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Abstract. A projective representation of a locally compact group does phase retrieval if
it admits a maximal spanning frame vector. In this paper, we provide a characterization
of maximal spanning vectors for type I and square integrable irreducible projective repre-
sentations of separable locally compact abelian groups. This generalizes the well-known
criterion for the time-frequency case and unifies previous criteria for finite groups case
and locally compact Gabor case. As an application, we show that irreducible projective
representations of compact abelian groups do phase retrieval.

1. Introduction

The phase retrieval problem considers recovering a signal of interest from magnitudes
of its linear or nonlinear measurements. Balan, Casazza and Edidin [2] initiated the in-
vestigation of the phase retrieval problem by using linear measurements against a frame.
The study of the phase retrieval problem of frames has attracted attention of mathemati-
cians and it has rich connections with abstract harmonic analysis, representation theory,
number theory, algebraic geometry etc. (cf. [12, 17]).

As mentioned in [15], sources containing explicit constructions of frames with guaranteed
phase retrieval properties are relatively scarce. A sufficient condition for a frame being
phase retrievable is that it has maximal span (cf. [3]). Applying this idea, one could
construct phase retrievable frames from orbits of vectors with respect to a group action.
In the following, we consider Hilbert spaces over C. By a locally compact group, we mean
a topological group whose topology is locally compact and Hausdorff. The general setup
goes as follows. Let G be a locally compact group with unity e. A multiplier on G is a
measurable function from G×G to the unit circle α : G×G→ T which satisfies

(1) α(x, y)α(xy, z) = α(x, yz)α(y, z) for all x, y, z ∈ G;
(2) α(e, x) = α(x, e) = 1 for all x ∈ G.

A projective representation of G with respect to α (or an α-representation) is a map
π : G → U(Vπ), where Vπ is a complex Hilbert space and U(Vπ) is the space of unitary
operators on Vπ, such that

(1) π(x)π(y) = α(x, y)π(xy) for all x, y ∈ G;
(2) for any v ∈ Vπ, the map x 7→ π(x)v is a measurable function from G to Vπ.

We study properties of the family of vectors {π(g)v | g ∈ G} for a fixed v ∈ Vπ. We refer
to [20, 24] for properties of multipliers on locally compact groups, to [21, 22] for properties
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of projective representations (or multiplier representations) of locally compact groups. In
particular, we know that the matrix coefficients are measurable by [21, Theorem 1].

Recall that v ∈ Vπ is a frame vector for (π, Vπ) if the map G → Vπ (g 7→ π(g)v) is a
frame (cf. [25, Definition 2.1]); a frame vector v ∈ Vπ is phase retrievable if the associated
frame is phase retrievable, i.e., the map

Tv : Vπ/T→ L2(G)

u 7→ (g 7→ |〈u, π(g)v〉|)
is injective; if there exists a phase retrievable frame vector for (π, Vπ), we say that the
representation π does phase retrieval.

An element v ∈ Vπ is called maximal spanning if

Span{π(g)v ⊗ π(g)v | g ∈ G} = HS(Vπ),

where x⊗ y : Vπ → Vπ (u 7→ 〈u, y〉x) is the one-dimensional projection and HS(Vπ) is the
space of Hilbert-Schmidt operators on Vπ.

Maximal spanning frame vectors are special as they are phase retrievable. This property
provides a method to explicitly construct phase retrievable group frames. We refer to
[3, 23] and [6, Section 3.2.2] for more information on the relation between phase retrievable
vectors and maximal spanning vectors. In [5, 23] Li, Han and etc. proved that irreducible
projective representations of finite abelian groups do phase retrieval. In [6, 8] Cheng, Xu,

and etc. proved that the Weyl-Heisenberg representation of Ĥ × H does phase retrieval

for a large class of locally compact abelian groups H, where Ĥ is the dual of H with the
Plancherel measure. In [15], Führ and Oussa proved that irreducible representations of
nilpotent Lie groups and certain nilpotent p-groups do phase retrieval. Continuing in this
direction, in this paper, we provide the following characterization of maximal spanning
vectors for type I and square integrable irreducible projective representations of separable
locally compact abelian groups. This result generalizes the well-known criterion for the
time-frequency case. (Cf. [4], [23, Theorem 1.7], [5, Proposition 3.11] for finite abelian
groups case, [7, Section 4] for compact abelian groups case, [6, Proposition 3.3] for the

case of locally compact abelian groups of type Ĥ ×H.)

