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Abstract
In this paper, we study continuous frames from projective representations of locally 
compact abelian groups of type Ĝ × G . In particular, using the Fourier transform on 
locally compact abelian groups, we obtain a characterization of maximal spanning 
vectors. As an application, for G, a compactly generated locally Euclidean locally 
compact abelian group or a local field with odd residue characteristic, we prove the 
existence of maximal spanning vectors, hence the phase retrievability, for the associ-
ated (Ĝ × G)-frames.

Keywords The Stone–von Neumann theorem · Continuous frame · Maximal 
spanning vector · Phase retrieval · Fourier analysis on local fields
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1 Introduction

Being phase retrievable is an important property of frames in the study of sig-
nal analysis. In the case of finite frames with symmetries, e.g., group frames 
and twisted group frames, there are many results connecting maximal spanning 
vectors, vectors with the Haar property, and phase retrievable finite frames (cf. 
[1–7, 10, 11, 23, 24] etc.). In this paper, we study similar properties for contin-
uous frames generated by one vector from projective representations of locally 
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compact abelian groups of type Ĝ × G . In this paper, all locally compact groups 
are assumed Hausdorff and second countable, and all Hilbert spaces are assumed 
separable.

Let V be a complex Hilbert space and (Ω,�) be a measure space with positive 
measure � . Let F ∶ Ω → V  be a continuous frame with respect to (Ω,�) , i.e., 

1. F is weakly measurable, i.e., for all v ∈ V , the map � ↦ ⟨v,F(�)⟩ is a measurable 
function on Ω;

2. there exist constants A,B > 0 such that 

For simplicity, we say that the set of vectors {F(�) ∣ � ∈ Ω} is a continuous frame. 
We refer to [15, 26] for basic properties of continuous frames. The triple (V ,Ω,F) 
gives us a map

Then, we obtain a map T ∶ V∕� → L2(Ω) . We say that the frame F with respect to 
(Ω,�) is phase retrievable if the map T is injective. Let SF be the set of operators 
F(𝜔)⊗ F(𝜔) ( � ∈ Ω ), where

We say that SF has maximal span if Span(SF) = HS(V) . Here HS(V) denotes the 
space of Hilbert-Schmidt operators on V. In this case, the operator x⊗ x is deter-
mined by ⟨x⊗ x,F(𝜔)⊗ F(𝜔)⟩HS = �⟨x,F(𝜔)⟩�2 . Hence the frame F is phase 
retrievable (cf. [6, Section 3]). In the case where V is finite dimensional and (Ω,�) 
is a finite set with counting measure, there have been many results about the phase 
retrievability of a finite frame in the literature, see for example [1–3, 6] and the ref-
erences there.

Now, let G be a group and � ∶ G → �(V) be a (projective) representation of G on 
the Hilbert space V. Let v ∈ V  be a nonzero vector and Φv = {�(g)v ∣ g ∈ G} . In the 
simple case where G is finite and � is irreducible, Φv is a frame for V. By showing 
that the associated frame satisfies the Haar property ([23, Definition 2]), Lawrence, 
Pfander, and Walnut [23, Theorems 1, 2] proved the following result.

Theorem  1.1 (Lawrence, Pfander, Walnut) Let p be a prime number. Let 
G = ℤ∕pℤ × ℤ∕pℤ and � ∶ G → �(V) be the Weyl-Heisenberg representation ([23, 
Definition 1]). Then the set of v ∈ V  for which Φv is phase retrievable is dense in V.

One important ingredient of the proof of the above theorem is a nonvanishing 
property of the generalized Vandermonder determinants ([23, Lemma 4]), which 
holds only for prime numbers p. On the other hand, using maximal spanning vectors 

(1.1)A��v��2 ≤ �
Ω

�⟨v,F(�)⟩�2d�(�) ≤ B��v��2, for all v ∈ V .

t ∶ V → L2(Ω)

v ↦ (� ↦ �⟨v,F(�)⟩�).

F(𝜔)⊗ F(𝜔) ∶ V → V

v ↦ ⟨v,F(𝜔)⟩F(𝜔).
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and tools from representation theory, Li, Han, etc. [10, 24] proved the following 
result, which generalizes Theorem 1.1.

Theorem 1.2 (Li, Han, etc.) Let G be any finite abelian group and � ∶ G → �(V) be 
an irreducible projective representation of G. Then the set of v ∈ V  for which Φv is 
phase retrievable is dense in V.

The above results focused on phase retrievability of finite frames. In [11], Cheng 
and Li proved a version of Theorem 1.2 for compact groups and explained the simi-
larity between compact continuous frame case and finite Gabor frame case. In this 
paper, we study continuous frames with locally compact symmetries. The situation 
is different as the representation spaces are now usually of infinite dimension and 
divergence causes trouble (e.g. Sect. 3.2.1). On one hand, as a complementary part 
of paper [11], we construct explicit examples of continuous frames with symmetries 
via projective representations of locally compact abelian groups. The tool we use 
here is the Stone–von Neumann theorem and its variation in terms of projective rep-
resentations. On the other hand, for the vector space we constructed, we define the 
notion of a maximal spanning vector. Motivated by results for finite abelian groups, 
we propose a conjecture (Conjecture 1.4) on the existence of maximal spanning vec-
tors and prove the conjecture for: (a) compactly generated locally Euclidean locally 
compact abelian groups, i.e. groups of the form ℝa × ℤb × 𝕋 c × E , where a, b, c are 
non-negative integers and E is a finite abelian group; and (b) local fields with resi-
due characteristic p ( p > 2 ). The tool we use here is the Fourier transform, which 
provides us a characterization of maximal spanning vectors.

