13.0,
9.0, 5.0, 1.0).
If incx = 0 and n = 4, then the vector elements in order from first to last is (1.0,
1.0, 1.0, 1.0).

One-dimensional substructures of a matrix, such as the rows, columns, and diagonals, can be
passed as vector arguments with the starting address and increment specified. In Fortran, storing
the m-by-n matrix is based on column-major ordering where the increment between elements in
the same column is 1, the increment between elements in the same row is m, and the increment
between elements on the same diagonal is m + 1.

Example B-2 Two-dimensional Real Matrix

Let a be the real 5 x 4 matrix declared as REAL A (5,4).
To scale the third column of a by 2.0, use the BLAS routine sscal with the following
calling sequence:
call sscal (5, 2.0, a(1,3), 1).
To scale the second row, use the statement:
call sscal (4, 2.0, a(2,1), 5).
To scale the main diagonal of A by 2.0, use the statement:
call sscal (5, 2.0, a(1,1), 6).

NOTE. The default vector argument is assumed to be 1.

Routine and Function Arguments B

B-3

Vector Arguments in VML
Vector arguments of VML mathematical functions are passed in one-dimensional arrays with unit
vector increment. It means that a vector of length n is passed contiguously in an array a whose
values are defined as a[0], a[1], ..., a[n-1] (for C- interface).
To accommodate for arrays with other increments, or more complicated indexing, VML contains
auxiliary pack/unpack functions that gather the array elements into a contiguous vector and then
scatter them after the computation is complete.

Generally, if the vector elements are stored in a one-dimensional array a as

 a[m0], a[m1], ..., a[mn-1]

and need to be regrouped into an array y as

y[k0], y[k1], ..., y[kn-1],

VML pack/unpack functions can use one of the following indexing methods:

Positive Increment Indexing

kj = incy * j, mj = inca * j, j = 0 ,…, n-1

Constraint: incy > 0 and inca > 0.
For example, setting incy = 1 specifies gathering array elements into a
contiguous vector.

This method is similar to that used in BLAS, with the exception that negative and zero increments
are not permitted.

Index Vector Indexing

kj = iy[j], mj = ia[j], j = 0 ,…, n-1,

where ia and iy are arrays of length n that contain index vectors for the input and output arrays
a and y, respectively.

Mask Vector Indexing

Indices kj, mj are such that:

my[kj] ≠ 0, ma[mj] ≠ 0 , j = 0,…, n-1,

where ma and my are arrays that contain mask vectors for the input and
output arrays a and y, respectively.

B-4

B Intel® Math Kernel Library Reference Manual

Matrix Arguments
Matrix arguments of the Intel® Math Kernel Library routines can be stored in either one- or
two-dimensional arrays, using the following storage schemes:

• conventional full storage (in a two-dimensional array)
• packed storage for Hermitian, symmetric, or triangular matrices

(in a one-dimensional array)
• band storage for band matrices (in a two-dimensional array).

Full storage is the following obvious scheme: a matrix A is stored in a two-dimensional array a,
with the matrix element aij stored in the array element a(i,j).

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of
the relevant triangle are stored; the remaining elements of the array need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle
of the matrix to be stored in the corresponding elements of the array:

if uplo ='U', aij is stored in a(i,j) for i ≤ j,
other elements of a need not be set.

if uplo ='L', aij is stored in a(i,j) for j ≤ i,
other elements of a need not be set.

Packed storage allows you to store symmetric, Hermitian, or triangular matrices more
compactly: the relevant triangle (again, as specified by the argument uplo) is packed by columns
in a one-dimensional array ap:

if uplo ='U', aij is stored in ap(i+j(j-1)/2) for i ≤ j

if uplo ='L', aij is stored in ap(i+(2*n-j)*(j-1)/2) for j ≤ i.

In descriptions of LAPACK routines, arrays with packed matrices have names ending in p.

Band storage is as follows: an m-by-n band matrix with kl non-zero sub-diagonals and ku
non-zero super-diagonals is stored compactly in a two-dimensional array ab with kl+ku+1 rows
and n columns. Columns of the matrix are stored in the corresponding columns of the array, and
diagonals of the matrix are stored in rows of the array. Thus,

aij is stored in ab(ku+1+i-j,j) for max(1,j-ku) ≤ i ≤ min(n,j+kl).

Use the band storage scheme only when kl and ku are much less than the matrix size n. Although
the routines work correctly for all values of kl and ku, using the band storage is inefficient if your
matrices are not really banded.

Routine and Function Arguments B

B-5

The band storage scheme is illustrated by the following example, when
m = n = 6, kl = 2, ku = 1

Array elements marked * are not used by the routines:

When a general band matrix is supplied for LU factorization, space must be allowed to store kl
additional super-diagonals generated by fill-in as a result of row interchanges. This means that the
matrix is stored according to the above scheme, but with kl + ku super-diagonals. Thus,

aij is stored in ab(kl+ku+1+i-j,j) for max(1,j-ku) ≤ i ≤ min(n,j+kl).

The band storage scheme for LU factorization is illustrated by the following example, when
m = n = 6, kl = 2, ku = 1:

a11 a12 0 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 a34 0 0

0 a42 a43 a44 a45 0

0 0 a53 a54 a55 a56

0 0 0 a64 a65 a66

* a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 *

a31 a42 a53 a64 * *

 Banded matrix A Band storage of A

a11 a12 0 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 a34 0 0

0 a42 a43 a44 a45 0

0 0 a53 a54 a55 a56

0 0 0 a64 a65 a66

* * * + + +

* * + + + +

* a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 *

a31 a42 a53 a64 * *

 Banded matrix A Band storage of A

B-6

B Intel® Math Kernel Library Reference Manual

Array elements marked * are not used by the routines; elements marked + need not be set on entry,
but are required by the LU factorization routines to store the results. The input array will be
overwritten on exit by the details of the LU factorization as follows:

where uij are the elements of the upper triangular matrix U, and mij are the multipliers used during
factorization.

Triangular band matrices are stored in the same format, with either kl= 0 if upper triangular, or ku
= 0 if lower triangular. For symmetric or Hermitian band matrices with k sub-diagonals or
super-diagonals, you need to store only the upper or lower triangle, as specified by the argument
uplo:

if uplo ='U', aij is stored in ab(k+1+i-j,j) for max(1,j-k) ≤ i ≤ j
if uplo ='L', aij is stored in ab(1+i-j,j) for j ≤ i ≤ min(n,j+k).

In descriptions of LAPACK routines, arrays that hold matrices in band storage have names ending
in b.

In Fortran, column-major ordering of storage is assumed. This means that elements of the same
column occupy successive storage locations.

Three quantities are usually associated with a two-dimensional array argument: its leading
dimension, which specifies the number of storage locations between elements in the same row, its
number of rows, and its number of columns. For a matrix in full storage, the leading dimension of
the array must be at least as large as the number of rows in the matrix.

A character transposition parameter is often passed to indicate whether the matrix argument is to
be used in normal or transposed form or, for a complex matrix, if the conjugate transpose of the
matrix is to be used.
The values of the transposition parameter for these three cases are the following:

* * * u14 u25 u36

* * u13 u24 u35 u46

* u12 u23 u34 u45 u56

u11 u22 u33 u44 u55 u66

m21 m32 m43 m54 m65 *

m31 m42 m53 m64 * *

Routine and Function Arguments B

B-7

'N' or 'n' normal (no conjugation, no transposition)

'T' or 't' transpose

'C' or 'c' conjugate transpose.

Example B-3 Two-Dimensional Complex Array

Suppose A (1:5, 1:4) is the complex two-dimensional array presented by matrix

Let transa be the transposition parameter, m be the number of rows, n be the number
of columns, and lda be the leading dimension. Then if
transa = 'N', m = 4, n = 2, and lda = 5, the matrix argument would be

If transa = 'T', m = 4, n = 2, and lda =5,
the matrix argument would be

If transa = 'C', m = 4, n = 2, and lda =5,
the matrix argument would be

1.1 0.11,() 1.2 0.12,() 1.3 0.13,() 1.4 0.14,()
2.1 0.21,() 2.2 0.22,() 2.3 0.23,() 2.4 0.24,()
3.1 0.31,() 3.2 0.32,() 3.3 0.33,() 3.4 0.34,()
4.1 0.41,() 4.2 0.42,() 4.3 0.43,() 4.4 0.44,()
5.1 0.51,() 5.2 0.52,() 5.3 0.53,() 5.4 0.54,()

1.1 0.11,() 1.2 0.12,()
2.1 0.21,() 2.2 0.22,()
3.1 0.31,() 3.2 0.32,()
4.1 0.41,() 4.2 0.42,()

1.1 0.11,() 2.1 0.21,() 3.1 0.31,() 4.1 0.41,()
1.2 0.12,() 2.2 0.22,() 3.2 0.32,() 4.2 0.42,()

1.1 0.11–,() 2.1 0.21–,() 3.1 0.31–,() 4.1 0.41–,()
1.2 0.12–,() 2.2 0.22–,() 3.2 0.32–,() 4.2 0.42–,()

B-8

B Intel® Math Kernel Library Reference Manual

Note that care should be taken when using a leading dimension value which is different from the
number of rows specified in the declaration of the two-dimensional array. For example, suppose
the array A above is declared as COMPLEX A (5,4).
 continued <TableFinger>*

Then if transa = 'N', m = 3, n = 4, and lda = 4, the matrix argument will be

1.1 0.11,() 5.1 0.51,() 4.2 0.42,() 3.3 0.33,()
2.1 0.21,() 1.2 0.12,() 5.2 0.52,() 4.3 0.43,()
3.1 0.31,() 2.2 0.22,() 1.3 0.13,() 5.3 0.53,()

C-1

Code Examples C
This appendix presents code examples of using some Intel MKL routines and functions.
You can find here example code written in both Fortran and C.

Currently, the appendix includes the following sections:

• BLAS Code Examples

• PARDISO Code Examples

• Direct Sparse Solver Code Examples

• Iterative Sparse Solver Code Example

• DFT Code Examples

• Interval Linear Solvers Code Examples

• Trigonometric Transforms Code Examples

Please refer to respective chapters in the manual for detailed descriptions of function parameters
and operation.

BLAS Code Examples

Example C-1 Using BLAS Level 1 Function

The following example illustrates a call to the BLAS Level 1 function sdot. This function
performs a vector-vector operation of computing a scalar product of two single-precision real
vectors x and y.

Parameters

n Specifies the order of vectors x and y.

C-2

C Intel® Math Kernel Library Reference Manual

incx Specifies the increment for the elements of x.

incy Specifies the increment for the elements of y.

program dot_main
real x(10), y(10), sdot, res
integer n, incx, incy, i
external sdot

n = 5
incx = 2
incy = 1

do i = 1, 10
 x(i) = 2.0e0
 y(i) = 1.0e0
end do

res = sdot (n, x, incx, y, incy)

print*, ‘SDOT = ‘, res

end

As a result of this program execution, the following line is printed:

SDOT = 10.000

Example C-2 Using BLAS Level 1 Routine

The following example illustrates a call to the BLAS Level 1 routine scopy. This routine performs
a vector-vector operation of copying a single-precision real vector x to a vector y.

Parameters

n Specifies the order of vectors x and y.

incx Specifies the increment for the elements of x.

incy Specifies the increment for the elements of y.

program copy_main
real x(10), y(10)
integer n, incx, incy, i

n = 3

incx = 3

Code Examples C

C-3

incy = 1

do i = 1, 10

 x(i) = i

end do

call scopy (n, x, incx, y, incy)

print*, ‘Y = ‘, (y(i), i = 1, n)

end

As a result of this program execution, the following line is printed:

Y = 1.00000 4.00000 7.00000

Example C-3 Using BLAS Level 2 Routine

The following example illustrates a call to the BLAS Level 2 routine sger. This routine performs
a matrix-vector operation

a := alpha*x*y' + a.

Parameters

alpha Specifies a scalar alpha.

x m-element vector.

y n-element vector.

a m-by-n matrix.

program ger_main
real a(5,3), x(10), y(10), alpha
integer m, n, incx, incy, i, j, lda

m = 2
n = 3
lda = 5
incx = 2
incy = 1
alpha = 0.5
do i = 1, 10
 x(i) = 1.0
 y(i) = 1.0
end do

C-4

C Intel® Math Kernel Library Reference Manual

do i = 1, m
 do j = 1, n
 a(i,j) = j
 end do
end do

call sger (m, n, alpha, x, incx, y, incy, a, lda)

print*, ‘Matrix A: ‘

do i = 1, m

 print*, (a(i,j), j = 1, n)

end do

end

As a result of this program execution, matrix a is printed as follows:

Matrix A:

1.50000 2.50000 3.50000

1.50000 2.50000 3.50000

Example C-4 Using BLAS Level 3 Routine

The following example illustrates a call to the BLAS Level 3 routine ssymm. This routine
performs a matrix-matrix operation

c := alpha*a*b' + beta*c.

Parameters

alpha Specifies a scalar alpha.

beta Specifies a scalar beta.

a Symmetric matrix.

b m-by-n matrix.

c m-by-n matrix.

program symm_main
real a(3,3), b(3,2), c(3,3), alpha, beta
integer m, n, lda, ldb, ldc, i, j

Code Examples C

C-5

character uplo, side

uplo = 'u'
side = 'l'
m = 3
n = 2
lda = 3
ldb = 3
ldc = 3
alpha = 0.5
beta = 2.0

do i = 1, m
 do j = 1, m

 a(i,j) = 1.0

 end do

end do

do i = 1, m

 do j = 1, n

 c(i,j) = 1.0

 b(i,j) = 2.0

 end do

end do

call ssymm (side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

print*, ‘Matrix C: ‘

do i = 1, m

 print*, (c(i,j), j = 1, n)

end do

end

As a result of this program execution, matrix c is printed as follows:

Matrix C:

5.00000 5.00000

5.00000 5.00000

5.00000 5.00000

C-6

C Intel® Math Kernel Library Reference Manual

Example C-5 Calling a Complex BLAS Level 1 Function from C

The following example illustrates a call from a C program to the complex BLAS Level 1 function
zdotc(). This function computes the dot product of two double-precision complex vectors.

In this example, the complex dot product is returned in the structure c.

#define N 5
void main()
{

 int n, inca = 1, incb = 1, i;
 typedef struct{ double re; double im; } complex16;
 complex16 a[N], b[N], c;
 void zdotc();
 n = N;
 for(i = 0; i < n; i++){
 a[i].re = (double)i; a[i].im = (double)i * 2.0;
 b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;
 }
 zdotc(&c, &n, a, &inca, b, &incb);
 printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re, c.im);
}

NOTE. Instead of calling BLAS directly from C programs, you might
wish to use the CBLAS interface; this is the supported way of calling
BLAS from C. For more information about CBLAS, see Appendix D,
which presents CBLAS, the C interface to the Basic Linear Algebra
Subprograms (BLAS) implemented in Intel® MKL.

Code Examples C

C-7

PARDISO Code Examples
This section presents code examples of using the PARDISO direct solver for computing solutions
of linear systems with sparse matrices. For description of this solver, refer to Chapter 8 of the
manual.

Examples for Sparse Symmetric Linear Systems

In this section two examples (Fortran, C) are provided to solve symmetric linear systems with
PARDISO. To solve the systems of equations Ax = b, where

A = and B =

Example Results for Symmetric Systems

Upon successful execution of the solver, the result of the solution X is as follows

Reordering completed ...

Number of nonzeros in factors = 30

Number of factorization MFLOPS = 0

Factorization completed ...

Solve completed ...

The solution of the system is

x(1) = -0.0418602013

x(2) = -0.00341312416

x(3) = 0.117250377

x(4) = -0.11263958

x(5) = 0.0241722445

7.0 0.0 1.0 0.0 0.0 2.0 7.0 0.0
0.0 4.0– 8.0 0.0 2.0 0.0 0.0 0.0

1.0 8.0 1.0 0.0 0.0 0.0 0.0 5.0

0.0 0.0 0.0 7.0 0.0 0.0 9.0 0.0

0.0 2.0 0.0 0.0 5.0 1.0 5.0 0.0

2.0 0.0 0.0 0.0 1.0 1.0– 0.0 5.0

7.0 0.0 0.0 9.0 5.0 0.0 11.0 0.0

0.0 0.0 5.0 0.0 0.0 5.0 0.0 5.0

1.0
1.0

1.0

1.0

1.0

1.0

1.0

1.0

C-8

C Intel® Math Kernel Library Reference Manual

x(6) = -0.10763334

x(7) = 0.198719673

x(8) = 0.190382964

Example C-6 Example pardiso_sym.f for Symmetric Linear Systems

C--

C Example program to show the use of the "PARDISO" routine

C for symmetric linear systems

C---

C This program can be downloaded from the following site:

C http://www.computational.unibas.ch/cs/scicomp

C

C (C) Olaf Schenk, Department of Computer Science,

C University of Basel, Switzerland.

C Email: olaf.schenk@unibas.ch

C

C---

 PROGRAM pardiso_sym

 IMPLICIT NONE

C.. Internal solver memory pointer for 64-bit architectures

C.. INTEGER*8 pt(64)

C.. Internal solver memory pointer for 32-bit architectures

C.. INTEGER*4 pt(64)

C.. This is OK in both cases

 INTEGER*8 pt(64)

C.. All other variables

 INTEGER maxfct, mnum, mtype, phase, n, nrhs, error, msglvl

 INTEGER iparm(64)

 INTEGER ia(9)

 INTEGER ja(18)

 REAL*8 a(18)

 REAL*8 b(8)

 REAL*8 x(8)

Code Examples C

C-9

 INTEGER i, idum

 REAL*8 waltime1, waltime2, ddum

C.. Fill all arrays containing matrix data.

 DATA n /8/, nrhs /1/, maxfct /1/, mnum /1/

 DATA ia /1,5,8,10,12,15,17,18,19/

 DATA ja

 1 /1, 3, 6,7,

 2 2,3, 5,

 3 3, 8,

 4 4, 7,

 5 5,6,7,

 6 6, 8,

 7 7,

 8 8/

 DATA a

 1 /7.d0, 1.d0, 2.d0,7.d0,

 2 -4.d0,8.d0, 2.d0,

 3 1.d0, 5.d0,

 4 7.d0, 9.d0,

 5 5.d0,1.d0,5.d0,

 6 -1.d0, 5.d0,

 7 11.d0,

 8 5.d0/

 integer omp_get_max_threads

 external omp_get_max_threads

C..

C.. Set up PARDISO control parameter

C..

 do i = 1, 64

 iparm(i) = 0

 end do

 iparm(1) = 1 ! no solver default

 iparm(2) = 2 ! fill-in reordering from METIS

C-10

C Intel® Math Kernel Library Reference Manual

 iparm(3) = omp_get_max_threads() !numbers of processors, value of OMP_NUM_THREADS

 iparm(4) = 0 ! no iterative-direct algorithm

 iparm(5) = 0 ! no user fill-in reducing permutation

 iparm(6) = 0 ! =0 solution on the first n compoments of x

 iparm(7) = 16 ! default logical fortran unit number for output

 iparm(8) = 9 ! numbers of iterative refinement steps

 iparm(9) = 0 ! not in use

 iparm(10) = 13 ! perturbe the pivot elements with 1E-13

 iparm(11) = 1 ! use nonsymmetric permutation and scaling MPS

 iparm(12) = 0 ! not in use

 iparm(13) = 0 ! not in use

 iparm(14) = 0 ! Output: number of perturbed pivots

 iparm(15) = 0 ! not in use

 iparm(16) = 0 ! not in use

 iparm(17) = 0 ! not in use

 iparm(18) = -1 ! Output: number of nonzeros in the factor LU

 iparm(19) = -1 ! Output: Mflops for LU factorization

 iparm(20) = 0 ! Output: Numbers of CG Iterations

 error = 0 ! initialize error flag

 msglvl = 0 ! don't print statistical information

 mtype = -2 ! unsymmetric matrix symmetric, indefinite, no pivoting

C.. Initiliaze the internal solver memory pointer. This is only

C necessary for the FIRST call of the PARDISO solver.

 do i = 1, 64

 pt(i) = 0

 end do

C.. Reordering and Symbolic Factorization, This step also allocates

C all memory that is necessary for the factorization

 phase = 11 ! only reordering and symbolic factorization

 CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

 1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

 WRITE(*,*) 'Reordering completed ... '

 IF (error .NE. 0) THEN

Code Examples C

C-11

 WRITE(*,*) 'The following ERROR was detected: ', error

 STOP

 END IF

 WRITE(*,*) 'Number of nonzeros in factors = ',iparm(18)

 WRITE(*,*) 'Number of factorization MFLOPS = ',iparm(19)

C.. Factorization.

 phase = 22 ! only factorization

 CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

 1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

 WRITE(*,*) 'Factorization completed ... '

 IF (error .NE. 0) THEN

 WRITE(*,*) 'The following ERROR was detected: ', error

 STOP

 ENDIF

C.. Back substitution and iterative refinement

 iparm(8) = 2 ! max numbers of iterative refinement steps

 phase = 33 ! only factorization

 do i = 1, n

 b(i) = 1.d0

 end do

 CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

 1 idum, nrhs, iparm, msglvl, b, x, error)

 WRITE(*,*) 'Solve completed ... '

 WRITE(*,*) 'The solution of the system is '

 DO i = 1, n

 WRITE(*,*) ' x(',i,') = ', x(i)

 END DO

C.. Termination and release of memory

 phase = -1 ! release internal memory

 CALL pardiso (pt, maxfct, mnum, mtype, phase, n, ddum, idum, idum,

 1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

 END

C-12

C Intel® Math Kernel Library Reference Manual

Example C-7 Example pardiso_sym.c for Symmetric Linear Systems

/* -- */

/* Example program to show the use of the "PARDISO" routine */

/* on symmetric linear systems */

/* -- */

/* This program can be downloaded from the following site: */

/* http://www.computational.unibas.ch/cs/scicomp */

/* */

/* (C) Olaf Schenk, Department of Computer Science, */

/* University of Basel, Switzerland. */

/* Email: olaf.schenk@unibas.ch */

/* -- */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

extern int omp_get_max_threads();

/* PARDISO prototype. */

extern int PARDISO

(void *, int *, int *, int *, int *, int *,

double *, int *, int *, int *, int *, int *,

int *, double *, double *, int *);

int main(void) {

/* Matrix data. */

int n = 8;

int ia[9] = { 1, 5, 8, 10, 12, 15, 17, 18, 19 };

int ja[18] = { 1, 3, 6, 7,

2, 3, 5,

3, 8,

4, 7,

5, 6, 7,

6, 8,

Code Examples C

C-13

7,

8 };

double a[18] = { 7.0, 1.0, 2.0, 7.0,

-4.0, 8.0, 2.0,

1.0, 5.0,

7.0, 9.0,

5.0, 1.0, 5.0,

-1.0, 5.0,

11.0,

5.0 };

int mtype = -2; /* Real symmetric matrix */

/* RHS and solution vectors. */

double b[8], x[8];

int nrhs = 1; /* Number of right hand sides. */

/* Internal solver memory pointer pt, */

/* 32-bit: int pt[64]; 64-bit: long int pt[64] */

/* or void *pt[64] should be OK on both architectures */

void *pt[64];

/* Pardiso control parameters. */

int iparm[64];

int maxfct, mnum, phase, error, msglvl;

/* Auxiliary variables. */

int i;

double ddum; /* Double dummy */

int idum; /* Integer dummy. */

/* -- */

/* .. Setup Pardiso control parameters. */

/* -- */

for (i = 0; i < 64; i++) {

iparm[i] = 0;

}

iparm[0] = 1; /* No solver default */

iparm[1] = 2; /* Fill-in reordering from METIS */

C-14

C Intel® Math Kernel Library Reference Manual

/* Numbers of processors, value of OMP_NUM_THREADS */

iparm[2] = omp_get_max_threads();

iparm[3] = 0; /* No iterative-direct algorithm */

iparm[4] = 0; /* No user fill-in reducing permutation */

iparm[5] = 0; /* Write solution into x */

iparm[6] = 16; /* Default logical fortran unit number for output */

iparm[7] = 2; /* Max numbers of iterative refinement steps */

iparm[8] = 0; /* Not in use */

iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */

iparm[10] = 1; /* Use nonsymmetric permutation and scaling MPS */

iparm[11] = 0; /* Not in use */

iparm[12] = 0; /* Not in use */

iparm[13] = 0; /* Output: Number of perturbed pivots */

iparm[14] = 0; /* Not in use */

iparm[15] = 0; /* Not in use */

iparm[16] = 0; /* Not in use */

iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */

iparm[18] = -1; /* Output: Mflops for LU factorization */

iparm[19] = 0; /* Output: Numbers of CG Iterations */

maxfct = 1; /* Maximum number of numerical factorizations. */

mnum = 1; /* Which factorization to use. */

msglvl = 0; /* Don't print statistical information in file */

error = 0; /* Initialize error flag */

/* -- */

/* .. Initialize the internal solver memory pointer. This is only */

/* necessary for the FIRST call of the PARDISO solver. */

/* -- */

for (i = 0; i < 64; i++) {

pt[i] = 0;

}

/* -- */

/* .. Reordering and Symbolic Factorization. This step also allocates */

/* all memory that is necessary for the factorization. */

Code Examples C

C-15

/* -- */

phase = 11;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {

printf("\nERROR during symbolic factorization: %d", error);

exit(1);

}

printf("\nReordering completed ... ");

printf("\nNumber of nonzeros in factors = %d", iparm[17]);

printf("\nNumber of factorization MFLOPS = %d", iparm[18]);

/* -- */

/* .. Numerical factorization. */

/* -- */

phase = 22;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {

printf("\nERROR during numerical factorization: %d", error);

exit(2);

}

printf("\nFactorization completed ... ");

/* -- */

/* .. Back substitution and iterative refinement. */

/* -- */

phase = 33;

iparm[7] = 2; /* Max numbers of iterative refinement steps. */

/* Set right hand side to one. */

for (i = 0; i < n; i++) {

b[i] = 1;

}

C-16

C Intel® Math Kernel Library Reference Manual

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, a, ia, ja, &idum, &nrhs,

iparm, &msglvl, b, x, &error);

if (error != 0) {

printf("\nERROR during solution: %d", error);

exit(3);

}

printf("\nSolve completed ... ");

printf("\nThe solution of the system is: ");

for (i = 0; i < n; i++) {

printf("\n x [%d] = % f", i, x[i]);

}

printf ("\n");

/* -- */

/* .. Termination and release of memory. */

/* -- */

phase = -1; /* Release internal memory. */

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

&n, &ddum, ia, ja, &idum, &nrhs,

iparm, &msglvl, &ddum, &ddum, &error);

return 0;

}

Code Examples C

C-17

Examples for Sparse Unsymmetric Linear Systems

In this section two examples (Fortran, C) are provided to solve unsymmetric linear systems with
PARDISO. To solve the systems of equations Ax = b, where

A = and B =

Example Results for Unsymmetric Systems

Upon successful execution of the solver, the result of the solution X is as follows

Reordering completed ...

 Number of nonzeros in factors = 21

 Number of factorization MFLOPS = 0

 Factorization completed ...

 Solve completed ...

 The solution of the system is

 x(1) = -0.522321429

 x(2) = -0.00892857143

 x(3) = 1.22098214

 x(4) = -0.504464286

 x(5) = -0.214285714

Example C-8 Example pardiso_unsym.f for Unsymmetric Linear Systems

* Copyright(C) 2004 Intel Corporation. All Rights Reserved.
* The source code contained or described herein and all documents related to
* the source code ("Material") are owned by Intel Corporation or its suppliers
* or licensors. Title to the Material remains with Intel Corporation or its
* suppliers and licensors. The Material contains trade secrets and proprietary
* and confidential information of Intel or its suppliers and licensors. The
* Material is protected by worldwide copyright and trade secret laws and
* treaty provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed

1.0 1.0– 0.0 3.0– 0.0

2.0– 5.0 0.0 0.0 0.0

0.0 0.0 4.0 6.0 4.0
4.0– 0.0 2.0 7.0 0.0

0.0 8.0 0.0 0.0 5.0–

1.0

1.0

1.0
1.0

1.0

C-18

C Intel® Math Kernel Library Reference Manual

* in any way without Intel's prior express written permission.
* No license under any patent, copyright, trade secret or other intellectual
* property right is granted to or conferred upon you by disclosure or delivery
* of the Materials, either expressly, by implication, inducement, estoppel or
* otherwise. Any license under such intellectual property rights must be
* express and approved by Intel in writing.
*

*

* Content : MKL DSS Fortran-77 example

*

*

C--

C Example program to show the use of the "PARDISO" routine

C for symmetric linear systems

C---

C This program can be downloaded from the following site:

C http://www.computational.unibas.ch/cs/scicomp

C

C (C) Olaf Schenk, Department of Computer Science,

C University of Basel, Switzerland.

C Email: olaf.schenk@unibas.ch

C

C---

 PROGRAM pardiso_unsym

 IMPLICIT NONE

C.. Internal solver memory pointer for 64-bit architectures

C.. INTEGER*8 pt(64)

C.. Internal solver memory pointer for 32-bit architectures

C.. INTEGER*4 pt(64)

C.. This is OK in both cases

 INTEGER*8 pt(64)

C.. All other variables

 INTEGER maxfct, mnum, mtype, phase, n, nrhs, error, msglvl

Code Examples C

C-19

 INTEGER iparm(64)

 INTEGER ia(6)

 INTEGER ja(13)

 REAL*8 a(13)

 REAL*8 b(5)

 REAL*8 x(5)

 INTEGER i, idum

 REAL*8 waltime1, waltime2, ddum

C.. Fill all arrays containing matrix data.

 DATA n /5/, nrhs /1/, maxfct /1/, mnum /1/

 DATA ia /1,4,6,9,12,14/

 DATA ja

 1 / 1, 2, 4,

 2 1, 2,

 3 3, 4, 5,

 4 1, 3, 4,

 5 2, 5/

 DATA a

 1 /1.d0,-1.d0, -3.d0,

 2 -2.d0, 5.d0,

 3 4.d0, 6.d0, 4.d0,

 4 -4.d0, 2.d0, 7.d0,

 5 8.d0, -5.d0/

 integer omp_get_max_threads

 external omp_get_max_threads

C..

C.. Set up PARDISO control parameter

C..

 do i = 1, 64

 iparm(i) = 0

 end do

 iparm(1) = 1 ! no solver default

 iparm(2) = 2 ! fill-in reordering from METIS

C-20

C Intel® Math Kernel Library Reference Manual

 iparm(3) = omp_get_max_threads() ! numbers of processors, value of
OMP_NUM_THREADS

 iparm(4) = 0 ! no iterative-direct algorithm

 iparm(5) = 0 ! no user fill-in reducing permutation

 iparm(6) = 0 ! =0 solution on the first n compoments of x

 iparm(7) = 0 ! not in use

 iparm(8) = 9 ! numbers of iterative refinement steps

 iparm(9) = 0 ! not in use

 iparm(10) = 13 ! perturbe the pivot elements with 1E-13

 iparm(11) = 1 ! use nonsymmetric permutation and scaling MPS

 iparm(12) = 0 ! not in use

 iparm(13) = 0 ! not in use

 iparm(14) = 0 ! Output: number of perturbed pivots

 iparm(15) = 0 ! not in use

 iparm(16) = 0 ! not in use

 iparm(17) = 0 ! not in use

 iparm(18) = -1 ! Output: number of nonzeros in the factor LU

 iparm(19) = -1 ! Output: Mflops for LU factorization

 iparm(20) = 0 ! Output: Numbers of CG Iterations

 error = 0 ! initialize error flag

 msglvl = 1 ! print statistical information

 mtype = 11 ! real unsymmetric

C.. Initiliaze the internal solver memory pointer. This is only

C necessary for the FIRST call of the PARDISO solver.

 do i = 1, 64

 pt(i) = 0

 end do

C.. Reordering and Symbolic Factorization, This step also allocates

C all memory that is necessary for the factorization

 phase = 11 ! only reordering and symbolic factorization

 CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

 1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

 WRITE(*,*) 'Reordering completed ... '

Code Examples C

C-21

 IF (error .NE. 0) THEN

 WRITE(*,*) 'The following ERROR was detected: ', error

 STOP

 END IF

 WRITE(*,*) 'Number of nonzeros in factors = ',iparm(18)

 WRITE(*,*) 'Number of factorization MFLOPS = ',iparm(19)

C.. Factorization.

 phase = 22 ! only factorization

 CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

 1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

 WRITE(*,*) 'Factorization completed ... '

 IF (error .NE. 0) THEN

 WRITE(*,*) 'The following ERROR was detected: ', error

 STOP

 ENDIF

C.. Back substitution and iterative refinement

 iparm(8) = 2 ! max numbers of iterative refinement steps

 phase = 33 ! only factorization

 do i = 1, n

 b(i) = 1.d0

 end do

 CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,

 1 idum, nrhs, iparm, msglvl, b, x, error)

 WRITE(*,*) 'Solve completed ... '

 WRITE(*,*) 'The solution of the system is '

 DO i = 1, n

 WRITE(*,*) ' x(',i,') = ', x(i)

 END DO

C.. Termination and release of memory

 phase = -1 ! release internal memory

 CALL pardiso (pt, maxfct, mnum, mtype, phase, n, ddum, idum, idum,

 1 idum, nrhs, iparm, msglvl, ddum, ddum, error)

 END

C-22

C Intel® Math Kernel Library Reference Manual

Example C-9 Example pardiso_unsym.c for Unsymmetric Linear Systems

/*

*
* Copyright(C) 2004 Intel Corporation. All Rights Reserved.
* The source code contained or described herein and all documents related to
* the source code ("Material") are owned by Intel Corporation or its suppliers
* or licensors. Title to the Material remains with Intel Corporation or its
* suppliers and licensors. The Material contains trade secrets and proprietary
* and confidential information of Intel or its suppliers and licensors. The
* Material is protected by worldwide copyright and trade secret laws and
* treaty provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission.
* No license under any patent, copyright, trade secret or other intellectual
* property right is granted to or conferred upon you by disclosure or delivery
* of the Materials, either expressly, by implication, inducement, estoppel or
* otherwise. Any license under such intellectual property rights must be
* express and approved by Intel in writing.
*

*
* Content : MKL DSS C example
*

*
*/

/* -- */

/* Example program to show the use of the "PARDISO" routine */

/* on symmetric linear systems */

/* -- */

/* This program can be downloaded from the following site: */

/* http://www.computational.unibas.ch/cs/scicomp */

/* */

/* (C) Olaf Schenk, Department of Computer Science, */

/* University of Basel, Switzerland. */

/* Email: olaf.schenk@unibas.ch */

/* -- */

#include <stdio.h>

Code Examples C

C-23

#include <stdlib.h>

#include <math.h>

extern int omp_get_max_threads();

/* PARDISO prototype. */

#if defined(_WIN32) || defined(_WIN64)

#define pardiso_ PARDISO

#else

#define PARDISO pardiso_

#endif

extern int PARDISO

 (void *, int *, int *, int *, int *, int *,

 double *, int *, int *, int *, int *, int *,

 int *, double *, double *, int *);

int main(void) {

 /* Matrix data. */

 int n = 5;

 int ia[6] = { 1, 4, 6, 9, 12, 14 };

 int ja[13] = { 1, 2, 4,

 1, 2,

 3, 4, 5,

 1, 3, 4,

 2, 5 };

 double a[18] = { 1.0, -1.0, -3.0,

 -2.0, 5.0,

 4.0, 6.0, 4.0,

 -4.0, 2.0, 7.0,

 8.0, -5.0 };

 int mtype = 11; /* Real unsymmetric matrix */

 /* RHS and solution vectors. */

 double b[5], x[5];

 int nrhs = 1; /* Number of right hand sides. */

 /* Internal solver memory pointer pt, */

C-24

C Intel® Math Kernel Library Reference Manual

 /* 32-bit: int pt[64]; 64-bit: long int pt[64] */

 /* or void *pt[64] should be OK on both architectures */

 void *pt[64];

 /* Pardiso control parameters. */

 int iparm[64];

 int maxfct, mnum, phase, error, msglvl;

 /* Auxiliary variables. */

 int i;

 double ddum; /* Double dummy */

 int idum; /* Integer dummy. */

/* -- */

/* .. Setup Pardiso control parameters. */

/* -- */

 for (i = 0; i < 64; i++) {

 iparm[i] = 0;

 }

 iparm[0] = 1; /* No solver default */

 iparm[1] = 2; /* Fill-in reordering from METIS */

 /* Numbers of processors, value of OMP_NUM_THREADS */

 iparm[2] = omp_get_max_threads();

 iparm[3] = 0; /* No iterative-direct algorithm */

 iparm[4] = 0; /* No user fill-in reducing permutation */

 iparm[5] = 0; /* Write solution into x */

 iparm[6] = 0; /* Not in use */

 iparm[7] = 2; /* Max numbers of iterative refinement steps */

 iparm[8] = 0; /* Not in use */

 iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */

 iparm[10] = 1; /* Use nonsymmetric permutation and scaling MPS */

 iparm[11] = 0; /* Not in use */

 iparm[12] = 0; /* Not in use */

 iparm[13] = 0; /* Output: Number of perturbed pivots */

 iparm[14] = 0; /* Not in use */

 iparm[15] = 0; /* Not in use */

Code Examples C

C-25

 iparm[16] = 0; /* Not in use */

 iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */

 iparm[18] = -1; /* Output: Mflops for LU factorization */

 iparm[19] = 0; /* Output: Numbers of CG Iterations */

 maxfct = 1; /* Maximum number of numerical factorizations. */

 mnum = 1; /* Which factorization to use. */

 msglvl = 1; /* Print statistical information in file */

 error = 0; /* Initialize error flag */

/* -- */

/* .. Initialize the internal solver memory pointer. This is only */

/* necessary for the FIRST call of the PARDISO solver. */

/* -- */

 for (i = 0; i < 64; i++) {

 pt[i] = 0;

 }

/* -- */

/* .. Reordering and Symbolic Factorization. This step also allocates */

/* all memory that is necessary for the factorization. */

/* -- */

 phase = 11;

 PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

 &n, a, ia, ja, &idum, &nrhs,

 iparm, &msglvl, &ddum, &ddum, &error);

 if (error != 0) {

 printf("\nERROR during symbolic factorization: %d", error);

 exit(1);

 }

 printf("\nReordering completed ... ");

 printf("\nNumber of nonzeros in factors = %d", iparm[17]);

 printf("\nNumber of factorization MFLOPS = %d", iparm[18]);

/* -- */

/* .. Numerical factorization. */

/* -- */

C-26

C Intel® Math Kernel Library Reference Manual

 phase = 22;

 PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

 &n, a, ia, ja, &idum, &nrhs,

 iparm, &msglvl, &ddum, &ddum, &error);

 if (error != 0) {

 printf("\nERROR during numerical factorization: %d", error);

 exit(2);

 }

 printf("\nFactorization completed ... ");

/* -- */

/* .. Back substitution and iterative refinement. */

/* -- */

 phase = 33;

 iparm[7] = 2; /* Max numbers of iterative refinement steps. */

 /* Set right hand side to one. */

 for (i = 0; i < n; i++) {

 b[i] = 1;

 }

 PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

 &n, a, ia, ja, &idum, &nrhs,

 iparm, &msglvl, b, x, &error);

 if (error != 0) {

 printf("\nERROR during solution: %d", error);

 exit(3);

 }

 printf("\nSolve completed ... ");

 printf("\nThe solution of the system is: ");

 for (i = 0; i < n; i++) {

 printf("\n x [%d] = % f", i, x[i]);

 }

 printf ("\n");

/* -- */

/* .. Termination and release of memory. */

Code Examples C

C-27

/* -- */

 phase = -1; /* Release internal memory. */

 PARDISO (pt, &maxfct, &mnum, &mtype, &phase,

 &n, &ddum, ia, ja, &idum, &nrhs,

 iparm, &msglvl, &ddum, &ddum, &error);

 return 0;

}

Direct Sparse Solver Code Examples
This section contains example code in Fortran 77, Fortran 90 and C. For description of the sparse
solver routines used in this code, refer to“Direct Sparse Solver (DSS) Interface Routines” in
Chapter 8 of the manual.
The example code solves the equations presented in Direct Method section of Appendix A -
a symmetric positive definite system of equations Ax = b with a sparse matrix, where

A = and B =

Example Results for Symmetric Systems

Upon successful execution of the solver, the determinant and the result of the solution array are as
follows

pow of determinant is 0.000

base of determinant is 2.250

Determinant is 2.250

Solution Array: -326.333 983.000 163.417 398.000 61.500

Example C-10 Fortran 77 Example to Solve Symmetric Positive Definite System

*
* Copyright(C) 2001-2004 Intel Corporation. All Rights Reserved.
* The source code contained or described herein and all documents related to
* the source code ("Material") are owned by Intel Corporation or its suppliers
* or licensors. Title to the Material remains with Intel Corporation or its
* suppliers and licensors. The Material contains trade secrets and proprietary

9 1.5 6 0.75 3

1.5 0.5 0 0 0

6 0 12 0 0

0.75 0 0 0.625 0

3 0 0 0 16

1

2

3

4

5

C-28

C Intel® Math Kernel Library Reference Manual

* and confidential information of Intel or its suppliers and licensors. The
* Material is protected by worldwide copyright and trade secret laws and
* treaty provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission.
* No license under any patent, copyright, trade secret or other intellectual
* property right is granted to or conferred upon you by disclosure or delivery
* of the Materials, either expressly, by implication, inducement, estoppel or
* otherwise. Any license under such intellectual property rights must be
* express and approved by Intel in writing.
*

*
* Content : Intel MKL DSS Fortran-77 example
*

*
C---
C Example program for solving symmetric positive definite system of
C equations.
C---
 PROGRAM solver_f77_test
 IMPLICIT NONE
 INCLUDE 'mkl_dss.f77'
C---
C Define the array and rhs vectors
C---
 INTEGER nRows, nCols, nNonZeros, i, nRhs
 PARAMETER (nRows = 5,
 1 nCols = 5,
 2 nNonZeros = 9,
 3 nRhs = 1)
 INTEGER rowIndex(nRows + 1), columns(nNonZeros)
 DOUBLE PRECISION values(nNonZeros), rhs(nRows)
 DATA rowIndex / 1, 6, 7, 8, 9, 10 /
 DATA columns / 1, 2, 3, 4, 5, 2, 3, 4, 5 /

 DATA values / 9, 1.5, 6, .75, 3, 0.5, 12, .625, 16 /

 DATA rhs / 1, 2, 3, 4, 5 /

C---
C Allocate storage for the solver handle and the solution vector
C---
 DOUBLE PRECISION solution(nRows)
 INTEGER*8 handle

