
RANK TWO BREUIL MODULES: BASIC STRUCTURES
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Abstract. In this paper, we classify certain reducible rank two Breuil modules with
descent data and compute Ext1(M,M) for Breuil modules M of certain type.

1. Introduction and notation

In [6], the author proves a modularity theorem for some potentially Barsotti-Tate Galois
representations of GQ. One of the key ingredients in the proof is to use Breuil modules
with descent data to study the local universal deformation ring at prime p. In order to
generalize some of the results in [6] to totally real fields case, we need to understand
the structures of Breuil modules with descent data over general p-adic fields. This is the
motivation for writing this paper. In this paper, we prove some results about rank two
Breuil modules. The content of this paper is the following.

In section 2, we review the classification of rank one Breuil modules with certain descent
data from [3]. The key proposition is Proposition 2.3. It shows that rank one Breuil
modules with descent data are determined by three invariants. We also review some basic
facts about these invariants.

In the next two sections, we consider reducible rank two Breuil modules. In section
3, under some assumptions on the base fields (see the last paragraph of this section), we
classify all of the (rank two) extensions, in the category of Breuil modules with descent
data, of the rank one modules with descent data. The main classification result is Theorem
3.9.

In section 4, we compute Ext1(M,M) for a reducible rank two Breuil module M of
type J (see Definition 4.1). As mentioned at the beginning, this computation is the moti-
vation for this paper. The main result is Theorem 4.2, which plays an important role in [4].

Let us first recall the definition of Breuil modules with descent data. (See for example
[1] and [5].) Let k be a finite extension of Fp of degree r, W (k) the ring of Witt vectors.
Let K0 = W (k)[1/p], K be a totally and tamely ramified extension of K0 of degree e. Fix
a subfield F of K0, and assume that there is a uniformizer π of OK such that πe ∈ F .
Then K/F is tamely ramified, K0/F is unramified. Assume that K/F is Galois. (This
condition will be satisfied in our choice of K in this paper.) Write G = Gal(K/F ). Let
S = HomFp(k, F̄p) ∼= Z/rZ. Fix τ0 ∈ S, let τi = τ0 ◦Frob−i, where Frob is the arithmetic
Frobenius. Let E be a finite extension of Fp such that the image of τi is a subset of E.
Let S = k ⊗Fp E[u]/uep.

Let ω : G → k× be the map defined by ω(g) = g(π)/π (mod π). We see that ω(gh) =
g(ω(h))ω(g). It is a cocycle. It is a character if and only if G acts trivially on k×, if
and only if K0 = F . Let ωi be the composite of ω with τi. Then we have ωi = ωpi+1.
For any g ∈ G, we write [g] : S → S to be the k-semilinear, E-linear endomorphism
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of S as k ⊗ E-algebra such that [g](u) = (ω(g) ⊗ 1)u. Let φ : S → S be the E-linear,
k-Frobenius-semilinear endomorphism of S such that φ(u) = up.

Definition 1.1. Let κ ∈ [2, p− 1] be an integer. The category BrModκ−1dd,K/F consists of

quintuples (M, F ilκ−1M, φκ−1, {[g]}, N) where:
(1) M is a finitely generated S module, free over k[u]/uep.

(2) Filκ−1M is an S-submodule of M containing ue(κ−1)M.
(3) φκ−1 : Filκ−1M→M is an E-linear and φ-semilinear map with image generating

M as an S-module.
(4) N :M→ uM is a k ⊗ E-linear map such that

N(ux) = uN(x)− ux ∀x ∈M,

ueN(Filκ−1M) ⊂ Filκ−1M,

φκ−1(u
eN(x)) = (−πe/p)−N(φκ−1(x)) ∀x ∈ Filκ−1M.

Here (−πe/p)− is the image of (−πe/p) in the residue field k.
(5) [g] :M→M are additive bijections for each g ∈ G, preserving Filκ−1M, commut-

ing with the φκ−1-, N -, and E-actions, and satisfying [g1] ◦ [g2] = [g1g2] for all g1, g2 ∈ G,
and [1] is the identity map. Furthermore, if a ∈ k ⊗Fp E, m ∈M, then

[g](auim) = g(a)((g(π)/π)i ⊗ 1)ui[g](m).

Remark 1.2. (1) If κ = 2, the category BrMod1dd,K/F is equivalent to the category of finite

flat group schemes over OK together with an E-action and descent data on the generic
fiber from K to F (this equivalence depends on π). In this case it follows from other
axioms that there is always a unique N which satisfies the required properties. See for
example Proposition 5.1.3 of [1].

(2) If κ ≤ κ′, then there is a fully faithful functor L : BrModκ−1dd,K/F → BrModκ
′−1
dd,K/F

which identifies BrModκ−1dd,K/F as a full subcategory of BrModκ
′−1
dd,K/F . More precise-

ly, if M = (M, F ilκ−1M, φκ−1, {[g]}, N) is an object in BrModκ−1dd,K/F , then L(M) =

(L(M), F ilκ
′−1L(M), φκ′−1, {[g]}, N) where L(M) =M, Filκ

′−1L(M) = ue(κ
′−κ)Filκ−1M,

φκ′−1(u
e(κ′−κ)x) = φκ−1(x), and N , [g] remain the same.

(3) Let RepE(GF ) be the category of representations of GF := Gal(F̄ /F ) over E-vector
spaces. In this paper, we use the contravariant functor Tst : BrModκ−1dd,,K/F → RepE(GF )

defined in section 2.1 of [3].

In this paper, we assume that K = K0((−p)1/p
r−1) and F = K0. Note that in this case

we have e = pr − 1 and K is Galois over K0 with Gal(K/K0) ∼= Z/(pr − 1)Z.

2. Rank one Breuil modules

In this section, we classify rank one Breuil modules, determine when we have nontrivial
morphisms between two rank one Breuil modules, and prove some other properties. Most
of these results are in [3], we sketch the proofs here and refer to [3] for details.

Recall that S = Hom(k, F̄p) ∼= Z/rZ and E contains the image of τi ∈ S, so we have a
ring isomorphism k ⊗Fp E ' ES where the action of x⊗ 1 on the τ -component coincides
with the action of 1⊗ τ(x) for τ ∈ S. Therefore we may write S = ⊕SE[u]/uep. We also
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denote φ to be the map φ : E[u]/uep → E[u]/uep which sends u to up and acts trivially on
E.

If M is an object of BrModκ−1dd,K/K0
, then

M =M1 ⊕M2 ⊕ · · · ⊕Mr,

where Mi = M⊗S,τi E[u]/uep is a free E[u]/uep-module, which is characterized by the
fact that the action of x ⊗ 1 on Mi coincides with the action of 1 ⊗ τi(x) for τi ∈ S.
Throughout the paper if M is a Breuil module over S, then Mi will always denote the
τi-component ofM. By convention, the subscripts i are always taken modulo r. Similarly,
Filκ−1M has a decomposition

Filκ−1M = Filκ−1M1 ⊕ Filκ−1M2 ⊕ · · · ⊕ Filκ−1Mr,

with ue(κ−1)Mi ⊂ Filκ−1Mi ⊂Mi. The Frobenius action of k ⊗Fp E maps Eτi to Eτi+1 ,

φκ−1 induces φκ−1 : Filκ−1Mi →Mi+1 for i ∈ Z/rZ and the image generatesMi+1, and
N(Mi) ⊂Mi.

