EVERY IRREDUCIBLE REPRESENTATION OF $\mathrm{GL}_2(\mathbb{F}_q)$ DOES PHASE RETRIEVAL

CHUANGXUN CHENG AND TIANYI JI

ABSTRACT. Let $\pi: G \to \mathbf{U}(V)$ be an irreducible representation of a finite group G. In this paper, we show that if each irreducible component of $\pi \otimes \pi^*: G \to \mathbf{U}(V \otimes V)$ has multiplicity less than or equal to two, then the representation π admits maximal spanning vectors and hence does phase retrieval. In particular, for the finite field \mathbb{F}_q , we show that every irreducible representation of $\mathrm{GL}_2(\mathbb{F}_q)$ does phase retrieval.

1. Introduction

In [13], Li-Han-etc. conjectured that every irreducible representation of a finite group does phase retrieval and confirmed the conjecture for projective representations of abelian groups. Further progress has been made since [13]. In [7, 8, 9], the authors generalized the conjecture to locally compact groups and verified the conjecture for central extensions of several types of locally compact abelian groups via Fourier analysis. In [1] Bartusel-Führ-Oussa confirmed the conjecture for the affine group GA(1,p), where p is a prime number. In [11] Führ-Oussa showed that irreducible representations of nilpotent Lie groups do phase retrieval via tools from Lie algebras and studied the phase retrieval property of representations of p-groups. In [6], Cheng generalized the result of [1] and proved the phase retrievability for all affine groups GA(1,q). Let $\pi: G \to \mathbf{U}(V)$ be an irreducible representation of a finite group G. Then [6, Theorem 1.1] states that π does phase retrieval if π is unramified (i.e. each irreducible component of $\pi \otimes \pi^*: G \to \mathbf{U}(V \otimes V)$ has multiplicity one). In this paper, we adapt the idea of [6] and prove the following result.

Theorem 1.1. Let $\pi: G \to \mathbf{U}(V)$ be an irreducible representation of G. If each irreducible component of $\pi \otimes \pi^*: G \to \mathbf{U}(V \otimes V)$ has multiplicity less than or equal to two, then (π, G, V) admits maximal spanning vectors and the set of maximal spanning vectors is open dense in V. In particular, π does phase retrieval.

Although we just relaxed the condition on the multiplicity from one to less than or equal to two, Theorem 1.1 is much stronger than [6, Theorem 1.1]. Moreover, the proof of the theorem provides a description of all the maximal spanning vectors once the representation π is given explicitly (cf. Proposition 4.2). The key ingredient in the proof is the basic algebraic fact that the polynomial ring over a field is a unique factorization domain (cf. Lemma 3.1). As an application of Theorem 1.1, we show that principal series representations of $GL_2(\mathbb{F}_q)$ admit maximal spanning vectors. It is shown in [6] that the cuspidal representations and the special representations of $GL_2(\mathbb{F}_q)$ admit maximal spanning vectors, we then obtain the following result, which provides another evidence for [13, Conjecture] since

²⁰¹⁰ Mathematics Subject Classification. 20C25, 15A03, 42C15.

Key words and phrases. group frame, maximal spanning vector, phase retrievable frame.

 $GL_2(\mathbb{F}_q)$ is not nilpotent when q is large. See Section 5 and the references there for more information on representations of $GL_2(\mathbb{F}_q)$.

Theorem 1.2. Let \mathbb{F}_q be the finite field with q elements. Every irreducible representation of $GL_2(\mathbb{F}_q)$ admits maximal spanning vectors, hence does phase retrieval.

Notation and conventions. In this paper, \mathbb{F}_q denotes the finite field with q elements, i denotes a fixed square root of -1. In this paper G is a finite group. Denote by $L^2(G)$ the space of functions on G with inner product given by

$$\langle f, f' \rangle = \sum_{g \in G} f(g) \overline{f'(g)}.$$

All vector spaces are finite dimensional \mathbb{C} -spaces. For a Hilbert space V, $\mathbf{U}(V)$ denotes the set of unitary operators on V, $\mathrm{HS}(V)$ denotes the set of Hilbert-Schmidt operators on V. For a matrix M, we denote its transpose by M' and conjugate transpose by M^* . Denote by $M_d(\mathbb{C})$ the space of $d \times d$ complex matrices with inner product defined by

$$\langle A, B \rangle = \operatorname{Tr}(AB^*), \quad A, B \in M_d(\mathbb{C}).$$

If $\pi: G \to \mathbf{U}(V)$ is a representation of G on V, we denote it by (π, V) or (π, G, V) . Denote the character of (π, V) by χ_V or χ_{π} . Denote the dual representation of π by π^* . A representation π is multiplicity free if each irreducible component of π has multiplicity one. A representation π is unramified if the tensor product representation $\pi \otimes \pi^*: G \to \mathbf{U}(V \otimes V)$ is multiplicity free.

2. The phase retrieval problem of group frames

We review the phase retrieval problem of group frames. We refer to [4, 15] for basics of frames and group frames. Let $\pi:G\to \mathbf{U}(V)$ be a finite dimensional irreducible representation. Let $v\in V$ be a nontrivial vector. Then $\Phi_v:=\{\pi(g)v\mid g\in G\}$ is a tight frame for V. Let $\mathbb{T}\subset\mathbb{C}$ be the unit circle. If the frame Φ_v is phase retrievable, i.e. the map

$$t_v: V/\mathbb{T} \to \mathbb{R}^{|G|}$$

 $x \mapsto (|\langle x, \pi(g)v \rangle|)_{g \in G}$

is injective, then we call the vector v phase retrievable. If (π, G, V) admits a phase retrievable vector, we say that the representation π does phase retrieval. In the above situation, $v \in V$ has maximal span (or is maximal spanning) if $\operatorname{Span}\{\pi(g)v\otimes\pi(g)v\mid g\in G\}=\operatorname{HS}(V)$. Here for any $x,\ y\in V,\ x\otimes y$ is the projection

$$V \to V$$
$$u \mapsto \langle u, y \rangle x.$$

In other words, $v \in V$ has maximal span if and only if dim Span $\{\pi(g)v \otimes \pi(g)v \mid g \in G\} = (\dim V)^2$. It is well known and easy to see that if v has maximal span, then $v \in V$ is phase retrievable (cf. [2]). For $u, v \in V$, let $\mathfrak{c}_{u,v}$ be the matrix coefficient

$$\mathfrak{c}_{u,v}:G\to\mathbb{C}$$

$$g\mapsto \langle \pi(g)u,v\rangle.$$

Denote by $C_{\pi} \subset L^2(G)$ the subspace spanned by the matrix coefficients $\mathfrak{c}_{u,v}$ $(u,v \in V)$. The following three conditions are equivalent (cf. [6, Section 1]).

