EVERY IRREDUCIBLE REPRESENTATION OF GLy(F,) DOES PHASE
RETRIEVAL

CHUANGXUN CHENG AND TIANYT JI

ABSTRACT. Let m : G — U(V) be an irreducible representation of a finite group G.
In this paper, we show that if each irreducible component of 7 @ 7* : G — U(V @ V)
has multiplicity less than or equal to two, then the representation m admits maximal
spanning vectors and hence does phase retrieval. In particular, for the finite field F,, we
show that every irreducible representation of GL2(F,) does phase retrieval.

1. INTRODUCTION

In [13], Li-Han-etc. conjectured that every irreducible representation of a finite group
does phase retrieval and confirmed the conjecture for projective representations of abelian
groups. Further progress has been made since [I3]. In [7, 8, 9], the authors generalized the
conjecture to locally compact groups and verified the conjecture for central extensions of
several types of locally compact abelian groups via Fourier analysis. In [I] Bartusel-Fiihr-
Oussa confirmed the conjecture for the affine group GA(1,p), where p is a prime number.
In [1I] Fiihr-Oussa showed that irreducible representations of nilpotent Lie groups do
phase retrieval via tools from Lie algebras and studied the phase retrieval property of
representations of p-groups. In [6], Cheng generalized the result of [I] and proved the
phase retrievability for all affine groups GA(1,q). Let m : G — U(V) be an irreducible
representation of a finite group G. Then [0, Theorem 1.1] states that 7 does phase retrieval
if 7 is unramified (i.e. each irreducible component of 7@7* : G — U(V®V') has multiplicity
one). In this paper, we adapt the idea of [6] and prove the following result.

Theorem 1.1. Let 7w : G — U(V) be an irreducible representation of G. If each irreducible
component of 7 @ ©* : G — U(V ® V) has multiplicity less than or equal to two, then
(m,G,V) admits maximal spanning vectors and the set of mazimal spanning vectors is
open dense in V. In particular, w does phase retrieval.

Although we just relaxed the condition on the multiplicity from one to less than or equal
to two, Theorem is much stronger than [6, Theorem 1.1]. Moreover, the proof of the
theorem provides a description of all the maximal spanning vectors once the representation
7 is given explicitly (cf. Proposition . The key ingredient in the proof is the basic alge-
braic fact that the polynomial ring over a field is a unique factorization domain (cf. Lemma
. As an application of Theorem (1.1} we show that principal series representations of
GLy(F,) admit maximal spanning vectors. It is shown in [6] that the cuspidal represen-
tations and the special representations of GLg(F,;) admit maximal spanning vectors, we
then obtain the following result, which provides another evidence for |13 Conjecture| since

2010 Mathematics Subject Classification. 20C25, 15A03, 42C15.
Key words and phrases. group frame, maximal spanning vector, phase retrievable frame.

1



2 CHUANGXUN CHENG AND TIANYT JI

GL2(F,) is not nilpotent when ¢ is large. See Section [5|and the references there for more
information on representations of GLg(F,).

Theorem 1.2. Let F, be the finite field with q elements. Every irreducible representation
of GLa(Fy) admits mazimal spanning vectors, hence does phase retrieval.

Notation and conventions. In this paper, I, denotes the finite field with ¢ elements,
i denotes a fixed square root of —1. In this paper G is a finite group. Denote by L?(G)
the space of functions on G with inner product given by

(LY =D 19 f(9)-

geG

All vector spaces are finite dimensional C-spaces. For a Hilbert space V', U(V') denotes
the set of unitary operators on V., HS(V') denotes the set of Hilbert-Schmidt operators
on V. For a matrix M, we denote its transpose by M’ and conjugate transpose by M*.
Denote by My(C) the space of d x d complex matrices with inner product defined by

(A, B) = Tr(AB*), A, B e My(C).

If #: G — U(V) is a representation of G on V', we denote it by (m,V) or (7,G,V).
Denote the character of (7, V') by xv or xr. Denote the dual representation of = by 7*. A
representation 7 is multiplicity free if each irreducible component of 7 has multiplicity one.
A representation 7 is unramified if the tensor product representation 7@7* : G — U(V®V)
is multiplicity free.