IfM is of rank one as an S-module, thenMi is free of rank one over E[u]/uep. Therefore,
there exists an integer mi ∈ [0, e(κ− 1)] such that Filκ−1Mi = umiMi.

Let e1 be a basis of M1. Define e2 = φκ−1(u
m1e1). Since φκ−1(Fil

κ−1M1) generates
M2, e2 is a basis of M2. Inductively, define ei+1 = φκ−1(u

miei) for i < r. Then ei is a
basis of Mi. Finally, we have φκ−1(u

mrer) = ae1 for some a ∈ (E[u]/uep)×.

Remark 2.1. Assume that λ ∈ E[u]/uep is invertible. Replacing e1 by λe1 changes a to
a · φr(λ)/λ. By the following lemma, we may assume that a ∈ E×.

Lemma 2.2. If x ≡ 1 (mod u), then there exists y ∈ S, such that y/φr(y) = x.

Proof. Since x ≡ 1 (mod u), φr
n
(x) = 1 for sufficiently large n. Thus we can choose

y =
∏∞
n=0 φ

rn(x). �

Note that φκ−1(u
eN(umiei)) = N(φκ−1(u

miei)) = N(ei+1). On the other hand, we
know that φκ−1(u

eN(umiei)) = uepφκ−1(N(umiei)) = 0. Therefore N(ei+1) = 0 for any i.
We then consider the descent data. By the definition of Breuil modules, the Galois

action commutes with other actions, so [g] mapsMi toMi. On the i-th piece, the action
of G on E[u]/uep is given by [g]u = ωi(g)u. Assume that [g] · ei = αi(g)ei, where αi is a
function αi : G → (E[u]/uep)×. By definition, [g][h] = [gh], so αi is a character. Since
αi(g) is an e-th root of unit in (E[u]/uep)×, αi(g) ∈ E×. We may assume that αi = ωµii
for some µi (mod e). Also, [g] ◦ φκ−1 = φκ−1 ◦ [g], we have µi+1 ≡ p(µi + mi)(mod e).
From this, we have

prmi + pr−1mi+1 + · · ·+ p2mi+r−2 + pmi+r−1 ≡ 0(mod e).

We write (a)i =

{
a if i = 1,

1 otherwise.

Proposition 2.3. If M is a rank one object of BrModκ−1dd,K/K0
, then there exist integers

mi ∈ [0, e(κ − 1)], µi ∈ [0, e − 1], and a ∈ E×, such that we can choose basis ei for Mi,
and

(1) Filκ−1Mi = 〈umiei〉,
(2) φκ−1(u

miei) = (a)i+1ei+1,
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(3) µi+1 ≡ p(µi +mi)(mod e),
(4) [g] · ei = ωµii (g)ei,
(5) N(ei) = 0.
We will write the Breuil module with these invariants M(mi, µi, a).

We attach to M(mi, µi, a) another invariant

µfil,i =
prmi + pr−1mi+1 + · · ·+ p2mi+r−2 + pmi+r−1

e
.

Note that µfil,i is an integer divisible by p and pmi = pµfil,i − µfil,i+1.
For a ∈ E×, let unr(a) : GK0 → E× be the unramified character of GK0 sending the

geometric Frobenius to a.

Proposition 2.4. Let M = M(mi, µi, a) be as in above, then the character Tst(M) of
GK0 is

unr(a) · ω(κ−1)(1+p+···+pr−1)−(µi+µfil,i)
i .

Proof. This is Proposition 2.3 of [3]. Note that ω
(µi+µfil,i)
i is independent of i since p(µi +

µfil,i) ≡ (µi+1 + µfil,i+1)(mod e). �

The following two propositions are from section 5 of [3]. Let A and B be two rank one
objects of BrModκ−1dd,K/K0

. Assume that A =M(ai, αi, a) and B =M(bi, βi, b). Write

αfil,i =
prai + pr−1ai+1 + · · ·+ p2ai+r−2 + pai+r−1

e

and

βfil,i =
prbi + pr−1bi+1 + · · ·+ p2bi+r−2 + pbi+r−1

e
.

Proposition 2.5. Assume that there is an isomorphism f : Tst(B)→ Tst(A). Then there
exists a non-zero morphism (in the category BrModκ−1dd,K/K0

) A → B if and only if αfil,i ≤
βfil,i for all i. In this case, the morphism f ′ : A → B defined by Ai 7→ uβfil,i−αfil,iBi
induces an isomorphism Tst(f

′), where Ai and Bi are basis of Ai and Bi respectively.

Proposition 2.6. Assume that there is an isomorphism f : Tst(B)→ Tst(A). Then there
exists a third object C in BrModκ−1dd,K/K0

of rank one, with morphisms f ′A : A → C and

f ′B : B → C, such that Tst(f
′
A) ◦ Tst(f ′B)−1 is an isomorphism.

Proof. If αfil,i ≤ βfil,i for all i, we may choose C = B. If αfil,i ≥ βfil,i for all i, we may
choose C = A.

In general, we construct C directly as follows. Let γfil,i = max(αfil,i, βfil,i), ni =
1
pmax(0, βfil,i − αfil,i), ci = ai + pni − ni+1, and γi = αi + αfil,i − γfil,i. Then we may

define C =M(ci, γi, a). See Proposition 5.6 of [3] for more details. �

We define a special type of Breuil modules.

Definition 2.7. Let J ⊂ S. We say M(mi, µi, a) is of type J if mi = e(κ − 1)δJ(i + 1),

where δJ(i) =

{
1 if τi ∈ J,
0 otherwise.
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Proposition 2.8. Fix J ⊂ S and a character ψ : GK0 → E× trivial on IK . Then there
exists a unique rank one Breuil module M of type J such that Tst(M) ∼= ψ.

Proof. Since ψ is trivial on IK , we may write ψ = unr(a)ωn0 for some a ∈ E×. Define

µi ≡ −pin+ (κ− 1)
r−1∑
j=0

pj − (κ− 1)
r−1∑
j=0

pr−jδJ(i+ j + 1) (mod e).

It is easy to see that

µi+1 ≡ p(µi + e(κ− 1)δJ(i+ 1))(mod e).

Then we may define M =M(e(κ− 1)δJ(i+ 1), µi, a). By Proposition 2.4, Tst(M) ∼= ψ.
The uniqueness follows from Proposition 2.4 and Definition 2.7. �

Corollary 2.9. Fix a character ψ : GK0 → E× trivial on IK . Let J and J ′ be two subsets
of S. By the above proposition, we know that there exist two rank one Breuil modules MJ

and MJ ′ of type J and J ′ respectively, such that Tst(MJ) ∼= Tst(MJ ′) ∼= ψ. Then there
exists a non-zero morphism f ′ :MJ →MJ ′ if and only if J ⊂ J ′.

