RANK TWO BREUIL MODULES: BASIC STRUCTURES

CHUANGXUN CHENG

ABSTRACT. In this paper, we classify certain reducible rank two Breuil modules with
descent data and compute Ext'(M, M) for Breuil modules M of certain type.

1. INTRODUCTION AND NOTATION

In [6], the author proves a modularity theorem for some potentially Barsotti-Tate Galois
representations of Gg. One of the key ingredients in the proof is to use Breuil modules
with descent data to study the local universal deformation ring at prime p. In order to
generalize some of the results in [6] to totally real fields case, we need to understand
the structures of Breuil modules with descent data over general p-adic fields. This is the
motivation for writing this paper. In this paper, we prove some results about rank two
Breuil modules. The content of this paper is the following.

In section 2, we review the classification of rank one Breuil modules with certain descent
data from [3]. The key proposition is Proposition 2.3. It shows that rank one Breuil
modules with descent data are determined by three invariants. We also review some basic
facts about these invariants.

In the next two sections, we consider reducible rank two Breuil modules. In section
3, under some assumptions on the base fields (see the last paragraph of this section), we
classify all of the (rank two) extensions, in the category of Breuil modules with descent
data, of the rank one modules with descent data. The main classification result is Theorem
3.9.

In section 4, we compute Ext'(M, M) for a reducible rank two Breuil module M of
type J (see Definition 4.1). As mentioned at the beginning, this computation is the moti-
vation for this paper. The main result is Theorem 4.2, which plays an important role in [4].

Let us first recall the definition of Breuil modules with descent data. (See for example
[1] and [5].) Let k be a finite extension of F,, of degree r, W (k) the ring of Witt vectors.
Let Ko = W (k)[1/p], K be a totally and tamely ramified extension of Ky of degree e. Fix
a subfield F' of K, and assume that there is a uniformizer m of Ok such that n¢ € F.
Then K/F is tamely ramified, Ko/F is unramified. Assume that K/F is Galois. (This
condition will be satisfied in our choice of K in this paper.) Write G = Gal(K/F'). Let
S = Home(k:J_Fp) =~ 7 /r7. Fix 7o € S, let 7; = 79 0 Frob—*, where Frob is the arithmetic
Frobenius. Let E be a finite extension of I, such that the image of 7; is a subset of E.
Let S = k ®F, E[u]/u®.

Let w: G — k* be the map defined by w(g) = g(7)/m (mod 7). We see that w(gh) =
g(w(h))w(g). It is a cocycle. It is a character if and only if G acts trivially on k™, if
and only if Ko = F. Let w; be the composite of w with 7;. Then we have w; = w?;H.

For any g € G, we write [g] : S — S to be the k-semilinear, E-linear endomorphism
1
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of § as k ® E-algebra such that [¢g](u) = (w(g) ® 1)u. Let ¢ : S — S be the E-linear,
k-Frobenius-semilinear endomorphism of S such that ¢(u) = uP.

Definition 1.1. Let x € [2,p — 1] be an integer. The category BrMod;(;}(/F consists of
quintuples (M, Fil*" M, ¢.._1, {[g]}, N) where:

(1) M is a finitely generated S module, free over k[u]/uP.

(2) Fil"~'M is an S-submodule of M containing u**~ M.

(3) ¢r_1: Fil* 1M — M is an E-linear and ¢-semilinear map with image generating
M as an S-module.

(4) N: M — uM is a k ® E-linear map such that

N(uz) =uN(z) —uzx Ve M,
u*N(Fil" ' M) C Fil" M,
brn1(uN(x)) = (=7°/p) " N(¢pp_1(2)) Va € Fil" ' M.

Here (—7¢/p)~ is the image of (—7¢/p) in the residue field k.

(5) [9] : M — M are additive bijections for each g € G, preserving Fil*~!1 M, commut-
ing with the ¢,,_1-, N-, and E-actions, and satisfying [g1] o [g2] = [g1g2] for all g1, 92 € G,
and [1] is the identity map. Furthermore, if a € k ®F, £, m € M, then

[9](au'm) = g(a)((g(m)/m)" @ L)u’[g](m).
Remark 1.2. (1) If k = 2, the category BrModéd7K/F is equivalent to the category of finite
flat group schemes over Ok together with an E-action and descent data on the generic
fiber from K to F' (this equivalence depends on 7). In this case it follows from other
axioms that there is always a unique N which satisfies the required properties. See for
example Proposition 5.1.3 of [1].

(2) If k < K/, then there is a fully faithful functor L : BrMode_}{/F — BrModS;_é/F

which identifies BrM odgcﬁ( /g 3S a full subcategory of BrM odg;_é P More precise-
ly, it M = (M, Fil*"'"M,¢.1,{[g]},N) is an object in BrMody, ./, then L(M) =
(L(M), Fil" "' L(M), ¢s_1,{[9]}, N) where L(M) = M, Fil*' "' L(M) = u¢"' =% Fil"=1 M,
b1 (" M) z) = ¢_1(x), and N, [g] remain the same. B

(3) Let Repr(GF) be the category of representations of Gg := Gal(F'/F') over E-vector
spaces. In this paper, we use the contravariant functor Ty : BrM odgd_lK P Repp(Gr)
defined in section 2.1 of [3].

In this paper, we assume that K = Ko((—p)'/?"~1) and F = K;. Note that in this case
we have e = p" — 1 and K is Galois over K¢ with Gal(K/Ky) = Z/(p" — 1)Z.

2. RANK ONE BREUIL MODULES

In this section, we classify rank one Breuil modules, determine when we have nontrivial
morphisms between two rank one Breuil modules, and prove some other properties. Most
of these results are in [3], we sketch the proofs here and refer to [3] for details.