Code Examples C

C-29

 INTEGER error
 CHARACTER*15 statIn
 DOUBLE PRECISION statOut(5)
 INTEGER bufLen
 PARAMETER(bufLen = 20)
 INTEGER buff(bufLen)
C---
C Initialize the solver
C---
 error = dss_create(handle, MKL_DSS_DEFAULTS)
 IF (error .NE. MKL_DSS_SUCCESS) GOTO 999
C---
C Define the non-zero structure of the matrix
C---
 error = dss_define_structure(handle, MKL_DSS_SYMMETRIC,
 & rowIndex, nRows, nCols, columns, nNonZeros)
 IF (error .NE. MKL_DSS_SUCCESS) GOTO 999
C---
C Reorder the matrix
C---
 error = dss_reorder(handle, MKL_DSS_DEFAULTS, 0)
 IF (error .NE. MKL_DSS_SUCCESS) GOTO 999
C---
C Factor the matrix
C---
 error = dss_factor_real(handle,
 & MKL_DSS_DEFAULTS, VALUES)
 IF (error .NE. MKL_DSS_SUCCESS) GOTO 999
C---
C Get the solution vector
C---
 error = dss_solve_real(handle, MKL_DSS_DEFAULTS,
 & rhs, nRhs, solution)
 IF (error .NE. MKL_DSS_SUCCESS) GOTO 999
C---
C Print Determinant of the matrix
C---
 statIn = 'determinant'
 call mkl_cvt_to_null_terminated_str(buff,bufLen,statIn)
 error = dss_statistics(handle, MKL_DSS_DEFAULTS,
 & buff,statOut)
 WRITE(*,"(' pow of determinant is ', 5(F10.3))") statOut(1)
 WRITE(*,"(' base of determinant is ', 5(F10.3))") statOut(2)
 WRITE(*,"(' Determinant is ', 5(F10.3))")(10**statOut(1))*

C-30

C Intel® Math Kernel Library Reference Manual

 & statOut(2)
C---
C Deallocate solver storage
C---
 error = dss_delete(handle, MKL_DSS_DEFAULTS)
 IF (error .NE. MKL_DSS_SUCCESS) GOTO 999
C---
C Print solution vector
C---
 WRITE(*,900) (solution(i), i = 1, nCols)
 900 FORMAT(' Solution Array: ',5(F10.3))
 GOTO 1000
 999 WRITE(*,*) "Solver returned error code ", error
 1000 END

Example C-11 C Example to Solve Symmetric Positive Definite System

/*

* Copyright(C) 2001-2004 Intel Corporation. All Rights Reserved.
* The source code contained or described herein and all documents related to
* the source code ("Material") are owned by Intel Corporation or its suppliers
* or licensors. Title to the Material remains with Intel Corporation or its
* suppliers and licensors. The Material contains trade secrets and proprietary
* and confidential information of Intel or its suppliers and licensors. The
* Material is protected by worldwide copyright and trade secret laws and
* treaty provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission.
* No license under any patent, copyright, trade secret or other intellectual
* property right is granted to or conferred upon you by disclosure or delivery
* of the Materials, either expressly, by implication, inducement, estoppel or
* otherwise. Any license under such intellectual property rights must be
* express and approved by Intel in writing.
*

*
* Content : Intel MKL DSS C example
*

*/
/*

Code Examples C

C-31

** Example program to solve symmetric positive definite system of equations.
*/
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include "mkl_dss.h"
/*
** Define the array and rhs vectors
*/
#define NROWS 5
#define NCOLS 5
#define NNONZEROS 9
#define NRHS 1
static const int nRows = NROWS ;
static const int nCols = NCOLS ;
static const int nNonZeros = NNONZEROS ;
static const int nRhs = NRHS ;
static _INTEGER_t rowIndex[NROWS+1] = { 1, 6, 7, 8, 9, 10 };
static _INTEGER_t columns[NNONZEROS] = { 1, 2, 3, 4, 5, 2, 3, 4, 5 };
static _DOUBLE_PRECISION_t values[NNONZEROS] = { 9, 1.5, 6, .75, 3, 0.5, 12, .625, 16 };
static _DOUBLE_PRECISION_t rhs[NCOLS] = { 1, 2, 3, 4, 5 };

int main() {
int i;
/* Allocate storage for the solver handle and the right-hand side. */
_DOUBLE_PRECISION_t solValues[NROWS];
_MKL_DSS_HANDLE_t handle;
_INTEGER_t error;
_CHARACTER_STR_t statIn[] = "determinant";
_DOUBLE_PRECISION_t statOut[5];
int opt = MKL_DSS_DEFAULTS;
int sym = MKL_DSS_SYMMETRIC;
int type = MKL_DSS_POSITIVE_DEFINITE;

/* --------------------- */
/* Initialize the solver */
/* --------------------- */

error = dss_create(handle, opt);
if (error != MKL_DSS_SUCCESS) goto printError;

/* --- */
/* Define the non-zero structure of the matrix */
/* --- */

error = dss_define_structure(
handle, sym, rowIndex, nRows, nCols,
columns, nNonZeros);

C-32

C Intel® Math Kernel Library Reference Manual

if (error != MKL_DSS_SUCCESS) goto printError;
/* ------------------ */
/* Reorder the matrix */
/* ------------------ */

error = dss_reorder(handle, opt, 0);
if (error != MKL_DSS_SUCCESS) goto printError;

/* ------------------ */
/* Factor the matrix */
/* ------------------ */

error = dss_factor_real(handle, type, values);
if (error != MKL_DSS_SUCCESS) goto printError;

/* ------------------------ */
/* Get the solution vector */
/* ------------------------ */

error = dss_solve_real(handle, opt, rhs, nRhs, solValues);
if (error != MKL_DSS_SUCCESS) goto printError;

/* ------------------------ */
/* Get the determinant */
/*--------------------------*/

error = dss_statistics(handle, opt, statIn, statOut);
if (error != MKL_DSS_SUCCESS) goto printError;

/*-------------------------*/
/* print determinant */
/*-------------------------*/

printf(" determinant power is %g \n", statOut[0]);
printf(" determinant base is %g \n", statOut[1]);
printf(" Determinant is %g \n", (pow(10.0,statOut[0]))*statOut[1]);

/* -------------------------- */
/* Deallocate solver storage */
/* -------------------------- */

error = dss_delete(handle, opt);
if (error != MKL_DSS_SUCCESS) goto printError;

/* ---------------------- */
/* Print solution vector */
/* ---------------------- */

printf(" Solution array: ");
for(i = 0; i< nCols; i++)

printf(" %g", solValues[i]);
printf("\n");
exit(0);

printError:
printf("Solver returned error code %d\n", error);
exit(1);

}

Code Examples C

C-33

Example C-12 Fortran 90 Example to Solve Symmetric Positive Definite System

!**
*
! Copyright(C) 2001-2004 Intel Corporation. All Rights Reserved.
! The source code contained or described herein and all documents related to
! the source code ("Material") are owned by Intel Corporation or its suppliers
! or licensors. Title to the Material remains with Intel Corporation or its
! suppliers and licensors. The Material contains trade secrets and proprietary
! and confidential information of Intel or its suppliers and licensors. The
! Material is protected by worldwide copyright and trade secret laws and
! treaty provisions. No part of the Material may be used, copied, reproduced,
! modified, published, uploaded, posted, transmitted, distributed or disclosed
! in any way without Intel's prior express written permission.
! No license under any patent, copyright, trade secret or other intellectual
! property right is granted to or conferred upon you by disclosure or delivery
! of the Materials, either expressly, by implication, inducement, estoppel or
! otherwise. Any license under such intellectual property rights must be
! express and approved by Intel in writing.
!
!**
*
! Content : Intel MKL DSS Fortran-90 example
!
!**
*
!--
!
! Example program for solving a symmetric positive definite system of
! equations.
!
!--
INCLUDE 'mkl_dss.f90' ! Include the standard DSS "header file."
PROGRAM solver_f90_test
use mkl_dss
IMPLICIT NONE
INTEGER, PARAMETER :: dp = KIND(1.0D0)
INTEGER :: error
INTEGER :: i
INTEGER, PARAMETER :: bufLen = 20
! Define the data arrays and the solution and rhs vectors.
INTEGER, ALLOCATABLE :: columns(:)
INTEGER :: nCols
INTEGER :: nNonZeros

C-34

C Intel® Math Kernel Library Reference Manual

INTEGER :: nRhs
INTEGER :: nRows
REAL(KIND=DP), ALLOCATABLE :: rhs(:)
INTEGER, ALLOCATABLE :: rowIndex(:)
REAL(KIND=DP), ALLOCATABLE :: solution(:)
REAL(KIND=DP), ALLOCATABLE :: values(:)
TYPE(MKL_DSS_HANDLE) :: handle ! Allocate storage for the solver handle.
REAL(KIND=DP),ALLOCATABLE::statOUt(:)
CHARACTER*15 statIn
INTEGER perm(1)
INTEGER buff(bufLen)
EXTERNAL MKL_CVT_TO_NULL_TERMINATED_STR
! Set the problem to be solved.
nRows = 5
nCols = 5
nNonZeros = 9
nRhs = 1
perm(1) = 0
ALLOCATE(rowIndex(nRows + 1))
rowIndex = (/ 1, 6, 7, 8, 9, 10 /)
ALLOCATE(columns(nNonZeros))
columns = (/ 1, 2, 3, 4, 5, 2, 3, 4, 5 /)
ALLOCATE(values(nNonZeros))
values = (/ 9.0_DP, 1.5_DP, 6.0_DP, 0.75_DP, 3.0_DP, 0.5_DP, 12.0_DP, &
& 0.625_DP, 16.0_DP /)
ALLOCATE(rhs(nRows))
rhs = (/ 1.0_DP, 2.0_DP, 3.0_DP, 4.0_DP, 5.0_DP /)
! Initialize the solver.
error = dss_create(handle, MKL_DSS_DEFAULTS)
IF (error /= MKL_DSS_SUCCESS) GOTO 999
! Define the non-zero structure of the matrix.
error = dss_define_structure(handle, MKL_DSS_SYMMETRIC, rowIndex, nRows, &
& nCols, columns, nNonZeros)
IF (error /= MKL_DSS_SUCCESS) GOTO 999
! Reorder the matrix.
error = dss_reorder(handle, MKL_DSS_DEFAULTS, perm)
IF (error /= MKL_DSS_SUCCESS) GOTO 999
! Factor the matrix.
error = dss_factor_real(handle, MKL_DSS_DEFAULTS, values)
IF (error /= MKL_DSS_SUCCESS) GOTO 999
! Allocate the solution vector and solve the problem.
ALLOCATE(solution(nRows))
error = dss_solve_real(handle, MKL_DSS_DEFAULTS, rhs, nRhs, solution)
IF (error /= MKL_DSS_SUCCESS) GOTO 999

Code Examples C

C-35

! Print Out the determinant of the matrix
ALLOCATE(statOut(5))
statIn = 'determinant'
call mkl_cvt_to_null_terminated_str(buff,bufLen,statIn);
error = dss_statistics(handle, MKL_DSS_DEFAULTS, buff, statOut)
IF (error /= MKL_DSS_SUCCESS) GOTO 999
WRITE(*,"('pow of determinant is '(5F10.3))") (statOut(1))
WRITE(*,"('base of determinant is '(5F10.3))") (statOut(2))
WRITE(*,"('Determinant is '(5F10.3))") ((10**statOut(1))*statOut(2))
! Deallocate solver storage and various local arrays.
error = dss_delete(handle, MKL_DSS_DEFAULTS)
IF (error /= MKL_DSS_SUCCESS) GOTO 999
IF (ALLOCATED(rowIndex)) DEALLOCATE(rowIndex)
IF (ALLOCATED(columns)) DEALLOCATE(columns)
IF (ALLOCATED(values)) DEALLOCATE(values)
IF (ALLOCATED(rhs)) DEALLOCATE(rhs)
IF (ALLOCATED(statOut)) DEALLOCATE(statOut)
! Print the solution vector, deallocate it and exit
WRITE(*,"('Solution Array: '(5F10.3))") (solution(i), i = 1, nCols)
IF (ALLOCATED(solution)) DEALLOCATE(solution)
GOTO 1000
! Print an error message and exit
999 WRITE(*,*) "Solver returned error code ", error
1000 CONTINUE
END PROGRAM solver_f90_test

Iterative Sparse Solver Code Example
This section contains example code in Fortran 77. For description of the iterative sparse solver
routines based on the reverse communication interface (RCI ISS) used in this code, refer to
“Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS)” in Chapter 8 of
the manual.

Example of Use RCI (Preconditioned) Conjugate Gradient Solver

Example results for symmetric positive definite systems. Upon successful execution of the solver,
the result of the solution array is as follows:

The system is successfully solved
 The following solution obtained
 1.000 0.000 1.000 0.000
 1.000 0.000 1.000 0.000
 Expected solution

C-36

C Intel® Math Kernel Library Reference Manual

 1.000 0.000 1.000 0.000
 1.000 0.000 1.000 0.000
 Number of iterations: 8

Example C-13 Fortran 77 Example to Solve Symmetric Positive Definite System

**

*
* Copyright(C) 2001-2005 Intel Corporation. All Rights Reserved.
* The source code contained or described herein and all documents related to
* the source code ("Material") are owned by Intel Corporation or its suppliers
* or licensors. Title to the Material remains with Intel Corporation or its
* suppliers and licensors. The Material contains trade secrets and proprietary
* and confidential information of Intel or its suppliers and licensors. The
* Material is protected by worldwide copyright and trade secret laws and
* treaty provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission.
* No license under any patent, copyright, trade secret or other intellectual
* property right is granted to or conferred upon you by disclosure or delivery
* of the Materials, either expressly, by implication, inducement, estoppel or
* otherwise. Any license under such intellectual property rights must be
* express and approved by Intel in writing.
*
**
*
* Content : Intel MKL RCI (P)CG Fortran-77 example
*
**
*
C---
C Example program for solving symmetric positive definite system of
C equations.
C---
 PROGRAM rci_pcg_f77_test
 IMPLICIT NONE

C---
C Define arrays for the upper triangle of the coefficient matrix and rhs vector
C Compressed sparse row storage is used for sparse representation
C---
 INTEGER N, RCI_request, itercount, i
 PARAMETER (N=8)
 DOUBLE PRECISION rhs(N), solution(N)

Code Examples C

C-37

 INTEGER ia(9)

 INTEGER ja(18)

 DOUBLE PRECISION a(18)

C.. Fill all arrays containing matrix data.

 DATA ia /1,5,8,10,12,15,17,18,19/

 DATA ja

 1 /1, 3, 6,7,

 2 2, 3, 5,

 3 3, 8,

 4 4, 7,

 5 5,6,7,

 6 6, 8,

 7 7,

 8 8/

 DATA a

 1 /7.D0, 1.D0, 2.D0, 7.D0,

 2 -4.D0,8.D0, 2.D0,

 3 1.D0, 5.D0,

 4 7.D0, 9.D0,

 5 5.D0, 1.D0, 5.D0,

 6 -1.D0, 5.D0,

 7 11.D0,
 8 5.D0/
C---
C Allocate storage for the solver ?par and the initial solution vector
C---
 INTEGER length
 PARAMETER (length=128)
 DOUBLE PRECISION expected(N)
 DATA expected/1.D0, 0.D0, 1.D0, 0.D0, 1.D0, 0.D0, 1.D0, 0.D0/
 INTEGER ipar(length)
 DOUBLE PRECISION dpar(length),tmp(N,4)
C---
C Initialize the right hand side through matrix-vector product
C---
 CALL DCSRMV_SY('U', N, A, IA, JA, expected, rhs)

Example C-13 Fortran 77 Example to Solve Symmetric Positive Definite System (continued)

C-38

C Intel® Math Kernel Library Reference Manual

C---
C Initialize the initial guess
C---
 DO I=1, N
 solution(I)=1.D0
 ENDDO
C---
C Initialize the solver
C---
 CALL dcg_init(N,solution,rhs,RCI_request,ipar,dpar,tmp)
 IF (RCI_request .NE. 0) GOTO 999
C---
C Set the desired parameters:
C LOGICAL parameters:
C do residual stopping test
C do not request for the user defined stopping test
C do Preconditioned Conjugate Gradient iterations
C DOUBLE PRECISION parameters
C set the relative tolerance to 1.0D-5 instead of default value 1.0D-6
C---
 ipar(9)=1
 ipar(10)=0
 ipar(11)=1
 dpar(1)=1.D-5
C---
C Check the correctness and consistency of the newly set parameters
C---
 CALL dcg_check(N,solution,rhs,RCI_request,ipar,dpar,tmp)
 IF (RCI_request .NE. 0) GOTO 999
C---
C Compute the solution by RCI PCG solver
C Reverse Communications starts here
C---
1 CALL dcg(N,solution,rhs,RCI_request,ipar,dpar,tmp)
C---
C If RCI_request=0, then the solution was found with the required precision
C---
 IF (RCI_request .EQ. 0) THEN
 GOTO 700
C---
C If RCI_request=1, then compute the vector A*tmp(:,1)
C and put the result in vector tmp(:,2)
C---

Example C-13 Fortran 77 Example to Solve Symmetric Positive Definite System (continued)

Code Examples C

C-39

 ELSE IF (RCI_request .EQ. 1) THEN
 CALL DCSRMV_SY('U', N, A, IA, JA, TMP, TMP(1, 2))
 GOTO 1
C---
C If RCI_request=3, then compute vector preconditioner matrix on tmp(:,3)
C and put the result in vector tmp(:,4)
C---
 ELSE IF (RCI_request .EQ. 3) THEN
 CALL DCOPY(N, TMP(1,3),1, TMP(1, 4), 1)
 GOTO 1
 ELSE
C---
C If RCI_request=anything else, then dcg subroutine failed
C to compute the solution vector: solution(N)
C---
 GOTO 999
 ENDIF
C---
C Reverse Communication ends here
C Get the current iteration number
C---
700 CALL dcg_get(N,solution,rhs,RCI_request,ipar,dpar,tmp,
 & itercount)
C---
C Print solution vector: solution(N) and number of iterations: itercount
C---
 WRITE(*, *) ' The system is successfully solved '
 WRITE(*, *) ' The following solution obtained '
 WRITE(*,800)(solution(i),i =1,N)
 WRITE(*, *) ' Expected solution '
 WRITE(*,800)(expected(i),i =1,N)
800 FORMAT(4(F10.3))
 WRITE(*,900)(itercount)
900 FORMAT(' Number of iterations: ',1(I2))
 GOTO 1000
999 WRITE(*,*) 'Solver returned error code ', RCI_request
 STOP
1000 CONTINUE
 read *
 END

Example C-13 Fortran 77 Example to Solve Symmetric Positive Definite System (continued)

C-40

C Intel® Math Kernel Library Reference Manual

DFT Code Examples
This section presents code examples of functions described in the “DFT Functions” and “Cluster
DFT Functions” sections in the “Fourier Transform Functions” chapter. The examples are grouped
in subsections Examples for DFT Functions, Examples of Using Multi-Threading for DFT
Computation, and Examples for Cluster DFT Functions.

Examples for DFT Functions

Here are the examples of two one-dimensional computations. These examples use the default
settings for all of the configuration parameters, which are specified in “Configuration Settings”.

Example C-14 One-Dimensional DFT (Fortran-interface)

! Fortran example.

! 1D complex to complex, and real to conjugate even

Use MKL_DFTI

Complex :: X(32)

Real :: Y(34)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle

Integer :: Status

...put input data into X(1),...,X(32); Y(1),...,Y(32)

! Perform a complex to complex transform

Status = DftiCreateDescriptor(My_Desc1_Handle, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 32)

Status = DftiCommitDescriptor(My_Desc1_Handle)
Status = DftiComputeForward(My_Desc1_Handle, X)
Status = DftiFreeDescriptor(My_Desc1_Handle)
! result is given by {X(1),X(2),...,X(32)}

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,
 DFTI_REAL, 1, 32)
Status = DftiCommitDescriptor(My_Desc2_Handle)

Status = DftiComputeForward(My_Desc2_Handle, Y)

Status = DftiFreeDescriptor(My_Desc2_Handle)

! result is given in CCS format.

Code Examples C

C-41

The following is an example of two simple two-dimensional transforms. Notice that the data and
result parameters in computation functions are all declared as assumed-size rank-1 array
DIMENSION(0:*). Therefore two-dimensional array must be transformed to one-dimensional
array by EQUIVALENCE statement or other facilities of Fortran.

Example C-15 One-Dimensional DFT (C-interface)

/* C example, float _Complex is defined in C9X */

#include "mkl_dfti.h"

float _Complex x[32];

float y[34];

DFTI_DESCRIPTOR *my_desc1_handle, *my_desc2_handle;

/* or alternatively

DFTI_DESCRIPTOR_HANDLE my_desc1_handle, my_desc2_handle; */

long status;

...put input data into x[0],...,x[31]; y[0],...,y[31]

status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 32);

status = DftiCommitDescriptor(my_desc1_handle);

status = DftiComputeForward(my_desc1_handle, x);

status = DftiFreeDescriptor(&my_desc1_handle);

/* result is x[0], ..., x[31] */

status = DftiCreateDescriptor(&my_desc2_handle, DFTI_SINGLE,
 DFTI_REAL, 1, 32);

status = DftiCommitDescriptor(my_desc2_handle);

status = DftiComputeForward(my_desc2_handle, y);

status = DftiFreeDescriptor(&my_desc2_handle);

/* result is given in CCS format */

C-42

C Intel® Math Kernel Library Reference Manual

Example C-16 Two-Dimensional DFT (Fortran-interface)

! Fortran example.

! 2D complex to complex, and real to conjugate even

Use MKL_DFTI

Complex :: X_2D(32,100)

Real :: Y_2D(34, 102)

Complex :: X(3200)

Real :: Y(3468)

Equivalence (X_2D, X)
Equivalence (Y_2D, Y)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle

Integer :: Status, L(2)

...put input data into X_2D(j,k), Y_2D(j,k), 1<=j=32,1<=k<=100

...set L(1) = 32, L(2) = 100

...the transform is a 32-by-100

! Perform a complex to complex transform

Status = DftiCreateDescriptor(My_Desc1_Handle, DFTI_SINGLE,
 DFTI_COMPLEX, 2, L)

Status = DftiCommitDescriptor(My_Desc1_Handle)

Status = DftiComputeForward(My_Desc1_Handle, X)

Status = DftiFreeDescriptor(My_Desc1_Handle)

! result is given by X_2D(j,k), 1<=j<=32, 1<=k<=100

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,
 DFTI_REAL, 2, L)

Status = DftiCommitDescriptor(My_Desc2_Handle)

Status = DftiComputeForward(My_Desc2_Handle, Y)

Status = DftiFreeDescriptor(My_Desc2_Handle)

! result is given by the complex value z(j,k) 1<=j<=32; 1<=k<=100

! and is stored in CCS format

Code Examples C

C-43

Example C-17 Two-Dimensional DFT (C-interface)

/* C example */

#include "mkl_dfti.h"

float _Complex x[32][100];

float y[34][102];

DFTI_DESCRIPTOR_HANDLE my_desc1_handle, my_desc2_handle;

/* or alternatively

DFTI_DESCRIPTOR *my_desc1_handle, *my_desc2_handle; */

long status, l[2];

...put input data into x[j][k] 0<=j<=31, 0<=k<=99

...put input data into y[j][k] 0<=j<=31, 0<=k<=99

l[0] = 32; l[1] = 100;

status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,
 DFTI_COMPLEX, 2, l);

status = DftiCommitDescriptor(my_desc1_handle);

status = DftiComputeForward(my_desc1_handle, x);

status = DftiFreeDescriptor(&my_desc1_handle);

/* result is the complex value x[j][k], 0<=j<=31, 0<=k<=99 */

status = DftiCreateDescriptor(&my_desc2_handle, DFTI_SINGLE,
 DFTI_REAL, 2, l);

status = DftiCommitDescriptor(my_desc2_handle);

status = DftiComputeForward(my_desc2_handle, y);

status = DftiFreeDescriptor(&my_desc2_handle);

/* result is the complex value z(j,k) 0<=j<=31; 0<=k<=99

/* and is stored in CCS format */

C-44

C Intel® Math Kernel Library Reference Manual

The following examples demonstrate how you can change the default configuration settings by
using the DftiSetValue function.

For instance, to preserve the input data after the DFT computation, the configuration of the
DFTI_PLACEMENT should be changed to "not in place" from the default choice of "in place."

The code below illustrates how this can be done:

Example C-18 Changing Default Settings (Fortran)

! Fortran example

! 1D complex to complex, not in place

Use MKL_DFTI

Complex :: X_in(32), X_out(32)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle

Integer :: Status

...put input data into X_in(j), 1<=j<=32

Status = DftiCreateDescriptor(My_Desc_Handle, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 32)

Status = DftiSetValue(My_Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor(My_Desc_Handle)

Status = DftiComputeForward(My_Desc_Handle, X_in, X_out)

Status = DftiFreeDescriptor (My_Desc_Handle)

! result is X_out(1),X_out(2),...,X_out(32)

Code Examples C

C-45

Example C-19 Changing Default Settings (C)

/* C example */

#include "mkl_dfti.h"

float _Complex x_in[32], x_out[32];

DFTI_DESCRIPTOR_HANDLE my_desc_handle;

/* or alternatively

DFTI_DESCRIPTOR *my_desc_handle; */

long status;

...put input data into x_in[j], 0 <= j < 32

status = DftiCreateDescriptor(&my_desc_handle, DFTI_SINGLE,

DFTI_COMPLEX, 1, 32);

status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT,
DFTI_NOT_INPLACE);

status = DftiCommitDescriptor(my_desc_handle);

status = DftiComputeForward(my_desc_handle, x_in, x_out);

status = DftiFreeDescriptor(&my_desc_handle);

/* result is x_out[0], x_out[1], ..., x_out[31] */

C-46

C Intel® Math Kernel Library Reference Manual

The Example C-20 below illustrates the use of the status checking functions described in
 Chapter 11.

Example C-20 Using Status Checking Function

from C language:

DFTI_DESCRIPTOR_HANDLE desc;
long status, class_error, value;
char* error_message;
 . . . descriptor creation and other code
status = DftiGetValue(desc, DFTI_PRECISION, &value); //
//or any DFTI function

class_error = DftiErrorClass(status, DFTI_NO_ERROR);
if (! class_error) {
 printf ("DftiGetValue() fixes the wrong situation and
 returns the corresponding value n");
 error_message = DftiErrorMessage(status);
 printf("error_message = %s \n", error_message);
}
. . .
from Fortran:

type(DFTI_DESCRIPTOR), POINTER :: desc
integer value, status
character(DFTI_MAX_MESSAGE_LENGTH) error_message
logical class_error
 . . . descriptor creation and other code
status = DftiGetValue(desc, DFTI_PRECISION, value)
class_error = DftiErrorClass(status, DFTI_NO_ERROR)
if (.not. class_error) then
 print *, ' DftiGetValue() fixes the wrong situation and
 returns the corresponding value '
 error_message = DftiErrorMessage(status)
 print *, 'error_message = ', error_message
endif

Code Examples C

C-47

Below is an example where a 20-by-40 two-dimensional DFT is computed explicitly using
one-dimensional transforms. Notice that the data and result parameters in computation functions
are all declared as assumed-size rank-1 array DIMENSION(0:*). Therefore two-dimensional
array must be transformed to one-dimensional array by EQUIVALENCE statement or other facilities
of Fortran.

! Fortran

Complex :: X_2D(20,40),

Complex :: X(800)

Equivalence (X_2D, X)

INTEGER :: STRIDE(2)

type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim1

type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim2

...

Status = DftiCreateDescriptor(Desc_Handle_Dim1, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 20)

Status = DftiCreateDescriptor(Desc_Handle_Dim2, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 40)

! perform 40 one-dimensional transforms along 1st dimension

Status = DftiSetValue(Desc_Handle_Dim1, DFTI_NUMBER_OF_TRANSFORMS, 40)

Status = DftiSetValue(Desc_Handle_Dim1, DFTI_INPUT_DISTANCE, 20)

Status = DftiSetValue(Desc_Handle_Dim1, DFTI_OUTPUT_DISTANCE, 20)

Status = DftiCommitDescriptor(Desc_Handle_Dim1)

Status = DftiComputeForward(Desc_Handle_Dim1, X)

! perform 20 one-dimensional transforms along 2nd dimension

Stride(1) = 0; Stride(2) = 20

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_NUMBER_OF_TRANSFORMS, 20)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_INPUT_DISTANCE, 1)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_OUTPUT_DISTANCE, 1)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_INPUT_STRIDES, Stride)

Example C-21 Computing 2D DFT by One-Dimensional Transforms

C-48

C Intel® Math Kernel Library Reference Manual

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_OUTPUT_STRIDES, Stride)

Status = DftiCommitDescriptor(Desc_Handle_Dim2)

Status = DftiComputeForward(Desc_Handle_Dim2, X)
Status = DftiFreeDescriptor(Desc_Handle_Dim1)

Status = DftiFreeDescriptor(Desc_Handle_Dim2)

/* C */

float _Complex x[20][40];

long stride[2];

long status;

DFTI_DESCRIPTOR_HANDLE desc_handle_dim1;

DFTI_DESCRIPTOR_HANDLE desc_handle_dim2;

...

status = DftiCreateDescriptor(&desc_handle_dim1, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 20);

status = DftiCreateDescriptor(&desc_handle_dim2, DFTI_SINGLE,
 DFTI_COMPLEX, 1, 40);

/* perform 40 one-dimensional transforms along 1st dimension */

/* note that the 1st dimension data are not unit-stride */

stride[0] = 0; stride[1] = 40;

status = DftiSetValue(desc_handle_dim1, DFTI_NUMBER_OF_TRANSFORMS, 40);

status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_DISTANCE, 1);

status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT_DISTANCE, 1);

status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_STRIDES, stride);

status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT_STRIDES, stride);

status = DftiCommitDescriptor(desc_handle_dim1);

status = DftiComputeForward(desc_handle_dim1, x);

/* perform 20 one-dimensional transforms along 2nd dimension */

/* note that the 2nd dimension is unit stride */

status = DftiSetValue(desc_handle_dim2, DFTI_NUMBER_OF_TRANSFORMS, 20);

status = DftiSetValue(desc_handle_dim2, DFTI_INPUT_DISTANCE, 40);

status = DftiSetValue(desc_handle_dim2, DFTI_OUTPUT_DISTANCE, 40);

Code Examples C

C-49

status = DftiCommitDescriptor(desc_handle_dim2);

status = DftiComputeForward(desc_handle_dim2, x);

status = DftiFreeDescriptor(&Desc_Handle_Dim1);

status = DftiFreeDescriptor(&Desc_Handle_Dim2);

Examples of Using Multi-Threading for DFT Computation

The following example program shows how to employ internal threading in Intel MKL for DFT
computation (see case 1 in “Number of user threads”).

To specify the number of threads inside Intel MKL, use the following settings:

set OMP_NUM_THREADS = 1 for one-threaded mode;

set OMP_NUM_THREADS = 4 for multi-threaded mode.

Note that the configuration parameter DFTI_NUMBER_OF_USER_THREADS must be equal to its
default value 1.

#include "mkl_dfti.h"

void main () {

float x[200][100];

DFTI_DESCRIPTOR_HANDLE my_desc1_handle;

long status, len[2];

//...put input data into x[j][k] 0<=j<=199, 0<=k<=99

len[0] = 200; len[1] = 100;

status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,DFTI_REAL, 2,
len);

status = DftiCommitDescriptor(my_desc1_handle);

status = DftiComputeForward(my_desc1_handle, x);

status = DftiFreeDescriptor(&my_desc1_handle);

}

Example C-22 Using Intel MKL Internal Threading Mode

C-50

C Intel® Math Kernel Library Reference Manual

The following Example C-23 illustrates a parallel customer program with each descriptor instance
used only in a single thread (see case 2 in “Number of user threads”).

To specify the number of threads, use the following settings:

set MKL_SERIAL = yes (or YES) for single-threaded mode in Intel MKL (recommended);

set OMP_NUM_THREADS = 4 for multi-threaded mode in customer program.

The configuration parameter DFTI_NUMBER_OF_USER_THREADS must be equal to its default
value 1.

Note that in this example the program can be transformed to become single-threaded on the
customer level but using parallel mode within Intel MKL. To achieve this, you need to set the
parameter DFTI_NUMBER_OF_TRANSFORMS = 4 and to set the corresponding parameter
DFTI_INPUT_DISTANCE = 5000.

#include "mkl_dfti.h"

#include "omp.h"

void main ()

{

 float _Complex x[200][100];

 long len[2];

 //...put input data into x[j][k] 0<=j<=199, 0<=k<=99

 len[0] = 50; len[1] = 100;

 // each thread calculates real DFT for matrix (50*100)

 #pragma omp parallel

 {

 DFTI_DESCRIPTOR_HANDLE my_desc_handle;

 long myStatus;

 int myID = omp_get_thread_num ();

 myStatus = DftiCreateDescriptor (my_desc_handle, DFTI_SINGLE, DFTI_COMPLEX, 2, len);

Example C-23 Using Parallel Mode with Multiple Descriptors

Code Examples C

C-51

 myStatus = DftiCommitDescriptor (my_desc_handle);

 myStatus = DftiComputeForward (my_desc_handle, &x[myID * len[0] * len[1]);

 myStatus = DftiFreeDescriptor (&my_desc_handle);

 } /* End OpenMP parallel region */

}

The following Example C-24 illustrates a parallel customer program with a common descriptor
used in several threads (see case 3 in “Number of user threads”).

In this case the number of threads, as well as any other configuration parameter, must not be
changed after DFT initialization by the DftiCommitDescriptor() function is done.

// set number of threads inside Intel MKL:

//rem set MKL_SERIAL = YES - is not required since one-threaded mode for
Intel MKL is forced automatically

// set OMP_NUM_THREADS = 4 - multi-threaded mode for customer

#include "mkl_dfti.h"

#include "omp.h"

void main ()

{

 float _Complex x[200][100];

 long status;

 DFTI_DESCRIPTOR_HANDLE desc_handle;

 int nThread = omp_get_max_threads ();

 long len[2];

 //...put input data into x[j][k] 0<=j<=199, 0<=k<=99

 len[0] = 50; len[1] = 100;

 status = DftiCreateDescriptor (desc_handle, DFTI_SINGLE, DFTI_COMPLEX, 2, len);

 status = DftiSetValue (desc_handle, DFTI_NUMBER_OF_USER_THREADS, nThread);

Example C-24 Using Parallel Mode with a Common Descriptor

C-52

C Intel® Math Kernel Library Reference Manual

 status = DftiCommitDescriptor (desc_handle);

 // each thread calculates real DFT for matrix (50*100)

 #pragma omp parallel num_threads(nThread)

 {

 long myStatus;

 int myID = omp_get_thread_num ();

 myStatus = DftiComputeForward (desc_handle, &x[myID * len[0] * len[1]);

 } /* End OpenMP parallel region */

 status = DftiFreeDescriptor (&desc_handle);

}

The following are examples of real multi-dimensional out-of-place transforms with CCE format
storage of conjugate-even complex matrix. Example C-25 is two-dimensional transform in Fortran
interface. Example C-26 is three-dimensional transform in C interface. Notice that the data and
result parameters in computation functions are all declared as assumed-size rank-1 array
DIMENSION(0:*). Therefore two-dimensional array must be transformed to one-dimensional
array by EQUIVALENCE statement or other facilities of Fortran.

! Fortran example.

! 2D and real to conjugate even

Use MKL_DFTI

Real :: X_2D(32,100)

Complex :: Y_2D(17, 100) ! 17 = 32/2 + 1

Real :: X(3200)

Complex :: Y(1700)

Equivalence (X_2D, X)

Equivalence (Y_2D, Y)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle

Integer :: Status, L(2)

Example C-25 Two-Dimensional REAL DFT (Fortran-interface)

Code Examples C

C-53

Integer :: strides_out(3)

...put input data into X_2D(j,k), 1<=j=32,1<=k<=100

...set L(1) = 32, L(2) = 100

...set strides_out(1) = 0, strides_out(2) = 1, strides_out(3) = 17

...the transform is a 32-by-100

! Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc_Handle, DFTI_SINGLE,

DFTI_REAL, 2, L)

Status = DftiSetValue(My_Desc_Handle, DFTI_CONJUGATE_EVEN_STORAGE,
DFTI_COMPLEX_COMPLEX)

Status = DftiSetValue(My_Desc_Handle, DFTI_OUTPUT_STRIDES, strides_out)

Status = DftiCommitDescriptor(My_Desc_Handle)

Status = DftiComputeForward(My_Desc_Handle, X, Y)

Status = DftiFreeDescriptor(My_Desc_Handle)

! result is given by the complex value z(j,k) 1<=j<=32; 1<=k<=100 and

! is stored in complex matrix Y_2D in CCE format.

/* C example */

#include "mkl_dfti.h"

float x[32][100][19];

float _Complex y[32][100][10]; /* 10 = 19/2 + 1 */

DFTI_DESCRIPTOR_HANDLE my_desc_handle

/* or alternatively

DFTI_DESCRIPTOR *my_desc_handle */

long status, l[3];

long strides_out[4];

Example C-26 Three-Dimensional REAL DFT (C-interface)

C-54

C Intel® Math Kernel Library Reference Manual

...put input data into x[j][k][s] 0<=j<=31, 0<=k<=99, 0<=s<=18

l[0] = 32; l[1] = 100; l[2] = 19;

strides_out[0] = 0; strides_out[1] = 1000;

strides_out[2] = 10; strides_out[3] = 1;

status = DftiCreateDescriptor(&my_desc_handle, DFTI_SINGLE,

DFTI_REAL, 3, l);

Status = DftiSetValue(my_desc_handle, DFTI_CONJUGATE_EVEN_STORAGE,
DFTI_COMPLEX_COMPLEX);

Status = DftiSetValue(My_Desc_Handle, DFTI_OUTPUT_STRIDES, strides_out);

status = DftiCommitDescriptor(my_desc_handle);

status = DftiComputeForward(my_desc_handle, x, y);

status = DftiFreeDescriptor(&my_desc_handle);

/* result is the complex value z(j,k,s) 0<=j<=31; 0<=k<=99, 0<=s<=18

and is stored in complex matrix y in CCE format. */

Examples for Cluster DFT Functions

The section presents an example of in-place computation of forward and backward
two-dimensional Fourier transforms for double-precision complex data. The transforms are
computed using cluster DFT functions. The example is implemented in C (see C Implementation)
and Fortran (see Fortran Implementation).

Code Examples C

C-55

C Implementation

Example C-27 presents C code for the cluster DFT computation. Example C-28 and
Example C-29 contain subsidiary source code needed for the computation.