2. THE PHASE RETRIEVAL PROBLEM OF GROUP FRAMES

We review the phase retrieval problem of group frames. We refer to [4, [15] for basics
of frames and group frames. Let 7 : G — U(V) be a finite dimensional irreducible
representation. Let v € V' be a nontrivial vector. Then &, := {m(g)v | g € G} is a tight
frame for V. Let T C C be the unit circle. If the frame @, is phase retrievable, i.e. the
map

t, : V/T — RIC
z = (|(z, m(9)v)|)gea

is injective, then we call the vector v phase retrievable. If (w, G, V') admits a phase retriev-
able vector, we say that the representation m does phase retrieval. In the above situation,
v € V has mazimal span (or is mazimal spanning) if Span{m(g)v@n(g)v | g € G} = HS(V).
Here for any z, y € V, x ® y is the projection

V-V
u— (u,y)x.

In other words, v € V' has maximal span if and only if dim Span{n(g)v@7(g)v | g € G} =
(dim V)2, It is well known and easy to see that if v has maximal span, then v € V is phase
retrievable (cf. [2]). For u,v € V, let ¢, be the matrix coefficient

Cup : G = C
g = (m(g)u,v).
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Denote by Cr C L?(G) the subspace spanned by the matrix coefficients ¢, ,, (u,v € V).
The following three conditions are equivalent (cf. |6 Section 1]).

(1) v € V is a maximal spanning vector for (7w, G,V);

(2) v@v e V@V isa cyclic vector for the representation (7 @ 7*, G,V @ V);

(3) ¢y € Cr is a cyclic vector for the representation (ad, G, Cx).
Here 7* is the dual representation of 7, ad : G — U(Cr) is the adjoint representation
defined by ad(g)(f)(x) = f(g~'zg) for g € G and f € C.

Using the above equivalences, it is shown in [6] that unramified irreducible represen-
tations admit maximal spanning vectors and do phase retrieval. Moreover, for ramified
representations, it provides a method to find maximal spanning vectors once we have an
explicit description of (ad,G,C). Then one proves that the special representations and
the cuspidal representations of GL2(F,;) admit maximal spanning vectors and do phase
retrieval.

The method in [6] does not apply to the principal series representations of GLa(F,),
since these representations are ramified and we do not have an explicit decomposition
of Cr (cf. [6l Remark 4.8]). On the other hand, the principal series representations of
GLy(F,) are ramified with small degree in the sense that each irreducible component of
7 ® 7 has multiplicity less than or equal to two. We may then circumvent the difficulties
by a property on the independence of sesquilinear forms.

3. QUADRATIC FORMS AND SESQUILINEAR FORMS

We study the independence of quadratic forms and sesquilinear forms in this section.
Let K be a field and x1, ..., x, be variables. A linear form (resp. quadratic form) with
respect to x1, ..., op is a homogeneous polynomial in K[z1,...,x,]| of degree one (resp.
degree two).

Lemma 3.1. Let fi1, fi2, fo1, fo2 € K[x1,...,xy] be nontrivial quadratic forms. Suppose
that

fu e

far fao|

Then at least one of the following conditions holds

(1) there exists k € K* such that fi1 = kfo1, fi2 = kfoo;

(2) there exists £ € K* such that fi11 = Lf12, fo1 = Lfaz;

(3) there exist linear forms L1, Lo, F1, Fy such that fi1 = F1Ly, fio = F1La, fo1 =
FyLy, foo = FoLs.

Proof. If one of f;; (i, j € {1, 2}) is irreducible, then condition (1) or condition (2) holds
because K{z1,...,zy,] is an unique factorization domain. If all the f;; (i, j € {1, 2}) are
reducible and conditions (1) and (2) do not hold, then condition (3) holds. O

Let V be an n-dimensional complex vector space, S : V x V — C be a sesquilinear form
on V. Fixing a basis {e1, ..., e,} of V, we may identify V' with C" and then S corresponds
to a matrix S = (8ij)nxn € Mp(C), where s;; = S(ej,e;). Let z = (z1,...,2,) € C" be
the coordinates of an element v € V. Set

n

Qv) :=S(v,v) =25z = Z 8ij%iZj-

ij=1
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Note that we have the polarization identity
48 (u,v) = Q(u+v) — Qu —v) +iQ(u + iv) — iQ(u — iv)

for all u,v € V', hence @) also determines S.

