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ABSTRACT. Let 7 : Z/nZ x Z/nZ — U(C") be the Weyl-Heisenberg representation of
Z/nZ x Z/nZ. In this short note, we show that, if n > 5, there exist infinitely many
vectors v € C™ such that the frame {n(g)v | g € Z/nZ x Z/nZ} is phase retrievable but
does not have maximal span. This answers a question proposed in [6] Problem C].

1. INTRODUCTION

Being phase retrievable is an important property of frames. In general it is not easy to
determine directly whether a frame is phase retrievable. On the other hand, a frame is
phase retrievable if it has maximal span (cf. [2, Section 3]), and this stronger condition
is relatively easy to check. In [6], Li-Han-etc. proved the existence of phase retrievable
vectors for irreducible projective representations of finite abelian groups by showing the
existence of maximal spanning vectors. Then they asked whether it is possible for a group
frame generated by one vector in the representation space to be phase retrievable but not
maximal spanning (cf. [6, Problem C]). In this short note, we give an affirmative answer
to that question using Fourier transform for projective representations of finite groups.
More precisely, let n be a positive integer, G = Z/nZ x Z/nZ and 7 : G — U(C™) be the
Weyl-Heisenberg representation of G. We show that, if n > 5, there exist infinitely many
vectors v € C" such that the frame {m(g)v | g € G} for C" is phase retrievable but does
not have maximal span.

Let us first review the basics of frames. Let n, m be positive integers and V' be an
n-dimensional Hilbert space over C. Let ® = {¢; € V | 1 < i < m} be a frame for V.
Recall the following definitions.

(1) The frame ® is phase retrievable if the map
te : V/T — R,
= (1, 9i)Di<i<m

is injective. Here T is the set of complex numbers with absolute value one.
(2) The frame ® is mazimal spanning (or has mazimal span) if

Span{¢; ® ¢; | 1 <i <m} =HS(V).
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Here HS(V) is the space of Hilbert-Schmidt operators on V, and z @ z (x € V) is
the projection given by

rRx:V —>CxCV,
f=(f,z).

It is well known that if ® is maximal spanning, then ® is phase retrievable (cf. [2 Section

3]).

Let G be a finite group and o € Z%(G,T) be a multiplier of G. Let 7 : G — U(V)
be an a-representation of G (i.e. w(g)w(h) = a(g, h)w(gh) for all g, h € G). An element
v € V is called a frame vector if ®, := {w(g)v | g € G} is a frame for V. In particular,
when 7 is irreducible, all nonzero vectors v € V are frame vectors, which is the case for
the Weyl-Heisenberg representations. We have the following definitions.

(1) An element v € V is phase retrievable for (w,G,V) if v is a frame vector and the
frame @, is phase retrievable.

(2) An element v € V' is mazimal spanning for (r,G, V) if v is a frame vector and the
frame @, is maximal spanning.

In [0, Problem C], the authors asked the following question: does there exist a phase
retrievable vector v € V for (m, G, V') which is not maximal spanning? We show that this
question has an affirmative answer and prove the following result.

Theorem 1.1. Let G = Z/nZ X Z/nZ and 7 : G — U(C"™) be the Weyl-Heisenberg

representation of G, i.e. m(a,b) = T*S®, where

010 0 0

0 0 1 0 0
T= diag(1a€7§27"' 7§n_1)a S = 3

0o 00 --- 01

100 --- 00

and £ = en . The corresponding multiplier oo : G x G — T is a((a,b), (c,d)) = €. Then
the following statements hold.

(1) If n = 2,3, then v € C" is phase retrievable for (m,G,C") if and only if v is
mazximal spanning.

(2) If n =4, then v € C" is phase retrievable for (w,G,C") if and only if v is mazimal
spanning or the zero set of the matriz coefficient c,, is of the form {h} for some
h € G of order 2, where ¢y, : G — C is defined as c,(g) := (7(g)v,v).

(3) If n > 5, there exist infinitely many v € C™ such that v is phase retrievable for
(m,G,C™) but v is not mazimal spanning.

The main tool we use is the Fourier transform for projective representations of finite
groups, which in the setting of Theorem gives an isometric isomorphism between
L?*(G) and M, (C). We shall see in the following that the method works for projective
representations of general finite abelian groups.

