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Abstract. Let O be the ring of integers of a finite extension of Qp with uniformizer π
and R be an O-algebra with π nilpotent in R. In this paper, we study deformations of O-
displays over R by explicit computation. Since the category of nilpotent O-displays over
R is equivalent to the category of formal π-divisible O-modules over R, we obtain results
on deformations of formal π-divisible O-modules, which generalize the corresponding
results on formal p-divisible groups.

1. Introduction

The theory of displays, which was developed by Zink and Lau in a series of papers
([13, 14, 8, 9, 10] etc.), is a powerful tool in the study of p-divisible groups. One of the
main results of this theory is a classification result, which says that, for any ring R with
p nilpotent in it, the category of formal p-divisible groups over R and the category of
nilpotent displays over R are equivalent. Moreover, if R is a Noetherian local ring with
perfect residue field of characteristic p, the category of p-divisible groups over R and the
category of Dieudonné displays over R are equivalent.

The above classification result was generalized in [1, 2]. In particular, we have the
following result, which is the starting point of this paper. Let p > 2 be a prime. Let O be
the ring of integers of a finite extension of Qp with uniformizer π. Let R be an O-algebra
with π nilpotent in it. Denote by ndispO /R the category of nilpotent O-displays over R.
From [2, Theorem 1.1], there exists a covariant functor BTO

BTO : ndispO /R→ (π-divisible formal O-modules/R),

which is an equivalence of categories.
The classification results in [13, 14, 8, 9, 10] have many applications in the study of

p-divisible groups. In [2, 3], the authors generalized the classification results and obtained
several applications in the study of π-divisible O-modules. A simple idea is that, a π-
divisible O-module X is a p-divisible group with a special O-action and this special action
includes extra information of the structure of X. Hence if we confine our study in the
category of π-divisible O-modules, we should obtain stronger results than those regarding
general p-divisible groups.
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In this paper, following the idea in [13, Sections 2.2, 2.5], we study deformations of O-
displays by explicit computation. Then by [2, Theorem 1.1], we translate the properties
of O-displays to properties of π-divisible O-modules. To state the main results, we first
fix some notation.

Let p > 2 be a prime. Let O be the ring of integers of a finite extension of Qp with
uniformizer π and residue field F = Fq. The category ofO-algebras is denoted by AlgO. For
A ∈ AlgO, WO(A) is the ring of ramified Witt vectors. The Frobenius and Verschiebung
morphisms on WO(A) are denoted by F and V . The Teichmüller lift of a ∈ A is denoted

by [a] ∈WO(A). Denote by IO(A) the image of the Verschiebung, i.e., IO(A) = VWO(A).
See [2, Section 1.2.1] for more details.

For a π-divisible O-module X, X[πn] denotes the πn-torsion of X. If X is of height h
and dimension d, we say that X is of type (h, d).

For O-displays and O-windows, we will use without comment the notation of [2, 3]. For
an O-display P = (P,Q, F, F1) over R ∈ AlgO, we say that P is of type (h, d) if P is free
of rank h over WO(R) and P/Q is free of rank d over R.

We prove the following results, which are well-known for p-divisible groups (cf. [7, 4]).

Theorem 1.1. Let R ∈ AlgO such that π is nilpotent in R.

(1) Let X be a formal π-divisible O-module over R with type (h, d). The deformation
functor DX (cf. Section 3.1) is pro-representable by a formal π-divisible O-module
over R[[t1, . . . , td(h−d)]].

(2) Let X and Y be two formal π-divisible O-modules over R with X[πn] = Y [πn] for

a positive integer n. Let X̃ be a deformation of X over S ∈ AugR (cf. Section

2.2). Then there exists a deformation Ỹ of Y over S such that Ỹ [πn] ∼= X̃[πn].

Remark 1.2. If R = k ∈ AlgO is a perfect field of characteristic p, then using [2, Theorem
1.5] and the theory of Dieudonné O-displays, the same argument in this paper proves the
following claims in equal-characteristic case.

(1) Let X be a π-divisible O-module over k with type (h, d). The deformation functor
DX is pro-representable by a π-divisible O-module over k[[t1, . . . , td(h−d)]].

(2) Let X and Y be two π-divisible O-modules over k with X[πn] = Y [πn] for a

positive integer n. Let X̃ be a deformation of X over S ∈ Augk. Then there exists

a deformation Ỹ of Y over S such that Ỹ [πn] ∼= X̃[πn].

Let (O′, π′) be a totally ramified extension of (O, π) with degree e. Let X̃ over Ou =
WO′(F̄) be the π′-divisible Lubin-Tate group associated with the O′-display

(WO′(WO′(F̄)), IO′(WO′(F̄)), F , V
−1

).

Let X over F̄ be the π′-divisible Lubin-Tate group associated with the O′-display

(WO′(F̄), IO′(F̄), F , V
−1

).

Then X = X̃⊗ F̄ and is a formal π-divisible O-module over F̄ with a special O′-action (cf.
[2, Section 1.2.3]). As a formal π-divisible O-module, the endomorphism ring End(X) =
OD, where D is the central simple Frac(O)-algebra with invariant 1/e and OD is the

maximal order of D. Let Xm be the base change X̃ ⊗Ou Ou/(π′)m+1. Then we have the
following result, which may be considered as a relative version of a result of Gross (cf. [6]
and [13, Proposition 79]).
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Theorem 1.3. With the notation as above, we have

End(Xm) = O′ + (π′)mOD,
for all m ∈ Z≥0.