Write z, = xp + iyg, where x is the real part of z; and y, is the imaginary part of z.
Write S = A+1iB, where A € M,,(R) is the real part of S and B € M, (R) is the imaginary
part of S. Then

2*Sz = (' — iy ) (A +iB)(z + iy)
=2'Ax — 2’ By + y Ay + v Bx + i(2’ Ay + 2/ Bz — ' Az + v/ By)

o e (5 ()

w590

If we view the zj and y;, as indeterminates, then 2*Sz is a quadratic form in Clx;,y; : 1 <
i < n]. We call it the quadratic form associated with S and denote it by gg.

Lemma 3.2. The quadratic form qg is nontrivial and reducible if and only if S has rank
one.

Proof. If S has rank one, say S = (s1 -+ 8,)'(t1 -+ tpn), where (s1 «-- s,), (t1 -+ tn) €
C™ are nonzero vectors, then

2*Sz=2%(s1 -+ sp)(t1 oo tn)z
Sy ) (2 e
1<k<n 1<k<n
= D seme— D isuwk >tk + Y itkyn
1<k<n 1<k<n 1<k<n 1<k<n

The quadratic form gg is nontrivial and reducible. On the other hand, assume that qg is
nontrivial and reducible, say

S oapzit+ Y b S oamrnt > dryk

1<k<n 1<k<n 1<k<n 1<k<n

- N (5) 0 0(7).

where a = (a1 -+ an)’, B=(b1 -~ bp), y=(c1 - )y 6 =(d1 --- dy) € C" and
z=(x1 - zn),y=(y1 -+ yn)". Then

S iS s is\ ay' ad ay ad
s + s == / / + / ! .
is S is S By Bo 6y Bo

as
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Comparing the entries, we have identities
S+ =y +7d/,
i(8"—8) =py +dd,
i(S—95) =ad+~04,
S+ 5 = pBo" + 5.
From the first two identities, we have
28 = ay +yd' +i(By + '), 28" = ay' +~ya' —i(By + dd).
From the last two identities, we have
25 = B + 58 —i(ad ++8'), 258" = B8 + 66’ +i(ad +~5).
Therefore,
0=25—-25=ay + v +i(By +6d') — (B8 + 68" — i(ad’ + "))
= (a+ip)(y +16) + (y +1i6)(a +iB)’
and
0=29 25 =ay +vd —i(BY + da’) — (B8 + 68 +i(ad’ +~0'))
= (a—ip)(y —id) + (y — id)(a —iB)".

Note that if  and y € C™ are column vectors and 0 = zy’ + ya’/, then at least one of x
and y is the zero vector. Since gg is nontrivial, at least one of a4+ i3 and a —if is nonzero
and at least one of v+ i) and v — id is nonzero. Without loss of generality, we may then
assume that

a—if=7y+i0=0, a+if#0, y—1id # 0.

Hence
> arze+ Y bk
1<k<n 1<k<n
1 _ i _
= Z ak§(2k + Zk) + Z bki(—zk + Zk)
1<k<n 1<k<n
1 i
= = —bi)Zk-
Z (2ak + 5 k) Zk
1<k<n
Similarly,
1 .
o ocret Y dryp= Y (5er = %dk)2k~
1<k<n 1<k<n 1<k<n
Therefore, S = (o + %ﬂ)(%'y - % )’ has rank one. This completes the proof. O

Lemma 3.3. Let S and T be sesquilinear forms with associated matrices S and T respec-
tively. If there exists a constant ¢ € C* with qs = cqr, then S =T and S = T .

Proof. The assumption gqg = cqr is equivalent to

S is s i\ [T irT T ir\’
s s )t \is os) T\ar ) T\air )
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Therefore
S+S8 =c(T+T), S-8=cT-T.

The lemma follows. O

Proposition 3.4. Let f;;(2) = 2*Si;2 (i, j € {1, 2}) be sesquilinear forms on C". Suppose
that for any z € C",
f11(2)  fi2(2)

f21(2)  fa2(2)

Then at least one of the following conditions holds

(1) there exists k € C* such that fi1 = kfo1, fi2 = kfaa;

(2) there exists £ € C* such that fi1 = Lfi12, fo1 = Cfaz; B B

(3) there exist linear forms Ly, Lo, F1, Fy such that fi1 = F1Ly, fio = FiLa, fo1 =
FyLy, fao = FoLy. Here Li(z) = Li(2).