Theorem 1.1. Let G be a separable locally compact abelian group and α be a type I
multiplier of G. Let π : G→ U(Vπ) be a square integrable irreducible α-representation of
G. Then v ∈ Vπ is a maximal spanning frame vector if and only if the matrix coefficient
(g 7→ 〈π(g)v, v〉) is almost nowhere vanishing.

An ingredient in the proof of Theorem 1.1 is the projective Plancherel theorem [22, The-
orem 7.1], where we require that the locally compact groups are separable. An immediate
consequence is the following result.

Corollary 1.2. Let G and π be as in Theorem 1.1. If v ∈ Vπ is a vector such that the
matrix coefficient (g 7→ 〈π(g)v, v〉) is almost nowhere vanishing, then (g 7→ π(g)v) is a
phase retrievable frame and π does phase retrieval.

By showing the existence of maximal spanning vectors, we have the following result.

Theorem 1.3. Let G be a compact abelian group and π : G → U(Vπ) be an irreducible
projective representation of G. Then the set of maximal spanning frame vectors for (π, Vπ)
is open dense in Vπ. In particular, π does phase retrieval.
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The content of the paper is organised as follows. In Section 2, we explain that the
wavelet transform for projective representations works as well as for linear representations.
In particular, we show that square integrable irreducible α-representations are the same
as irreducible sub α-representations of the regular α-representation and every nontrivial
square integrable vector of such an α-representation is a frame vector. Moreover, we
have the Duflo-Moore operator for discrete series α-representations and it gives the frame
bounds for the tight frames generated by square integrable vectors. In Section 3, by
reducing to the totally skew multipliers, we prove Theorem 1.1. One of the key ingredients
is the structure of projective representations of locally compact abelian groups obtained
by Baggett and Kleppner [1], which holds true without separability condition on the
group. Applying the projective Plancherel theorem [22, Theorem 7.1] to the special case
of locally compact abelian groups, we translate the maximal spanning property in HS(Vπ)
to a maximal spanning property in L2(G) and use the Fourier transformation to obtain
the expected result.

2. The wavelet transform

In this section we study square integrable projective representations of locally compact
groups via the wavelet transform. The strategy is the same as that in linear representations
case (cf. [10, Chap. 12] and [14]). There is little doubt that the following results were
known to the experts, but we could not find the statements in the literature. We sketch
the idea of proofs and state them explicitly.

Let G be a locally compact group with left Haar measure µ =
∫
G · d g. Let α ∈ Z2(G,T)

be a multiplier and π : G → U(Vπ) be an α-representation of G on a Hilbert space Vπ.
Given any fixed vector ξ ∈ Vπ, we obtain the wavelet transform corresponding to π and ξ

Wξ : Vπ → Map(G,C)

η 7→ (x 7→ 〈η, π(x)ξ〉).

Note that this transformation is injective if and only if ξ is a cyclic vector for π, i.e. the
closed linear span of {π(x)ξ | x ∈ G} is Vπ. If π is irreducible, this is true for any nontrivial
ξ and the injectivity of Wξ is much easier than the injectivity of Tξ.

Let Dξ be the subspace of Vπ given by

Dξ = {η ∈ Vπ |Wξ(η) ∈ L2(G)}.

The restriction of Wξ induces a linear closed operator Wξ : Dξ → L2(G) (cf. [10, Lemma
12.1.2]).

Definition 2.1. (1) A vector ξ ∈ Vπ is called square integrable if Dξ = Vπ.
(2) Denote by Dπ the subspace of Vπ consisting of square integrable vectors. The α-

representation (π, Vπ) is called a square integrable α-representation if Dπ is dense
in Vπ.

(3) A square integrable vector ξ ∈ Vπ is called an admissible vector if Wξ : Dξ → L2(G)
is isometric.

The results in [10, Section 12.1] generalize to α-representations easily. In particular, we
have the following result (cf. [10, Example 12.1.7]), which shows the existence of nontrivial
square integrable α-representations.
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Lemma 2.2. Let L : G → U(L2(G)) be the left regular α-representation of G, i.e.

(L(y)f)(x) = α(y,y−1)
α(y−1,x)

f(y−1x) for f ∈ L2(G). Then every ξ ∈ Cc(G) ⊂ L2(G) is square

integrable. In particular, as Cc(G) is dense in L2(G), the left regular α-representation is
square integrable.