Recall that S = Hom(k,F,) 2 Z/rZ and E contains the image of 7; € S, so we have a
ring isomorphism k ®p, £ =~ ES where the action of  ® 1 on the T7-component coincides
with the action of 1 ® 7(z) for 7 € S. Therefore we may write S = GgFE[u|/u®. We also
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denote ¢ to be the map ¢ : E[u]/u®? — E[u]/u? which sends u to uP and acts trivially on
E

If M is an object of BrModg;}(/KO, then

M=MPMsP---BM,,

where M; = M Qs E[u]/u is a free E[u]/uP-module, which is characterized by the
fact that the action of x ® 1 on M; coincides with the action of 1 ® 7;(z) for ; € S.
Throughout the paper if M is a Breuil module over &, then M; will always denote the
T;-component of M. By convention, the subscripts 7 are always taken modulo r. Similarly,
Fil"~' M has a decomposition

Fill "M = Fil" *My @ Fil" "My & - @ Fil" ' M,,

with u¢*~Y M, c Fil""*M; C M,. The Frobenius action of k ®p, £ maps Er, to Er,
br—1 induces ¢p_1 : Fil" 1 M; — M,y for i € Z/r7Z and the image generates M, 1, and
N(M;) C M;.

If M is of rank one as an S-module, then M, is free of rank one over E[u|/u?. Therefore,
there exists an integer m; € [0, e(k — 1)] such that Fil"~1M; = u™i M,.

Let e; be a basis of M. Define es = ¢,_1(u™ e1). Since ¢,_1(Fil* 1 M;) generates
My, es is a basis of Ms. Inductively, define e;11 = ¢p—1(u™ie;) for i < r. Then e; is a
basis of M;. Finally, we have ¢,_1(u""e,) = ae; for some a € (E[u]/u®)*.

Remark 2.1. Assume that A\ € E[u]/u? is invertible. Replacing e; by Aej changes a to
a-¢"(N)/\. By the following lemma, we may assume that a € E*.

Lemma 2.2. Ifx =1 (mod u), then there exists y € S, such that y/¢"(y) = x.

Proof. Since x = 1 (mod u), ¢" (z) = 1 for sufficiently large n. Thus we can choose
y=1lZo¢" (@) O

Note that ¢,_1(u®N(u™ie;)) = N(pr—1(u"€e;)) = N(eir1). On the other hand, we
know that ¢,—1(u*N(u™e;)) = u®Pep,_1(N(u"e;)) = 0. Therefore N(e;11) = 0 for any i.

We then consider the descent data. By the definition of Breuil modules, the Galois
action commutes with other actions, so [g] maps M; to M;. On the i-th piece, the action
of G on Efu/u is given by [g]u = w;(g)u. Assume that [g] - e; = a;(g)e;, where a; is a
function o; : G — (E[u]/u®?)*. By definition, [g][h] = [gh], so «; is a character. Since
@i(g) is an e-th root of unit in (Efu]/u®?)*, a;(g) € E*. We may assume that o; = w!"
for some p; (mod e). Also, [g] 0 ¢pu—1 = ¢k—1 © [g], we have pir1 = p(u; + m;)(mod e).
From this, we have

p'm; + pr_lmi+1 + -+ mei+r72 + pmiyr—1 = 0(mod e).
aifi=1,

We write (a); = .
1 otherwise.

Proposition 2.3. If M is a rank one object of BrModgcz}(/Ko, then there exist integers

m; € [0,e(k — 1), u; € [0,e — 1], and a € E*, such that we can choose basis e; for M;,
and

(1) Fil*='*M; = (u™ie;),

(2) dn-1(u™€;) = (a)itr€i1,
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(3) piv1 = p(pi + mi)(mod e),
(4) [9] - e = Wi (g)ei,
(5) N(e;) = 0.

We will write the Breuil module with these invariants M(m;, p;, a).
We attach to M (my, i, a) another invariant

ppii = prmi+p T mig + - 4 pPmige o + pmige
ili = .

e
Note that jif; ; is an integer divisible by p and pm; = ppii; — tririv1-

For a € E*, let unr(a) : Gk, — E* be the unramified character of G, sending the
geometric Frobenius to a.

Proposition 2.4. Let M = M(m;, p;,a) be as in above, then the character Ty (M) of
GKO 18
_ T (s o
unr(a) -wEK 1)(1+p+-4p"1h) (/1'7,+/"le,7,).

Proof. This is Proposition 2.3 of [3]. Note that wgu itifiti) o independent of i since p(u; +
priti) = (iv1 + ppitiv1)(mod e). U

The following two propositions are from section 5 of [3]. Let A and B be two rank one
objects of BrModS;}(/KO. Assume that A = M(a;, a;,a) and B = M(b;, 5;, b). Write

Cprai+p a4 4 PPaigr—o + paipe_1
Qfil; = .

and

Bru Phi 4+ i1 + - 4 PPhir—2 + Phigra
ilg — .

e

Proposition 2.5. Assume that there is an isomorphism f : Tg (B) — Ts(A). Then there
exists a non-zero morphism (in the category BrModgd_}(/Ko) A — Bif and only if apy; <
Bfiri for all i. In this case, the morphism f' : A — B defined by A; — ubrivi—fiLi B;
induces an isomorphism Tg(f"), where A; and B; are basis of A; and B; respectively.

Proposition 2.6. Assume that there is an isomorphism f : T (B) — Ts:(A). Then there
exists a third object C in BrModgd_}(/KO of rank one, with morphisms f%4 : A — C and

[t B = C, such that Ty (fy) o Tst(fp) ™" is an isomorphism.

Proof. If apy; < By for all ¢, we may choose C = B. If ay;; > Bri, for all i, we may
choose C = A.

In general, we construct C directly as follows. Let vy, = max(ayii, Brii), ni =
%max(oaﬁfﬂ,i — apirg), ¢ = @i +png — nig1, and v; = o + o — Ypii- Then we may
define C = M(c;,7i,a). See Proposition 5.6 of [3] for more details. O

We define a special type of Breuil modules.
Definition 2.7. Let J C S. We say M(m;, p;,a) is of type J if m; = e(k — 1)d;(i + 1),
lifr e dJ
where (i) = { RREAS

0 otherwise.
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Proposition 2.8. Fiz J C S and a character i : Gix, — E* trivial on Ix. Then there
exists a unique rank one Breuil module M of type J such that Ts;(M) = ).

Proof. Since 1 is trivial on I, we may write ¢ = unr(a)wy for some a € E*. Define

r—1 r—1
pi=—pn+ (=1 p = (k=1)Y p'Io;(i+j+1) (mod e).
j=0 J=0

It is easy to see that
tit1 = p(pi + e(k —1)d5(i + 1)) (mod e).

