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Abstract. Let π : G → U(V ) be an irreducible representation of a finite group G.
In this paper, we show that if each irreducible component of π ⊗ π∗ : G → U(V ⊗ V )
has multiplicity less than or equal to two, then the representation π admits maximal
spanning vectors and hence does phase retrieval. In particular, for the finite field Fq, we
show that every irreducible representation of GL2(Fq) does phase retrieval.

1. Introduction

In [13], Li-Han-etc. conjectured that every irreducible representation of a finite group
does phase retrieval and confirmed the conjecture for projective representations of abelian
groups. Further progress has been made since [13]. In [7, 8, 9], the authors generalized the
conjecture to locally compact groups and verified the conjecture for central extensions of
several types of locally compact abelian groups via Fourier analysis. In [1] Bartusel-Führ-
Oussa confirmed the conjecture for the affine group GA(1, p), where p is a prime number.
In [11] Führ-Oussa showed that irreducible representations of nilpotent Lie groups do
phase retrieval via tools from Lie algebras and studied the phase retrieval property of
representations of p-groups. In [6], Cheng generalized the result of [1] and proved the
phase retrievability for all affine groups GA(1, q). Let π : G → U(V ) be an irreducible
representation of a finite group G. Then [6, Theorem 1.1] states that π does phase retrieval
if π is unramified (i.e. each irreducible component of π⊗π∗ : G → U(V⊗V ) has multiplicity
one). In this paper, we adapt the idea of [6] and prove the following result.

Theorem 1.1. Let π : G → U(V ) be an irreducible representation of G. If each irreducible
component of π ⊗ π∗ : G → U(V ⊗ V ) has multiplicity less than or equal to two, then
(π,G, V ) admits maximal spanning vectors and the set of maximal spanning vectors is
open dense in V . In particular, π does phase retrieval.

Although we just relaxed the condition on the multiplicity from one to less than or equal
to two, Theorem 1.1 is much stronger than [6, Theorem 1.1]. Moreover, the proof of the
theorem provides a description of all the maximal spanning vectors once the representation
π is given explicitly (cf. Proposition 4.2). The key ingredient in the proof is the basic alge-
braic fact that the polynomial ring over a field is a unique factorization domain (cf. Lemma
3.1). As an application of Theorem 1.1, we show that principal series representations of
GL2(Fq) admit maximal spanning vectors. It is shown in [6] that the cuspidal represen-
tations and the special representations of GL2(Fq) admit maximal spanning vectors, we
then obtain the following result, which provides another evidence for [13, Conjecture] since
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GL2(Fq) is not nilpotent when q is large. See Section 5 and the references there for more
information on representations of GL2(Fq).

Theorem 1.2. Let Fq be the finite field with q elements. Every irreducible representation
of GL2(Fq) admits maximal spanning vectors, hence does phase retrieval.

Notation and conventions. In this paper, Fq denotes the finite field with q elements,
i denotes a fixed square root of −1. In this paper G is a finite group. Denote by L2(G)
the space of functions on G with inner product given by

⟨f, f ′⟩ =
∑
g∈G

f(g)f ′(g).

All vector spaces are finite dimensional C-spaces. For a Hilbert space V , U(V ) denotes
the set of unitary operators on V , HS(V ) denotes the set of Hilbert-Schmidt operators
on V . For a matrix M , we denote its transpose by M ′ and conjugate transpose by M∗.
Denote by Md(C) the space of d× d complex matrices with inner product defined by

⟨A,B⟩ = Tr(AB∗), A, B ∈ Md(C).

If π : G → U(V ) is a representation of G on V , we denote it by (π, V ) or (π,G, V ).
Denote the character of (π, V ) by χV or χπ. Denote the dual representation of π by π∗. A
representation π is multiplicity free if each irreducible component of π has multiplicity one.
A representation π is unramified if the tensor product representation π⊗π∗ : G → U(V⊗V )
is multiplicity free.

2. The phase retrieval problem of group frames

We review the phase retrieval problem of group frames. We refer to [4, 15] for basics
of frames and group frames. Let π : G → U(V ) be a finite dimensional irreducible
representation. Let v ∈ V be a nontrivial vector. Then Φv := {π(g)v | g ∈ G} is a tight
frame for V . Let T ⊂ C be the unit circle. If the frame Φv is phase retrievable, i.e. the
map

tv : V/T → R|G|

x 7→ (|⟨x, π(g)v⟩|)g∈G
is injective, then we call the vector v phase retrievable. If (π,G, V ) admits a phase retriev-
able vector, we say that the representation π does phase retrieval. In the above situation,
v ∈ V has maximal span (or is maximal spanning) if Span{π(g)v⊗π(g)v | g ∈ G} = HS(V ).
Here for any x, y ∈ V , x⊗ y is the projection

V → V

u 7→ ⟨u, y⟩x.