2. Deformations of O-displays

In this section, we study deformations of O-displays and obstructions of lifting ho-
momorphisms. In particular, we show that the deformation functor is pro-representable
and describe the universal object explicitly. Since we are interested in nilpotent objects,
the O-displays in the rest of this paper are all assumed to be nilpotent without further
comment.

2.1. Liftings of an O-display. Let R be an O-algebra. Let P be an O-display over R.
Let S → R be a surjection of O-algebras. A lifting of P to S is an O-display P ′ over S
such that the base change of P ′ with respect to S → R is isomorphic to P. It is known
that to lift P to S is equivalent to lifting the Hodge filtration (cf. [3, Lemma 2.18])

Fil1P(R)(:= Q/IO(R)P ) ⊂ FilP(R)(:= P/IO(R)P ).

Note that this is denoted by D1
P(R) ⊂ DP(R) in [13].

Let us consider the special case, where S → R is a surjection with kernel a, such that
a2 = 0. Define an abelian group G by

(2.1) G := Hom(Fil1P(R), a⊗R (FilP(R)/Fil1P(R))).

We define an action of G on the set of liftings of P to S as follows. Two liftings of P to
S correspond to two liftings E1 and E2 of the Hodge filtration, i.e., E1 and E2 are both
direct summand of FilP(S) that lifts Fil1P(R). Consider the natural homomorphism

(2.2) E1 ⊂ FilP(S)→ FilP(S)/E2.

Since E1 ≡ E2 (mod a), the homomorphism (2.2) factors as

(2.3) E1 → a(FilP(S)/E2) ⊂ FilP(S)/E2.

Moreover, since a2 = 0, we have an isomorphism a(FilP(S)/E2) ∼= a⊗R(FilP(R)/Fil1P(R)).
Hence we obtain a homomorphism

u : Fil1P(R)→ a⊗R (FilP(R)/Fil1P(R)).

Define E1 − E2 = u. It is easy to check from the construction that

(2.4) E2 = {e− ũ(e) | e ∈ E1},

where ũ(e) ∈ aFilP(S) denotes any lifting of u(e). We have the following result (cf. [13,
Corollary 49]).

Proposition 2.1. Let P be an O-display over R. Let S → R be a surjection with kernel
a such that a2 = 0. The action of G on the set of liftings of P to S constructed as above
is simply transitive. If P0 is a lifting of P and u ∈ G, we denote the action by P0 + u.

Proof. The transitivity follows from the construction. Moreover, if E1 = E2, then the
object u constructed above is trivial. Hence the action is simple. The proposition follows.

�
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Remark 2.2. The above action could be described more explicitly. Consider a as an ideal
of WO(a) and we equip a with the trivial divided O-pd-structure (cf. [3, Section 2.8]).
Let P0 = (P0, Q0, F, F1) be a lifting of P to S. Let α : P0 → aP0 ⊂ WO(a)P0 be a
homomorphism. For the pair (P0, Q0), we define a new O-display structure by setting

Fαx = Fx− α(Fx) for x ∈ P0,

F1αy = F1y − α(F1y) for y ∈ Q0.
(2.5)

By Proposition 2.1, there is an element u ∈ G such that Pα = P0 + u. This u could be
described as follows. We have a natural isomorphism aP0

∼= a ⊗R P/IO(R)P . Hence the
homomorphism α factors uniquely through a morphism

α̃ : P/IO(R)P → a⊗R P/IO(R)P.

Conversely, any such R-module homomorphism α̃ determines a unique α. Let u ∈ G be
the composite of

Q/IO(R)P ⊂ P/IO(R)P
α̃−→ a⊗R P/IO(R)P → a⊗R P/Q.

Then it is easy to check that Pα = P0 + u.

2.2. Deformations of an O-display. Let Λ be a topological O-algebra of the following
type. The topology on Λ is given by a filtration of O-ideals

(2.6) Λ = a0 ⊃ a1 ⊃ · · · ⊃ an ⊃ . . . ,

such that aiaj ⊂ ai+j . We assume that π is nilpotent in Λ/a1 and hence in any quotient
Λ/ai. Let R ∈ AlgO with the discrete topology. Suppose we are given a continuous
surjective homomorphism ϕ : Λ→ R.

Let AugΛ→R be the category of morphisms of discrete Λ-algebras ψS : S → R, such
that ψS is surjective and has a nilpotent kernel. If Λ = R, we denote this category simply
by AugR.

Let NilR be the category of nilpotent R-algebras. Let N ∈ NilR. We associated with
N an augmented R-algebra R|N | as follows. As an R-module, R|N | = R ⊕ N . The
multiplication is given by

(r1 ⊕ n1)(r2 ⊕ n2) = (r1r2)⊕ (r1n2 + r2n1 + n1n2) for all r1, r2 ∈ R and n1, n2 ∈ N .

Let M be an R-module. We regard M as an object in NilR by setting M2 = 0. Hence we
obtain fully faithful functors ModR ⊂ NilR ⊂ AugΛ→R.

Definition 2.3. Let F be a set-valued functor on AugΛ→R. The restriction of this functor
to the category of R-modules is denoted by tF and is called the tangent functor of F .

Definition 2.4. Let P be an O-display over R. Let S → R be a surjection of O-algebras
such that the kernel is nilpotent. A deformation of P to S is an isomorphism class of pairs
(P ′, ι), where P ′ is an O-display over S and ι : P → P ′R is an isomorphism. Here P ′R is
the base change of P ′ with respect to S → R (cf. [2, Section 2.2]).