Then we may define M = M(e(k —1)d;(i + 1), ps, a). By Proposition 2.4, T (M) = 1.
The uniqueness follows from Proposition 2.4 and Definition 2.7. U

Corollary 2.9. Fiz a character i : Gg, — E* trivial on Ix. Let J and J' be two subsets
of S. By the above proposition, we know that there exist two rank one Breuil modules M j
and My of type J and J' respectively, such that Tsy(M ) = Tsy(M j) = 4p. Then there
exists a non-zero morphism f': My — My if and only if J C J'.

Proof. By definition, M j hasmj; = e(k—1)d;(i+1) and My hasmy ; = e(k—1)0 5 (i+1).
If J C J', it is obvious that mj; < m ; and therefore i ¢i1; < gy firi- There exists a
nonzero morphism f’: Mj; — M by Proposition 2.5.

If J ¢ J', we choose j € J\J', then pj i1; > py, fir,; and there is no nonzero morphism
f/ My — My Il

3. REDUCIBLE RANK TWO BREUIL MODULES

In this section, we consider rank two Breuil modules which are extensions of a rank one
Breuil module with descent data by another rank one Breuil module with descent data.
We will follow the method of section 7 of [6] for the remainder of this section.

First, we forget about the descent data and the monodromy operator N. Let M(m;,a)
and M (n;,b) be two Breuil modules of rank one. Let M € Ext'(M(m;,a), M(n;,b)).
Assume that

M(mi, a) = Bies(fi),

M(n;, b) = Bies(€:).
We may write that

M = DiesM; = Bies(ei, fi),
and
Fil"* 1M = @iesFilH_lMi = @ies(ue;, u™ fi + hie;),

where e; is the image of &;, f; is a lift of f;, and h; € E[u]/u®. We will simplify the
structure of M in three steps.

(Step 1) Since u¢"~YM; C Fil"* ' M;, we have u"~1 f; € (u™e;, u™ f; + hie;). This
tells us that h; € umeOmitni—e(s=1)) Bly] /P,

(Step 2) We may assume that ¢,—1(u™ f; + hie;) = (a)i+1fit1. First, we choose fi
such that Fil" " 'M; = (u™ey,u™ fi + hie;) for some hy € Efu]/u’. Then we define
fit1 inductively by ¢,—1(u™ f; + hie;) = (a)it1 fir1 for i < r. Suppose that ¢,_q (v fr +
hrey) = (a)1(f1 + Xe1), then we define f{ = fi + Xe; and b} = h; — v X. Hence
u™ fi + hler = u™ fi + hie;. From this construction, we see that f; if i # 1 or f] if
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i = 1is a lift of f;. They give a basis of M since ¢,_1(M) generates M. The relation
Gr—1 (U™ fi + hie;) = (a)it1fi+1 (0 # 1) holds from the construction and ¢,—1(u™ f] +
hhe1) = ¢p—1(u™ f1 + hier) = (a)2 fo.
(Step 3) Now we determine what kind of transformations we can make to keep the form
in (Step 2). Assume that replacing f; by f/ = fi + Xie; and h; by H; keeps the form
Gr—1(u™ fi + hiei) = (a)it1 fiv1-
We have
Gr—1(u™ fi + Hie;) = (a)it1 fiy1-
The left hand side of the above equation is
-1 (W™ fl + Hie;) = o1 (u™ fi + hie; + (W™ X; + H; — hi)e;)
= (a)ix1fir1 + du1 (W™ X; + H; — hi)e;)
We must have
(@)it1Xiv1€i401 = Pr—1 (W X; + H; — hy)e;).
Assume that u™ X; + H; — h; = t;41u™ for some t;11 € Elu]/u?, then
(@)it1Xiy1 = (b)i+10(tiv1)
H; = hi + tiu™ — (b/a)iu™ ¢(t;).
From the above analysis, we have the following proposition, which generalizes Lemma
5.2.4 of [2].

(3.1)

Proposition 3.1. If we forget about the descent data and the monodromy operator N,
then

{(hz)zes‘hz c umaw(O,mi—i—ni—e(n—l))E[u]/uep}
{(tiprum — (b/a)iu™ip(t:))ies} ’
where t;’s run through all elements in E[u]/u®P.

We add the descent data to our consideration. Let M € Ext'(M(my, a;, a), M(ny, Bi, b)),
such that

Ext'(M(mj,a), M(n;, b)) =

M = (ei, fi)
Fil" Y M; = (u"e;, u™ f; + hie;),
Pr—1(u"e;) = (b)ix1€i41, Gr—1(u™ fi + hie;) = (@)iy1 fis1-
Assume that
lglei = wl(g)es,
[9]fi = wi"(9) fi + Aigei.
We show that we may make A; ; = 0 without changing the forms of Fil"~! and ¢,_1.

Lemma 3.2. HY(G, Elu]/u®) = 0 for all ¢ > 0. Here the Galois action is given by

9 aju’) =32 ajwi(g)u’.

Proof. Write E(j) = E with G-action given by g -a = aw;(g9)?. Then HY(G, E(j)) = 0 for

q > 0 since G = e = p" — 1 and #E(j) = p" for some integer N. Therefore, if ¢ > 0,
HY(G, Eu]/u®?) = &;HY(G, E(j)) = 0.
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Lemma 3.3. All nonzero terms of A; 4 have degree divisible by p.

Proof. We use the relation ¢,_; o [g] = [g] © ¢x—1 to prove this lemma. On one hand,

[g] 0 pr—1(u™ fi + hie;) = (a)iv1(wii T (9) fix1 + Aig1geiv1).
On the other hand,

[g) (™ f; + hies) = W™ (g)u™ (W (9) f; + Aiges) + g(hi)w) (g)e;
= mite (g) (umlfl + hzez) + He;,

(2
where
H =" (g)u™ Aiyg + g(hi)w;” (9) — i (9)hs.