In other words, v ∈ V has maximal span if and only if dimSpan{π(g)v⊗π(g)v | g ∈ G} =
(dimV )2. It is well known and easy to see that if v has maximal span, then v ∈ V is phase
retrievable (cf. [2]). For u, v ∈ V , let cu,v be the matrix coefficient

cu,v : G → C
g 7→ ⟨π(g)u, v⟩.
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Denote by Cπ ⊂ L2(G) the subspace spanned by the matrix coefficients cu,v (u, v ∈ V ).
The following three conditions are equivalent (cf. [6, Section 1]).

(1) v ∈ V is a maximal spanning vector for (π,G, V );
(2) v ⊗ v ∈ V ⊗ V is a cyclic vector for the representation (π ⊗ π∗, G, V ⊗ V );
(3) cv,v ∈ Cπ is a cyclic vector for the representation (ad, G,Cπ).

Here π∗ is the dual representation of π, ad : G → U(Cπ) is the adjoint representation
defined by ad(g)(f)(x) = f(g−1xg) for g ∈ G and f ∈ Cπ.

Using the above equivalences, it is shown in [6] that unramified irreducible represen-
tations admit maximal spanning vectors and do phase retrieval. Moreover, for ramified
representations, it provides a method to find maximal spanning vectors once we have an
explicit description of (ad, G,Cπ). Then one proves that the special representations and
the cuspidal representations of GL2(Fq) admit maximal spanning vectors and do phase
retrieval.

The method in [6] does not apply to the principal series representations of GL2(Fq),
since these representations are ramified and we do not have an explicit decomposition
of Cπ (cf. [6, Remark 4.8]). On the other hand, the principal series representations of
GL2(Fq) are ramified with small degree in the sense that each irreducible component of
π ⊗ π∗ has multiplicity less than or equal to two. We may then circumvent the difficulties
by a property on the independence of sesquilinear forms.

3. Quadratic forms and sesquilinear forms

We study the independence of quadratic forms and sesquilinear forms in this section.
Let K be a field and x1, . . . , xn be variables. A linear form (resp. quadratic form) with
respect to x1, . . . , xn is a homogeneous polynomial in K[x1, . . . , xn] of degree one (resp.
degree two).

Lemma 3.1. Let f11, f12, f21, f22 ∈ K[x1, . . . , xn] be nontrivial quadratic forms. Suppose
that ∣∣∣∣f11 f12

f21 f22

∣∣∣∣ = 0.

Then at least one of the following conditions holds
(1) there exists k ∈ K× such that f11 = kf21, f12 = kf22;
(2) there exists ℓ ∈ K× such that f11 = ℓf12, f21 = ℓf22;
(3) there exist linear forms L1, L2, F1, F2 such that f11 = F1L1, f12 = F1L2, f21 =

F2L1, f22 = F2L2.

Proof. If one of fij (i, j ∈ {1, 2}) is irreducible, then condition (1) or condition (2) holds
because K[x1, . . . , xn] is an unique factorization domain. If all the fij (i, j ∈ {1, 2}) are
reducible and conditions (1) and (2) do not hold, then condition (3) holds. □

Let V be an n-dimensional complex vector space, S : V ×V → C be a sesquilinear form
on V . Fixing a basis {e1, . . . , en} of V , we may identify V with Cn and then S corresponds
to a matrix S = (sij)n×n ∈ Mn(C), where sij = S(ei, ej). Let z = (z1, . . . , zn)

′ ∈ Cn be
the coordinates of an element v ∈ V . Set

Q(v) := S(v, v) = z∗Sz =
n∑

i,j=1

sijziz̄j .
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Note that we have the polarization identity

4S(u, v) = Q(u+ v)−Q(u− v) + iQ(u+ iv)− iQ(u− iv)

for all u, v ∈ V , hence Q also determines S.
Write zk = xk + iyk, where xk is the real part of zk and yk is the imaginary part of zk.

Write S = A+ iB, where A ∈ Mn(R) is the real part of S and B ∈ Mn(R) is the imaginary
part of S. Then

z∗Sz = (x′ − iy′)(A+ iB)(x+ iy)

= x′Ax− x′By + y′Ay + y′Bx+ i(x′Ay + x′Bx− y′Ax+ y′By)

=
(
x′ y′

)(A+ iB −B + iA
B − iA A+ iB

)(
x
y

)
=

(
x′ y′

)( S iS
−iS S

)(
x
y

)
.