Example C-27 C Example of Two-dimensional Cluster DFT

/***
! INTEL CONFIDENTIAL
! Copyright(C) 2003-2005 Intel Corporation. All Rights Reserved.
! The source code contained or described herein and all documents related to
! the source code ("Material") are owned by Intel Corporation or its suppliers
! or licensors. Title to the Material remains with Intel Corporation or its
! suppliers and licensors. The Material contains trade secrets and proprietary
! and confidential information of Intel or its suppliers and licensors. The
! Material is protected by worldwide copyright and trade secret laws and
! treaty provisions. No part of the Material may be used, copied, reproduced,
! modified, published, uploaded, posted, transmitted, distributed or disclosed
! in any way without Intel's prior express written permission.
! No license under any patent, copyright, trade secret or other intellectual
! property right is granted to or conferred upon you by disclosure or delivery
! of the Materials, either expressly, by implication, inducement, estoppel or
! otherwise. Any license under such intellectual property rights must be
! express and approved by Intel in writing.
!
!***
! Content:
! MKL Cluster DFT interface example program (C-interface)
!
! Forward-Backward 2D complex transform for double precision data inplace.
!
!***

! Configuration parameters:
! DFTI_FORWARD_DOMAIN = DFTI_COMPLEX (obligatory)
! DFTI_PRECISION = DFTI_DOUBLE (obligatory)
! DFTI_DIMENSION = 2 (obligatory)
! DFTI_LENGTHS = { m, n} (obligatory)
! DFTI_FORWARD_SCALE = 1.0 (default)
! DFTI_BACKWARD_SCALE = 1.0/(m*n) (default=1.0)
!
!***
*/

C-56

C Intel® Math Kernel Library Reference Manual

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
#include "mkl_dfti_cluster.h"

#include "mkl_cdft_examples.h"

int main(int argc, char *argv[]) /* DM_COMPLEX_2D_DOUBLE_EX1 */
{
 mkl_double_complex *x_in;
 mkl_double_complex *x_exp;
 mkl_double_complex *ProcBuf;

 DFTI_DESCRIPTOR_DM_HANDLE Desc_Handle = 0;

 long m;
 long n;

 long Status;
 double Scale;
 long lengths[2];
 double maxerr;
 double eps = DOUBLE_EPS;

 int MPI_err;
 int MPI_nProc;
 int MPI_Rank;

 /*
 / Perform MPI initialization
 */
 MPI_err = MPI_Init(&argc, &argv);

 if(MPI_err != MPI_SUCCESS) {
printf(" MPI initialization error\n");
printf(" TEST FAILED\n");
return 1;

 }

 MPI_Comm_size(MPI_COMM_WORLD, &MPI_nProc);
 MPI_Comm_rank(MPI_COMM_WORLD, &MPI_Rank);
 if (MPI_Rank == 0) printf(" Program is running on %d processors\n", MPI_nProc);

Example C-27 C Example of Two-dimensional Cluster DFT (continued)

Code Examples C

C-57

 /*
 / Read input data from input file
 / m - size of transform along first dimension
 / n - size of transform along second dimension
 */
 if (MPI_Rank == 0) if(read_data_file_2d(argc, argv, &m, &n)) goto CLOSE_MPI;
 MPI_Bcast(&m,1,MPI_LONG_INT,0,MPI_COMM_WORLD);
 MPI_Bcast(&n,1,MPI_LONG_INT,0,MPI_COMM_WORLD);

 if(LEGEND_PRINT && (MPI_Rank == 0)) {
 printf("\n DM_COMPLEX_2D_DOUBLE_EX1 \n");
 printf(" Forward-Backward 2D complex transform for double precision data
inplace\n\n");
 printf(" Configuration parameters: \n\n");
 printf(" DFTI_FORWARD_DOMAIN = DFTI_COMPLEX \n");
 printf(" DFTI_PRECISION = DFTI_DOUBLE \n");
 printf(" DFTI_DIMENSION = 2 \n");
 printf(" DFTI_LENGTHS (MxN) = {%ld,%ld) \n", m, n);
 printf(" DFTI_FORWARD_SCALE = 1.0 \n");
 printf(" DFTI_BACKWARD_SCALE = 1.0/(m*n)\n\n");
 }

 if ((m%MPI_nProc != 0) && (n%MPI_nProc != 0)) {
if (MPI_Rank == 0) {
 printf(" M or N must be multiple of the number of processors\n");
 printf(" Set appropriate value of M or N in datafile or change MPI

configuration\n\n");
 printf(" TEST FAILED\n");
}
goto CLOSE_MPI;

 }

 lengths[0] = m;
 lengths[1] = n;

 /*
 / Allocate memory for dynamic arrays
 */
 x_in = (mkl_double_complex *)malloc(sizeof(mkl_double_complex)*m*n);
 x_exp = (mkl_double_complex *)malloc(sizeof(mkl_double_complex)*m*n);
 ProcBuf = (mkl_double_complex *)malloc(sizeof(mkl_double_complex)*m*n/MPI_nProc);

Example C-27 C Example of Two-dimensional Cluster DFT (continued)

C-58

C Intel® Math Kernel Library Reference Manual

 /*
 / Put input data and expected result
 */
 init_data_2d_z(x_in, m, n);
 memcpy(x_exp,x_in,sizeof(mkl_double_complex)*m*n);

 if(ADVANCED_DATA_PRINT && (MPI_Rank == 0)) {
 printf("\n INPUT X, 4 columns \n");

print_data_2d_z(x_in, m, n, 4);
 }

 /*
 / Create DftiDM descriptor for 2D double precision transform
 */
 Status = DftiCreateDescriptorDM(MPI_COMM_WORLD, &Desc_Handle, DFTI_DOUBLE,
 DFTI_COMPLEX, 2, lengths);
 if(! DftiErrorClass(Status, DFTI_NO_ERROR)){

if (MPI_Rank == 0) {
 dfti_example_status_print(Status);
 printf(" TEST FAILED\n");
}
goto FREE_MEM;

 }

 /*
 / Commit DftiDM descriptor
 */
 Status = DftiCommitDescriptorDM(Desc_Handle);
 if(! DftiErrorClass(Status, DFTI_NO_ERROR)){

if (MPI_Rank == 0) {
 dfti_example_status_print(Status);
 printf(" TEST FAILED\n");
}
goto FREE_DESCRIPTOR;

 }

Example C-27 C Example of Two-dimensional Cluster DFT (continued)

Code Examples C

C-59

 /*
 / Spread data among processors
 */
 Status = DftiFormInputDataDM(Desc_Handle, x_in, ProcBuf);
 if(! DftiErrorClass(Status, DFTI_NO_ERROR)){

if (MPI_Rank == 0) {
 dfti_example_status_print(Status);
 printf(" TEST FAILED\n");
}
goto FREE_DESCRIPTOR;

 }

 /*
 / Compute Forward transform
 */
 if (MPI_Rank == 0) printf("\n Compute DftiComputeForwardDM\n");
 Status = DftiComputeForwardDM(Desc_Handle, ProcBuf, NULL);
 /* NULL in third argument means inplace transform
 / It is equal to DftiComputeForwardDM(Desc_Handle, ProcBuf, ProcBuf)
 */

 if(! DftiErrorClass(Status, DFTI_NO_ERROR)){

if (MPI_Rank == 0) {
 dfti_example_status_print(Status);
 printf(" TEST FAILED\n");
}
goto FREE_DESCRIPTOR;

 }

 /*
 / Gather data among processors
 */
 Status = DftiFormOutputDataDM(Desc_Handle, ProcBuf, x_in);
 if(! DftiErrorClass(Status, DFTI_NO_ERROR)){

if (MPI_Rank == 0) {
 dfti_example_status_print(Status);
 printf(" TEST FAILED\n");
}
goto FREE_DESCRIPTOR;

 }

Example C-27 C Example of Two-dimensional Cluster DFT (continued)

C-60

C Intel® Math Kernel Library Reference Manual

 if(ADVANCED_DATA_PRINT && (MPI_Rank == 0)){
 printf("\n Forward result X, 4 columns \n");

print_data_2d_z(x_in, m, n, 4);
 }

 /*
 / Set Scale number for Backward transform
 */
 Scale = 1.0/(double)(m*n);
 if (MPI_Rank == 0) printf(" \n\n DFTI_BACKWARD_SCALE = 1/(m*n) \n");

 Status = DftiSetValueDM(Desc_Handle, DFTI_BACKWARD_SCALE, Scale);
 if(! DftiErrorClass(Status, DFTI_NO_ERROR)){

if (MPI_Rank == 0) {
 dfti_example_status_print(Status);
 printf(" TEST FAILED\n");
}
goto FREE_DESCRIPTOR;

 }

 /*
 / Commit DftiDM descriptor
 */
 Status = DftiCommitDescriptorDM(Desc_Handle);
 if(! DftiErrorClass(Status, DFTI_NO_ERROR)){

if (MPI_Rank == 0) {
 dfti_example_status_print(Status);
 printf(" TEST FAILED\n");
}
goto FREE_DESCRIPTOR;

 }

 /*
 / Spread data among processors
 */
 Status = DftiFormInputDataDM(Desc_Handle, x_in, ProcBuf);
 if(! DftiErrorClass(Status, DFTI_NO_ERROR)){

if (MPI_Rank == 0) {
 dfti_example_status_print(Status);
 printf(" TEST FAILED\n");
}
goto FREE_DESCRIPTOR;

 }

Example C-27 C Example of Two-dimensional Cluster DFT (continued)

Code Examples C

C-61

 /*
 / Compute Backward transform
 */
 if (MPI_Rank == 0) printf("\n Compute DftiComputeBackwardDM\n");
 Status = DftiComputeBackwardDM(Desc_Handle, ProcBuf, NULL);
 if(! DftiErrorClass(Status, DFTI_NO_ERROR)){

if (MPI_Rank == 0) {
 dfti_example_status_print(Status);
 printf(" TEST FAILED\n");
}
goto FREE_DESCRIPTOR;

 }

 /*
 / Gather data among processors
 */
 Status = DftiFormOutputDataDM(Desc_Handle, ProcBuf, x_in);
 if(! DftiErrorClass(Status, DFTI_NO_ERROR)){

if (MPI_Rank == 0) {
 dfti_example_status_print(Status);
 printf(" TEST FAILED\n");
}
goto FREE_DESCRIPTOR;

 }

 if(ADVANCED_DATA_PRINT && (MPI_Rank == 0)){
 printf("\n Backward result X, 4 columns \n");
 print_data_2d_z(x_in, m, n, 4);
 }

 /*
 / Check result
 */
 if (MPI_Rank == 0) {

maxerr = check_result_z(x_in, x_exp, m*n);
if(ACCURACY_PRINT) printf("\n ACCURACY = %g\n\n", maxerr);
 if(maxerr < eps){

printf(" TEST PASSED\n");
 } else {

printf(" TEST FAILED\n");
 }

 }

Example C-27 C Example of Two-dimensional Cluster DFT (continued)

C-62

C Intel® Math Kernel Library Reference Manual

FREE_DESCRIPTOR:

 /*
 / Free DftiDM descriptor
 */
 Status = DftiFreeDescriptorDM(Desc_Handle);
 if(! DftiErrorClass(Status, DFTI_NO_ERROR) && (MPI_Rank == 0)){

dfti_example_status_print(Status);
printf(" TEST FAILED\n");

 }

FREE_MEM:

 /*
 / Deallocate memory for dynamic arrays
 */
 free(ProcBuf);
 free(x_in);
 free(x_exp);

CLOSE_MPI:

 /*
 / Finalize MPI
 */
 MPI_Finalize();

 return 0;
}

Example C-27 C Example of Two-dimensional Cluster DFT (continued)

Code Examples C

C-63

The code below is contained in the mkl_cdft_examples.h file, to be included in Example C-27.

Example C-28 Definitions for C Example of Cluster DFT

/***

! INTEL CONFIDENTIAL

! Copyright(C) 2003-2005 Intel Corporation. All Rights Reserved.

! The source code contained or described herein and all documents related to

! the source code ("Material") are owned by Intel Corporation or its suppliers

! or licensors. Title to the Material remains with Intel Corporation or its

! suppliers and licensors. The Material contains trade secrets and proprietary

! and confidential information of Intel or its suppliers and licensors. The

! Material is protected by worldwide copyright and trade secret laws and

! treaty provisions. No part of the Material may be used, copied, reproduced,

! modified, published, uploaded, posted, transmitted, distributed or disclosed

! in any way without Intel's prior express written permission.

! No license under any patent, copyright, trade secret or other intellectual

! property right is granted to or conferred upon you by disclosure or delivery

! of the Materials, either expressly, by implication, inducement, estoppel or

! otherwise. Any license under such intellectual property rights must be

! express and approved by Intel in writing.

!

!***

! Content:

! MKL Cluster DFT example's definitions file (C-interface)

!

!***

*/

/*
/ Print level definition
*/
#define ADVANCED_DATA_PRINT 1
#define ACCURACY_PRINT 1
#define LEGEND_PRINT 1

C-64

C Intel® Math Kernel Library Reference Manual

/*
/ Accuracy definitions
*/
#define SINGLE_EPS 1.0E-6
#define DOUBLE_EPS 1.0E-12

/*
/ MKL test _Complex type definition
*/
typedef struct {
 float re;
 float im;
} mkl_float_complex;

typedef struct {
 double re;
 double im;
} mkl_double_complex;

/*
/ Example support function's interfaces
*/
int read_data_file_2d(int, char*[], long*, long*);

void dfti_example_status_print(long);

void print_data_2d_z(void*, long, long, long);

void init_data_2d_z(void*, long, long);

double check_result_z(void*, void*, long);

void print_data_2d_c(void*, long, long, long);

void init_data_2d_c(void*, long, long);

float check_result_c(void*, void*, long);

Example C-28 Definitions for C Example of Cluster DFT (continued)

Code Examples C

C-65

The program below provides subsidiary functions called in Example C-27.

Example C-29 Subsidiary Functions for C Example of Cluster DFT

/***
! INTEL CONFIDENTIAL
! Copyright(C) 2003-2005 Intel Corporation. All Rights Reserved.
! The source code contained or described herein and all documents related to
! the source code ("Material") are owned by Intel Corporation or its suppliers
! or licensors. Title to the Material remains with Intel Corporation or its
! suppliers and licensors. The Material contains trade secrets and proprietary
! and confidential information of Intel or its suppliers and licensors. The
! Material is protected by worldwide copyright and trade secret laws and
! treaty provisions. No part of the Material may be used, copied, reproduced,
! modified, published, uploaded, posted, transmitted, distributed or disclosed
! in any way without Intel's prior express written permission.
! No license under any patent, copyright, trade secret or other intellectual
! property right is granted to or conferred upon you by disclosure or delivery
! of the Materials, either expressly, by implication, inducement, estoppel or
! otherwise. Any license under such intellectual property rights must be
! express and approved by Intel in writing.
!
!***
! Content:
! MKL Cluster DFT interface example program (C-interface)
!
! Examples support function set
!
!***
*/

#include <stdio.h>
#include "mkl_dfti_cluster.h"

/*
/ Read data from input file routine
*/
int read_data_file_2d(int argc, char *argv[], long *m, long *n)
{
 FILE *in_file;
 char *in_file_name;
 char scan_line[100];
 int maxline=100;

C-66

C Intel® Math Kernel Library Reference Manual

 if (argc == 1) {

printf("\n You must specify in_file data file as 1-st parameter");
return 1;
}

 in_file_name = argv[1];

 if((in_file = fopen(in_file_name, "r")) == NULL) {
printf("\nERROR on OPEN '%s' with mode=%s\n", in_file_name, "r");
return 1;

 }

 fgets(scan_line, maxline, in_file);
 fscanf(in_file,"%ld \n", m);
 fgets(scan_line, maxline, in_file);
 fscanf(in_file,"%ld \n", n);
 fclose(in_file);
 return 0;
}

/*
/ Init data routines
*/
void init_data_2d_z(void *x, long m, long n)
{
 double* p = x;
 long i;

 p[0] = 1.0;
 for(i = 1; i < m*n*2; i++) p[i] = 0.0;
}

void init_data_2d_c(void *x, long m, long n)
{
 float* p = x;
 long i;

 p[0] = 1.0;
 for(i = 1; i < m*n*2; i++) p[i] = 0.0;
}

Example C-29 Subsidiary Functions for C Example of Cluster DFT (continued)

Code Examples C

C-67

/*
/ Print data routines
*/
void print_data_2d_z(void *x, long m, long n, long c)
{
 double* p = x;
 long i, j;

 for(i = 0; i < m; i++) {

printf("\n Row %ld:\n ",i);
for(j = 0; j < n; j++) {
 printf("(%8.3f,%8.3f)", p[2*j], p[2*j+1]);
 if ((j%c == c-1) && (j != n-1)) printf("\n ");
}
p += 2*n;

 }
 printf("\n");
}

void print_data_2d_c(void *x, long m, long n, long c)
{
 float* p = x;
 long i, j;

 for(i = 0; i < m; i++) {

printf("\n Row %ld:\n ",i);
for(j = 0; j < n; j++) {
 printf("(%8.3f,%8.3f)", p[2*j], p[2*j+1]);
 if ((j%c == c-1) && (j != n-1)) printf("\n ");
}
p += 2*n;

 }
 printf("\n");
}

Example C-29 Subsidiary Functions for C Example of Cluster DFT (continued)

C-68

C Intel® Math Kernel Library Reference Manual

/*
/ Print status routine
*/
void dfti_example_status_print(long status)
{
 long class_error;
 char* error_message;

 class_error = DftiErrorClass(status, DFTI_ERROR_CLASS);
 if (! class_error) {

printf(" Error Status is not a member of Predefined Error Class\n");
 } else {

error_message = DftiErrorMessage(status);
printf(" Error_Message = %s \n", error_message);

 }
 return;
}

/*
/ Check error routines
*/
double check_result_z(void* x, void* res_exp, long n)
{
 double* x_in = x;
 double* x_exp = res_exp;
 double maxerr, d;
 long i;

 maxerr = 0.0;
 for (i = 0; i < 2*n; i++){

d = x_exp[i] - x_in[i];
if (d < 0.0) d = -d;
if (d > maxerr) maxerr = d;

 }
 return maxerr;
}

float check_result_c(void* x, void* res_exp, long n)
{
 float* x_in = x;
 float* x_exp = res_exp;
 float maxerr, d;
 long i;

Example C-29 Subsidiary Functions for C Example of Cluster DFT (continued)

Code Examples C

C-69

Fortran Implementation

Example C-30 presents Fortran code for the cluster DFT computation. Example C-31 and
Example C-32 contain subsidiary source code needed for the computation.

 maxerr = 0.0;
 for (i = 0; i < 2*n; i++){

d = x_exp[i] - x_in[i];
if (d < 0.0) d = -d;
if (d > maxerr) maxerr = d;

 }
 return maxerr;
}

Example C-30 Fortran Example of Two-dimensional Cluster DFT

!***
! INTEL CONFIDENTIAL
! Copyright(C) 2003-2005 Intel Corporation. All Rights Reserved.
! The source code contained or described herein and all documents related to
! the source code ("Material") are owned by Intel Corporation or its suppliers
! or licensors. Title to the Material remains with Intel Corporation or its
! suppliers and licensors. The Material contains trade secrets and proprietary
! and confidential information of Intel or its suppliers and licensors. The
! Material is protected by worldwide copyright and trade secret laws and
! treaty provisions. No part of the Material may be used, copied, reproduced,
! modified, published, uploaded, posted, transmitted, distributed or disclosed
! in any way without Intel's prior express written permission.
! No license under any patent, copyright, trade secret or other intellectual
! property right is granted to or conferred upon you by disclosure or delivery
! of the Materials, either expressly, by implication, inducement, estoppel or
! otherwise. Any license under such intellectual property rights must be
! express and approved by Intel in writing.
!
!***
! Content:
! MKL Cluster DFT interface example program (Fortran-interface)
!
! Forward-Backward 2D complex transform for double precision data inplace.
!
!***

Example C-29 Subsidiary Functions for C Example of Cluster DFT (continued)

C-70

C Intel® Math Kernel Library Reference Manual

! Configuration parameters:
! DFTI_FORWARD_DOMAIN = DFTI_COMPLEX (obligatory)
! DFTI_PRECISION = DFTI_DOUBLE (obligatory)
! DFTI_DIMENSION = 2 (obligatory)
! DFTI_LENGTHS = (M, N) (obligatory)
! DFTI_FORWARD_SCALE = 1.0 (default)

! DFTI_BACKWARD_SCALE = 1.0/(M*N) (default=1.0)
!
!***

 PROGRAM DM_COMPLEX_2D_DOUBLE_EX1

 USE MKL_DFTI_DM

 INCLUDE 'mpif.h'

 INCLUDE 'mkl_cdft_examples.fi'

 COMPLEX(8), DIMENSION(:,:), ALLOCATABLE :: X_IN, X_EXP
 COMPLEX(8), ALLOCATABLE :: PROCBUF(:), X_IN_P(:)

 TYPE(DFTI_DESCRIPTOR_DM), POINTER :: DESC_HANDLE

 INTEGER M, N
 INTEGER STATUS
 REAL(8) SCALE
 INTEGER LENGTHS(2)

 REAL(8) MAXERR
 REAL(8), PARAMETER :: EPS = DOUBLE_EPS

 INTEGER MPI_ERR
 INTEGER MPI_NPROC
 INTEGER MPI_RANK

!
! Perform MPI initialization
!
 CALL MPI_INIT(MPI_ERR)

Example C-30 Fortran Example of Two-dimensional Cluster DFT (continued)

Code Examples C

C-71

 IF (MPI_ERR .NE. MPI_SUCCES) THEN
 PRINT *, 'MPI initialization error'
 PRINT *, 'TEST FAILED'
 STOP
 ENDIF

 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, MPI_NPROC, MPI_ERR)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, MPI_RANK, MPI_ERR)
 IF (MPI_RANK .EQ. 0) PRINT '(" Program is running on ",I2,"
processors"/)',MPI_NPROC

!
! Read input parameters from input file
! m - size of transform along first dimension
! n - size of transform along second dimension
!
 IF (MPI_RANK .EQ. 0) THEN
 READ*
 READ*, M
 READ*, N
 ENDIF

 CALL MPI_BCAST(M,1,MPI_INTEGER,0,MPI_COMM_WORLD,MPI_ERR)
 CALL MPI_BCAST(N,1,MPI_INTEGER,0,MPI_COMM_WORLD,MPI_ERR)

 IF (LEGEND_PRINT .AND. (MPI_RANK .EQ. 0)) THEN
 PRINT *, 'DM_COMPLEX_2D_DOUBLE_EX1'

 PRINT *
 PRINT *, 'Forward-Backward 2D complex transform for double precision data
inplace'
 PRINT *
 PRINT *, 'Configuration parameters:'
 PRINT *
 PRINT *, 'DFTI_FORWARD_DOMAIN = DFTI_COMPLEX'
 PRINT *, 'DFTI_PRECISION = DFTI_DOUBLE '
 PRINT *, 'DFTI_DIMENSION = 2'
 PRINT '(" DFTI_LENGTHS = (",I3,",",I3,")")', M, N
 PRINT *, 'DFTI_FORWARD_SCALE = 1.0 '
 PRINT *, 'DFTI_BACKWARD_SCALE = 1.0/(M*N)'
 PRINT *
 ENDIF

Example C-30 Fortran Example of Two-dimensional Cluster DFT (continued)

C-72

C Intel® Math Kernel Library Reference Manual

 IF ((MOD(M, MPI_NPROC) .NE. 0) .AND. (MOD(N, MPI_NPROC) .NE. 0)) THEN
 IF (MPI_RANK .EQ. 0) THEN
 PRINT *, 'M or N must be multiple of the number of processors'

PRINT *, 'Set appropriate value of M or N in datafile or change MPI configuration'
PRINT *, 'TEST FAILED'

 END IF
 GOTO 103
 ENDIF

 LENGTHS(1) = M
 LENGTHS(2) = N

!
! Allocate dynamic arrays and put input data
!
 ALLOCATE(X_IN(M,N), X_EXP(M,N), X_IN_P(M*N), PROCBUF(M*N/MPI_NPROC))

 X_IN = 0.0_8
 X_IN(1,1) = 1.0_8
 X_EXP = X_IN
 IF (ADVANCED_DATA_PRINT .AND. (MPI_RANK .EQ. 0)) THEN
 PRINT *, 'INPUT vector X (4 columns)'
 CALL PRINT_DATA_2D_Z(X_IN, M, N, 4)
 ENDIF

!
! Create DftiDM descriptor
!
 STATUS = DftiCreateDescriptorDM(MPI_COMM_WORLD,DESC_HANDLE, &
 DFTI_DOUBLE, DFTI_COMPLEX, 2, LENGTHS)
 IF (.NOT. DftiErrorClass(STATUS, DFTI_NO_ERROR)) THEN
 IF (MPI_RANK .EQ. 0) THEN
 CALL Dfti_Example_Status_Print(STATUS)

 PRINT *, 'TEST FAILED'
 ENDIF
 GOTO 102
 ENDIF

Example C-30 Fortran Example of Two-dimensional Cluster DFT (continued)

Code Examples C

C-73

!
! Commit DftiDM descriptor
!
 STATUS = DftiCommitDescriptorDM(DESC_HANDLE)
 IF (.NOT. DftiErrorClass(STATUS, DFTI_NO_ERROR)) THEN
 IF (MPI_RANK .EQ. 0) THEN
 CALL Dfti_Example_Status_Print(STATUS)

 PRINT *, 'TEST FAILED'
 ENDIF
 GOTO 101
 ENDIF

!
! Spread data among processors
!
 X_IN_P = RESHAPE(X_IN, (/M*N/))
 STATUS = DftiFormInputDataDM(DESC_HANDLE, X_IN_P, PROCBUF)
 IF (.NOT. DftiErrorClass(STATUS, DFTI_NO_ERROR)) THEN
 IF (MPI_RANK .EQ. 0) THEN
 CALL Dfti_Example_Status_Print(STATUS)

 PRINT *, 'TEST FAILED'
 ENDIF
 GOTO 101
 ENDIF

!
! Compute Forward transform
!
 IF (MPI_RANK .EQ. 0) THEN
 PRINT *
 PRINT *,'Compute DftiComputeForwardDM'
 PRINT *
 ENDIF
 STATUS = DftiComputeForwardDM(DESC_HANDLE, PROCBUF, PROCBUF)
 IF (.NOT. DftiErrorClass(STATUS, DFTI_NO_ERROR)) THEN
 IF (MPI_RANK .EQ. 0) THEN
 CALL Dfti_Example_Status_Print(STATUS)

 PRINT *, 'TEST FAILED'
 ENDIF
 GOTO 101
 ENDIF

Example C-30 Fortran Example of Two-dimensional Cluster DFT (continued)

C-74

C Intel® Math Kernel Library Reference Manual

!
! Gather data among processors
!
 STATUS = DftiFormOutputDataDM(DESC_HANDLE, PROCBUF, X_IN_P)
 IF (.NOT. DftiErrorClass(STATUS, DFTI_NO_ERROR)) THEN
 IF (MPI_RANK .EQ. 0) THEN
 CALL Dfti_Example_Status_Print(STATUS)

 PRINT *, 'TEST FAILED'
 ENDIF
 GOTO 101
 ENDIF
 X_IN = RESHAPE(X_IN_P, LENGTHS)

 IF(ADVANCED_DATA_PRINT .AND. (MPI_RANK .EQ. 0)) THEN
 PRINT*,'Forward OUTPUT vector X (4 columns)'
 CALL PRINT_DATA_2D_Z(X_IN, M, N, 4)
 ENDIF

!
! Set Scale number for Backward transform
!
 SCALE = 1.0_8/(M*N)
 IF (MPI_RANK .EQ. 0) THEN
 PRINT *

PRINT *,'DFTI_BACKWARD_SCALE = 1/(M*N)'
 ENDIF

 STATUS = DftiSetValueDM(DESC_HANDLE, DFTI_BACKWARD_SCALE, SCALE)
 IF (.NOT. DftiErrorClass(STATUS, DFTI_NO_ERROR)) THEN
 IF (MPI_RANK .EQ. 0) THEN
 CALL Dfti_Example_Status_Print(STATUS)

 PRINT *, 'TEST FAILED'
 ENDIF
 GOTO 101
 ENDIF

Example C-30 Fortran Example of Two-dimensional Cluster DFT (continued)

Code Examples C

C-75

!
! Commit DftiDM descriptor
!
 STATUS = DftiCommitDescriptorDM(DESC_HANDLE)
 IF (.NOT. DftiErrorClass(STATUS, DFTI_NO_ERROR)) THEN
 IF (MPI_RANK .EQ. 0) THEN
 CALL Dfti_Example_Status_Print(STATUS)

 PRINT *, 'TEST FAILED'
 ENDIF
 GOTO 101
 ENDIF

!
! Spread data among processors
!
 X_IN_P = RESHAPE(X_IN, (/M*N/))
 STATUS = DftiFormInputDataDM(DESC_HANDLE, X_IN_P, PROCBUF)
 IF (.NOT. DftiErrorClass(STATUS, DFTI_NO_ERROR)) THEN
 IF (MPI_RANK .EQ. 0) THEN
 CALL Dfti_Example_Status_Print(STATUS)

 PRINT *, 'TEST FAILED'
 ENDIF
 GOTO 101
 ENDIF
!
! Compute Backward transform
!
 IF (MPI_RANK .EQ. 0) THEN
 PRINT *
 PRINT *,'Compute DftiComputeBackwardDM'
 PRINT *
 ENDIF
 STATUS = DftiComputeBackwardDM(DESC_HANDLE, PROCBUF, PROCBUF)
 IF (.NOT. DftiErrorClass(STATUS, DFTI_NO_ERROR)) THEN
 IF (MPI_RANK .EQ. 0) THEN
 CALL Dfti_Example_Status_Print(STATUS)

 PRINT *, 'TEST FAILED'
 ENDIF
 GOTO 101
 ENDIF

Example C-30 Fortran Example of Two-dimensional Cluster DFT (continued)

C-76

C Intel® Math Kernel Library Reference Manual

!
! Gather data among processors
!
 STATUS = DftiFormOutputDataDM(DESC_HANDLE, PROCBUF, X_IN_P)
 IF (.NOT. DftiErrorClass(STATUS, DFTI_NO_ERROR)) THEN
 IF (MPI_RANK .EQ. 0) THEN
 CALL Dfti_Example_Status_Print(STATUS)

 PRINT *, 'TEST FAILED'
 ENDIF
 GOTO 101
 ENDIF
 X_IN = RESHAPE(X_IN_P, LENGTHS)

 IF(ADVANCED_DATA_PRINT .AND. (MPI_RANK .EQ. 0)) THEN
 PRINT *,'Backward OUTPUT vector X (4 columns)'
 CALL PRINT_DATA_2D_Z(X_IN, M, N, 4)
 ENDIF

!
! Check result
!
 MAXERR = MAXVAL(ABS(X_IN - X_EXP))
 IF (ACCURACY_PRINT .AND. (MPI_RANK .EQ. 0)) THEN
 PRINT *
 PRINT '(" ACCURACY = ",G15.6,/)', MAXERR
 ENDIF

 IF (MPI_RANK .EQ. 0) THEN
 IF (MAXERR .LT. EPS) THEN
 PRINT *, 'TEST PASSED'
 ELSE
 PRINT *, 'TEST FAILED'
 ENDIF
 ENDIF

!
! Free DftiDM descriptor
!
101 STATUS = DftiFreeDescriptorDM(DESC_HANDLE)
 IF (.NOT. DftiErrorClass(STATUS, DFTI_NO_ERROR) .AND. (MPI_RANK .EQ. 0)) THEN
 CALL Dfti_Example_Status_Print(STATUS)
 PRINT *, 'TEST FAILED'
 END IF

Example C-30 Fortran Example of Two-dimensional Cluster DFT (continued)

Code Examples C

C-77

The code below is contained in the mkl_cdft_examples.fi interface file, to be included in
Example C-30.

!
! Free memory for dynamic arrays
!
102 DEALLOCATE(X_IN, X_EXP, PROCBUF, X_IN_P)

!
! Finalize MPI
!
103 CALL MPI_FINALIZE(MPI_ERR)

END PROGRAM

Example C-31 Interfaces for Fortran Example of Cluster DFT

!***
! INTEL CONFIDENTIAL
! Copyright(C) 2003-2005 Intel Corporation. All Rights Reserved.
! The source code contained or described herein and all documents related to
! the source code ("Material") are owned by Intel Corporation or its suppliers
! or licensors. Title to the Material remains with Intel Corporation or its
! suppliers and licensors. The Material contains trade secrets and proprietary
! and confidential information of Intel or its suppliers and licensors. The
! Material is protected by worldwide copyright and trade secret laws and
! treaty provisions. No part of the Material may be used, copied, reproduced,
! modified, published, uploaded, posted, transmitted, distributed or disclosed
! in any way without Intel's prior express written permission.
! No license under any patent, copyright, trade secret or other intellectual
! property right is granted to or conferred upon you by disclosure or delivery
! of the Materials, either expressly, by implication, inducement, estoppel or
! otherwise. Any license under such intellectual property rights must be
! express and approved by Intel in writing.
!
!***
! Content:
! MKL Cluster DFT example interface file
!
!***

Example C-30 Fortran Example of Two-dimensional Cluster DFT (continued)

C-78

C Intel® Math Kernel Library Reference Manual

 REAL SINGLE_EPS
 PARAMETER (SINGLE_EPS = 1.0E-5)

 REAL(8) DOUBLE_EPS
 PARAMETER (DOUBLE_EPS = 1.0E-11)

 LOGICAL LEGEND_PRINT
 PARAMETER (LEGEND_PRINT = .TRUE.)

 LOGICAL ADVANCED_DATA_PRINT
 PARAMETER (ADVANCED_DATA_PRINT = .TRUE.)

 LOGICAL ACCURACY_PRINT
 PARAMETER (ACCURACY_PRINT = .TRUE.)
!**
*
! MKL Cluster DFT example support functions' interfaces
!
!**
*

 INTERFACE
 SUBROUTINE PRINT_DATA_2D_Z(X, M, N, C)

 INTENT(IN) X, M, N, C
 COMPLEX(8) X(:,:)
 INTEGER M, N, C

 END SUBROUTINE
 END INTERFACE

 INTERFACE
 SUBROUTINE PRINT_DATA_2D_C(X, M, N, C)

 INTENT(IN) X, M, N, C
 COMPLEX(4) X(:,:)
 INTEGER M, N, C

 END SUBROUTINE
 END INTERFACE

 INTERFACE
 SUBROUTINE Dfti_Example_Status_Print(S)

 INTEGER, INTENT(IN) :: S
 END SUBROUTINE
 END INTERFACE

Example C-31 Interfaces for Fortran Example of Cluster DFT (continued)

Code Examples C

C-79

The program below provides subsidiary functions called in Example C-30.

Example C-32 Subsidiary Functions for Fortran Example of Cluster DFT

!***
! INTEL CONFIDENTIAL
! Copyright(C) 2003-2005 Intel Corporation. All Rights Reserved.
! The source code contained or described herein and all documents related to
! the source code ("Material") are owned by Intel Corporation or its suppliers
! or licensors. Title to the Material remains with Intel Corporation or its
! suppliers and licensors. The Material contains trade secrets and proprietary
! and confidential information of Intel or its suppliers and licensors. The
! Material is protected by worldwide copyright and trade secret laws and
! treaty provisions. No part of the Material may be used, copied, reproduced,
! modified, published, uploaded, posted, transmitted, distributed or disclosed
! in any way without Intel's prior express written permission.
! No license under any patent, copyright, trade secret or other intellectual
! property right is granted to or conferred upon you by disclosure or delivery
! of the Materials, either expressly, by implication, inducement, estoppel or
! otherwise. Any license under such intellectual property rights must be
! express and approved by Intel in writing.
!
!***
! Content:
! MKL Cluster DFT example support functions (Fortran-interface)
!
!***
 SUBROUTINE Dfti_Example_Status_Print(STATUS)

 USE MKL_DFTI

 INTEGER STATUS
 CHARACTER(DFTI_MAX_MESSAGE_LENGTH) Error_Message
 LOGICAL Class_Error

 Class_Error = DftiErrorClass(STATUS, DFTI_ERROR_CLASS)
 IF (.NOT. Class_Error) THEN
 PRINT *,' Status is not a member of Predefined Error Class'

C-80

C Intel® Math Kernel Library Reference Manual

 ELSE
 Error_Message = DftiErrorMessage(STATUS)
 PRINT *, ' Error_Message = ', Error_Message
 ENDIF

 END SUBROUTINE

 SUBROUTINE PRINT_DATA_2D_Z(X, M, N, C)

 COMPLEX(8) X(:,:)
 INTEGER M, N, C, I, J

 DO J = 1, N

 PRINT '(/" Row ",I3,":"/" "\)', J
 DO I = 1, M

 PRINT '("(",F8.3,",",F8.3,")"\)',REAL(X(I,J)),AIMAG(X(I,J))
 IF ((MOD(I,C).EQ.0).AND.(I.NE.M)) PRINT '(/" "\)'
 END DO

 END DO
 PRINT *

 END SUBROUTINE

 SUBROUTINE PRINT_DATA_2D_C(X, M, N, C)

 COMPLEX(4) X(:,:)
 INTEGER M, N, C, I, J

 DO J = 1, N

 PRINT '(/" Row ",I3,":"/" "\)', J
 DO I = 1, M

 PRINT '("(",F8.3,",",F8.3,")"\)',REAL(X(I,J)),AIMAG(X(I,J))
 IF ((MOD(I,C).EQ.0).AND.(I.NE.M)) PRINT '(/" "\)'
 END DO

 END DO
 PRINT *

 END SUBROUTINE

Example C-32 Subsidiary Functions for Fortran Example of Cluster DFT (continued)

Code Examples C

C-81

Interval Linear Solvers Code Examples
This section presents code examples of using the routines described in Chapter 12, “Interval
Linear Solvers”. These routines are intended for computing enclosures and estimates of the
solution sets to interval linear systems of equations as well as for checking properties of interval
matrices and their inversion.

Example C-33 Interval Gauss-Seidel Method

Given an interval system of linear algebraic equations, interval Gauss-Seidel method
(implemented as ?gegss routine) is often applied for enclosing a desired portion of the solution
set that is bounded by a prescribed interval box.

Consider the following interval linear system of equations

proposed first by E. Hansen (see Hansen92). Does its solution set intersect the interval box

 ?

The following sample program answers the above question.

PROGRAM DIGEGSS_EXAMPLE

!

! Example program enclosing the solution set to a square interval

! linear system by interval Gauss-Seidel iterative method

!

!--!

USE INTERVAL_ARITHMETIC

IMPLICIT NONE

!--!

INTEGER, PARAMETER :: DIM = 2

2 3,[] 0 1,[]
1 2,[] 2 3,[] 

 
 

x
0 120,[]
60 240,[] 

 =

0 200,[]
0 200,[] 

 

C-82

C Intel® Math Kernel Library Reference Manual

INTEGER :: NRHS, LDA, LDB, NITS, INFO, I, J

REAL(8) :: EPSILON

TYPE(D_INTERVAL) :: A(DIM,DIM), B(DIM,1), ENCL(DIM,1)

CHARACTER(1) :: TRANS

!--!

PRINT 300

!--!

! !

! Initializing the input data - !

! !

TRANS = ’N’

NRHS = 2

A(1,1) = DINTERVAL(2.,3.); A(1,2) = DINTERVAL(0.,1.);

A(2,1) = DINTERVAL(0.,1.); A(2,2) = DINTERVAL(2.,3.);

LDA = 2

B(1,1) = DINTERVAL(0.,120.); B(2,1) = DINTERVAL(60.,240.);

LDB = 2

EPSILON = 1.D-6

NITS = 20

!--!

!

! Assigning the bounding box for the solution set -

DO I = 1, DIM

ENCL(I,1) = DINTERVAL(0.,200.)

END DO

!--!

CALL DIGEGSS(TRANS, DIM, NRHS, A, LDA, B, LDB, ENCL, EPSILON, NITS, INFO)

!--!

!

! Outputting the solution

IF(INFO /= 0) THEN

PRINT 400

ELSE

Code Examples C

C-83

PRINT 600

DO I = 1, DIM

PRINT *, ’[’, B(I,1), ’]’

END DO

END IF

!--!

300 FORMAT (/,’ **** SOLVING INTERVAL LINEAR SYSTEM **** ’,/, &

’ by interval Gauss-Seidel method ’)

400 FORMAT (/,’ The interval Gauss-Seidel method fails. ’)

600 FORMAT (/,’ Outer interval estimate of the solution set:’,/)

!--!

END PROGRAM DIGEGSS_EXAMPLE

Assigning double-precision intervals to the entries of the matrix A and right-hand side vector B is
carried out by DINTERVAL function that turns two real numbers into the interval having these reals
as endpoints. Running the above code produces the answer

**** SOLVING INTERVAL LINEAR SYSTEM ****

by interval Gauss-Seidel method

Outer interval estimate of the solution set:

[0.000000000000000E+000 60.0000000000000]

[0.000000000000000E+000 120.000000000000]

One can make sure that the resulting box really encloses the required portion of the solution set
after having a look at the corresponding graph from the paper Hansen92. Moreover, it is even the
tightest possible enclosure.

C-84

C Intel® Math Kernel Library Reference Manual

Example C-34 Hansen-Bliek-Rohn Procedure

The following Fortran-90 program illustrates the use of digehbs routine implementing
“semiinterval” Hansen-Bliek-Rohn procedure for outer interval estimation of the solution sets to
interval linear systems.

PROGRAM DIGEHBS_EXAMPLE

!

! Example program for enclosing the solution set to square interval

! interval system of equations by Hansen-Bliek-Rohn procedure

!

!--!

USE INTERVAL_ARITHMETIC

IMPLICIT NONE

!--!

INTEGER, PARAMETER :: DIM = 2

INTEGER :: LDA, LDB, INFO, I, J

TYPE(D_INTERVAL), ALLOCATABLE :: A(:,:), B(:)

CHARACTER(1) :: TRANS

!--!

PRINT 300

!--!

!

! Initializing the input data -

!

TRANS = ’N’

ALLOCATE(A(DIM,DIM), B(DIM))

A(1,1) = DINTERVAL(2.,4.); A(1,2) = DINTERVAL(-2.,1.)

A(2,1) = DINTERVAL(-1.,2.); A(2,2) = DINTERVAL(2.,2.)

LDA = 2

B(1) = DINTERVAL(0.,2.); B(2) = DINTERVAL(0.,2.)

LDB = 2

Code Examples C

C-85

!--!

CALL DIGEHBS(TRANS, DIM, A, LDA, B, LDB, INFO)

!--!

IF(INFO /= 0) THEN

PRINT 400

ELSE

PRINT 600

DO I = 1, DIM

PRINT *, I, ’) [’, B(I), ’]’

END DO

END IF

!--!

DEALLOCATE(A, B)

!--!

300 FORMAT (/,’ **** SOLVING INTERVAL LINEAR SYSTEM ****’,/, &

’ by Hansen-Bliek-Rohn procedure ’,/)

400 FORMAT (/,’ The matrix of the system is not an H-matrix,’,/, &

’ Hansen-Bliek-Rohn procedure fails. ’,/)

600 FORMAT (/,’ Enclosure of the solution set: ’,/)

!--!

END PROGRAM DIGEHBS_EXAMPLE

However, the output of the program looks like

**** SOLVING INTERVAL LINEAR SYSTEM ****

by Hansen-Bliek-Rohn procedure

The matrix of the system is not an H-matrix,

Hansen-Bliek-Rohn procedure fails.

This result is because the program is applied to the interval linear system

 2 4,[] 2– 1,[]
1– 2,[] 2 4,[] 

 
 

x
0 2,[]
0 2,[] 

 =

C-86

C Intel® Math Kernel Library Reference Manual

where the interval matrix is not an H-matrix (that is, it does not have diagonal dominance).

However, preconditioning by digemip routine helps to resolve the problem. The next modified
program, which incorporates preliminary preconditioning of the interval linear system under
solution, makes the matrix diagonally dominant and produces an acceptable answer to the
problem.

PROGRAM DIGEMIP_DIGEHBS_EXAMPLE

!

! Example program for enclosing the solution set to square interval

! interval system of equations by Hansen-Bliek-Rohn procedure

!

!--!

USE INTERVAL_ARITHMETIC

IMPLICIT NONE

!--!

INTEGER, PARAMETER :: DIM = 2, NRHS = 1

INTEGER :: LDA, LDB, INFO, I, J

TYPE(D_INTERVAL), ALLOCATABLE :: A(:,:), B(:)

CHARACTER(1) :: TRANS

!--!

PRINT 300

!--!

!

! Initializing the input data -

!

TRANS = ’N’

ALLOCATE(A(DIM,DIM), B(DIM))

A(1,1) = DINTERVAL(2.,4.); A(1,2) = DINTERVAL(-2.,1.)

A(2,1) = DINTERVAL(-1.,2.); A(2,2) = DINTERVAL(2.,2.)

LDA = 2

B(1) = DINTERVAL(0.,2.); B(2) = DINTERVAL(0.,2.)

LDB = 2

!--!

Code Examples C

C-87

CALL DIGEMIP(DIM, NRHS, A, LDA, B, LDB, INFO)

CALL DIGEHBS(TRANS, DIM, A, LDA, B, LDB, INFO)

!--!

IF(INFO /= 0) THEN

PRINT 400

ELSE

PRINT 600

DO I = 1, DIM

PRINT *, I, ’) [’, B(I), ’]’

END DO

END IF

DEALLOCATE(A, B)

!--!

300 FORMAT (/,’ **** SOLVING INTERVAL LINEAR SYSTEM ****’,/, &

’ by Hansen-Bliek-Rohn procedure ’,/)

400 FORMAT (/,’ The matrix of the system is not an H-matrix,’,/, &

’ Hansen-Bliek-Rohn procedure fails. ’,/)

600 FORMAT (/,’ Enclosure of the solution set: ’,/)

!--!

END PROGRAM DIGEMIP_DIGEHBS_EXAMPLE

This time, the output of the program is

**** SOLVING INTERVAL LINEAR SYSTEM ****

by Hansen-Bliek-Rohn procedure

Enclosure of the solution set:

1) [-4.23529411764708 10.7058823529412]

2) [-6.70588235294119 10.8235294117647]

(the last digits may change for various computer architectures).

C-88

C Intel® Math Kernel Library Reference Manual

Example C-35 Computing Enclosure for Inverse Interval Matrix

Given an interval 2 × 2 matrix

the following Fortran-90 code computes an enclosure of its inverse interval matrix:

PROGRAM SIGESZI_EXAMPLE

!

!Example program inverting an interval matrix by Sczulz iterative procedure

!

!--!

USE INTERVAL_ARITHMETIC

IMPLICIT NONE

!--!

INTEGER, PARAMETER :: DIM = 2, LDA = 2

INTEGER :: INFO, I, J

TYPE(S_INTERVAL), ALLOCATABLE :: A(:,:)

!--!

PRINT 300

!--!

!

! Initializing the input data -

!

ALLOCATE(A(LDA,DIM))

A(1,1) = SINTERVAL(3.,3.); A(1,2) = SINTERVAL(0.,1.)