We outline the contents of the paper in what follows. Let G be a locally com-
pact abelian group with a fixed Haar measure. Let Ĝ be the dual group of G, which 
is also considered as a locally compact group with the Plancherel measure. For 
(v∗, v) ∈ Ĝ × G , define an operator �(v∗, v) on L2(G) via

where f ∈ L2(G) . Then, this � defines an �-representation � ∶ Ĝ × G → �(L2(G)) , 
where � is the 2-cocycle in Z2(Ĝ × G, � ) given by

We refer to [11, 19, 21, 22] for basic properties of projective representations. Using 
the correspondence between projective representations of Ĝ × G and linear represen-
tations of the group G(�) ∈ Ext1(Ĝ × G, � ) (cf. [22]), we obtain the following result, 
which is a variation of the Stone-von Neumann theorem (cf. [8, Theorem 4.8.2], [9, 
Section 2.3], [10, Section 3.2], [13, Theorem 10.2.1], [20]).

Theorem 1.3 (Segal, Shale, Weil) The �-representation � is irreducible. Moreover, 
up to isomorphism, � is the unique irreducible �-representation of Ĝ × G on a Hil-
bert space.

Take any nonzero vector f ∈ L2(G) , because of the irreducibility of � , we have

(�(v∗, v)f )(u) = v∗(u)f (uv),

�((v∗
1
, v1), (v

∗

2
, v2)) = v∗

2
(v1).
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Moreover, the set Φf ∶= {�(v∗, v)f ∣ (v∗, v) ∈ Ĝ × G} forms a tight continuous frame 
with bound ||f ||2 (Theorem 2.1). In time-frequency analysis, Φf  is called a Gabor 
system (cf [17]). Note that the construction does not work for projective representa-
tions of general locally compact groups as equation (1.1) may fail.

For f ∈ L2(G) , we construct a function cf ,f ∶ Ĝ × G → ℂ via

It turns out that cf ,f ∈ L2(Ĝ × G) (cf. Section  3.1). We call f a maximal spanning 
vector if

The relation between maximal spanning vectors and phase retrieval problems is 
explained in Sect. 3.2.2, where we show that f is a maximal spanning vector if and 
only if the set of operators SΦf

 has maximal span. Motivated by the results for finite 
abelian groups (cf. [24, Conjecture], [10, Section 3], [11, Section 3.3]), we propose 
the following conjecture.

Conjecture 1.4 With the above notation, there exist maximal spanning vectors in 
L2(G).

Applying the result on the linear span of translates of an element in L2(G) (e.g. 
[14, Proposition 4.72]), we show that f ∈ L2(G) is a maximal spanning vector if 
and only if ⟨�(v∗, v)f , f ⟩ ≠ 0 for almost all (v∗, v) ∈ Ĝ × G (Proposition 3.3). Note 
that this is consistent with [10, Proposition 3.11]. As a consequence, by explicit 
construction, we prove the conjecture for some special groups.

Theorem  1.5 Conjecture 1.4 holds in the following cases. Here K is a local field 
with residue characteristic p ( p > 2 ). 

 1. G is a finite abelian group with discrete topology.
 2. G = ℤ is the additive group of integers with discrete topology.
 3. G = �  is the multiplicative group of norm one numbers with the Euclidean 

topology.
 4. G = ℝ is the additive group of real numbers with the Euclidean topology.
 5. G = ℝ× is the multiplicative group of nonzero real numbers with the Euclid-

ean topology.
 6. G = (K,+) is the additive group of K with its non-archimedean topology.
 7. G = (OK ,+) is the ring of integers of K.
 8. G = K∕DK with discrete topology, where DK is the difference of K.
 9. G = (K×,×) is the multiplicative group of nonzero elements of K.
 10. G = (O×

K
,×) is the group of units of K.

Span{�(v∗, v)f ∣ (v∗, v) ∈ Ĝ × G} = L2(G).

(1.2)cf ,f (v
∗, v) = ⟨�(v∗, v)f , f ⟩.

Span{c�(v∗,v)f ,�(v∗,v)f ∣ (v
∗, v) ∈ Ĝ × G} = L2(Ĝ × G).
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Moreover, Conjecture 1.4 holds for G which is a finite product of groups as listed 
above.
Remark 1.6 (Idea of proof) Applying Proposition 3.3, it is easy to check that 
if fi ∈ L2(Gi) is a maximal spanning vector for (�i, L2(Gi)) ( i = 1, 2 ), then 
f1 ⊗ f2 ∈ L2(G1 × G2) is a maximal spanning vector for L2(G1 × G2) , where 
(f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2) . Therefore if the conjecture holds for G1 and G2 , then it 
holds for G1 × G2 as well. Moreover, if the conjecture holds for ℤ (resp. OK ), then it 
holds for �  (resp. K∕DK ) as well by the discussion in Sect. 2.1.2. Because the con-
jecture holds for finite abelian groups by [10, Proposition 3.11], using the structure 
decomposition of K× , O×

K
 (cf. [25, Chap 2, Section 5, (5.7)]) and ℝ× , we only need to 

verify the theorem for G = ℝ , ℤ , K, OK . The detailed proof is the content of Sect. 4.

Remark 1.7 As a consequence, combining Theorem 1.5, Corollary 3.4, and Proposi-
tion 3.6, for G as in Theorem 1.5, we have

Notation: In this paper, G is always a locally compact group. Denote by Ĝ the 
dual group of G if G is an abelian group. Moreover, we fix a Haar measure on G 
and equip Ĝ with the Plancherel measure. Denote by f̂  the Fourier transform of f if 
f ∈ L2(G) ([14, Section 4.2]).

In this paper, ℝ is the additive group of real numbers, ℤ is the additive group of 
integers, �  is the multiplicative group of norm one numbers.