In this paper, for a complex matrix M, denote by M* (resp. M’) the conjugate transpose
of M (resp. the transpose of M).
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2. PROJECTIVE REPRESENTATIONS OF FINITE ABELIAN GROUPS

In this section, we review the Fourier transform for projective representations of finite
groups. As an application, for an abelian group G and an irreducible projective repre-
sentation (m, G, V) of G, we give a practical criterion to check whether v € V' is phase
retrievable (cf. Corollary . This criterion is the key ingredient in the proof of Theorem
NI

2.1. The Fourier transform. Let G be a finite group and o € Z%(G,T) be a multi-
plier. Denote by G, the set of all isomorphism classes of finite-dimensional irreducible
a-representations of G. Let (m, Vi, d;) be a representative of an element in éa where
dr = dim V., and denote by [r] the corresponding isomorphism class.

Fixing [1] € Go and an orthonormal basis {eF | 1 < i < d;} of V,, then End(V;) is
isomorphic to the vector space My_(C) consisting of d X d matrices with complex entries.
The Fourier transform with respect to m is given by the linear map

F. : L*(G) — End(V;) = M,_(C)
Fos Frim =5 Flg)nl)”
Gl =2

Define F : L*(G) — B prjed. M. (C) by F : = ®peq, Fr- Note that both sides of this
map are Hilbert spaces. For the left hand side, the inner product on L?(G) is defined by

fih): Zf ng), f.9€L*(G).
|G|96G

While for the right hand side, the inner product on 69[ |G
products on all direct summands, where on M,_(C) the inner product is defined by

(A, B) = d, Te(AB*), A,B € M, (C).

Mg, (C) is the sum of inner

It is well-known that the map F' is an isometric isomorphism (cf. [4, Theorem 2| for
the Peter-Weyl theorem for compact group case and [5, Theorem 7.1] for the Plancherel
formula for locally compact group case).

Matrix coefficients are some special elements in L?(G) which we are particularly in-
terested in. Let [r] € Ga. For u,v € Vg, define the matriz coefficient iyt G—C
by

Cuw(h) i= (m(h)u,v),

U,V

and define the subspace C7,, of L*(G) as

Cy.» = Span{c]

r@ur(ay | 9 € G}

It is easy to see that Fi(cy,) = u ® v. From this we obtain the following result.

Lemma 2.1. For [r] € @a and v € V., the following statements are equivalent.

(1) v is a mazimal spanning vector for (w,G,Vy).
(2) dim Span{r(g)v ® 7(g)v | g € G} = d2.

(3) d1mSpan{c7T(gv7T(g |g € G} =d2.



4 CHUANGXUN CHENG, JIUYI LU, AND XIAOGUANG SHANG

2.2. Phase retrievable vectors and maximal spanning vectors: abelian case. In
this part we assume that G is a finite abelian group and 7 : G — U(V) is an irreducible
a-representation of G. Let A : G X G — T be the map defined by

May) = gggg 3.

Then A is a bicharacter and it induces a homomorphism A, : G — G by
Aa(2)(y) = Az, y),

where G is the character group of GG. Let S, be the kernel of \,. We call « totally skew
if S, is trivial. By [I, Theorem 3.1] (or [4, Remark 8]), « is similar to a multiplier which
is lifted from a totally skew multiplier o/ on G/S,, i.e. the composition of the quotient
map G x G — G/Sy x G/S, and o/ : G/S, x G/S, — T. Moreover, 7 is equivalent to a
projective representation of the form v ® 7y, where v € G is a linear character of G, and
71 is the projective representation of G induced from an o/-representation ©’ of G/S,, via
the natural quotient map G — G/S,,.

In this note the properties we study for m and those for 7’ determine each other. Hence
we may and do assume that « is totally skew in the following. In this case A, : G — G
is an isomorphism and there is a unique a-representation of G up to isomorphism (cf. [I,
Theorem 3.3] for the locally compact abelian group case and [3], Section 3.2] for the finite
abelian group case). In particular, this is the case for the Weyl-Heisenberg representations.