The deformation functor of P is defined by

DP : AugΛ→R → Sets

S 7→ {deformations of P to S}.(2.7)
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We show that the functor DP is pro-representable and construct the universal object.
First we compute the tangent functor of DP . Let M be an R-module. We study the
liftings of P to R|M | with respect to the canonical map R|M | → R. In this case, the
kernel of R|M | → R is square-zero, we may apply Proposition 2.1 to this situation. In
particular, we have an isomorphism:

HomR(Q/IO(R)P,M ⊗R P/Q)→ DP(R|M |).

Note that in this case, we have a canonical choice for P0 = PR|M | (cf. Remark 2.2).
The tangent space of the functor DP is isomorphic to the finitely generated projective
R-module HomR(Q/IO(R)P, P/Q). Define ω = HomR(P/Q,Q/IO(R)P ). Then we have
an isomorphism

HomR(ω,M)→ DP(R|M |).
The identical endomorphism of ω defines a morphism of functors

(2.8) Spf R|ω| → DP .

Let ω̃ be a finitely generated projective Λ-module with ω̃ ⊗Λ R ∼= ω. Let SΛ(ω̃) be the
symmetric algebra. Let A be the completion of the augmented algebra SΛ(ω̃) with respect
to the augmentation ideal. The morphism (2.8) may be lifted to a morphism

(2.9) Spf A→ DP .

By our construction, the morphism (2.9) induces an isomorphism on the tangent spaces.
Hence it is an isomorphism. Now we could describe the universal O-display Puniv as fol-
lows. Let u : Q/IO(R)P → ω⊗R P/Q be the map induced by the identical endomorphism
of ω. Let α : P → ω ⊗R P/Q be any map that induces u (cf. Remark 2.2). Then we
obtain an O-display Pα over R|ω|. Lifting Pα to A, we obtain Puniv.

Remark 2.5. We may write down the universal object explicitly in terms of structure
equation as follows (cf. [12, Section (1.12)] and [13, Equation (87)]). Assume that P =
(P,Q, F, F1) and P = L⊕T is a normal decomposition of P. Then P is determined by its
structure equation

Φ := F1 ⊕ F : L⊕ T → P.

Here F1⊕F is an F -linear isomorphism. Assume further that L and T are finitely generated
free WO(R)-modules, which is automatic if WO(R) is local. Assume that the rank of L
is c and the rank of T is d. Fix a basis of L and T , hence a basis of P , F1 ⊕ F is
given by a matrix MP ∈ GLh(WO(R)). Here h = c + d. We choose indeterminates
{tij | 1 ≤ i ≤ c, 1 ≤ j ≤ d} and set A = Λ[[tij ]]. Define an invertible matrix in
GLh(WO(A)) by (

idc [tij ]
0 idd

)
M̃P .

Here M̃P is a lifting of MP in GLh(WO(A)) and [tij ] is the Teichmüller representative of
tij . This matrix defines an O-display Puniv over the topological ring A. Then the pair
(A,Puniv) pro-represents the functor DP on the category AugΛ→R.

We could also see the meaning of t1, · · · , tdc in Remark 2.5 explicitly when we consider
the infinitesimal deformations, i.e., deformations over the dual numbers R[ε] = R[x]/(x2).
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Lemma 2.6. Let P = (P,Q, F, F1) and P ′ = (P ′, Q′, F, F1) be two O-displays over R.
Then we have an exact sequence

0→ HomF,Fil(P, P
′)→ HomF (P, P ′)→ Ext1(P,P ′)→ 0.(2.10)

Here HomF (P, P ′) means F -linear maps P → P ′, HomF,Fil(P, P
′) means F -linear maps

P → P ′ that send Q to Q′, and the second arrow is given by β 7→ (βΦP − ΦP
′
β).

Proof. The proof is standard. Assume that we have a short exact sequence of O-displays

0→ P ′ → P ′′ = (P ′′, Q′′, F, F1)→ P → 0.

We may write P ′′ = P ⊕ P ′ and Q′′ = Q ⊕ Q′. Choose normal decompositions of P and
P ′, say P = L ⊕ T and P ′ = L′ ⊕ T ′. Then P ′′ is determined by the structure equation
F1 ⊕ F : (L⊕ L′)⊕ (T ⊕ T ′)→ (P ⊕ P ′), which may be written as

F1 ⊕ F =

(
F1 ⊕ F α

0 F1 ⊕ F

)
,

where α ∈ HomF (P, P ′). Conversely, any element α ∈ HomF (P, P ′) gives rise to an ex-
tension of O-displays. Moreover, two elements α and α′ give rise to isomorphic extensions
if there exists an element β ∈ HomF,Fil(P, P

′) such that(
1 β
0 1

)(
F1 ⊕ F α

0 F1 ⊕ F

)
=

(
F1 ⊕ F α′

0 F1 ⊕ F

)(
1 β
0 1

)
.

Hence the lemma follows. �

In the situation as in the lemma, assume further that P ′ = P are O-displays over R of
type (h, d), then we have the following result.

Corollary 2.7. Let P be an O-display over R of type (h, d). Then

RankWO(R) Ext1(P,P) = RankWO(R) DP(R[ε]) = d(h− d).

2.3. Lifting homomorphisms: part one. Let P̄ = (P̄ , Q̄, F, F1) and P̄ ′ = (P̄ ′, Q̄′, F, F1)
be two O-displays over R. Let S → R be a surjection with nilpotent kernel a. Let
P = (P,Q, F, F1) be a lifting of P̄ to S. Assume that there exists a homomorphism of
O-displays

f̄ : (P̄ , Q̄, F, F1)→ (P̄ ′, Q̄′, F, F1).