(3.1)

If we view the xk and yk as indeterminates, then z∗Sz is a quadratic form in C[xi, yi : 1 ≤
i ≤ n]. We call it the quadratic form associated with S and denote it by qS .

Lemma 3.2. The quadratic form qS is nontrivial and reducible if and only if S has rank
one.

Proof. If S has rank one, say S = (s1 · · · sn)′(t1 · · · tn), where (s1 · · · sn)′, (t1 · · · tn)′ ∈
Cn are nonzero vectors, then

z∗Sz = z∗(s1 · · · sn)
′(t1 · · · tn)z

=

 ∑
1≤k≤n

skzk

 ∑
1≤k≤n

tkzk


=

 ∑
1≤k≤n

skxk −
∑

1≤k≤n

iskyk

 ∑
1≤k≤n

tkxk +
∑

1≤k≤n

itkyk

 .

The quadratic form qS is nontrivial and reducible. On the other hand, assume that qS is
nontrivial and reducible, say

qS =

 ∑
1≤k≤n

akxk +
∑

1≤k≤n

bkyk

 ∑
1≤k≤n

ckxk +
∑

1≤k≤n

dkyk


=

(
x′ y′

)(α
β

)(
γ′ δ′

)(x
y

)
,

where α = (a1 · · · an)
′, β = (b1 · · · bn)

′, γ = (c1 · · · cn)
′, δ = (d1 · · · dn)

′ ∈ Cn and
x = (x1 · · · xn)

′, y = (y1 · · · yn)
′. Then(

S iS
−iS S

)
+

(
S iS

−iS S

)′
=

(
αγ′ αδ′

βγ′ βδ′

)
+

(
αγ′ αδ′

βγ′ βδ′

)′
.
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Comparing the entries, we have identities
S + S′ = αγ′ + γα′,

i(S′ − S) = βγ′ + δα′,

i(S − S′) = αδ′ + γβ′,

S + S′ = βδ′ + δβ′.

From the first two identities, we have

2S = αγ′ + γα′ + i(βγ′ + δα′), 2S′ = αγ′ + γα′ − i(βγ′ + δα′).

From the last two identities, we have

2S = βδ′ + δβ′ − i(αδ′ + γβ′), 2S′ = βδ′ + δβ′ + i(αδ′ + γβ′).

Therefore,

0 = 2S − 2S = αγ′ + γα′ + i(βγ′ + δα′)− (βδ′ + δβ′ − i(αδ′ + γβ′))

= (α+ iβ)(γ + iδ)′ + (γ + iδ)(α+ iβ)′

and
0 = 2S′ − 2S′ = αγ′ + γα′ − i(βγ′ + δα′)− (βδ′ + δβ′ + i(αδ′ + γβ′))

= (α− iβ)(γ − iδ)′ + (γ − iδ)(α− iβ)′.

Note that if x and y ∈ Cn are column vectors and 0 = xy′ + yx′, then at least one of x
and y is the zero vector. Since qS is nontrivial, at least one of α+ iβ and α− iβ is nonzero
and at least one of γ + iδ and γ − iδ is nonzero. Without loss of generality, we may then
assume that

α− iβ = γ + iδ = 0, α+ iβ ̸= 0, γ − iδ ̸= 0.

Hence ∑
1≤k≤n

akxk +
∑

1≤k≤n

bkyk

=
∑

1≤k≤n

ak
1

2
(zk + zk) +

∑
1≤k≤n

bk
i

2
(−zk + zk)

=
∑

1≤k≤n

(
1

2
ak +

i

2
bk)zk.

Similarly, ∑
1≤k≤n

ckxk +
∑

1≤k≤n

dkyk =
∑

1≤k≤n

(
1

2
ck −

i

2
dk)zk.

Therefore, S = (12α+ i
2β)(

1
2γ − i

2δ)
′ has rank one. This completes the proof. □

Lemma 3.3. Let S and T be sesquilinear forms with associated matrices S and T respec-
tively. If there exists a constant c ∈ C× with qS = cqT , then S = cT and S = cT .

Proof. The assumption qS = cqT is equivalent to(
S iS

−iS S

)
+

(
S iS

−iS S

)′
= c

(
T iT

−iT T

)
+ c

(
T iT

−iT T

)′
.
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Therefore
S + S′ = c(T + T ′), S − S′ = c(T − T ′).