Proof. By definition,MJ hasmJ,i = e(κ−1)δJ(i+1) andMJ ′ hasmJ ′,i = e(κ−1)δJ ′(i+1).
If J ⊂ J ′, it is obvious that mJ,i ≤ mJ ′,i and therefore µJ,fil,i ≤ µJ ′,fil,i. There exists a
nonzero morphism f ′ :MJ →MJ ′ by Proposition 2.5.

If J 6⊂ J ′, we choose j ∈ J\J ′, then µJ,fil,j > µJ ′,fil,j and there is no nonzero morphism
f ′ :MJ →MJ ′ . �

3. Reducible rank two Breuil modules

In this section, we consider rank two Breuil modules which are extensions of a rank one
Breuil module with descent data by another rank one Breuil module with descent data.
We will follow the method of section 7 of [6] for the remainder of this section.

First, we forget about the descent data and the monodromy operator N . LetM(mi, a)
and M(ni, b) be two Breuil modules of rank one. Let M ∈ Ext1(M(mi, a),M(ni, b)).
Assume that

M(mi, a) = ⊕i∈S〈f̄i〉,
M(ni, b) = ⊕i∈S〈ēi〉.

We may write that
M = ⊕i∈SMi = ⊕i∈S〈ei, fi〉,

and
Filκ−1M = ⊕i∈SFilκ−1Mi = ⊕i∈S〈uniei, umifi + hiei〉,

where ei is the image of ēi, fi is a lift of f̄i, and hi ∈ E[u]/uep. We will simplify the
structure of M in three steps.

(Step 1) Since ue(κ−1)Mi ⊂ Filκ−1Mi, we have ue(κ−1)fi ∈ 〈uniei, umifi + hiei〉. This

tells us that hi ∈ umax(0,mi+ni−e(κ−1))E[u]/uep.
(Step 2) We may assume that φκ−1(u

mifi + hiei) = (a)i+1fi+1. First, we choose f1
such that Filκ−1M1 = 〈un1e1, u

m1f1 + h1e1〉 for some h1 ∈ E[u]/uep. Then we define
fi+1 inductively by φκ−1(u

mifi +hiei) = (a)i+1fi+1 for i < r. Suppose that φκ−1(u
mrfr +

hrer) = (a)1(f1 + Xe1), then we define f ′1 = f1 + Xe1 and h′1 = h1 − um1X. Hence
um1f ′1 + h′1e1 = um1f1 + h1e1. From this construction, we see that fi if i 6= 1 or f ′1 if
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i = 1 is a lift of f̄i. They give a basis of M since φκ−1(M) generates M. The relation
φκ−1(u

mifi + hiei) = (a)i+1fi+1 (i 6= 1) holds from the construction and φκ−1(u
m1f ′1 +

h′1e1) = φκ−1(u
m1f1 + h1e1) = (a)2f2.

(Step 3) Now we determine what kind of transformations we can make to keep the form
in (Step 2). Assume that replacing fi by f ′i = fi +Xiei and hi by Hi keeps the form

φκ−1(u
mifi + hiei) = (a)i+1fi+1.

We have
φκ−1(u

mif ′i +Hiei) = (a)i+1f
′
i+1.

The left hand side of the above equation is

φκ−1(u
mif ′i +Hiei) = φκ−1(u

mifi + hiei + (umiXi +Hi − hi)ei)
= (a)i+1fi+1 + φκ−1((u

miXi +Hi − hi)ei)
We must have

(a)i+1Xi+1ei+1 = φκ−1((u
miXi +Hi − hi)ei).

Assume that umiXi +Hi − hi = ti+1u
ni for some ti+1 ∈ E[u]/uep, then

(a)i+1Xi+1 = (b)i+1φ(ti+1)

Hi = hi + ti+1u
ni − (b/a)iu

miφ(ti).
(3.1)

From the above analysis, we have the following proposition, which generalizes Lemma
5.2.4 of [2].

Proposition 3.1. If we forget about the descent data and the monodromy operator N ,
then

Ext1(M(mi, a),M(ni, b)) ∼=
{(hi)i∈S |hi ∈ umax(0,mi+ni−e(κ−1))E[u]/uep}

{(ti+1uni − (b/a)iumiφ(ti))i∈S}
,

where ti’s run through all elements in E[u]/uep.

We add the descent data to our consideration. LetM∈ Ext1(M(mi, αi, a),M(ni, βi, b)),
such that

Mi = 〈ei, fi〉,
F ilκ−1Mi = 〈uniei, umifi + hiei〉,

φκ−1(u
niei) = (b)i+1ei+1, φκ−1(u

mifi + hiei) = (a)i+1fi+1.

Assume that
[g]ei = ωβii (g)ei,

[g]fi = ωαii (g)fi +Ai,gei.

We show that we may make Ai,g = 0 without changing the forms of Filκ−1 and φκ−1.

Lemma 3.2. Hq(G,E[u]/uep) = 0 for all q > 0. Here the Galois action is given by
g(
∑
aju

j) =
∑
ajωi(g)juj.

Proof. Write E(j) = E with G-action given by g · a = aωi(g)j . Then Hq(G,E(j)) = 0 for
q > 0 since ]G = e = pr − 1 and ]E(j) = pN for some integer N . Therefore, if q > 0,

Hq(G,E[u]/uep) = ⊕jHq(G,E(j)) = 0.

�
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Lemma 3.3. All nonzero terms of Ai,g have degree divisible by p.

Proof. We use the relation φκ−1 ◦ [g] = [g] ◦ φκ−1 to prove this lemma. On one hand,

[g] ◦ φκ−1(umifi + hiei) = (a)i+1(ω
αi+1

i+1 (g)fi+1 +Ai+1,gei+1).

On the other hand,

[g](umifi + hiei) = ωmii (g)umi(ωαii (g)fi +Ai,gei) + g(hi)ω
βi
i (g)ei

= ωmi+αii (g)(umifi + hiei) +Hei,

where
H = ωmii (g)umiAi,g + g(hi)ω

βi
i (g)− ωmi+αii (g)hi.

Since [g] preserves Filκ−1, we have Hei ∈ Filκ−1M. Therefore, uni |H. Let H/uni be an
element in E[u]/uep such that uni(H/uni) = H. Note that H/uni is not unique. (Assume
that H/uni =

∑
ciu

i, then
∑
ciu

i+ni = H. Therefore ci is uniquely determined only for
those i with i+ni < ep.) But φ(H/uni) ∈ E[u]/uep is unique, because if i+ni ≥ ep, then
pi ≥ p(ep− ni) ≥ ep. Then

φκ−1 ◦ [g](um1fi + hiei) = ω
(mi+αi)
i (g)(a)i+1fi+1 + φ(H/uni)(b)i+1ei+1.

Remember that αi+1 ≡ p(mi + αi)(mod e). Comparing the above two equations, we see
that Ai+1,g = (b/a)i+1φ(H/uni). All nonzero terms of Ai+1,g have degree divisible by
p. �

Lemma 3.4. We may assume that Ai,g = 0.