Proof. From equation (3.1]), for i, j € {1, 2}, we may write
fij(2) = rij(@,y) + itij(z,y),

where 7;; and t;; are real quadratic forms with respect to the real and imaginary parts of
z. From the assumption, for any (z,y) € R™ x R",

ri(z,y) +itn(z,y) rea(z,y) +ite(z,y)
ro1(z,y) +itar(z,y) roa(z,y) + itaz(z,y)
Therefore, 11722 — t11t22 — 112721 + t12f21 and r11to2 + t11722 — T12t21 — T91t12 are zero
polynomials with respect to « and y. Hence, as complex quadratic forms, the polynomials

qs, (ZL', y)> 4512 (:Ev y)v qSy, (l’, y)> qSa0 (:L‘a y) SatiSfy
sy, (2, y) 45, (xv y) ‘

4521 (.’E, y) qSso (.’IJ, y)
The proposition then follows form Lemmas 32 B3 O

4. THE MAXIMAL SPANNING VECTORS

4.1. Explicit decomposition of a representation. Let p : G — GL(V) be a linear
representation of G. Let W; (1 < i < h) be the irreducible representations of G with
Homg(W;, V) nontrivial. Denote by V; the direct sum of irreducible components of V'
which are isomorphic to W; (1 < i < h). Then we have the canonical decomposition

V=Vig--- oV,

Following [14, Section 2.7|, we describe an explicit decomposition of V; into a direct sum
of subrepresentations isomorphic to Wj. Let W; be given in matrix form (rqg(s)) with
respect to a basis of W;. Let n = dim W;. For each pair of integers 1 < a, 8 < n, let pog
denote the linear map of V into V defined by

n _
Pap = @ Zrﬂa(s I)P(S)-
seG
The following result is [I4, Section 2.7, Proposition 8]. We state it here for the convenience
of the readers.

Proposition 4.1. With the notation as above, the following statements hold.
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(1) The map pan is a projection; it is zero on the Vj, j # i. Its image Vj is contained
in Vi, and V; is the direct sum of the Vi o for 1 < a <n. The map p; =), Paa 1S
the projection of V' onto V;.

(2) The linear map pog is zero on Vj, j # i, as well as on the V; , for v # B; it defines
an isomorphism from V; g onto V; 4.

(3) Let zq be a nonzero element of Vi 1 and let xo = pa1(z1) € Via. The xq are linearly
independent and generate a vector space W (x1) stable under G and of dimension
n. For each s € G, we have

p(5)(2a) = 3 ra(s)25.
B
In particular, W (x1) is isomorphic to W;.
(4) If (acgl), . .,scgm)) is a basis of Vi1, the representation V; is the direct sum of the
subrepresentations W(xgl)), cee W(xgm))
4.2. The cyclic vectors of 7 ® 7*. Let m: G — U(C?) be an irreducible representation
of G with degree d > 2. Let p:= 1 ® 7" : G — U(C? ® C?%). We identify C? @ C? with
V := My(C), then p: G — U(My4(C)) is given by

p(g)M = m(g)Mn(g)",

for M € My(C). Let V.=V @& --- @V}, be the canonical decomposition of p as in Section
Assume that V; = Wmei for 1 < ¢ < h. Moreover, assume that m; > 2 for 1 < </,
m; = 1lfor £ +1<4i¢<h Letd, = dimW,. Then m; < d; for all 1 < i < h and
d2 = Zz mldz

We apply Proposition to (p=m@7*,G,V = My(C)) to construct a decomposition
of V; (1 <i < ¥¢). For each V;, fix a basis (AZ(.}I)7 o ,AET”) of V;1. Let Agjo)[ = pal(Agl))
(1 <a<d;,1<j<m;). Weremark that the projections p,1 depend on i, we omit the
subscript 7 to ease the notation. Let

Wz(Al(Jl)) = Span{AEQ c1<a<d}, 1<5<m.
Then WZ(Agjl)) is stable under GG and isomorphic to W;. We have a decomposition
Vi=wiA)) @@ wiAl).
Moreover, by Proposition (3), the map
Wi(Al]) = wiaf)

(4.1) 0

Ne' 1,00

is an isomorphism of G-representations. Applying [0, Propositions 2.3, 2.5], we have the
following proposition.

Proposition 4.2. Let A € M4(C) be a nontrivial matriz. Then A is a cyclic vector for
the representation (p =7 @ ©*, G,V = My(C)) if and only if the following two conditions
are satisfied.