A(2,1) = SINTERVAL(1.,2.); A(2,2) = SINTERVAL(2.,3.)

!--!

CALL SIGESZI (DIM, A, LDA, INFO)

!--!

3 0 1,[]
1 2,[] 2 3,[] 

 
 

Code Examples C

C-89

PRINT 600

DO I = 1, DIM

PRINT *, (’[’, A(I,J), ’]’, J = 1, DIM)

END DO

DEALLOCATE(A)

!--!

300 FORMAT (/,’ **** INVERTING INTERVAL MATRIX ****’,/, &

’ by interval Schulz method ’)

400 FORMAT (/,’ Schulz inversion procedure failed. ’,/)

600 FORMAT (/,’ Enclosure of the inverse matrix ’,/)

!--!

END PROGRAM SIGESZI_EXAMPLE

The output listing (with small variations depending on the architecture) looks as follows:

**** INVERTING INTERVAL MATRIX ****

by interval Schulz method

Enclosure of the inverse matrix

[0.2407409 0.5000001][-0.2500000 0.1018518]

[-0.5000000 5.5555239E-02][0.1388889 0.7500001]

At the same time, if we widen the (1,1) entry of the matrix to the interval [2, 3], the sigeszi
procedure fails to compute a finite enclosure of the inverse to the new interval matrix

Nevertheless, the interval linear system with such matrix can be successfully solved by specialized
routines, for example, by interval Gauss method or interval Gauss-Seidel method (see Example
C-33).

2 3,[] 0 1,[]
1 2,[] 2 3,[] 

 
 

C-90

C Intel® Math Kernel Library Reference Manual

Trigonometric Transforms Code Examples
Code presented in this section computes solutions of three simple 1D Helmholtz problems with
different boundary conditions: DD, NN and ND cases, where “D” denotes a Dirichlet boundary
condition and “N” stands for a Neumann boundary condition.

Example C-36 implements the computations in C and Example C-37 provides Fortran-90 code.

The algorithm of computing the solution uses Trigonometric Transform routines, described in
Chapter 13. In the DD case, the sine transform is computed, the NN case uses the cosine transform
and the ND case corresponds to the staggered cosine transform.

Other details of the Helmholtz problems being solved are printed out along with the computed
solutions.

Upon successful execution of Example C-36 the following text is printed out (Example C-37
generates similar output):

Example of use of MKL Trigonometric Transforms

 **

 This example gives the the solutions of the 1D differential problems

 with the equation -u"+u=f(x), 0<x<1,

 and with 3 types of boundary conditions:

 DD case: u(0)=u(1)=0,

 NN case: u'(0)=u'(1)=0,

 ND case: u'(0)=u(1)=0.

 In general, the error should be of order O(1.0/n**2)

 For this example, the value of n is 8

 The approximation error should be of order 5.0e-002 if everything is OK

 Note that n should be even to use Trigonometric Transforms !

 DOUBLE PRECISION COMPUTATIONS

 ===

Code Examples C

C-91

The computed solution of DD problem is

u[0]= 0.000

u[1]= 0.153

u[2]= 0.524

u[3]= 0.895

u[4]= 1.049

u[5]= 0.895

u[6]= 0.524

u[7]= 0.153

u[8]= 0.000

Error=4.873e-002

The computed solution of NN problem is

u[0]=-0.026

u[1]= 0.128

u[2]= 0.500

u[3]= 0.872

u[4]= 1.026

u[5]= 0.872

u[6]= 0.500

u[7]= 0.128

u[8]=-0.026

Error=2.583e-002

The computed solution of ND problem is

u[0]=-0.009

u[1]= 0.145

u[2]= 0.517

C-92

C Intel® Math Kernel Library Reference Manual

u[3]= 0.890

u[4]= 1.045

u[5]= 0.892

u[6]= 0.522

u[7]= 0.152

u[8]= 0.000

Error=4.470e-002

Example C-36 C Example to Solve a Set of 1D Helmholtz Problems

! INTEL CONFIDENTIAL

! Copyright(C) 2005 Intel Corporation. All Rights Reserved.

! The source code contained or described herein and all documents related to

! the source code ("Material") are owned by Intel Corporation or its suppliers

! or licensors. Title to the Material remains with Intel Corporation or its

! suppliers and licensors. The Material contains trade secrets and proprietary

! and confidential information of Intel or its suppliers and licensors. The

! Material is protected by worldwide copyright and trade secret laws and

! treaty provisions. No part of the Material may be used, copied, reproduced,

! modified, published, uploaded, posted, transmitted, distributed or disclosed

! in any way without Intel's prior express written permission.

! No license under any patent, copyright, trade secret or other intellectual

! property right is granted to or conferred upon you by disclosure or delivery

! of the Materials, either expressly, by implication, inducement, estoppel or

/! otherwise. Any license under such intellectual property rights must be

! express and approved by Intel in writing.

!***

! Content:

! Double precision C test example for trigonometric transforms

!***

Code Examples C

C-93

!

! This example gives the solution of the 1D differential problems

! with the equation -u"+u=f(x), 0<x<1, and with 3 types of boundary conditions:

! u(0)=u(1)=0 (DD case), or u'(0)=u'(1)=0 (NN case), or u'(0)=u(1)=0 (ND case)

*/

#include <stdio.h>

#include <malloc.h>

#include <math.h>

#include "mkl_dfti.h"

#include "mkl_trig_transforms.h"

int main(void)

{

int n=8, i, k, tt_type;

int ir, ipar[128];

/* Note that the size of the transform n must be even !!! */

double pi=3.14159265358979324, xi, c;

double c1, c2, c3, c4, c5, c6;

double *u, *f, *dpar, *lambda;

DFTI_DESCRIPTOR_HANDLE handle = 0;

/* Printing the header for the example */

printf("\n Example of use of MKL Trigonometric Transforms\n");

printf(" **\n\n");

printf(" This example gives the the solutions of the 1D differential
problems\n");

printf(" with the equation -u\"+u=f(x), 0<x<1, \n");

printf(" and with 3 types of boundary conditions:\n");

printf(" DD case: u(0)=u(1)=0,\n");

printf(" NN case: u'(0)=u'(1)=0,\n");

printf(" ND case: u'(0)=u(1)=0.\n");

Example C-36 C Example to Solve a Set of 1D Helmholtz Problems (continued)

C-94

C Intel® Math Kernel Library Reference Manual

printf("
---\n");

printf(" In general, the error should be of order O(1.0/n**2)\n");

printf(" For this example, the value of n is %1i\n", n);

printf(" The approximation error should be of order 5.0e-002 if
everything is OK\n");

printf("
---\n");

printf(" Note that n should be even to use Trigonometric Transforms !\n");

printf("
---\n");

printf(" DOUBLE PRECISION COMPUTATIONS
\n");

printf("===
\n\n");

u=(double*)malloc((n+1)*sizeof(double));

f=(double*)malloc((n+1)*sizeof(double));

dpar=(double*)malloc((3*n/2+1)*sizeof(double));

lambda=(double*)malloc((n+1)*sizeof(double));

for(i=0;i<=2;i++)

{

/* Varying the type of the transform */

tt_type=i;

/* Computing test solutions u(x) */

for(k=0;k<=n;k++)

{

xi=1.0E0*k/n;

u[k]=pow(sin(pi*xi),2.0E0);

}

Example C-36 C Example to Solve a Set of 1D Helmholtz Problems (continued)

Code Examples C

C-95

/* Computing the right-hand side f(x) */

for(k=0;k<=n;k++)

{

f[k]=(4.0E0*(pi*pi)+1.0E0)*u[k]-2.0E0*(pi*pi);

}

/* Computing the right-hand side for the algebraic system */

for(k=0;k<=n;k++)

{

f[k]=f[k]/(n*n);

}

if (tt_type==0)

{

/* The Dirichlet boundary conditions */

f[0]=0.0E0;

f[n]=0.0E0;

}

if (tt_type==2)

{

/* The mixed Neumann-Dirichlet boundary conditions */

f[n]=0.0E0;

}

/* Computing the eigenvalues for the three-point finite-difference
problem */

if (tt_type==0||tt_type==1)

{

for(k=0;k<=n;k++)

{

lambda[k]=pow(2.0E0*sin(0.5E0*pi*k/n),2.0E0)+1.0E0/(n*n);

}

}

Example C-36 C Example to Solve a Set of 1D Helmholtz Problems (continued)

C-96

C Intel® Math Kernel Library Reference Manual

if (tt_type==2)

{

for(k=0;k<=n;k++)

{

lambda[k]=pow(2.0E0*sin(0.25E0*pi*(2*k+1)/n),2.0E0)+1.0E0/(n*n);

}

}

/* Computing the solution of 1D problem using trigonometric
transforms

First we initialize the transform */

d_init_trig_transform(&n,&tt_type,ipar,dpar,&ir);

if (ir!=0) goto FAILURE;

/* Then we commit the transform. Note that the data in f will be
changed at this stage !

If you want to keep them, save them in some other array before the
call to the routine */

d_commit_trig_transform(f,&handle,ipar,dpar,&ir);

if (ir!=0) goto FAILURE;

/* Now we can apply trigonometric transform */

d_forward_trig_transform(f,&handle,ipar,dpar,&ir);

if (ir!=0) goto FAILURE;

/* Scaling the solution by the eigenvalues */

for(k=0;k<=n;k++)

{

 f[k]=f[k]/lambda[k];

}

/* Now we can apply trigonometric transform once again as ONLY

input vector f has changed */

d_backward_trig_transform(f,&handle,ipar,dpar,&ir);

Example C-36 C Example to Solve a Set of 1D Helmholtz Problems (continued)

Code Examples C

C-97

if (ir!=0) goto FAILURE;

/* Cleaning the memory used by handle

Now we can use handle for other kind of trigonometric transform */

free_trig_transform(&handle,ipar,&ir);

if (ir!=0) goto FAILURE;

/* Performing the error analysis */

c1=0.0E0;

c2=0.0E0;

c3=0.0E0;

for(k=0;k<=n;k++)

{

/* Computing the absolute value of the exact solution */

c4=fabs(u[k]);

/* Computing the absolute value of the computed solution

Note that the solution is now in place of the former right-hand
side ! */

c5=fabs(f[k]);

/* Computing the absolute error */

c6=fabs(f[k]-u[k]);

/* Computing the maximum among the above 3 values c4-c6 */

if (c4>c1) c1=c4;

if (c5>c2) c2=c5;

if (c6>c3) c3=c6;

}

/* Printing the results */

if (tt_type==0)

{

printf("The computed solution of DD problem is\n\n");

for(k=0;k<=n;k++)

Example C-36 C Example to Solve a Set of 1D Helmholtz Problems (continued)

C-98

C Intel® Math Kernel Library Reference Manual

{

printf("u[%1i]=%6.3f\n",k,f[k]);

}

printf("\nError=%6.3e\n\n",c3/c1);

}

if (tt_type==1)

{

printf("The computed solution of NN problem is\n\n");

for(k=0;k<=n;k++)

{

printf("u[%1i]=%6.3f\n",k,f[k]);

}

printf("\nError=%6.3e\n\n",c3/c1);

}

if (tt_type==2)

{

printf("The computed solution of ND problem is\n\n");

for(k=0;k<=n;k++)

{

printf("u[%1i]=%6.3f\n",k,f[k]);

}

printf("\nError=%6.3e\n\n",c3/c1);

}

/* End of the loop over the different kind of transforms and
problems */

}

/* Jumping over failure message */

goto SUCCESS;

Example C-36 C Example to Solve a Set of 1D Helmholtz Problems (continued)

Code Examples C

C-99

/* Failure message to print if something went wrong */

FAILURE: printf("Failed to compute the solution(s)...");

SUCCESS: return 0;

/* End of the example code */

}

Example C-37 Fortran-90 Example to Solve a Set of 1D Helmholtz Problems

!***

! INTEL CONFIDENTIAL

! Copyright(C) 2005 Intel Corporation. All Rights Reserved.

! The source code contained or described herein and all documents related to

! the source code ("Material") are owned by Intel Corporation or its suppliers

! or licensors. Title to the Material remains with Intel Corporation or its

! suppliers and licensors. The Material contains trade secrets and proprietary

! and confidential information of Intel or its suppliers and licensors. The

! Material is protected by worldwide copyright and trade secret laws and

! treaty provisions. No part of the Material may be used, copied, reproduced,

! modified, published, uploaded, posted, transmitted, distributed or disclosed

! in any way without Intel's prior express written permission.

! No license under any patent, copyright, trade secret or other intellectual

! property right is granted to or conferred upon you by disclosure or delivery

! of the Materials, either expressly, by implication, inducement, estoppel or

! otherwise. Any license under such intellectual property rights must be

! express and approved by Intel in writing.

!

Example C-36 C Example to Solve a Set of 1D Helmholtz Problems (continued)

C-100

C Intel® Math Kernel Library Reference Manual

!

!***

! Content:

! Double precision Fortran90 test example for trigonometric transforms

!***

! This example gives the solution of the 1D differential problems

! with the equation -u"+u=f(x), 0<x<1, and with 3 types of boundary conditions:

! u(0)=u(1)=0 (DD case), or u'(0)=u'(1)=0 (NN case), or u'(0)=u(1)=0 (ND case)

program d_tt_example_bvp

 use mkl_dfti

 use mkl_trig_transforms

 implicit none

integer n, i, k,j, tt_type

integer ir, ipar(128)

! Note that the size of the transform n must be even !!!

 parameter (n=8)

double precision pi, xi

double precision c1, c2, c3, c4, c5, c6

double precision u(n+1), f(n+1), dpar(3*n/2+1), lambda(n+1)

parameter (pi=3.14159265358979324D0)

type(dfti_descriptor), pointer :: handle

! Printing the header for the example

 print *, ''

 print *, ' Example of use of MKL Trigonometric Transforms'

 print *, ' **'

 print *, ''

Example C-37 Fortran-90 Example to Solve a Set of 1D Helmholtz Problems (continued)

Code Examples C

C-101

 print *, ' This example gives the solution of the 1D differential problems'

 print *, ' with the equation -u"+u=f(x), 0<x<1, '

 print *, ' and with 3 types of boundary conditions:'

 print *, ' DD case: u(0)=u(1)=0,'

 print *, ' NN case: u''(0)=u''(1)=0,'

 print *, ' ND case: u''(0)=u(1)=0.'

 print *, '
---'

 print *, ' In general, the error should be of order O(1.0/n**2)'

 print *, ' For this example, the value of n is', n

 print *, ' The approximation error should be of order 0.5E-01, if
everything is OK'

 print *, '
---'

 print *, ' Note that n should be even to use Trigonometric Transforms !'

 print *, '
---'

 print *, ' DOUBLE PRECISION COMPUTATIONS
'

print*,'===
'

 print *, ''

do i=0,2

! Varying the type of the transform

tt_type=i

! Computing test solution u(x)

 do k=1,n+1

 xi=1.0D0*(k-1)/n

 u(k)=dsin(pi*xi)**2

 end do

Example C-37 Fortran-90 Example to Solve a Set of 1D Helmholtz Problems (continued)

C-102

C Intel® Math Kernel Library Reference Manual

! Computing the right-hand side f(x)

 do k=1,n+1

 f(k)=(4.0D0*(pi**2)+1.0D0)*u(k)-2.0D0*(pi**2)

 end do

! Computing the right-hand side for the algebraic system

 do k=1,n+1

 f(k)=f(k)/(n**2)

 end do

 if (tt_type.eq.0) then

! The Dirichlet boundary conditions

 f(1)=0.0D0

 f(n+1)=0.0D0

 end if

 if (tt_type.eq.2) then

! The mixed Neumann-Dirichlet boundary conditions

 f(n+1)=0.0D0

 end if

! Computing the eigenvalues for the three-point finite-difference problem

 if (tt_type.eq.0.or.tt_type.eq.1) then

 do k=1,n+1

 lambda(k)=(2.0D0*dsin(0.5D0*pi*(k-1)/n))**2+1.0D0/(n**2)

 end do

 end if

 if (tt_type.eq.2) then

 do k=1,n+1

 lambda(k)=(2.0D0*dsin(0.25D0*pi*(2*k-1)/n))**2+1.0D0/(n**2)

 end do

 end if

Example C-37 Fortran-90 Example to Solve a Set of 1D Helmholtz Problems (continued)

Code Examples C

C-103

! Computing the solution of 1D problem using trigonometric transforms

! First we initialize the transform

 CALL D_INIT_TRIG_TRANSFORM(n,tt_type,ipar,dpar,ir)

 if (ir.ne.0) goto 99

! Then we commit the transform. Note that the data in f will be changed at this
stage !

! If you want to keep them, save them in some other array before the call to the
routine

 CALL D_COMMIT_TRIG_TRANSFORM(f,handle,ipar,dpar,ir)

 if (ir.ne.0) goto 99

! Now we can apply trigonometric transform

 CALL D_FORWARD_TRIG_TRANSFORM(f,handle,ipar,dpar,ir)

 if (ir.ne.0) goto 99

! Scaling the solution by the eigenvalues

 do k=1,n+1

 f(k)=f(k)/lambda(k)

 end do

! Now we can apply trigonometric transform once again as ONLY input vector f has
changed

 CALL D_BACKWARD_TRIG_TRANSFORM(f,handle,ipar,dpar,ir)

 if (ir.ne.0) goto 99

! Cleaning the memory used by handle

! Now we can use handle for other KIND of trigonometric transform

 CALL FREE_TRIG_TRANSFORM(handle,ipar,ir)

 if (ir.ne.0) goto 99

Example C-37 Fortran-90 Example to Solve a Set of 1D Helmholtz Problems (continued)

C-104

C Intel® Math Kernel Library Reference Manual

! Performing the error analysis

 c1=0.0D0

 c2=0.0D0

 c3=0.0D0

 do k=1,n+1

! Computing the absolute value of the exact solution

 c4=dabs(u(k))

! Computing the absolute value of the computed solution

! Note that the solution is now in place of the former right-hand side !

 c5=dabs(f(k))

! Computing the absolute error

 c6=dabs(f(k)-u(k))

! Computing the maximum among the above 3 values c4-c6

 if (c4.gt.c1) c1=c4

 if (c5.gt.c2) c2=c5

 if (c6.gt.c3) c3=c6

 end do

! Printing the results

 if (tt_type.eq.0) then

 print *, 'The computed solution of DD problem is'

 print *, ''

 do k=1,n+1

 write(*,11) k,f(k)

 end do

 print *, ''

 write(*,12) c3/c1

 print *, ''

 end if

Example C-37 Fortran-90 Example to Solve a Set of 1D Helmholtz Problems (continued)

Code Examples C

C-105

 if (tt_type.eq.1) then

 print *, 'The computed solution of NN problem is'

 print *, ''

 do k=1,n+1

 write(*,11) k,f(k)

 end do

 print *, ''

 write(*,12) c3/c1

 print *, ''

 end if

 if (tt_type.eq.2) then

 print *, 'The computed solution of ND problem is'

 print *, ''

 do k=1,n+1

 write(*,11) k,f(k)

 end do

 print *, ''

 write(*,12) c3/c1

 print *, ''

 end if

! End of the loop over the different kind of transforms and problems

 end do

! Jumping over failure message

 go to 1

! Failure message to print if something went wrong

99 continue

 print *, 'Failed to compute the solution(s)...'

Example C-37 Fortran-90 Example to Solve a Set of 1D Helmholtz Problems (continued)

C-106

C Intel® Math Kernel Library Reference Manual

1 continue

! Print formats

11 format(1x,'u(',I1,')=',F6.3)

12 format(1x,'Relative error =',E10.3)

! End of the example code

end

Example C-37 Fortran-90 Example to Solve a Set of 1D Helmholtz Problems (continued)

D-1

CBLAS Interface
to the BLAS D

This appendix presents CBLAS, the C interface to the Basic Linear Algebra Subprograms (BLAS)
implemented in Intel® MKL.

Similar to BLAS, the CBLAS interface includes the following levels of functions:

• “Level 1 CBLAS” (vector-vector operations)

• “Level 2 CBLAS” (matrix-vector operations)

• “Level 3 CBLAS” (matrix-matrix operations).

• “Sparse CBLAS” (operations on sparse vectors).

To obtain the C interface, the Fortran routine names are prefixed with cblas_ (for example,
dasum becomes cblas_dasum). Names of all CBLAS functions are in lowercase letters.

Complex functions ?dotc and ?dotu become CBLAS subroutines (void functions); they return
the complex result via a void pointer, added as the last parameter. CBLAS names of these
functions are suffixed with _sub. For example, the BLAS function cdotc corresponds to
cblas_cdotc_sub.

CBLAS Arguments
The arguments of CBLAS functions obey the following rules:

• Input arguments are declared with the const modifier.

• Non-complex scalar input arguments are passed by value.

• Complex scalar input arguments are passed as void pointers.

• Array arguments are passed by address.

• Output scalar arguments are passed by address.

D-2

D Intel® Math Kernel Library Reference Manual

• BLAS character arguments are replaced by the appropriate enumerated type.

• Level 2 and Level 3 routines acquire an additional parameter of type CBLAS_ORDER as their
first argument. This parameter specifies whether two-dimensional arrays are row-major
(CblasRowMajor) or column-major (CblasColMajor).

Enumerated Types

The CBLAS interface uses the following enumerated types:

enum CBLAS_ORDER {
 CblasRowMajor=101, /* row-major arrays */
 CblasColMajor=102}; /* column-major arrays */

enum CBLAS_TRANSPOSE {
 CblasNoTrans=111, /* trans='N' */
 CblasTrans=112, /* trans='T' */
 CblasConjTrans=113}; /* trans='C' */

enum CBLAS_UPLO {
 CblasUpper=121, /* uplo ='U' */
 CblasLower=122}; /* uplo ='L' */

enum CBLAS_DIAG {
 CblasNonUnit=131, /* diag ='N' */
 CblasUnit=132}; /* diag ='U' */

enum CBLAS_SIDE {
 CblasLeft=141, /* side ='L' */
 CblasRight=142}; /* side ='R' */

CBLAS Interface to the BLAS D

D-3

Level 1 CBLAS
This is an interface to “BLAS Level 1 Routines and Functions”, which perform basic
vector-vector operations.

ipps?asum

float cblas_sasum(const int N, const float *X, const int incX);

double cblas_dasum(const int N, const double *X, const int incX);

float cblas_scasum(const int N, const void *X, const int incX);

double cblas_dzasum(const int N, const void *X, const int incX);

ipps?axpy

void cblas_saxpy(const int N, const float alpha, const float *X, const int incX,
float *Y, const int incY);

void cblas_daxpy(const int N, const double alpha, const double *X, const int
incX, double *Y, const int incY);

void cblas_caxpy(const int N, const void *alpha, const void *X, const int incX,
void *Y, const int incY);

void cblas_zaxpy(const int N, const void *alpha, const void *X, const int incX,
void *Y, const int incY);

ipps?copy

void cblas_scopy(const int N, const float *X, const int incX, float *Y, const int
incY);

void cblas_dcopy(const int N, const double *X, const int incX, double *Y, const
int incY);

void cblas_ccopy(const int N, const void *X, const int incX, void *Y, const int
incY);

void cblas_zcopy(const int N, const void *X, const int incX, void *Y, const int
incY);

ipps?dot

float cblas_sdot(const int N, const float *X, const int incX,
const float *Y, const int incY);

double cblas_ddot(const int N, const double *X, const int incX,
const double *Y, const int incY);

ipps?sdot

float cblas_sdsdot(const int N, const float *SB, const float *SX, const int incX,
const float *SY, const int incY);

double cblas_dsdot(const int N, const float *SX, const int incX, const float *SY,
const int incY);

D-4

D Intel® Math Kernel Library Reference Manual

ipps?dotc

void cblas_cdotc_sub(const int N, const void *X, const int incX, const void *Y,
const int incY, void *dotc);

void cblas_zdotc_sub(const int N, const void *X, const int incX, const void *Y,
const int incY, void *dotc);

ipps?dotu
void cblas_cdotu_sub(const int N, const void *X, const int incX, const void *Y,
const int incY, void *dotu);

void cblas_zdotu_sub(const int N, const void *X, const int incX, const void *Y,
const int incY, void *dotu);

ipps?nrm2
float cblas_snrm2(const int N, const float *X, const int incX);

double cblas_dnrm2(const int N, const double *X, const int incX);

float cblas_scnrm2(const int N, const void *X, const int incX);

double cblas_dznrm2(const int N, const void *X, const int incX);

ipps?rot
void cblas_srot(const int N, float *X, const int incX, float *Y, const int incY,
const float c, const float s);

void cblas_drot(const int N, double *X, const int incX, double *Y,const int incY,
const double c, const double s);

ipps?rotg

void cblas_srotg(float *a, float *b, float *c, float *s);

void cblas_drotg(double *a, double *b, double *c, double *s);

ipps?rotm
void cblas_srotm(const int N, float *X, const int incX, float *Y, const int incY,
const float *P);

void cblas_drotm(const int N, double *X, const int incX, double *Y, const int
incY, const double *P);

ipps?rotmg

void cblas_srotmg(float *d1, float *d2, float *b1, const float b2, float *P);

void cblas_drotmg(double *d1, double *d2, double *b1, const double b2, double
*P);

CBLAS Interface to the BLAS D

D-5

ipps?scal
void cblas_sscal(const int N, const float alpha, float *X, const int incX);

void cblas_dscal(const int N, const double alpha, double *X, const int incX);

void cblas_cscal(const int N, const void *alpha, void *X, const int incX);

void cblas_zscal(const int N, const void *alpha, void *X, const int incX);

void cblas_csscal(const int N, const float alpha, void *X, const int incX);

void cblas_zdscal(const int N, const double alpha, void *X, const int incX);

ipps?swap
void cblas_sswap(const int N, float *X, const int incX, float *Y, const int incY);

void cblas_dswap(const int N, double *X, const int incX, double *Y, const int
incY);

void cblas_cswap(const int N, void *X, const int incX, void *Y, const int incY);

void cblas_zswap(const int N, void *X, const int incX, void *Y, const int incY);

ippsi?amax
CBLAS_INDEX cblas_isamax(const int N, const float *X, const int incX);

CBLAS_INDEX cblas_idamax(const int N, const double *X, const int incX);

CBLAS_INDEX cblas_icamax(const int N, const void *X, const int incX);

CBLAS_INDEX cblas_izamax(const int N, const void *X, const int incX);

ippsi?amin
CBLAS_INDEX cblas_isamin(const int N, const float *X, const int incX);

CBLAS_INDEX cblas_idamin(const int N, const double *X, const int incX);

CBLAS_INDEX cblas_icamin(const int N, const void *X, const int incX);

CBLAS_INDEX cblas_izamin(const int N, const void *X, const int incX);

Level 2 CBLAS
This is an interface to “BLAS Level 2 Routines”, which perform basic matrix-vector operations.
Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first
argument) that determines whether the two-dimensional arrays use column-major or row-major
storage.

ipps?gbmv

void cblas_sgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const int KL, const int KU, const float alpha, const
float *A, const int lda, const float *X, const int incX, const float beta, float
*Y, const int incY);

D-6

D Intel® Math Kernel Library Reference Manual

void cblas_dgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const int KL, const int KU, const double alpha, const
double *A, const int lda, const double *X, const int incX, const double beta,
double *Y, const int incY);

void cblas_cgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const int KL, const int KU, const void *alpha, const
void *A, const int lda, const void *X, const int incX, const void *beta, void *Y,
const int incY);

void cblas_zgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const int KL, const int KU, const void *alpha, const
void *A, const int lda, const void *X, const int incX, const void *beta, void *Y,
const int incY);

ipps?gemv

void cblas_sgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const float alpha, const float *A, const int lda, const
float *X, const int incX, const float beta, float *Y, const int incY);

void cblas_dgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const double alpha, const double *A, const int lda,
const double *X, const int incX, const double beta, double *Y, const int incY);

void cblas_cgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const void *alpha, const void *A, const int lda, const
void *X, const int incX, const void *beta, void *Y, const int incY);

void cblas_zgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const void *alpha, const void *A, const int lda, const
void *X, const int incX, const void *beta, void *Y, const int incY);

ipps?ger

void cblas_sger(const enum CBLAS_ORDER order, const int M, const int N, const
float alpha, const float *X, const int incX, const float *Y, const int incY, float
*A, const int lda);

void cblas_dger(const enum CBLAS_ORDER order, const int M, const int N, const
double alpha, const double *X, const int incX, const double *Y, const int incY,
double *A, const int lda);

ipps?gerc

void cblas_cgerc(const enum CBLAS_ORDER order, const int M, const int N, const
void *alpha, const void *X, const int incX, const void *Y, const int incY, void
*A, const int lda);

void cblas_zgerc(const enum CBLAS_ORDER order, const int M, const int N, const
void *alpha, const void *X, const int incX, const void *Y, const int incY, void
*A, const int lda);

CBLAS Interface to the BLAS D

D-7

ipps?geru

void cblas_cgeru(const enum CBLAS_ORDER order, const int M, const int N, const
void *alpha, const void *X, const int incX, const void *Y, const int incY, void
*A, const int lda);

void cblas_zgeru(const enum CBLAS_ORDER order, const int M, const int N, const
void *alpha, const void *X, const int incX, const void *Y, const int incY, void
*A, const int lda);

ipps?hbmv

void cblas_chbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const int K, const void *alpha, const void *A, const int lda, const void
*X, const int incX, const void *beta, void *Y, const int incY);

void cblas_zhbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const int K, const void *alpha, const void *A, const int lda, const void
*X, const int incX, const void *beta, void *Y, const int incY);

ipps?hemv

void cblas_chemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *A, const int lda, const void *X, const int
incX, const void *beta, void *Y, const int incY);

void cblas_zhemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *A, const int lda, const void *X, const int
incX, const void *beta, void *Y, const int incY);

ipps?her

void cblas_cher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const void *X, const int incX, void *A, const int lda);

void cblas_zher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const void *X, const int incX, void *A, const int lda);

ipps?her2

void cblas_cher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *A, const int lda);

void cblas_zher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *A, const int lda);

ipps?hpmv

void cblas_chpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *Ap, const void *X, const int incX, const
void *beta, void *Y, const int incY);

D-8

D Intel® Math Kernel Library Reference Manual

void cblas_zhpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *Ap, const void *X, const int incX, const
void *beta, void *Y, const int incY);

ipps?hpr

void cblas_chpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const void *X, const int incX, void *A);

void cblas_zhpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const void *X, const int incX, void *A);

ipps?hpr2

void cblas_chpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *Ap);

void cblas_zhpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const void *alpha, const void *X, const int incX, const void *Y, const int
incY, void *Ap);

ipps?sbmv

void cblas_ssbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const int K, const float alpha, const float *A, const int lda, const float
*X, const int incX, const float beta, float *Y, const int incY);

void cblas_dsbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const int K, const double alpha, const double *A, const int lda, const
double *X, const int incX, const double beta, double *Y, const int incY);

ipps?spmv

void cblas_sspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *Ap, const float *X, const int incX, const
float beta, float *Y, const int incY);

void cblas_dspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *Ap, const double *X, const int incX,
const double beta, double *Y, const int incY);

ipps?spr

void cblas_sspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *X, const int incX, float *Ap);

void cblas_dspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *X, const int incX, double *Ap);

ipps?spr2

void cblas_sspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *X, const int incX, const float *Y, const
int incY, float *A);

CBLAS Interface to the BLAS D

D-9

void cblas_dspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *X, const int incX, const double *Y, const
int incY, double *A);

ipps?symv

void cblas_ssymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *A, const int lda, const float *X, const int
incX, const float beta, float *Y, const int incY);

void cblas_dsymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *A, const int lda, const double *X, const
int incX, const double beta, double *Y, const int incY);

ipps?syr

void cblas_ssyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *X, const int incX, float *A, const int
lda);

void cblas_dsyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *X, const int incX, double *A, const int
lda);

ipps?syr2

void cblas_ssyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const float alpha, const float *X, const int incX, const float *Y, const
int incY, float *A, const int lda);

void cblas_dsyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
int N, const double alpha, const double *X, const int incX, const double *Y, const
int incY, double *A, const int lda);

ipps?tbmv

void cblas_stbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const float *A, const int lda, float *X, const int incX);

void cblas_dtbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const double *A, const int lda, double *X, const int incX);

void cblas_ctbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const void *A, const int lda, void *X, const int incX);

void cblas_ztbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const void *A, const int lda, void *X, const int incX);

D-10

D Intel® Math Kernel Library Reference Manual

ipps?tbsv

void cblas_stbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const float *A, const int lda, float *X, const int incX);

void cblas_dtbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const double *A, const int lda, double *X, const int incX);

void cblas_ctbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const void *A, const int lda, void *X, const int incX);

void cblas_ztbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int
K, const void *A, const int lda, void *X, const int incX);

ipps?tpmv

void cblas_stpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float
*Ap, float *X, const int incX);

void cblas_dtpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const
double *Ap, double *X, const int incX);

void cblas_ctpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*Ap, void *X, const int incX);

void cblas_ztpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*Ap, void *X, const int incX);

ipps?tpsv

void cblas_stpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const float
*Ap, float *X, const int incX);

void cblas_dtpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const double
*Ap, double *X, const int incX);

void cblas_ctpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*Ap, void *X, const int incX);

void cblas_ztpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*Ap, void *X, const int incX);

CBLAS Interface to the BLAS D

D-11

ipps?trmv

void cblas_strmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const float
*A, const int lda, float *X, const int incX);

void cblas_dtrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const double
*A, const int lda, double *X, const int incX);

void cblas_ctrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*A, const int lda, void *X, const int incX);

void cblas_ztrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*A, const int lda, void *X, const int incX);

ipps?trsv

void cblas_strsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const float
*A, const int lda, float *X, const int incX);

void cblas_dtrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const double
*A, const int lda, double *X, const int incX);

void cblas_ctrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*A, const int lda, void *X, const int incX);

void cblas_ztrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N,const void
*A, const int lda, void *X, const int incX);

D-12

D Intel® Math Kernel Library Reference Manual

Level 3 CBLAS
This is an interface to “BLAS Level 3 Routines”, which perform basic matrix-matrix operations.
Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first
argument) that determines whether the two-dimensional arrays use column-major or row-major
storage.

ipps?gemm

void cblas_sgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const
float alpha, const float *A, const int lda, const float *B, const int ldb, const
float beta, float *C, const int ldc);

void cblas_dgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const
double alpha, const double *A, const int lda, const double *B, const int ldb,
const double beta, double *C, const int ldc);

void cblas_cgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const
void *alpha, const void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);

void cblas_zgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const
void *alpha, const void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);

ipps?hemm

void cblas_chemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A,
const int lda, const void *B, const int ldb, const void *beta, void *C, const int
ldc);

void cblas_zhemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A,
const int lda, const void *B, const int ldb, const void *beta, void *C, const int
ldc);

ipps?herk

void cblas_cherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const
void *A, const int lda, const float beta, void *C, const int ldc);

void cblas_zherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const
void *A, const int lda, const double beta, void *C, const int ldc);

CBLAS Interface to the BLAS D

D-13

ipps?her2k

void cblas_cher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const float beta, void *C,
const int ldc);

void cblas_zher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const double beta, void *C,
const int ldc);

ipps?symm

void cblas_ssymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const float alpha, const float *A,
const int lda, const float *B, const int ldb, const float beta, float *C, const
int ldc);

void cblas_dsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const double alpha, const double
*A, const int lda, const double *B, const int ldb, const double beta, double *C,
const int ldc);

void cblas_csymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A,
const int lda, const void *B, const int ldb, const void *beta, void *C, const int
ldc);

void cblas_zsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A,
const int lda, const void *B, const int ldb, const void *beta, void *C, const int
ldc);

ipps?syrk

void cblas_ssyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const
float *A, const int lda, const float beta, float *C, const int ldc);

void cblas_dsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const
double *A, const int lda, const double beta, double *C, const int ldc);

void cblas_csyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *beta, void *C, const int ldc);

void cblas_zsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *beta, void *C, const int ldc);

D-14

D Intel® Math Kernel Library Reference Manual

ipps?syr2k

void cblas_ssyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const
float *A, const int lda, const float *B, const int ldb, const float beta, float
*C, const int ldc);

void cblas_dsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const
double *A, const int lda, const double *B, const int ldb, const double beta,
double *C, const int ldc);

void cblas_csyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSP SE Trans, const int N, const int K, const void *alpha,const void
*A, const int lda, const void *B, const int ldb, const void *beta, void *C, const
int ldc);

void cblas_zsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const
enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const void *beta, void *C,
const int ldc);

ipps?trmm

void cblas_strmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const float alpha, const float *A, const int lda,
float *B, const int ldb);

void cblas_dtrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const double alpha, const double *A, const int
lda, double *B, const int ldb);

void cblas_ctrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const void *alpha, const void *A, const int lda,
void *B, const int ldb);

void cblas_ztrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const void *alpha, const void *A, const int lda,
void *B, const int ldb);

ipps?trsm

void cblas_strsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const float alpha, const float *A, const int lda,
float *B, const int ldb);

void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const double alpha, const double *A, const int
lda, double *B, const int ldb);

CBLAS Interface to the BLAS D

D-15

void cblas_ctrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const void *alpha, const void *A, const int lda,
void *B, const int ldb);

void cblas_ztrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const
enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG
Diag, const int M, const int N, const void *alpha, const void *A, const int lda,
void *B, const int ldb);

D-16

D Intel® Math Kernel Library Reference Manual

Sparse CBLAS
This is an interface to “Sparse BLAS Level 1 Routines and Functions”, which perform a number
of common vector operations on sparse vectors stored in compressed form.

Note that all index parameters, indx, are in C-type notation and vary in the range [0..N-1].

ipps?axpyi

void cblas_saxpyi(const int N, const float alpha,
const float *X, const int *indx, float *Y);

void cblas_daxpyi(const int N, const double alpha,
const double *X, const int *indx, double *Y);

void cblas_caxpyi(const int N, const void *alpha,
const void *X, const int *indx, void *Y);

void cblas_zaxpyi(const int N, const void *alpha,
const void *X, const int *indx, void *Y);

ipps?doti

float cblas_sdoti(const int N, const float *X,
const int *indx, const float *Y);

double cblas_ddoti(const int N, const double *X,
const int *indx, const double *Y);

ipps?dotci

void cblas_cdotci_sub(const int N, const void *X, const int *indx, const void *Y,
void *dotui);

void cblas_zdotci_sub(const int N, const void *X, const int *indx, const void *Y,
void *dotui);

ipps?dotui

void cblas_cdotui_sub(const int N, const void *X, const int *indx, const void *Y,
void *dotui);

void cblas_zdotui_sub(const int N, const void *X, const int *indx, const void *Y,
void *dotui);

ipps?gthr

void cblas_sgthr(const int N, const float *Y, float *X,
const int *indx);

void cblas_dgthr(const int N, const double *Y, double *X,
const int *indx);

void cblas_cgthr(const int N, const void *Y, void *X,
const int *indx);

CBLAS Interface to the BLAS D

D-17

void cblas_zgthr(const int N, const void *Y, void *X,
const int *indx);

ipps?gthrz

void cblas_sgthrz(const int N, float *Y, float *X,
const int *indx);

void cblas_dgthrz(const int N, double *Y, double *X,
const int *indx);

void cblas_cgthrz(const int N, void *Y, void *X,
const int *indx);

void cblas_zgthrz(const int N, void *Y, void *X,
const int *indx);

ipps?roti

void cblas_sroti(const int N, float *X, const int *indx,
float *Y, const float c, const float s);

void cblas_droti(const int N, double *X, const int *indx,
double *Y, const double c, const double s);

ipps?sctr

void cblas_ssctr(const int N, const float *X, const int *indx, float *Y);

void cblas_dsctr(const int N, const double *X, const int *indx, double *Y);

void cblas_csctr(const int N, const void *X, const int *indx, void *Y);

void cblas_zsctr(const int N, const void *X, const int *indx, void *Y);

D-18

D Intel® Math Kernel Library Reference Manual

E-1

Specific Features of
Fortran-95 Interfaces for
LAPACK Routines E

Intel® MKL implements Fortran-95 interface for LAPACK package, further referred to as MKL
LAPACK-95, to provide full capacity of MKL Fortran-77 LAPACK routines. This is the principal
difference of Intel MKL from the Netlib Fortran-95 implementation for LAPACK.

A new feature of MKL LAPACK-95 by comparison with Intel MKL LAPACK-77
implementation is presenting a package of source interfaces along with wrappers that make the
implementation compiler-independent. As a result, the MKL LAPACK package can be used in all
programming environments intended for Fortran-95.

Depending on the degree and type of difference from Netlib implementation, the MKL
LAPACK-95 interfaces fall into several groups that require different transformations (see “MKL
Fortran-95 Interfaces for LAPACK Routines vs. Netlib Implementation”). The groups are given in
full with the calling sequences of the routines and appropriate differences from Netlib analogs.

The following conventions are used:

<interface> ::= <name of interface> ‘(’ <arguments list>‘)’

<arguments list> ::= <first argument> {<argument>}*

<first argument> ::= < identifier >

<argument> ::= <required argument>|<optional argument>

<required argument>::= ‘,’ <identifier>

<optional argument>::= ‘[,’ <identifier> ‘]’

<name of interface>::= <identifier>

where defined notions are separated from definitions by ::=, notion names are marked by angle
brackets, terminals are given in quotes, and {…}* denotes repetition zero, one, or more times.

<first argument> and each <required argument> should be present in all calls of denoted
interface, <optional argument> may be omitted. Comments to interface definitions are
provided where necessary. Comment lines begin with character !.

E-2

E Intel® Math Kernel Library Reference Manual

Two interfaces with one name are presented when two variants of subroutine calls (separated by
types of arguments) exist.