The lemma follows. □

Proposition 3.4. Let fij(z) = z∗Sijz (i, j ∈ {1, 2}) be sesquilinear forms on Cn. Suppose
that for any z ∈ Cn, ∣∣∣∣f11(z) f12(z)

f21(z) f22(z)

∣∣∣∣ = 0.

Then at least one of the following conditions holds
(1) there exists k ∈ C× such that f11 = kf21, f12 = kf22;
(2) there exists ℓ ∈ C× such that f11 = ℓf12, f21 = ℓf22;
(3) there exist linear forms L1, L2, F1, F2 such that f11 = F1L1, f12 = F1L2, f21 =

F2L1, f22 = F2L2. Here Li(z) = Li(z).

Proof. From equation (3.1), for i, j ∈ {1, 2}, we may write

fij(z) = rij(x, y) + itij(x, y),

where rij and tij are real quadratic forms with respect to the real and imaginary parts of
z. From the assumption, for any (x, y) ∈ Rn × Rn,∣∣∣∣r11(x, y) + it11(x, y) r12(x, y) + it12(x, y)

r21(x, y) + it21(x, y) r22(x, y) + it22(x, y)

∣∣∣∣ = 0.

Therefore, r11r22 − t11t22 − r12r21 + t12t21 and r11t22 + t11r22 − r12t21 − r21t12 are zero
polynomials with respect to x and y. Hence, as complex quadratic forms, the polynomials
qS11(x, y), qS12(x, y), qS21(x, y), qS22(x, y) satisfy∣∣∣∣qS11(x, y) qS12(x, y)

qS21(x, y) qS22(x, y)

∣∣∣∣ = 0.

The proposition then follows form Lemmas 3.1, 3.2, 3.3. □

4. The maximal spanning vectors

4.1. Explicit decomposition of a representation. Let ρ : G → GL(V ) be a linear
representation of G. Let Wi (1 ≤ i ≤ h) be the irreducible representations of G with
HomG(Wi, V ) nontrivial. Denote by Vi the direct sum of irreducible components of V
which are isomorphic to Wi (1 ≤ i ≤ h). Then we have the canonical decomposition

V = V1 ⊕ · · · ⊕ Vh.

Following [14, Section 2.7], we describe an explicit decomposition of Vi into a direct sum
of subrepresentations isomorphic to Wi. Let Wi be given in matrix form (rαβ(s)) with
respect to a basis of Wi. Let n = dimWi. For each pair of integers 1 ≤ α, β ≤ n, let pαβ
denote the linear map of V into V defined by

pαβ =
n

|G|
∑
s∈G

rβα(s
−1)ρ(s).

The following result is [14, Section 2.7, Proposition 8]. We state it here for the convenience
of the readers.

Proposition 4.1. With the notation as above, the following statements hold.
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(1) The map pαα is a projection; it is zero on the Vj, j ̸= i. Its image Vi,α is contained
in Vi, and Vi is the direct sum of the Vi,α for 1 ≤ α ≤ n. The map pi =

∑
α pαα is

the projection of V onto Vi.
(2) The linear map pαβ is zero on Vj, j ̸= i, as well as on the Vi,γ for γ ̸= β; it defines

an isomorphism from Vi,β onto Vi,α.
(3) Let x1 be a nonzero element of Vi,1 and let xα = pα1(x1) ∈ Vi,α. The xα are linearly

independent and generate a vector space W (x1) stable under G and of dimension
n. For each s ∈ G, we have

ρ(s)(xα) =
∑
β

rβα(s)xβ.

In particular, W (x1) is isomorphic to Wi.
(4) If (x(1)1 , . . . , x

(m)
1 ) is a basis of Vi,1, the representation Vi is the direct sum of the

subrepresentations W (x
(1)
1 ), . . . , W (x

(m)
1 ).

4.2. The cyclic vectors of π ⊗ π∗. Let π : G → U(Cd) be an irreducible representation
of G with degree d ≥ 2. Let ρ := π ⊗ π∗ : G → U(Cd ⊗ Cd). We identify Cd ⊗ Cd with
V := Md(C), then ρ : G → U(Md(C)) is given by

ρ(g)M = π(g)Mπ(g)∗,

for M ∈ Md(C). Let V = V1 ⊕ · · · ⊕ Vh be the canonical decomposition of ρ as in Section
4.1. Assume that Vi

∼= W⊕mi
i for 1 ≤ i ≤ h. Moreover, assume that mi ≥ 2 for 1 ≤ i ≤ ℓ,

mi = 1 for ℓ + 1 ≤ i ≤ h. Let di = dimWi. Then mi ≤ di for all 1 ≤ i ≤ h and
d2 =

∑
imidi.