Then we have the following result.

Proposition 2.8. With the notation as above. There exists a lifting P ′ = (P ′, Q′, F, F1)
of P̄ ′ to S and a homomorphism

f : (P,Q, F, F1)→ (P ′, Q′, F, F1),

such that f lifts f̄ .

Proof. Since a homomorphism α : X → Y could be encoded by the automorphism

(
1 0
α 1

)
on X⊕Y , to prove the proposition, we may assume that f̄ is an automorphism. Moreover,
every nilpotent N ∈ AlgR admits a filtration

N = N0 ⊃ N1 ⊃ · · · ⊃ Nm ⊃ Nm+1 = 0,
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such that N 2
i ⊂ Ni+1 (0 ≤ i ≤ m). Hence we may assume that a2 = 0. Therefore, the

proposition follows from the following lemma. �

Lemma 2.9. Let P = (P,Q, F, F1) be a lifting of P̄ = (P̄ , Q̄, F, F1) from R to S = R|N |
with N 2 = 0. Let f̄ be an automorphism of P̄. Then there exists another lifting P ′ =
(P ′, Q′, F ′, F ′1) of P̄ to S and an isomorphism

f : (P,Q, F, F1)→ (P ′, Q′, F, F1),

such that f lifts f̄ .

Proof. Assume that P is of type (h, d). We fix a normal decomposition P̄ = L̄⊕T̄ of P̄ and
a basis for both L̄ and T̄ . The structure of P̄ is determined by a matrix Φ ∈ GLh(WO(R)),
which corresponds to the F -linear isomorphism F1⊕F : L̄⊕ T̄ → P̄ . The automorphism f̄
corresponds to a matrixX ∈ GLh(WO(R)), such thatX sends L̄⊕IO(R)T̄ into L̄⊕IO(R)T̄ .
The structure of P corresponds to a matrix Φ + ΦN ∈ GLh(WO(S)). Here we consider Φ
as a matrix in GLh(WO(S)) via the natural embedding WO(R) ↪→WO(S), ΦN is a matrix
in Mh(WO(N )).

Finding the pair (P ′, f) is equivalent to finding matrices Φ′N ∈ Mh(WO(N )) and
XN ∈Mh(WO(N )) with the property

(2.11) (Φ + Φ′N )(X +XN ) = (X +XN )(Φ + ΦN ),

because then we may take P ′ to be the O-display with structure equation given by Φ+Φ′N ,
f to be the homomorphism given by X +XN .

Note that ΦX = XΦ since X induces a homomorphism of O-displays. Define

(2.12)

{
Φ′N = ΦXΦNΦ−1X−1,

XN = −XΦNΦ−1 = −Φ−1Φ′NX.

Since N 2 = 0, we have Φ′NXN = XNΦ′N = 0. It is easy to check that

ΦXN −XNΦ = −Φ′NX +XΦN .

The pair (Φ′N , XN ) defined by equation (2.12) satisfies equation (2.11). The lemma follows.
�

By the same discussion as above, we have the following result.

Proposition 2.10. Let P̄ = (P̄ , Q̄, F, F1) and P̄ ′ = (P̄ ′, Q̄′, F, F1) be two O-displays over
R. Let S → R be a surjection with nilpotent kernel. Let P = (P,Q, F, F1) be a lifting of
P̄ to S. Assume that there exists a homomorphism between quadruples

f̄ : (P̄ /πn, Q̄/πn, F, F1)→ (P̄ ′/πn, Q̄′/πn, F, F1)

for some n ∈ Z≥0. Then there exists a lifting P ′ = (P ′, Q′, F, F1) of P̄ ′ to S and a
homomorphism

f : (P/πn, Q/πn, F, F1)→ (P ′/πn, Q′/πn, F, F1),

such that f lifts f̄ .
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2.4. Lifting homomorphisms: part two. In Section 2.3, we saw that liftings of a
homomorphism f̄ : P̄1 → P̄2 always exist if we are allowed to change the liftings of the
O-displays. The situation changes completely if we fix the liftings of the O-displays, as
we shall see in this section.

Let S → R be an O-pd-thickening with kernel a. Assume that π is nilpotent in S. Let
Pi = (Pi, Qi, F, F1) (i = 1, 2) be two O-displays over S. Denote by P̄i = (P̄i, Q̄i, F, F1)
the base change of Pi to R. Let ϕ̄ : P̄1 → P̄2 be a morphism of O-displays. It lifts to a
morphism of O-windows over WS/R (cf. [3, Section 2.8])

(2.13) ϕ : (P1, Q̂1, F, F1)→ (P2, Q̂2, F, F1).

Note that in [13, Section 2.5], Zink used P-triples, which are the same as O-windows over
WS/R. The morphism ϕ does not induce a morphism from P1 to P2 in general. We may
describe the obstruction as follows. Consider the composition

(2.14) Obst ϕ̄ : Q1/IO(S)P1 ↪→ P1/IO(S)P1
ϕ−→ P2/IO(S)P2 → P2/Q2.

Since ϕ̄(Q̄1) ⊂ Q̄2, Obst ϕ̄ is trivial modulo a. Hence we obtain a map

(2.15) Obst ϕ̄ : Q1/IO(S)P1 → a⊗S P2/Q2,

which is zero if and only if ϕ̄ lifts to a morphism of O-displays P1 → P2 (i.e., ϕ sends Q1

into Q2). We call it the obstruction to lift ϕ̄ to S.