Interfaces Identical to Netlib
GETRI(A, IPIV [,INFO])

GEEQU(A,R,C[,ROWCND][,COLCND][,AMAX][,INFO])

GESV(A,B[,IPIV][,INFO])

GESVX(A,B,X[,AF][,IPIV][,FACT][,TRANS][,EQUED][,R][,C][,FERR][,BERR]
[,RCOND][,RPVGRW][,INFO])

GBSV(A,B[,KL][,IPIV][,INFO])

GTSV(DL,D,DU,B[,INFO])

GTSVX(DL,D,DU,B,X[,DLF][,DF][,DUF][,DU2][,IPIV][,FACT][,TRANS][,FERR]
[,BERR][,RCOND][,INFO])

POSV(A,B[,UPLO][,INFO])

POSVX(A,B,X[,UPLO][,AF][,FACT][,EQUED][,S][,FERR][,BERR][,RCOND][,INFO])

PPSV(A,B[,UPLO][,INFO])

PPSVX(A,B,X[,UPLO][,AF][,FACT][,EQUED][,S][,FERR][,BERR][,RCOND][,INFO])

PBSV(A,B[,UPLO][,INFO])

PBSVX(A,B,X[,UPLO][,AF][,FACT][,EQUED][,S][,FERR][,BERR][,RCOND][,INFO])

PTSV(D,E,B[,INFO])

PTSVX(D,E,B,X[,DF][,EF][,FACT][,FERR][,BERR][,RCOND][,INFO])

SYSV(A,B[,UPLO][,IPIV][,INFO])

SYSVX(A,B,X[,UPLO][,AF][,IPIV][,FACT][,FERR][,BERR][,RCOND][,INFO])

HESVX(A,B,X[,UPLO][,AF][,IPIV][,FACT][,FERR][,BERR][,RCOND][,INFO])

SYTRD(A,TAU[,UPLO][,INFO])

ORGTR(A,TAU[,UPLO][,INFO])

HETRD(A,TAU[,UPLO][,INFO])

UNGTR(A,TAU[,UPLO][,INFO])

SYGST(A,B[,ITYPE][,UPLO][,INFO])

HEGST(A,B[,ITYPE][,UPLO][,INFO])

GELS(A,B[,TRANS][,INFO])

GELSY(A,B[,RANK][,JPVT][,RCOND][,INFO])

GELSS(A,B[,RANK][,S][,RCOND][,INFO])

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

E-3

GELSD(A,B[,RANK][,S][,RCOND][,INFO])

GGLSE(A,B,C,D,X[,INFO])

GGGLM(A,B,D,X,Y[,INFO])

SYEV(A,W[,JOBZ][,UPLO][,INFO])

HEEV(A,W[,JOBZ][,UPLO][,INFO])

SYEVD(A,W[,JOBZ][,UPLO][,INFO])

SPEV(A,W[,UPLO][,Z][,INFO])

HPEV(A,W[,UPLO][,Z][,INFO])

SPEVD(A,W[,UPLO][,Z][,INFO])

HPEVD(A,W[,UPLO][,Z][,INFO])

SPEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

HPEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

SBEV(A,W[,UPLO][,Z][,INFO])

HBEV(A,W[,UPLO][,Z][,INFO])

SBEVD(A,W[,UPLO][,Z][,INFO])

HBEVD(A,W[,UPLO][,Z][,INFO])

SBEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,Q][,ABSTOL]
[,INFO])

HBEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,Q][,ABSTOL]
[,INFO])

HPGV(A,B,W[,ITYPE][,UPLO][,Z][,INFO])

STEV(D,E[,Z][,INFO])

STEVD(D,E[,Z][,INFO])

STEVX(D,E,W[,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])

STEVR(D,E,W[,Z][,VL][,VU][,IL][,IU][,M][,ISUPPZ][,ABSTOL][,INFO])

GEES(A,WR,WI[,VS][,SELECT][,SDIM][,INFO])
GEES(A,W[,VS][,SELECT][,SDIM][,INFO])

GEESX(A,WR,WI[,VS][,SELECT][,SDIM][,RCONDE][,RCONDV][,INFO])
GEESX(A,W[,VS][,SELECT][,SDIM][,RCONDE][,RCONDV][,INFO])

GEEV(A,WR,WI[,VL][,VR][,INFO])
GEEV(A,W[,VL][,VR][,INFO])

GEEVX(A,WR,WI[,VL][,VR][,BALANC][,ILO][,IHI][,SCALE][,ABNRM][,RCONDE]
[,RCONDV][,INFO])
GEEVX(A,W[,VL][,VR][,BALANC][,ILO][,IHI][,SCALE][,ABNRM][,RCONDE]
[,RCONDV][,INFO])

E-4

E Intel® Math Kernel Library Reference Manual

GESVD(A,S[,U][,VT][,WW][,JOB][,INFO])

GGSVD(A,B,ALPHA,BETA[,K][,L][,U][,V][,Q][,IWORK][,INFO])

SYGV(A,B,W[,ITYPE][,JOBZ][,UPLO][,INFO])

HEGV(A,B,W[,ITYPE][,JOBZ][,UPLO][,INFO])

SYGVD(A,B,W[,ITYPE][,JOBZ][,UPLO][,INFO])

HEGVD(A,B,W[,ITYPE][,JOBZ][,UPLO][,INFO])

SPGV(A,B,W[,ITYPE][,UPLO][,Z][,INFO])

SBGV(A,B,W[,UPLO][,Z][,INFO])

HBGV(A,B,W[,UPLO][,Z][,INFO])

GGES(A,B,ALPHAR,ALPHAI,BETA[,VSL][,VSR][,SELECT][,SDIM][,INFO])
GGES(A,B,ALPHA,BETA[,VSL][,VSR][,SELECT][,SDIM][,INFO])

GGESX(A,B,ALPHAR,ALPHAI,BETA[,VSL][,VSR][,SELECT][,SDIM][,RCONDE]
[,RCONDV][,INFO])
GGESX(A,B,ALPHA,BETA[,VSL][,VSR][,SELECT][,SDIM][,RCONDE][,RCONDV]
[,INFO])

GGEV(A,B,ALPHAR,ALPHAI,BETA[,VL][,VR][,INFO])
GGEV(A,B,ALPHA,BETA[,VL][,VR][,INFO])

GGEVX(A,B,ALPHAR,ALPHAI,BETA[,VL][,VR][,BALANC][,ILO][,IHI][,LSCALE]
[,RSCALE][,ABNRM][,BBNRM][,RCONDE][,RCONDV][,INFO])
GGEVX(A,B,ALPHA,BETA[,VL][,VR][,BALANC][,ILO][,IHI][,LSCALE][,RSCALE]
[,ABNRM][,BBNRM][,RCONDE][,RCONDV][,INFO])

GERFS(A,AF,IPIV,B,X[,TRANS][,FERR][,BERR][,INFO])

Interfaces with Replaced Argument Names

Argument names in the routines of this group are replaced as follows:

SPSV(A,B[,UPLO][,IPIV][,INFO])
! netlib: (AP,B,UPLO,IPIV,INFO)

Netlib Argument
Name

MKL Argument
Name

AP A

AB A

AFP AF

BP B

BB B

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

E-5

SPSVX(A,B,X[,UPLO][,AF][,IPIV][,FACT][,FERR][,BERR][,RCOND][,INFO])
! netlib: (A,B,X,UPLO,AFP,IPIV,FACT,FERR,BERR,RCOND,INFO)

HPSVX(A,B,X[,UPLO][,AF][,IPIV][,FACT][,FERR][,BERR][,RCOND][,INFO])
! netlib: (A,B,X,UPLO,AFP,IPIV,FACT,FERR,BERR,RCOND,INFO)

HEEVD(A,W[,JOB][,UPLO][,INFO])
! netlib: (A,W,JOBZ,UPLO,INFO)

SPGVD(A,B,W[,ITYPE][,UPLO][,Z][,INFO])
! netlib: (AP,BP,W,ITYPE,UPLO,Z,INFO)

HPGVD(A,B,W[,ITYPE][,UPLO][,Z][,INFO])
! netlib: (AP,BP,W,ITYPE,UPLO,Z,INFO)

SPGVX(A,B,W[,ITYPE][,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL]
[,INFO])
! netlib: (AP,BP,W,ITYPE,UPLO,Z,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)

HPGVX(A,B,W[,ITYPE][,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL]
[,INFO])
! netlib: (AP,BP,W,ITYPE,UPLO,Z,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)

SBGVD(A,B,W[,UPLO][,Z][,INFO])
! netlib: (AB,BB,W,UPLO,Z,INFO)

HBGVD(A,B,W[,UPLO][,Z][,INFO])
! netlib: (AB,BB,W,UPLO,Z,INFO)

SBGVX(A,B,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,Q][,ABSTOL]
[,INFO])
! netlib: (AB,BB,W,UPLO,Z,VL,VU,IL,IU,M,IFAIL,Q,ABSTOL,INFO)

HBGVX(A,B,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,Q][,ABSTOL]
[,INFO])
! netlib: (AB,BB,W,UPLO,Z,VL,VU,IL,IU,M,IFAIL,Q,ABSTOL,INFO)

GBSVX(A,B,X[,KL][,AF][,IPIV][,FACT][,TRANS][,EQUED][,R][,C][,FERR]
[,BERR][,RCOND][,RPVGRW][,INFO])
! netlib:
!(A,B,X,KL,AFB,IPIV,FACT,TRANS,EQUED,R,C,FERR,BERR,RCOND,RPVGRW,INFO)

Modified Netlib Interfaces
SYEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,W,JOBZ,UPLO,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)
! Different order for parameter UPLO, netlib: 4, mkl: 3
! Absent mkl parameter: JOBZ
! Extra mkl parameter: Z

E-6

E Intel® Math Kernel Library Reference Manual

HEEVX(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,W,JOBZ,UPLO,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)
! Different order for parameter UPLO, netlib: 4, mkl: 3
! Absent mkl parameter: JOBZ
! Extra mkl parameter: Z

SYEVR(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,ISUPPZ][,ABSTOL][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,W,JOBZ,UPLO,VL,VU,IL,IU,M,ISUPPZ,ABSTOL,INFO)
! Different order for parameter UPLO, netlib: 4, mkl: 3
! Absent mkl parameter: JOBZ
! Extra mkl parameter: Z

HEEVR(A,W[,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,ISUPPZ][,ABSTOL][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,W,JOBZ,UPLO,VL,VU,IL,IU,M,ISUPPZ,ABSTOL,INFO)
! Different order for parameter UPLO, netlib: 4, mkl: 3
! Absent mkl parameter: JOBZ
! Extra mkl parameter: Z

GESDD(A,S[,U][,VT][,JOBZ][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,S,U,VT,WW,JOB,INFO)
! Different number of parameters, netlib: 7, mkl: 6
! Absent mkl parameter: WW
! Absent mkl parameter: JOB
! Different order for parameter INFO, netlib: 7, mkl: 6
! Extra mkl parameter: JOBZ

SYGVX(A,B,W[,ITYPE][,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][
,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,B,W,ITYPE,JOBZ,UPLO,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)
! Different order for parameter UPLO, netlib: 6, mkl: 5
! Absent mkl parameter: JOBZ
! Extra mkl parameter: Z

HEGVX(A,B,W[,ITYPE][,UPLO][,Z][,VL][,VU][,IL][,IU][,M][,IFAIL][,ABSTOL][
,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,B,W,ITYPE,JOBZ,UPLO,VL,VU,IL,IU,M,IFAIL,ABSTOL,INFO)
! Different order for parameter UPLO, netlib: 6, mkl: 5
! Absent mkl parameter: JOBZ
! Extra mkl parameter: Z

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

E-7

GETRS(A,IPIV,B[,TRANS][,INFO])
! Interface netlib95 exists:
! Different intents for parameter A, netlib: INOUT, mkl: IN

Interfaces Absent From Netlib
GTTRF(DL,D,DU,DU2[,IPIV][,INFO])

PPTRF(A[,UPLO][,INFO])

PBTRF(A[,UPLO][,INFO])

PTTRF(D,E[,INFO])

SYTRF(A[,UPLO][,IPIV][,INFO])

HETRF(A[,UPLO][,IPIV][,INFO])

SPTRF(A[,UPLO][,IPIV][,INFO])

HPTRF(A[,UPLO][,IPIV][,INFO])

GBTRS(A,B,IPIV[,KL][,TRANS][,INFO])

GTTRS(DL,D,DU,DU2,B,IPIV[,TRANS][,INFO])

POTRS(A,B[,UPLO][,INFO])

PPTRS(A,B[,UPLO][,INFO])

PBTRS(A,B[,UPLO][,INFO])

PTTRS(D,E,B[,INFO])
PTTRS(D,E,B[,UPLO][,INFO])

SYTRS(A,B,IPIV[,UPLO][,INFO])

HETRS(A,B,IPIV[,UPLO][,INFO])

SPTRS(A,B,IPIV[,UPLO][,INFO])

HPTRS(A,B,IPIV[,UPLO][,INFO])

TRTRS(A,B[,UPLO][,TRANS][,DIAG][,INFO])

TPTRS(A,B[,UPLO][,TRANS][,DIAG][,INFO])

TBTRS(A,B[,UPLO][,TRANS][,DIAG][,INFO])

GECON(A,ANORM,RCOND[,NORM][,INFO])

GBCON(A,IPIV,ANORM,RCOND[,KL][,NORM][,INFO])

GTCON(DL,D,DU,DU2,IPIV,ANORM,RCOND[,NORM][,INFO])

POCON(A,ANORM,RCOND[,UPLO][,INFO])

PPCON(A,ANORM,RCOND[,UPLO][,INFO])

PBCON(A,ANORM,RCOND[,UPLO][,INFO])

E-8

E Intel® Math Kernel Library Reference Manual

PTCON(D,E,ANORM,RCOND[,INFO])

SYCON(A,IPIV,ANORM,RCOND[,UPLO][,INFO])

HECON(A,IPIV,ANORM,RCOND[,UPLO][,INFO])

SPCON(A,IPIV,ANORM,RCOND[,UPLO][,INFO])

HPCON(A,IPIV,ANORM,RCOND[,UPLO][,INFO])

TRCON(A,RCOND[,UPLO][,DIAG][,NORM][,INFO])

TPCON(A,RCOND[,UPLO][,DIAG][,NORM][,INFO])

TBCON(A,RCOND[,UPLO][,DIAG][,NORM][,INFO])

GBRFS(A,AF,IPIV,B,X[,KL][,TRANS][,FERR][,BERR][,INFO])

GTRFS(DL,D,DU,DLF,DF,DUF,DU2,IPIV,B,X[,TRANS][,FERR][,BERR][,INFO])

PORFS(A,AF,B,X[,UPLO][,FERR][,BERR][,INFO])

PPRFS(A,AF,B,X[,UPLO][,FERR][,BERR][,INFO])

PBRFS(A,AF,B,X[,UPLO][,FERR][,BERR][,INFO])

PTRFS(D,DF,E,EF,B,X[,FERR][,BERR][,INFO])
PTRFS(D,DF,E,EF,B,X[,UPLO][,FERR][,BERR][,INFO])

SYRFS(A,AF,IPIV,B,X[,UPLO][,FERR][,BERR][,INFO])

HERFS(A,AF,IPIV,B,X[,UPLO][,FERR][,BERR][,INFO])

SPRFS(A,AF,IPIV,B,X[,UPLO][,FERR][,BERR][,INFO])

HPRFS(A,AF,IPIV,B,X[,UPLO][,FERR][,BERR][,INFO])

TRRFS(A,B,X[,UPLO][,TRANS][,DIAG][,FERR][,BERR][,INFO])

TPRFS(A,B,X[,UPLO][,TRANS][,DIAG][,FERR][,BERR][,INFO])

TBRFS(A,B,X[,UPLO][,TRANS][,DIAG][,FERR][,BERR][,INFO])

POTRI(A[,UPLO][,INFO])

PPTRI(A[,UPLO][,INFO])

SYTRI(A,IPIV[,UPLO][,INFO])

HETRI(A,IPIV[,UPLO][,INFO])

SPTRI(A,IPIV[,UPLO][,INFO])

HPTRI(A,IPIV[,UPLO][,INFO])

TRTRI(A[,UPLO][,DIAG][,INFO])

TPTRI(A[,UPLO][,DIAG][,INFO])

GBEQU(A,R,C[,KL][,ROWCND][,COLCND][,AMAX][,INFO])

POEQU(A,S[,SCOND][,AMAX][,INFO])

PPEQU(A,S[,SCOND][,AMAX][,UPLO][,INFO])

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

E-9

PBEQU(A,S[,SCOND][,AMAX][,UPLO][,INFO])

HESV(A,B[,UPLO][,IPIV][,INFO])

HPSV(A,B[,UPLO][,IPIV][,INFO])

GEQRF(A[,TAU][,INFO])

GEQPF(A,JPVT[,TAU][,INFO])

GEQP3(A,JPVT[,TAU][,INFO])

ORGQR(A,TAU[,INFO])

ORMQR(A,TAU,C[,SIDE][,TRANS][,INFO])

UNGQR(A,TAU[,INFO])

UNMQR(A,TAU,C[,SIDE][,TRANS][,INFO])

GELQF(A[,TAU][,INFO])

ORGLQ(A,TAU[,INFO])

ORMLQ(A,TAU,C[,SIDE][,TRANS][,INFO])

UNGLQ(A,TAU[,INFO])

UNMLQ(A,TAU,C[,SIDE][,TRANS][,INFO])

GEQLF(A[,TAU][,INFO])

ORGQL(A,TAU[,INFO])

UNGQL(A,TAU[,INFO])

ORMQL(A,TAU,C[,SIDE][,TRANS][,INFO])

UNMQL(A,TAU,C[,SIDE][,TRANS][,INFO])

GERQF(A[,TAU][,INFO])

ORGRQ(A,TAU[,INFO])

UNGRQ(A,TAU[,INFO])

ORMRQ(A,TAU,C[,SIDE][,TRANS][,INFO])

UNMRQ(A,TAU,C[,SIDE][,TRANS][,INFO])

TZRZF(A[,TAU][,INFO])

ORMRZ(A,TAU,C,L[,SIDE][,TRANS][,INFO])

UNMRZ(A,TAU,C,L[,SIDE][,TRANS][,INFO])

GGQRF(A,B[,TAUA][,TAUB][,INFO])

GGRQF(A,B[,TAUA][,TAUB][,INFO])

GEBRD(A[,D][,E][,TAUQ][,TAUP][,INFO])

GBBRD(A[,C][,D][,E][,Q][,PT][,KL][,M][,INFO])

ORGBR(A,TAU[,VECT][,INFO])

E-10

E Intel® Math Kernel Library Reference Manual

ORMBR(A,TAU,C[,VECT][,SIDE][,TRANS][,INFO])

ORMTR(A,TAU,C[,SIDE][,UPLO][,TRANS][,INFO])

UNGBR(A,TAU[,VECT][,INFO])

UNMBR(A,TAU,C[,VECT][,SIDE][,TRANS][,INFO])

BDSQR(D,E[,VT][,U][,C][,UPLO][,INFO])

BDSDC(D,E[,U][,VT][,Q][,IQ][,UPLO][,INFO])

UNMTR(A,TAU,C[,SIDE][,UPLO][,TRANS][,INFO])

SPTRD(A,TAU[,UPLO][,INFO])

OPGTR(A,TAU,Q[,UPLO][,INFO])

OPMTR(A,TAU,C[,SIDE][,UPLO][,TRANS][,INFO])

HPTRD(A,TAU[,UPLO][,INFO])

UPGTR(A,TAU,Q[,UPLO][,INFO])

UPMTR(A,TAU,C[,SIDE][,UPLO][,TRANS][,INFO])

SBTRD(A[,Q][,VECT][,UPLO][,INFO])

HBTRD(A[,Q][,VECT][,UPLO][,INFO])

STERF(D,E[,INFO])

STEQR(D,E[,Z][,COMPZ][,INFO])

STEDC(D,E[,Z][,COMPZ][,INFO])

STEGR(D,E,W[,Z][,VL][,VU][,IL][,IU][,M][,ISUPPZ][,ABSTOL][,INFO])

PTEQR(D,E[,Z][,COMPZ][,INFO])

STEBZ(D,E,M,NSPLIT,W,IBLOCK,ISPLIT[,ORDER][,VL][,VU][,IL][,IU][,ABSTOL]
[,INFO])

STEIN(D,E,W,IBLOCK,ISPLIT,Z[,IFAILV][,INFO])

DISNA(D,SEP[,JOB][,MINMN][,INFO])

SPGST(A,B[,ITYPE][,UPLO][,INFO])

HPGST(A,B[,ITYPE][,UPLO][,INFO])

SBGST(A,B[,X][,UPLO][,INFO])

HBGST(A,B[,X][,UPLO][,INFO])

PBSTF(B[,UPLO][,INFO])

GEHRD(A[,TAU][,ILO][,IHI][,INFO])

ORGHR(A,TAU[,ILO][,IHI][,INFO])

ORMHR(A,TAU,C[,ILO][,IHI][,SIDE][,TRANS][,INFO])

UNGHR(A,TAU[,ILO][,IHI][,INFO])

Specific Features of Fortran-95 Interfaces for LAPACK Routines E

E-11

UNMHR(A,TAU,C[,ILO][,IHI][,SIDE][,TRANS][,INFO])

GEBAL(A[,SCALE][,ILO][,IHI][,JOB][,INFO])

GEBAK(V,SCALE[,ILO][,IHI][,JOB][,SIDE][,INFO])

HSEQR(H,WR,WI[,ILO][,IHI][,Z][,JOB][,COMPZ][,INFO])
HSEQR(H,W[,ILO][,IHI][,Z][,JOB][,COMPZ][,INFO])

HSEIN(H,WR,WI,SELECT[,VL][,VR][,IFAILL][,IFAILR][,INITV][,EIGSRC][,M]
[,INFO])
HSEIN(H,W,SELECT[,VL][,VR][,IFAILL][,IFAILR][,INITV][,EIGSRC][,M]
[,INFO])

TREVC(T[,HOWMNY][,SELECT][,VL][,VR][,M][,INFO])

TRSNA(T[,S][,SEP][,VL][,VR][,SELECT][,M][,INFO])

TREXC(T,IFST,ILST[,Q][,INFO])

TRSEN(T,SELECT[,WR][,WI][,M][,S][,SEP][,Q][,INFO])
TRSEN(T,SELECT[,W][,M][,S][,SEP][,Q][,INFO])

TRSYL(A,B,C,SCALE[,TRANA][,TRANB][,ISGN][,INFO])

GGHRD(A,B[,ILO][,IHI][,Q][,Z][,COMPQ][,COMPZ][,INFO])

GGBAL(A,B[,ILO][,IHI][,LSCALE][,RSCALE][,JOB][,INFO])

GGBAK(V[,ILO][,IHI][,LSCALE][,RSCALE][,JOB][,INFO])

HGEQZ(H,T[,ILO][,IHI][,ALPHAR][,ALPHAI][,BETA][,Q][,Z][,JOB][,COMPQ]
[,COMPZ][,INFO])
HGEQZ(H,T[,ILO][,IHI][,ALPHA][,BETA][,Q][,Z][,JOB][,COMPQ][,COMPZ]
[,INFO])

TGEVC(S,P[,HOWMNY][,SELECT][,VL][,VR][,M][,INFO])

TGEXC(A,B[,IFST][,ILST][,Z][,Q][,INFO])

TGSEN(A,B,SELECT[,ALPHAR][,ALPHAI][,BETA][,IJOB][,Q][,Z][,PL][,PR][,DIF]
[,M][,INFO])
TGSEN(A,B,SELECT[,ALPHA][,BETA][,IJOB][,Q][,Z][,PL][,PR][,DIF][,M]
[,INFO])

TGSYL(A,B,C,D,E,F[,IJOB][,TRANS][,SCALE][,DIF][,INFO])

TGSNA(A,B[,S][,DIF][,VL][,VR][,SELECT][,M][,INFO])

GGSVP(A,B,TOLA,TOLB[,K][,L][,U][,V][,Q][,INFO])

TGSJA(A,B,TOLA,TOLB,K,L[,U][,V][,Q][,JOBU][,JOBV][,JOBQ][,ALPHA][,BETA]
[,NCYCLE][,INFO])

E-12

E Intel® Math Kernel Library Reference Manual

Interfaces of New Functionality
GETRF(A[,IPIV][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,IPIV,RCOND,NORM,INFO)
! Different number of parameters, netlib: 5, mkl: 3
! Different order for parameter INFO, netlib: 5, mkl: 3
! Absent mkl parameter: NORM
! Absent mkl parameter: RCOND

GBTRF(A[,KL][,M][,IPIV][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,K,M,IPIV,RCOND,NORM,INFO)
! Different number of parameters, netlib: 7, mkl: 5
! Different order for parameter INFO, netlib: 7, mkl: 5
! Absent mkl parameter: NORM
! Replace parameter name: netlib: K: mkl: KL
! Absent mkl parameter: RCOND

POTRF(A[,UPLO][,INFO])
! Interface netlib95 exists, parameters:
! netlib: (A,UPLO,RCOND,NORM,INFO)
! Different number of parameters, netlib: 5, mkl: 3
! Different order for parameter INFO, netlib: 5, mkl: 3
! Absent mkl parameter: NORM
! Absent mkl parameter: RCOND

Glossary-1

Glossary

AH Denotes the conjugate of a general matrix A.
See also conjugate matrix.

AT Denotes the transpose of a general matrix A.
See also transpose.

band matrix A general m-by-n matrix A such that aij = 0 for
|i - j| > l, where 1 < l < min(m, n). For example, any
tridiagonal matrix is a band matrix.

band storage A special storage scheme for band matrices.
A matrix is stored in a two-dimensional array: columns
of the matrix are stored in the corresponding columns
of the array, and diagonals of the matrix are stored in
rows of the array.

BLAS Abbreviation for Basic Linear Algebra Subprograms.
These subprograms implement vector, matrix-vector,
and matrix-matrix operations.

BRNG Abbreviation for Basic Random Number Generator.
Basic random number generators are pseudorandom
number generators imitating i.i.d. random number
sequences of uniform distribution. Distributions other
than uniform are generated by applying different
transformation techniques to the sequences of random
numbers of uniform distribution.

BRNG registration Standardized mechanism that allows a user to include a
user-designed BRNG into the VSL and use it along
with the predefined VSL basic generators.

Glossary-2

Intel® Math Kernel Library Reference Manual

Bunch-Kaufman
factorization

Representation of a real symmetric or complex
Hermitian matrix A in the form A = PUDUHPT
(or A = PLDLHPT) where P is a permutation matrix, U
and L are upper and lower triangular matrices with unit
diagonal, and D is a Hermitian block-diagonal matrix
with 1-by-1 and 2-by-2 diagonal blocks. U and L have
2-by-2 unit diagonal blocks corresponding to the
2-by-2 blocks of D.

c When found as the first letter of routine names,
c indicates the usage of single-precision complex data
type.

CBLAS C interface to the BLAS. See BLAS.

CDF Cumulative Distribution Function. The function that
determines probability distribution for univariate or
multivariate random variable X. For univariate
distribution the cumulative distribution function is the
function of real argument x, which for every x takes a
value equal to probability of the event A:
 X ≤ x. For multivariate distribution the cumulative
distribution function is the function of a real vector

, which, for every x, takes a value
equal to probability of the event A = (X1 ≤ x1 &
X2 ≤ x2, & ..., & Xn ≤ xn).

Cholesky factorization Representation of a symmetric positive-definite or, for
complex data, Hermitian positive-definite matrix A in
the form A = UHU or A = LLH, where L is a lower
triangular matrix and U is an upper triangular matrix.

condition number The number κ(A) defined for a given square matrix A
as follows: κ(A) = ||A|| ||A−1||.

conjugate matrix The matrix AH defined for a given general matrix A as
follows: (AH)ij = (aji)

*.

conjugate number The conjugate of a complex number z = a + bi is
z*= a - bi.

x x1 x2 ..., xn,(,)=

Glossary-3

d When found as the first letter of routine names,
d indicates the usage of double-precision real data
type.

dot product The number denoted x · y and defined for given vectors
x and y as follows: x · y = Σi xiyi.
Here xi and yi stand for the i-th elements of x and y,
respectively.

double precision A floating-point data type. On Intel® processors, this
data type allows you to store real numbers x such that
2.23*10−308< | x | < 1.79*10308.
For this data type, the machine precision ε is
approximately 10−15, which means that
double-precision numbers usually contain no more
than 15 significant decimal digits.
For more information, refer to Pentium® Processor
Family Developer’s Manual, Volume 3: Architecture
and Programming Manual.

eigenvalue See eigenvalue problem.

eigenvalue problem A problem of finding non-zero vectors x and numbers
λ (for a given square matrix A) such that Ax = λx. Here
the numbers λ are called the eigenvalues of the matrix
A and the vectors x are called the eigenvectors of the
matrix A.

eigenvector See eigenvalue problem.

elementary reflector
(Householder matrix)

Matrix of a general form H = I − τvvT, where v is a
column vector and τ is a scalar.
In LAPACK elementary reflectors are used, for
example, to represent the matrix Q in the QR
factorization (the matrix Q is represented as a product
of elementary reflectors).

factorization Representation of a matrix as a product of matrices.
See also Bunch-Kaufman factorization, Cholesky
factorization, LU factorization, LQ factorization, QR
factorization, Schur factorization.

Glossary-4

Intel® Math Kernel Library Reference Manual

FFTs Abbreviation for Fast Fourier Transforms. See Chapter
3 of this book.

full storage A storage scheme allowing you to store matrices of any
kind. A matrix A is stored in a two-dimensional array
a, with the matrix element aij stored in the array
element a(i,j).

Hermitian matrix A square matrix A that is equal to its conjugate matrix
AH. The conjugate AH is defined as follows: (AH)ij =
(aji)

*.

I See identity matrix.

identity matrix A square matrix I whose diagonal elements are 1, and
off-diagonal elements are 0. For any matrix A, AI = A
and IA = A.

i.i.d. Independent Identically Distributed.

in-place Qualifier of an operation. A function that performs its
operation in-place takes its input from an array and
returns its output to the same array.

Intel MKL Abbreviation for Intel® Math Kernel Library.

inverse matrix The matrix denoted as A−1 and defined for a given
square matrix A as follows: AA−1 = A−1A = I.
A−1 does not exist for singular matrices A.

LQ factorization Representation of an m-by-n matrix A as A = LQ or
A = (L 0)Q. Here Q is an n-by-n orthogonal (unitary)
matrix. For m ≤ n, L is an m-by-m lower triangular
matrix with real diagonal elements; for m > n,

 where L1 is an n-by-n lower triangular

 matrix, and L2 is a rectangular matrix.

LU factorization Representation of a general m-by-n matrix A as
A = PLU, where P is a permutation matrix, L is lower
triangular with unit diagonal elements (lower
trapezoidal if m > n) and U is upper triangular (upper
trapezoidal if m < n).

L
L1

L2

=

Glossary-5

machine precision The number ε determining the precision of the machine
representation of real numbers. For Intel® architecture,
the machine precision is approximately 10−7 for
single-precision data, and approximately 10−15 for
double-precision data. The precision also determines
the number of significant decimal digits in the machine
representation of real numbers. See also double
precision and single precision.

MPI Message Passing Interface. This standard
defines the user interface and functionality for a
wide range of message-passing capabilities in
parallel computing.

MPICH A freely available, portable implementation of
MPI standard for message-passing libraries.

orthogonal matrix A real square matrix A whose transpose and inverse are
equal, that is, AT = A-1, and therefore
AAT = ATA = I. All eigenvalues of an orthogonal matrix
have the absolute value 1.

packed storage A storage scheme allowing you to store symmetric,
Hermitian, or triangular matrices more compactly. The
upper or lower triangle of a matrix is packed by
columns in a one-dimensional array.

PDF Probability Density Function. The function that
determines probability distribution for univariate or
multivariate continuous random variable X. The
probability density function is closely related with
the cumulative distribution function . For
univariate distribution the relation is

 .

For multivariate distribution the relation is

f x()
F x()

F x() f t() td
∞ –

x

∫=

F x1 x2 ..., xn,(,) ...
∞ –

x2

∫
∞ –

x1

∫ f t1 t2 ..., tn,(,) t1 t2... tnddd
∞ –

xn

∫=

Glossary-6

Intel® Math Kernel Library Reference Manual

positive-definite
matrix

A square matrix A such that Ax · x > 0 for any non-zero
vector x. Here · denotes the dot product.

pseudorandom number
generator

A completely deterministic algorithm that imitates
truly random sequences.

QR factorization Representation of an m-by-n matrix A as A = QR, where
Q is an m-by-m orthogonal (unitary) matrix, and R is
n-by-n upper triangular with real diagonal elements (if
m ≥ n) or trapezoidal (if m < n) matrix.

random stream An abstract source of independent identically
distributed random numbers of uniform distribution. In
this manual a random stream points to a structure that
uniquely defines a random number sequence generated
by a basic generator associated with a given random
stream.

RNG Abbreviation for Random Number Generator. In this
manual the term ‘random number generators’ stands
for pseudorandom number generators, that is,
generators based on completely deterministic
algorithms imitating truly random sequences.

s When found as the first letter of routine names,
s indicates the usage of single-precision real data type.

ScaLAPACK Stands for Scalable Linear Algebra PACKage.

Schur factorization Representation of a square matrix A in the form
A = ZTZH. Here T is an upper quasi-triangular matrix
(for complex A, triangular matrix) called the Schur
form of A; the matrix Z is orthogonal (for complex A,
unitary). Columns of Z are called Schur vectors.

Glossary-7

single precision A floating-point data type. On Intel® processors, this
data type allows you to store real numbers x such that
1.18*10−38 < | x | < 3.40*1038.
For this data type, the machine precision (ε) is
approximately 10−7, which means that single-precision
numbers usually contain no more than 7 significant
decimal digits. For more information, refer to
Pentium® Processor Family Developer’s Manual,
Volume 3: Architecture and Programming Manual.

singular matrix A matrix whose determinant is zero. If A is a singular
matrix, the inverse A-1 does not exist, and the system
of equations Ax = b does not have a unique solution
(that is, there exist no solutions or an infinite number of
solutions).

singular value The numbers defined for a given general matrix A as
the eigenvalues of the matrix AAH. See also SVD.

SMP Abbreviation for Symmetric MultiProcessing. The
MKL offers performance gains through parallelism
provided by the SMP feature.

sparse BLAS Routines performing basic vector operations on sparse
vectors. Sparse BLAS routines take advantage of
vectors’ sparsity: they allow you to store only non-zero
elements of vectors. See BLAS.

sparse vectors Vectors in which most of the components are zeros.

storage scheme The way of storing matrices. See full storage, packed
storage, and band storage.

SVD Abbreviation for Singular Value Decomposition. See
also Singular value decomposition section in
Chapter 5.

symmetric matrix A square matrix A such that aij = aji.

transpose The transpose of a given matrix A is a matrix AT such
that (AT)ij = aji (rows of A become columns of AT, and
columns of A become rows of AT).

Glossary-8

Intel® Math Kernel Library Reference Manual

trapezoidal matrix A matrix A such that A = (A1A2), where A1 is an upper
triangular matrix, A2 is a rectangular matrix.

triangular matrix A matrix A is called an upper (lower) triangular matrix
if all its subdiagonal elements (superdiagonal
elements) are zeros. Thus, for an upper triangular
matrix aij = 0 when i > j; for a lower triangular matrix
aij = 0 when i < j.

tridiagonal matrix A matrix whose non-zero elements are in three
diagonals only: the leading diagonal, the first
subdiagonal, and the first super-diagonal.

unitary matrix A complex square matrix A whose conjugate and
inverse are equal, that is, that is, AH = A-1, and
therefore AAH = AHA = I. All eigenvalues of a unitary
matrix have the absolute value 1.

VML Abbreviation for Vector Mathematical Library.
See Chapter 9 of this book.

VSL Abbreviation for Vector Statistical Library.
See Chapter 10 of this book.

z When found as the first letter of routine names,
z indicates the usage of double-precision complex data
type.

Biblio-1

Bibliography
For more information about the BLAS, Sparse BLAS, LAPACK, ScaLAPACK, Sparse Solver,
Interval Solver, VML, VSL, and DFT functionality, refer to the following publications:

• BLAS Level 1

C. Lawson, R. Hanson, D. Kincaid, and F. Krough. Basic Linear Algebra Subprograms for
Fortran Usage, ACM Transactions on Mathematical Software, Vol.5, No.3 (September 1979)
308-325.

• BLAS Level 2

J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended Set of Fortran Basic
Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.14, No.1
(March 1988) 1-32.

• BLAS Level 3

J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A Set of Level 3 Basic Linear Algebra
Subprograms, ACM Transactions on Mathematical Software (December 1989).

• Sparse BLAS

D. Dodson, R. Grimes, and J. Lewis. Sparse Extensions to the FORTRAN Basic Linear
Algebra Subprograms, ACM Transactions on Math Software, Vol.17, No.2 (June 1991).

D. Dodson, R. Grimes, and J. Lewis. Algorithm 692: Model Implementation and Test
Package for the Sparse Basic Linear Algebra Subprograms, ACM Transactions on
Mathematical Software, Vol.17, No.2 (June 1991).

[Duff86] I.S.Duff, A.M.Erisman, and J.K.Reid. Direct Methods for Sparse Matrices.
Clarendon Press, Oxford, UK, 1986.

[CXML01] Compaq Extended Math Library. Reference Guide, Oct.2001.

[Rem05] K.Remington. A NIST FORTRAN Sparse Blas User’s Guide. (available on
http://math.nist.gov/~KRemington/fspblas/)

Biblio-2

Intel ® Math Kernel Library Reference Manual

[Saad94] Y.Saad. SPARSKIT: A Basic Tool-kit for Sparse Matrix
Computation. Version 2, 1994.(http://www.cs.umn.edu/~saad)

[Saad96] Y.Saad. Iterative Methods for Linear Systems. PWS
Publishing, Boston, 1996.

• LAPACK

[LUG] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen. LAPACK Users' Guide, Third
Edition, Society for Industrial and Applied Mathematics
(SIAM), 1999.

[Golub96] G. Golub and C. Van Loan. Matrix Computations, Johns
Hopkins University Press, Baltimore, third edition,1996.

• ScaLAPACK

[SLUG] L. Blackford, J. Choi, A.Cleary, E. D’Azevedo, J. Demmel, I.
Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K.Stanley, D. Walker, and R. Whaley. ScaLAPACK Users'
Guide, Society for Industrial and Applied Mathematics
(SIAM), 1997.

• Sparse Solver

[Duff99] I. S. Duff and J. Koster. The design and use of algorithms for
permuting large entries to the diagonal of sparse matrices.
SIAM J. Matrix Analysis and Applications, 20(4):889–901,
1999.

[Dong95] J. Dongarra, V.Eijkhout, A.Kalhan. Reverse Communication
Interface for Linear Algebra Templates for Iterative Methods.
UT-CS-95-291, May 1995.
http://www.netlib.org/lapack/lawnspdf/lawn99.pdf

[Karypis98] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, 20(1):359–392, 1998.

Bibliography

Biblio-3

[Li99] X.S. Li and J.W. Demmel. A Scalable Sparse Direct Solver
Using Static Pivoting. In Proceeding of the 9th SIAM
conference on Parallel Processing for Scientific Computing,
San Antonio, Texas, March 22-34,1999.

[Liu85] J.W.H. Liu. Modification of the Minimum-Degree algorithm by
multiple elimination. ACM Transactions on Mathematical
Software, 11(2):141–153, 1985.

[Menon98] R. Menon L. Dagnum. OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Computational Science
& Engineering, 1:46–55, 1998. http://www.openmp.org.

[Schenk00] O. Schenk. Scalable Parallel Sparse LU Factorization Methods
on Shared Memory Multiprocessors. PhD thesis, ETH Zurich,
2000.

[Schenk00-2] O. Schenk, K. Gartner, and W. Fichtner. Efficient Sparse LU
Factorization with Left-right Looking Strategy on Shared
Memory Multiprocessors. BIT, 40(1):158–176, 2000.

[Schenk01] O. Schenk and K. Gartner. Sparse Factorization with
Two-Level Scheduling in PARDISO. In Proceeding of the 10th
SIAM conference on Parallel Processing for Scientific
Computing, Portsmouth, Virginia, March 12-14, 2001.

[Schenk02] O. Schenk and K. Gartner. Two-Level Scheduling in PARDISO:
Improved Scalability on Shared Memory Multiprocessing
Systems. Parallel Computing, 28:187–197, 2002.

[Schenk03] O. Schenk and K. Gartner. Solving Unsymmetric Sparse
Systems of Linear Equations with PARDISO. Future Generation
Computer Systems. Accepted, in press, 2003.

[Schenk04] O. Schenk and K. Gartner. On Fast Factorization Pivoting
Methods for Sparse Symmetric Indefinite Systems. Technical
Report, Department of Computer Science, University of Basel,
2004. Submitted.

[Sonn89] P. Sonneveld. CGS, a Fast Lanczos-Type Solver for
Nonsymmetric Linear Systems. SIAM Journal on Scientific and
Statistical Computing, 10:36–52, 1989.

Biblio-4

Intel ® Math Kernel Library Reference Manual

[Young71] D.M.Young. Iterative Solution of Large Linear Systems. New
York, Academic Press, Inc., 1971.

• VSL

[VSL Notes] Document included with Intel® MKL product (file name
vslnotes.pdf).

[Bratley87] Bratley P., Fox B.L., and Schrage L.E. A Guide to Simulation.
2nd edition. Springer-Verlag, New York, 1987.

[Bratley88] Bratley P. and Fox B.L. Implementing Sobol`s Quasirandom
Sequence Generator, ACM Transactions on Mathematical
Software, Vol. 14, No. 1, Pages 88-100, March 1988.

[Bratley92] Bratley P., Fox B.L., and Niederreiter H. Implementation and
Tests of Low-Discrepancy Sequences, ACM Transactions on
Modeling and Computer Simulation, Vol. 2, No. 3, Pages
195-213, July 1992.

[Coddington94] Coddington, P. D. Analysis of Random Number Generators
Using Monte Carlo Simulation. Int. J. Mod. Phys. C–5, 547,
1994.

[Gentle98] Gentle, James E. Random Number Generation and Monte
Carlo Methods, Springer-Verlag New York, Inc., 1998.

[L’Ecuyer94] L’Ecuyer, Pierre. Uniform Random Number Generation.
Annals of Operations Research, 53, 77–120, 1994.

[L’Ecuyer99] L’Ecuyer, Pierre. Tables of Linear Congruential Generators of
Different Sizes and Good Lattice Structure. Mathematics of
Computation, 68, 225, 249-260, 1999.

[L’Ecuyer99a] L’Ecuyer, Pierre. Good Parameter Sets for Combined Multiple
Recursive Random Number Generators. Operations Research,
47, 1, 159-164, 1999.

[L’Ecuyer01] L’Ecuyer, Pierre. Software for Uniform Random Number
Generation: Distinguishing the Good and the Bad. Proceedings
of the 2001 Winter Simulation Conference, IEEE Press,
95–105, Dec. 2001.

Bibliography

Biblio-5

[Kirkpatrick81] Kirkpatrick, S., and Stoll, E. A Very Fast Shift-Register
Sequence Random Number Generator. Journal of
Computational Physics, V. 40. 517–526, 1981.

[Knuth81] Knuth, Donald E. The Art of Computer Programming, Volume
2, Seminumerical Algorithms. 2nd edition, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1981.

[Matsumoto98] Matsumoto, M., and Nishimura, T. Mersenne Twister: A
623-Dimensionally Equidistributed Uniform Pseudo-Random
Number Generator, ACM Transactions on Modeling and
Computer Simulation, Vol. 8, No. 1, Pages 3–30, January
1998.

[Matsumoto2000] Matsumoto, M., and Nishimura, T. Dynamic Creation of
Pseudorandom Number Generators, 56-69, in: Monte Carlo
and Quasi-Monte Carlo Methods 1998, Ed. Niederreiter, H.
and Spanier, J., Springer 2000,
http://www.math.sci.hiroshima-u.ac.jp/%7Em-mat/MT/DC/dc.
html.