We apply Proposition 4.1 to (ρ = π ⊗ π∗, G, V = Md(C)) to construct a decomposition
of Vi (1 ≤ i ≤ ℓ). For each Vi, fix a basis (A

(1)
i,1 , . . . , A

(mi)
i,1 ) of Vi,1. Let A

(j)
i,α = pα1(A

(j)
i,1 )

(1 ≤ α ≤ di, 1 ≤ j ≤ mi). We remark that the projections pα1 depend on i, we omit the
subscript i to ease the notation. Let

Wi(A
(j)
i,1 ) = Span{A(j)

i,α : 1 ≤ α ≤ di}, 1 ≤ j ≤ mi.

Then Wi(A
(j)
i,1 ) is stable under G and isomorphic to Wi. We have a decomposition

Vi = Wi(A
(1)
i,1 )⊕ · · · ⊕Wi(A

(mi)
i,1 ).

Moreover, by Proposition 4.1(3), the map

Wi(A
(j)
i,1 ) → Wi(A

(1)
i,1 )

A
(j)
i,α 7→ A

(1)
i,α, 1 ≤ α ≤ di

(4.1)

is an isomorphism of G-representations. Applying [6, Propositions 2.3, 2.5], we have the
following proposition.

Proposition 4.2. Let A ∈ Md(C) be a nontrivial matrix. Then A is a cyclic vector for
the representation (ρ = π ⊗ π∗, G, V = Md(C)) if and only if the following two conditions
are satisfied.

(1) For ℓ+ 1 ≤ i ≤ h, the projection of A in Vi is nontrivial.
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(2) For 1 ≤ i ≤ ℓ, the matrix

Pi =


⟨A,A(1)

i,1 ⟩ ⟨A,A(1)
i,2 ⟩ · · · ⟨A,A(1)

i,di
⟩

⟨A,A(2)
i,1 ⟩ ⟨A,A(2)

i,2 ⟩ · · · ⟨A,A(2)
i,di

⟩
· · · · · · · · · · · ·

⟨A,A(mi)
i,1 ⟩ ⟨A,A(mi)

i,2 ⟩ · · · ⟨A,A(mi)
i,di

⟩


has rank mi.

In particular, a column vector v ∈ Cd is maximal spanning for (π,G,Cd) if and only if
the following two conditions are satisfied.

(1) For ℓ+ 1 ≤ i ≤ h, the projection of vv∗ in Vi is nontrivial.
(2) For 1 ≤ i ≤ ℓ, the matrix

Pi =


v∗B

(1)
i,1 v v∗B

(1)
i,2 v · · · v∗B

(1)
i,di

v

v∗B
(2)
i,1 v v∗B

(2)
i,2 v · · · v∗B

(2)
i,di

v

· · · · · · · · · · · ·
v∗B

(mi)
i,1 v v∗B

(mi)
i,2 v · · · v∗B

(mi)
i,di

v


has rank mi. Here B

(j)
i,α is the conjugate transpose of A(j)

i,α.

Proof. From [6, Propositions 2.3], A is a cyclic vector for the representation (ρ = π ⊗
π∗, G, V = Md(C)) if and only if the projection of A into Vi is a cyclic vector for (ρ,G, Vi).
The first statement then follows from [6, Propositions 2.5] and the fact that equation (4.1)
is an isomorphism of G-representations.

From the equivalent conditions in Section 2, a column vector v ∈ Cd is maximal spanning
for (π,G,Cd) if and only if vv∗ is a cyclic vector for (ρ = π ⊗ π∗, G, V = Md(C)). Then
the second statement holds as

(4.2) ⟨vv∗,M⟩ = Tr(M∗vv∗) = Tr(v∗M∗v) = ⟨v,Mv⟩

for v ∈ Cd and M ∈ Md(C). □

For ℓ + 1 ≤ i ≤ h, let Ci be the set of vectors v ∈ Cd such that the projection of vv∗
in Vi is nontrivial. It is easy to see that Ci (ℓ + 1 ≤ i ≤ h) is open dense in Cd. Indeed,
the complement of Ci is a finite union of the zero set of nontrivial polynomials on the real
and imaginary parts of the coordinates of v (cf. equations (3.1), (4.2), and proof of [6,
Theorem 1.1]).

For 1 ≤ i ≤ ℓ, let Ci be the set of vectors v ∈ Cd such that rank(Pi) = mi. Note that
rank(Pi) < mi is a closed condition given by polynomials on the real and imaginary parts
of the coordinates of v, Ci (1 ≤ i ≤ ℓ) is open dense in Cd if it is nonempty. Because
the set of maximal spanning vectors for (π,G,Cd) is the intersection ∩1≤i≤hCi, it is open
dense in Cd if it is nonempty.