- (1) $v \in V$ is a maximal spanning vector for (π, G, V) ;
- (2) $v \otimes v \in V \otimes V$ is a cyclic vector for the representation $(\pi \otimes \pi^*, G, V \otimes V)$;
- (3) $\mathfrak{c}_{v,v} \in C_{\pi}$ is a cyclic vector for the representation $(\mathrm{ad}, G, C_{\pi})$.

Here π^* is the dual representation of π , ad : $G \to \mathbf{U}(C_{\pi})$ is the adjoint representation defined by $\mathrm{ad}(g)(f)(x) = f(g^{-1}xg)$ for $g \in G$ and $f \in C_{\pi}$.

Using the above equivalences, it is shown in [6] that unramified irreducible representations admit maximal spanning vectors and do phase retrieval. Moreover, for ramified representations, it provides a method to find maximal spanning vectors once we have an explicit description of (ad, G, C_{π}) . Then one proves that the special representations and the cuspidal representations of $GL_2(\mathbb{F}_q)$ admit maximal spanning vectors and do phase retrieval.

The method in [6] does not apply to the principal series representations of $GL_2(\mathbb{F}_q)$, since these representations are ramified and we do not have an explicit decomposition of C_{π} (cf. [6, Remark 4.8]). On the other hand, the principal series representations of $GL_2(\mathbb{F}_q)$ are ramified with small degree in the sense that each irreducible component of $\pi \otimes \pi^*$ has multiplicity less than or equal to two. We may then circumvent the difficulties by a property on the independence of sesquilinear forms.

3. Quadratic forms and sesquilinear forms

We study the independence of quadratic forms and sesquilinear forms in this section. Let K be a field and x_1, \ldots, x_n be variables. A linear form (resp. quadratic form) with respect to x_1, \ldots, x_n is a homogeneous polynomial in $K[x_1, \ldots, x_n]$ of degree one (resp. degree two).

Lemma 3.1. Let f_{11} , f_{12} , f_{21} , $f_{22} \in K[x_1, \ldots, x_n]$ be nontrivial quadratic forms. Suppose that

$$\begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} = 0.$$

Then at least one of the following conditions holds

- (1) there exists $k \in K^{\times}$ such that $f_{11} = kf_{21}$, $f_{12} = kf_{22}$;
- (2) there exists $\ell \in K^{\times}$ such that $f_{11} = \ell f_{12}$, $f_{21} = \ell f_{22}$;
- (3) there exist linear forms L_1 , L_2 , F_1 , F_2 such that $f_{11} = F_1L_1$, $f_{12} = F_1L_2$, $f_{21} = F_2L_1$, $f_{22} = F_2L_2$.

Proof. If one of f_{ij} $(i, j \in \{1, 2\})$ is irreducible, then condition (1) or condition (2) holds because $K[x_1, \ldots, x_n]$ is an unique factorization domain. If all the f_{ij} $(i, j \in \{1, 2\})$ are reducible and conditions (1) and (2) do not hold, then condition (3) holds.

Let V be an n-dimensional complex vector space, $S: V \times V \to \mathbb{C}$ be a sesquilinear form on V. Fixing a basis $\{e_1, \ldots, e_n\}$ of V, we may identify V with \mathbb{C}^n and then S corresponds to a matrix $S = (s_{ij})_{n \times n} \in M_n(\mathbb{C})$, where $s_{ij} = S(e_i, e_j)$. Let $z = (z_1, \ldots, z_n)' \in \mathbb{C}^n$ be the coordinates of an element $v \in V$. Set

$$Q(v) := \mathcal{S}(v, v) = z^* S z = \sum_{i,j=1}^n s_{ij} z_i \bar{z}_j.$$

Note that we have the polarization identity

$$4S(u,v) = Q(u+v) - Q(u-v) + \mathbf{i}Q(u+\mathbf{i}v) - \mathbf{i}Q(u-\mathbf{i}v)$$

for all $u, v \in V$, hence Q also determines S.

Write $z_k = x_k + \mathbf{i}y_k$, where x_k is the real part of z_k and y_k is the imaginary part of z_k . Write $S = A + \mathbf{i}B$, where $A \in M_n(\mathbb{R})$ is the real part of S and $B \in M_n(\mathbb{R})$ is the imaginary part of S. Then

$$z^*Sz = (x' - \mathbf{i}y')(A + \mathbf{i}B)(x + \mathbf{i}y)$$

$$= x'Ax - x'By + y'Ay + y'Bx + \mathbf{i}(x'Ay + x'Bx - y'Ax + y'By)$$

$$= (x' y') \begin{pmatrix} A + \mathbf{i}B & -B + \mathbf{i}A \\ B - \mathbf{i}A & A + \mathbf{i}B \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= (x' y') \begin{pmatrix} S & \mathbf{i}S \\ -\mathbf{i}S & S \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

If we view the x_k and y_k as indeterminates, then z^*Sz is a quadratic form in $\mathbb{C}[x_i, y_i : 1 \le i \le n]$. We call it the quadratic form associated with S and denote it by q_S .

Lemma 3.2. The quadratic form q_S is nontrivial and reducible if and only if S has rank one.

Proof. If S has rank one, say $S = (s_1 \cdots s_n)'(t_1 \cdots t_n)$, where $(s_1 \cdots s_n)'$, $(t_1 \cdots t_n)' \in \mathbb{C}^n$ are nonzero vectors, then

$$z^*Sz = z^*(s_1 \cdots s_n)'(t_1 \cdots t_n)z$$

$$= \left(\sum_{1 \le k \le n} s_k \overline{z}_k\right) \left(\sum_{1 \le k \le n} t_k z_k\right)$$

$$= \left(\sum_{1 \le k \le n} s_k x_k - \sum_{1 \le k \le n} \mathbf{i} s_k y_k\right) \left(\sum_{1 \le k \le n} t_k x_k + \sum_{1 \le k \le n} \mathbf{i} t_k y_k\right).$$

The quadratic form q_S is nontrivial and reducible. On the other hand, assume that q_S is nontrivial and reducible, say

$$q_S = \left(\sum_{1 \le k \le n} a_k x_k + \sum_{1 \le k \le n} b_k y_k\right) \left(\sum_{1 \le k \le n} c_k x_k + \sum_{1 \le k \le n} d_k y_k\right)$$
$$= (x' \quad y') \begin{pmatrix} \alpha \\ \beta \end{pmatrix} (\gamma' \quad \delta') \begin{pmatrix} x \\ y \end{pmatrix},$$

where $\alpha = (a_1 \cdots a_n)'$, $\beta = (b_1 \cdots b_n)'$, $\gamma = (c_1 \cdots c_n)'$, $\delta = (d_1 \cdots d_n)' \in \mathbb{C}^n$ and $x = (x_1 \cdots x_n)'$, $y = (y_1 \cdots y_n)'$. Then

$$\begin{pmatrix} S & \mathbf{i}S \\ -\mathbf{i}S & S \end{pmatrix} + \begin{pmatrix} S & \mathbf{i}S \\ -\mathbf{i}S & S \end{pmatrix}' = \begin{pmatrix} \alpha\gamma' & \alpha\delta' \\ \beta\gamma' & \beta\delta' \end{pmatrix} + \begin{pmatrix} \alpha\gamma' & \alpha\delta' \\ \beta\gamma' & \beta\delta' \end{pmatrix}'.$$