Since [g] preserves Fil*~!, we have He; € Fil*"* M. Therefore, u™|H. Let H/u™ be an
element in Efu]/u®? such that v (H/u") = H. Note that H/u™ is not unique. (Assume
that H/u™ =Y ¢;u?, then Y c;ut™ = H. Therefore ¢; is uniquely determined only for
those @ with i +n; < ep.) But ¢(H/u") € E[u]/u? is unique, because if i +n; > ep, then
pi > p(ep —n;) > ep. Then

Gt 0 g™ fi + hie) = ™) (9)(@)i firr + S(H/U™) (B)isreinn.
Remember that o; 11 = p(m; + «;)(mod e). Comparing the above two equations, we see

that Ait149 = (b/a)it1¢(H/u™). All nonzero terms of A;yq4 have degree divisible by
p. O

Lemma 3.4. We may assume that A; 4 = 0.
Proof. Recall that [hg] = [h][g]. Applying both sides to f;, we have

Wi (hg) fi + Ainge: = W (9) (W (h) fi + Aspes) + h(A; g)w! (h)e;

Ai g Ain Bi—a Aig
Bihg _ Lih _ Bioipyp Lig
S (hg) — o (h) WA(Cei gy

K3 7

So (g — wéfé)) is a cocycle in H(G, E[u]/u?), where the Galois action is given by

g > al) = wf’;ai (9) " ajwi(g)u?. By the same argument of Lemma 3.2, this coho-
mology group is trivial. The cocycle is actually a coboundary.

Let f] = fi + (b/a);¢(t;)e;, for t; € Efu]/u’. Note that by equation (3.1), this change
will keep the form of M as stated after Proposition 3.1. (However, we may get new h;’s.)
Then

l91fi = 9] fi + 9((b/a)id(t:))[glei
=w(9)fi + (Aig + (g ((b/a)id(ti)) — (b/a)id(t:)wi (9))ei,
w’_éf‘(gg ) is changed by the coboundary of (b/a);¢(t;). We then may assume that A; ; = 0 by

tfle above lemma. O

Remark 3.5. (1) By the above lemma, we assume that A; ; = 0. Then in the proof of
Lemma 3.3, ¢(H/u™) = 0. So u®|(H/u™), i.e., u¢™|H. If we write h; = > aju?, since

H = g(h,;)wfi (9) — wimﬁo” (9)h;, then

H=>Y"a;(w]™(g) — " (g)).
J
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If j < e+mn;and a; # 0, then j = m; + a; — B;(mod e).

(2) If {h;} and {h}} give isomorphic Breuil modules with A; ; = 0. Then we know that
for some {¢;}. By the proof of Lemma 3.4, we know that g-((b/a):¢(t:;)) — (b/a)ip(t:) = 0.
Soif t; = Zj a;juw, a;j 70 and j < e, then 5; — o + jp = 0(mod e).

Therefore, in equation (3.1), if all nonzero terms with degree less than n; of h; have

degree congruent to (m; + «; — 3;) (mod e), then all nonzero terms with degree less than
n; of H; also have degree congruent to (m; + «; — ;) (mod e).

Next, we study the group Ext! (M (m;, oy, a), M(n;, 5;,b)). Let M € Ext*(M(m;, as,a), M(n;, Bi, b)).
Assume that M = @&; M, has the following form.

M’i = <ei7 f1>7
F’L'lﬁ_l./\/li = <uni€i, um’fz + hi€i>,

br—1(u"e;) = (b)it1€i+1, Gu—1(u™ fi + hie;) = (a)iy1 fit1,

lgles = W (g)es, lglfi = w(9) fi,

N(ei) =0, N(fi)=Cie;.
From Proposition 3.1, two different sets {h;} and {h.} give isomorphic Breuil modules
only if there exist ¢; € E[u]/u? such that h; — h} = t;11u™ — (b/a);u™ ¢(t;) for all i € S.
We would like to solve (T});cs from the following equation system:

(3.2) H, = " il — (b/a)zu"”(b(Tz) 1€ S

where H; € Elu]/uP. ‘ ‘
Assume that H; = Zji H; v, T; = ij‘ T; j,u’*, then the equation system is the same as

(33) Hi,ji = 11“_17]'1._”1. — (b/a)sz ji—m; 1 €8 Vj;.
Top

T; j; is required to be zero unless j; is a nonnegative integer. Set X; = %(ﬂﬁlﬂ; — afilﬂ;),
Ji = Xiy1 +n;. Then X, = pX; + m; —n;. Note that X; and J; are integers.

We will attempt to solve the equation system (3.3) by induction on the least integer
greater than or equal to max;es{|ji — Ji|}. The condition |j; — J;] = 0 for all ¢ € S is
an empty set unless J; is a nonnegative integer and j; = J;, in which case, we have the
following base case equation system:

(3.4) Hij, = Tiv1,x,4, — (b/a)iTix; i €S.

If this is solvable for (7} x,), we have our base case. We assume the following inductive
hypothesis:

(a) the equation system (3.3) can be solved for all H; j, with |j; — J;] < N;

(b) in doing so, all and only the T; ;, with |j; — X;| < N or with j; ¢ Z>¢ have been
determined.

Assume that N < |j; — J;| < N + 1, then

N < |(ji —ni) = Xipa| S N+ 1.

If |j; — Ji| < N +1, then j; is not an integer, we have Tj41 j,—n, = 0. If [j; — J;| = N +1
and N = 0, then

|=—— — Xi| = |ji — Jil/p = 1/p,
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ji_p# is not an integer and we set Tjy1 j,—n, = H;j,- If [j; — Ji| = N+1and N > 1, then

Ji —my

| — Xi| =ji — Jil/p < N,

T’ ji-m; has been determined. We may take
oo

Tiv1ji—n; = Hig, + (b/a)iT} ji—m; -
>oop

Note that if j; < n;, then there is a solution if and only if Tj11 j,—y, so obtained is 0.
From the above analysis, we have the following lemma.

Lemma 3.6. The equation system (3.2) has a solution if and only if
(a) the base case (3.4) is either vacuous or is non vacuous and has a solution;
(b) whenever j; < n;, we have

Tiv15i—n; = Hij, + (b/a)iT; ji—m; = 0.
>op

Lemma 3.7. Suppose that the equation system (3.2) has a solution and deg H; < n; V 1,
then H; =0V 1.