Proof. Recall that [hg] = [h][g]. Applying both sides to fi, we have

ωαii (hg)fi +Ai,hgei = ωαii (g)(ωαii (h)fi +Ai,hei) + h(Ai,g)ω
βi
i (h)ei

⇒
Ai,hg
ωαii (hg)

=
Ai,h
ωαii (h)

+ ωβi−αii (h)h(
Ai,g
ωαii (g)

).

So (g 7→ Ai,g
ω
αi
i (g)

) is a cocycle in H1(G,E[u]/uep), where the Galois action is given by

g · (
∑
aju

j) = ωβi−αii (g)
∑
ajωi(g)juj . By the same argument of Lemma 3.2, this coho-

mology group is trivial. The cocycle is actually a coboundary.
Let f ′i = fi + (b/a)iφ(ti)ei, for ti ∈ E[u]/uep. Note that by equation (3.1), this change

will keep the form ofM as stated after Proposition 3.1. (However, we may get new hi’s.)
Then

[g]f ′i = [g]fi + g((b/a)iφ(ti))[g]ei

= ωαii (g)f ′i + (Ai,g + (g · ((b/a)iφ(ti))− (b/a)iφ(ti))ω
αi
i (g))ei,

Ai,g
ω
αi
i (g)

is changed by the coboundary of (b/a)iφ(ti). We then may assume that Ai,g = 0 by

the above lemma. �

Remark 3.5. (1) By the above lemma, we assume that Ai,g = 0. Then in the proof of
Lemma 3.3, φ(H/uni) = 0. So ue|(H/uni), i.e., ue+ni |H. If we write hi =

∑
j aju

j , since

H = g(hi)ω
βi
i (g)− ωmi+αii (g)hi, then

H =
∑
j

aj(ω
j+βi
i (g)− ωmi+αii (g))uj .
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If j < e+ ni and aj 6= 0, then j ≡ mi + αi − βi(mod e).
(2) If {hi} and {h′i} give isomorphic Breuil modules with Ai,g = 0. Then we know that

h′i = hi + ti+1u
ni − (b/a)iu

miφ(ti)

for some {ti}. By the proof of Lemma 3.4, we know that g · ((b/a)iφ(ti))− (b/a)iφ(ti) = 0.
So if ti =

∑
j ai,ju

j , ai,j 6= 0 and j < e, then βi − αi + jp ≡ 0(mod e).

Therefore, in equation (3.1), if all nonzero terms with degree less than ni of hi have
degree congruent to (mi + αi − βi) (mod e), then all nonzero terms with degree less than
ni of Hi also have degree congruent to (mi + αi − βi) (mod e).

Next, we study the group Ext1(M(mi, αi, a),M(ni, βi, b)). LetM∈ Ext1(M(mi, αi, a),M(ni, βi, b)).
Assume that M = ⊕iMi has the following form.

Mi = 〈ei, fi〉,
F ilκ−1Mi = 〈uniei, umifi + hiei〉,

φκ−1(u
niei) = (b)i+1ei+1, φκ−1(u

mifi + hiei) = (a)i+1fi+1,

[g]ei = ωβii (g)ei, [g]fi = ωαii (g)fi,

N(ei) = 0, N(fi) = Ciei.

From Proposition 3.1, two different sets {hi} and {h′i} give isomorphic Breuil modules
only if there exist ti ∈ E[u]/uep such that hi − h′i = ti+1u

ni − (b/a)iu
miφ(ti) for all i ∈ S.

We would like to solve (Ti)i∈S from the following equation system:

(3.2) Hi = uniTi+1 − (b/a)iu
miφ(Ti) i ∈ S

where Hi ∈ E[u]/uep.
Assume that Hi =

∑
ji
Hi,jiu

ji , Ti =
∑

ji
Ti,jiu

ji , then the equation system is the same as

(3.3) Hi,ji = Ti+1,ji−ni − (b/a)iTi, ji−mi
p

i ∈ S ∀ji.

Ti,ji is required to be zero unless ji is a nonnegative integer. Set Xi = 1
p(βfil,i − αfil,i),

Ji = Xi+1 + ni. Then Xi+1 = pXi +mi − ni. Note that Xi and Ji are integers.
We will attempt to solve the equation system (3.3) by induction on the least integer

greater than or equal to maxi∈S{|ji − Ji|}. The condition |ji − Ji| = 0 for all i ∈ S is
an empty set unless Ji is a nonnegative integer and ji = Ji, in which case, we have the
following base case equation system:

(3.4) Hi,Ji = Ti+1,Xi+1 − (b/a)iTi,Xi i ∈ S.
If this is solvable for (Ti,Xi), we have our base case. We assume the following inductive

hypothesis:
(a) the equation system (3.3) can be solved for all Hi,ji with |ji − Ji| ≤ N ;
(b) in doing so, all and only the Ti,ji with |ji − Xi| ≤ N or with ji 6∈ Z≥0 have been

determined.
Assume that N < |ji − Ji| ≤ N + 1, then

N < |(ji − ni)−Xi+1| ≤ N + 1.

If |ji − Ji| < N + 1, then ji is not an integer, we have Ti+1,ji−ni = 0. If |ji − Ji| = N + 1
and N = 0, then

|ji −mi

p
−Xi| = |ji − Ji|/p = 1/p,
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ji−mi
p is not an integer and we set Ti+1,ji−ni = Hi,ji . If |ji − Ji| = N + 1 and N ≥ 1, then

|ji −mi

p
−Xi| = |ji − Ji|/p ≤ N,

T
i,
ji−mi
p

has been determined. We may take

Ti+1,ji−ni = Hi,ji + (b/a)iTi, ji−mi
p

.

Note that if ji < ni, then there is a solution if and only if Ti+1,ji−ni so obtained is 0.
From the above analysis, we have the following lemma.

Lemma 3.6. The equation system (3.2) has a solution if and only if
(a) the base case (3.4) is either vacuous or is non vacuous and has a solution;
(b) whenever ji < ni, we have

Ti+1,ji−ni = Hi,ji + (b/a)iTi, ji−mi
p

= 0.

Lemma 3.7. Suppose that the equation system (3.2) has a solution and degHi < ni ∀ i,
then Hi = 0 ∀ i.

Proof. First, we prove that Hi,Ji = 0 ∀i. If Xi ≥ 0 ∀i, then by definition, Ji = Xi+1 +ni ≥
ni, so Hi,Ji = 0. If Xi < 0 for some i, choose any l ∈ S, we analyze case by case.

(1) Xl < 0. If Xl+1 < 0, then Hl,Jl = Tl+1,Xl+1
− (b/a)lTl,Xl = 0. If Xl+1 ≥ 0, then

Jl = Xl+1 + nl ≥ nl, Hl,Jl = 0.
(2) Xl ≥ 0. If Xl+1 ≥ 0, then Jl = Xl+1 + nl ≥ nl, Hl,Jl = 0. If Xl+1 < 0, then

Hl,Jl = c · Tl,Xl . Also Hl−1,Jl−1
= 0 since Jl−1 = Xl + nl−1 ≥ nl−1, Hl,Jl = c · Tl−1,Xl−1

.
We continue this step, there exists a minimal a such that Xl−a+1 ≥ 0 but Xl−a < 0. Then
Hl,Jl = c · Tl−a,Xl−a = 0.