In general it is not easy to check the condition rank(Pi) = mi because we do not have
enough information on A

(j)
i,α. In [6], for G = GA(1, q), this is done by constructing an

explicit set of matrices A(j)
i,α (cf. the matrix P in [6, Section 4]). In the following, applying

Proposition 3.4, we check the condition rank(Pi) = mi under the assumption that mi = 2
for 1 ≤ i ≤ ℓ.
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Lemma 4.3. Fix 1 ≤ i ≤ ℓ. If mi = 2, then Ci is open dense in Cd.

Proof. As explained above, to show that Ci is open dense in Cd, it suffices to show that
there exists one column vector v ∈ Cd such that rank(Pi) = 2. Suppose otherwise, for
all v ∈ Cd, we have rank(Pi) ≤ 1. Since the matrices A

(j)
i,α are linearly independent, by

Proposition 3.4, there exist linear forms F1, F2, L1, . . . , Ldi with

v∗B
(j)
i,αv = Fα(v)Lj(v), α = 1, 2, 1 ≤ j ≤ di.

In other words, there exist column vectors u1, u2, w1, . . . , wdi ∈ Cd with

A
(j)
i,α = uαw

∗
j , α = 1, 2, 1 ≤ j ≤ di.

Since for each α, Span{A(j)
i,α : 1 ≤ j ≤ di} is G-stable under the action ρ(g)M =

π(g)Mπ(g)∗, therefore

(π(g)uα)(π(g)wj)
∗ = ρ(g)(uαw

∗
j ) ∈ Span{A(j)

i,α = uαw
∗
j : 1 ≤ j ≤ di}.

Hence uα is a common eigenvector for π(g) (g ∈ G) and C⟨uα⟩ ⊂ Cd is a subrepresentation
of π, which contradicts to the irreducibility of π. The lemma follows. □

Combining the above discussion, we obtain the following result, which generalizes [6,
Theorem 1.1].

Theorem 4.4. Let π : G → U(V ) be an irreducible representation of G. If each irreducible
component of (π⊗π∗, G, V ⊗V ) has multiplicity one or two, then (π,G, V ) admits maximal
spanning vectors and the set of maximal spanning vectors is open dense in V .

If (π,G, V ) is an irreducible representation of G with relatively large (resp. small)
dimension among the irreducible representations of G, then (π,G, V ) is likely to be more
ramified (resp. unramified). In particular, for the symmetric group Sn with n ≤ 8, one
could see this from the table in [12, Appendix I.A and I.I]. One could also make a list of
representations for Sn with n ≤ 8 that satisfy the condition in Theorem 4.4.

Corollary 4.5. Let G = Sn be the symmetric group with n ≤ 5. Every irreducible repre-
sentation of Sn admits maximal spanning vectors, hence does phase retrieval.

5. Representations of GL2(Fq)

We check that the principal series representations of GL2(Fq) satisfy the conditions in
Theorem 4.4 and then obtain Theorem 1.2. We first review the basic properties of the group
GL2(Fq) and its representations. The readers may find more details in the literatures, for
example [3, Section 6] and [10, Section 5.2].

Since GL2(F2) ∼= S3, this case follows from Corollary 4.5. See also [7, Section 4.3.2]
for explicit computation. We assume that q ≥ 3 in the following. We have |GL2(Fq)| =
(q − 1)2q(q + 1). Let ϵ ∈ F×

q be a non-square element. There are four types of conjugacy
classes of GL2(Fq). We collect the information in the following table (cf. [10, Section 5.2]).

There are four types of irreducible representations of GL2(Fq).
(1) The one-dimensional representations Uα, induced by det : GL2(Fq) → F×

q and
characters α : F×

q → C×. There are (q − 1) one-dimensional representations.
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Table 1. Conjugacy classes of GL2(Fq)

Representative No. of elements in each class No. of classes

ax =

(
x 0
0 x

)
1 q − 1

bx =

(
x 1
0 x

)
q2 − 1 q − 1

cx,y =

(
x 0
0 y

)
, x ̸= y q2 + q (q − 1)(q − 2)/2

dx,y =

(
x εy
y x

)
, y ̸= 0 q2 − q q(q − 1)/2

(2) The q-dimensional representations Vα (the special representations). Consider
the permutation representation of GL2(Fq) on P1(Fq), which has dimension q + 1.
It contains the trivial representation, let V be the complementary q-dimensional
representation. Then V is irreducible. Define Vα = V ⊗ Uα. There are (q − 1)
special representations.