[NAG] NAG Numerical Libraries.
http://www.nag.co.uk/numeric/numerical_libraries.asp

[Sobol76] Sobol, I.M., and Levitan, Yu.L. The production of points
uniformly distributed in a multidimensional cube. Preprint 40,
Institute of Applied Mathematics, USSR Academy of Sciences,
1976 (In Russian).

• DFT

[1] E. Oran Brigham, The Fast Fourier Transform and Its
Applications, Prentice Hall, New Jersey, 1988.

[2] Athanasios Papoulis, The Fourier Integral and its Applications,
2nd edition, McGraw-Hill, New York, 1984.

[3] Ping Tak Peter Tang, DFTI, a New API for DFT: Motivation,
Design, and Rationale, July 2002.

[4] Charles Van Loan, Computational Frameworks for the Fast
Fourier Transform, SIAM, Philadelphia, 1992

Biblio-6

Intel ® Math Kernel Library Reference Manual

• VML

J.M.Muller. Elementary functions: algorithms and
implementation, Birkhauser Boston, 1997.

IEEE Standard for Binary Floating-Point Arithmetic.
ANSI/IEEE Std 754-1985.

• Interval Solver

[Alefeld83] G. Alefeld and J. Herzberger, Introduction to Interval
Computations. – Academic Press, New York, 1983.

[Bentbib02] A.H.Bentbib, Solving the full rank interval least squares
problem // Applied Numerical Mathematics. – 2002. – Vol. 41.
– P. 283–294.

[Bliek92] Ch. Bliek, Computer methods for design automation, Ph.D.
Thesis. – Dept. of Ocean Engineering, Massachusetts Institute
of Technology, 1992.

[Hammer95] R. Hammer, M. Hocks, U. Kulisch, D. Ratz, C++ Toolbox for
Verified Computing I. Basic Numerical Problems. –
Berlin-Heidelberg: Springer, 1995.

[Hansen92] E. Hansen, Bounding the solution of interval linear equations //
SIAM Journal on Numerical Analysis. – 1992. – Vol. 29, No. 5.
– P. 1493–1503.

[Herzberger94] J. Herzberger, Iterative methods for the inclusion of the inverse
of a matrix // Topics in Validated Computations, J. Herzberger,
ed. – Amsterdam: Elsevier, 1994. –

[Jansson91] Ch.Jansson, Interval linear systems with symmetric matrices,
skew-symmetric matrices, and dependencies in the right hand
side // Computing. – 1991. – Vol. 46. – P. 265 – 274.

[Kearfott96] R.B. Kearfott, Rigorous Global Search: Continuous Problems.
– Dordrecht, Kluwer, 1996.

[Kearfott] R.B. Kearfott, M.T. Nakao, A. Neumaier, S.M. Rump, S.P.
Shary, P. van Hentenryck, Standardized notation in interval
analysis. – An electronic version of the paper is accessible at
http://www.mat.univie.ac.at/~neum/software/int/

Bibliography

Biblio-7

[Kreinovich97] V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl, Computational
Complexity and Feasibility of Data Processing and Interval
Computations. – Kluwer, Dordrecht, 1997.

[Neumaier90] A. Neumaier, Interval Methods for Systems of Equations. –
Cambridge, Cambridge University Press, 1990.

[Neumaier99] A.Neumaier, A simple derivation of
Hansen-Bliek-Rohn-Ning-Kearfott enclosure for linear interval
equations // Reliable Computing. – 1999. – Vol. 5, No. 2. – P.
131–136.

[Ning97] S. Ning, R.B. Kearfott, A comparison of some methods for
solving linear interval equations // SIAM Journal on Numerical
Analysis. – 1997. – Vol. 34, No. 4. – P. 1289–1305.

[Rex99] G.Rex, J.Rohn, Sufficient conditions for regularity and
singularity of interval matrices // SIAM Journal on Numerical
Analysis. – 1999. – Vol. 20. – P. 437–445.

[Rohn93] J. Rohn, Cheap and tight bounds: the recent result by E. Hansen
can be made more efficient // Interval Computations. – 1993. –
No. 4. – P. 13–21.

[Rump83] S. M.Rump, Solving algebraic problems with high accuracy //
A New Approach to Scientific Computation; Kulisch U. W. and
Miranker W. L., eds. – New York: Academic Press, 1983. – P.
51–120.

[Rump84] S. M.Rump, Solution of linear and nonlinear algebraic
problems with sharp guaranteed bounds // Computing
Supplement. – 1984. – Vol. 5. – P. 147–168.

[Rump80] S. M.Rump, Kaucher E. Small bounds for the solution of
systems of linear equations // Computing Supplement. – 1980. –
Vol. 2. – P. 157–164.

[Rump] S. Rump, INTLAB — INTerval LABoratory. – 21 p. – An
electronic version of the paper is accessible at
http://www.ti3.tu-harburg.de/ rump/intlab/.

[Shary92] S.P. Shary, A new class of algorithms for optimal solution of
interval linear systems // Interval Computations. – 1992, No.
2(4). – P. 18–29.

Biblio-8

Intel ® Math Kernel Library Reference Manual

[Shary95] S.P. Shary, On optimal solution of interval linear equations //
SIAM Journal on Numerical Analysis. – 1995. – Vol. 32, No. 2.
– P. 610–630.

[Shary02] S. P. Shary, A new technique in systems analysis under interval
uncertainty and ambiguity // Reliable Computing. – 2002. –
Vol. 8. – 321–419.

[Shary] S.P. Shary, A new class of methods for optimal enclosing
solution sets to interval linear systems // Journal of
Computational Mathematics. – to be published.

For a reference implementation of BLAS, sparse BLAS, LAPACK, and
ScaLAPACK packages (without platform-specific optimizations) visit
www.netlib.org

Index-1

Index
Symbols
?_backward_trig_transform, 13-12

?_commit_trig_transform, 13-7

?_forward_trig_transform, 13-10

?_init_trig_transform, 13-6

?asum, 2-6

?axpy, 2-7

?axpyi, 2-132

?bdsdc, 4-117

?bdsqr, 4-112

?combamax1, 7-9

?ConvExec, 10-128

?ConvExec1D, 10-130

?ConvExecX, 10-132

?ConvExecX1D, 10-134

?ConvNewTask, 10-110

?ConvNewTask1D, 10-112

?ConvNewTaskX, 10-114

?ConvNewTaskX1D, 10-117

?copy, 2-9

?CorrExec, 10-128

?CorrExec1D, 10-130

?CorrExecX, 10-132

?CorrExecX1D, 10-134

?CorrNewTask, 10-110

?CorrNewTask1D, 10-112

?CorrNewTaskX, 10-114

?CorrNewTaskX1D, 10-117

?dbtf2, 7-189

?dbtrf, 7-191

?disna, 4-189

?dot, 2-11

?dotc, 2-14

?dotci, 2-135

?doti, 2-134

?dotu, 2-15

?dotui, 2-137

?dttrf, 7-193

?dttrsv, 7-194

?fft1d, 11-72, 11-75, 11-80

?fft1dc, 11-73, 11-77, 11-81

?fft2d, 11-85, 11-88, 11-94

?fft2dc, 11-86, 11-90, 11-95

?gbbrd, 4-93

?gbcon, 3-78

?gbequ, 3-176

?gbmv, 2-33

?gbrfs, 3-113

?gbsv, 3-195

?gbsvx, 3-198

?gbtf2, 5-26

?gbtrf, 3-13

?gbtrs, 3-41

?gebak, 4-234

?gebal, 4-231

?gebd2, 5-27

Intel ® Math Kernel Library Reference Manual

Index-2

?gebrd, 4-89

?gecon, 3-76

?geequ, 3-174

?gees, 4-449

?geesx, 4-455

?geev, 4-461

?geevx, 4-466

?gegas, 12-5

?gegss, 12-9

?gehbs, 12-11

?gehd2, 5-29

?gehrd, 4-216

?gehss, 12-7

?gekws, 12-8

?gelq2, 5-32

?gelqf, 4-29

?gels, 4-327

?gelsd, 4-340

?gelss, 4-336

?gelsy, 4-331

?gemip, 12-23

?gemm, 2-99

?gemv, 2-37

?gepps, 12-13

?geql2, 5-33

?geqlf, 4-44

?geqp3, 4-14

?geqpf, 4-11

?geqr2, 5-35

?geqrf, 4-8

?ger, 2-40

?gerbr, 12-19

?gerc, 2-42

?gerfs, 3-110

?gerq2, 5-37

?gerqf, 4-57

?geru, 2-44

?gesc2, 5-38

?gesdd, 4-479

?gesv, 3-187

?gesvd, 4-473

?gesvr, 12-20

?gesvx, 3-189

?geszi, 12-17

?getc2, 5-40

?getf2, 5-41

?getrf, 3-11

?getri, 3-155

?getrs, 3-39

?ggbak, 4-278

?ggbal, 4-275

?gges, 4-566

?ggesx, 4-573

?ggev, 4-581

?ggevx, 4-586

?ggglm, 4-348

?gghrd, 4-271

?gglse, 4-345

?ggqrf, 4-79

?ggrqf, 4-83

?ggsvd, 4-484

?ggsvp, 4-314

?gtcon, 3-81

?gthr, 2-138

?gthrz, 2-140

?gtrfs, 3-117

?gtsv, 3-205

?gtsvx, 3-207

?gttrf, 3-16

?gttrs, 3-44

?gtts2, 5-42

?hbev, 4-413

?hbevd, 4-420

?hbevx, 4-429

?hbgst, 4-207

?hbgv, 4-545

?hbgvd, 4-552

?hbgvx, 4-561

Index

Index-3

?hbtrd, 4-159

?hecon, 3-96

?heev, 4-355

?heevd, 4-361

?heevr, 4-381

?heevx, 4-370

?heft2, 5-314

?hegst, 4-195

?hegv, 4-494

?hegvd, 4-502

?hegvx, 4-512

?hemm, 2-102

?hemv, 2-49

?her, 2-51

?her2, 2-53

?her2k, 2-109

?herfs, 3-136

?herk, 2-106

?hesv, 3-249

?hesvx, 3-252

?hetrd, 4-133

?hetrf, 3-30

?hetri, 3-163

?hetrs, 3-59

?hgeqz, 4-281

?hpcon, 3-100

?hpev, 4-390

?hpevd, 4-397

?hpevx, 4-405

?hpgst, 4-201

?hpgv, 4-521

?hpgvd, 4-528

?hpgvx, 4-537

?hpmv, 2-56

?hpr, 2-59

?hpr2, 2-61

?hprfs, 3-142

?hpsvx, 3-266

?hptrd, 4-148

?hptrf, 3-36

?hptri, 3-167

?hptrs, 3-64

?hsein, 4-242

?hseqr, 4-237

?labrd, 5-44

?lacgv, 5-11

?lacon, 5-47

?lacpy, 5-48

?lacrm, 5-12

?lacrt, 5-13

?ladiv, 5-50

?lae2, 5-51

?laebz, 5-52

?laed0, 5-57

?laed1, 5-59

?laed2, 5-61

?laed3, 5-64

?laed4, 5-66

?laed5, 5-68

?laed6, 5-69

?laed7, 5-71

?laed8, 5-74

?laed9, 5-78

?laeda, 5-80

?laein, 5-82

?laesy, 5-14

?laev2, 5-85

?laexc, 5-86

?lag2, 5-88

?lags2, 5-90

?lagtf, 5-92

?lagtm, 5-94

?lagts, 5-96

?lagv2, 5-98

?lahef, 5-262

?lahqr, 5-100

?lahrd, 5-102

?laic1, 5-105

Index

Index-4

?laln2, 5-107

?lals0, 5-110

?lalsa, 5-114

?lalsd, 5-118

?lamc1, 5-331

?lamc2, 5-332

?lamc3, 5-333

?lamc4, 5-334

?lamc5, 5-335

?lamch, 5-330

?lamrg, 5-120

?lamsh, 7-180

?langb, 5-121

?lange, 5-123

?langt, 5-125

?lanhb, 5-129

?lanhe, 5-137

?lanhp, 5-133

?lanhs, 5-126

?lansb, 5-127

?lansp, 5-131

?lanst/?lanht, 5-134

?lansy, 5-136

?lantb, 5-139

?lantp, 5-141

?lantr, 5-143

?lanv2, 5-145

?lapll, 5-146

?lapmt, 5-147

?lapy2, 5-148

?lapy3, 5-149

?laqgb, 5-150

?laqge, 5-152

?laqp2, 5-154

?laqps, 5-155

?laqsb, 5-158

?laqsp, 5-160

?laqsy, 5-161

?laqtr, 5-163

?lar1v, 5-166

?lar2v, 5-168

?laref, 7-182

?larf, 5-169

?larfb, 5-171

?larfg, 5-173

?larft, 5-175

?larfx, 5-178

?largv, 5-179

?larnv, 5-181

?larrb, 5-182

?larre, 5-184

?larrf, 5-186

?larrv, 5-188

?lartg, 5-191

?lartv, 5-192

?laruv, 5-194

?larz, 5-195

?larzb, 5-197

?larzt, 5-199

?las2, 5-202

?lascl, 5-203

?lasd0, 5-205

?lasd1, 5-207

?lasd2, 5-210

?lasd3, 5-213

?lasd4, 5-216

?lasd5, 5-218

?lasd6, 5-219

?lasd7, 5-224

?lasd8, 5-228

?lasd9, 5-230

?lasda, 5-232

?lasdq, 5-236

?lasdt, 5-238

?laset, 5-239

?lasorte, 7-184

?lasq1, 5-241

?lasq2, 5-242

Intel ® Math Kernel Library Reference Manual

Index-5

?lasq3, 5-243

?lasq4, 5-246

?lasq5, 5-247

?lasq6, 5-249

?lasr, 5-250

?lasrt, 5-252

?lasrt2, 7-186

?lassq, 5-253

?lasv2, 5-255

?laswp, 5-256

?lasy2, 5-257

?lasyf, 5-260

?latbs, 5-265

?latdf, 5-267

?latps, 5-269

?latrd, 5-271

?latrs, 5-275

?latrz, 5-279

?lauu2, 5-281

?lauum, 5-282

?nrm2, 2-16

?opgtr, 4-143

?opmtr, 4-145

?org2l/?ung2l, 5-283

?org2r/?ung2r, 5-285

?orgbr, 4-97

?orghr, 4-219

?orgl2/?ungl2, 5-287

?orglq, 4-32

?orgql, 4-47

?orgqr, 4-17

?orgr2/?ungr2, 5-288

?orgrq, 4-60

?orgtr, 4-128

?orm2l/?unm2l, 5-290

?orm2r/?unm2r, 5-292

?ormbr, 4-100

?ormhr, 4-222

?orml2/?unml2, 5-295

?ormlq, 4-35

?ormql, 4-51

?ormqr, 4-20

?ormr2/?unmr2, 5-297

?ormr3/?unmr3, 5-300

?ormrq, 4-64

?ormrz, 4-73

?ormtr, 4-130

?pbcon, 3-89

?pbequ, 3-183

?pbrfs, 3-126

?pbstf, 4-210

?pbsv, 3-227

?pbsvx, 3-229

?pbtf2, 5-302

?pbtrf, 3-22

?pbtrs, 3-52

?pocon, 3-84

?poequ, 3-179

?porfs, 3-120

?posv, 3-212

?posvx, 3-214

?potf2, 5-304

?potrf, 3-18

?potri, 3-157

?potrs, 3-47

?ppcon, 3-86

?ppequ, 3-181

?pprfs, 3-123

?ppsv, 3-219

?ppsvx, 3-221

?pptrf, 3-20

?pptri, 3-159

?pptrs, 3-49

?ptcon, 3-91

?pteqr, 4-178

?ptrfs, 3-130

?ptsv, 3-235

?ptsvx, 3-237

Index

Index-6

?pttrf, 3-25

?pttrs, 3-55

?pttrsv, 7-195

?ptts2, 5-306

?rot, 2-18

?rot (complex), 5-16

?rotg, 2-20

?roti, 2-141

?rotm, 2-21

?rotmg, 2-23

?rscl, 5-307

?sbev, 4-410

?sbevd, 4-416

?sbevx, 4-424

?sbgst, 4-204

?sbgv, 4-542

?sbgvd, 4-548

?sbgvx, 4-556

?sbmv, 2-64

?sbtrd, 4-156

?scal, 2-25

?sctr, 2-143

?sdot, 2-12

?spcon, 3-98

?spev, 4-387

?spevd, 4-393

?spevx, 4-401

?spgst, 4-198

?spgv, 4-518

?spgvd, 4-524

?spgvx, 4-532

?spmv, 2-67, 5-17

?spr, 2-69, 5-19

?spr2, 2-71

?sprfs, 3-139

?spsv, 3-256

?spsvx, 3-259

?sptrd, 4-141

?sptrf, 3-33

?sptri, 3-165

?sptrs, 3-62

?stebz, 4-182

?stedc, 4-168

?stegr, 4-172

?stein, 4-186

?stein2, 7-187

?steqr, 4-164

?steqr2, 7-197

?sterf, 4-162

?stev, 4-434

?stevd, 4-436

?stevr, 4-444

?stevx, 4-440

?sum1, 5-25

?swap, 2-27

?sycon, 3-93

?syev, 4-352

?syevd, 4-358

?syevr, 4-375

?syevx, 4-365

?sygs2/?hegs2, 5-308

?sygst, 4-192

?sygv, 4-491

?sygvd, 4-498

?sygvx, 4-506

?symm, 2-112

?symv, 2-74

?symv (complex), 5-20

?syr, 2-76

?syr (complex), 5-22

?syr2, 2-78

?syr2k, 2-119

?syrfs, 3-133

?syrk, 2-116

?sysv, 3-241

?sysvx, 3-244

?sytd2/?hetd2, 5-310

?sytf2, 5-312

Intel ® Math Kernel Library Reference Manual

Index-7

?sytrd, 4-125

?sytrf, 3-26

?sytri, 3-161

?sytrs, 3-57

?tbcon, 3-107

?tbmv, 2-81

?tbsv, 2-84

?tbtrs, 3-72

?tgevc, 4-288

?tgex2, 5-316

?tgexc, 4-293

?tgsen, 4-297

?tgsja, 4-319

?tgsna, 4-309

?tgsy2, 5-318

?tgsyl, 4-304

?tpcon, 3-105

?tpmv, 2-87

?tprfs, 3-148

?tpsv, 2-90

?tptri, 3-172

?tptrs, 3-69

?trcon, 3-102

?trevc, 4-248

?trexc, 4-259

?trmm, 2-123

?trmv, 2-92

?trrfs, 3-145

?trsen, 4-262

?trsm, 2-126

?trsna, 4-253

?trsv, 2-95

?trsyl, 4-267

?trti2, 5-322

?trtri (interval linear solvers), 12-16

?trtri (LAPACK), 3-169

?trtrs (interval linear solvers), 12-3

?trtrs (LAPACK), 3-67

?tzrzf, 4-70

?ungbr, 4-104

?unghr, 4-225

?unglq, 4-38

?ungql, 4-49

?ungqr, 4-23

?ungrq, 4-62

?ungtr, 4-136

?unmbr, 4-108

?unmhr, 4-228

?unmlq, 4-41

?unmql, 4-54

?unmqr, 4-26

?unmrq, 4-67

?unmrz, 4-76

?unmtr, 4-138

?upgtr, 4-151

?upmtr, 4-153

Numerics
1-norm value

complex Hermitian matrix, 5-137, 7-63
packed storage, 5-133

complex Hermitian tridiagonal matrix, 5-134
complex symmetric matrix, 5-136
general rectangular matrix, 5-123, 7-58
general tridiagonal matrix, 5-125
Hermitian band matrix, 5-129
real symmetric matrix, 5-136, 7-63
real symmetric tridiagonal matrix, 5-134
symmetric band matrix, 5-127
symmetric matrix

packed storage, 5-131
trapezoidal matrix, 5-143
triangular band matrix, 5-139
triangular matrix, 5-143, 7-66

packed storage, 5-141
upper Hessenberg matrix, 5-126, 7-61

A
absolute value of a vector element

largest, 2-28

Index

Index-8

smallest, 2-29

accuracy modes, in VML, 9-2

adding magnitudes of the vector elements, 2-6

Appendix template, A-17

arguments
matrix, B-4
sparse vector, 2-130
vector, B-1

array descriptor, 6-2

auxiliary routines
LAPACK, 5-1
ScaLAPACK, 7-1

B
balancing matrices, 4-231, 4-275

band storage scheme, B-4

basic quasi-number generator
Niederreiter, 10-9
Sobol, 10-9

basic random number generators, 10-1, 10-8
GFSR, 10-8
MCG, 32-bit, 10-8
MCG, 59-bit, 10-8
Mersenne Twister

MT19937, 10-9
MT2203, 10-9

MRG, 10-8
Wichmann-Hill, 10-8

Bernoulli, 10-80

Beta, 10-72

bidiagonal matrix
LAPACK, 4-87
ScaLAPACK, 6-191

Binomial, 10-84

bisection, 5-182

BLACS, 6-1

BLAS Level 1 functions
?asum, 2-5, 2-6
?dot, 2-5, 2-11
?dotc, 2-5, 2-14
?dotu, 2-5, 2-15
?nrm2, 2-5, 2-16

?sdot, 2-5, 2-12
code example, C-1
dcabs1, 2-6, 2-31
i?amax, 2-6, 2-28
i?amin, 2-6, 2-29

BLAS Level 1 routines
?axpy, 2-5, 2-7
?copy, 2-5, 2-9
?rot, 2-5, 2-18
?rotg, 2-5, 2-20
?rotm, 2-5, 2-21
?rotmg, 2-23
?rotmq, 2-5
?scal, 2-5, 2-25
?swap, 2-6, 2-27
code example, C-2

BLAS Level 2 routines
?gbmv, 2-32, 2-33
?gemv, 2-32, 2-37
?ger, 2-32, 2-40
?gerc, 2-32, 2-42
?geru, 2-32, 2-44
?hbmv, 2-32, 2-46
?hemv, 2-32, 2-49
?her, 2-32, 2-51
?her2, 2-32, 2-53
?hpmv, 2-32, 2-56
?hpr, 2-32, 2-59
?hpr2, 2-32, 2-61
?sbmv, 2-32, 2-64
?spmv, 2-32, 2-67
?spr, 2-32, 2-69
?spr2, 2-32, 2-71
?symv, 2-32, 2-74
?syr, 2-32, 2-76
?syr2, 2-32, 2-78
?tbmv, 2-32, 2-81
?tbsv, 2-32, 2-84
?tpmv, 2-33, 2-87
?tpsv, 2-33, 2-90
?trmv, 2-33, 2-92
?trsv, 2-33, 2-95
code example, C-3

BLAS Level 3 routines
?gemm, 2-98, 2-99

Intel ® Math Kernel Library Reference Manual

Index-9

?hemm, 2-98, 2-102
?her2k, 2-98, 2-109
?herk, 2-98, 2-106
?symm, 2-98, 2-112
?syr2k, 2-98, 2-119
?syrk, 2-98, 2-116
?trmm, 2-98, 2-123
?trsm, 2-98, 2-126
code example, C-4

BLAS routines
matrix arguments, B-4
routine groups, 1-7, 2-1
vector arguments, B-1

block reflector
general matrix

LAPACK, 5-197
ScaLAPACK, 7-98

general rectangular matrix
LAPACK, 5-171
ScaLAPACK, 7-82

triangular factor
LAPACK, 5-175, 5-199
ScaLAPACK, 7-91, 7-106

block-cyclic distribution, 6-2

block-splitting method, 10-9

BRNG, 10-1, 10-8

Bunch-Kaufman factorization, 3-11, 6-6
Hermitian matrix, 3-30

packed storage, 3-36
symmetric matrix, 3-26

packed storage, 3-33

C
C interface, 11-70

Cauchy, 10-59

CBLAS, D-1
arguments, D-1
level 1 (vector operations), D-3
level 2 (matrix-vector operations), D-5
level 3 (matrix-matrix operations), D-12
sparse BLAS, D-16

Cholesky factorization
Hermitian positive-definite matrix, 3-18, 3-214, 6-13,

6-230
band storage, 3-22, 3-52, 3-229, 6-14, 6-29
packed storage, 3-20, 3-221

split, 4-210
symmetric positive-definite matrix, 3-18, 3-214, 6-13,

6-230
band storage, 3-22, 3-52, 3-229, 6-14, 6-29
packed storage, 3-20, 3-221

code examples
BLAS Level 1 function, C-1
BLAS Level 1 routine, C-2
BLAS Level 2 routine, C-3
BLAS Level 3 routine, C-4

CommitDescriptor, 11-10

CommitDescriptorDM, 11-54

communication subprograms, 6-1

complex division in real arithmetic, 5-50

complex Hermitian matrix
1-norm value

LAPACK, 5-137
ScaLAPACK, 7-63

factorization with diagonal pivoting method, 5-314
Frobenius norm

LAPACK, 5-137
ScaLAPACK, 7-63

infinity- norm
LAPACK, 5-137
ScaLAPACK, 7-63

largest absolute value of element
LAPACK, 5-137
ScaLAPACK, 7-63

complex Hermitian matrix in packed form
1-norm value, 5-133
Frobenius norm, 5-133
infinity- norm, 5-133
largest absolute value of element, 5-133

complex Hermitian tridiagonal matrix
1-norm value, 5-134
Frobenius norm, 5-134
infinity- norm, 5-134
largest absolute value of element, 5-134

complex matrix
complex elementary reflector

ScaLAPACK, 7-102

Index

Index-10

complex symmetric matrix
1-norm value, 5-136
Frobenius norm, 5-136
infinity- norm, 5-136
largest absolute value of element, 5-136

complex vector
1-norm using true absolute value

LAPACK, 5-25
ScaLAPACK, 7-10

conjugation
LAPACK, 5-11
ScaLAPACK, 7-6

complex vector conjugation
LAPACK, 5-11
ScaLAPACK, 7-6

compressed sparse vectors, 2-130

computational node, 10-2

Computational Routines, 4-6

ComputeBackward, 11-16

ComputeBackwardDM, 11-58

ComputeForward, 11-14

ComputeForwardDM, 11-56

condition number
band matrix, 3-78
general matrix

LAPACK, 3-76
ScaLAPACK, 6-42, 6-45, 6-48

Hermitian matrix, 3-96
packed storage, 3-100

Hermitian positive-definite matrix, 3-84
band storage, 3-89
packed storage, 3-86
tridiagonal, 3-91

symmetric matrix, 3-93, 4-189
packed storage, 3-98

symmetric positive-definite matrix, 3-84
band storage, 3-89
packed storage, 3-86
tridiagonal, 3-91

triangular matrix, 3-102
band storage, 3-107
packed storage, 3-105

tridiagonal matrix, 3-81

configuration parameters, in DFTI, 11-3

Conjugate Gradient Solver, 8-33

Continuous Distribution Generators, 9-8, 10-41

ConvCopyTask, 10-137

ConvDeleteTask, 10-136

converting a sparse vector into compressed storage form,
2-138

and writing zeros to the original vector, 2-140

converting compressed sparse vectors into full storage
form, 2-143

ConvInternalPrecision, 10-122

Convolution Functions
?ConvExec, 10-128
?ConvExec1D, 10-130
?ConvExecX, 10-132
?ConvExecX1D, 10-134
?ConvNewTask, 10-110
?ConvNewTask1D, 10-112
?ConvNewTaskX, 10-114
?ConvNewTaskX1D, 10-117
ConvCopyTask, 10-137
ConvDeleteTask, 10-136
ConvSetDecimation, 10-125
ConvSetInternalPrecision, 10-122
ConvSetMode, 10-121
ConvSetStart, 10-124
CorrCopyTask, 10-137
CorrDeleteTask, 10-136

ConvSetDecimation, 10-125

ConvSetMode, 10-121

ConvSetStart, 10-124

CopyDescriptor, 11-11

copying
matrices

distributed, 7-46
global parallel, 7-48
local replicated, 7-48
two-dimensional

LAPACK, 5-48
ScaLAPACK, 7-50

vectors, 2-9

CopyStream, 10-26

CopyStreamState, 10-27

CorrCopyTask, 10-137

Intel ® Math Kernel Library Reference Manual

Index-11

CorrDeleteTask, 10-136

Correlation Functions
?CorrExec, 10-128
?CorrExec1D, 10-130
?CorrExecX, 10-132
?CorrExecX1D, 10-134
?CorrNewTask, 10-110
?CorrNewTask1D, 10-112
?CorrNewTaskX, 10-114
?CorrNewTaskX1D, 10-117
?CorrnewTaskX1D, 10-117
CorrSetDecimation, 10-125
CorrSetInternalPrecision, 10-122
CorrSetMode, 10-121
CorrSetStart, 10-124

CorrSetInternalDecimation, 10-125

CorrSetInternalPrecision, 10-122

CorrSetMode, 10-121

CorrSetStart, 10-124

Cray, 7-200

CreateDescriptor, 11-8

CreateDescriptorDM, 11-52

D
data structure requirements for FFTs, 11-70

data type
in VML, 9-2
shorthand, 1-9

dcabs1, 2-31

DeleteStream, 10-25

descriptor configuration
cluster DFTI, 11-51
DFTI, 11-4

descriptor manipulation
cluster DFTI, 11-51
DFTI, 11-4

DFT computation, 11-4
cluster DFTI, 11-51

DFT Interface, 11-3

DFT routines
descriptor configuration

GetValue, 11-21

GetValueDM, 11-66
SetValue, 11-19
SetValueDM, 11-64

descriptor manipulation
CommitDescriptor, 11-10
CommitDescriptorDM, 11-54
CopyDescriptor, 11-11
CreateDescriptor, 11-8
CreateDescriptorDM, 11-52
FreeDescriptor, 11-12
FreeDescriptorDM, 11-55

DFT computation
ComputeBackward, 11-16
ComputeBackwardDM, 11-58
ComputeForward, 11-14
ComputeForwardDM, 11-56
FormInputDataDM, 11-60
FormOutputDataDM, 11-62

status checking, 11-5
ErrorClass, 11-5
ErrorMessage, 11-7

status checking, in Cluster DFTI, 11-51

diagonal elements
LAPACK, 5-239
ScaLAPACK, 7-112

diagonally dominant-like banded matrix
solving systems of linear equations, 6-36

diagonally dominant-like tridiagonal matrix
solving systems of linear equations, 6-34

dimension, B-1

Direct Sparse Solver (DSS) Interface Routines, 8-17

Discrete Distribution Generators, 10-41

Discrete Fourier Transform
CommitDescriptor, 11-10
CommitDescriptorDM, 11-54
ComputeBackward, 11-16
ComputeBackwardDM, 11-58
ComputeForward, 11-14
ComputeForwardDM, 11-56
CopyDescriptor, 11-11
CreateDescriptor, 11-8
CreateDescriptorDM, 11-52
ErrorClass, 11-5
ErrorMessage, 11-7
FormInputDataDM, 11-60

Index

Index-12

FormOutputDataDM, 11-62
FreeDescriptor, 11-12
FreeDescriptorDM, 11-55
GetValue, 11-21
GetValueDM, 11-66
SetValue, 11-19
SetValueDM, 11-64

distributed-memory computations, 6-1

divide and conquer algorithm, 7-165

dNewAbstractStream, 10-20

dot product
complex vectors, conjugated, 2-14
complex vectors, unconjugated, 2-15
real vectors, 2-11
real vectors (extended precision), 2-12
sparse complex vectors, 2-137
sparse complex vectors, conjugated, 2-135
sparse real vectors, 2-134

driver
expert, 6-4
simple, 6-4

Driver Routines, 3-186, 4-326

DSS interface, to sparse solver, 8-17

E
eigenpairs, sorting, 7-184

eigenvalue problems, 4-1
general matrix, 4-212, 4-270, 6-178
generalized form, 4-191
Hermitian matrix, 4-121
symmetric matrix, 4-121
symmetric tridiagonal matrix, 7-187, 7-197

eigenvalues. See eigenvalue problems

eigenvectors. See eigenvalue problems

elementary reflector
complex matrix, 7-102
general matrix, 5-195, 7-94
general rectangular matrix

LAPACK, 5-169, 5-178
ScaLAPACK, 7-79, 7-86

LAPACK generation, 5-173
ScaLAPACK generation, 7-89

error diagnostics, in VML, 9-6

error estimation for linear equations
distributed tridiagonal coefficient matrix, 6-59

error handling
pxerbla, 7-204
xerbla, 2-1, 5-336, 9-6

ErrorClass, 11-5

ErrorMessage, 11-7

errors in solutions of linear equations
distributed tridiagonal coefficient matrix, 6-59
general matrix, 3-110, 6-51

band storage, 3-113
Hermitian matrix, 3-136

packed storage, 3-142
Hermitian positive-definite matrix, 3-120, 3-130, 6-55

band storage, 3-126
packed storage, 3-123

symmetric matrix, 3-133
packed storage, 3-139

symmetric positive-definite matrix, 3-120, 3-130,
6-55

band storage, 3-126
packed storage, 3-123

triangular matrix, 3-145
band storage, 3-151
packed storage, 3-148

tridiagonal matrix, 3-117

ESSL library, 10-104

Euclidean norm
of a vector, 2-16

expert driver, 6-4

Exponential, 10-52

F
factorization

See also triangular factorization
Bunch-Kaufman

LAPACK, 3-11
ScaLAPACK, 6-6

Cholesky, 6-6
LAPACK, 3-11, 5-302, 5-304
ScaLAPACK, 7-169

diagonal pivoting
Hermitian matrix, 3-252

Intel ® Math Kernel Library Reference Manual

Index-13

complex, 5-314

packed, 3-266
symmetric matrix, 3-244

indefinite, 5-312

packed, 3-259
LU

LAPACK, 3-11
ScaLAPACK, 6-6

orthogonal
LAPACK, 4-7
ScaLAPACK, 6-75

partial
complex Hermitian indefinite matrix, 5-262
real/complex symmetric matrix, 5-260

upper trapezoidal matrix, 5-279

fast Fourier transforms
C interface, 11-70
data storage types, 11-69
data structure requirements, 11-70
routines

?fft1d, 11-72, 11-75, 11-80
?fft1dc, 11-73, 11-77, 11-81
?fft2d, 11-85, 11-88, 11-94
?fft2dc, 11-86, 11-90, 11-95

FFT. See fast Fourier transforms

FFTs
complex-to-complex

one-dimensional, 11-71
two-dimensional, 11-84

complex-to-real
one-dimensional, 11-78
two-dimensional, 11-93

one-dimensional
complex-to-complex, 11-71
complex-to-real, 11-78
real-to-complex, 11-74

real-to-complex
one-dimensional, 11-74
two-dimensional, 11-87

two-dimensional
complex-to-complex, 11-84
complex-to-real, 11-93
real-to-complex, 11-87

fill-in, for sparse matrices, A-4

finding
element of a vector with the largest absolute value,

2-28
element of a vector with the largest absolute value of

the real part and its global index, 7-9
element of a vector with the smallest absolute value,

2-29
index of the element of a vector with the largest

absolute value of the real part, 7-8

font conventions, 1-10

FormInputDataDM, 11-60

FormOutputDataDM, 11-62

Fortran-95 interface conventions
BLAS, Sparse BLAS, 2-3
LAPACK, 3-3

Fortran-95 interfaces for LAPACK
absent from Netlib, E-7
identical to Netlib, E-2
modified Netlib interfaces, E-5
new functionality, E-12
with replaced Netlib argument names, E-4

Fortran-95 LAPACK interface vs. Netlib, 3-5

forward or inverse FFTs, 11-72, 11-73, 11-85, 11-86

free_trig_transform, 13-14

FreeDescriptor, 11-12

FreeDescriptorDM, 11-55

Frobenius norm
complex Hermitian matrix, 5-137, 7-63

packed storage, 5-133
complex Hermitian tridiagonal matrix, 5-134
complex symmetric matrix, 5-136
general rectangular matrix, 5-123, 7-58
general tridiagonal matrix, 5-125
Hermitian band matrix, 5-129
real symmetric matrix, 5-136, 7-63
real symmetric tridiagonal matrix, 5-134
symmetric band matrix, 5-127
symmetric matrix

packed storage, 5-131
trapezoidal matrix, 5-143
triangular band matrix, 5-139
triangular matrix, 5-143, 7-66

packed storage, 5-141
upper Hessenberg matrix, 5-126, 7-61

Index

Index-14

full storage scheme, B-4

full-storage vectors, 2-130

function name conventions, in VML, 9-2

G
Gamma, 10-69

gathering sparse vector’s elements into compressed form,
2-138

and writing zeros to these elements, 2-140

Gauss method, for interval systems, 12-5, 12-24

Gaussian, 10-45

GaussianMV, 10-47

Gauss-Seidel iteration, for interval systems, 12-9, 12-24

general matrix
block reflector, 5-197, 7-98
eigenvalue problems, 4-212, 4-270, 6-178
elementary reflector, 5-195, 7-94
estimating the condition number, 3-76, 6-42, 6-45,

6-48
band storage, 3-78

inverting matrix
LAPACK, 3-155
ScaLAPACK, 6-64

LQ factorization, 4-29, 6-92
LU factorization, 3-11, 5-41, 6-6, 7-36

band storage, 3-13, 5-26, 6-8, 6-10, 7-189,
7-191

matrix-vector product, 2-37
band storage, 2-33

multiplying by orthogonal matrix
from LQ factorization, 5-295, 7-153
from QR factorization, 5-292, 7-149
from RQ factorization, 5-297, 7-157
from RZ factorization, 5-300

multiplying by unitary matrix
from LQ factorization, 5-295, 7-153
from QR factorization, 5-292, 7-149
from RQ factorization, 5-297, 7-157
from RZ factorization, 5-300

QL factorization
LAPACK, 4-44
ScaLAPACK, 6-106

QR factorization, 4-8, 4-83, 6-75

with pivoting, 4-11, 4-14, 6-78
rank-l update, 2-40
rank-l update, conjugated, 2-42
rank-l update, unconjugated, 2-44
reduction to bidiagonal form, 5-27, 5-44, 7-18
reduction to upper Hessenberg form, 7-23
RQ factorization

LAPACK, 4-57
ScaLAPACK, 6-148

scalar-matrix-matrix product, 2-99
solving systems of linear equations, 3-39, 6-22

band storage
LAPACK, 3-41
ScaLAPACK, 6-24

general rectangular distributed matrix
computing scaling factors, 6-70
equilibration, 6-70

general rectangular matrix
1-norm value

LAPACK, 5-123
ScaLAPACK, 7-58

block reflector
LAPACK, 5-171
ScaLAPACK, 7-82

elementary reflector, 5-178
LAPACK, 5-169, 7-86
ScaLAPACK, 7-79

Frobenius norm
LAPACK, 5-123
ScaLAPACK, 7-58

infinity- norm
LAPACK, 5-123
ScaLAPACK, 7-58

largest absolute value of element
LAPACK, 5-123
ScaLAPACK, 7-58

LQ factorization
LAPACK, 5-32
ScaLAPACK, 7-26

multiplication
LAPACK, 5-203
ScaLAPACK, 7-110

QL factorization
LAPACK, 5-33
ScaLAPACK, 7-28

QR factorization

Intel ® Math Kernel Library Reference Manual

Index-15

LAPACK, 5-35
ScaLAPACK, 7-31

reduction of first columns
LAPACK, 5-102
ScaLAPACK, 7-54

reduction to bidiagonal form, 7-38
row interchanges

LAPACK, 5-256
ScaLAPACK, 7-117

RQ factorization
LAPACK, 5-37
ScaLAPACK, 6-119, 7-34

scaling, 7-71

general square matrix
reduction to upper Hessenberg form, 5-29
trace, 7-119

general triangular matrix
LU factorization

band storage, 7-11

general tridiagonal matrix
1-norm value, 5-125
Frobenius norm, 5-125
infinity- norm, 5-125
largest absolute value of element, 5-125

general tridiagonal triangular matrix
LU factorization

band storage, 7-15

generalized eigenvalue problems, 4-191
See also LAPACK routines, generalized eigenvalue

problems
complex Hermitian-definite problem, 4-195, 5-308,

5-310, 6-208, 7-172, 7-175
band storage, 4-207
packed storage, 4-201

real symmetric-definite problem, 4-192, 5-308, 5-310,
6-206, 7-172, 7-175

band storage, 4-204
packed storage, 4-198

generalized Schur decomposition, 4-293, 4-297

generalized Schur factorization, 5-98, 5-168, 5-179, 5-181

generation methods, 10-2

Geometric, 10-82

GetBrngProperties, 10-98

GetNumRegBrngs, 10-40

GetStreamStateBrng, 10-38

GetValue, 11-21

GetValueDM, 11-66

GFSR, 10-4

Givens rotation
modified Givens transformation parameters, 2-23
of sparse vectors, 2-141
parameters, 2-20

global array, 6-2

Gumbel, 10-67

H
Hansen-Bliek-Rohn procedure, for interval systems,

12-11

Hermitian band matrix
1-norm value, 5-129
Frobenius norm, 5-129
infinity- norm, 5-129
largest absolute value of element, 5-129

Hermitian matrix, 4-121, 4-191
Bunch-Kaufman factorization, 3-30

packed storage, 3-36
eigenvalues and eigenvectors, 6-256
estimating the condition number, 3-96

packed storage, 3-100
generalized eigenvalue problems, 4-191
inverting the matrix, 3-163

packed storage, 3-167
matrix-vector product, 2-49

band storage, 2-46
packed storage, 2-56

rank-1 update, 2-51
packed storage, 2-59

rank-2 update, 2-53
packed storage, 2-61

rank-2k update, 2-109
rank-n update, 2-106
reducing to standard form

LAPACK, 5-308
ScaLAPACK, 7-172

reducing to tridiagonal form
LAPACK, 5-271, 5-310
ScaLAPACK, 7-120, 7-175

Index

Index-16

scalar-matrix-matrix product, 2-102
scaling, 7-74
solving systems of linear equations, 3-59

packed storage, 3-64

Hermitian positive definite distributed matrix
computing scaling factors, 6-72
equilibration, 6-72

Hermitian positive-definite band matrix
Cholesky factorization, 5-302

Hermitian positive-definite distributed matrix
inverting the matrix, 6-66

Hermitian positive-definite matrix
Cholesky factorization, 3-18, 5-304, 6-13, 7-169

band storage, 3-22, 6-14
packed storage, 3-20

estimating the condition number, 3-84
band storage, 3-89
packed storage, 3-86

inverting the matrix, 3-157
packed storage, 3-159

solving systems of linear equations, 3-47, 6-27
band storage, 3-52, 6-29
packed storage, 3-49

Hermitian positive-definite tridiagonal matrix
solving systems of linear equations, 6-31