Let X be a measure space. Denote by L2(X) the space of measurable functions on 
X for which ∫

X
|f (x)|2dx < ∞ . Given f , f � ∈ L2(X) , the inner product is defined by

For f ∈ L2(X) , define ��f ��2 = (⟨f , f ⟩)1∕2.

2  Continuous (Ĝ × G)‑frames in L2(G)

2.1  Remarks on Theorem 1.3

In the following, we make some remarks on the Stone-von Neumann theorem. These 
observations enable us to reduce the proof of Theorem 1.5 to some easy cases and to 
generalize Theorem 1.5 to other groups (not of the form Ĝ × G).

2.1.1  Some variations

Let G and G∗ be locally compact abelian groups. Suppose that we have a 
bi-homomorphism

Span{f ∈ L2(G) ∣ Φf is phase retrievable} = L2(G).

⟨f , f �⟩ = ∫X

f (x)f �(x)dx.
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Let H = G∗ × G and define

Then, � is a 2-cocycle. Define �� ∶ H → GL(L2(G)) by

It is easy to check that �� is unitary and �� ∶ H → �(L2(G)) is an �-representation 
of H.

The pairing � ∶ G∗ × G → �  induces a homomorphism � ∶ G∗
→ Ĝ and the �

-representation �� ∶ G∗ × G → �(L2(G)) factors through

In particular, if � ∶ G∗
→ Ĝ is surjective, then �� is an irreducible �-representation. 

This factorization is part of the idea in [10, 24]. More precisely, assume that the ker-
nel of � ∶ G∗

→ Ĝ has finite volume C. If {�(g)f ∣ g ∈ Ĝ × G} is a continuous frame 
with frame bounds A and B, then {��(g)f ∣ g ∈ G∗ × G} is a continuous frame with 
frame bounds CA and CB. Moreover, if f ∈ L2(G) is a maximal spanning vector for 
� ∶ Ĝ × G → �(L2(G)) , then

and the frame {��(v∗, v)f ∣ (v∗, v) ∈ G∗ × G} is phase retrievable by Proposition 3.6.
Assume now that the pairing � induces an injection � ∶ G∗

→ Ĝ with nontrivial 
cokernel. Let K = {x ∈ G ∣ v∗(k) = 1 for all v∗ ∈ Im(�)} . Assume that Im(�) is an 
open subgroup of Ĝ and K is compact. Then we have Im(�) = Ĝ∕K . The natural 
map G → G∕K induces an injection � ∶ L2(G∕K) → L2(G) . Denote by l2(G∕K) the 
image of � . Then

For any (v∗, v) ∈ Im(�) × G , we have an operator �(v∗, v) on L2(G) via

If f ∈ l2(G∕K) , it is clear that �(v∗, v)f ∈ l2(G∕K) . This tells us that �� is reducible 
and the reducibility causes trouble to find maximal spanning vectors (cf. [10, Propo-
sition 3.4(3)]).

2.1.2  Relation with the Fourier transform

By symmetry, we have an action of Ĝ × G on the space L2(Ĝ) via

� ∶ G∗ × G → �

(v∗, v) ↦ v∗(v).

� ∶ H × H → �

((v∗
1
, v1), (v

∗

2
, v2)) ↦ v∗

2
(v1).

(��(v
∗, v)f )(u) = v∗(u)f (uv).

(2.1)G∗ × G
�×id
��������������→ Ĝ × G

�

������→ �(L2(G)).

Span{c�� (v∗,v)f ,�� (v∗,v)f ∣ (v
∗, v) ∈ Ĝ × G} = L2(Ĝ × G),

l2(G∕K) = {f ∈ L2(G) ∣ f (gk) = f (g) for all g ∈ G, k ∈ K}.

(�(v∗, v)f )(g) = v∗(g)f (gv).
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where (v∗, v) ∈ Ĝ × G and Ψ ∈ L2(Ĝ) . The associated multiplier is 
�� ∶ (Ĝ × G) × (Ĝ × G) → �  given by

As explained in Sect. 2.1.1, we obtain a projective representation of Ĝ × G by com-
position with Ĝ → Ĝ ( v∗ ↦ (v∗)−1 ). Changing the resulting projective representation 
by the coboundary � , which is the natural pairing between Ĝ and G, we obtain an 
irreducible projective representation � ∶ Ĝ × G → �(L2(Ĝ)) , where

An easy computation shows that � is an �-representation. Define

Then, Φ̃(u∗) = �Φ((u∗)−1) and F′ is a unitary isomorphism. Moreover, it is easy to 
check that 𝜌(v∗, v)Φ̃ = (𝜋(v∗, v)Φ)̃ . In other words, F′ is an isomorphism of �-repre-
sentations. By the discussion in Sect. 2.1.1 (in the case where � is an isomorphism), 
if Conjecture 1.4 holds for G, then it holds for Ĝ.

2.2  The frame condition

Let f ∈ L2(G) be a nonzero element. Since � is irreducible, we have

Even better, we have the following stronger result, known as the Plancherel formula 
for the short-time Fourier transform (cf. [16, Theorem  6.2.1] and [12, Corollary 
11.1.4]). We give a proof for completeness.

Theorem  2.1 Let f ∈ L2(G) be a nonzero element. Then the set 
Φf = {�(v∗, v)f ∣ (v∗, v) ∈ Ĝ × G} is a tight (Ĝ × G)-frame of L2(G) with bound 
||f ||2

2
 . In particular, if ||f ||2 = 1 , then Φf  is a Parseval frame.

Proof The following argument is adapted from the idea in [12, Section 11.1]. Let 
f1, f2, g1, g2 be elements in L2(G) . Then

(��(v∗, v)Ψ)(u∗) = u∗(v)Ψ(u∗v∗),

((v∗
1
, v1), (v

∗

2
, v2)) ↦ v∗

1
(v2).