Remark 2.11. The obstruction has functorial property. Assume that we have a morphism
α : P2 → P3 of O-displays over S. Let ᾱ : P̄2 → P̄3 be its reduction over R. Then
Obst ᾱ ◦ ϕ̄ is the composite of the following maps

Q1/IO(S)P1
Obst ϕ̄−−−−→ a⊗S P2/Q2

1⊗α−−→ a⊗S P3/Q3.

We denote this fact by

(2.16) Obst ᾱϕ̄ = αObst ϕ̄.

Remark 2.12. In the case a2 = 0, we have a ⊗S P2/Q2
∼= a ⊗R P̄2/Q̄2. In this case, the

obstruction may be considered as a map

Obst ϕ̄ : Q̄1/IO(R)P̄1 → a⊗R P̄2/Q̄2.

This is compatible with Proposition 2.1. Equation (2.16) may be written as

(2.17) Obst ᾱϕ̄ = ᾱObst ϕ̄.

Let S and S̃ be O-algebras such that πS = πS̃ = 0. Let S → R be a surjection with
kernel a such that aq = 0. Let S̃ → S be a surjection with kernel b such that bq = 0.
We equip a and b with the trivial O-pd-structure, hence S → R and S̃ → S are both
O-pd-thickening.

Assume that Pi is the base change of an O-display P̃i over S̃ with respect to S̃ → S
(i = 1, 2). Consider πϕ̄ : P̄1 → P̄2, a morphism of O-displays over R. It lifts to a morphism

πϕ : (P1, Q̂1, F, F1)→ (P2, Q̂2, F, F1).

This morphism induces a morphism πϕ : P1 → P2, as Obstπϕ̄ is trivial.
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Remark 2.13. The morphism ϕ̄ : P̄1 → P̄2 also lifts to a morphism

ϕ : (P1, Q̂1, F, F1)→ (P2, Q̂2, F, F1).

But ϕ does not induce a morphism from P1 to P2 in general. On the other hand, π · ϕ
does as πa = 0 and the obstruction vanishes.

In the following, we study the obstruction to lift πϕ to a homomorphism of O-displays
P̃1 → P̃2, i.e., the map

(2.18) Obstπϕ : Q̃1/IO(S̃)P̃1 → b⊗ P̃2/Q̃2.

The obstruction Obstπϕ may be computed in terms of Obst ϕ̄. In order to do so, we need
to define two other maps.

The map V ]: The image of F1 : Q̃1 → P̃1 generates P̃1, hence it induces a surjection

F ]1 : S̃ ⊗S̃,Frob Q̃1/IO(S̃)P̃1 → P̃1/(IO(S̃)P̃1 +WO(S̃)FP̃1).

Using the normal decomposition of P̃1, one sees that the left hand side and the right

hand side are projective S̃-modules of the same rank. Hence F ]1 is an isomorphism.

Let V ] be the inverse of F ]1 . Note that b is in the kernel of the Frobenius morphism,
we have an isomorphism

S̃ ⊗S̃,Frob Q̃1/IO(S̃)P̃1
∼= S̃ ⊗S,Frob Q1/IO(S)P1.

It induces the following map, which we still denote by V ]

V ] : P̃1 → S̃ ⊗S,Frob Q1/IO(S)P1.

The map F ]: We have assumed that bq = 0, so the operator F on P̃2/IO(S̃)P̃2

factors as

(2.19) P̃2/IO(S̃)P̃2
F //

''

P̃2/IO(S̃)P̃2

P2/IO(S)P2

F b

77

Moreover, from the definition of O-displays, F (x) = πF1(x) if x ∈ Q̃2. Hence

Q̃2/IO(S̃)P̃2 ∈ Ker(F ) and we obtain a Frobenius-linear map

F b : P2/Q2 → P̃2/IO(S̃)P̃2.

Restricting F b to a(P2/Q2), we obtain

F b : a(P2/Q2)→ b(P̃2/IO(S̃)P̃2).

Note that we may view b as an ideal of WO(b) (cf. [3, Section 2.8]). Hence we

may and do identify b(P̃2/IO(S̃)P̃2) with bP̃2. Denote by F ] the linearization of
F b

(2.20) F ] : S̃ ⊗S,Frob a(P2/Q2)→ bP̃2.
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Proposition 2.14. The following diagram is commutative

(2.21) Q̃1/IO(S̃)P̃1
V ] //

Obst(πϕ)
--

S̃ ⊗S,Frob Q1/IO(S)P1
S̃⊗Obst ϕ̄

// S̃ ⊗S,Frob a(P2/Q2)

F ]

��

b(P̃2/Q̃2).

Sketch of the proof. The morphism of O-displays πϕ : P1 → P2 lifts to a uniquely deter-
mined morphism of O-windows over WS̃/S

ψ̃ : (P̃1,
ˆ̃Q1, F, F1)→ (P̃2,

ˆ̃Q2, F, F1).

Let ϕ̃ : P̃1 → P̃2 be any WO(S̃)-linear map that lifts ϕ : P1 → P2 (cf. Remark 2.13). It

does not induce a morphism P̃1 → P̃2 of O-windows over WS̃ since it does not commutes
with F1 in general. On the other hand, we have

(2.22) ψ̃ = πϕ̃+ ω,

where ω : P̃1 → bP̃2 ⊂WO(b)P̃2 is the composite of the following maps

P̃1
V ]−→ S̃ ⊗S,Frob Q1/IO(S)P1

S̃⊗Obst ϕ̄−−−−−−→ S̃ ⊗S,Frob a(P2/Q2)
F ]−→ bP̃2.