Comparing the entries, we have identities

$$\begin{cases} S + S' &= \alpha \gamma' + \gamma \alpha', \\ \mathbf{i}(S' - S) &= \beta \gamma' + \delta \alpha', \\ \mathbf{i}(S - S') &= \alpha \delta' + \gamma \beta', \\ S + S' &= \beta \delta' + \delta \beta'. \end{cases}$$

From the first two identities, we have

$$2S = \alpha \gamma' + \gamma \alpha' + \mathbf{i}(\beta \gamma' + \delta \alpha'), \ 2S' = \alpha \gamma' + \gamma \alpha' - \mathbf{i}(\beta \gamma' + \delta \alpha').$$

From the last two identities, we have

$$2S = \beta \delta' + \delta \beta' - \mathbf{i}(\alpha \delta' + \gamma \beta'), \ 2S' = \beta \delta' + \delta \beta' + \mathbf{i}(\alpha \delta' + \gamma \beta').$$

Therefore,

$$0 = 2S - 2S = \alpha \gamma' + \gamma \alpha' + \mathbf{i}(\beta \gamma' + \delta \alpha') - (\beta \delta' + \delta \beta' - \mathbf{i}(\alpha \delta' + \gamma \beta'))$$
$$= (\alpha + \mathbf{i}\beta)(\gamma + \mathbf{i}\delta)' + (\gamma + \mathbf{i}\delta)(\alpha + \mathbf{i}\beta)'$$

and

$$0 = 2S' - 2S' = \alpha \gamma' + \gamma \alpha' - \mathbf{i}(\beta \gamma' + \delta \alpha') - (\beta \delta' + \delta \beta' + \mathbf{i}(\alpha \delta' + \gamma \beta'))$$
$$= (\alpha - \mathbf{i}\beta)(\gamma - \mathbf{i}\delta)' + (\gamma - \mathbf{i}\delta)(\alpha - \mathbf{i}\beta)'.$$

Note that if x and $y \in \mathbb{C}^n$ are column vectors and 0 = xy' + yx', then at least one of x and y is the zero vector. Since q_S is nontrivial, at least one of $\alpha + \mathbf{i}\beta$ and $\alpha - \mathbf{i}\beta$ is nonzero and at least one of $\gamma + \mathbf{i}\delta$ and $\gamma - \mathbf{i}\delta$ is nonzero. Without loss of generality, we may then assume that

$$\alpha - \mathbf{i}\beta = \gamma + \mathbf{i}\delta = 0, \ \alpha + \mathbf{i}\beta \neq 0, \ \gamma - \mathbf{i}\delta \neq 0.$$

Hence

$$\sum_{1 \le k \le n} a_k x_k + \sum_{1 \le k \le n} b_k y_k$$

$$= \sum_{1 \le k \le n} a_k \frac{1}{2} (z_k + \overline{z}_k) + \sum_{1 \le k \le n} b_k \frac{\mathbf{i}}{2} (-z_k + \overline{z}_k)$$

$$= \sum_{1 \le k \le n} (\frac{1}{2} a_k + \frac{\mathbf{i}}{2} b_k) \overline{z}_k.$$

Similarly,

$$\sum_{1 \le k \le n} c_k x_k + \sum_{1 \le k \le n} d_k y_k = \sum_{1 \le k \le n} \left(\frac{1}{2} c_k - \frac{\mathbf{i}}{2} d_k\right) z_k.$$

Therefore, $S = (\frac{1}{2}\alpha + \frac{\mathbf{i}}{2}\beta)(\frac{1}{2}\gamma - \frac{\mathbf{i}}{2}\delta)'$ has rank one. This completes the proof.

Lemma 3.3. Let S and T be sesquilinear forms with associated matrices S and T respectively. If there exists a constant $c \in \mathbb{C}^{\times}$ with $q_S = cq_T$, then S = cT and S = cT.

Proof. The assumption $q_S = cq_T$ is equivalent to

$$\begin{pmatrix} S & \mathbf{i}S \\ -\mathbf{i}S & S \end{pmatrix} + \begin{pmatrix} S & \mathbf{i}S \\ -\mathbf{i}S & S \end{pmatrix}' = c \begin{pmatrix} T & \mathbf{i}T \\ -\mathbf{i}T & T \end{pmatrix} + c \begin{pmatrix} T & \mathbf{i}T \\ -\mathbf{i}T & T \end{pmatrix}'.$$

Therefore

$$S + S' = c(T + T'), \quad S - S' = c(T - T').$$

The lemma follows.

Proposition 3.4. Let $f_{ij}(z) = z^*S_{ij}z$ $(i, j \in \{1, 2\})$ be sesquilinear forms on \mathbb{C}^n . Suppose that for any $z \in \mathbb{C}^n$,

$$\begin{vmatrix} f_{11}(z) & f_{12}(z) \\ f_{21}(z) & f_{22}(z) \end{vmatrix} = 0.$$

Then at least one of the following conditions holds

- (1) there exists $k \in \mathbb{C}^{\times}$ such that $f_{11} = kf_{21}$, $f_{12} = kf_{22}$;
- (2) there exists $\ell \in \mathbb{C}^{\times}$ such that $f_{11} = \ell f_{12}$, $f_{21} = \ell f_{22}$;
- (3) there exist linear forms L_1 , L_2 , F_1 , F_2 such that $f_{11} = F_1\overline{L}_1$, $f_{12} = F_1\overline{L}_2$, $f_{21} = F_2\overline{L}_1$, $f_{22} = F_2\overline{L}_2$. Here $\overline{L}_i(z) = \overline{L}_i(z)$.