Proof. Let R′ : G→ U(L2(G)) be the right regular α−1-representation of G with respect

to the left Haar measure, i.e. R′(y)f(x) =
√

∆(y)α(x, y)−1f(xy) for f ∈ L2(G), where ∆

is the modular function of G. Put ξ̃(y) = ∆(y)−1/2ξ(y). Then ξ̃ ∈ Cc(G) ⊂ L1(G). For
any η ∈ L2(G), we have

〈η, L(x)ξ〉 =

∫
G
η(y)

α(x−1, y)

α(x, x−1)
ξ(x−1y) d y

=

∫
G
ξ̃(y)

α(x−1, xy)

α(x, x−1)

√
∆(y)η(xy) d y

=

∫
G
ξ̃(y)R′(y)η(x) d y = (R′)∗(ξ̃)η(x).

Here the third identity follows from α(x−1, xy)α(x, y) = α(x−1, x)α(e, y) = α(x−1, x) =
α(x, x−1), (R′)∗ is the representation of the Banach ∗-algebra L1(G,α) associated with

R′. See Remark 2.3 for details. Hence the map (x 7→ 〈η, L(x)ξ〉) is just (R′)∗(ξ̃)η, which
is square integrable. The lemma follows. �

Remark 2.3. In the above computation, we used a relation between projective represen-
tations of G and modules of the twisted group algebra which we recall here. Let L1(G,α)
be the set of complex-valued integrable functions on G with multiplication (convolution)
defined by

(f1 ∗ f2)(x) =

∫
G
f1(g)f2(g

−1x)α(g, g−1x) d g

and a ∗-operator (involution) defined by

f∗(x) = f(x−1)∆(x−1)α(x, x−1)−1,

where is the complex conjugation and ∆ is the modular function. Then L1(G,α) is a
Banach ∗-algebra. Let π : G → U(Vπ) be an α-representation of G. The map π 7→ π∗,
where

π∗ : L1(G,α)→ B(Vπ)

f 7→
∫
G
f(g)π(g) d g,

induces a bijection between the set of equivalent classes of α-representations of G and
the set of equivalent classes of representations of the Banach ∗-algebra L1(G,α). See [11,
Section 13.3.5].
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Suppose that (π, Vπ) is an α-representation of G and let ξ ∈ Vπ be any vector. For
y ∈ G, we have

(Wξ(π(y)η))(x) = 〈π(y)η, π(x)ξ〉
= 〈η, π(y)−1π(x)ξ〉
= 〈η, α(y, y−1)−1α(y−1, x)π(y−1x)ξ〉
= (L(y)Wξ(η))(x).

Therefore Dξ is a π(G)-invariant subspace of Vπ and Wξ intertwines the representation
π|Dξ with the left regular α-representation. In particular if ξ is admissible, Wξ establishes

an equivalence between (π, Vπ) and a subrepresentation of (L,L2(G)).
An irreducible α-representation is called a discrete series α-representation of G if it is a

subrepresentation of (L,L2(G)). The results in [10, Section 12.2] hold for α-representations
by the same argument. We have the following result that characterizes irreducible square
integrable α-representations (cf. [10, Corollary 12.2.4]).

Proposition 2.4. Let (π, Vπ) be an irreducible α-representation of the locally compact
group G. Then the following are equivalent:

(1) (π, Vπ) is square integrable.
(2) There exists an admissible vector ξ ∈ Vπ.
(3) (π, Vπ) is a discrete series α-representation, i.e. it is equivalent to a subrepresen-

tation of the left regular α-representation.

The following result on the Duflo-Moore operator is important for our study on frames
(cf. [10, Theorem 12.2.5]).

Theorem 2.5. Let (π, Vπ) be a discrete series α-representation of the locally compact
group G. Let Dπ be the set of square integrable vectors in Vπ.

(1) There exists a closed densely defined operator Cπ : Dπ → Vπ satisfying the orthog-
onality relation

〈Cπξ′, Cπξ〉〈η, η′〉 = 〈Wξ(η),Wξ′(η
′)〉

for all ξ, ξ′ ∈ Dπ and η, η′ ∈ Vπ.
(2) The operator Cπ : Dπ → Vπ is injective and ξ ∈ Vπ is admissible if and only if

ξ ∈ Dπ with ||Cπξ|| = 1.
(3) If G is unimodular, then all ξ ∈ Vπ are square integrable and Dπ = Vπ. In this

case, there exists a unique constant cπ ∈ R>0 such that Cπ can be chosen equal to
cπ idVπ .