(�(v∗, v)Ψ)(u∗) = v∗(v)−1u∗(v)−1Ψ(u∗v∗).

F� ∶ L2(G) → L2(�G)

Φ ↦ (Φ̃ ∶ u∗ ↦ ∫G

Φ(u)u∗(u)du) for Φ ∈ L1(G) ∩ L2(G).

Span{�(v∗, v)f ∣ (v∗, v) ∈ Ĝ × G} = L2(G).
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Let Fi(x) = fi(x)gi(xv) for i = 1, 2 . Then

Therefore, for any F ∈ L2(G) , we have

In particular, we see that {�(v∗, v)f ∣ (v∗, v) ∈ Ĝ × G} is a tight (Ĝ × G)-frame of 
L2(G) with frame bounds A = B = ||f ||2

2
 .   ◻

3  Maximal spanning vectors in L2(G)

3.1  Definition and characterization

Let f , g ∈ L2(G) . Then we have a map cf ,g ∶ Ĝ × G → ℂ given by

We call such a map a matrix coefficient of � . In time-frequency analysis, cf ,g is called 
the short-time Fourier transform of f with respect to g (cf. [17]). In equation (2.3), 
taking f1 = f2 = f  and g1 = g2 = g , we obtain that the matrix coefficient cf ,g is an 
element in L2(Ĝ × G) . Hence, the �-representation � is square-integrable.

Definition 3.1 Let f , g ∈ L2(G) . We say that (f, g) is a maximal spanning pair if

(2.2)

∫Ĝ×G

⟨f1,�(v∗, v)g1⟩⟨f2,�(v∗, v)g2⟩d(v∗, v)

=∫Ĝ×G ∫G

f1(x)(�(v
∗, v)g1)(x)dx∫G

f2(y)(�(v
∗, v)g2)(y)dyd(v

∗, v)

=∫Ĝ×G ∫G

f1(x)g1(xv)v
∗(x)dx∫G

f2(y)g2(yv)v
∗(y)dyd(v∗, v).

(2.3)

∫Ĝ×G

⟨f1,�(v∗, v)g1⟩⟨f2,�(v∗, v)g2⟩d(v∗, v)

=∫Ĝ×G

F̂1(v
∗)F̂2(v

∗)dv∗dv

=∫G ∫G

F1(x)F2(x)dxdv

=∫G ∫G

f1(x)g1(xv)f2(x)g2(xv)dxdv

=⟨f1, f2⟩⟨g2, g1⟩.

∫Ĝ×G

�⟨F,�(v∗, v)f ⟩�2d(v∗, v) = ��f ��2
2
��F��2

2
.

cf ,g(v
∗, v) = ⟨�(v∗, v)f , g⟩.

Span{c�(v∗,v)f ,�(v∗,v)g ∣ (v
∗, v) ∈ Ĝ × G} = L2(Ĝ × G).
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We call f ∈ L2(G) a maximal spanning vector if (f, f) is a maximal spanning pair.

Motivated by the results for finite groups (cf. [24, Conjecture], [10, Section 3], [11, 
Section 3.3]), we propose the following conjecture.

Conjecture 3.2 � ∶ Ĝ × G → �(L2(G)) admits maximal spanning vectors.

We provide a characterization for maximal spanning vectors in the following and 
then apply this characterization to prove Theorem 1.5 in next section. We have

Note that the pairing (Ĝ × G) × (Ĝ × G) → �  given by

induces an isomorphism Ĝ × G ≅ (Ĝ × G)̂ . Hence,

We then have the following proposition, which generalizes the result for finite abe-
lian groups (cf. [7, 24]).

Proposition 3.3 With the notation as above, (f,  g) is a maximal spanning pair for 
(�, L2(G)) if and only if cf ,g(u∗, u) ≠ 0 for almost all (u∗, u) ∈ Ĝ × G.

In particular, f is a maximal spanning vector for (�, L2(G)) if and only if 
cf ,f (u

∗, u) ≠ 0 for almost all (u∗, u) ∈ Ĝ × G.

Proof The Fourier transform for Ĝ × G is an isometry between 
L2(Ĝ × G) → L2((Ĝ × G)̂) . Therefore,

c�(v∗,v)f ,�(v∗,v)g(u
∗, u) = ⟨�(u∗, u)�(v∗, v)f ,�(v∗, v)g⟩

= ∫G

(�(u∗, u)�(v∗, v)f )(x)(�(v∗, v)g)(x)dx

= ∫G

v∗(u)u∗v∗(x)f (xuv)v∗(x)g(xv)dx

= ∫G

v∗(u)u∗(v)−1u∗(xv)f (xvu)g(xv)dx

=
v∗(u)

u∗(v)
cf ,g(u

∗, u).

((v∗, v), (u∗, u)) ↦
v∗(u)

u∗(v)

(3.1)
Cf ,g ∶ = Span{c�(v∗,v)f ,�(v∗,v)g ∣ (v

∗, v) ∈ Ĝ × G}

= Span{�cf ,g ∣ � ∈ (Ĝ × G)̂}.
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Note that (�cf ,g)̂ is the translation of (cf ,g)̂ by � , the last equivalence follows from 
[14, Proposition 4.72]. The proposition follows.   ◻

Corollary 3.4 If there exists one maximal spanning vector f for (�, L2(G)) , then there 
are infinitely many maximal spanning vectors of length one for (�, L2(G)).