Now we know that Hi,Ji = 0 ∀i. The base case has a solution Ti,Ji = 0 ∀i. Then by the
induction procedure, it is easy to see that Ti,j = 0 ∀ i, j. So Hi = 0 ∀ i. �

Lemma 3.8. (1) If the base case for (Hi)i∈S can be solved, or cannot be solved but Xi < 0
for some i, then there exists a unique (H ′i)i∈S such that the equation system for (H ′i)i∈S
can be solved and such that deg(H ′i −Hi) < ni for all i ∈ S.

(2) If the base case cannot be solved and Xi ≥ 0 for all i, then there exists a unique
(H ′i)i∈S such that the equation system for (H ′i)i∈S can be solved, deg(H ′i − Hi) < ni for
i 6= r, and the only nonzero term of H ′r − Hr of degree at least nr if any is of degree
Jr = X1 + nr.

Proof. First, we make a suitable choice of coefficients H ′i,Ji for all i: namely, we would

like the base case (3.4) to be solvable, and we would like H ′i,Ji = Hi,Ji whenever Ji ≥ ni,

except that in case (2) we omit the latter condition when i = r.
If the base case is solvable for Hi, we just take H ′i = Hi. If the base case is not solvable,

we distinguish the two cases (1) and (2). Note that the base case gives us the following
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equation system: 

H1,J1 = T2,X2 − (b/a)T1,X1

H2,J2 = T3,X3 − T2,X2

......

Hr−1,Jr−1 = Tr,Xr − Tr−1,Xr−1

Hr,Jr = T1,X1 − Tr,Xr
In case (1), if Xi < 0, let s > 0 be minimal such that Xi+s < 0 (we might have s = r). If

s = 1, set H ′i,Ji = 0. If s > 1 and 1 6∈ {i+1, · · · , i+s−1}, summing the equations from i to

i+s−1 givesHi,Ji+Hi+1,Ji+1+· · ·+Hi+s−1,Ji+s−1 = Ti+s,Xi+s−(b/a)iTi,Xi = 0. In this case,
we take H ′j,Jj = Hj,Jj for i < j < i+s and set H ′i+s−1,Ji+s−1

= −(Hi,Ji+· · ·+Hi+s−2,Ji+s−2).

If s > 1 and 1 ∈ {i+1, · · · , i+s−1}, summing the equations from i to i+s−1 gives Hi,Ji+
Hi+1,Ji+1 + · · ·+Hi+s−1,Ji+s−1 = Ti+s,Xi+s − (b/a)iTi,Xi + (1− b/a)T1,X1 = (1− b/a)T1,X1 .
In the case a 6= b, we take H ′j,Jj = Hj,Jj for i < j ≤ i + s − 1; in the case a = b, we take

H ′j,Jj = Hj,Jj for i < j < i+ s− 1 and set H ′i+s−1,Ji+s−1
= −(Hi,Ji + · · ·+Hi+s−2,Ji+s−2).

Now the base case is solvable, and H ′i,Ji 6= Hi,Ji only for some i ∈ S with Xi+1 < 0, so
that Ji < ni.

In case (2), since all Xi ≥ 0, none of the Ti,Xi are forced to be 0 by virtue of having
negative degree. Now the insolvability of the base case is equivalent to the insolvability of∑r

i=1Hi,Ji = (1 − b/a)T1,X1 ; this occurs if and only if a = b and
∑r

i=1Hi,Ji 6= 0. In this

case we must take H ′i,Ji = Hi,Ji for i 6= r and H ′r,Jr = −
∑r−1

i=1 Hi,Ji .

Having made a suitable choice of the coefficients H ′i,Ji , we extend this to a full choice

of H ′i’s. The only obstruction is that Lemma 3.6(b) must be satisfied. In particular we
can certainly set H ′i,ji = Hi,ji whenever ji ≥ ni (and ji 6= Ji). Recall that in the inductive
process for solving the system of the equations that is described prior to Lemma 3.6, if
ji 6= Ji then the coefficient Ti,(ji−mi)/p has been determined before the coefficient Hi,ji has
ever been used in the process. We carry out the inductive process on the H ′i’s, except that
we initially treat H ′i,ji as an indeterminate whenever ji < ni and ji 6= Ji. When we arrive

at the determination of Ti+1,ji−ni in that inductive process (with ji < ni and ji 6= Ji), we
simply set H ′i,ji = −(b/a)iTi,(ji−mi)/p and carry on.

Finally, the uniqueness in case (1) follows from Lemma 3.7. The uniqueness in case (2)

follows from Lemma 3.7 and the fact that H ′r,Jr = −
∑r−1

i=1 Hi,Ji . �

Now we can state the following theorem which corresponds to Theorem 7.5 of [6].

Theorem 3.9. Let M∈ Ext1(M(mi, αi, a),M(ni, βi, b)). Let Xi = (βfil,i−αfil,i)/p and
Ji = Xi+1 + ni. Write M = ⊕i∈SMi, then there exist ei and fi such that

Mi = 〈ei, fi〉,
F ilκ−1Mi = 〈uniei, umifi + hiei〉,

φκ−1(u
niei) = (b)i+1ei+1, φκ−1(u

mifi + hiei) = (a)i+1fi+1,

N(ei) = 0, N(fi) = Ciei,

[g]ei = ωβii (g)ei, [g]fi = ωαii (g)fi.

Here Ci is a polynomial with all nonzero terms have degree congruent to (βi−αi) (mod e),

hi ∈ umax(0,mi+ni−e(κ−1))E[u]/uep satisfies
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(1) all nonzero terms have degree congruent to mi + αi − βi (mod e);
(2) if Xi ≥ 0 for all i ∈ S, a = b, and Ji ≡ mi + αi − βi (mod e) for some i ∈ S, then

deg(hi) < ni if i 6= r, hr may have one nonzero term of degree Jr ≥ nr and every other
nonzero term of Hr has degree less than nr; otherwise, all nonzero terms of hi have degree
less than ni.

Furthermore, if κ = 2, each set (hi)i∈S with the properties as above will give us a well
defined rank two Breuil module.

Proof. We first prove the statement about N(fi). Assume that N(fi) = Ciei +Difi with
u|Ci, Di. Because N([g](fi)) = [g](N(fi)), we have

ωαii (g)(Ciei +Difi) = g(Ci)ω
βi
i (g)ei + g(Di)ω

αi
i (g)fi.

So Ci is a polynomial with all nonzero terms have degree congruent to βi − αi (mod e).
Di = 0 follows from the fact that N(f̄i) = 0.

From (Step 1), we have hi ∈ umax(0,mi+ni−e(κ−1))E[u]/uep. Because ue+niei ∈ Filκ−1Mi

and φκ−1(u
e+niei) = uepφκ−1(u

niei) = 0, we may assume that deg(hi) < (e + ni). Then
condition (1) follows from Remark 3.5(1).