Proof. From equation (3.1), for $i, j \in \{1, 2\}$, we may write

$$f_{ij}(z) = r_{ij}(x, y) + \mathbf{i}t_{ij}(x, y),$$

where r_{ij} and t_{ij} are real quadratic forms with respect to the real and imaginary parts of z. From the assumption, for any $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$\begin{vmatrix} r_{11}(x,y) + \mathbf{i}t_{11}(x,y) & r_{12}(x,y) + \mathbf{i}t_{12}(x,y) \\ r_{21}(x,y) + \mathbf{i}t_{21}(x,y) & r_{22}(x,y) + \mathbf{i}t_{22}(x,y) \end{vmatrix} = 0.$$

Therefore, $r_{11}r_{22} - t_{11}t_{22} - r_{12}r_{21} + t_{12}t_{21}$ and $r_{11}t_{22} + t_{11}r_{22} - r_{12}t_{21} - r_{21}t_{12}$ are zero polynomials with respect to x and y. Hence, as complex quadratic forms, the polynomials $q_{S_{11}}(x, y)$, $q_{S_{12}}(x, y)$, $q_{S_{21}}(x, y)$, $q_{S_{22}}(x, y)$ satisfy

$$\begin{vmatrix} q_{S_{11}}(x,y) & q_{S_{12}}(x,y) \\ q_{S_{21}}(x,y) & q_{S_{22}}(x,y) \end{vmatrix} = 0.$$

The proposition then follows form Lemmas 3.1, 3.2, 3.3.

4. The maximal spanning vectors

4.1. Explicit decomposition of a representation. Let $\rho: G \to \operatorname{GL}(V)$ be a linear representation of G. Let W_i $(1 \le i \le h)$ be the irreducible representations of G with $\operatorname{Hom}_G(W_i, V)$ nontrivial. Denote by V_i the direct sum of irreducible components of V which are isomorphic to W_i $(1 \le i \le h)$. Then we have the canonical decomposition

$$V = V_1 \oplus \cdots \oplus V_h$$
.

Following [14, Section 2.7], we describe an explicit decomposition of V_i into a direct sum of subrepresentations isomorphic to W_i . Let W_i be given in matrix form $(r_{\alpha\beta}(s))$ with respect to a basis of W_i . Let $n = \dim W_i$. For each pair of integers $1 \le \alpha$, $\beta \le n$, let $p_{\alpha\beta}$ denote the linear map of V into V defined by

$$p_{\alpha\beta} = \frac{n}{|G|} \sum_{s \in G} r_{\beta\alpha}(s^{-1}) \rho(s).$$

The following result is [14, Section 2.7, Proposition 8]. We state it here for the convenience of the readers.

Proposition 4.1. With the notation as above, the following statements hold.

- (1) The map $p_{\alpha\alpha}$ is a projection; it is zero on the V_j , $j \neq i$. Its image $V_{i,\alpha}$ is contained in V_i , and V_i is the direct sum of the $V_{i,\alpha}$ for $1 \leq \alpha \leq n$. The map $p_i = \sum_{\alpha} p_{\alpha\alpha}$ is the projection of V onto V_i .
- (2) The linear map $p_{\alpha\beta}$ is zero on V_j , $j \neq i$, as well as on the $V_{i,\gamma}$ for $\gamma \neq \beta$; it defines an isomorphism from $V_{i,\beta}$ onto $V_{i,\alpha}$.
- (3) Let x_1 be a nonzero element of $V_{i,1}$ and let $x_{\alpha} = p_{\alpha 1}(x_1) \in V_{i,\alpha}$. The x_{α} are linearly independent and generate a vector space $W(x_1)$ stable under G and of dimension n. For each $s \in G$, we have

$$\rho(s)(x_{\alpha}) = \sum_{\beta} r_{\beta\alpha}(s) x_{\beta}.$$

In particular, $W(x_1)$ is isomorphic to W_i .

- (4) If $(x_1^{(1)}, \ldots, x_1^{(m)})$ is a basis of $V_{i,1}$, the representation V_i is the direct sum of the subrepresentations $W(x_1^{(1)}), \ldots, W(x_1^{(m)})$.
- 4.2. The cyclic vectors of $\pi \otimes \pi^*$. Let $\pi : G \to \mathbf{U}(\mathbb{C}^d)$ be an irreducible representation of G with degree $d \geq 2$. Let $\rho := \pi \otimes \pi^* : G \to \mathbf{U}(\mathbb{C}^d \otimes \mathbb{C}^d)$. We identify $\mathbb{C}^d \otimes \mathbb{C}^d$ with $V := M_d(\mathbb{C})$, then $\rho : G \to \mathbf{U}(M_d(\mathbb{C}))$ is given by

$$\rho(g)M = \pi(g)M\pi(g)^*$$

for $M \in M_d(\mathbb{C})$. Let $V = V_1 \oplus \cdots \oplus V_h$ be the canonical decomposition of ρ as in Section 4.1. Assume that $V_i \cong W_i^{\oplus m_i}$ for $1 \leq i \leq h$. Moreover, assume that $m_i \geq 2$ for $1 \leq i \leq \ell$, $m_i = 1$ for $\ell + 1 \leq i \leq h$. Let $d_i = \dim W_i$. Then $m_i \leq d_i$ for all $1 \leq i \leq h$ and $d^2 = \sum_i m_i d_i$.

We apply Proposition 4.1 to $(\rho = \pi \otimes \pi^*, G, V = M_d(\mathbb{C}))$ to construct a decomposition of V_i $(1 \leq i \leq \ell)$. For each V_i , fix a basis $(A_{i,1}^{(1)}, \ldots, A_{i,1}^{(m_i)})$ of $V_{i,1}$. Let $A_{i,\alpha}^{(j)} = p_{\alpha 1}(A_{i,1}^{(j)})$ $(1 \leq \alpha \leq d_i, 1 \leq j \leq m_i)$. We remark that the projections $p_{\alpha 1}$ depend on i, we omit the subscript i to ease the notation. Let

$$W_i(A_{i,1}^{(j)}) = \text{Span}\{A_{i,\alpha}^{(j)}: 1 \le \alpha \le d_i\}, 1 \le j \le m_i.$$

Then $W_i(A_{i,1}^{(j)})$ is stable under G and isomorphic to W_i . We have a decomposition

$$V_i = W_i(A_{i,1}^{(1)}) \oplus \cdots \oplus W_i(A_{i,1}^{(m_i)}).$$

Moreover, by Proposition 4.1(3), the map

(4.1)
$$W_{i}(A_{i,1}^{(j)}) \to W_{i}(A_{i,1}^{(1)}) A_{i,\alpha}^{(j)} \mapsto A_{i,\alpha}^{(1)}, \quad 1 \le \alpha \le d_{i}$$

is an isomorphism of G-representations. Applying [6, Propositions 2.3, 2.5], we have the following proposition.

Proposition 4.2. Let $A \in M_d(\mathbb{C})$ be a nontrivial matrix. Then A is a cyclic vector for the representation $(\rho = \pi \otimes \pi^*, G, V = M_d(\mathbb{C}))$ if and only if the following two conditions are satisfied.

(1) For $\ell + 1 \le i \le h$, the projection of A in V_i is nontrivial.