Proof. First, we prove that H; ;, = 0 Vi. If X; > 0 Vi, then by definition, J; = X1 4+n; >
n;, so H; j, = 0. If X; <0 for some 4, choose any | € S, we analyze case by case.

(1) X; < 0. If Xj41 <0, then Hl’Jl = Tl+1,Xl+1 - (b/a)lTLXl = 0. If Xj31 > 0, then
Jy = X1 +ny > ny, Hy j, = 0.

(2) Xl > 0. If Xl+1 > 0, then Jl = Xl+1 + ny > ni, Hl,Jl =0. If Xl+1 < 0, then
Hyj =c-Tx,. Also H_1,_, =0since Jj_1 = X;+n1>mn_1, Hy=c-Ti1x,_,-
We continue this step, there exists a minimal a such that X; 4,41 > 0 but X;_, < 0. Then
Hyj=c T ux,_,=0.

Now we know that H; j, = 0 Vi. The base case has a solution 7; j, = 0 Vi. Then by the
induction procedure, it is easy to see that T; ; =0V 7,j. So H; =0 V 1. O

Lemma 3.8. (1) If the base case for (H;)ics can be solved, or cannot be solved but X; < 0
for some i, then there exists a unique (H)ies such that the equation system for (H))cs
can be solved and such that deg(H! — H;) < n; for alli € S.

(2) If the base case cannot be solved and X; > 0 for all i, then there exists a unique
(H))ies such that the equation system for (H})ics can be solved, deg(H] — H;) < n; for
i # r, and the only nonzero term of H| — H, of degree at least n, if any is of degree
Jr= X1+ n,.

Proof. First, we make a suitable choice of coeflicients HZ’ g, for all ¢ namely, we would
like the base case (3.4) to be solvable, and we would like HZ’ g, = Hi,j, whenever J; > n;,
except that in case (2) we omit the latter condition when i = r.

If the base case is solvable for H;, we just take H; = H;. If the base case is not solvable,
we distinguish the two cases (1) and (2). Note that the base case gives us the following
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equation system:
([ Hij=Tax, — (b/a)Tix,
Hs j, =13 x, — 12 x,

HT*LJ?"—I = TTyXT - TT*LXr—l
Hyj =T x, —Trx,

In case (1), if X; < 0, let s > 0 be minimal such that X;;s < 0 (we might have s = r). If
s =1, set HZ’JZ =0.Ifs>1land1¢ {i+1, - ,i+s—1}, summing the equations from i to
i+s—1gives H; j,+Hi1 5, + +Hits 17, = Tiysx;.,—(b/a)iT; x, = 0. In this case,
we take H]’-’Jj = Hj , fori < j <i+sandset Hz{Jrsfl,Jqu = —(Hi g+ +Hiys—275,, )
Ifs>1and1e {i+1,---,i+s—1}, summing the equations from i to i+s—1 gives H; j, +
Hi+1,Ji+1 +eoeet HiJrS*l,JijLsfl = TiJrS,XHs - (b/a)iTi,Xi + (1 - b/a)Tl,Xl = (1 - b/a)Tl,Xl'
In the case a # b, we take H]’.’Jj = Hj j; for i < j <i+s—1; in the case a = b, we take
H]’-Jj = Hj, fori<j<i+s—1and set H£+8_17Ji+571 =—(Hij+ +Hits275,, ,)
Now the base case is solvable, and H'L/Jz # H; j, only for some i € § with X;41 <0, so
that J; < n;.

In case (2), since all X; > 0, none of the T; x, are forced to be 0 by virtue of having
negative degree. Now the insolvability of the base case is equivalent to the insolvability of
S Hi g = (1—-0b/a)T x,; this occurs if and only if @ = b and >, H; j, # 0. In this

/ ; / r—1
case we must take H; ; = H; j, for i #rand H, ; = —3> 2171 H; j,.

Having made a suitable choice of the coefficients HZ’ J;» we extend this to a full choice
of H/’s. The only obstruction is that Lemma 3.6(b) must be satisfied. In particular we
can certainly set HZ’ j; = Hij; whenever j; > n; (and j; # J;). Recall that in the inductive
process for solving the system of the equations that is described prior to Lemma 3.6, if
Ji # J; then the coefficient Tj (;, )/, has been determined before the coefficient H; j;, has
ever been used in the process. We carry out the inductive process on the H!’s, except that
we initially treat HL j, as an indeterminate whenever j; < n; and j; # J;. When we arrive
at the determination of Tj41 j,—n, in that inductive process (with j; < n; and j; # J;), we
simply set H] ; = —(b/a);T; (j,—m,)/p and carry on.

Finally, the uniqueness in case (1) follows from Lemma 3.7. The uniqueness in case (2)
follows from Lemma 3.7 and the fact that H, ; = — S H; O

Now we can state the following theorem which corresponds to Theorem 7.5 of [6].

Theorem 3.9. Let M € Ext'(M(my, a;,a), M(ny, Bi,b)). Let X; = (Bfiti —agi)/p and
Ji = Xi41 +ny. Write M = @;esM;, then there exist e; and f; such that

M; = (e, fi),
Fil" "M, = (u"e;, u™ f; + hie;),
Gr—1(u"e;) = (b)it1€i+1, Gr—1(W™ fi + hie;) = (a)it+1 fit1,
N(e;) =0, N(f;)= Cie;,

lgle; = W (9)ess  [glfi = Wi (9) fi.

Here C; is a polynomial with all nonzero terms have degree congruent to (5; — ;) (mod e),
h; € umarOmitni=e(s=1) By) fueP satisfies
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(1) all nonzero terms have degree congruent to m; + o; — 3; (mod e);

(2) if X; >0 foralli €S, a=0b, and J; = m; + a; — B; (mod e) for some i € S, then
deg(h;) < m; if i # r, h, may have one nonzero term of degree J,. > n, and every other
nonzero term of H, has degree less than n,; otherwise, all nonzero terms of h; have degree
less than n;.

Furthermore, if k = 2, each set (h;);cs with the properties as above will give us a well
defined rank two Breuil module.