Remark 2.6. (1) Let G(α) be the extension of G by T given by α. Let πα : G(α) →
U(Vπ) be the linear unitary representation of G(α) associated with (π, Vπ) given by
πα(t, x) = tπ(x) for all (t, x) ∈ G(α) (cf. [21, Page 220]). Then the sets of square
integrable vectors with respect to π and πα are the same and the corresponding
Duflo-Moore operators coincide.

(2) If G is compact, then irreducible α-representations of G are finite dimensional.

The twisted Peter-Weyl Theorem (cf. [7, Section 2]) shows that cπ = d
−1/2
π , where

dπ is the dimension of the representation space Vπ.
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(3) Let H be a locally compact abelian group with the Pancherel dual Ĥ. Let G =

Ĥ × H and π : Ĥ × H → U(L2(H)) be the Weyl-Heisenberg representation, i.e.
(π(h∗, h)f)(h′) = h∗(h′)f(h′h) for f ∈ L2(H). Then from the computation in [6,
Theorem 2.1], we have cπ = 1.

An immediate consequence of Theorem 2.5 is the following result.

Corollary 2.7. Let (π, Vπ) be a discrete series α-representation of G and v ∈ Vπ be a
nontrivial vector. Then Φv : G→ Vπ (g 7→ π(g)v) is a continuous frame if and only if v ∈
Dπ. Moreover, if v ∈ Dπ, then Φv is a tight frame with frame bounds A = B = ||Cπv||2.

If G is unimodular, then Dπ = Vπ and every nontrivial vector of Vπ is a frame vector.
Therefore to find maximal spanning frame vectors, we only need to focus on the maximal
spanning property.

Combining Corollary 2.7 and the argument of [5, Section 2.2] (see also [7, Section 3.2],
[9], [14, Theorem 2.31]), we have the following result.

Proposition 2.8. Let (π, Vπ) be an α-representation of G. Assume that (π, Vπ) is a finite
direct sum of discrete series α-representations. Write the irreducible decomposition as
(π, Vπ) = ⊕i∈I(πi, Vi). Let v ∈ Vπ be a nontrivial vector and let vi be the projection of v
in Vi. Then Φv : G → V (g 7→ π(g)v) is a continuous tight frame if and only if vi ∈ Dπi

for i ∈ I and the following two conditions are satisfied

(1) ||Cπivi|| = ||Cπjvj || for all i, j ∈ I;
(2) 〈Cπjσvi, Cπjvj〉 = 0 for i, j ∈ I and σ ∈ HomRepα(Vi, Vj).

It is possible to generalize the above proposition from direct sum case to direct integral
case (cf. [14, Section 4.3]). Since here we are interested in the phase retrieval property of
irreducible α-representations, we leave the generalization to the readers.

3. Locally compact abelian groups

In this section G is a separable locally compact abelian group. Let α ∈ Z2(G,T) be
a type I multiplier, i.e. all the α-representations of G are of type I (cf. [13, Page 229],
[18, 19]). Let π : G → U(Vπ) be a discrete series α-representation of G. For u, v ∈ Vπ,
denote by cπu,v the matrix coefficient (g 7→ 〈π(g)u, v〉). We have the following result.

Theorem 3.1. With the above notation, v ∈ Vπ is a maximal spanning frame vector if
and only if cπv,v(g) 6= 0 for almost all g ∈ G.

Proof. Because G is unimodular, every nontrivial element v ∈ Vπ is a frame vector by
Theorem 2.5(3) and we focus on the maximal spanning property. The following two
observations enable us to simplify the situation.

(1) Suppose that π : G → U(Vπ) and π′ : G → U(Vπ′) are equivalent, i.e. there exist
a measurable function µ : G → T and a unitary isomorphism M : Vπ → Vπ′ with
Mπ(g)M−1 = µ(g)π′(g). Let v ∈ Vπ and v′ = Mv ∈ Vπ′ , then

π′(g)v′ ⊗ π′(g)v′ = M(π(g)v ⊗ π(g)v)M−1, 〈π′(g)v′, v′〉 = µ(g)−1〈π(g)v, v〉.
Therefore

M(Span{π(g)v ⊗ π(g)v | g ∈ G})M−1 = Span{π′(g)v′ ⊗ π′(g)v′ | g ∈ G},
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and
cπv,v(g) = 0 if and only if cπ

′
v′,v′(g) = 0.