Let 7 : G — U(V) be the unique a-representation of G. Since there will be no confusion
on the representation here, we omit the symbol 7 in the super and subscript for simplicity.
In this case the Fourier transform F : L?(G) — End(V) is an isometric isomorphism and
(dim V)2 = |G|. Note that for any u, v €V, g, h € G,

Cr(g)u,m(gw(h) = (m(h)(7(g)u), m(g)v)
=a(g~ 9) " a(h, 9)alg™", hg)cun(g hg)
= )‘a(g)(h)cuw(h)'

Hence we have Cy, = Span{,(g)cun | g € G} = Span{xc,, | X € G}.

Lemma 2.2. Let v € V be a nontrivial vector and denote by N(v) C G the zero set of
the matriz coefficient c,,, i.e.

N(U) = {g €G ‘ Cv,v(g) = 0}
Then
dimCy, + |N(v)| = |G|.
In particular, v is mazimal spanning if and only if N(v) is the empty set.

Proof. Let 0, be the characteristic function of the set {g}. Then the lemma follows from
the following identity:

Cyo = Span{xcy, | X € @}
= Span{dyc, | g € G}
— Span{d, | g ¢ N(v)}.



PHASE RETRIEVABLE VECTORS AND MAXIMAL SPANNING VECTORS 5

This result has interesting consequences.

Corollary 2.3. Let v € V be a nontrivial vector. Then the orthogonal complement of
Span{7(g)v @ m(g)v | g € G} is spanned by 7(g) for g € N(v).

Proof. From the proof of Lemma , one sees that the orthogonal complement of C,, in
L*(@) is spanned by d, for g € N(v). Note that g and g~! lie in N(v) simultaneously.
Then the result follows from the fact that F(6,) = ﬁﬂ(g)_l. O

Corollary 2.4. For a nontrivial vector v € V, the following statements are equivalent.

(1) v is not phase retrievable.
(2) There exist x,y € V and for all g € N(v), a complex number ay € C, such that

TRr—yYRy = Z agm(g) # 0.
geN(v)
Proof. By definition, v is not phase retrievable if and only if there exist x,y € C", x Z y
(mod T) such that
[(z, m(g)v)| = [y, m(g)v)]| for all g € G.
Hence for all g € G we have

(x @z, m(g)v @ 7(g)v) = |(z,7(9)v)|?
=y, m(9)v)|* = (y @ y, 7(9)v ® 7(g)v).

This means that 2 ® x —y ®vy is orthogonal to Span{w(g)v®@m(g)v | g € G}. By Corollary
this is equivalent to the existence of a, € C for all g € N(v) such that

roz-yoy= Y aglg).
gEN (v)

Note that x # y (mod T) is equivalent to z ® z — y ® y # 0, this completes the proof. [

Remark 2.5. Because rank(z ® z —y ® y) < 2, if one could find v such that N(v) is not
empty and the linear combinations gEN(v) aqgm(g) are either zero or of rank greater than

or equal to 3, then v is phase retrievable but not maximal spanning. This is the key
observation behind the proof of Theorem

3. PROOF OoF THEOREM [L.1]

From now on, we go back to the notation as in Theorem ie. G=1Z/nZ x Z/nZ,
and 7 : G — U(C") is the Weyl-Heisenberg representation of G.

3.1. Case n = 2. Although one could deduce the n = 2 case by similar arguments to
those in the following sections, we give an explicit argument by direct computation. It
also shows that for n > 3, direct computation is not applicable since we are dealing with
determinants of matrices of size n? x n?.

Let v = (z y)' € C? be a nonzero vector. Then {m(g)v ® 7(g)v | g € G} C HS(C?) is

the set of the following four projections

rr xy rr —xy yy Ty Yy -y
ry yy)' \-zy yy ) \ey zx)’ \—zy ax )’
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The span of these projections has dimension 4 if and only if the following determinant A
rxr xy xY Yy
A — rxx —xy —-ITY Yy
yy Ty Ty TT
Yy -y —TY I
is nonzero. Direct computation shows that
A = 4(|z|* = |y|*) (2§ + zy) (zy — 2y).