Equation (2.22) could be proven by the same argument of [13, Corollary 74], which is
closely related to [13, Theorem 44] and [3, Theorem 2.12]. Then the proposition follows
easily. �

3. Deformations of formal π-divisible O-modules

In this section, we translate the results in Section 2 via [2, Theorem 1.1]. In particular,
we obtain Theorem 1.1.

3.1. The universal deformation. Let R ∈ AlgO with π nilpotent in it. Let X be a
formal π-divisible O-module over R. Let S → R be a surjection with nilpotent kernel.
A deformation of X to S is an isomorphism class of pairs (X ′, ι), where X ′ is a formal
π-divisible O-module over S and ι : X ′ ×S R ∼= X is an isomorphism of formal π-divisible
O-modules. The deformation functor of X is defined by

DX : AugΛ→R → Sets

S 7→ {deformations of X to S}.(3.1)

Theorem 3.1. With the notation as above, if X = BTO(P), then the two functors
DX and DP are equivalent. Therefore, there exists a formal π-divisible O-module X →
Spf(Λ[[t1, · · · , tdc]]) which is universal for the functor DX , i.e.,

(3.2) DX(S) = Hom(Λ[[t1, · · · , tdc]], S)

and every deformation of X over S is a base change induced by a morphism in the left
hand side of equation (3.2). Here c = h− d and X is of type (h, d).
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3.2. On the truncations. Let R ∈ AlgO with π nilpotent in it. Let X1 and X2 be formal
π-divisible O-modules over R.

Theorem 3.2. If X1[πn] ∼= X2[πn], then for any deformation X̃1 of X1 over S, there

exists a deformation X̃2 of X2 over S, such that X̃1[πn] ∼= X̃2[πn].

Proof. Let BTO,n be the category of special truncated formal π-divisible O-modules with
level n. (Here special means that the truncated O-modules are kernels of isogenies of
formal π-divisible O-modules.) Then BTO,n is a smooth Artin algebraic stack with affine
diagonal. The truncation morphism BTO,n+1 → BTO,n is smooth and surjective by the
same argument of [11, Proposition 3.15]. (See also [2, Lemma 4.4].) The theorem then
follows from Proposition 2.8. �

Remark 3.3. This result was also indicated in [5, Section 8].

Remark 3.4. Let X be a formal π-divisible O-module over R. Let P = (P,Q, F, F1) be the
corresponding O-display. Then by [2, Theorem 2.12], X is determined by the following
exact sequence

0→ Q̂N
id−F1−−−−→ P̂N → X(N )→ 0.

By Snake Lemma, X[πn] lies in the exact sequence

X[πn](N )→ Q̂N /π
n id−F1−−−−→ P̂N /π

n.

If the first arrow is an injection, thenX[πn] is determined by the quadruple (P/πn, Q/πn, F, F1)
and the theorem follows from Proposition 2.10. In general, the first arrow has non-trivial
kernel and we need to adapt to stacks BTO,n to prove our claim.

For formal p-divisible groups, Theorem 3.2 follows from [7, Théorème 4.4], which is
proved by a different method.

3.3. A result of Keating. Let k ∈ AlgO be an algebraically closed field of characteristic
p. Let X0 be a π-divisible O-module of height 2 and dimension 1. Then End(X0) is
the ring of integers in a quaternion algebra D with center Frac(O). Let OD = End(X0).
Let α 7→ α∗ be the main involution on OD. Fix α ∈ OD such that α 6∈ O and set
ι = ordOD(α− α∗). Define c(α) ∈ N by

c(α) =

{
qι/2 + 2

∑ι/2
j=1 q

ι/2−j if 2 | ι,

2
∑ ι−1

2
j=0 q

ι−1
2
−j if 2 - ι.

Let X over k[[t]] be the universal deformation of X0 in equal characteristic.

Theorem 3.5. With the notation as above, α lifts to an endomorphism of X ⊗k[[t]]

k[[t]]/tc(α) but does not lift to an endomorphism of X ⊗k[[t]] k[[t]]/tc(α)+1.

Proof. If we translate the above statement on π-divisible O-modules to a statement on
O-displays and use Proposition 2.14, the proof then goes entirely similar as the proof of
[13, Proposition 75]. �

4. On Lubin-Tate groups

In this section, we study Lubin-Tate groups and prove Theorem 1.3. The main idea is to
use the relation between O′-displays and (O,O′)-displays, which is an essential ingredient
in the proof of [2, Theorem 1.1].
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4.1. The general set-up. Let A be an O-algebra and S be an A-algebra. An (O, A)-
display over S is a pair (P, ι), where P is an O-display over S and ι : A → End(P) is
a ring homomorphism, such that the action of A on P/Q induced from ι coincides with
action from the structure morphism A→ S.

Let a ∈ A be a fixed element. Set R = S/a and Ri = S/ai+1. Then we have a sequence
of surjections

S → · · · → Ri → Ri−1 → · · · → R0 = R.