(2) For $1 \le i \le \ell$, the matrix

$$\mathfrak{P}_{i} = \begin{pmatrix} \langle A, A_{i,1}^{(1)} \rangle & \langle A, A_{i,2}^{(1)} \rangle & \cdots & \langle A, A_{i,d_{i}}^{(1)} \rangle \\ \langle A, A_{i,1}^{(2)} \rangle & \langle A, A_{i,2}^{(2)} \rangle & \cdots & \langle A, A_{i,d_{i}}^{(2)} \rangle \\ \cdots & \cdots & \cdots & \cdots \\ \langle A, A_{i,1}^{(m_{i})} \rangle & \langle A, A_{i,2}^{(m_{i})} \rangle & \cdots & \langle A, A_{i,d_{i}}^{(m_{i})} \rangle \end{pmatrix}$$

has rank m_i .

In particular, a column vector $v \in \mathbb{C}^d$ is maximal spanning for (π, G, \mathbb{C}^d) if and only if the following two conditions are satisfied.

- (1) For $\ell + 1 \le i \le h$, the projection of vv^* in V_i is nontrivial.
- (2) For $1 \le i \le \ell$, the matrix

$$\mathfrak{P}_{i} = \begin{pmatrix} v^{*}B_{i,1}^{(1)}v & v^{*}B_{i,2}^{(1)}v & \cdots & v^{*}B_{i,d_{i}}^{(1)}v \\ v^{*}B_{i,1}^{(2)}v & v^{*}B_{i,2}^{(2)}v & \cdots & v^{*}B_{i,d_{i}}^{(2)}v \\ \cdots & \cdots & \cdots \\ v^{*}B_{i,1}^{(m_{i})}v & v^{*}B_{i,2}^{(m_{i})}v & \cdots & v^{*}B_{i,d_{i}}^{(m_{i})}v \end{pmatrix}$$

has rank m_i . Here $B_{i,\alpha}^{(j)}$ is the conjugate transpose of $A_{i,\alpha}^{(j)}$.

Proof. From [6, Propositions 2.3], A is a cyclic vector for the representation ($\rho = \pi \otimes \pi^*, G, V = M_d(\mathbb{C})$) if and only if the projection of A into V_i is a cyclic vector for (ρ, G, V_i) . The first statement then follows from [6, Propositions 2.5] and the fact that equation (4.1) is an isomorphism of G-representations.

From the equivalent conditions in Section 2, a column vector $v \in \mathbb{C}^d$ is maximal spanning for (π, G, \mathbb{C}^d) if and only if vv^* is a cyclic vector for $(\rho = \pi \otimes \pi^*, G, V = M_d(\mathbb{C}))$. Then the second statement holds as

(4.2)
$$\langle vv^*, M \rangle = \text{Tr}(M^*vv^*) = \text{Tr}(v^*M^*v) = \langle v, Mv \rangle$$

for $v \in \mathbb{C}^d$ and $M \in M_d(\mathbb{C})$.

For $\ell + 1 \leq i \leq h$, let C_i be the set of vectors $v \in \mathbb{C}^d$ such that the projection of vv^* in V_i is nontrivial. It is easy to see that C_i ($\ell + 1 \leq i \leq h$) is open dense in \mathbb{C}^d . Indeed, the complement of C_i is a finite union of the zero set of nontrivial polynomials on the real and imaginary parts of the coordinates of v (cf. equations (3.1), (4.2), and proof of [6, Theorem 1.1]).

For $1 \leq i \leq \ell$, let C_i be the set of vectors $v \in \mathbb{C}^d$ such that $\operatorname{rank}(\mathfrak{P}_i) = m_i$. Note that $\operatorname{rank}(\mathfrak{P}_i) < m_i$ is a closed condition given by polynomials on the real and imaginary parts of the coordinates of v, C_i $(1 \leq i \leq \ell)$ is open dense in \mathbb{C}^d if it is nonempty. Because the set of maximal spanning vectors for (π, G, \mathbb{C}^d) is the intersection $\cap_{1 \leq i \leq h} C_i$, it is open dense in \mathbb{C}^d if it is nonempty.

In general it is not easy to check the condition $\operatorname{rank}(\mathfrak{P}_i) = m_i$ because we do not have enough information on $A_{i,\alpha}^{(j)}$. In [6], for $G = \operatorname{GA}(1,q)$, this is done by constructing an explicit set of matrices $A_{i,\alpha}^{(j)}$ (cf. the matrix \mathfrak{P} in [6, Section 4]). In the following, applying Proposition 3.4, we check the condition $\operatorname{rank}(\mathfrak{P}_i) = m_i$ under the assumption that $m_i = 2$ for $1 \leq i \leq \ell$.

Lemma 4.3. Fix $1 \le i \le \ell$. If $m_i = 2$, then C_i is open dense in \mathbb{C}^d .

Proof. As explained above, to show that C_i is open dense in \mathbb{C}^d , it suffices to show that there exists one column vector $v \in \mathbb{C}^d$ such that $\operatorname{rank}(\mathfrak{P}_i) = 2$. Suppose otherwise, for all $v \in \mathbb{C}^d$, we have $\operatorname{rank}(\mathfrak{P}_i) \leq 1$. Since the matrices $A_{i,\alpha}^{(j)}$ are linearly independent, by Proposition 3.4, there exist linear forms $F_1, F_2, L_1, \ldots, L_{d_i}$ with

$$v^* B_{i,\alpha}^{(j)} v = F_{\alpha}(v) \overline{L_j(v)}, \ \alpha = 1, \ 2, \ 1 \le j \le d_i.$$

In other words, there exist column vectors $u_1, u_2, w_1, \ldots, w_{d_i} \in \mathbb{C}^d$ with

$$A_{i,\alpha}^{(j)} = u_{\alpha} w_{j}^{*}, \ \alpha = 1, \ 2, \ 1 \le j \le d_{i}.$$

Since for each α , Span $\{A_{i,\alpha}^{(j)}: 1 \leq j \leq d_i\}$ is G-stable under the action $\rho(g)M = \pi(g)M\pi(g)^*$, therefore

$$(\pi(g)u_{\alpha})(\pi(g)w_{j})^{*} = \rho(g)(u_{\alpha}w_{j}^{*}) \in \operatorname{Span}\{A_{i,\alpha}^{(j)} = u_{\alpha}w_{j}^{*}: 1 \leq j \leq d_{i}\}.$$

Hence u_{α} is a common eigenvector for $\pi(g)$ $(g \in G)$ and $\mathbb{C}\langle u_{\alpha}\rangle \subset \mathbb{C}^d$ is a subrepresentation of π , which contradicts to the irreducibility of π . The lemma follows.

Combining the above discussion, we obtain the following result, which generalizes [6, Theorem 1.1].