(1) For £+ 1 <i < h, the projection of A in V; is nontrivial.
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(2) For1 <1</, the matric

(AAD) (AAD) o (A AL)

2 2
g | (AAT) (AAT) (4 A)
(A,A(,ml)> <A7A§,772%)> (A, AZ(ZLZ)>

has rank m;.

In particular, a column vector v € C% is mazimal spanning for (7, G, C%) if and only if
the following two conditions are satisfied.
(1) For £+ 1 < i < h, the projection of vv* in V; is nontrivial.
(2) For 1 <i </, the matriz

v*Bl(}l)v ’L)*BZ-(}Q)U e U*Bgd)iv

P = v*Bﬁ)v ’U*BZ-(QQ)U e U*szd),v
Z prm— b b s

U*Bz(ﬁ%)v U*BZ(Z%)U . U*BZ(ZT)U

has rank m;. Here BZ-(JOZ

s the conjugate transpose of Al(fo)é
Proof. From [0, Propositions 2.3], A is a cyclic vector for the representation (p = ™ ®
™, G,V = My(C)) if and only if the projection of A into V; is a cyclic vector for (p, G, V;).
The first statement then follows from [0, Propositions 2.5] and the fact that equation
is an isomorphism of G-representations.

From the equivalent conditions in Section a column vector v € C¢ is maximal spanning
for (m,G,CY%) if and only if vv* is a cyclic vector for (p = 7 ® 7*, G,V = My(C)). Then
the second statement holds as

(4.2) (vv*, M) = Tr(M*vv*) = Tr(v*M*v) = (v, Mv)
for v € C4 and M € My(C). O

For ¢ +1 < i < h, let C; be the set of vectors v € C? such that the projection of vv*
in V; is nontrivial. It is easy to see that C; (£ +1 < i < h) is open dense in C?%. Indeed,
the complement of C; is a finite union of the zero set of nontrivial polynomials on the real
and imaginary parts of the coordinates of v (cf. equations , , and proof of [6]
Theorem 1.1]).

For 1 < i < £, let C; be the set of vectors v € C? such that rank(B;) = m;. Note that
rank(P;) < m; is a closed condition given by polynomials on the real and imaginary parts
of the coordinates of v, C; (1 < i < /) is open dense in C? if it is nonempty. Because
the set of maximal spanning vectors for (m, G, C?) is the intersection Mi<i<nCj, it is open
dense in C? if it is nonempty.

In general it is not easy to check the condition rank(3;) = m; because we do not have
enough information on AY Iy [6], for G = GA(1,q), this is done by constructing an

1,Q
explicit set of matrices Az(]i (cf. the matrix B in [6, Section 4]). In the following, applying
Proposition we check the condition rank(B3;) = m; under the assumption that m; = 2

forl1 <7<V,
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Lemma 4.3. Fiz 1 <i < /. If m; =2, then C; is open dense in C.

Proof. As explained above, to show that C; is open dense in C?, it suffices to show that
there exists one column vector v € C¢ such that rank(%;) = 2. Suppose otherwise, for

all v € C?%, we have rank(3;) < 1. Since the matrices AEJO)[ are linearly independent, by
Proposition there exist linear forms Fy, Fy, Ly, ..., Ly, with

v*BDv = Fo(0)L;(0), a=1, 2, 1 <j < d.

In other words, there exist column vectors uy, uz, wi, ..., wq, € C? with
AV = uawl, a=1,2, 1< j <d.

Since for each a, Span{Agg : 1 < j < d;} is G-stable under the action p(¢g)M =
w(g)Mm(g)*, therefore

(7(9)ua) ((9)w))* = p(g)(uaw}) € Span{AY) = uqw? : 1< j < d;}.

Hence u,, is a common eigenvector for (g) (g € G) and C{u,) C C? is a subrepresentation
of 7, which contradicts to the irreducibility of w. The lemma follows. O

Combining the above discussion, we obtain the following result, which generalizes [0,
Theorem 1.1].

Theorem 4.4. Let 7w : G — U(V) be an irreducible representation of G. If each irreducible
component of (t@7*, G,V QV') has multiplicity one or two, then (7w, G, V) admits mazimal
spanning vectors and the set of mazimal spanning vectors is open dense in 'V .

If (m,G,V) is an irreducible representation of G with relatively large (resp. small)
dimension among the irreducible representations of G, then (7w, G, V) is likely to be more
ramified (resp. unramified). In particular, for the symmetric group S, with n < 8, one
could see this from the table in [12] Appendix I.A and I.I]. One could also make a list of
representations for S, with n < 8 that satisfy the condition in Theorem [£.4]

Corollary 4.5. Let G = S, be the symmetric group with n < 5. FEvery irreducible repre-
sentation of Sy, admits mazimal spanning vectors, hence does phase retrieval.