(3) The (q + 1)-dimensional representations Wα,β (the principal series representa-
tions). Let B ⊂ GL2(Fq) be the subset of upper triangular matrices. For each pair

α, β of characters of F×
q , let α⊗ β : B → C× be the character that takes

(
a b
0 d

)
to α(a)β(d). Let Wα,β be the induced representation IndGB α⊗β. It is irreducible if
α ̸= β and Wα,β

∼= Wβ,α. There are 1
2(q−1)(q−2) principal series representations.

If α = β, then Wα,α
∼= Uα ⊕ Vα.

(4) The (q−1)-dimensional representations Xφ (the cuspidal representations). Let
φ : F×

q2
→ C× be a character of the multiplicative group of the quadratic extension

of Fq and φ ̸= φq. There exists an irreducible (q − 1)-dimensional representation
Xφ inside IndGF×

q2
φ and Xφ = Xφq . There are 1

2q(q − 1) cuspidal representations.

For the construction of cuspidal representations of GL2(Fq), we identify F×
q2

with a
subgroup of GL2(Fq) by mapping x + y

√
ϵ to dx,y ∈ GL2(Fq). The character table of

GL2(Fq) is as follows (cf. [10, Section 5.2]).

Table 2. Character table of GL2(Fq)

GL2(Fq) ax bx cx,y dx,y(= ζ ∈ F×
q2
)

Size of class 1 q2 − 1 q2 + q q2 − q
Uα α(x2) α(x2) α(xy) α(ζq+1)
Vα qα(x2) 0 α(xy) −α(ζq+1)

Wα,β (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0
Xφ (q − 1)φ(x) −φ(x) 0 −(φ(ζ) + φ(ζq))

Theorem 5.1. Let Fq be the finite field with q elements. Every irreducible representation
of GL2(Fq) admits maximal spanning vectors, hence does phase retrieval.
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Proof. By [6, Corollary 1.3], cuspidal representations and special representations of GL2(Fq)
admit maximal spanning vectors and we need to show that every principal series repre-
sentation of GL2(Fq) admits maximal spanning vectors, hence does phase retrieval. Let
π = Wα,β be a principal series representation of GL2(Fq). Since Wα,β

∼= Uα⊗W1,α−1β and
Wα,β ⊗ W ∗

α,β
∼= W1,α−1β ⊗ W ∗

1,α−1β , we may assume that π = W1,β and β is not trivial.
By Theorem 4.4, it suffices to show that each irreducible component of ρ := W1,β ⊗W ∗

1,β

has multiplicity less than or equal to two. This is a straightforward verification from the
character table. In the following, we give details for the case q odd.

On the four types of conjugacy classes ax, bx, cx,y, dx,y, the character χρ of ρ takes value

(q + 1)2, 1, 2 + β(xy−1) + β(x−1y), 0, respectively.

We compute the inner product ⟨χX , χρ⟩ for each irreducible character χX and then

dimHom(X, ρ) =
1

|GL2(Fq)|
⟨χX , χρ⟩ =

1

(q − 1)2q(q + 1)
⟨χX , χρ⟩.

Assume first that β2 ̸= 1.

(1) For Uα, we have

⟨χUα , χρ⟩

=
∑
x∈F×

q

α(x2)(q + 1)2 +
∑
x∈F×

q

α(x2)(q2 − 1)

+
1

2

∑
x,y∈F×q
x̸=y

α(xy)(2 + β(xy−1) + β(x−1y))(q2 + q) + 0

=(q + 1)2
∑
x∈F×

q

α(x2) + (q2 − 1)
∑
x∈F×

q

α(x2)

+
1

2
(q2 + q)

∑
x,y∈F×q
x ̸=y

α(xy)(2 + β(xy−1) + β(x−1y))

=

{
(q − 1)2q(q + 1) if α = 1,

0 otherwise.

(5.1)
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Here the last "=" follows from

∑
x,y∈F×q
x ̸=y

α(xy)(2 + β(xy−1) + β(x−1y))

=
∑

x,y∈F×
q

α(xy)(2 + β(xy−1) + β(x−1y))−
∑

x,y∈F×q
x=y

α(xy)(2 + β(xy−1) + β(x−1y))

=
∑

x,y∈F×
q

(2α(xy) + αβ(x)αβ−1(y) + αβ−1(x)αβ(y))− 4
∑
x∈F×

q

α(x2)

=2(
∑
x∈F×

q

α(x))2 +
∑
x∈F×

q

αβ(x)
∑
y∈F×

q

αβ−1(y) +
∑
x∈F×

q

αβ−1(x)
∑
y∈F×

q

αβ(y)− 4
∑
x∈F×

q

α(x2)

=2(
∑
x∈F×

q

α(x))2 − 4
∑
x∈F×

q

α(x2).