Let P̃1 and P̃2 be O-displays over S. By base change, we have O-displays P(i)
1 and P(i)

2

over Ri for each i ∈ Z≥0. Set P1 = P(0)
1 and P2 = P(0)

2 . Let ϕ : P1 → P2 be a morphism

of O-displays over R. Assume that ϕ lifts to a morphism ϕ(i−1) : P(i−1)
1 → P(i−1)

2 . To lift

ϕ(i−1) to a morphism P(i)
1 → P

(i)
2 gives us the following obstruction morphism

Obstϕ(i−1) : Q
(i)
1 /IO(Ri)P

(i)
1 → (ai)/(ai+1)⊗Ri P

(i)
2 /Q

(i)
2 ,

which factors through (cf. Remark 2.12)

Obsti ϕ : Q1/IO(R)P1 → (ai)/(ai+1)⊗R P2/Q2.

Moreover, the obstruction to lift ι(a)ϕ(i−1) to a morphism P(i+1)
1 → P(i+1)

2 is given by

Obst(ι(a)ϕ(i−1)) : Q
(i+1)
1 /IO(Ri+1)P

(i+1)
1 → (ai)/(ai+2)⊗Ri+1 P

(i+1)
2 /Q

(i+1)
2 ,

which factors through

Obsti+1(ι(a)ϕ) : Q1/IO(R)P1 → (ai)/(ai+2)⊗R P2/Q2.

Since ι(a) acts on P (i+1)/Q(i+1) by multiplication by a, we have the following commutative
diagram

(4.1) Q1/IO(R)P1
Obsti(ϕ)

//

Obsti+1(ι(a)ϕ) **

(ai)/(ai+1)⊗R P2/Q2

a⊗id
��

(ai)/(ai+2)⊗R P2/Q2.

Therefore, we have the following result.

Lemma 4.1. Let P̃1 and P̃2 be O-displays over S. By base change, we have O-displays

P(i)
1 and P(i)

2 over Ri for each i ∈ Z≥0. Set P1 = P(0)
1 and P2 = P(0)

2 . Let ϕ : P1 → P2 be

a morphism of O-displays over R. Assume that ϕ lifts to a morphism ϕ(i−1) : P(i−1)
1 →

P(i−1)
2 . Then ι(a)ϕ lifts to a morphism ϕ(i) : P(i)

1 → P
(i)
2 .

4.2. The Lubin-Tate O-display. Let E′ be a totally ramified extension of E = Frac(O)
with degree e ≥ 2. Let O′ be the ring of integers of E′ and π′ be a uniformizer of O′. In the
following, we study a particular (O,O′)-display. Let S be the O′-algebra O′ ⊗O WO(F̄).
Denote by a the image of π′ in S.

Let P = O′⊗OWO(S). It is a free WO(S)-module with basis {(π′)i⊗1 | 0 ≤ i ≤ e−1}.
Hence it is a free WO(S)-module with basis

1⊗ 1, (π′)i ⊗ 1− 1⊗ [ai] for 1 ≤ i ≤ e− 1.
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Define

T = WO(S)〈1⊗ 1〉, L = WO(S)〈(π′)i ⊗ 1− 1⊗ [ai] | 1 ≤ i ≤ e− 1〉.
Then P = L⊕ T . Define Q = L⊕ IO(S)T . We define an O-display structure on the pair
(P,Q) by writing down the structure equation explicitly. More precisely (cf. [13, Pages
24-25]),

(4.2)

 F1((π′)i ⊗ 1− 1⊗ [ai]) = π′⊗1−1⊗[aiq ]
π′⊗1−1⊗[aq ] =

∑
0≤k,l≤i−1
k+l=i−1

(π′)k ⊗ [alq],

F (1⊗ 1) = τ−1 (π′)e⊗1−1⊗[aeq ]
π′⊗1−π′⊗[aq ] .

Here τ = π−1((π′)e ⊗ 1− 1⊗ [aeq]). It is a unit in O′ ⊗O WO(S) by [2, Lemma 2.24].

Let P̃ = (P̃ , Q̃, F, F1) be the O-display over S defined as above. Let P = (P,Q, F, F1)
be the O-display over R = S/aS = F̄ defined by base change. Then Q = π′P and

F1((π′)i) = (π′)i−1 for i ≥ 1,

where π′ = π′ ⊗ 1 ∈ O′ ⊗O WO(F̄).
Let ϕ : P → P be an endomorphism of P. The obstruction to lift ϕ to R1 = S/a2S is

Obst1(ϕ) : Q/IO(R)P → (a)/(a2)⊗R P/Q.
The endomorphism ϕ induces an endomorphism on P/Q ∼= F̄, which is the multiplication
of some element in F̄. Denote this element by Lieϕ. Let σ be the Frobenius endomorphism
of F̄ given by x 7→ xq.

Lemma 4.2. With the notation as above, we have the following commutative diagram

(4.3) Q/IO(R)P = Q/πP
(π′)−1

//

Obst1(ϕ)
--

P/π′P = P/Q
σ−1(Lieϕ)−Lieϕ

// P/Q

a
��

(a)/(a2)⊗R P/Q.

Proof. For simplicity, if x ∈ O′, we still denote by x for the image x⊗1 ∈ O′⊗OWO(F̄) = P .
Write

(4.4) ϕ(1) = ξ0 + ξ1π
′ + · · ·+ ξe−1(π′)e−1, ξi ∈WO(F̄).

Since ϕ((π′)i−1) = ϕ(F1((π′)i)) = F1(ϕ((π′)i)), we have

ϕ((π′)i) = F−iξ0(π′)i + F−iξ1(π′)i+1 + · · ·+ F−iξe−1(π′)e−1+i,

for all i ∈ Z≥0. Consider R1 → R as an O-pd-thickening by equipping aR1 with the
trivial O-pd-structure. Then the category of O-windows over WR1/R is equivalent to the
category of O-windows over WR, hence equivalent to the category of O-displays over R

(cf. [3, Proposition 2.21]). Let (P (1), Q̂(1), F, F1) be the O-window over the frame WR1/R

corresponding to P via the above equivalence. Then P (1) = O′ ⊗WO(R1) and

F1(π′)i = (π′)i−1 for i ≥ 2, F1 =
π

π′
.