Hence (z y)' € C? is a maximal spanning vector for (7, C?) if and only if
(lz] = lyD(@y + zy) (xy — Zy) # 0.
On the other side, let t : C? — Rgé be the map defined by

fr= (I, m(g)v)])gec-

It is easy to check that the following three claims hold.

(1) If |x| = |y|, then t(a 0)" = ¢(0 a)’ for all nonzero complex numbers a € C;

(2) If zy — Ty = 0, then ¢(1 1) =¢t(1 —1));

(3) If zy+ Ty =0, then t(1 1)) =¢(1 —1)".
Hence (z y)" is not phase retrievable when (|z| — |y|)(zy — Zy)(zy + Zy) = 0. Therefore
we obtain the following result, which covers Theorem for case n = 2.

Proposition 3.1. With the notation as above, the following three conditions are equiva-
lent.

(1) (z y)' € C? is mazimal spanning;

(2) (z y)' € C? is phase retrievable;

3) (2] = ly)(zy — 2y)(xy + Ty) # 0.

3.2. Case n = 3,4. On one hand, by Lemma [2.2] a nontrivial vector v € V is not
maximal spanning if and only if N(v) is non-empty. On the other hand, by Corollary
a nontrivial vector v € V is not phase retrievable if and only if there exist z,y € V and
for all g € N(v), a complex number a, € C, such that

rRr—yoy= Y agm(g) #0.
gEN (v)
Using the idea in Remark we prove the following result, which covers Theorem [I.1] for
case n = 3,4.

Proposition 3.2. Let G = Z/nZ x Z/nZ and 7 : G — U(C"™) be the Weyl-Heisenberg
representation of G. Then the following statements hold.
(1) If n =3, then v € C" is phase retrievable for (w,G,C") if and only if v is maximal
spanning.
(2) Ifn =4, then v € C" is phase retrievable for (w,G,C") if and only if v is maximal
spanning or N(v) = {h} for some h € G of order 2. In other words, v € C" is
phase retrievable if and only if dim C,, , > 15.

Proof. For n = 3, we only need to show that if N(v) is not empty, then v is not phase
retrievable. There are four cases to consider, listed as follows.
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(1) Suppose N(v) 2 {(1,0),(2,0)}. Then there exist

0 0
0 31

such that x @ x — y @ y = —iT + 172 # 0. Hence v is not phase retrievable.
(2) Suppose N(v) 2 {(0,1),(0,2)}. Then there exist

i _omi 1 5mi _ 5mi
e6 +e 6 e6 +e 6 4mi
T = 1 ), y=1/— e’s
3 1 3 2mi
e 3

such that z @z —y®y = e 5 S +eb 2 # (0. Hence v is not phase retrievable.
(3) Suppose N(v) D {(1,1),(2,2)}. Then there exist

27i

i _mi e 3 5mi __ 57
€6 +e 6 o €6 +e 6 2mi
T = e3 y Y=\ — €3
3 3 27i
1 €3

such that r @z —y®y = e TS +e% T2S2 # 0. Hence v is not phase retrievable.
(4) Suppose N(v) 2 {(2,1),(1,2)}. Then there exist

4mi 4mi
i _mi e 3 5mi __ 5mi e 3
e6 +e 6 dmi e6 +e 6
T = e 3 y Y = - —
3 3 4ri
1 es

such that x®zr —y®y = e%iTQkSW—e*sTmTS2 # 0. Hence v is not phase retrievable.

The list completes the proof for n = 3.
For n = 4, we need to prove the following two statements.

e If N(v) is not of the form {h} where h € G has order 2 and v is not maximal
spanning, then v is not phase retrievable.
o If N(v) = {h} for some h € G of order 2, then v is phase retrievable.

For the first statement, we do the same as in case n = 3. Suppose that v € C" is not

maximal spanning. Then N (v) is non-empty, and there are nine cases to consider, listed
as follows.