Hence proving the theorem for π is equivalent to proving the theorem for π′.
(2) If H C G is a closed subgroup, π1 : G/H → U(V ) is a projective representation

and π : G→ U(V ) is the composition of π1 with the natural projection G→ G/H,
then π(g) = π1(gH). Therefore

Span{π(g)v ⊗ π(g)v | g ∈ G} = Span{π1(ḡ)v ⊗ π1(ḡ)v | ḡ ∈ G/H}
and

cπv,v(g) = 0 if and only if cπ1v,v(gH) = 0.

By the quotient integral formula (cf. [10, Theorem 1.5.3]), to prove the theorem
for (π,G, V ), it suffices to prove the theorem for (π1, G/H, V ).

Since replacing α with a similar multiplier gives us equivalent projective representations,
by the first observation, we may assume that α is normalized (i.e. α(x, x−1) = 1 for all

x ∈ G) as in [1]. Let λ : G×G→ T be the map λ(x, y) = α(y,x)
α(x,y) . Then λ is a bicharacter

and it induces a homomorphism λα : G → Ĝ with λα(x)(y) = λ(x, y). Let Sα be the
kernel of λα. We call α totally skew if Sα is trivial. By [1, Theorem 3.1], α is similar to
a multiplier which is lifted from a totally skew multiplier α′ on G/Sα, i.e. α is similar to
the composition of G × G → G/Sα × G/Sα and α′ : G/Sα × G/Sα → T. Moreover, π

is equivalent to a projective representation of the form γ ⊗ π′1, where γ ∈ Ĝ is a linear
character of G, π1 is an α′-representation of G/Sα, π′1 is the projective representation of G
induced from π1 via the natural quotient map G→ G/Sα. By the second observation, we

may assume that α is totally skew at the beginning. In this case λα : G → Ĝ is injective
and has dense image. Moreover, because of the type I assumption, λα is bicontinuous by

[1, Theorem 3.2] and the image of λα is open dense in Ĝ. Therefore, λα is an isomorphism.
By [1, Theorem 3.3], up to isomorphism, (π, Vπ) is the unique α-representation of G.

The projective Plancherel theorem [22, Theorem 7.1] tells us that in this special case we
have an isomorphism

Vπ ⊗ Vπ → L2(G)

u⊗ v 7→ cπu,v.
(3.1)

Here we identify V with V ∗ in the usual way if V is a Hilbert space. Hence for v ∈ Vπ,

Span{π(g)v ⊗ π(g)v | g ∈ G} = Vπ ⊗ Vπ ⇐⇒ Span{cππ(g)v,π(g)v | g ∈ G} = L2(G).(3.2)

Since α is normalized and G is abelian, the cocycle condition tells us

α(g−1, hg)α(g, h) = α(g−1, gh)α(g, h) = α(g−1, g)α(e, h) = 1.

We then have

π(g)∗π(h)π(g) = π(g−1)π(h)π(g) = α(g−1, hg)α(h, g)π(g−1hg)

=
α(h, g)

α(g, h)
π(h) = λα(g)(h)π(h).

Hence

cππ(g)v,π(g)v(h) = 〈π(h)π(g)v, π(g)v〉 = 〈π(g)∗π(h)π(g)v, v〉
= 〈λα(g)(h)π(h)v, v〉 = λα(g)(h)cπv,v(h),
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and we have cππ(g)v,π(g)v = λα(g)cπv,v. Therefore the second identity in (3.2) is equivalent
to

(3.3) Span{λα(g)cπv,v | g ∈ G} = L2(G).

Via Fourier transform, identity (3.3) is equivalent to

Span{(λα(g)cπv,v)
̂ | g ∈ G} = L2(Ĝ)⇐⇒ Span{ĉπv,v(λα(g)•) | g ∈ G} = L2(Ĝ).(3.4)

Since λα : G→ Ĝ is surjective, by Lemma 3.2, the second identity in (3.4) is equivalent to

(3.5) cπv,v(g) 6= 0 for almost all g ∈ G.
The theorem follows. �

Lemma 3.2. Let D ⊂ G be a subset with µ(G−D) = 0 and f ∈ L2(G). Let SD ⊂ L2(G)
be the closed linear span of the translates of f by elements of D. Then SD = L2(G) if and

only if f̂(χ) 6= 0 for almost all χ ∈ Ĝ.