The lifting ϕ̃ ∈ End(P (1), Q̂(1), F, F1) of ϕ ∈ End(P) is defined by the same formula (4.4),
i.e., we have

(4.5) ϕ̃ = ϕ⊗WO(F̄) WO(R1).
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We need to understand the obstruction to lift ϕ̃ to a morphism of WR1-windows. The
map ϕ̃ induces an O′ ⊗O WO(R1)-module homomorphism

(4.6) Q(1)/IO(R1)P (1) → P (1)/Q(1).

As an R1-module, Q(1)/IO(R1)P (1) is free with basis {(π′)i − ai | 1 ≤ i ≤ e − 1}. Here
we write π′ for π′ ⊗ 1 ∈ O′ ⊗O R1 and a for 1 ⊗ a. Since a2 = 0 in R1, it is easy to
see that (π′)i ∈ Q(1) if i ≥ 2. Because ϕ̃ is an O′ ⊗O WO(R1)-module homomorphism,

ϕ̃((π′)i) ∈ Q(1) for i ≥ 2. To understand the obstruction, it suffices to understand ϕ̃(π′−a).
Since ϕ̃ is defined by the formula (4.4), we have

ϕ̃(π − a) = (F
−1
ξ0(π′) + F−1

ξ1(π′)2 + · · ·+ F−1
ξe−1(π′)e)− ϕ̃(a)

≡ F−1
ξ0π
′ − ξ0a (mod Q(1))

≡ (F
−1
ξ0 − ξ0)a (mod Q(1)).

(4.7)

The lemma follows since Lie(ϕ) = ξ0 (mod π). �

Proposition 4.3. With the notation as above. Let OD = End(P) be the endomorphism
ring, which is isomorphic to the maximal order of the central simple E-algebra with in-
variant 1/e. Let Ou be the ring of integers of the maximal unramified extension of E′ with
residue field F̄. Then

End(P̃Ou/(π′)m+1) = O′ + (π′)mOD, m ≥ 0.

Proof. Let ϕ ∈ OD. Then (π′)mϕ lifts to an endomorphism of P̃ over Ou/(π′)m+1 by
Lemma 4.1. Moreover, we have

Obstm+1(π′)mϕ = (π′)m Obst1 ϕ,

where (π′)m on the right hand side denotes the map

(π′)m : (a)/(a2)⊗R P/Q→ (a(m+1))/(a(m+2))P/Q.

Let ψ ∈ (O′ + (π′)mOD) − (O′ + (π′)m+1OD). We claim that ψ does not lift to an

endomorphism of P̃Ou/(π′)m+2 .

Indeed, since π′ is a uniformizer of OD, we may write

ψ = [a0] + [a1]π′ + · · ·+ [am](π′)m + · · · ,
where ai ∈ F′. Here F′ is the degree e extension of F. By our assumption on ψ, we have
ai ∈ F for i < m and am 6∈ F. Then

Obstm+1 ψ = Obstm+1([am](π′)m + · · · ) = (π′)m Obst1([am] + π′[am+1] + · · · ).
By Lemma 4.2, Obstm+1 ψ does not vanish since σ(am) 6= am. The claim follows. The
proposition then follows from the following lemma. �

Lemma 4.4. Let S be an O-algebra such that π is nilpotent in S. Let a ⊂ S be an ideal
with O-pd-structure. Let R = S/a. Let P = (P,Q, F, F1) and P ′ = (P ′, Q′, F, F1) be two
O-displays over S. Then the natural map

Hom(P,P ′)→ Hom(PR,P ′R)

is injective.
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Proof. Let u : P → P ′ be a morphism of O-displays that is zero modulo a. Hence
u(P ) ⊂ WO(a)P . Since S → R is an O-pd-thickening, the map F1 : Q′ → P ′ extends to
the map F1 : WO(a)P ′ + Q′ → P ′ which maps WO(a)P ′ to WO(a)P ′. We claim that the
following diagram is commutative

(4.8)

P
u−−−−→ WO(a)P ′

V ]

y xF ]1
WO(S)⊗WO(S),F P

1⊗u−−−−→ WO(S)⊗WO(S),F WO(a)P ′.

Here F ]1 is the linearization of F1, V ] : P →WO(S)⊗WO(S),F P is the unique WO(S)-linear
map satisfies, for all w ∈ WO(S), x ∈ P and y ∈ Q, (cf. [2, Lemma 2.2] and [13, Lemma
10])

V ](wFx) = π · w ⊗ x,
V ](wF1y) = w ⊗ y.

Indeed, since P = WO(S)〈F1Q〉, it suffices to show the commutativity for elements of the
form wF1l, where w ∈ WO(S) and l ∈ Q. But in this case the commutativity is obvious,
hence the claim holds.

Iterating the diagram, for any N ∈ Z≥1, we have

(F ]1)N (1⊗FN u)(V N]) = u.

Therefore u = 0 since P is nilpotent. The lemma follows. �

Finally, Theorem 1.3 follows from Proposition 4.3 and the fact that Γ2(O,O′) in [2,
Proposition 2.29] is an equivalence on nilpotent objects.
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