5. REPRESENTATIONS OF GLy(F,)

We check that the principal series representations of GLa(IF,) satisfy the conditions in
Theorem [4.4]and then obtain Theorem[I.2] We first review the basic properties of the group
GL2(FF,) and its representations. The readers may find more details in the literatures, for
example [3, Section 6] and [10, Section 5.2].

Since GLy(F2) = S3, this case follows from Corollary See also [7, Section 4.3.2]
for explicit computation. We assume that ¢ > 3 in the following. We have | GLy(F,)| =
(g —1)2q(g+1). Let e € F7 be a non-square element. There are four types of conjugacy
classes of GLg(F,). We collect the information in the following table (cf. [10, Section 5.2|).

There are four types of irreducible representations of GLy(Fy).
(1) The one-dimensional representations Us,, induced by det : GLa(F;) — Fy and
characters o : ;' — C*. There are (¢ — 1) one-dimensional representations.
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TABLE 1. Conjugacy classes of GLa(IFy)

Representative No. of elements in each class No. of classes

a={ 4 2 1 g—1

b, = g 31: -1 q—1
=5 0) ot g (4~ 1a—2)/2
ty= (5 V) u0 - g~ 1)/

(2) The g-dimensional representations V,, (the special representations). Consider
the permutation representation of GLy(F,) on P*(F,), which has dimension ¢ + 1.
It contains the trivial representation, let V' be the complementary g-dimensional
representation. Then V is irreducible. Define V,, = V ® U,. There are (¢ — 1)
special representations.

(3) The (¢ + 1)-dimensional representations W, s (the principal series representa-
tions). Let B C GLy(F,) be the subset of upper triangular matrices. For each pair

«, (B of characters of IF;, let «® 8 : B — C* be the character that takes <8 Z)

to a(a)B(d). Let W, g be the induced representation Ind§ a® 8. It is irreducible if
a # fand W, g = Wa . There are %(q —1)(g—2) principal series representations.
If o = B, then W, o 2 Uy @ Vi

(4) The (¢ —1)-dimensional representations X, (the cuspidal representations). Let
Y F;z — C* be a character of the multiplicative group of the quadratic extension
of F, and ¢ # 9. There exists an irreducible (¢ — 1)-dimensional representation

X, inside IndgX ¢ and X, = X q. There are %q(q — 1) cuspidal representations.
q2

For the construction of cuspidal representations of GLg(F,), we identify F*, with a
q

subgroup of GLy(FF,) by mapping = + y/e to dy, € GL2(F,). The character table of
GLy(Fy) is as follows (cf. [10) Section 5.2]).

TABLE 2. Character table of GLy(Fy)

GLy(Fy) Gy b Cay dey(=C € IE‘;)
Size of class 1 ¢ -1 P +q P —q
Ua a(z? a(z?) a(zy) a(¢T)
Va qga(z?) 0 a(zy) —a(¢et)
Wa,s (¢ + Da(z)B(z) a(x)B(z) of@)B(y)+ a(y)s(x) 0
Xy (¢ — Dy(x) —¢(z) 0 —(p(Q) +»(¢9))

Theorem 5.1. Let F, be the finite field with q elements. Every irreducible representation
of GL2(Fy) admits mazimal spanning vectors, hence does phase retrieval.
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Proof. By [0, Corollary 1.3|, cuspidal representations and special representations of GLy(Fy)
admit maximal spanning vectors and we need to show that every principal series repre-
sentation of GLy(F,;) admits maximal spanning vectors, hence does phase retrieval. Let
7 = Wa,p be a principal series representation of GLa(IF,). Since Wy, g = Uy ® Wy ,-15 and
Wap@Wi 5= Wia-15® Wl*,aflﬂv we may assume that 7 = W; g and 3 is not trivial.
By Theorem it suffices to show that each irreducible component of p := Wi g ® Wl* 3
has multiplicity less than or equal to two. This is a straightforward verification from the
character table. In the following, we give details for the case ¢ odd.