Theorem 4.4. Let $\pi: G \to \mathbf{U}(V)$ be an irreducible representation of G. If each irreducible component of $(\pi \otimes \pi^*, G, V \otimes V)$ has multiplicity one or two, then (π, G, V) admits maximal spanning vectors and the set of maximal spanning vectors is open dense in V.

If (π, G, V) is an irreducible representation of G with relatively large (resp. small) dimension among the irreducible representations of G, then (π, G, V) is likely to be more ramified (resp. unramified). In particular, for the symmetric group S_n with $n \leq 8$, one could see this from the table in [12, Appendix I.A and I.I]. One could also make a list of representations for S_n with $n \leq 8$ that satisfy the condition in Theorem 4.4.

Corollary 4.5. Let $G = S_n$ be the symmetric group with $n \leq 5$. Every irreducible representation of S_n admits maximal spanning vectors, hence does phase retrieval.

5. Representations of $GL_2(\mathbb{F}_q)$

We check that the principal series representations of $GL_2(\mathbb{F}_q)$ satisfy the conditions in Theorem 4.4 and then obtain Theorem 1.2. We first review the basic properties of the group $GL_2(\mathbb{F}_q)$ and its representations. The readers may find more details in the literatures, for example [3, Section 6] and [10, Section 5.2].

Since $GL_2(\mathbb{F}_2) \cong S_3$, this case follows from Corollary 4.5. See also [7, Section 4.3.2] for explicit computation. We assume that $q \geq 3$ in the following. We have $|GL_2(\mathbb{F}_q)| = (q-1)^2 q(q+1)$. Let $\epsilon \in \mathbb{F}_q^{\times}$ be a non-square element. There are four types of conjugacy classes of $GL_2(\mathbb{F}_q)$. We collect the information in the following table (cf. [10, Section 5.2]).

There are four types of irreducible representations of $GL_2(\mathbb{F}_q)$.

(1) The one-dimensional representations U_{α} , induced by det : $GL_2(\mathbb{F}_q) \to \mathbb{F}_q^{\times}$ and characters $\alpha : \mathbb{F}_q^{\times} \to \mathbb{C}^{\times}$. There are (q-1) one-dimensional representations.

Representative	No. of elements in each class	No. of classes
$a_x = \left(\begin{array}{cc} x & 0 \\ 0 & x \end{array}\right)$	1	q-1
$a_x = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$ $b_x = \begin{pmatrix} x & 1 \\ 0 & x \end{pmatrix}$	$q^2 - 1$	q-1
$c_{x,y} = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}, x \neq y$ $d_{x,y} = \begin{pmatrix} x & \varepsilon y \\ y & x \end{pmatrix}, y \neq 0$	$q^2 + q$	(q-1)(q-2)/2
$d_{x,y} = \left(\begin{array}{cc} x & \varepsilon y \\ y & x \end{array}\right), \ y \neq 0$	$q^2 - q$	q(q-1)/2

Table 1. Conjugacy classes of $GL_2(\mathbb{F}_q)$

- (2) The q-dimensional representations V_{α} (the **special representations**). Consider the permutation representation of $\mathrm{GL}_2(\mathbb{F}_q)$ on $\mathbb{P}^1(\mathbb{F}_q)$, which has dimension q+1. It contains the trivial representation, let V be the complementary q-dimensional representation. Then V is irreducible. Define $V_{\alpha} = V \otimes U_{\alpha}$. There are (q-1) special representations.
- (3) The (q+1)-dimensional representations $W_{\alpha,\beta}$ (the **principal series representations**). Let $B \subset \operatorname{GL}_2(\mathbb{F}_q)$ be the subset of upper triangular matrices. For each pair α , β of characters of \mathbb{F}_q^{\times} , let $\alpha \otimes \beta : B \to \mathbb{C}^{\times}$ be the character that takes $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ to $\alpha(a)\beta(d)$. Let $W_{\alpha,\beta}$ be the induced representation $\operatorname{Ind}_B^G \alpha \otimes \beta$. It is irreducible if $\alpha \neq \beta$ and $W_{\alpha,\beta} \cong W_{\beta,\alpha}$. There are $\frac{1}{2}(q-1)(q-2)$ principal series representations. If $\alpha = \beta$, then $W_{\alpha,\alpha} \cong U_{\alpha} \oplus V_{\alpha}$.
- (4) The (q-1)-dimensional representations X_{φ} (the **cuspidal representations**). Let $\varphi: \mathbb{F}_{q^2}^{\times} \to \mathbb{C}^{\times}$ be a character of the multiplicative group of the quadratic extension of \mathbb{F}_q and $\varphi \neq \varphi^q$. There exists an irreducible (q-1)-dimensional representation X_{φ} inside $\operatorname{Ind}_{\mathbb{F}_{q^2}^{\times}}^G \varphi$ and $X_{\varphi} = X_{\varphi^q}$. There are $\frac{1}{2}q(q-1)$ cuspidal representations.

For the construction of cuspidal representations of $GL_2(\mathbb{F}_q)$, we identify $\mathbb{F}_{q^2}^{\times}$ with a subgroup of $GL_2(\mathbb{F}_q)$ by mapping $x + y\sqrt{\epsilon}$ to $d_{x,y} \in GL_2(\mathbb{F}_q)$. The character table of $GL_2(\mathbb{F}_q)$ is as follows (cf. [10, Section 5.2]).

Table 2. Character table of $GL_2(\mathbb{F}_q)$

Theorem 5.1. Let \mathbb{F}_q be the finite field with q elements. Every irreducible representation of $GL_2(\mathbb{F}_q)$ admits maximal spanning vectors, hence does phase retrieval.

Proof. By [6, Corollary 1.3], cuspidal representations and special representations of $\mathrm{GL}_2(\mathbb{F}_q)$ admit maximal spanning vectors and we need to show that every principal series representation of $\mathrm{GL}_2(\mathbb{F}_q)$ admits maximal spanning vectors, hence does phase retrieval. Let $\pi = W_{\alpha,\beta}$ be a principal series representation of $\mathrm{GL}_2(\mathbb{F}_q)$. Since $W_{\alpha,\beta} \cong U_{\alpha} \otimes W_{1,\alpha^{-1}\beta}$ and $W_{\alpha,\beta} \otimes W_{\alpha,\beta}^* \cong W_{1,\alpha^{-1}\beta} \otimes W_{1,\alpha^{-1}\beta}^*$, we may assume that $\pi = W_{1,\beta}$ and β is not trivial. By Theorem 4.4, it suffices to show that each irreducible component of $\rho := W_{1,\beta} \otimes W_{1,\beta}^*$ has multiplicity less than or equal to two. This is a straightforward verification from the character table. In the following, we give details for the case q odd.