Proof. This is essentially [13, Proposition 4.72]. Let g ∈ L2(G). Let Lx be the left
translation operator on L2(G), i.e. (Lxf)(y) = f(x−1y). Then g ⊥ SD if and only if∫

(Lxf)g = 0 for all x ∈ D. This is equivalent to

0 =

∫
Ĝ

(Lxf)̂(χ)ĝ(χ) dχ

=

∫
Ĝ
χ(x)f̂(χ)ĝ(χ) dχ

= (f̂ ĝ)̂(x)

for all x ∈ D. Then it is equivalent to f̂ ĝ = 0 almost everywhere. The lemma follows. �

To apply Theorem 3.1, we start with the following lemma.

Lemma 3.3. Let V be a Hilbert space and T ∈ U(V ) be a unitary operator. Let N(T ) =
{u ∈ V | 〈Tu, u〉 = 0}. Then V −N(T ) is open dense in V .

Proof. If V is finite dimensional, the lemma is easy as by fixing a basis, the condition
〈Tu, u〉 = 0 is given by polynomials on the real and imaginary parts of the coordinates of
u (cf. [23, Lemma 2.2]). We assume that V is infinite dimensional.

Suppose that 〈Tu, u〉 = 0 for all u ∈ V . Then by the polarization identity (cf. [13, A.1
Theorem]), 〈Tu, v〉 = 0 for all u, v ∈ V , which is impossible as T is unitary. Therefore
N(T ) is a proper subset of V . The same argument shows that for any proper subspace V ′

of V , N(T ) ∩ V ′ is a proper subset of V ′.
If 〈Tu, u〉 6= 0, then for any w ∈ V with ||w|| sufficiently small, we have

|〈T (u+ w), u+ w〉| ≥ |〈Tu, u〉| − |〈Tu,w〉| − |〈Tw, u〉| − |〈Tw,w〉|
≥ |〈Tu, u〉| − 2||w|| · ||u|| − ||w||2 > 0.

Therefore N(T ) is closed.
If 〈Tu, u〉 = 0, from the above discussion, there exists a w ∈ V such that 〈Tw,w〉 6= 0

and 〈T ∗u,w〉 = 〈Tu,w〉 = 0, where T ∗ is the adjoint of T . For any positive integer n, we
have

〈T (u+
1

n
w), u+

1

n
w〉 = 〈T (

1

n
w),

1

n
w〉 6= 0.
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Therefore V −N(T ) is dense. The lemma follows. �

Proof of Theorem 1.3. Assume first that G is a finite abelian group. Let g ∈ G and define

P (g) = {u ∈ Vπ | 〈π(g)u, u〉 6= 0}.
Then P (g) ⊂ Vπ is open dense by Lemma 3.3. Since G is finite, by the Baire category
theorem, ∩g∈GP (g) ⊂ Vπ is open dense in Vπ. By Theorem 3.1, ∩g∈GP (g) is the set of
maximal spanning frame vectors and the theorem follows in this case.

Assume that G is compact. Then Ĝ is discrete. In the proof of Theorem 3.1, the kernel

Sα of λα : G→ Ĝ is open and hence G/Sα is a finite group. By the second observation in
the proof of Theorem 3.1, to prove the property of maximal spanning vectors for projective
representations of compact abelian groups, it suffices to prove the property of maximal
spanning vectors for projective representations of finite abelian groups. The theorem then
follows from the above discussion or [23, Theorem 1.7]. �

Note that if v ∈ Vπ is a maximal spanning vector for (π, Vπ), then v ⊗ v ∈ Vπ ⊗ Vπ
is a cyclic vector for the linear representation π ⊗ π∗ : G → Vπ ⊗ Vπ, where π∗ is the
contragredient representation of π. We hence obtain the following result.

Corollary 3.4. Let π : G→ U(Vπ) be an irreducible projective representation of a compact
abelian group G. The representation π ⊗ π∗ is cyclic and it admits cyclic vectors of the
form v ⊗ v.