(1) Suppose N(v) 2 {(1,0),(3,0)}. Then there exist

V2 0
. 0 B 0
xr = 0 y Y = \/5
0 0

such that x @ 2 —y @y = T + T2 # 0. Hence v is not phase retrievable.
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(2) Suppose N(v) 2 {(0,1),(0,3)}. Then there exist

[\
g St
<
Il
|
|
—_

such that t@ 2z —y®y = S + 53 # 0. Hence v is not phase retrievable.
(3) Suppose N(v) 2 {(1,1),(3,3)}. Then there exist

_ i mi

e 4 e 4

—i i

such that x @2z —y®y = %% (TS +T3S3) # 0. Hence v is not phase retrievable.
(4) Suppose N(v) D {(2,1),(2,3)}. Then there exist

1 -1
R B BEE I
1 1

—T2%8 4+ 7283 # 0. Hence v is not phase retrievable.

suchthat r @ —y®y =
),(1,3)}. Then there exist

(5) Suppose N(v) 2 {(3,1

us? just

e4 e4

1 —i

T = fust y Y= fust
—e1 —e1

—i

such that z@x —y®y = 27 (T3S +TS3) # 0. Hence v is not phase retrievable.
(6) Suppose N (v) 2 {(1,2),(3,2)}. Then there exist

such that x ® 2 — y @ y = T.S? — T35% # 0. Hence v is not phase retrievable.
(7) Suppose N(v) 2 {(2,0),(0,2)}. Then there exist

—@ 0
_| o 7
T = g 7y 0
0 7

such that r®z —y®y = %(T2 — 82) # 0. Hence v is not phase retrievable.
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(8) Suppose N(v) 2 {(2,0),(2,2)}. Then there exist
V2
2
0

o odfs =

= % T? + T25%) # 0. Hence v is not phase retrievable.
(2,2)}. Then there exist

0

0
B 1
T=lo YT o
i -1

suchthat r Rz —y®y
(9) Suppose N(v) 2 {(0,2),

such that z @z —y ®y = S% — T%5? # 0. Hence v is not phase retrievable.

Therefore, whatever the case, v is not phase retrievable, and this proves the first statement
for n = 4.

For the second statement, we prove by negation. Suppose that v is not phase retrievable.
By Corollary there exist x,y € C™ and a € C such that

r®x—y®y=an(h)#0.
However, z ® x — y ® y has rank at most 2, while an(h) must be invertible if nonzero,

which yields a contradiction. O

Remark 3.3. For the case n =4, let
1+2i

Then one easily calculates that N(v) = {(0,2)}. Therefore, the situation that N(v) = {h}
for some h € G of order 2 may necessarily occur. This is an explicit example of a phase
retrievable vector that is not maximal spanning.

3.3. Case n > 5. We begin with the following lemma, which constructs a certain type of
vectors v that are not maximal spanning, but C, , still has relatively large dimension.

Lemma 3.4. Letn > 5, G =7Z/nZ x Z/nZ and 7 : G — U(C") be the Weyl-Heisenberg
representation of G. Then for any ag € Z/nZ with ag # 0, there exist infinitely many

v € C" such that
N(v) = {h,h~"},
where h = (ap,0) € G. It is allowed that h = h™' in the case that n is even.

Proof. This is done by direct construction. Indeed, we may furthermore require that
v = (vo,v1, -+ ,vp—1) € C" satisfies an additional condition: v; € Rso N Q for j =
1,2,---,n — 1, where Q is a fixed algebraic closure of Q. Thus, we write vg = roel?,
vj=rjj=12---,n—1wherer; € RsgNQfor j =0,1,---,n—1and 0 < 0 < 2.
Let k = [ 5| and we may assume 0 < ag < k. It suffices to show that there exist infinitely
many such v € C" that the following two statements hold simultaneously:
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(1) cyu(g) =0 for g = (ap,0), (n — ap,0) and ¢, ,(g) # 0 for g = (a,0), a # ag,n — ao;
(2) cyu(g) #0 for g = (a,b) € G where b # 0 € Z/nZ.