On the four types of conjugacy classes a_x , b_x , $c_{x,y}$, $d_{x,y}$, the character χ_{ρ} of ρ takes value

$$(q+1)^2$$
, 1, $2+\beta(xy^{-1})+\beta(x^{-1}y)$, 0, respectively.

We compute the inner product $\langle \chi_X, \chi_\rho \rangle$ for each irreducible character χ_X and then

$$\dim \operatorname{Hom}(X,\rho) = \frac{1}{|\operatorname{GL}_2(\mathbb{F}_q)|} \langle \chi_X, \chi_\rho \rangle = \frac{1}{(q-1)^2 q(q+1)} \langle \chi_X, \chi_\rho \rangle.$$

Assume first that $\beta^2 \neq 1$.

(1) For U_{α} , we have

$$(\chi U_{\alpha}, \chi_{\rho})$$

$$= \sum_{x \in \mathbb{F}_{q}^{\times}} \alpha(x^{2})(q+1)^{2} + \sum_{x \in \mathbb{F}_{q}^{\times}} \alpha(x^{2})(q^{2}-1)$$

$$+ \frac{1}{2} \sum_{\substack{x,y \in \mathbb{F}_{q}^{\times} \\ x \neq y}} \alpha(xy)(2 + \beta(xy^{-1}) + \beta(x^{-1}y))(q^{2}+q) + 0$$

$$= (q+1)^{2} \sum_{x \in \mathbb{F}_{q}^{\times}} \alpha(x^{2}) + (q^{2}-1) \sum_{x \in \mathbb{F}_{q}^{\times}} \alpha(x^{2})$$

$$+ \frac{1}{2}(q^{2}+q) \sum_{\substack{x,y \in \mathbb{F}_{q}^{\times} \\ x \neq y}} \alpha(xy)(2 + \beta(xy^{-1}) + \beta(x^{-1}y))$$

$$= \begin{cases} (q-1)^{2}q(q+1) & \text{if } \alpha = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Here the last "=" follows from

$$\begin{split} &\sum_{\substack{x,y\in\mathbb{F}_q^\times\\x\neq y}}\alpha(xy)(2+\beta(xy^{-1})+\beta(x^{-1}y))\\ &=\sum_{\substack{x,y\in\mathbb{F}_q^\times\\x=y}}\alpha(xy)(2+\beta(xy^{-1})+\beta(x^{-1}y))-\sum_{\substack{x,y\in\mathbb{F}_q^\times\\x=y}}\alpha(xy)(2+\beta(xy^{-1})+\beta(x^{-1}y))\\ &=\sum_{\substack{x,y\in\mathbb{F}_q^\times\\x=y}}(2\alpha(xy)+\alpha\beta(x)\alpha\beta^{-1}(y)+\alpha\beta^{-1}(x)\alpha\beta(y))-4\sum_{\substack{x\in\mathbb{F}_q^\times\\x=y}}\alpha(x^2)\\ &=2(\sum_{\substack{x\in\mathbb{F}_q^\times\\x\in\mathbb{F}_q^$$

One may also obtain equation (5.1) from

$$\langle \chi_{U_{\alpha}}, \chi_{\rho} \rangle = \sum_{g \in \mathrm{GL}_{2}(\mathbb{F}_{q})} \chi_{U_{\alpha}} \chi_{W_{1,\beta}} \overline{\chi_{W_{1,\beta}}}(g) = |\mathrm{GL}_{2}(\mathbb{F}_{q})| \dim \mathrm{Hom}(U_{\alpha} \otimes W_{1,\beta}, W_{1,\beta}).$$

We compute equation (5.2) as it appears several times in the following. (2) For V_{α} , we have

$$\langle \chi_{V_{\alpha}}, \chi_{\rho} \rangle = \sum_{x \in \mathbb{F}_{q}^{\times}} q\alpha(x^{2})(q+1)^{2} + 0 + \frac{1}{2} \sum_{\substack{x,y \in \mathbb{F}_{q}^{\times} \\ x \neq y}} \alpha(xy)(2 + \beta(xy^{-1}) + \beta(x^{-1}y))(q^{2} + q) + 0$$

$$= \begin{cases} 2(q-1)^{2}q(q+1) & \text{if } \alpha = 1, \\ (q-1)^{2}q(q+1) & \text{if } \alpha \neq 1, \text{ but } \alpha^{2} = 1, \\ 0 & \text{otherwise.} \end{cases}$$

(3) For W_{α_1,α_2} , we have

$$\begin{split} &\langle \chi_{W_{\alpha_{1},\alpha_{2}}},\chi_{\rho}\rangle\\ &=\sum_{x\in\mathbb{F}_{q}^{\times}}(q+1)\alpha_{1}(x)\alpha_{2}(x)(q+1)^{2}+\sum_{x\in\mathbb{F}_{q}^{\times}}\alpha_{1}(x)\alpha_{2}(x)(q^{2}-1)\\ &+\frac{1}{2}\sum_{\substack{x,y\in\mathbb{F}_{q}^{\times}\\x\neq y}}(\alpha_{1}(x)\alpha_{2}(y)+\alpha_{1}(y)\alpha_{2}(x))(2+\beta(xy^{-1})+\beta(x^{-1}y))(q^{2}+q)+0\\ &=((q+1)^{3}+q^{2}-1)\sum_{x\in\mathbb{F}_{q}^{\times}}\alpha_{1}\alpha_{2}(x)\\ &+\frac{1}{2}\sum_{\substack{x,y\in\mathbb{F}_{q}^{\times}\\x\neq y}}(\alpha_{1}\alpha_{2}(x)\alpha_{2}(x^{-1}y)+\alpha_{1}\alpha_{2}(x)\alpha_{1}(x^{-1}y))(2+\beta(xy^{-1})+\beta(x^{-1}y))\\ &=\begin{cases}2(q-1)^{2}q(q+1) & \text{if }\alpha_{1}\alpha_{2}=1,\ \alpha_{1}=\beta\ \text{or }\alpha_{1}=\beta^{-1},\\(q-1)^{2}q(q+1) & \text{if }\alpha_{1}\alpha_{2}=1,\ \alpha_{1}\neq\beta\ \text{and }\alpha_{1}\neq\beta^{-1},\\0 & \text{otherwise}.\end{cases}\end{split}$$

(4) For X_{φ} , we have

$$\langle \chi_{X_{\varphi}}, \chi_{\rho} \rangle$$

$$= \sum_{x \in \mathbb{F}_{q}^{\times}} (q-1)\varphi(x)(q+1)^{2} + \sum_{x \in \mathbb{F}_{q}^{\times}} (-\varphi(x))(q^{2}-1) + 0 + 0$$

$$= \begin{cases} (q-1)^{2}q(q+1) & \text{if } \varphi|_{\mathbb{F}_{q}^{\times}} = 1, \\ 0 & \text{otherwise.} \end{cases}$$

From the above computation, we see that each irreducible component of $W_{1,\beta} \otimes W_{1,\beta}^*$ ($\beta^2 \neq 1$) has multiplicity less than or equal to two. Moreover, V and $W_{\beta,\beta^{-1}}$ are the two irreducible components with multiplicity two. The verification for $W_{1,\beta} \otimes W_{1,\beta}^*$ ($\beta^2 = 1$) is similar.