From the definition of Ji, we see that Ji ≡ mi + αi − βi(mod e) if and only if pβi +
pni+βfil,i+1 ≡ pαi+pmi+αfil,i+1 (mod e), if and only if βi+1 +βfil,i+1 ≡ αi+1 +αfil,i+1

(mod e). If Ji ≡ mi + αi − βi(mod e) for one i ∈ S, then Ji ≡ mi + αi − βi(mod e) for all
i ∈ S. Condition (2) follows from Lemma 3.8.

The last statement follows from Remark 1.2(1). �

Remark 3.10. (1) In the case κ = 2, we have an equivalence between BrMod1dd,K/K0

and the category of certain finite flat group schemes over OK . When mi’s get larger,
the corresponding group scheme gets more multiplicative. When mi’s get smaller, the
corresponding group scheme gets more etale. The theorem is compatible with the fact
that there are many extensions of etale group schemes by multiplicative ones, but none in
the other direction. See the remark following Theorem 7.5 of [6] for a similar statement.

(2) In the case κ = 2, if βi + βfil,i 6≡ αi + αfil,i (mod e) or a 6= b, then all the hi’s can
be taken to be monomials. This fact may help us simplify computations.

(3) In general, if κ 6= 2, a set (Ci, hi)i∈S where Ci, hi satisfy the properties stated in
the theorem may not give us a well defined Breuil module. The problem is that the
monodromy operator N satisfies some equations by the definition of Breuil modules, and
these equations give us some equations that Ci and hi should satisfy.

As mentioned before, in the case κ = 2, we know that there exists a unique N which
satisfies all the conditions in Definition 1.1. We have the following corollary.

Corollary 3.11. If κ = 2, assume that βi + βfil,i 6≡ αi + αfil,i (mod e) or a 6= b. Let
B = ]{i ∈ S | ∃x ∈ Z such that max(0,mi + ni − e) ≤ x ≤ (ni − 1) and x ≡ mi + αi − βi
(mod e)}, then

dimE Ext
1(M(mi, αi, a),M(ni, βi, b)) = B.

4. Rank two Breuil modules of type J

Definition 4.1. Let J be a subset of S. We say a reducible rank two Breuil moduleM is
of type J if it is an extension of a rank one Breuil module of type J by a rank one Breuil
module of type Jc. Here Jc = S\J .
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In this section, we assume that κ = 2. The main goal is to compute Ext1(M,M),
where M is a reducible rank two Breuil module of type J such that M = ⊕i∈SMi has
the following form.

Mi = E[u]/uep〈ei, fi〉,
F il1Mi = E[u]/uep〈ujiei, ue−jifi + λiu

hiei〉,
φ1(u

jiei) = (b)i+1ei+1, φ1(u
e−jifi + λiu

hiei) = (a)i+1fi+1,

[g]ei = ωβii (g)ei, [g]fi = ωαii (g)fi,

where λi ∈ E with λi = 0 if i + 1 6∈ J , ji =

{
e i+ 1 ∈ J
0 i+ 1 6∈ J

, and hi ∈ [0, e − 1]

with hi ≡ αi − βi( mod e). Note that M is split if and only if all the λi’s are 0. Let
S0 = {i ∈ S | λi = 0} and S1 = {i ∈ S | λi 6= 0}. The main result of this section is the
following theorem.

Theorem 4.2. (1) If S0 = S (M is split), then dimE Ext
1(M,M) ≤ 2 + r.

(2) If S0 6= S, then dimE Ext
1(M,M) ≤ 1 + r.

Let N ∈ Ext1(M,M). Write N = ⊕i∈SNi. Assume that

Ni = E[u]/uep〈ei, fi, e′i, f ′i〉,
where e′i ∈ Ni (resp. f ′i ∈ Ni) is a lift of ei ∈Mi (resp. fi ∈Mi).

Lemma 4.3. We may assume that

Fil1Ni = E[u]/uep〈ujiei, ue−jifi + λiu
hiei, u

jie′i, u
e−jif ′i + λiu

hie′i〉.

Proof. If i+1 ∈ J , assume that Fil1Ni = E[u]/uep〈ueei, fi+λiuhiei, uee′i+Aiei+Bifi, f ′i+
λiu

hie′i+Ciei+Difi〉, where Ai, Bi, Ci, Di ∈ E[u]/uep. We may assume that Bi = Di = 0.
Since uee′i ∈ Fil1Ni, we see ue|Ai. So we may assume that Ai = 0. Now let f ′′i = f ′i +Ciei,
we may assume that Ci = 0.

If i+1 6∈ J , assume that Fil1Ni = E[u]/uep〈ei, uefi, e′i+Aiei+Bifi, u
ef ′i +Ciei+Difi〉,

where Ai, Bi, Ci, Di ∈ E[u]/uep. We may assume that Ai = Ci = 0. Let e′′i = e′i + Bifi,
we may assume that Bi = 0. Since uef ′i ∈ Fil1Ni, we see ue|Di and may assume that
Di = 0. �

Assume that N has the following form.

Ni = E[u]/uep〈ei, fi, e′i, f ′i〉,

F il1Ni = E[u]/uep〈ujiei, ue−jifi + λiu
hiei, u

jie′i, u
e−jif ′i + λiu

hie′i〉,
φ1(u

jie′i) = (b)i+1e
′
i+1 +Xi+1ei+1 + Yi+1fi+1,

φ1(u
e−jif ′i + λiu

hie′i) = (a)i+1f
′
i+1 + Zi+1ei+1 +Wi+1fi+1,

[g](e′i) = ωβii (g)e′i +Ai,gei +Bi,gfi,

[g](f ′i) = ωαii (g)f ′i + Ci,gei +Di,gfi,

where the X,Y, Z,W and A,B,C,D are in E[u]/uep.

Lemma 4.4. We may assume that Ai,g = Bi,g = Ci,g = Di,g = 0.
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Proof. [hg]e′i = ωβii (hg)e′i +Ai,hgei +Bi,hgfi. On the other hand,

[hg]e′i = [h](ωβii (g)e′i +Ai,gei +Bi,gfi)

= ωβii (g)(ωβii (h)e′i +Ai,hei +Bi,hfi) + h(Ai,g)ω
βi
i (h)ei + h(Bi,g)ω

αi
i (h)fi.

Comparing the coefficients, we get the following equations.

Ai,hg

ωβii (hg)
=

Ai,h

ωβii (h)
+ h(

Ai,g

ωβii (g)
),

and
Bi,hg

ωβii (hg)
=

Bi,h

ωβii (h)
+ h(

Bi,g

ωβii (g)
)ωαi−βii (h).

Similarly, we have
Di,hg

ωαii (hg)
=

Di,h

ωαii (h)
+ h(

Di,g

ωαii (g)
),

and
Ci,hg
ωαii (hg)

=
Ci,h
ωαii (h)

+ h(
Ci,g
ωαii (g)

)ωβi−αii (h).