On the four types of conjugacy classes a, by, ¢z y, dzy, the character x, of p takes value
(g+ 1% 1, 24 Blay ™) + Bla~'y), 0, respectively,
We compute the inner product (xx,x,) for each irreducible character xx and then

1

1
dim Hom(X, p) = m()(x,x,) = TEDZCES) (XX Xp)-

Assume first that 52 # 1.

(1) For U,, we have

<XUMX,0>

Z )(g+1)*+ Z )(¢®—1)

xEFX zGFX

+5 Y ale)@+ By + B )@ +a) +0
(5) —@+1? Y @)+ (@ - 1) Y al?)

z€F) z€FY
F3@ta) Y al)@+ By +AEy)
g

0 otherwise.

:{(q— D2q(q+1) ifa=1,
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Here the last "=" follows from
(5.2)
> alzy)2+ Blay™) + B 'y))
= > al@y)+ By ) +BEy) = D alzy)@+ By ) + B y))
ac,yE]Fé< I,ygp;
= Y (2a(xy) +af(x)af (y) +af ! (2) —4) o
z,y€FRy z€Fy
=2()  a(@)’+ Y aflz) > af My + D af (@) Y afly) —4 Y ala?)
z€F) z€Fy yeFy z€Fy yeFy z€FY
=2( Z afz))? — 4 Z afx?
z€Fy z€Fy

One may also obtain equation (/5.1)) from

(XUas Xp) = Z XU XW1 5 X W1 5(9) = | GLa(Fy)| dim Hom(Uy @ Wy g, Wy ).
QEGLQ(]FQ)

We compute equation (5.2) as it appears several times in the following.
(2) For V,, we have

<XVaaXp>
= qa(z +0+ S Y aley) 2+ By ) + Bl y)) (@ +q) +0
xEFX T ye]F,;<

TAY
2(¢ —1)%q(qg+1) ifa=1,
= (q 1)2q(g+1) ifa#1, but a? =1,
otherwise.
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(3) For Wy, ., we have

<XWa1,a2 ) Xp>

:Z(q+1)041(33 q+1 —|—Za1 q _1)
v€Fg z€FY
+ % D (an(@)az(y) + on(y)az(@) 2+ Blay ") + Ba'y)(¢* +q) + 0
#
((Q'+’1 j{: a10Q
z€Fy
t5 Y (@as(@ar(ely) + aras(@ane )@ + By ™) + Bla )

2(q — 1)2q(q +1) fajas=1, oy =pPora; = B,
=< (g—1)%qg+1)  faree=1, ay# Band oq # B,
0 otherwise.

(4) For X, we have

(XX, Xp)
= (- De@)(g+1)°+ > (—e@)(@® - 1) +0+0
xEFX IGFX
_J@=17%q(g+1) i plpx =1,
0 otherwise.

From the above computation, we see that each irreducible component of Wi g ® W1*,5
(8% # 1) has multiplicity less than or equal to two. Moreover, V and W3 g-1 are the two
irreducible components with multiplicity two. The verification for W1 g @ W s (B2=1)is
similar.

(1) For U,, we have

(XUas Xp)
= Z{: (X($2 %— j{: q —-1
zeFy z€Fy
+ % > aley)2+ Blay™") + B"y))(d + ) +0

0 otherwise.

:{(Q—1)2q(q+1) fa=1 orazg,



14 CHUANGXUN CHENG AND TIANYT JI

(2) For V,, we have

(XVa» Xp)
= 3 qal@) @+ 1P +0+ 5 3 ale)2+ By + B )@ +a) +0
zeFg z,yEFy

zF#y
2(q —1)%q(qg+1) ifa=1,
=<2(¢—1)%q(g+1) ifa#1, buta? =1,
0 otherwise.

(3) For Wy, ., we have

(XWa,.apr Xp)
= (g+ Don(z)az(@)(g+ 1>+ Y (¢ + Daa(@)az(x)(¢® - 1)

z€F) IS
1 -1 -1 2
+5 D (e(@aa(y) + en(y)az(@) 2+ Blay™") + Bla7'y))(¢* +9) + 0
a;,yE]F,;<
TAY
_J@=D%lg+1) faer=1 a1 #6,
0 otherwise.
(4) For X, we have
(XX, Xp)
= > (g=Dp()(g+1)°+ Y (—p(@)(¢> = 1) +0+0
z€Fy z€Fy
_J@=17%qlg+1) i plpx =1,
0 otherwise.
For q even, the computation is almost the same, except that there are no characters of
qu with order two. This completes the proof of the theorem. O
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