Proof. We first prove the statement about N(f;). Assume that N(f;) = Cie; + D, f; with
u|Cy, D;. Because N([g]|(f:)) = [g](N(f)), we have

w(9)(Cies + Difi) = g(Co)w (9)ei + g(Di)wi" (9) fi
So C; is a polynomial with all nonzero terms have degree congruent to 5; — a; (mod e).
D; = 0 follows from the fact that N(f;) = 0.

From (Step 1), we have h; € uma@(Omitni=e(s=1) By) /yeP. Because u¢ie; € Fil"~ ' M;
and ¢—1(ue;) = uPp,_1(ue;) = 0, we may assume that deg(h;) < (e +n;). Then
condition (1) follows from Remark 3.5(1).

From the definition of J;, we see that J; = m; + o — Si(mod e) if and only if pg; +
P+ Briit1 = poi +pmi+agi i1 (mod e), if and only if Bi1 + Briiv1 = g1 + it
(mod e). If J; = m; + a; — Bi(mod e) for one i € S, then J; = m; + o; — fi(mod e) for all
i € S. Condition (2) follows from Lemma 3.8.

The last statement follows from Remark 1.2(1). O

Remark 3.10. (1) In the case k = 2, we have an equivalence between BrM odé 4,5/ Ko
and the category of certain finite flat group schemes over Ox. When m;’s get larger,
the corresponding group scheme gets more multiplicative. When m;’s get smaller, the
corresponding group scheme gets more etale. The theorem is compatible with the fact
that there are many extensions of etale group schemes by multiplicative ones, but none in
the other direction. See the remark following Theorem 7.5 of [6] for a similar statement.

(2) In the case k = 2, if B; + Brii # a; + oy (mod e) or a # b, then all the h;’s can
be taken to be monomials. This fact may help us simplify computations.

(3) In general, if k # 2, a set (Cy, h;)ies where Cj, h; satisfy the properties stated in
the theorem may not give us a well defined Breuil module. The problem is that the
monodromy operator N satisfies some equations by the definition of Breuil modules, and
these equations give us some equations that C; and h; should satisfy.

As mentioned before, in the case k = 2, we know that there exists a unique N which
satisfies all the conditions in Definition 1.1. We have the following corollary.

Corollary 3.11. If k = 2, assume that B; + Bri; # o; + aypy,; (mod e) or a # b. Let
B =t{ie S |3z e€Z such that max(0,m; +n; —e) <x < (n; — 1) and x =m; + a5 — f;
(mod e)}, then

dlmE Extl(M(mhai’ a)aM(nhﬁh b)) = B.

4. RANK TWO BREUIL MODULES OF TYPE J

Definition 4.1. Let J be a subset of S. We say a reducible rank two Breuil module M is
of type J if it is an extension of a rank one Breuil module of type J by a rank one Breuil
module of type J¢. Here J¢ = S\J.
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In this section, we assume that x = 2. The main goal is to compute Ext!'(M, M),
where M is a reducible rank two Breuil module of type J such that M = @;cgM; has
the following form.

Mi == E[u]/uep<ei7fi>7
Fil' M; = Elu]/u™{we;,u™% f; + Nule;),

o1 (wie;) = (B)itreivr, 1w fi + Nulie;) = ()it fivr,

lgles = @ (9)es, [glfi = w(9) fir
i+ 1
where A € E with \; = 0ifi+1 ¢ J, ji = 4¢ TLES id b € 0,6 — 1]
0 i+1¢J

with h; = «a; — B;( mod e). Note that M is split if and only if all the \;’s are 0. Let
So={ie€ S| N =0}and S; ={i € S|\ # 0}. The main result of this section is the
following theorem.

Theorem 4.2. (1) If So = S (M is split), then dimg Ext' (M, M) < 2+ 7.
(2) If So # S, then dimg Ext!(M, M) < 1+7.

Let N € Ext'(M, M). Write N = @;csN;. Assume that
-A/:i = E[u]/uep<ei7 fi7 e'IL: f{)?
where e, € N (resp. f! € N;) is a lift of e; € M, (resp. fi € M;).
Lemma 4.3. We may assume that
Fil' N; = Elu] fu(w e;,u " f; + Niul e, uliel, u i f + Niule).

Proof. Ifi+1 € J, assume that Fil'N; = E[u]/u®{u®e;, fi+\ulie;, uel+Aei+B;fi, fl+
)\iuhie; +Ciei+ D;f;), where A;, B;, C;, D; € E[u]/u®’. We may assume that B; = D; = 0.
Since u®e}; € Fil'N;, we see u¢|A4;. So we may assume that A; = 0. Now let f/ = f/+Cie,
we may assume that C; = 0.

Ifi+1 ¢ J, assume that Fil'N; = E[u]/uP(e;, uf;, €; + Aje; + Bifi, u¢ i + Cie; + Di f;),
where A;, B;,C;, D; € E[u]/u®’. We may assume that 4, = C; = 0. Let e/ = ¢, + B, f;,

we may assume that B; = 0. Since u® fl-’ € Fil'N;, we see u¢|D; and may assume that
D; =0. O

Assume that N has the following form.
Ni = Elul/u{e;, fi, & f;)
Fil' Ni = Elul /u(w e;, u*7 fi + Al e, wi e, ™7 f] + Nulef),
pr(we]) = (b)iy1€fyy + Xivr€ir1 + Yig1 fir1,
o1 (w4 Nuliel) = (a)it1 flq + Zigaeirr + Wiga fita,
[9(¢h) = wi*(9)e + Aigei + Biglfi,

[9](f}) = wi' (9) fi + Cigei + Dig fi,
where the X, Y, Z W and A, B,C, D are in E[u|/u.