Householder matrix
LAPACK, 5-173
ScaLAPACK, 7-89

Householder method, for interval systems, 12-7, 12-24

Householder reflector, 7-182

Hypergeometric, 10-86

I
i?amax, 2-28

i?amin, 2-29

i?max1, 5-24

IEEE arithmetic, 7-57

IEEE standard
implementation, 7-201
signbit position, 7-203

ilaenv, 5-325

increment, B-1

iNewAbstractStream, 10-18

infinity-norm
complex Hermitian matrix, 5-137, 7-63

packed storage, 5-133
complex Hermitian tridiagonal matrix, 5-134
complex symmetric matrix, 5-136
general rectangular matrix, 5-123, 7-58
general tridiagonal matrix, 5-125
Hermitian band matrix, 5-129
real symmetric matrix, 5-136, 7-63
real symmetric tridiagonal matrix, 5-134
symmetric band matrix, 5-127
symmetric matrix

packed storage, 5-131
trapezoidal matrix, 5-143
triangular band matrix, 5-139
triangular matrix, 5-143, 7-66

packed storage, 5-141
upper Hessenberg matrix, 5-126, 7-61

interval solver routines
?gegas, 12-5
?gegss, 12-9
?gehbs, 12-11
?gehss, 12-7
?gekws, 12-8
?gemip, 12-23
?gepps, 12-13
?gerbr, 12-19
?gesvr, 12-20
?geszi, 12-17
?trtri, 12-16
?trtrs, 12-3

inverse matrix. See inverting a matrix

inverting a matrix
general matrix

LAPACK, 3-155
ScaLAPACK, 6-64

Hermitian matrix, 3-163
packed storage, 3-167

Hermitian positive-definite matrix
LAPACK, 3-157
packed storage, 3-159
ScaLAPACK, 6-66

symmetric matrix, 3-161
packed storage, 3-165

Intel ® Math Kernel Library Reference Manual

Index-17

symmetric positive-definite matrix
LAPACK, 3-157
packed storage, 3-159
ScaLAPACK, 6-66

triangular distributed matrix, 6-68
triangular matrix, 3-169

packed storage, 3-172

K
Krawczyk iteration method, for interval systems, 12-8

L
LAPACK routines

2-by-2 generalized eigenvalue problem, 5-88
2-by-2 Hermitian matrix

plane rotation, 5-168
2-by-2 orthogonal matrices, 5-90
2-by-2 real matrix

generalized Schur factorization, 5-98
2-by-2 real nonsymmetric matrix

Schur factorization, 5-145
2-by-2 symmetric matrix

plane rotation, 5-168
2-by-2 triangular matrix

singular values, 5-202
SVD, 5-255

approximation to smallest eigenvalue, 5-246
auxiliary routines

?gbtf2, 5-26
?gebd2, 5-27
?gehd2, 5-29
?gelq2, 5-32
?geql2, 5-33
?geqr2, 5-35
?gerq2, 5-37
?gesc2, 5-38
?getc2, 5-40
?getf2, 5-41
?gtts2, 5-42
?hetf2, 5-314
?labrd, 5-44
?lacgv, 5-11
?lacon, 5-47
?lacpy, 5-48

?lacrm, 5-12
?lacrt, 5-13
?ladiv, 5-50
?lae2, 5-51
?laebz, 5-52
?laed0, 5-57
?laed1, 5-59
?laed2, 5-61
?laed3, 5-64
?laed4, 5-66
?laed5, 5-68
?laed6, 5-69
?laed7, 5-71
?laed8, 5-74
?laed9, 5-78
?laeda, 5-80
?laein, 5-82
?laesy, 5-14
?laev2, 5-85
?laexc, 5-86
?lag2, 5-88
?lags2, 5-90
?lagtf, 5-92
?lagtm, 5-94
?lagts, 5-96
?lagv2, 5-98
?lahef, 5-262
?lahqr, 5-100
?lahrd, 5-102
?laic1, 5-105
?laln2, 5-107
?lals0, 5-110
?lalsa, 5-114
?lalsd, 5-118
?lamrg, 5-120
?langb, 5-121
?lange, 5-123
?langt, 5-125
?lanhb, 5-129
?lanhe, 5-137
?lanhp, 5-133
?lanhs, 5-126
?lansb, 5-127
?lansp, 5-131
?lanst/?lanht, 5-134
?lansy, 5-136

Index

Index-18

?lantb, 5-139
?lantp, 5-141
?lantr, 5-143
?lanv2, 5-145
?lapll, 5-146
?lapmt, 5-147
?lapy2, 5-148
?lapy3, 5-149
?laqgb, 5-150
?laqge, 5-152
?laqp2, 5-154
?laqps, 5-155
?laqsb, 5-158
?laqsp, 5-160
?laqsy, 5-161
?laqtr, 5-163
?lar1v, 5-166
?lar2v, 5-168
?larf, 5-169
?larfb, 5-171
?larfg, 5-173
?larft, 5-175
?larfx, 5-178
?largv, 5-179
?larnv, 5-181
?larrb, 5-182
?larre, 5-184
?larrf, 5-186
?larrv, 5-188
?lartg, 5-191
?lartv, 5-192
?laruv, 5-194
?larz, 5-195
?larzb, 5-197
?larzt, 5-199
?las2, 5-202
?lascl, 5-203
?lasd0, 5-205
?lasd1, 5-207
?lasd2, 5-210
?lasd3, 5-213
?lasd4, 5-216
?lasd5, 5-218
?lasd6, 5-219
?lasd7, 5-224
?lasd8, 5-228

?lasd9, 5-230
?lasda, 5-232
?lasdq, 5-236
?lasdt, 5-238
?laset, 5-239
?lasq1, 5-241
?lasq2, 5-242
?lasq3, 5-243
?lasq4, 5-246
?lasq5, 5-247
?lasq6, 5-249
?lasr, 5-250
?lasrt, 5-252
?lassq, 5-253
?lasv2, 5-255
?laswp, 5-256
?lasy2, 5-257
?lasyf, 5-260
?latbs, 5-265
?latdf, 5-267
?latps, 5-269
?latrd, 5-271
?latrs, 5-275
?latrz, 5-279
?lauu2, 5-281
?lauum, 5-282
?org2l/?ung2l, 5-283
?org2r/?ung2r, 5-285
?orgl2l/?ungl2, 5-287
?orgr2/?ungr2, 5-288
?orm2l/?unm2l, 5-290
?orm2r/?unm2r, 5-292
?orml2/?unml2, 5-295
?ormr2/?unmr2, 5-297
?ormr3/?unmr3, 5-300
?pbtf2, 5-302
?potf2, 5-304
?ptts2, 5-306
?rot, 5-16
?rscl, 5-307
?spmv, 5-17
?spr, 5-19
?sum1, 5-25
?sygs2/?hegs2, 5-308
?symv, 5-20
?syr, 5-22

Intel ® Math Kernel Library Reference Manual

Index-19

?sytd2/?hetd2, 5-310
?sytf2, 5-312
?tgex2, 5-316
?tgsy2, 5-318
?trti2, 5-322
i?max1, 5-24

bidiagonal divide and conquer, 5-238
block reflector

triangular factor, 5-175, 5-199
checking for characters equality, 5-328
checking for safe infinity, 5-327
checking for strings equality, 5-329
complex Hermitian matrix, 5-137

packed storage, 5-133
complex Hermitian tridiagonal matrix, 5-134
complex matrix multiplication, 5-12
complex symmetric matrix, 5-136

computing eigenvalues and eigenvectors, 5-14
matrix-vector product, 5-20
symmetric rank-1 update, 5-22

complex symmetrical packed matrix
symmetrical rank-1 update, 5-19

complex vector
1-norm using true absolute value, 5-25
index of element with max absolute value, 5-24
linear transformation, 5-13
matrix-vector product, 5-17
plane rotation, 5-16

complex vector conjugation, 5-11
condition number estimation

?disna, 4-189
?gbcon, 3-78
?gecon, 3-76
?gtcon, 3-81
?hecon, 3-96
?hpcon, 3-100
?pbcon, 3-89
?pocon, 3-84
?ppcon, 3-86
?ptcon, 3-91
?spcon, 3-98
?sycon, 3-93
?tbcon, 3-107
?tpcon, 3-105
?trcon, 3-102

determining machine parameters, 5-331, 5-332

dqd transform, 5-249
dqds transform, 5-247
driver routines

generalized LLS problems
?ggglm, 4-348
?gglse, 4-345

generalized nonsymmetric eigenproblems
?gges, 4-566
?ggesx, 4-573
?ggev, 4-581
?ggevx, 4-586

generalized symmetric definite eigenproblems
?hbgv, 4-545
?hbgvd, 4-552
?hbgvx, 4-561
?hegv, 4-494
?hegvd, 4-502
?hegvx, 4-512
?hpgv, 4-521
?hpgvd, 4-528
?hpgvx, 4-537
?sbgv, 4-542
?sbgvd, 4-548
?sbgvx, 4-556
?spgv, 4-518
?spgvd, 4-524
?spgvx, 4-532
?sygv, 4-491
?sygvd, 4-498
?sygvx, 4-506

linear least squares problems
?gels, 4-327
?gelsd, 4-340
?gelss, 4-336
?gelsy, 4-331
?lals0 (auxiliary), 5-110
?lalsa (auxiliary), 5-114
?lalsd (auxiliary), 5-118

nonsymmetric eigenproblems
?gees, 4-449
?geesx, 4-455
?geev, 4-461
?geevx, 4-466

singular value decomposition
?gesdd, 4-479
?gesvd, 4-473

Index

Index-20

?ggsvd, 4-484
solving linear equations

?gbsv, 3-195
?gbsvx, 3-198
?gesv, 3-187
?gesvx, 3-189
?gtsv, 3-205
?gtsvx, 3-207
?hesv, 3-249
?hesvx, 3-252
?hpsv, 3-263
?hpsvx, 3-266
?pbsv, 3-227
?pbsvx, 3-229
?posv, 3-212
?posvx, 3-214
?ppsv, 3-219
?ppsvx, 3-221
?ptsv, 3-235
?ptsvx, 3-237
?spsv, 3-256
?spsvx, 3-259
?sysv, 3-241
?sysvx, 3-244

symmetric eigenproblems
?hbev, 4-413
?hbevd, 4-420
?hbevx, 4-429
?heev, 4-355
?heevd, 4-361
?heevr, 4-381
?heevx, 4-370
?hpev, 4-390
?hpevd, 4-397
?hpevx, 4-405
?sbev, 4-410
?sbevd, 4-416
?sbevx, 4-424
?spev, 4-387
?spevd, 4-393
?spevx, 4-401
?stev, 4-434
?stevd, 4-436
?stevr, 4-444
?stevx, 4-440
?syev, 4-352

?syevd, 4-358
?syevr, 4-375
?syevx, 4-365

environmental enquiry, 5-325
finding a relatively isolated eigenvalue, 5-186
general band matrix, 5-121

equilibration, 5-150
general matrix

block reflector, 5-197
elementary reflector, 5-195
reduction to bidiagonal form, 5-27, 5-44

general rectangular matrix, 5-102, 5-123, 5-203
block reflector, 5-171
elementary reflector, 5-169, 5-178
equilibration, 5-152
LQ factorization, 5-32
plane rotation, 5-250
QL factorization, 5-33
QR factorization, 5-35
row interchanges, 5-256
RQ factorization, 5-37

general square matrix
reduction to upper Hessenberg form, 5-29

general tridiagonal matrix, 5-92, 5-94, 5-96, 5-125,
5-184, 5-188

generalized eigenvalue problems
?hbgst, 4-207
?hegst, 4-195
?hpgst, 4-201
?pbstf, 4-210
?sbgst, 4-204
?spgst, 4-198
?sygst, 4-192

Hermitian band matrix, 5-129
equilibration, 5-158, 5-161

Hermitian band matrix in packed storage
equilibration, 5-160

Hermitian matrix
computing eigenvalues and eigenvectors, 5-85

Householder matrix
elementary reflector, 5-173

incremental condition estimation, 5-105
linear dependence of vectors, 5-146
LQ factorization

?gelq2, 5-32
?gelqf, 4-29

Intel ® Math Kernel Library Reference Manual

Index-21

?orglq, 4-32
?ormlq, 4-35
?unglq, 4-38
?unmlq, 4-41

LU factorization
general band matrix, 5-26

matrix equilibration
?gbequ, 3-176
?geequ, 3-174
?laqgb, 5-150
?laqge, 5-152
?laqsb, 5-158
?laqsp, 5-160
?laqsy, 5-161
?pbequ, 3-183
?poequ, 3-179
?ppequ, 3-181

matrix inversion
?getri, 3-155
?hetri, 3-163
?hptri, 3-167
?potri, 3-157
?pptri, 3-159
?sptri, 3-165
?sytri, 3-161
?tptri, 3-172
?trtri, 3-169

matrix-matrix product
?lagtm, 5-94

merging sets of singular values, 5-210, 5-224
nonsymmetric eigenvalue problems

?gebak, 4-234
?gebal, 4-231
?gehrd, 4-216
?hsein, 4-242
?hseqr, 4-237
?orghr, 4-219
?ormhr, 4-222
?trevc, 4-248
?trexc, 4-259
?trsen, 4-262
?trsna, 4-253
?unghr, 4-225
?unmhr, 4-228

off-diagonal and diagonal elements, 5-239
permutation list creation, 5-120

permutation of matrix columns, 5-147
plane rotation, 5-191, 5-192, 5-250
plane rotation vector, 5-179
QL factorization

?geql2, 5-33
?geqlf, 4-44
?orgql, 4-47
?ormql, 4-51
?ungql, 4-49
?unmql, 4-54

QR factorization
?geqp3, 4-14
?geqpf, 4-11
?geqr2, 5-35
?geqrf, 4-8
?ggqrf, 4-79
?ggrqf, 4-83
?laqp2, 5-154
?laqps, 5-155
?orgqr, 4-17
?ormqr, 4-20
?ungqr, 4-23
?unmqr, 4-26
p?geqrf, 6-75

random numbers vector, 5-181
real lower bidiagonal matrix

SVD, 5-236
real square bidiagonal matrix

singular values, 5-241
real symmetric matrix, 5-136
real symmetric tridiagonal matrix, 5-52, 5-134
real upper bidiagonal matrix

singular values, 5-205
SVD, 5-207, 5-232, 5-236

real upper quasi-triangular matrix
orthogonal similarity transformation, 5-86

RQ factorization
?geqr2, 5-37
?gerqf, 4-57
?orgrq, 4-60
?ormrq, 4-64
?ungrq, 4-62
?unmrq, 4-67

RZ factorization
?ormrz, 4-73
?tzrzf, 4-70

Index

Index-22

?unmrz, 4-76
singular value decomposition, 5-110, 5-114, 5-118

?bdsdc, 4-117
?bdsqr, 4-112
?gbbrd, 4-93
?gebrd, 4-89
?orgbr, 4-97
?ormbr, 4-100
?ungbr, 4-104
?unmbr, 4-108

solution refinement and error estimation
?gbrfs, 3-113
?gerfs, 3-110
?gtrfs, 3-117
?herfs, 3-136
?hprfs, 3-142
?pbrfs, 3-126
?porfs, 3-120
?pprfs, 3-123
?ptrfs, 3-130
?sprfs, 3-139
?syrfs, 3-133
?tbrfs, 3-151
?tprfs, 3-148
?trrfs, 3-145

solving linear equations
?gbtrs, 3-41
?getrs, 3-39
?gttrs, 3-44
?hetrs, 3-59
?hptrs, 3-64
?laln2, 5-107
?laqtr, 5-163
?pbtrs, 3-52
?potrs, 3-47
?pptrs, 3-49
?pttrs, 3-55
?sptrs, 3-62
?sytrs, 3-57
?tbtrs, 3-72
?tptrs, 3-69
?trtrs, 3-67

sorting numbers, 5-252
square root, 5-148, 5-149
square roots, 5-213, 5-216, 5-218, 5-228, 5-230, 5-329
Sylvester equation

?lasy2, 5-257
?tgsy2, 5-318
?trsyl, 4-267

symmetric band matrix, 5-127
equilibration, 5-158, 5-161

symmetric band matrix in packed storage
equilibration, 5-160

symmetric eigenvalue problems
?disna, 4-189
?hbtrd, 4-159
?hetrd, 4-133
?hptrd, 4-148
?opgtr, 4-143
?opmtr, 4-145
?orgtr, 4-128
?ormtr, 4-130
?pteqr, 4-178
?sbtrd, 4-156
?sptrd, 4-141
?stebz, 4-182
?stedc, 4-168
?stegr, 4-172
?stein, 4-186
?steqr, 4-164
?sterf, 4-162
?sytrd, 4-125
?ungtr, 4-136
?unmtr, 4-138
?upgtr, 4-151
?upmtr, 4-153
auxiliary

?lae2, 5-51
?laebz, 5-52
?laed0, 5-57
?laed1, 5-59
?laed2, 5-61
?laed3, 5-64
?laed4, 5-66
?laed5, 5-68
?laed6, 5-69
?laed7, 5-71
?laed8, 5-74
?laed9, 5-78
?laeda, 5-80

symmetric matrix
computing eigenvalues and eigenvectors, 5-85

Intel ® Math Kernel Library Reference Manual

Index-23

packed storage, 5-131
symmetric positive-definite tridiagonal matrix

eigenvalues, 5-242
trapezoidal matrix, 5-143, 5-279
triangular factorization

?gbtrf, 3-13
?getrf, 3-11
?gttrf, 3-16
?hetrf, 3-30
?hptrf, 3-36
?pbtrf, 3-22
?potrf, 3-18
?pptrf, 3-20
?pttrf, 3-25
?sptrf, 3-33
?sytrf, 3-26
p?dbtrf, 6-10

triangular matrix, 5-143
packed storage, 5-141

triangular system of equations, 5-269, 5-275
tridiagonal band matrix, 5-139
uniform distribution, 5-194
unreduced symmetric tridiagonal matrix, 5-57
updated upper bidiagonal matrix

SVD, 5-219
updating sum of squares, 5-253
upper Hessenberg matrix, 5-126

computing a specified eigenvector, 5-82
eigenvalues, 5-100
Schur factorization, 5-100

utility functions and routines
?labad, 5-329
?lamc1, 5-331
?lamc2, 5-332
?lamc3, 5-333
?lamc4, 5-334
?lamc5, 5-335
?lamch, 5-330
ieeeck, 5-327
ilaenv, 5-325
lsame, 5-328
lsamen, 5-329
second/dsecnd, 5-336
xerbla, 5-336

Laplace, 10-54

largest absolute value of element

complex Hermitian matrix, 5-137, 7-63
packed storage, 5-133

complex Hermitian tridiagonal matrix, 5-134
complex symmetric matrix, 5-136
general rectangular matrix, 5-123, 7-58
general tridiagonal matrix, 5-125
Hermitian band matrix, 5-129
real symmetric matrix, 5-136, 7-63
real symmetric tridiagonal matrix, 5-134
symmetric band matrix, 5-127
symmetric matrix

packed storage, 5-131
trapezoidal matrix, 5-143
triangular band matrix, 5-139
triangular matrix, 5-143, 7-66

packed storage, 5-141
upper Hessenberg matrix, 5-126, 7-61

leading dimension, B-6

leapfrog method, 10-9

LeapfrogStream, 10-32

least-squares problems, 4-1

length. See dimension

linear combination of vectors, 2-7

Linear Congruential Generator, 10-4

linear equations, solving, 5-107, 5-163
band matrix

LAPACK, 3-195, 3-198
ScaLAPACK, 6-220

Cholesky-factored matrix
LAPACK, 3-52
ScaLAPACK, 6-29

diagonally dominant-like matrix
banded, 6-36
tridiagonal, 6-34

general band matrix
ScaLAPACK, 6-223

general matrix, 3-39, 6-22
band storage, 3-41, 6-24

general tridiagonal matrix
ScaLAPACK, 6-225

Hermitian matrix, 3-59
error bounds, 3-252, 3-266
packed storage, 3-64, 3-263, 3-266

Hermitian positive-definite matrix, 3-47, 6-27
band storage, 3-52, 3-229, 6-29

Index

Index-24

LAPACK, 3-227
ScaLAPACK, 6-237

error bounds, 3-221, 3-229
LAPACK, 3-214
ScaLAPACK, 6-230

LAPACK, 3-212, 3-214
packed storage, 3-49, 3-219, 3-221
ScaLAPACK, 6-230

Hermitian positive-definite tridiagonal linear
equations, 7-195

Hermitian positive-definite tridiagonal matrix, 6-31
multiple right-hand sides

band matrix
LAPACK, 3-195, 3-198
ScaLAPACK, 6-220

Hermitian matrix, 3-249, 3-263
Hermitian positive-definite matrix, 3-212,

3-219
band storage, 3-227

square matrix
LAPACK, 3-187, 3-189
ScaLAPACK, 6-212, 6-214

symmetric matrix, 3-241, 3-256
symmetric positive-definite matrix, 3-212,

3-219
band storage, 3-227

tridiagonal matrix, 3-205, 3-207
overestimated or underestimated system, 6-242
square matrix

error bounds
LAPACK, 3-189, 3-198
ScaLAPACK, 6-214

LAPACK, 3-187, 3-189
ScaLAPACK, 6-212, 6-214

symmetric matrix, 3-57
error bounds, 3-244, 3-259
packed storage, 3-62, 3-256, 3-259

symmetric positive-definite matrix, 3-47, 6-27, 6-31
band storage, 3-52, 3-229, 6-29

LAPACK, 3-227
ScaLAPACK, 6-237

error bounds, 3-221, 3-229
LAPACK, 3-214
ScaLAPACK, 6-230

LAPACK, 3-212, 3-214
packed storage, 3-49, 3-219, 3-221

ScaLAPACK, 6-228, 6-230
symmetric positive-definite tridiagonal linear

equations, 7-195
triangular matrix, 3-67, 6-39

band storage, 3-72, 7-161
packed storage, 3-69

tridiagonal Hermitian positive-definite matrix, 3-237
error bounds, 3-237
LAPACK, 3-235
ScaLAPACK, 6-239

tridiagonal matrix
error bounds, 3-207
LAPACK, 3-44, 3-55, 3-205, 3-207
LAPACK auxiliary, 5-166
ScaLAPACK auxiliary, 7-194

tridiagonal symmetric positive-definite matrix, 3-237
error bounds, 3-237
LAPACK, 3-235
ScaLAPACK, 6-239

LoadStreamF, 10-31

Lognormal, 10-64

LQ factorization, 4-6
computing the elements of

orthogonal matrix Q, 4-32
real orthogonal matrix Q, 6-95
unitary matrix Q, 4-38, 6-97

general rectangular matrix, 5-32, 7-26

lsame, 5-328

lsamen, 5-329

LU factorization, 3-11, 6-6
band matrix, 3-13, 6-8, 6-10

blocked algorithm, 7-191
unblocked algorithm, 7-189

diagonally dominant-like tridiagonal matrix, 6-19
general band matrix, 5-26
general matrix, 5-41, 7-36
solving linear equations

general matrix, 5-38
square matrix, 6-214
tridiagonal matrix, 5-42, 5-96

triangular band matrix, 7-11
tridiagonal band matrix, 7-15
tridiagonal matrix, 3-16, 5-92, 7-193
with complete pivoting, 5-40, 5-267
with partial pivoting, 5-41, 7-36

Intel ® Math Kernel Library Reference Manual

Index-25

M
machine parameters

LAPACK, 5-330
ScaLAPACK, 7-202

matrix arguments, B-4
column-major ordering, B-2, B-6
example, B-7
leading dimension, B-6
number of columns, B-6
number of rows, B-6
transposition parameter, B-6

matrix block
QR factorization

with pivoting, 5-154

matrix equation
AX = B, 2-126, 3-9, 3-39, 6-5, 6-22

matrix one-dimensional substructures, B-2

matrix-matrix operation
product

general matrix, 2-99
rank-2k update

Hermitian matrix, 2-109
symmetric matrix, 2-119

rank-n update
Hermitian matrix, 2-106
symmetric matrix, 2-116

scalar-matrix-matrix product
Hermitian matrix, 2-102
symmetric matrix, 2-112
triangular matrix, 2-123

matrix-vector operation
product, 2-33, 2-37

complex symmetric matrix, 5-20
packed storage, 5-17

Hermitian matrix, 2-49
band storage, 2-46
packed storage, 2-56

real symmetric matrix, 2-74
packed storage, 2-67

symmetric matrix
band storage, 2-64

triangular matrix, 2-92
band storage, 2-81
packed storage, 2-87

rank-1 update, 2-40, 2-42, 2-44
complex symmetric matrix, 5-22

packed storage, 5-19
Hermitian matrix, 2-51

packed storage, 2-59
real symmetric matrix, 2-76

packed storage, 2-69
rank-2 update

Hermitian matrix, 2-53
packed storage, 2-61

symmetric matrix, 2-78
packed storage, 2-71

mkl_cvt_to_null_terminated_str, 8-30

mkl_dcoogemv, 2-166

mkl_dcoomm, 2-203

mkl_dcoomv, 2-164

mkl_dcoosm, 2-217

mkl_dcoosv, 2-186

mkl_dcoosymv, 2-168

mkl_dcootrsv, 2-189

mkl_dcscmm, 2-201

mkl_dcscmv, 2-161

mkl_dcscsm, 2-214

mkl_dcscsv, 2-184

mkl_dcsrgemv, 2-157

mkl_dcsrmm, 2-198

mkl_dcsrmv, 2-154

mkl_dcsrsm, 2-211

mkl_dcsrsv, 2-179

mkl_dcsrsymv, 2-159

mkl_dcsrtrsv, 2-182

mkl_ddiagemv, 2-173

mkl_ddiamm, 2-206

mkl_ddiamv, 2-170

mkl_ddiasm, 2-219

mkl_ddiasv, 2-191

mkl_ddiasymv, 2-175

mkl_ddiatrsv, 2-193

mkl_dskymm, 2-209

mkl_dskymv, 2-177

mkl_dskysm, 2-222

Index

Index-26

mkl_dskysv, 2-196

MPI, 6-1

Multiplicative Congruential Generator, 10-4

N
naming conventions, 1-9

BLAS, 2-2
LAPACK, 3-2, 4-3, 6-3
Sparse BLAS Level 1, 2-130
Sparse BLAS Level 2, 2-145
Sparse BLAS Level 3, 2-145
VML, 9-2

negative eigenvalues, 7-57

NegBinomial, 10-92

NewStream, 10-14

NewStreamEx, 10-16

O
off-diagonal elements

initialization, 7-112
LAPACK, 5-239
ScaLAPACK, 7-112

one-dimensional FFTs, 11-69
complex sequence, 11-76, 11-78, 11-80, 11-82
complex-to-complex, 11-71
computing a forward FFT, real input data, 11-75,

11-77
computing a forward or inverse FFT of a complex

vector, 11-72, 11-73
groups, 11-70
performing an inverse FFT, complex input data,

11-80, 11-81
storage effects, 11-35, 11-37, 11-75, 11-79

orthogonal matrix, 4-87, 4-121, 4-212, 4-270, 6-178,
6-191

from LQ factorization
LAPACK, 5-287
ScaLAPACK, 7-139

from QL factorization
LAPACK, 5-283, 5-290
ScaLAPACK, 7-134, 7-145

from QR factorization

LAPACK, 5-285
ScaLAPACK, 7-137

from RQ factorization
LAPACK, 5-288
ScaLAPACK, 7-142

P
p?dbsv, 6-223

p?dbtrf, 6-10

p?dbtrs, 6-36

p?dbtrsv, 7-11

p?dtsv, 6-225

p?dttrf, 6-19

p?dttrs, 6-34

p?dttrsv, 7-15

p?gbsv, 6-220

p?gbtrf, 6-8

p?gbtrs, 6-24

p?gebd2, 7-18

p?gebrd, 6-191

p?gecon, 6-42

p?geequ, 6-70

p?gehd2, 7-23

p?gehrd, 6-178

p?gelq2, 7-26

p?gelqf, 6-92

p?gels, 6-242

p?geql2, 7-28

p?geqlf, 6-106

p?geqpf, 6-78

p?geqr2, 7-31

p?geqrf, 6-75

p?gerfs, 6-51

p?gerq2, 7-34

p?gerqf, 6-119

p?gesv, 6-212

p?gesvd, 6-263

p?gesvx, 6-214

p?getf2, 7-36

Intel ® Math Kernel Library Reference Manual

Index-27

p?getrf, 6-6

p?getri, 6-64

p?getrs, 6-22

p?ggqrf, 6-143

p?ggrqf, 6-148

p?heevx, 6-256

p?hegst, 6-208

p?hegvx, 6-276

p?hetrd, 6-161

p?labad, 7-200

p?labrd, 7-38

p?lacgv, 7-6

p?lachkieee, 7-201

p?lacon, 7-43

p?laconsb, 7-45

p?lacp2, 7-46

p?lacp3, 7-48

p?lacpy, 7-50

p?laevswp, 7-52

p?lahqr, 6-188

p?lahrd, 7-54

p?laiect, 7-57

p?lamch, 7-202

p?lange, 7-58

p?lanhs, 7-61

p?lansy, p?lanhe, 7-63

p?lantr, 7-66

p?lapiv, 7-68

p?laqge, 7-71

p?laqsy, 7-74

p?lared1d, 7-76

p?lared2d, 7-78

p?larf, 7-79

p?larfb, 7-82

p?larfc, 7-86

p?larfg, 7-89

p?larft, 7-91

p?larz, 7-94

p?larzb, 7-98

p?larzc, 7-102

p?larzt, 7-106

p?lascl, 7-110

p?laset, 7-112

p?lasmsub, 7-114

p?lasnbt, 7-203

p?lassq, 7-115

p?laswp, 7-117

p?latra, 7-119

p?latrd, 7-120

p?latrs, 7-124

p?latrz, 7-127

p?lauu2, 7-130

p?lauum, 7-131

p?lawil, 7-133

p?max1, 7-8

p?org2l/p?ung2l, 7-134

p?org2r/p?ung2r, 7-137

p?orgl2/p?ungl2, 7-139

p?orglq, 6-95

p?orgql, 6-108

p?orgqr, 6-81

p?orgr2/p?ungr2, 7-142

p?orgrq, 6-122

p?orm2l/p?unm2l, 7-145

p?orm2r/p?unm2r, 7-149

p?ormbr, 6-196

p?ormhr, 6-182

p?orml2/p?unml2, 7-153

p?ormlq, 6-99

p?ormql, 6-113

p?ormqr, 6-85

p?ormr2/p?unmr2, 7-157

p?ormrq, 6-126

p?ormrz, 6-136

p?ormtr, 6-158

p?pbsv, 6-237

p?pbtrf, 6-14

p?pbtrs, 6-29

Index

Index-28

p?pbtrsv, 7-161

p?pocon, 6-45

p?poequ, 6-72

p?porfs, 6-55

p?posv, 6-228

p?posvx, 6-230

p?potf2, 7-169

p?potrf, 6-13

p?potri, 6-66

p?potrs, 6-27

p?ptsv, 6-239

p?pttrf, 6-17

p?pttrs, 6-31

p?pttrsv, 7-165

p?rscl, 7-171

p?stebz, 6-169

p?stein, 6-173

p?sum1, 7-10

p?syev, 6-246

p?syevx, 6-249

p?sygs2/p?hegs2, 7-172

p?sygst, 6-206

p?sygvx, 6-268

p?sytd2/p?hetd2, 7-175

p?sytrd, 6-154

p?trcon, 6-48

p?trrfs, 6-59

p?trti2, 7-179

p?trtri, 6-68

p?trtrs, 6-39

p?tzrzf, 6-133

p?unglq, 6-97

p?ungql, 6-110

p?ungqr, 6-83

p?ungrq, 6-124

p?unmbr, 6-201

p?unmhr, 6-185

p?unmlq, 6-102

p?unmql, 6-116

p?unmqr, 6-89

p?unmrq, 6-130

p?unmrz, 6-140

p?unmtr, 6-165

Packed formats, 11-30

packed storage scheme, B-4

parallel direct solver (Pardiso), 8-1

parameter partitioning, for interval systems, 12-13

parameters
for a Givens rotation, 2-20
modified Givens transformation, 2-23

PARDISO, 8-1

pardiso function, 8-3

pdlaiectb, 7-57

pdlaiectl, 7-57

permutation matrix, A-3

pivoting matrix rows or columns, 7-68

platforms supported, 1-7

points rotation
in the modified plane, 2-21
in the plane, 2-18

Poisson, 10-88

PoissonV, 10-90

preconditioning, of an interval system, 12-24

process grid, 6-2

product
See also dot product
matrix-vector

complex symmetric matrix, 5-20
packed storage, 5-17

general matrix, 2-37
band storage, 2-33

Hermitian matrix, 2-49
band storage, 2-46
packed storage, 2-56

real symmetric matrix, 2-74
packed storage, 2-67

symmetric matrix
band storage, 2-64

triangular matrix, 2-92
band storage, 2-81
packed storage, 2-87

Intel ® Math Kernel Library Reference Manual

Index-29

scalar-matrix
general matrix, 2-99
Hermitian matrix, 2-102

scalar-matrix-matrix
general matrix, 2-99
Hermitian matrix, 2-102
symmetric matrix, 2-112
triangular matrix, 2-123

vector-scalar, 2-25

pseudorandom numbers, 10-1

pslaiect, 7-57

pxerbla, 7-204

Q
QL factorization

computing the elements of
complex matrix Q, 4-49
orthogonal matrix Q, 6-108
real matrix Q, 4-47
unitary matrix Q, 6-110

general rectangular matrix
LAPACK, 5-33
ScaLAPACK, 7-28

multiplying general matrix by
orthogonal matrix Q, 6-113
unitary matrix Q, 6-116

QR factorization, 4-6
computing the elements of

orthogonal matrix Q, 4-17, 6-81
unitary matrix Q, 4-23, 6-83

general rectangular matrix
LAPACK, 5-35, 5-37
ScaLAPACK, 7-31, 7-34

with pivoting, 4-11, 4-14, 5-154, 5-155
ScaLAPACK, 6-78

quasi-random numbers, 10-1

quasi-triangular matrix
LAPACK, 4-212, 4-270
ScaLAPACK, 6-178

quasi-triangular system of equations, 5-163

QZ method, 4-281

R
random number generators, 10-1

random stream, 10-11

rank-1 update
complex symmetric matrix, 5-22

packed storage, 5-19
conjugated, general matrix, 2-42
general matrix, 2-40
Hermitian matrix, 2-51

packed storage, 2-59
real symmetric matrix, 2-76

packed storage, 2-69
unconjugated, general matrix, 2-44

rank-2 update
Hermitian matrix, 2-53

packed storage, 2-61
symmetric matrix, 2-78

packed storage, 2-71

rank-2k update
Hermitian matrix, 2-109
symmetric matrix, 2-119

rank-n update
Hermitian matrix, 2-106
symmetric matrix, 2-116

Rayleigh, 10-62

RCI (P)CG interface, 8-33

RCI (P)CG sparse solver routines
dcg, 8-42
dcg_check, 8-41
dcg_get, 8-44
dcg_init, 8-40

real matrix
QR factorization

with pivoting, 5-155

real symmetric matrix
1-norm value, 5-136
Frobenius norm, 5-136
infinity- norm, 5-136
largest absolute value of element, 5-136

real symmetric tridiagonal matrix
1-norm value, 5-134
Frobenius norm, 5-134
infinity- norm, 5-134

Index

Index-30

largest absolute value of element, 5-134

reducing generalized eigenvalue problems
LAPACK, 4-192
ScaLAPACK, 6-206

reduction to upper Hessenberg form
general matrix, 7-23
general square matrix, 5-29

refining solutions of linear equations
band matrix, 3-113
general matrix, 3-110, 6-51
Hermitian matrix, 3-136

packed storage, 3-142
Hermitian positive-definite matrix, 3-120, 3-130

band storage, 3-126
packed storage, 3-123

symmetric matrix, 3-133
packed storage, 3-139

symmetric positive-definite matrix, 3-120, 3-130
band storage, 3-126
packed storage, 3-123

symmetric/Hermitian positive-definite distributed
matrix, 6-55

tridiagonal matrix, 3-117

RegisterBrng, 10-97

registering a basic generator, 10-95

reordering of matrices, A-4

Reverse Communication Interface, 8-33

Rex-Rohn test, 12-19, 12-20

Ris-Beeck spectral criterion, 12-19

rotation
of points in the modified plane, 2-21
of points in the plane, 2-18
of sparse vectors, 2-141
parameters for a Givens rotation, 2-20
parameters of modified Givens transformation, 2-23

routine name conventions
BLAS, 2-2
Sparse BLAS Level 1, 2-130
Sparse BLAS Level 2, 2-145
Sparse BLAS Level 3, 2-145

RQ factorization
computing the elements of

complex matrix Q, 4-62
orthogonal matrix Q, 6-122

real matrix Q, 4-60
unitary matrix Q, 6-124

Rump criterion, 12-20

S
SaveStreamF, 10-29

ScaLAPACK, 6-1

ScaLAPACK routines
1D array redistribution, 7-76, 7-78
auxiliary routines

?combamax1, 7-9
?dbtf2, 7-189
?dbtrf, 7-191
?dttrf, 7-193
?dttrsv, 7-194
?lamsh, 7-180
?laref, 7-182
?lasorte, 7-184
?lasrt2, 7-186
?pttrsv, 7-195
?stein2, 7-187
?steqr2, 7-197
p?dbtrsv, 7-11
p?gebd2, 7-18
p?gehd2, 7-23
p?gelq2, 7-26
p?geql2, 7-28
p?geqr2, 7-31
p?gerq2, 7-34
p?getf2, 7-36
p?labrd, 7-38
p?lacgv, 7-6
p?lacon, 7-43
p?laconsb, 7-45
p?lacp2, 7-46
p?lacp3, 7-48
p?lacpy, 7-50
p?laevswp, 7-52
p?lahrd, 7-54
p?laiect, 7-57
p?lange, 7-58
p?lanhs, 7-61
p?lansy, p?lanhe, 7-63
p?lantr, 7-66

Intel ® Math Kernel Library Reference Manual

Index-31

p?lapiv, 7-68
p?laqge, 7-71
p?laqsy, 7-74
p?lared1d, 7-76
p?lared2d, 7-78
p?larf, 7-79
p?larfb, 7-82
p?larfc, 7-86
p?larfg, 7-89
p?larft, 7-91
p?larz, 7-94
p?larzb, 7-98
p?larzc, 7-102
p?larzt, 7-106
p?lascl, 7-110
p?laset, 7-112
p?lasmsub, 7-114
p?lassq, 7-115
p?laswp, 7-117
p?latra, 7-119
p?latrd, 7-120
p?latrs, 7-124
p?latrz, 7-127
p?lauu2, 7-130
p?lauum, 7-131
p?lawil, 7-133
p?max1, 7-8
p?org2l/p?ung2l, 7-134
p?org2r/p?ung2r, 7-137
p?orgl2/p?ungl2, 7-139
p?orgr2/p?ungr2, 7-142
p?orm2l/p?unm2l, 7-145
p?orm2r/p?unm2r, 7-149
p?orml2/p?unml2, 7-153
p?ormr2/p?unmr2, 7-157
p?pbtrsv, 7-161
p?potf2, 7-169
p?pttrsv, 7-165
p?rscl, 7-171
p?sum1, 7-10
p?sygs2/p?hegs2, 7-172
p?sytd2/p?hetd2, 7-175
p?trti2, 7-179
pdlaiectb, 7-57
pdlaiectl, 7-57
pslaiect, 7-57

block reflector
triangular factor, 7-91, 7-106

Cholesky factorization, 6-17
complex matrix

complex elementary reflector, 7-102
complex vector

1-norm using true absolute value, 7-10
complex vector conjugation, 7-6
condition number estimation

p?gecon, 6-42
p?pocon, 6-45
p?trcon, 6-48

driver routines
p?dbsv, 6-223
p?dtsv, 6-225
p?gbsv, 6-220
p?gels, 6-242
p?gesv, 6-212
p?gesvd, 6-263
p?gesvx, 6-214
p?heevx, 6-256
p?hegvx, 6-276
p?pbsv, 6-237
p?posv, 6-228
p?posvx, 6-230
p?ptsv, 6-239
p?syev, 6-246
p?syevx, 6-249
p?sygvx, 6-268

error estimation
p?trrfs, 6-59

error handling
pxerbla, 7-204

general matrix
block reflector, 7-98
elementary reflector, 7-94
LU factorization, 7-36
reduction to upper Hessenberg form, 7-23

general rectangular matrix, 7-110
elementary reflector, 7-79
LQ factorization, 7-26
QL factorization, 7-28
QR factorization, 7-31
reduction to bidiagonal form, 7-38
reduction to real bidiagonal form, 7-18
row interchanges, 7-117

Index

Index-32

RQ factorization, 7-34
generalized eigenvalue problems

p?hegst, 6-208
p?sygst, 6-206

Householder matrix
elementary reflector, 7-89

LQ factorization
p?gelq2, 7-26
p?gelqf, 6-92
p?orglq, 6-95
p?ormlq, 6-99
p?unglq, 6-97
p?unmlq, 6-102

LU factorization
p?dbtrsv, 7-11
p?dttrf, 6-19
p?dttrsv, 7-15
p?getf2, 7-36

matrix equilibration
p?geequ, 6-70
p?poequ, 6-72

matrix inversion
p?getri, 6-64
p?potri, 6-66
p?trtri, 6-68

nonsymmetric eigenvalue problems
p?gehrd, 6-178
p?lahqr, 6-188
p?ormhr, 6-182
p?unmhr, 6-185

QL factorization
?geqlf, 6-106
?ungql, 6-110
p?geql2, 7-28
p?orgql, 6-108
p?ormql, 6-113
p?unmql, 6-116

QR factorization
p?geqpf, 6-78
p?geqr2, 7-31
p?ggqrf, 6-143
p?orgqr, 6-81
p?ormqr, 6-85
p?ungqr, 6-83
p?unmqr, 6-89

RQ factorization

p?gerq2, 7-34
p?gerqf, 6-119
p?ggrqf, 6-148
p?orgrq, 6-122
p?ormrq, 6-126
p?ungrq, 6-124
p?unmrq, 6-130

RZ factorization
p?ormrz, 6-136
p?tzrzf, 6-133
p?unmrz, 6-140

singular value decomposition
p?gebrd, 6-191
p?ormbr, 6-196
p?unmbr, 6-201

solution refinement and error estimation
p?gerfs, 6-51
p?porfs, 6-55

solving linear equations
?dttrsv, 7-194
?pttrsv, 7-195
p?dbtrs, 6-36
p?dttrs, 6-34
p?gbtrs, 6-24
p?getrs, 6-22
p?potrs, 6-27
p?pttrs, 6-31
p?trtrs, 6-39

symmetric eigenproblems
p?hetrd, 6-161
p?ormtr, 6-158
p?stebz, 6-169
p?stein, 6-173
p?sytrd, 6-154
p?unmtr, 6-165

symmetric eigenvalue problems
?stein2, 7-187
?steqr2, 7-197

trapezoidal matrix, 7-127
triangular factorization

?dbtrf, 7-191
?dttrf, 7-193
p?dbtrsv, 7-11
p?dttrsv, 7-15
p?gbtrf, 6-8
p?getrf, 6-6