Proof If G is finite, then the set of maximal spanning vectors is dense in L2(G) by 
[24, Theorem  1.7, Lemma 2.2]. If G is infinite, then each �(u∗, u)f  is a maximal 
spanning vector and Span{�(u∗, u)f ∣ (u∗, u) ∈ Ĝ × G} = L2(G) . Note that if f is a 
maximal spanning vector, so is f∕||f ||2 . The claim then follows.   ◻

3.2  Some remarks on maximal spanning vectors

3.2.1  The Bessel property

Suppose that (f , g) ∈ L2(G) is a maximal spanning pair. We then have

One may ask the following question: Do the vectors c�(v∗,v)f ,�(v∗,v)g ( (v∗, v) ∈ Ĝ × G ) 
form a continuous (Ĝ × G)-frame for L2(Ĝ × G) ? For G finite, the answer is cer-
tainly yes. In general this is not true. For simplicity, we write c for the function cf ,g 
and cv∗,v for the function c�(v∗,v)f ,�(v∗,v)g . For any � ∈ L2(Ĝ × G) , we have

(3.2)

Cf ,g = L2(Ĝ × G)

⟺ Span{(�cf ,g)
̂ ∣ � ∈ (Ĝ × G)̂} = L2((Ĝ × G)̂)

⟺ cf ,g(u
∗, u) ≠ 0 for almost all (u∗, u) ∈ Ĝ × G.

Span{c�(v∗,v)f ,�(v∗,v)g ∣ (v
∗, v) ∈ Ĝ × G} = L2(Ĝ × G).
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Hence, the set {c�(v∗,v)f ,�(v∗,v)g ∣ (v∗, v) ∈ Ĝ × G} is a continuous frame for L2(Ĝ × G) 
if and only if (f, g) is a maximal spanning pair for L2(G) and there exist positive 
numbers A and B with

for all � ∈ L2(Ĝ × G).
If cf ,g is bounded, e.g. it is continuous, then the existence of B is clear and the set 

is a so called Bessel set. On the other hand, the existence of A is troublesome. To 
explain the idea, let us consider the case G = ℝ and cf ,f  from Lemma 4.3. On one 
hand, we may take B =

√
�

2
 . On the other hand, for n ∈ ℤ≥1 , define �n ∶ ℝ ×ℝ → ℂ 

by

Then, ||�n||22 = 4. But lim
n→∞

||�n ⋅ cf ,f ||22 = 0 and A does not exist.

Remark 3.5 From the computation, we see that if cf ,g is zero for (v∗, v) ∈ U , where 
U ⊂ �G × G has positive measure, then (f,  g) cannot be a maximal spanning pair. 
Indeed, let � be the characteristic function for U, then � is orthogonal to every 
c�(v∗,v)f ,�(v∗,v)g . This proves the only if part of Proposition 3.3.

3.2.2  Phase retrieval

Let f ∈ L2(G) be a nonzero vector. Then, we have the following map

∫�G×G

�⟨𝜓 , cv∗,v⟩�2d(v∗, v)

=∫�G×G

⟨𝜓 , cv∗,v⟩⟨𝜓 , cv∗,v⟩d(v∗, v)

=∫�G×G ∫�G×G

𝜓(u∗, u)cv∗,v(u
∗, u)d(u∗, u)

∫�G×G

𝜓(u∗, u)cv∗,v(u
∗, u)d(u∗, u)d(v∗, v)

=∫�G×G ∫�G×G

𝜓(u∗, u)c(u∗, u)(
v∗(u)

u∗(v)
)̄d(u∗, u)

∫�G×G

𝜓(u∗, u)c(u∗, u)
v∗(u)

u∗(v)
d(u∗, u)d(v∗, v)

=∫�G×G

�Ψ(v, v∗)�Ψ(v, v∗)d(v, v∗) (here Ψ(u∗, u) = 𝜓(u∗, u)c(u∗, u))

=∫�G×G

Ψ(u∗, u)Ψ(u∗, u)d(u∗, u)

=��𝜓 ⋅ c̄��2
2
.

A||�||2 ≤ ||� ⋅ cf ,g||2 ≤ B||�||2

�n(x, y) =

{
1

n
if n ≤ |x| ≤ 2n, n ≤ |y| ≤ 2n,

0 otherwise.
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Certainly, tf  factors through L2(G)∕�  and we obtain a map

The frame Φf = {�(u∗, u)f ∣ (u∗, u) ∈ Ĝ × G} is phase retrievable if Tf  in (3.3) is 
injective. Let SΦf

 be the set of operators x⊗ x ∶ L2(G) → L2(G) ( x ∈ Φf  ) as defined 
in Section 1. We have the following result.

Proposition 3.6 The vector f is a maximal spanning vector if and only if SΦf
 has 

maximal span. In particular, if f is a maximal spanning vector, then Φf  is phase 
retrievable.

Proof Let � ∈ Cc(Ĝ × G) be a compactly supported continuous function on Ĝ × G . 
Define K� ∶ G × G → ℂ by

Then,

Hence, K�(u, uv) is the Fourier transform of �(v∗, v) in the first variable. Thus,

The map � ↦ K� extends to an L2-isometry from L2(Ĝ × G) to L2(G × G) . It is 
invertible as

by the Fourier inversion formula and equation (3.4). Let � ∶ L2(G × G) → L2(Ĝ × G) 
be the inversion of this isometry (cf. [8, Page 526]).

For any Hilbert space V with dual space V∗ , since HS(V) ≅ V∗ ⊗ V  (cf. [13, Sec-
tion 5.3]) and the Riesz representation theorem provides a bijective conjugate-linear 
isometry between V and V∗ , we may identify HS(V) with V ⊗ V  . Consider the fol-
lowing unitary isomorphisms

tf ∶ L2(G) → L2(Ĝ × G)

x ↦ ((u∗, u) ↦ �⟨x,�(u∗, u)f ⟩�).

(3.3)Tf ∶ L2(G)∕� → L2(Ĝ × G).