(1) For U_{α} , we have

$$\langle \chi_{U_{\alpha}}, \chi_{\rho} \rangle$$

$$= \sum_{x \in \mathbb{F}_{q}^{\times}} \alpha(x^{2})(q+1)^{2} + \sum_{x \in \mathbb{F}_{q}^{\times}} \alpha(x^{2})(q^{2}-1)$$

$$+ \frac{1}{2} \sum_{\substack{x,y \in \mathbb{F}_{q}^{\times} \\ x \neq y}} \alpha(xy)(2 + \beta(xy^{-1}) + \beta(x^{-1}y))(q^{2}+q) + 0$$

$$= \begin{cases} (q-1)^{2}q(q+1) & \text{if } \alpha = 1, \text{ or } \alpha = \beta, \\ 0 & \text{otherwise.} \end{cases}$$

(2) For V_{α} , we have

$$\langle \chi_{V_{\alpha}}, \chi_{\rho} \rangle$$

$$= \sum_{x \in \mathbb{F}_{q}^{\times}} q \alpha(x^{2})(q+1)^{2} + 0 + \frac{1}{2} \sum_{\substack{x,y \in \mathbb{F}_{q}^{\times} \\ x \neq y}} \alpha(xy)(2 + \beta(xy^{-1}) + \beta(x^{-1}y))(q^{2} + q) + 0$$

$$= \begin{cases} 2(q-1)^{2}q(q+1) & \text{if } \alpha = 1, \\ 2(q-1)^{2}q(q+1) & \text{if } \alpha \neq 1, \text{ but } \alpha^{2} = 1, \\ 0 & \text{otherwise.} \end{cases}$$

(3) For W_{α_1,α_2} , we have

$$\langle \chi_{W_{\alpha_{1},\alpha_{2}}}, \chi_{\rho} \rangle$$

$$= \sum_{x \in \mathbb{F}_{q}^{\times}} (q+1)\alpha_{1}(x)\alpha_{2}(x)(q+1)^{2} + \sum_{x \in \mathbb{F}_{q}^{\times}} (q+1)\alpha_{1}(x)\alpha_{2}(x)(q^{2}-1)$$

$$+ \frac{1}{2} \sum_{\substack{x,y \in \mathbb{F}_{q}^{\times} \\ x \neq y}} (\alpha_{1}(x)\alpha_{2}(y) + \alpha_{1}(y)\alpha_{2}(x))(2 + \beta(xy^{-1}) + \beta(x^{-1}y))(q^{2} + q) + 0$$

$$= \begin{cases} (q-1)^{2}q(q+1) & \text{if } \alpha_{1}\alpha_{2} = 1, \ \alpha_{1} \neq \beta, \\ 0 & \text{otherwise.} \end{cases}$$

(4) For X_{φ} , we have

$$\langle \chi_{X_{\varphi}}, \chi_{\rho} \rangle$$

$$= \sum_{x \in \mathbb{F}_{q}^{\times}} (q-1)\varphi(x)(q+1)^{2} + \sum_{x \in \mathbb{F}_{q}^{\times}} (-\varphi(x))(q^{2}-1) + 0 + 0$$

$$= \begin{cases} (q-1)^{2}q(q+1) & \text{if } \varphi|_{\mathbb{F}_{q}^{\times}} = 1, \\ 0 & \text{otherwise.} \end{cases}$$

For q even, the computation is almost the same, except that there are no characters of \mathbb{F}_q^{\times} with order two. This completes the proof of the theorem.

References

- [1] D. Bartusel, H. Führ, V. Oussa. *Phase retrieval for affine groups over prime fields*. Linear Algebra Appl. 677, 161-193 (2023).
- [2] B. G. Bodmann, P. G. Casazza, D. Edidin and R. Balan. Frames for linear reconstruction without phase, In: 2008 42nd Annual Conference on Information Sciences and Systems. 721-726 (2008)
- [3] C. J. Bushnell, G. Henniart. The Local Langlands Conjecture for GL₂. Grundlehren Math. Wiss., 335 [Fundamental Principles of Mathematical Sciences] Springer-Verlag, Berlin, xii+347 pp. (2006)
- [4] P. G. Casazza, G. Kutyniok, and F. Philipp. Introduction to finite frame theory. In: Peter G. Casazza Gitta Kutyniok (eds) Finite Frames. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, 1-53 (2013)
- [5] J. Chen, C. Cheng. Remarks on frames from projective representations of locally compact groups. J. Fourier Anal. Appl. 30, 49 (2024)
- [6] C. Cheng. On the phase retrievability of irreducible representations of finite groups. Linear Algebra Appl. 714 (2025), 64-95.

- [7] C. Cheng, G. Li. Some remarks on projective representations of compact groups and frames. Commun. Math. Stat. (2025)
- [8] C. Cheng, W. Lo, H. Xu. Phase retrieval for continuous Gabor frames on locally compact abelian groups. Banach J. Math. Anal. 15, no. 2, Paper No. 32. (2021)
- [9] C. Cheng, J. Lu. On the existence of maximal spanning vectors in $L^2(\mathbb{Q}_2)$ and $L^2(\mathbb{F}_2((T)))$. Journal of Number Theory 245, 187-202 (2023)
- [10] W. Fulton, J. Harris. Representation Theory. GTM 129, Springer (2004)
- [11] H. Führ, V. Oussa. *Phase retrieval for nilpotent groups*. J. Fourier Anal. Appl. 29, no. 4, Paper No. 47, 32 pp (2023)
- [12] G. James, A. Kerber. The Representation Theory of the Symmetric Groups. Encyclopedia of Mathematics and its Applications 16, Cambridge University Press, 2009.
- [13] L. Li, T. Juste, J. Brennan, C. Cheng, D. Han. Phase retrievable projective representation frames for finite abelian groups. J. Fourier Anal. Appl. 25, no. 1, 86-100 (2019)
- [14] J. P. Serre. Linear Representations of Finite Groups. GTM 42, Springer (1977)
- [15] S. Waldron. Group frames. In: Peter G. Casazza Gitta Kutyniok (eds) Finite Frames. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, 171-191 (2013)

School of Mathematics, Nanjing University, Nanjing 210093, China *Email address*: cxcheng@nju.edu.cn

School of Mathematics, Nanjing University, Nanjing 210093, China $\it Email\ address: tianyiji@smail.nju.edu.cn$