Intel ® Math Kernel Library Reference Manual

Index-33

p?pbtrf, 6-14
p?potrf, 6-13
p?pttrf, 6-17

triangular system of equations, 7-124
updating sum of squares, 7-115
utility functions and routines

p?labad, 7-200
p?lachkieee, 7-201
p?lamch, 7-202
p?lasnbt, 7-203
pxerbla, 7-204

scalar-matrix product, 2-99, 2-102, 2-112

scalar-matrix-matrix product, 2-102
general matrix, 2-99
symmetric matrix, 2-112
triangular matrix, 2-123

scaling
general rectangular matrix, 7-71
symmetric/Hermitian matrix, 7-74

scaling factors
general rectangular distributed matrix, 6-70
Hermitian positive definite distributed matrix, 6-72
symmetric positive definite distributed matrix, 6-72

scattering compressed sparse vector’s elements into full
storage form, 2-143

Schulz interval procedure, 12-18

Schur decomposition, 4-293, 4-297

Schur factorization
general matrix, 4-259
real 2-by-2 matrix, 5-98
real 2-by-2 nonsymmetric matrix, 5-145
upper Hessenberg matrix, 5-100

SetValue, 11-19

SetValueDM, 11-64

simple driver, 6-4

single node matrix, 7-180

singular value decomposition
See also LAPACK routines, singular value

decomposition
LAPACK, 4-87, 4-473
ScaLAPACK, 6-191, 6-263

SkipAheadStream, 10-35

small subdiagonal element, 7-114

smallest absolute value of a vector element, 2-29

sNewAbstractStream, 10-23

solver
direct, A-2
iterative, A-1
sparse, 8-1

solving linear equations. See linear equations

sorting
eigenpairs, 7-184
numbers in increasing/decreasing order

LAPACK, 5-252
ScaLAPACK, 7-186

Sparse BLAS Level 1, 2-130
data types, 2-131
naming conventions, 2-130

Sparse BLAS Level 1 routines and functions, 2-131
?axpyi, 2-132
?dotci, 2-135
?doti, 2-134
?dotui, 2-137
?gthr, 2-138
?gthrz, 2-140
?roti, 2-141
?sctr, 2-143

Sparse BLAS Level 2, 2-145
naming conventions, 2-145

sparse BLAS Level 2 routines
mkl_dcoogemv, 2-166
mkl_dcoomv, 2-164
mkl_dcoosv, 2-186
mkl_dcoosymv, 2-168
mkl_dcootrsv, 2-189
mkl_dcscmv, 2-161
mkl_dcscsv, 2-184
mkl_dcsrgemv, 2-157
mkl_dcsrmv, 2-154
mkl_dcsrsv, 2-179
mkl_dcsrsymv, 2-159
mkl_dcsrtrsv, 2-182
mkl_ddiagemv, 2-173
mkl_ddiamv, 2-170
mkl_ddiasv, 2-191
mkl_ddiasymv, 2-175
mkl_ddiatrsv, 2-193
mkl_dskymv, 2-177

Index

Index-34

mkl_dskysv, 2-196

Sparse BLAS Level 3, 2-145
naming conventions, 2-145

sparse BLAS Level 3 routines
mkl_dcoomm, 2-203
mkl_dcoosm, 2-217
mkl_dcscmm, 2-201
mkl_dcscsm, 2-214
mkl_dcsrmm, 2-198
mkl_dcsrsm, 2-211
mkl_ddiamm, 2-206
mkl_ddiasm, 2-219
mkl_dskymm, 2-209
mkl_dskysm, 2-222

sparse matrices, 2-145

sparse matrix, 2-145

Sparse Solver
direct sparse solver interface

dss_create, 8-20
dss_define_structure, 8-21
dss_delete, 8-26
dss_factor_real, dss_factor_complex, 8-23
dss_reorder, 8-22
dss_solve_real, dss_solve_complex, 8-25
dss_statistics, 8-27
mkl_cvt_to_null_terminated_str, 8-30

iterative sparse solver interface
dcg, 8-42
dcg_check, 8-41
dcg_get, 8-44
dcg_init, 8-40

sparse vectors, 2-130
adding and scaling, 2-132
complex dot product, conjugated, 2-135
complex dot product, unconjugated, 2-137
compressed form, 2-130
converting to compressed form, 2-138, 2-140
converting to full-storage form, 2-143
full-storage form, 2-130
Givens rotation, 2-141
norm, 2-131
passed to BLAS level 1 routines, 2-131
real dot product, 2-134
scaling, 2-131

split Cholesky factorization (band matrices), 4-210

square matrix
1-norm estimation

LAPACK, 5-47
ScaLAPACK, 7-43

status checking
cluster DFTI, 11-51
DFTI, 11-5

storage, of sparse matrices, A-8

stream, 10-11

stream descriptor, 10-2

stride. See increment

sum
of magnitudes of the vector elements, 2-6
of sparse vector and full-storage vector, 2-132
of vectors, 2-7

sum of squares
updating

LAPACK, 5-253
ScaLAPACK, 7-115

SVD (singular value decomposition)
LAPACK, 4-87
ScaLAPACK, 6-191

swapping adjacent diagonal blocks, 5-86, 5-316

swapping vectors, 2-27

Sylvester equation, 4-267, 4-304

Sylvester’s equation, 4-267, 4-304

symmetric band matrix
1-norm value, 5-127
Frobenius norm, 5-127
infinity- norm, 5-127
largest absolute value of element, 5-127

symmetric indefinite matrix
factorization with diagonal pivoting method, 5-312

symmetric matrix, 4-121, 4-191
Bunch-Kaufman factorization, 3-26

packed storage, 3-33
eigenvalues and eigenvectors, 6-246, 6-249
estimating the condition number, 3-93, 4-189

packed storage, 3-98
generalized eigenvalue problems, 4-191
inverting the matrix, 3-161

packed storage, 3-165
matrix-vector product, 2-74, 5-20

Intel ® Math Kernel Library Reference Manual

Index-35

band storage, 2-64
packed storage, 2-67, 5-17

rank-1 update, 2-76, 5-22
packed storage, 2-69, 5-19

rank-2 update, 2-78
packed storage, 2-71

rank-2k update, 2-119
rank-n update, 2-116
reducing to standard form

LAPACK, 5-308
ScaLAPACK, 7-172

reducing to tridiagonal form, 5-310, 7-175
LAPACK, 5-271
ScaLAPACK, 7-120

scalar-matrix-matrix product, 2-112
scaling, 7-74
solving systems of linear equations, 3-57

packed storage, 3-62

symmetric matrix in packed form
1-norm value, 5-131
Frobenius norm, 5-131
infinity- norm, 5-131
largest absolute value of element, 5-131

symmetric positive definite distributed matrix
computing scaling factors, 6-72
equilibration, 6-72

symmetric positive-definite band matrix
Cholesky factorization, 5-302

symmetric positive-definite distributed matrix
inverting the matrix, 6-66

symmetric positive-definite matrix
Cholesky factorization

band storage, 3-22, 6-14
LAPACK, 3-18, 5-304
packed storage, 3-20
ScaLAPACK, 6-13, 7-169

estimating the condition number, 3-84
band storage, 3-89
packed storage, 3-86
tridiagonal matrix, 3-91

inverting the matrix, 3-157
packed storage, 3-159

solving systems of linear equations
band storage, 3-52, 6-29
LAPACK, 3-47

packed storage, 3-49
ScaLAPACK, 6-27

symmetric positive-definite tridiagonal matrix
solving systems of linear equations, 6-31

symmetrically structured systems, A-10

system of linear equations
with a triangular matrix, 2-95

band storage, 2-84
packed storage, 2-90

systems of linear equations. See linear equations

T
transposition parameter, B-6

trapezoidal matrix
1-norm value, 5-143
Frobenius norm, 5-143
infinity- norm, 5-143
largest absolute value of element, 5-143
reduction to triangular form, 7-127
RZ factorization

LAPACK, 4-70
ScaLAPACK, 6-133

triangular band matrix
1-norm value, 5-139
Frobenius norm, 5-139
infinity- norm, 5-139
largest absolute value of element, 5-139

triangular banded equations
LAPACK, 5-265
ScaLAPACK, 7-161

triangular distributed matrix
inverting the matrix, 6-68

triangular factorization
band matrix, 3-13, 6-8, 6-10, 7-11, 7-191
general matrix, 3-11, 6-6
Hermitian matrix, 3-30

packed storage, 3-36
Hermitian positive-definite matrix, 3-18, 6-13

band storage, 3-22, 6-14
packed storage, 3-20
tridiagonal matrix, 3-25, 6-17

symmetric matrix, 3-26
packed storage, 3-33

Index

Index-36

symmetric positive-definite matrix, 3-18, 6-13
band storage, 3-22, 6-14
packed storage, 3-20
tridiagonal matrix, 3-25, 6-17

tridiagonal matrix
LAPACK, 3-16
ScaLAPACK, 7-193

triangular matrix, 4-212, 4-270
1-norm value

LAPACK, 5-143
ScaLAPACK, 7-66

estimating the condition number, 3-102
band storage, 3-107
packed storage, 3-105

Frobenius norm
LAPACK, 5-143
ScaLAPACK, 7-66

infinity- norm
LAPACK, 5-143
ScaLAPACK, 7-66

inverting the matrix, 3-169
LAPACK, 5-322
packed storage, 3-172
ScaLAPACK, 7-179

largest absolute value of element
LAPACK, 5-143
ScaLAPACK, 7-66

matrix-vector product, 2-92
band storage, 2-81
packed storage, 2-87

product
blocked algorithm, 5-282, 7-131
LAPACK, 5-281, 5-282
ScaLAPACK, 7-130, 7-131
unblocked algorithm, 5-281

ScaLAPACK, 6-178
scalar-matrix-matrix product, 2-123
solving systems of linear equations, 2-95, 3-67

band storage, 2-84, 3-72
packed storage, 2-90, 3-69
ScaLAPACK, 6-39

swapping adjacent diagonal blocks, 5-316

triangular matrix in packed form
1-norm value, 5-141
Frobenius norm, 5-141
infinity- norm, 5-141

largest absolute value of element, 5-141

triangular system of equations
solving with scale factor

LAPACK, 5-275
ScaLAPACK, 7-124

tridaigonal system of equations, 5-306

tridiagonal matrix, 4-121
estimating the condition number, 3-81
solving systems of linear equations, 3-44, 3-55

ScaLAPACK, 7-194

tridiagonal triangular factorization
band matrix, 7-15

tridiagonal triangular system of equations, 7-165

trigonometric transform
backward cosine, 13-2
backward sine, 13-2
backward staggered cosine, 13-2
forward cosine, 13-2
forward sine, 13-1
forward staggered cosine, 13-2

Trigonometric Transform interface, 13-1
code examples, C-90
routines, 13-3

?_backward_trig_transform, 13-12
?_commit_trig_transform, 13-7
?_forward_trig_transform, 13-10
?_init_trig_transform, 13-6
free_trig_transform, 13-14

TT interface, 13-1
see also Trigonometric Transform interface

TT routines, 13-6
 see also Trigonometric Transform interface

two matrices
QR factorization

LAPACK, 4-79
ScaLAPACK, 6-143

two-dimensional FFTs, 11-83
computing a forward FFT, real input data, 11-88,

11-90
computing a forward or inverse FFT, 11-85, 11-86
computing an inverse FFT, complex input data, 11-94,

11-95
data storage types, 11-84
data structure requirements, 11-84

Intel ® Math Kernel Library Reference Manual

Index-37

equations, 11-84
groups, 11-83

U
Uniform (continuous), 10-42

Uniform (discrete), 10-75

UniformBits, 10-77

unitary matrix, 4-87, 4-121, 4-212, 4-270
from LQ factorization

LAPACK, 5-287
ScaLAPACK, 7-139

from QL factorization
LAPACK, 5-283, 5-290
ScaLAPACK, 7-134, 7-145

from QR factorization
LAPACK, 5-285
ScaLAPACK, 7-137

from RQ factorization
LAPACK, 5-288
ScaLAPACK, 7-142

ScaLAPACK, 6-178, 6-191

updating
rank-1

complex symmetric matrix, 5-22
packed storage, 5-19

general matrix, 2-40
Hermitian matrix, 2-51

packed storage, 2-59
real symmetric matrix, 2-76

packed storage, 2-69
rank-1, conjugated

general matrix, 2-42
rank-1, unconjugated

general matrix, 2-44
rank-2

Hermitian matrix, 2-53
packed storage, 2-61

symmetric matrix, 2-78
packed storage, 2-71

rank-2k
Hermitian matrix, 2-109
symmetric matrix, 2-119

rank-n
Hermitian matrix, 2-106

symmetric matrix, 2-116

upper Hessenberg matrix, 4-212, 4-270
1-norm value

LAPACK, 5-126
ScaLAPACK, 7-61

Frobenius norm
LAPACK, 5-126
ScaLAPACK, 7-61

infinity- norm
LAPACK, 5-126
ScaLAPACK, 7-61

largest absolute value of element
LAPACK, 5-126
ScaLAPACK, 7-61

ScaLAPACK, 6-178

user time, 5-336

V
vector arguments, B-1

array dimension, B-1
default, B-2
examples, B-2
increment, B-1
length, B-1
matrix one-dimensional substructures, B-2
sparse vector, 2-130

vector conjugation, 5-11, 7-6

vector indexing, 9-6

vector mathematical functions, 9-7
complementary error function value, 9-37
cosine, 9-21
cube root, 9-13
denary logarithm, 9-20
division, 9-10
error function value, 9-36
exponential, 9-18
four-quadrant arctangent, 9-28
hyperbolic cosine, 9-29
hyperbolic sine, 9-31
hyperbolic tangent, 9-32
inverse cosine, 9-25
inverse cube root, 9-14
inverse hyperbolic cosine, 9-33
inverse hyperbolic sine, 9-34

Index

Index-38

inverse hyperbolic tangent, 9-35
inverse sine, 9-26
inverse square root, 9-12
inverse tangent, 9-27
inversion, 9-9
natural logarithm, 9-19
power, 9-15
power (constant), 9-17
sine, 9-22
sine and cosine, 9-23
square root, 9-11
tangent, 9-24

vector multilication
LAPACK, 5-307
ScaLAPACK, 7-171

vector pack function, 9-39

vector statistics functions
Bernoulli, 10-80
Beta, 10-72
Binomial, 10-84
Cauchy, 10-59
CopyStream, 10-26
CopyStreamState, 10-27
DeleteStream, 10-25
dNewAbstractStream, 10-20
Exponential, 10-52
Gamma, 10-69
Gaussian, 10-45
GaussianMV, 10-47
Geometric, 10-82
GetBrngProperties, 10-98
GetNumRegBrngs, 10-40
GetStreamStateBrng, 10-38
Gumbel, 10-67
Hypergeometric, 10-86
iNewAbstractStream, 10-18
Laplace, 10-54
LeapfrogStream, 10-32
LoadStreamF, 10-31
Lognormal, 10-64
NegBinomial, 10-92
NewStream, 10-14
NewStreamEx, 10-16
Poisson, 10-88
PoissonV, 10-90

Rayleigh, 10-62
RegisterBrng, 10-97
SaveStreamF, 10-29
SkipAheadStream, 10-35
sNewAbstractStream, 10-23
Uniform (continuous), 10-42
Uniform (discrete), 10-75
UniformBits, 10-77
Weibull, 10-57

vector unpack function, 9-41

vectors
adding magnitudes of vector elements, 2-6
copying, 2-9
dot product

complex vectors, 2-15
complex vectors, conjugated, 2-14
real vectors, 2-11

element with the largest absolute value, 2-28
element with the largest absolute value of real part and

its index, 7-9
element with the smallest absolute value, 2-29
Euclidean norm, 2-16
Givens rotation, 2-20
index of element with the largest absolute value of real

part, 7-8
linear combination of vectors, 2-7
modified Givens transformation parameters, 2-23
rotation of points, 2-18
rotation of points in the modified plane, 2-21
sparse vectors, 2-131
sum of vectors, 2-7
swapping, 2-27
vector-scalar product, 2-25

vector-scalar product, 2-25
sparse vectors, 2-132

VML, 9-1

VML functions
mathematical functions

Acos, 9-25
Acosh, 9-33
Asin, 9-26
Asinh, 9-34
Atan, 9-27
Atan2, 9-28
Atanh, 9-35

Intel ® Math Kernel Library Reference Manual

Index-39

Cbrt, 9-13
Cos, 9-21
Cosh, 9-29
Div, 9-10
Erf, 9-36
Erfc, 9-37
Exp, 9-18
Inv, 9-9
InvCbrt, 9-14
InvSqrt, 9-12
Ln, 9-19
Log10, 9-20
Pow, 9-15
Powx, 9-17
Sin, 9-22
SinCos, 9-23
Sinh, 9-31
Sqrt, 9-11
Tan, 9-24
Tanh, 9-32

pack/unpack functions
Pack, 9-39
Unpack, 9-41

service functions
ClearErrorCallBack, 9-53
ClearErrStatus, 9-49
GetErrorCallBack, 9-52
GetErrStatus, 9-48
GetMode, 9-46
SetErrorCallBack, 9-50
SetErrStatus, 9-47
SetMode, 9-44

VSL routines
advanced service subroutines

GetBrngProperties, 10-98
RegisterBrng, 10-97

convolution/correlation
CopyTask, 10-137
DeleteTask, 10-136
Exec, 10-128
Exec1D, 10-130
ExecX, 10-132
ExecX1D, 10-134
NewTask, 10-110
NewTask1D, 10-112
NewTaskX, 10-114

NewTaskX1D, 10-117
SetInternalDecimation, 10-125
SetInternalPrecision, 10-122
SetMode, 10-121
SetStart, 10-124

generator subroutines
Bernoulli, 10-80
Beta, 10-72
Binomial, 10-84
Cauchy, 10-59
Exponential, 10-52
Gamma, 10-69
Gaussian, 10-45
GaussianMV, 10-47
Geometric, 10-82
Gumbel, 10-67
Hypergeometric, 10-86
Laplace, 10-54
Lognormal, 10-64
NegBinomial, 10-92
Poisson, 10-88
PoissonV, 10-90
Rayleigh, 10-62
Uniform (continuous), 10-42
Uniform (discrete), 10-75
UniformBits, 10-77
Weibull, 10-57

sevice subroutines
CopyStream, 10-26
CopyStreamState, 10-27
DeleteStream, 10-25
dNewAbstractStream, 10-20
GetNumRegBrngs, 10-40
GetStreamStateBrng, 10-38
iNewAbstractStream, 10-18
LeapfrogStream, 10-32
LoadStreamF, 10-31
NewStream, 10-14
NewStreamEx, 10-16
SaveStreamF, 10-29
SkipAheadStream, 10-35
sNewAbstractStream, 10-23

W
Weibull, 10-57

Index

Index-40

Wilkinson transform, 7-133

X
xerbla, error reporting routine, 2-1, 5-336, 9-6

	Intel® Math Kernel Library
	Version Information
	Legal Information
	Contents
	1. Overview
	About This Software
	Technical Support
	BLAS Routines
	Sparse BLAS Routines
	LAPACK Routines
	ScaLAPACK Routines
	Sparse Solver Routines
	VML Functions
	VSL Functions
	Fourier Transform Functions
	Interval Solver Routines
	Trigonomatric Tranform Routines
	GMP Arithmetic Functions
	Performance Enhancements
	Parallelism
	Platforms Supported

	About This Manual
	Audience for This Manual
	Manual Organization
	Notational Conventions
	Routine Name Shorthand
	Font Conventions

	2. BLAS and Sparse BLAS Routines
	BLAS Routines and Functions
	Routine Naming Conventions
	Fortran-95 Interface Conventions
	Matrix Storage Schemes
	BLAS Level 1 Routines and Functions
	?asum
	?axpy
	?copy
	?dot
	?sdot
	?dotc
	?dotu
	?nrm2
	?rot
	?rotg
	?rotm
	?rotmg
	?scal
	?swap
	i?amax
	i?amin
	dcabs1

	BLAS Level 2 Routines
	?gbmv
	?gemv
	?ger
	?gerc
	?geru
	?hbmv
	?hemv
	?her
	?her2
	?hpmv
	?hpr
	?hpr2
	?sbmv
	?spmv
	?spr
	?spr2
	?symv
	?syr
	?syr2
	?tbmv
	?tbsv
	?tpmv
	?tpsv
	?trmv
	?trsv

	BLAS Level 3 Routines
	Symmetric Multiprocessing Version of Intel® MKL
	?gemm
	?hemm
	?herk
	?her2k
	?symm
	?syrk
	?syr2k
	?trmm
	?trsm

	Sparse BLAS Level 1 Routines and Functions
	Vector Arguments
	Naming Conventions
	Routines and Data Types
	BLAS Level 1 Routines That Can Work With Sparse Vectors
	?axpyi
	?doti
	?dotci
	?dotui
	?gthr
	?gthrz
	?roti
	?sctr

	Sparse BLAS Level 2 and Level 3 Routines and Functions
	Naming Conventions in Sparse BLAS Level 2 and Level 3
	Sparse Matrix Data Structures
	Routines and Supported Operations
	Routines with Standard Interface
	Routines with Simplified Interface

	Interface Consideration
	Differences Between Intel MKL and NIST Interfaces
	Simplified Interfaces
	Operations with Partial Matrices
	Restrictions for Triangular Solver Routines

	Sparse BLAS Level 2 and Level 3 Routines.
	mkl_dcsrmv
	mkl_dcsrgemv
	mkl_dcsrsymv
	mkl_dcscmv
	mkl_dcoomv
	mkl_dcoogemv
	mkl_dcoosymv
	mkl_ddiamv
	mkl_ddiagemv
	mkl_ddiasymv
	mkl_dskymv
	mkl_dcsrsv
	mkl_dcsrtrsv
	mkl_dcscsv
	mkl_dcoosv
	mkl_dcootrsv
	mkl_ddiasv
	mkl_ddiatrsv
	mkl_dskysv
	mkl_dcsrmm
	mkl_dcscmm
	mkl_dcoomm
	mkl_ddiamm
	mkl_dskymm
	mkl_dcsrsm
	mkl_dcscsm
	mkl_dcoosm
	mkl_ddiasm
	mkl_dskysm

	3. LAPACK Routines: Linear Equations
	Routine Naming Conventions
	Fortran-95 Interface Conventions
	MKL Fortran-95 Interfaces for LAPACK Routines vs. Netlib Implementation

	Matrix Storage Schemes
	Mathematical Notation
	Error Analysis
	Computational Routines
	Routines for Matrix Factorization
	?getrf
	?gbtrf
	?gttrf
	?potrf
	?pptrf
	?pbtrf
	?pttrf
	?sytrf
	?hetrf
	?sptrf
	?hptrf

	Routines for Solving Systems of Linear Equations
	?getrs
	?gbtrs
	?gttrs
	?potrs
	?pptrs
	?pbtrs
	?pttrs
	?sytrs
	?hetrs
	?sptrs
	?hptrs
	?trtrs
	?tptrs
	?tbtrs

	Routines for Estimating the Condition Number
	?gecon
	?gbcon
	?gtcon
	?pocon
	?ppcon
	?pbcon
	?ptcon
	?sycon
	?hecon
	?spcon
	?hpcon
	?trcon
	?tpcon
	?tbcon

	Refining the Solution and Estimating Its Error
	?gerfs
	?gbrfs
	?gtrfs
	?porfs
	?pprfs
	?pbrfs
	?ptrfs
	?syrfs
	?herfs
	?sprfs
	?hprfs
	?trrfs
	?tprfs
	?tbrfs

	Routines for Matrix Inversion
	?getri
	?potri
	?pptri
	?sytri
	?hetri
	?sptri
	?hptri
	?trtri
	?tptri

	Routines for Matrix Equilibration
	?geequ
	?gbequ
	?poequ
	?ppequ
	?pbequ

	Driver Routines
	?gesv
	?gesvx
	?gbsv
	?gbsvx
	?gtsv
	?gtsvx
	?posv
	?posvx
	?ppsv
	?ppsvx
	?pbsv
	?pbsvx
	?ptsv
	?ptsvx
	?sysv
	?sysvx
	?hesv
	?hesvx
	?spsv
	?spsvx
	?hpsv
	?hpsvx

	4. LAPACK Routines: Least Squares and Eigenvalue Problems
	Routine Naming Conventions
	Matrix Storage Schemes
	Mathematical Notation
	Computational Routines
	Orthogonal Factorizations
	?geqrf
	?geqpf
	?geqp3
	?orgqr
	?ormqr
	?ungqr
	?unmqr
	?gelqf
	?orglq
	?ormlq
	?unglq
	?unmlq
	?geqlf
	?orgql
	?ungql
	?ormql
	?unmql
	?gerqf
	?orgrq
	?ungrq
	?ormrq
	?unmrq
	?tzrzf
	?ormrz
	?unmrz
	?ggqrf
	?ggrqf

	Singular Value Decomposition
	?gebrd
	?gbbrd
	?orgbr
	?ormbr
	?ungbr
	?unmbr
	?bdsqr
	?bdsdc

	Symmetric Eigenvalue Problems
	?sytrd
	?orgtr
	?ormtr
	?hetrd
	?ungtr
	?unmtr
	?sptrd
	?opgtr
	?opmtr
	?hptrd
	?upgtr
	?upmtr
	?sbtrd
	?hbtrd
	?sterf
	?steqr
	?stedc
	?stegr
	?pteqr
	?stebz
	?stein
	?disna

	Generalized Symmetric-Definite Eigenvalue Problems
	?sygst
	?hegst
	?spgst
	?hpgst
	?sbgst
	?hbgst
	?pbstf

	Nonsymmetric Eigenvalue Problems
	?gehrd
	?orghr
	?ormhr
	?unghr
	?unmhr
	?gebal
	?gebak
	?hseqr
	?hsein
	?trevc
	?trsna
	?trexc
	?trsen
	?trsyl

	Generalized Nonsymmetric Eigenvalue Problems
	?gghrd
	?ggbal
	?ggbak
	?hgeqz
	?tgevc
	?tgexc
	?tgsen
	?tgsyl
	?tgsna

	Generalized Singular Value Decomposition
	?ggsvp
	?tgsja

	Driver Routines
	Linear Least Squares (LLS) Problems
	?gels
	?gelsy
	?gelss
	?gelsd

	Generalized LLS Problems
	?gglse
	?ggglm

	Symmetric Eigenproblems
	?syev
	?heev
	?syevd
	?heevd
	?syevx
	?heevx
	?syevr
	?heevr
	?spev
	?hpev
	?spevd
	?hpevd
	?spevx
	?hpevx
	?sbev
	?hbev
	?sbevd
	?hbevd
	?sbevx
	?hbevx
	?stev
	?stevd
	?stevx
	?stevr

	Nonsymmetric Eigenproblems
	?gees
	?geesx
	?geev
	?geevx

	Singular Value Decomposition
	?gesvd
	?gesdd
	?ggsvd

	Generalized Symmetric Definite Eigenproblems
	?sygv
	?hegv
	?sygvd
	?hegvd
	?sygvx
	?hegvx
	?spgv
	?hpgv
	?spgvd
	?hpgvd
	?spgvx
	?hpgvx
	?sbgv
	?hbgv
	?sbgvd
	?hbgvd
	?sbgvx
	?hbgvx

	Generalized Nonsymmetric Eigenproblems
	?gges
	?ggesx
	?ggev
	?ggevx

	5. LAPACK Auxiliary and Utility Routines
	Auxiliary Routines
	?lacgv
	?lacrm
	?lacrt
	?laesy
	?rot
	?spmv
	?spr
	?symv
	?syr
	i?max1
	?sum1
	?gbtf2
	?gebd2
	?gehd2
	?gelq2
	?geql2
	?geqr2
	?gerq2
	?gesc2
	?getc2
	?getf2
	?gtts2
	?labrd
	?lacon
	?lacpy
	?ladiv
	?lae2
	?laebz
	?laed0
	?laed1
	?laed2
	?laed3
	?laed4
	?laed5
	?laed6
	?laed7
	?laed8
	?laed9
	?laeda
	?laein
	?laev2
	?laexc
	?lag2
	?lags2
	?lagtf
	?lagtm
	?lagts
	?lagv2
	?lahqr
	?lahrd
	?laic1
	?laln2
	?lals0
	?lalsa
	?lalsd
	?lamrg
	?langb
	?lange
	?langt
	?lanhs
	?lansb
	?lanhb
	?lansp
	?lanhp
	?lanst/?lanht
	?lansy
	?lanhe
	?lantb
	?lantp
	?lantr
	?lanv2
	?lapll
	?lapmt
	?lapy2
	?lapy3
	?laqgb
	?laqge
	?laqp2
	?laqps
	?laqsb
	?laqsp
	?laqsy
	?laqtr
	?lar1v
	?lar2v
	?larf
	?larfb
	?larfg
	?larft
	?larfx
	?largv
	?larnv
	?larrb
	?larre
	?larrf
	?larrv
	?lartg
	?lartv
	?laruv
	?larz
	?larzb
	?larzt
	?las2
	?lascl
	?lasd0
	?lasd1
	?lasd2
	?lasd3
	?lasd4
	?lasd5
	?lasd6
	?lasd7
	?lasd8
	?lasd9
	?lasda
	?lasdq
	?lasdt
	?laset
	?lasq1
	?lasq2
	?lasq3
	?lasq4
	?lasq5
	?lasq6
	?lasr
	?lasrt
	?lassq
	?lasv2
	?laswp
	?lasy2
	?lasyf
	?lahef
	?latbs
	?latdf
	?latps
	?latrd
	?latrs
	?latrz
	?lauu2
	?lauum
	?org2l/?ung2l
	?org2r/?ung2r
	?orgl2/?ungl2
	?orgr2/?ungr2
	?orm2l/?unm2l
	?orm2r/?unm2r
	?orml2/?unml2
	?ormr2/?unmr2
	?ormr3/?unmr3
	?pbtf2
	?potf2
	?ptts2
	?rscl
	?sygs2/?hegs2
	?sytd2/?hetd2
	?sytf2
	?hetf2
	?tgex2
	?tgsy2
	?trti2

	Utility Functions and Routines
	ilaenv
	ieeeck
	lsame
	lsamen
	?labad
	?lamch
	?lamc1
	?lamc2
	?lamc3
	?lamc4
	?lamc5
	second/dsecnd
	xerbla

	6. ScaLAPACK Routines
	Overview
	Routine Naming Conventions
	Computational Routines
	Linear Equations
	Routines for Matrix Factorization
	p?getrf
	p?gbtrf
	p?dbtrf
	p?potrf
	p?pbtrf
	p?pttrf
	p?dttrf

	Routines for Solving Systems of Linear Equations
	p?getrs
	p?gbtrs
	p?potrs
	p?pbtrs
	p?pttrs
	p?dttrs
	p?dbtrs
	p?trtrs

	Routines for Estimating the Condition Number
	p?gecon
	p?pocon
	p?trcon

	Refining the Solution and Estimating Its Error
	p?gerfs
	p?porfs
	p?trrfs

	Routines for Matrix Inversion
	p?getri
	p?potri
	p?trtri

	Routines for Matrix Equilibration
	p?geequ
	p?poequ

	Orthogonal Factorizations
	p?geqrf
	p?geqpf
	p?orgqr
	p?ungqr
	p?ormqr
	p?unmqr
	p?gelqf
	p?orglq
	p?unglq
	p?ormlq
	p?unmlq
	p?geqlf
	p?orgql
	p?ungql
	p?ormql
	p?unmql
	p?gerqf
	p?orgrq
	p?ungrq
	p?ormrq
	p?unmrq
	p?tzrzf
	p?ormrz
	p?unmrz
	p?ggqrf
	p?ggrqf

	Symmetric Eigenproblems
	p?sytrd
	p?ormtr
	p?hetrd
	p?unmtr
	p?stebz
	p?stein

	Nonsymmetric Eigenvalue Problems
	p?gehrd
	p?ormhr
	p?unmhr
	p?lahqr

	Singular Value Decomposition
	p?gebrd
	p?ormbr
	p?unmbr

	Generalized Symmetric-Definite Eigenproblems
	p?sygst
	p?hegst

	Driver Routines
	p?gesv
	p?gesvx
	p?gbsv
	p?dbsv
	p?dtsv
	p?posv
	p?posvx
	p?pbsv
	p?ptsv
	p?gels
	p?syev
	p?syevx
	p?heevx
	p?gesvd
	p?sygvx
	p?hegvx

	7. ScaLAPACK Auxiliary and Utility Routines
	Auxiliary Routines
	p?lacgv
	p?max1
	?combamax1
	p?sum1
	p?dbtrsv
	p?dttrsv
	p?gebd2
	p?gehd2
	p?gelq2
	p?geql2
	p?geqr2
	p?gerq2
	p?getf2
	p?labrd
	p?lacon
	p?laconsb
	p?lacp2
	p?lacp3
	p?lacpy
	p?laevswp
	p?lahrd
	p?laiect
	p?lange
	p?lanhs
	p?lansy, p?lanhe
	p?lantr
	p?lapiv
	p?laqge
	p?laqsy
	p?lared1d
	p?lared2d
	p?larf
	p?larfb
	p?larfc
	p?larfg
	p?larft
	p?larz
	p?larzb
	p?larzc
	p?larzt
	p?lascl
	p?laset
	p?lasmsub
	p?lassq
	p?laswp
	p?latra
	p?latrd
	p?latrs
	p?latrz
	p?lauu2
	p?lauum
	p?lawil
	p?org2l/p?ung2l
	p?org2r/p?ung2r
	p?orgl2/p?ungl2
	p?orgr2/p?ungr2
	p?orm2l/p?unm2l
	p?orm2r/p?unm2r
	p?orml2/p?unml2
	p?ormr2/p?unmr2
	p?pbtrsv
	p?pttrsv
	p?potf2
	p?rscl
	p?sygs2/p?hegs2
	p?sytd2/p?hetd2
	p?trti2
	?lamsh
	?laref
	?lasorte
	?lasrt2
	?stein2
	?dbtf2
	?dbtrf
	?dttrf
	?dttrsv
	?pttrsv
	?steqr2

	Utility Functions and Routines
	p?labad
	p?lachkieee
	p?lamch
	p?lasnbt
	pxerbla

	8. Sparse Solver Routines
	PARDISO - Parallel Direct Sparse Solver Interface
	pardiso

	Direct Sparse Solver (DSS) Interface Routines
	Interface Description
	Routine Options
	User Data Arrays

	DSS Routines
	dss_create
	dss_define_structure
	dss_reorder
	dss_factor_real, dss_factor_complex
	dss_solve_real, dss_solve_complex
	dss_delete
	dss_statistics
	mkl_cvt_to_null_terminated_str

	Implementation Details
	Memory Allocation and Handles

	Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS)
	Conjugate Gradient Solver (RCI CG)
	Interface Description
	Routines Options
	User Data Arrays
	Common Parameters

	RCI CG Routines
	dcg_init
	dcg_check
	dcg
	dcg_get

	Implementation Details

	Calling Sparse Solver Routines From C/C++
	Caveat for C Users

	9. Vector Mathematical Functions
	Data Types and Accuracy Modes
	Function Naming Conventions
	Functions Interface
	VML Mathematical Functions
	Pack Functions
	Unpack Functions
	Service Functions
	Input Parameters
	Output Parameters

	Vector Indexing Methods
	Error Diagnostics
	VML Mathematical Functions
	Inv
	Div
	Sqrt
	InvSqrt
	Cbrt
	InvCbrt
	Pow
	Powx
	Exp
	Ln
	Log10
	Cos
	Sin
	SinCos
	Tan
	Acos
	Asin
	Atan
	Atan2
	Cosh
	Sinh
	Tanh
	Acosh
	Asinh
	Atanh
	Erf
	Erfc

	VML Pack/Unpack Functions
	Pack
	Unpack

	VML Service Functions
	SetMode
	GetMode
	SetErrStatus
	GetErrStatus
	ClearErrStatus
	SetErrorCallBack
	GetErrorCallBack
	ClearErrorCallBack

	10. Statistical Functions
	Random Number Generators
	Conventions
	Mathematical Notation
	Naming Conventions

	Basic Generators
	BRNG Parameter Definition
	Random Streams
	Data Types

	Error Reporting
	Service Routines
	NewStream
	NewStreamEx
	iNewAbstractStream
	dNewAbstractStream
	sNewAbstractStream
	DeleteStream
	CopyStream
	CopyStreamState
	SaveStreamF
	LoadStreamF
	LeapfrogStream
	SkipAheadStream
	GetStreamStateBrng
	GetNumRegBrngs

	Distribution Generators
	Continuous Distributions
	Uniform
	Gaussian
	GaussianMV
	Exponential
	Laplace
	Weibull
	Cauchy
	Rayleigh
	Lognormal
	Gumbel
	Gamma
	Beta

	Discrete Distributions
	Uniform
	UniformBits
	Bernoulli
	Geometric
	Binomial
	Hypergeometric
	Poisson
	PoissonV
	NegBinomial

	Advanced Service Routines
	Data types
	RegisterBrng
	GetBrngProperties
	Formats for User-Designed Generators
	iBRng
	sBRng
	dBRng

	Convolution and Correlation
	Overview
	Naming Conventions
	Data Types
	Parameters
	Task Status
	Task Constructors
	NewTask
	NewTask1D
	NewTaskX
	NewTaskX1D

	Task Editors
	SetMode
	SetInternalPrecision
	SetStart
	SetDecimation

	Task Execution Routines
	Exec
	Exec1D
	ExecX
	ExecX1D

	Task Destructors
	DeleteTask

	Task Copy
	CopyTask

	Usage Examples
	Using Multiple Threads

	Mathematical Notation and Definitions
	Linear Convolution
	Linear Correlation

	Data Allocation
	Finite Functions and Data Vectors
	Allocation of Data Vectors

	11. Fourier Transform Functions
	DFT Functions
	Computing DFT
	DFT Interface
	Status Checking Functions
	ErrorClass
	ErrorMessage

	Descriptor Manipulation
	CreateDescriptor
	CommitDescriptor
	CopyDescriptor
	FreeDescriptor

	DFT Computation
	ComputeForward
	ComputeBackward

	Descriptor Configuration
	SetValue
	GetValue

	Configuration Settings
	Precision of transform
	Forward domain of transform
	Transform dimension and lengths
	Number of transforms
	Scale
	Placement of result
	Packed formats
	Storage schemes
	Number of user threads
	Input and output distances
	Strides

	Ordering
	Transposition

	Cluster DFT Functions
	Computing Cluster DFT
	Cluster DFT Interface
	Descriptor Manipulation
	CreateDescriptorDM
	CommitDescriptorDM
	FreeDescriptorDM

	DFT Computation
	ComputeForwardDM
	ComputeBackwardDM
	FormInputDataDM
	FormOutputDataDM

	Descriptor Configuration
	SetValueDM
	GetValueDM

	Fast Fourier Transforms (Deprecated)
	One-dimensional FFTs
	Data Storage Types
	Data Structure Requirements
	Complex-to-Complex One-dimensional FFTs
	cfft1d/zfft1d (deprecated)
	cfft1dc/zfft1dc (deprecated)

	Real-to-Complex One-dimensional FFTs
	scfft1d/dzfft1d (deprecated)
	scfft1dc/dzfft1dc (deprecated)

	Complex-to-Real One-dimensional FFTs
	csfft1d/zdfft1d (deprecated)
	csfft1dc/zdfft1dc (deprecated)

	Two-dimensional FFTs
	Complex-to-Complex Two-dimensional FFTs
	cfft2d/zfft2d (deprecated)
	cfft2dc/zfft2dc (deprecated)

	Real-to-Complex Two-dimensional FFTs
	scfft2d/dzfft2d (deprecated)
	scfft2dc/dzfft2dc (deprecated)

	Complex-to-Real Two-dimensional FFTs
	csfft2d/zdfft2d (deprecated)
	csfft2dc/zdfft2dc (deprecated)

	12. Interval Linear Solvers
	Routine Naming Conventions
	Routines for Fast Solution of Interval Systems
	?trtrs
	?gegas
	?gehss
	?gekws
	?gegss
	?gehbs

	Routines for Sharp Solution of Interval Systems
	?gepps

	Routines for Inverting Interval Matrices
	?trtri
	?geszi

	Routines for Checking Properties of Interval Matrices
	?gerbr
	?gesvr

	Auxiliary and Utility Routines
	?gemip

	13. Trigonometric Transform Routines
	Transforms Implemented
	Sequence of Invoking TT Routines
	Interface Description
	Routine Options
	User Data Arrays
	TT Routines
	?_init_trig_transform
	?_commit_trig_transform
	?_forward_trig_transform
	?_backward_trig_transform
	free_trig_transform

	Common Parameters
	Caveat on Parameter Modifications

	Implementation Details
	C-specific Header File
	Fortran-Specific Header file
	Calling Trigonometric Transform Routines from Fortran-90

	A. Linear Solvers Basics
	Sparse Linear Systems
	Matrix Fundamentals
	Direct Method
	Fill-In and Reordering of Sparse Matrices

	Sparse Matrix Storage Formats
	Storage Formats for the PARDISO Solver
	Sparse Storage Formats for Sparse BLAS Levels 2-3
	CSR Format
	CSC Format
	Coordinate Format
	Diagonal Storage Scheme
	Skyline Storage Scheme

	Interval Linear Systems
	Intervals
	Interval vectors and matrices
	Interval Linear Systems

	Preconditioning
	Inverting interval matrices

	B. Routine and Function Arguments
	Vector Arguments in BLAS
	Vector Arguments in VML
	Positive Increment Indexing
	Index Vector Indexing
	Mask Vector Indexing

	Matrix Arguments

	C. Code Examples
	BLAS Code Examples
	PARDISO Code Examples
	Examples for Sparse Symmetric Linear Systems
	Example Results for Symmetric Systems

	Examples for Sparse Unsymmetric Linear Systems
	Example Results for Unsymmetric Systems

	Direct Sparse Solver Code Examples
	Example Results for Symmetric Systems

	Iterative Sparse Solver Code Example
	Example of Use RCI (Preconditioned) Conjugate Gradient Solver

	DFT Code Examples
	Examples for DFT Functions
	Examples of Using Multi-Threading for DFT Computation
	Examples for Cluster DFT Functions
	C Implementation
	Fortran Implementation

	Interval Linear Solvers Code Examples
	Trigonometric Transforms Code Examples

	D. CBLAS Interface to the BLAS
	CBLAS Arguments
	Enumerated Types

	Level 1 CBLAS
	Level 2 CBLAS
	Level 3 CBLAS
	Sparse CBLAS

	E. Specific Features of Fortran-95 Interfaces for LAPACK Routines
	Interfaces Identical to Netlib
	Interfaces with Replaced Argument Names
	Modified Netlib Interfaces
	Interfaces Absent From Netlib
	Interfaces of New Functionality

	Glossary
	Bibliography
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