K�(u, v) = ∫Ĝ

�(v∗, vu−1)v∗(u)dv∗.

(3.4)K�(u, uv) = ∫Ĝ

�(v∗, v)v∗(u)dv∗.

∫G×G

|K�(u, v)|2dudv = ∫G×G

|K�(u, uv)|2dudv

= ∫Ĝ×G

|�(v∗, v)|2dv∗dv.

�(v∗, v) = ∫G

K�(u, uv)v
∗(u)du
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where � is defined by 𝜎(P⊗ Q)(u, v) = P(u)Q(v) . Let x ∈ Cc(G) . Then

Hence, for all x ∈ L2(G) , the image of x⊗ x in L2(Ĝ × G) is nothing but the function 
cx,x . The proposition then follows.   ◻

4  Proof of Theorem 1.5

In this section, we prove Theorem 1.5 by explicit construction of maximal spanning 
vectors. As explained in Remark 1.6, we only need to prove the result for four cases. 
We divide the proof into two parts.

4.1  Euclidean case

We prove the following result in this section.

Theorem 4.1 Conjecture 1.4 holds for groups of type G = ℝa × 𝕋 b × ℤc × E , where 
E is a finite abelian group.

Groups as in the theorem are called compactly generated locally Euclidean 
locally compact abelian group. The theorem follows from the following two lemmas 
and Remark 1.6.

Lemma 4.2 Let G = ℤ . Let f ∈ L2(ℤ) given by f (n) = e−|n| . Then f is a maximal 
spanning vector for (�, L2(ℤ)).

Proof We need to show that cf ,f (�,N) ≠ 0 for almost all (�,N) ∈ 𝕋 × ℤ . By defini-
tion, we have

We divide the discussion into the following cases. 

HS(L2(G)) = L2(G)⊗ L2(G)
𝜎

������→ L2(G × G)
𝜆

�����→ L2(�G × G),

𝜆◦𝜎(x⊗ x)(v∗, v) = ∫G

𝜎(x⊗ x)(u, uv)v∗(u)du

= ∫G

x(u)x(uv)v∗(u)du

= ⟨𝜋(v∗, v)x, x⟩ = cx,x(v
∗, v).

(4.1)

cf ,f (𝜃,N) = ⟨𝜋(𝜃,N)f , f ⟩ = �
n∈ℤ

(𝜋(𝜃,N)f )(n)f̄ (n)

=
�
n∈ℤ

𝜃
nf (n + N)f (n) =

�
n∈ℤ

𝜃
ne−�n+N�e−�n�.
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1. If � = 1 , then cf ,f (1,N) =
∑

n∈ℤ e−�n+N�e−�n� ≠ 0.
2. If � ≠ 1 and N = 0 , then 

3. If � ≠ 1 and N ≥ 1 , then 

 Hence, cf ,f (�,N) = 0 if and only if 1

1−�e−2
+

�−N

1−�−1e−2
+

�−1−�−N

1−�−1
= 0 . Multiplying 

both sides with (1 − �e−2)(1 − �−1e−2)(1 − �−1) , direct computation shows that 
cf ,f (�,N) = 0 if and only if 

 Since � ≠ 1 , for each N ≥ 1 , there are at most N solutions to the equation (4.2).
4. If � ≠ 1 and N ≤ −1 , then from the identity 

 we have that, for each N ≤ −1 , there are at most |N| solutions with cf ,f (�,N) = 0

.
From the above discussion, the set {(�,N) ∈ 𝕋 × ℤ ∣ cf ,f (�,N) = 0} is countable. 
The lemma then follows.   ◻

The following lemma is well known (e.g. [18]). We provide a proof for 
completeness.

Lemma 4.3 Let G = ℝ . Let f ∈ L2(ℝ) given by f (x) = e−x
2 . Then f is a maximal 

spanning vector for (�, L2(ℝ)).

Proof We show that cf ,f (a, b) ≠ 0 for all (a, b) ∈ ℝ ×ℝ . We have the well-known 
identity (see for example [27, Page 42])

cf ,f (�, 0) =
∑
n∈ℤ

�
ne−2|n| =

∑
n≥0

�
ne−2n +

∑
n≥0

�
−ne−2n − 1

=
1

1 − �e−2
+

1

1 − �−1e−2
− 1

=
1 − e−4

(1 − �e−2)(1 − �−1e−2)
≠ 0.

cf ,f (�,N) =
∑
n∈ℤ

�
ne−|n+N|e−|n|

=
∑
n≥0

�
ne−(n+N)e−n +

∑
n≤−N

�
nen+Nen +

−1∑
n=−N+1

�
ne−(n+N)en

= e−N
∑
n≥0

�
ne−2n + eN

∑
n≥N

�
−ne−2n + e−N

N−1∑
n=1

�
−n

= e−N(
1

1 − �e−2
+

�−N

1 − �−1e−2
+

�−1 − �−N

1 − �−1
).

(4.2)1 − �e−2

1 − �−1e−2
= �

N+1.

cf ,f (�,−N) = �
Ncf ,f (�,N),
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Therefore,

The lemma follows.   ◻

4.2  Non‑archimedean case

In the following, K is a non-archimedean local field with residue characteristic p, O 
is the ring of integers of K. Fix � a uniformizer of K. Denote by ord the valuation on 
K with ord(�) = 1 . Let q be the cardinality of the residue field O∕�O . For n ∈ ℤ , let 
On be the fractional ideal �nO and An = On −On+1 . Fix a Haar measure � on K with 
�(O) = 1.

Let � ∶ K → �  be the non-trivial character of (K,+) as in Tate’s thesis [28]. 
More precisely, it is given as follows. 