(5.2)

One may also obtain equation (5.1) from

⟨χUα , χρ⟩ =
∑

g∈GL2(Fq)

χUαχW1,β
χW1,β

(g) = |GL2(Fq)|dimHom(Uα ⊗W1,β,W1,β).

We compute equation (5.2) as it appears several times in the following.
(2) For Vα, we have

⟨χVα , χρ⟩

=
∑
x∈F×

q

qα(x2)(q + 1)2 + 0 +
1

2

∑
x,y∈F×q
x ̸=y

α(xy)(2 + β(xy−1) + β(x−1y))(q2 + q) + 0

=


2(q − 1)2q(q + 1) if α = 1,

(q − 1)2q(q + 1) if α ̸= 1, but α2 = 1,

0 otherwise.
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(3) For Wα1,α2 , we have

⟨χWα1,α2
, χρ⟩

=
∑
x∈F×

q

(q + 1)α1(x)α2(x)(q + 1)2 +
∑
x∈F×

q

α1(x)α2(x)(q
2 − 1)

+
1

2

∑
x,y∈F×q
x̸=y

(α1(x)α2(y) + α1(y)α2(x))(2 + β(xy−1) + β(x−1y))(q2 + q) + 0

=((q + 1)3 + q2 − 1)
∑
x∈F×

q

α1α2(x)

+
1

2

∑
x,y∈F×q
x̸=y

(α1α2(x)α2(x
−1y) + α1α2(x)α1(x

−1y))(2 + β(xy−1) + β(x−1y))

=


2(q − 1)2q(q + 1) if α1α2 = 1, α1 = β or α1 = β−1,

(q − 1)2q(q + 1) if α1α2 = 1, α1 ̸= β and α1 ̸= β−1,

0 otherwise.

(4) For Xφ, we have

⟨χXφ , χρ⟩

=
∑
x∈F×

q

(q − 1)φ(x)(q + 1)2 +
∑
x∈F×

q

(−φ(x))(q2 − 1) + 0 + 0

=

{
(q − 1)2q(q + 1) if φ|F×

q
= 1,

0 otherwise.

From the above computation, we see that each irreducible component of W1,β ⊗ W ∗
1,β

(β2 ̸= 1) has multiplicity less than or equal to two. Moreover, V and Wβ,β−1 are the two
irreducible components with multiplicity two. The verification for W1,β ⊗W ∗

1,β (β2 = 1) is
similar.

(1) For Uα, we have

⟨χUα , χρ⟩

=
∑
x∈F×

q

α(x2)(q + 1)2 +
∑
x∈F×

q

α(x2)(q2 − 1)

+
1

2

∑
x,y∈F×q
x̸=y

α(xy)(2 + β(xy−1) + β(x−1y))(q2 + q) + 0

=

{
(q − 1)2q(q + 1) if α = 1, or α = β,

0 otherwise.
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(2) For Vα, we have

⟨χVα , χρ⟩

=
∑
x∈F×

q

qα(x2)(q + 1)2 + 0 +
1

2

∑
x,y∈F×q
x ̸=y

α(xy)(2 + β(xy−1) + β(x−1y))(q2 + q) + 0

=


2(q − 1)2q(q + 1) if α = 1,

2(q − 1)2q(q + 1) if α ̸= 1, but α2 = 1,

0 otherwise.

(3) For Wα1,α2 , we have

⟨χWα1,α2
, χρ⟩

=
∑
x∈F×

q

(q + 1)α1(x)α2(x)(q + 1)2 +
∑
x∈F×

q

(q + 1)α1(x)α2(x)(q
2 − 1)

+
1

2

∑
x,y∈F×q
x̸=y

(α1(x)α2(y) + α1(y)α2(x))(2 + β(xy−1) + β(x−1y))(q2 + q) + 0

=

{
(q − 1)2q(q + 1) if α1α2 = 1, α1 ̸= β,

0 otherwise.

(4) For Xφ, we have

⟨χXφ , χρ⟩

=
∑
x∈F×

q

(q − 1)φ(x)(q + 1)2 +
∑
x∈F×

q

(−φ(x))(q2 − 1) + 0 + 0

=

{
(q − 1)2q(q + 1) if φ|F×

q
= 1,

0 otherwise.

For q even, the computation is almost the same, except that there are no characters of
F×
q with order two. This completes the proof of the theorem. □
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