Lemma 4.4. We may assume that A; g = B; g = C; g = D; g = 0.
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Proof. [hgle; = W (hg)e} + Aingei + Bingfi- On the other hand,
[hgle; = [Pl(w] (9)€} + Aigei + Bigfi)
= & (9) (W) (h)ef + Aipes + Binfi) + h(Asg)w ()ei + h(Big)wi (h) fi.
Comparing the coeflicients, we get the following equations.
Aipg A Aig
Bi T B h( Bi
w;'(hg)  w;*(h) w;"(9)

(2

),

and

Wihg) W) W)

7 (2

(O]

Similarly, we have
D; hg D;p,
— = ——— +h -
S (hg) = wm () M (g)

and
Cihg Cin Ciyg

ou7 = a" +h oy

o (hg) ~ W () T )

If we replace €} and f! by e = e, + Pie; + Qifi, fI' = f/ + Rie; + Sifi, then

9)(e]) = WP (g)€; + Aiges + Bigfi + 9(P)wl(g)es + g(Qi)w (9) fi
= P (g)e! + [Aig + WP (9)(9(P) — P))e

i

+ [Big +w(9)9(Q) — W (9)Qil fi,

9)(f7') = @i (9) f{ + Ciges + Digfi + g(Ri)w (9)es + g(Si)wi (9) fi
= W ()] + [Cig + W] (9)g(Ri) — wi (9)Rile
+ [Dig +wi (9)(9(Si) — Si)l fi
We prove that, in the case i +1 € J, we can choose P;, Q;, R;, S; to make A; y = B; ; =

Cig = D; 4 = 0 without changing the form of Fil'. (The case i + 1 ¢ J is similar and
the computation is easier.) In this case, Fil'N; = (u®e;, f; + N\julie;, utel, fl + Niuliel). In
order to keep the form of Fil'\j;, the equations e = e+ Pie;+ Qi fi, f!' = f/+ Rie;+ Sifi
should give us

Jwl =% (h).

(e, fi + Aulies, ulel, f] + Nulel) = (uey, fi + Niues, utel, i+ Aulie]).
Note that
fI+ Nuliel = fl+ Rie; + Sifi + \ui (€] + Pre; + Qi fi)
= [+ Xulel + (Si + Qi) (fi + Aiuliei)+
(Ri + \iw Py — A Sy — (Au)?@Qi)e.
To keep the form of Fil'N;, we should choose P;, Q;, R;, S; such that
u | (R; + Nuli Py — i S; — (\ul)2Q;).
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Also note that [g] preserves FillN;. [g](u®e}) € Fil'N; since u°N; C Fil'N;.
[9](f] + Niulie}) = w(g) fl + Cigei + Digfi + Niulw! (9) (W] (9)e} + Asgei + Bigfi)
= W (g)(f] + Aue}) + (Dig + Niu"'w]i(9) B ) (fi + Aue;)
+ (Ci g + Aiw Zw "(9)Aiy — Nu"iD; , — /\?u%iwfi (9)Big)ei.

Therefore,
u® | (Cig + )\iuh"w;” (9)Aig — )\iuhiDi,g — )\?u%’wz}.“ (9)Big)-
First, from the above computation and Lemma 3.2, we may choose F;, Q;, R;,S; €
E[u]/u? such that

Aig+w (9)(g(P) = P)) =0

By +w{"(9)9(Qs) — ] (9)Qi = 0

Di g+ w;"(9)(g(Si) — 8i) =0
and

u® ’ (RZ + )\iuhiPi — )\zuhZSz — ()\Zuhz)QQz)
Therefore, we may assume that A;, = B; g = D; 4y = 0 and u® | C; 4. Then we choose
¥; € Elu]/u? such that u® | ¥; and Cj g4 + wiﬁ" (9)9(2;) — w;"(g)%; = 0. Replacing f;’ by
[+ Xje;, we may assume that C; 5 = 0.
Ifi4+1 ¢ J, the argument is similar. Indeed, by taking A\; = 0 and reversing the roles of

e; and f; in the proof for the case i+ 1 € J, we get the argument for the case i+1¢ J. U

Lemma 4.5. We may assume that X1, Wiy1 € E, Yiq1 s either 0 or a monomial of
degree e — hijy1, and Z;1 is either 0 or a monomial of degree hjy1.

Proof. If i + 1 € J, we know that M has the following form.
Elu]/u{e;, fis €}, [7),
Fil'N; = Elu ]/ Plue;, fi + Mulie;, utel, fl+ Nuliel),
pr(ue;) = (b)iv1€y1 + Xivreir1 + Yir1fiv,
G1(f] + Au'e)) = (a)ir1fl1 + Zivreis + Wit firn,
[9)(el) = w (g)els [a)(f]) = w(9) ff.
By definition, we have the relation [g] o ¢1 = ¢1 0[g]. On one hand,
[9)(¢1(u%€s)) = [g)((B)ir1€i11 + Xivr€is1 + Vit fir1)
= Wﬁﬁl(g)(b)iﬂeéﬂ + 9(Xit1) ?+1 (9)eir1 + 9(Yig1)wi i1 (9) fis1-
On the other hand,
$1(g)(u%€})) = 1 (w) (g)u‘e))
= W?Z (9)((b)is1€541 + Xit1€ir1 + Yig1 fitr)-
Comparing the two equations and using the relation ;11 = pF;( mod e), we see that
9(Xir1) = Xivr, g(Vir)wl{T' (9) = i (9) Vi

Therefore every nonzero term of X1 has degree congruent to 0 (mod e) and every nonzero
term of Y;;1 has degree congruent to (pf; — a;+1) (mod e). Note that the action of [g]
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preserves the degree of a monomial, every single term of X;,1 or Y;;1 also satisfies the
above relation.

We may assume that X;;1; and Yjy; are of degree less than e. Because absorbing all
the terms with degree > e to €] ; does not change the form of Fil' N and [g]. (It does
not change the form of Fil' ;41 because u’N" C N; it does not change the form of [g]
because the degrees of nonzero terms satisfy the above congruence equations modulo e.)