Remark 3.5 (A question on zero sets of matrix coefficients). Let G be a separable locally
compact group and π : G→ U(Vπ) be a discrete series projective representation. Let cv,v
be the matrix coefficient associated with v ∈ Dπ. Suppose that cv,v is nonzero in a dense
subset of G, is it true that c−1v,v(0) has measure zero? The motivation of this question is
the close relation with phase retrieval property of certain group frames. More precisely,
assume that G is abelian as in Theorem 1.1 and suppose that the question has a positive
answer in this case. Let I ⊂ G be a countable dense subset and consider ∩g∈IP (g). Then
the same proof of Theorem 1.3 shows that the set of maximal spanning frame vectors for
(π, Vπ) is dense in Vπ and in particular π does phase retrieval.

Example 3.6 (The Heisenberg group). Let R be a commutative topological ring. Let
H(R) be the Heisenberg group over R, i.e. H(R) = R3 with group law

(j, k, l)(j′, k′, l′) = (j + j′, k + k′, l + l′ + jk′).

The center and the commutator subgroup of H(R) are both equal to

Z = {(0, 0, l) | l ∈ R} ∼= R.

Let χ : R → T be a character of R and we also regard it as a character of Z. Let
H(R) := R×R× T with group law

(j, k, t)(j′, k′, t′) = (j + j′, k + k′, tt′χ(jk′)).

Let G = R × R be the direct product of two copies of R. Then G(α) = H(R), where
α : G×G→ T is the multiplier defined by

α((j, k), (j′, k′)) = χ(jk′).

Let ρ : H(R) → U(Vρ) be an irreducible linear representation of H(R) with central
character χ. Then it induces an irreducible linear representation ρ′ : R×R× T→ U(Vρ)
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with ρ′(j, k, t) = tρ(j, k, 0) and an irreducible α-representation π : R × R → U(Vρ) with
π(j, k) = ρ(j, k, 0).

To check the phase retrieval property of ρ and ρ′, it suffices to check the phase retrieval
property of π. We discuss some special cases in the following.

(1) R = Fq is a finite field with q elements. If the central character χ is trivial, then
ρ is one-dimensional and it is from a character of Fq × Fq × {0}. If the central
character χ is not trivial, then ρ is induced from a character of {0}×Fq×Fq and is
q-dimensional. This is the Gabor case. Fix an isomorphism Vρ ∼= Cq such that each
π(g) ∈ Cq×q (g ∈ Fq × Fq) has algebraic entries. Then the Lindemann-Weierstrass
theorem provides an easy way to write down a maximal spanning vector. E.g.
let pi (1 ≤ i ≤ q) be different prime numbers, then v = (e

√
p1 , . . . , e

√
pq)′ ∈ Cq

satisfies 〈π(j, k)v, v〉 6= 0 for all (j, k) ∈ Fq × Fq, hence it is a maximal spanning
vector.

(2) R = Z is the additive group of integers with discrete topology. In this case χ(l) =
wl for some w ∈ T. If w has infinite order, then α is not of type I (cf. [13, Section
6.8, Chap. 7 (Example 4)]).

If w has finite order, i.e. it is a root of unity, say wq = 1. In this case ρ is a finite
dimensional representation from a representation of the quotient Z × Z × (Z/qZ)
(cf. [13, Theorem 6.58]). It is easy to see that the associated α-representation π
of Z× Z is not square integrable.

In other words, the results in this paper does not apply to the discrete Heisenberg
group H(Z).

(3) R is a local field. If χ : Z → T is trivial, then ρ : H(R) → U(Vρ) factors through
R×R× {0}, hence it is one-dimensional. In this case ρ is not square integrable.

If χ : Z → T is not trivial, then R → R̂ (r 7→ χ(r·)) is an isomorphism
of topological groups. In this case, by the Markey machine, ρ is induced from a
character of {0}×R×R and π : R×R→ U(Vρ) is an irreducible square integrable
α-representation (cf. [13, Section 6.6] and [10, Proposition 12.3.2]). We may take
Vρ = L2(R) and take the group action to be

π(j, k)f(l) = χ(kl)f(j + l),

for f ∈ L2(R). Then f ∈ L2(R) is a maximal spanning vector if and only if∫
χ(bx)f(a + x)f(x) dx 6= 0 for almost all (a, b) ∈ R × R. Such f has been

constructed explicitly in [6, 8]. Therefore if ρ is an infinite dimensional irreducible
representation of H(R), then ρ does phase retrieval. If R = R or R = C, this is a
special case of [15]. Note that the case R = R is well-known (cf. [6, 14, 16]), the
Gauss and Hermite windows satisfy the condition from Theorem 3.1.
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