1. If K = ℚp , then � is the composition 

 which is characterized by �|ℤp
= 1 and �(p−n) = e2�i∕p

n for all n ≥ 1.
2. If K = �p(T) , then �(

∑
anT

n) ∶= e2�ia−1∕p . Here, we lift a−1 ∈ �p to ℤ to make 
sense of the definition.

3. If K is a finite extension of K0 , where K0 = ℚp or �p(T) , then � for K is defined to 
be the composition K

TrK∕K0
����������������������→ K0

�0

����������→ � , where �0 is the additive character for K0 
as constructed above.

We could and do identity K with K̂ via a ↦ (�a ∶ x ↦ �(ax)) . The conductor of a 
character � ∶ K → �  is the integer l such that �|Ol

 is not trivial and �|Ol+1
 is trivial. 

Define cond(a) to be the conductor of �a for a ∈ K . The difference between cond(a) 
and ord(a) is given by the difference of K over K0 . The following lemma will be used 
repeatedly.

(4.3)∫
ℝ

e−2�i�xe−�x
2

dx = e−��
2

.

cf ,f (a, b) = ⟨�(a, b)f , f ⟩
= �

ℝ

e2�iaxe−(x+b)
2−x2dx

= e
−

1

2
b2 �

ℝ

e2�iaxe
−�(

√
2

�
x+
√

1

2�
b)2
dx

= e
−

1

2
b2
�

�

2
e−�iab �

ℝ

e
−2�iy(−a

√
�

2
)
e−�y

2

dy

= e
−

1

2
b2
�

�

2
e−�iabe

−
1

2
a2�2 ≠ 0.

ℚp → ℚp∕ℤp ∼ ℤ[
1

p
]∕ℤ ↪ ℝ∕ℤ ≅ 𝕋 ,
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Lemma 4.4 Let � ∶ K → �  be a character of conductor l. We have

Proof Note that ∫
An
�(x)dx = ∫

On
�(x)dx − ∫

On+1
�(x)dx . In the first case, both terms 

are 0. In the second case, the first term is 0 and the second term is −�(Ol+1) . In the 
third case, � is trivial on An . The lemma follows.   ◻

For n ∈ ℤ , define 𝛿(n) =
{

q2n if n < 0,

q−n if n ≥ 0.
 Then,

Lemma 4.5 For any m ∈ ℤ , the number

is a nonzero rational number.

Proof The rationality follows from equation (4.4). It is also easy to check that 
Dm > 0 if m < 0 and Dm < 0 if m ≥ 0 . The lemma follows.   ◻

4.2.1  Case G = (K ,+)

Let f ∶ K → ℂ be given by

where �An
 is the characteristic function for the set An . It is easy to see that f ∈ L2(K) . 

Denote by c the function cf ,f  given by equation (1.2). We have the following result.

Proposition 4.6 With the notation as above,

1. if p ≠ 2 , then c(a, b) ≠ 0 for all (a, b) ∈ K × K;
2. if p = 2 , then c(a, b) = 0 if and only if cond(a) ≥ ord(b) and �(−ab) = −1.

Proof Let l and m be the conductor of a and the order of b, respectively. Then,

�An

�(x)dx =

⎧
⎪⎨⎪⎩

0 if n + 1 ≤ l,

−�(Ol+1) if n + 1 = l + 1,

�(An) if n + 1 ≥ l + 2.

(4.4)
𝛿(n)𝜇(An) =

{
qn(1 − q−1) if n < 0,

q−2n(1 − q−1) if n ≥ 0.

𝛿(n)2𝜇(An) =

{
q3n(1 − q−1) if n < 0,

q−3n(1 − q−1) if n ≥ 0.

Dm ∶= −
1

q − 1
�(m)�(Am) +

+∞∑
n=m+1

�(n)�(An)

f (x) =
∑
n∈ℤ

�(n)�An
(x),
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If n > m , then ord(x + b) = m for x ∈ An and

If n < m , then ord(x + b) = n for x ∈ An and

Therefore,

Let Om,−b be the set {x ∈ Om ∣ x ≡ −b (mod �m+1)} and let Oc
m,−b

= Om −Om,−b . 
Then �(Oc

m,−b
) = �(Am) . Moreover, as (b +Om,−b) = Om+1 =

⨆
n≥m+1 An , we have

Case l ≤ m − 1 . In this case, �(ax) = 1 for x ∈ Am . By Lemma 4.4, we have

Here, the term 
∑m−1

n=l+1
�(n)2�(An) = 0 if l = m − 1 . Note that

(4.5)

c(a, b) = ⟨�(a, b)f , f ⟩ = ∫K

�(ax)f (x + b)f (x)dx

=
�
n∈ℤ

∫An

�(ax)f (x + b)f (x)dx

=
�
n∈ℤ

�(n)∫An

�(ax)f (x + b)dx.

�(n)∫An

�(ax)f (x + b)dx = �(n)�(m)∫An

�(ax)dx.

�(n)∫An

�(ax)f (x + b)dx = �(n)2 ∫An

�(ax)dx.

(4.6)

c(a, b) =

m−1∑
n=−∞

�(n)2 ∫An

�(ax)dx + �(m)∫Am

�(ax)f (x + b)dx

+ �(m)

+∞∑
n=m+1

�(n)∫An

�(ax)dx.

(4.7)�({x ∈ Om,−b ∣ ord(x + b) = n}) = �(An) for n ≥ m + 1.

(4.8)

c(a, b) = − �(l)2�(Ol+1) +

m−1∑
n=l+1

�(n)2�(An) + �(m)∫Am

f (x + b)dx

+ �(m)

+∞∑
n=m+1

�(n)�(An).
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Here, the last identity follows from equation (4.7). Therefore, ∫
Am

f (x + b)dx is a 
positive rational number as �(Am) ≥ �(Om+1).