Therefore we may assume X, is of degree 0 and Y;1; is either 0 or a monomial of
degree = (pf; — ai+1) (mod e). Note that hiy1 = ajp1 — Bit1 = air1 — pBi (mod e), we
see that Y, is either 0 or a monomial of degree ¢ — h;41,

Similarly, we have

[91(1(f] + Miuie})) = [g)((@)ix1 fi1 + Zivreimn + Wiga fir1)
= Wzaﬁl (9)(a)z'+1f¢/+1 + Q(Zi+1)wff11 (9)eir1
+ 9(Wir1)wi i1 (9) fis1,
and
(g (7 + Miuie))) = d1(wf (9) f{ + hiw T (g)ulie)
= O () (@isrflar + Zisrcion + Wirt fisn),

where the last equality follows from the congruence h; = o; — 8; (mod e). Comparing the
two equations and using the relation a;+1 = pa;( mod e), we have

g(Wiy1) = Wi, Q(Ziﬂ)%ﬁfll (9) = Wi (9) Zisa-
Therefore, by the same argument as before, we may assume that W;11 € E and Z;4; is

either 0 or a monomial of degree h;41.
The argument for ¢ + 1 ¢ J is similar. O

Now we prove the theorem. We separate the proof to three cases. (1) Sp = S; (2)
S1=2S5;(3) So# S and S1 # S.

Proof of theorem 4.2. In the following argument, we make some change-of-variables for
one i € S at a time to simplify the form of N.
(1) M is split, all the \;’s are 0. Fix a single i € S. If Fil'N; = (u®e;, f;, uel, f!), we

(2
may assume that X; =Y; = W; = 0 because making the following change of variables

ef =€+ Xie; +Yif;
o= f W,

and leaving e} and f; with j # 7 unchanged do not change the forms of F il'N; and [g].
(It does not change the form of Fill because (ue;, f;,ucel, fI) = (ue;, f;, u¢e, f') by the
construction; it does not change the form of [g] since we know that X; and W; are elements
in F and Y; is either 0 or a monomial of degree (e — h;).)

If FillN; = E[u]/u?(e;, u®f;, i, u¢ f!), we may assume that X; = Z; = W; = 0 because
making the following change of variables

el = el + Xje;
[l = fi+ Zie; + Wi f;
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and leaving e} and f] with j # i unchanged do not change the forms of ¥/ il N; and [g].
Note that by the change of variables as above, although we may change the values of
X;+1 and Wy, 1, the assumptions about the degrees of nonzero terms in X;1, Y11, Zi+1, Wit
are preserved. Now suppose that we have done the above steps for i = 2,3,...;r. If
Fill N7 = E[u]/u®{ue, f1,u’€), f]), we may assume that Y7 = 0 since letting e} =
e} +Y1 f1 does not change anything. Indeed, it does not change the forms of Fil' and [g] by
the same argument as before. Furthermore, ¢ (ufef) = ¢1(ue)) + ¢1(uY;f1) = ¢1(ue)),

it does not change Xo, Yo, Zy, or Wo.
If Fil'N7 = E[u]/u(e1,uf1, €}, ucf]), similarly, we may assume that Z; = 0. By
counting the number of variables, we have our result.

(2) All the A;’s are nonzero. In this case J = S. Fix a single ¢ € S, we may assume
that X; =Y; = Z; = 0 because we can make the following change of variables

el = el + (b); ' Xiei + (b); 1 Yifi
fI= fL = Al (0);7 Xies 4+ wi(f; + Nuliey),

where ((a);w; — (a/b); X;)\u = Z;. (This is possible because we know that Z; is either
0 or a monomial of degree h;.) It does not change the form of Fil! since f! + Ajuli el =
1+ \juli el +wi(fi+ Nuliey) + )\i(b);luhiYifi and u® | u™Y;. Tt does not change the form

of [g] because X;, W; € E, Y, is either 0 or a monomial of degree e — h;, and Z; is either 0
or a monomial of degree h;. Also, the new ¢ has the following form on N;:

o1((0); 1 Yiul fi) = o1 ((b);  Yiul (fi + Aiulie;)) — ¢1((b);1)\iueyiuhiei) =0
o1 (uef) = d1(ue)) + ¢1((b); ' Xiue;) + o1 ((b); ' Yius fi)
= ¢1(u’e;) + 1 ((b); ' Xiuey)
or(f + Auliel) = oy (f] + Niuie)) + ¢ (wil fi + Nueq)) + o1 ((0);  NYu f;)
= ¢1(f] + Nue]) + 1 (Yiute;) + dr(wilf; + Aue;)).

Here Y; is an element in E[u]/u? such that Yiu® = —(b); "A?u?"Y;. If we make the change
of variables for ¢, then it may change the values of X; 1, W;41, and Z;11. We may still
assume that X;11,W;11 € F and Z;;1 is a monomial of degree h;+1 by absorbing the
terms with degree greater or equal to e to ej,; or fi,; as in the proof of Lemma 4.5. We
reduce the X, Y, Z, and W as follows. The original ¢; is given by the set of matrices

{ Xo Y2 (X Y, X1 N )
Zy Wo )’ \Z. W,.)'\Zy Wy)"
We make the change for ¢ =1,2,--- ,r — 1, the new ¢ is given by the set of matrices

(0 0N (0 0 Xp v\ (000N,
o wy) o \o wi_ ) \z owi)\o wy)r

We then make the change for i = r. By the above equations, this may change Xi, Z7, and
W1, the new ¢; is given by the set of matrices

(0 0N (o 0 00N (X1 01,
o wy) N0 wiy ) \o owy)o\z o wy )b
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Finally, we make the change for i = 1 again. Note now Y{ = 0, this does not change Z5.
Thus ¢; is given by the following matrices

(X4 0N (0 0N 00y (00N,
o wy)\o wy) o \o wy) o owypr)n

By counting the potentially nonzero variables, we get the right bound of the dimension.

(3) In this case, without loss of generality, we assume that A, =0, Ay # 0. Fixani € S.
As in (1), if Fil'N; = E[u]/uP(u’e;, f;,uel, f!), we may assume that X; =Y; = W; = 0.
If Fil'N; = Eu]/u{e;, ufi, b, u f!), we may assume that X; = Z; = W; = 0.

Asin (2), if Fil'N; = E[u]/u®(ue;, f; + Niultie;, uel, fl+ A\juhiel) with \; # 0, we may
assume that X; =Y, = Z, =0.

Now suppose that we have done the above steps for i = 1,2, ..., — 1. We do this for
¢ = r and this will only change the value of X; and Wj since A, = 0. The potentially
nonzero terms are X, Wy and one of X;, Y;, Z;, W; for each i # 1. (|
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