If we replace e′i and f ′i by e′′i = e′i + Piei +Qifi, f
′′
i = f ′i +Riei + Sifi, then

[g](e′′i ) = ωβii (g)e′i +Ai,gei +Bi,gfi + g(Pi)ω
βi
i (g)ei + g(Qi)ω

αi
i (g)fi

= ωβii (g)e′′i + [Ai,g + ωβii (g)(g(Pi)− Pi)]ei
+ [Bi,g + ωαii (g)g(Qi)− ωβii (g)Qi]fi,

[g](f ′′i ) = ωαii (g)f ′i + Ci,gei +Di,gfi + g(Ri)ω
βi
i (g)ei + g(Si)ω

αi
i (g)fi

= ωαii (g)f ′′i + [Ci,g + ωβii (g)g(Ri)− ωαii (g)Ri]ei

+ [Di,g + ωαii (g)(g(Si)− Si)]fi.
We prove that, in the case i+ 1 ∈ J , we can choose Pi, Qi, Ri, Si to make Ai,g = Bi,g =

Ci,g = Di,g = 0 without changing the form of Fil1. (The case i + 1 6∈ J is similar and

the computation is easier.) In this case, Fil1Ni = 〈ueei, fi +λiu
hiei, u

ee′i, f
′
i +λiu

hie′i〉. In
order to keep the form of Fil1Ni, the equations e′′i = e′i+Piei+Qifi, f

′′
i = f ′i +Riei+Sifi

should give us

〈ueei, fi + λiu
hiei, u

ee′i, f
′
i + λiu

hie′i〉 = 〈ueei, fi + λiu
hiei, u

ee′′i , f
′′
i + λiu

hie′′i 〉.

Note that

f ′′i + λiu
hie′′i = f ′i +Riei + Sifi + λiu

hi(e′i + Piei +Qifi)

= f ′i + λiu
hie′i + (Si + λiu

hiQi)(fi + λiu
hiei)+

(Ri + λiu
hiPi − λiuhiSi − (λiu

hi)2Qi)ei.

To keep the form of Fil1Ni, we should choose Pi, Qi, Ri, Si such that

ue | (Ri + λiu
hiPi − λiuhiSi − (λiu

hi)2Qi).



14 CHUANGXUN CHENG

Also note that [g] preserves Fil1Ni. [g](uee′i) ∈ Fil1Ni since ueNi ⊂ Fil1Ni.

[g](f ′i + λiu
hie′i) = ωαii (g)f ′i + Ci,gei +Di,gfi + λiu

hiωhii (g)(ωβii (g)e′i +Ai,gei +Bi,gfi)

= ωαi(g)(f ′i + λiu
hie′i) + (Di,g + λiu

hiωhii (g)Bi,g)(fi + λiu
hiei)

+ (Ci,g + λiu
hiωhii (g)Ai,g − λiuhiDi,g − λ2iu2hiω

hi
i (g)Bi,g)ei.

Therefore,

ue | (Ci,g + λiu
hiωhii (g)Ai,g − λiuhiDi,g − λ2iu2hiω

hi
i (g)Bi,g).

First, from the above computation and Lemma 3.2, we may choose Pi, Qi, Ri, Si ∈
E[u]/uep such that 

Ai,g + ωβii (g)(g(Pi)− Pi) = 0

Bi,g + ωαii (g)g(Qi)− ωβii (g)Qi = 0

Di,g + ωαii (g)(g(Si)− Si) = 0

and
ue | (Ri + λiu

hiPi − λiuhiSi − (λiu
hi)2Qi).

Therefore, we may assume that Ai,g = Bi,g = Di,g = 0 and ue | Ci,g. Then we choose

Σi ∈ E[u]/uep such that ue | Σi and Ci,g + ωβii (g)g(Σi) − ωαii (g)Σi = 0. Replacing f ′′i by
f ′′i + Σiei, we may assume that Ci,g = 0.

If i+ 1 6∈ J , the argument is similar. Indeed, by taking λi = 0 and reversing the roles of
ei and fi in the proof for the case i+1 ∈ J , we get the argument for the case i+1 6∈ J . �

Lemma 4.5. We may assume that Xi+1,Wi+1 ∈ E, Yi+1 is either 0 or a monomial of
degree e− hi+1, and Zi+1 is either 0 or a monomial of degree hi+1.

Proof. If i+ 1 ∈ J , we know that Ni has the following form.

Ni = E[u]/uep〈ei, fi, e′i, f ′i〉,

F il1Ni = E[u]/uep〈ueei, fi + λiu
hiei, u

ee′i, f
′
i + λiu

hie′i〉,
φ1(u

ee′i) = (b)i+1e
′
i+1 +Xi+1ei+1 + Yi+1fi+1,

φ1(f
′
i + λiu

hie′i) = (a)i+1f
′
i+1 + Zi+1ei+1 +Wi+1fi+1,

[g](e′i) = ωβii (g)e′i, [g](f ′i) = ωαii (g)f ′i .

By definition, we have the relation [g] ◦ φ1 = φ1 ◦ [g]. On one hand,

[g](φ1(u
ee′i)) = [g]((b)i+1e

′
i+1 +Xi+1ei+1 + Yi+1fi+1)

= ω
βi+1

i+1 (g)(b)i+1e
′
i+1 + g(Xi+1)ω

βi+1

i+1 (g)ei+1 + g(Yi+1)ω
αi+1

i+1 (g)fi+1.

On the other hand,

φ1([g](uee′i)) = φ1(ω
βi
i (g)uee′i)

= ωβii (g)((b)i+1e
′
i+1 +Xi+1ei+1 + Yi+1fi+1).

Comparing the two equations and using the relation βi+1 ≡ pβi( mod e), we see that

g(Xi+1) = Xi+1, g(Yi+1)ω
αi+1

i+1 (g) = ωpβii+1(g)Yi+1.

Therefore every nonzero term ofXi+1 has degree congruent to 0 (mod e) and every nonzero
term of Yi+1 has degree congruent to (pβi − αi+1) (mod e). Note that the action of [g]
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preserves the degree of a monomial, every single term of Xi+1 or Yi+1 also satisfies the
above relation.

We may assume that Xi+1 and Yi+1 are of degree less than e. Because absorbing all
the terms with degree ≥ e to e′i+1 does not change the form of Fil1Ni+1 and [g]. (It does

not change the form of Fil1Ni+1 because ueN ⊂ N ; it does not change the form of [g]
because the degrees of nonzero terms satisfy the above congruence equations modulo e.)

Therefore we may assume Xi+1 is of degree 0 and Yi+1 is either 0 or a monomial of
degree ≡ (pβi − αi+1) (mod e). Note that hi+1 ≡ αi+1 − βi+1 ≡ αi+1 − pβi (mod e), we
see that Yi+1 is either 0 or a monomial of degree e− hi+1,

Similarly, we have

[g](φ1(f
′
i + λiu

hie′i)) = [g]((a)i+1f
′
i+1 + Zi+1ei+1 +Wi+1fi+1)

= ω
αi+1

i+1 (g)(a)i+1f
′
i+1 + g(Zi+1)ω

βi+1

i+1 (g)ei+1

+ g(Wi+1)ω
αi+1

i+1 (g)fi+1,

and

φ1([g](f ′i + λiu
hie′i)) = φ1(ω

αi
i (g)f ′i + λiω

hi+βi
i (g)uhie′i)

= ωαii (g)((a)i+1f
′
i+1 + Zi+1ei+1 +Wi+1fi+1),

where the last equality follows from the congruence hi ≡ αi−βi (mod e). Comparing the
two equations and using the relation αi+1 ≡ pαi( mod e), we have

g(Wi+1) = Wi+1, g(Zi+1)ω
βi+1

i+1 (g) = ωpαii+1(g)Zi+1.