• If m − 1 < 0 , then l < 0 . As �(Al) = (q − 1)�(Ol+1) , we have 

• If m − 1 ≥ 0 and l < 0 , then 

• If m − 1 ≥ 0 and l ≥ 0 , then 𝛿(l) > 𝛿(l + 1) > ⋯ and 

Thus, the claims hold if l < m.
Case l = m . In this case, by Lemma 4.4, we have

∫Am

f (x + b)dx = ∫
Om

f (x + b)dx − ∫
Om+1

f (x + b)dx

= ∫
Om,−b

f (x + b)dx + ∫
O

c
m,−b

f (x + b)dx − �(m)�(Om+1)

= ∫
Om,−b

f (x + b)dx + �(m)�(Oc
m,−b

) − �(m)�(Om+1)

=

+∞∑
n=m+1

�(n)�(An) + �(m)�(Am) − �(m)�(Om+1).

c(a, b) ≥ 𝛿(m)

+∞∑
n=1

𝛿(n)𝜇(An) −
1

q − 1
𝛿(l)2𝜇(Al)

= q2l−1
(
q2(m−l)

q + 1
− ql

)
> 0.

c(a, b) > 𝛿(1)2𝜇(A1) −
1

q − 1
𝛿(l)2𝜇(Al) ≥ 0.

c(a, b) = −
1

q − 1
𝛿(l)2𝜇(Al) − 𝛿(m)2𝜇(Om+1) +

m∑
n=l+1

𝛿(n)2𝜇(An)

+ 2𝛿(m)

+∞∑
n=m+1

𝛿(n)𝜇(An)

< −
1

q − 1
𝛿(l)2𝜇(Al) + 2𝛿(l + 1)

+∞∑
n=l+1

𝛿(n)𝜇(An)

=q−3l−2
(
−q +

2

q + 1

)
< 0.

(4.9)�(m)−1c(a, b) = ∫Am

�(ax)f (x + b)dx +

+∞∑
n=m+1

�(n)�(An).
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Let On
m,−b

 ( n ≥ m + 1 ) be the set {x ∈ Om,−b ∣ ord(x + b) = n} . First, we have

Note that

and

Combining the above equations, we have

If p is an odd prime, 1 + �(−ab) ≠ 0 . Hence if l = m , the claims hold by Lemma 
4.5.

Case l > m . By Lemma 4.4 again, we have

Moreover,

∫Am

�(ax)f (x + b)dx

=∫
Om

�(ax)f (x + b)dx − ∫
Om+1

�(ax)f (x + b)dx

=∫
Om,−b

�(ax)f (x + b)dx + ∫
O

c
m,−b

�(ax)f (x + b)dx − �(m)�(Om+1)

∫
Om,−b

�(ax)f (x + b)dx = �(−ab)

+∞∑
n=m+1

∫
O

n
m,−b

f (x + b)dx

= �(−ab)

+∞∑
n=m+1

�(n)�(An),

∫
O

c
m,−b

�(ax)f (x + b)dx = �(m)∫
O

c
m,−b

�(ax)dx

= �(m)

(
∫
Om

�(ax)dx − ∫
Om,−b

�(ax)dx

)

= −�(m)�(−ab)�(Om+1).

�(m)−1c(a, b) = (1 + �(−ab))

(
−

1

q − 1
�(m)�(Am) +

+∞∑
n=m+1

�(n)�(An)

)
.

�(m)−1c(a, b) = ∫Am

�(ax)f (x + b)dx − �(l)�(Ol+1) +

+∞∑
n=l+1

�(n)�(An).
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and

Therefore,

If l > m , the claims hold as in the case l = m . The proposition then follows.   ◻

Remark 4.7 If p = 2 , the function constructed above is not a maximal spanning vec-
tor, as the set {(a, b) ∈ K × K ∣ cond(a) ≥ ord(b) and �(−ab) = −1} has positive 
measure. Note that the problem remains if we change the values of �(n) , the func-
tions of type 

∑
n∈ℤ �(n)�An

 are not maximal spanning vectors.

∫Am

�(ax)f (x + b)dx

=∫
Om

�(ax)f (x + b)dx − ∫
Om+1

�(ax)f (x + b)dx

=∫
Om,−b

�(ax)f (x + b)dx + ∫
O

c
m,−b

�(ax)f (x + b)dx

− �(m)∫
Om+1

�(ax)dx

=∫
Om,−b

�(ax)f (x + b)dx + �(m)∫
O

c
m,−b

�(ax)dx

=�(−ab)

+∞∑
n=m+1

�(n)∫An

�(ax)dx

+ �(m)

(
∫
Om

�(ax)dx − ∫
Om,−b

�(ax)dx

)

=�(−ab)

(
+∞∑

n=m+1

�(n)∫An

�(ax)dx − �(m)

+∞∑
n=m+1

∫An

�(ax)dx

)
,

+∞∑
n=m+1

�(n)∫An

�(ax)dx − �(m)

+∞∑
n=m+1

∫An

�(ax)dx

= − �(l)�(Ol+1) +

+∞∑
n=l+1

�(n)�(An) + �(m)�(Ol+1) − �(m)

+∞∑
n=l+1

�(An)

= − �(l)�(Ol+1) +

+∞∑
n=l+1

�(n)�(An).

c(a, b) = �(m)(1 + �(−ab))(−�(l)�(Ol+1) +

+∞∑
n=l+1

�(n)�(An)).
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4.2.2  Case G = (O,+)

If p ≠ 2 and G = O , let g ∈ L2(O) be the restriction f |O , i.e.

Then, similar argument as above shows that cg,g(a, b) ≠ 0 for all (a, b) ∈ Ô ×O.
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