For the first statement, one only needs to check for 0 < a < k by symmetry. Note that
for g = (a,0),

Cv,v(g) = Voo + gavlvil +-- 4+ g(n_l)avnflvnfl
= r% + far% 4+ 4 5("*1)07»72171
has nothing to do with the variable 6. Set

(3.1)

r, if n is odd,
Tn—1=T1, Th—2=T2, ***, Th+1 = . .

re_1, if n is even.
Then the imaginary part of (3.1]) vanishes for all 0 < a < k. Therefore, the first statement
is reduced to the verification for the real part. More explicitly, we claim that there exist
infinitely many (ro,71,--- ,7%) € RF*! such that the formulas

27 o 2(k — )m

(3.2)  rg 4 (2cos —a)ri 4 -+ (2cos 7
n

2k
a)ri_y + (Acos —Wa)r,%, 0<a<k
n

where
= 2, if n is odd,
)1, if nis even,
equal to zero exactly when a = ag.
Indeed, for 0 < a < k, let

27 2(k—m

2k
fa(ri, - i) :—(ZCos?a)r%—'--—(Zcos 2 T )2

a)ri_; — (Acos Ta)rk.

These are distinct polynomials and these quadratic forms are not semi-negative definite.
Therefore, there exists a non-empty open subset U C RI;O such that

fa(rh"' 77.]6) £ fao(rlv"' 77'16) >0

for all a # ap and (r1,7r2,--- ,7r;) € U. For any (r1,re,--- ,1,) € U, set
To = v fao(rla e 77‘]6)7
then one easily verifies that these values of rg,r1, - - , rg satisfy the required property.
For the second statement, fix any choice of rg,r1, -+ ,7,—1 as above. We may further-
more require that these r;’s are algebraic. Let K = Q(ro, 71, - ,7%,&). Then there exist

infinitely many prime numbers p such that K N Q(¢,) = Q, and so [K(&p) : K| = [Q(&p) :
Q] = p— 1. For any such p with p > 5, set § = 2?”, then for g = (a,b), g # 0, one has
Co(9) = 0500 + £ 0p 1 BT + - - 4+ £, T
(33) + g(nfb)avoivn_b + f(nib+1)avlivn—b+l 4t g(nil)avb—livn—l
= ryro&p + g,y + 1,

where r € K. Noting that 5 = §p_1 and p > 5, equation (3.3) cannot be zero, since the
minimal polynomial for &, is XP~l 4 XP=2 4 ...+ X + 1. This finishes the proof. O
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By Lemma the vectors v € C" given by Lemma [3.4] are not maximal spanning.
We claim that they are phase retrievable (cf. Remark , hence obtain the following
proposition and finish the proof of Theorem

Proposition 3.5. Let n > 5, G = Z/nZ x Z/nZ and 7™ : G — U(C") be the Weyl-
Heisenberg representation of G. Then there exist infinitely many vectors v € C" such that
v is phase retrievable for (w,G,C") but v is not maximal spanning.

Proof. 1t suffices to show that the vectors v € C” given by Lemma|3.4]are phase retrievable.
Using similar argument as in case n = 4, we prove this by negation.

Keep the notation in Lemma [3.4] Suppose that there exists such a vector v € C™ that
is not phase retrievable. Then by Corollary [2.4] there exist z,y € C" and a,b € C such
that

r@z—y®y=an(h)+br(h)"!#£0.
Note that £ ® r — y ® y has rank at most 2, while am(h) + br(h)~! is of the form

(3.4) D =diag(a+b, af® +b¢™% ag2m0 4 pe720 ... qgrmhao 4 pe=(n=laoy

which is required to be nonzero. If h = h~!, then D must be invertible, which yields a

contradiction. Suppose that h has order at least 3. We claim that when a and b vary and

are not vanishing simultaneously, at least three of the entries of the matrix D are nonzero.

Hence, am(h) + br(h)~! must be of rank at least 3, which also yields a contradiction.
Indeed, for any i # j, consider the linear equations with respect to a and b

agaoi + bé&—aoi — 0’
a§a0j 4 bf‘“Oj =0.

It has non-trivial solutions if and only if the discriminant

gaoi é'_(lOi

A= gaoj  g—aoj

— an(i—j) _ gao(j—i)

is zero, or equivalently,
(3.5) n | 2ao(i — j).

However, the assumption that h has order at least 3 implies that n { 2ag. Hence, fixing

arbitrary i, there are at most |5 ] choices for j with 0 < j <n —1 and satisfying equatign

(3.5). Therefore, when a and b vary and are not vanishing simultaneously, at least n— | % |

2
entries of the matrix D are nonzero. Since n — |§] > 3 when n > 5, this proves the claim
and the proposition. O
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