Therefore, by the same argument as before, we may assume that Wi+1 ∈ E and Zi+1 is
either 0 or a monomial of degree hi+1.

The argument for i+ 1 6∈ J is similar. �

Now we prove the theorem. We separate the proof to three cases. (1) S0 = S; (2)
S1 = S; (3) S0 6= S and S1 6= S.

Proof of theorem 4.2. In the following argument, we make some change-of-variables for
one i ∈ S at a time to simplify the form of N .

(1) M is split, all the λi’s are 0. Fix a single i ∈ S. If Fil1Ni = 〈ueei, fi, uee′i, f ′i〉, we
may assume that Xi = Yi = Wi = 0 because making the following change of variables{

e′′i = e′i +Xiei + Yifi

f ′′i = f ′i +Wifi

and leaving e′j and f ′j with j 6= i unchanged do not change the forms of Fil1Ni and [g].

(It does not change the form of Fil1 because 〈ueei, fi, uee′i, f ′i〉 = 〈ueei, fi, uee′′i , f ′′i 〉 by the
construction; it does not change the form of [g] since we know that Xi and Wi are elements
in E and Yi is either 0 or a monomial of degree (e− hi).)
If Fil1Ni = E[u]/uep〈ei, uefi, e′i, uef ′i〉, we may assume that Xi = Zi = Wi = 0 because
making the following change of variables{

e′′i = e′i +Xiei

f ′′i = f ′i + Ziei +Wifi
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and leaving e′j and f ′j with j 6= i unchanged do not change the forms of Fil1Ni and [g].
Note that by the change of variables as above, although we may change the values of

Xi+1 andWi+1, the assumptions about the degrees of nonzero terms inXi+1, Yi+1, Zi+1,Wi+1

are preserved. Now suppose that we have done the above steps for i = 2, 3, ..., r. If
Fil1N1 = E[u]/uep〈uee1, f1, uee′1, f ′1〉, we may assume that Y1 = 0 since letting e′′1 =
e′1+Y1f1 does not change anything. Indeed, it does not change the forms of Fil1 and [g] by
the same argument as before. Furthermore, φ1(u

ee′′1) = φ1(u
ee′1) +φ1(u

eYif1) = φ1(u
ee′1),

it does not change X2, Y2, Z2, or W2.
If Fil1N1 = E[u]/uep〈e1, uef1, e′1, uef ′1〉, similarly, we may assume that Z1 = 0. By

counting the number of variables, we have our result.

(2) All the λi’s are nonzero. In this case J = S. Fix a single i ∈ S, we may assume
that Xi = Yi = Zi = 0 because we can make the following change of variables{

e′′i = e′i + (b)−1i Xiei + (b)−1i Yifi

f ′′i = f ′i − λiuhi(b)
−1
i Xiei + wi(fi + λiu

hiei),

where ((a)iwi − (a/b)iXi)λiu
hi = Zi. (This is possible because we know that Zi is either

0 or a monomial of degree hi.) It does not change the form of Fil1 since f ′′i + λiu
hie′′i =

f ′i +λiu
hie′i +wi(fi +λiu

hiei) +λi(b)
−1
i uhiYifi and ue | uhiYi. It does not change the form

of [g] because Xi,Wi ∈ E, Yi is either 0 or a monomial of degree e− hi, and Zi is either 0
or a monomial of degree hi. Also, the new φ1 has the following form on Ni:

φ1((b)
−1
i Yiu

efi) = φ1((b)
−1
i Yiu

e(fi + λiu
hiei))− φ1((b)−1i λiu

eYiu
hiei) = 0

φ1(u
ee′′i ) = φ1(u

ee′i) + φ1((b)
−1
i Xiu

eei) + φ1((b)
−1
i Yiu

efi)

= φ1(u
ee′i) + φ1((b)

−1
i Xiu

eei)

φ1(f
′′
i + λiu

hie′′i ) = φ1(f
′
i + λiu

hie′i) + φ1(wi(fi + λiu
hiei)) + φ1((b)

−1
i λiYiu

hifi)

= φ1(f
′
i + λiu

hie′i) + φ1(Ỹiu
eei) + φ1(wi(fi + λiu

hiei)).

Here Ỹi is an element in E[u]/uep such that Ỹiu
e = −(b)−1i λ2iu

2hiYi. If we make the change
of variables for i, then it may change the values of Xi+1, Wi+1, and Zi+1. We may still
assume that Xi+1,Wi+1 ∈ E and Zi+1 is a monomial of degree hi+1 by absorbing the
terms with degree greater or equal to e to e′i+1 or f ′i+1 as in the proof of Lemma 4.5. We
reduce the X, Y , Z, and W as follows. The original φ1 is given by the set of matrices

{
(
X2 Y2
Z2 W2

)
, · · · ,

(
Xr Yr
Zr Wr

)
,

(
X1 Y1
Z1 W1

)
}.

We make the change for i = 1, 2, · · · , r − 1, the new φ1 is given by the set of matrices

{
(

0 0
0 W ′2

)
, · · · ,

(
0 0
0 W ′r−1

)
,

(
X ′r Y ′r
Z ′r W ′r

)
,

(
0 0
0 W ′1

)
}.

We then make the change for i = r. By the above equations, this may change X1, Z1, and
W1, the new φ1 is given by the set of matrices

{
(

0 0
0 W ′2

)
, · · · ,

(
0 0
0 W ′r−1

)
,

(
0 0
0 W ′r

)
,

(
X ′1 0
Z ′1 W ′′1

)
}.
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Finally, we make the change for i = 1 again. Note now Y ′1 = 0, this does not change Z ′2.
Thus φ1 is given by the following matrices

{
(
X ′′2 0
0 W ′′2

)
,

(
0 0
0 W ′3

)
, · · · ,

(
0 0
0 W ′r

)
,

(
0 0
0 W ′′′1

)
}.

By counting the potentially nonzero variables, we get the right bound of the dimension.

(3) In this case, without loss of generality, we assume that λr = 0, λ1 6= 0. Fix an i ∈ S.
As in (1), if Fil1Ni = E[u]/uep〈ueei, fi, uee′i, f ′i〉, we may assume that Xi = Yi = Wi = 0.
If Fil1Ni = E[u]/uep〈ei, uefi, e′i, uef ′i〉, we may assume that Xi = Zi = Wi = 0.

As in (2), if Fil1Ni = E[u]/uep〈ueei, fi+λiu
hiei, u

ee′i, f
′
i +λiu

hie′i〉 with λi 6= 0, we may
assume that Xi = Yi = Zi = 0.

Now suppose that we have done the above steps for i = 1, 2, ..., r − 1. We do this for
i = r and this will only change the value of X1 and W1 since λr = 0. The potentially
nonzero terms are X1, W1 and one of Xi, Yi, Zi, Wi for each i 6= 1. �
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