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Abstract. In this paper we prove three MacWilliams type identities for irreducible projective

representations of finite groups. As an application, we deduce MacWilliams identities of weight enu-

merators, double weight enumerators and complete weight enumerators for quantum error-correcting

G-codes and obtain the Singleton bounds.

1. Introduction

In this paper, we prove three MacWilliams type identities for irreducible projective representa-

tions of finite groups via a detailed study of the matrix coefficients. Besides the interests in represen-

tation theory, we apply the identities in the study of quantum error-correcting codes (abbreviated

as QECCs) and deduce MacWillams identities of weight enumerators, double weight enumerators

and complete weight enumerators for quantum error-correcting G-codes. These identities unifies

earlier results of this type (cf. [3, 4, 15]). Moreover we obtain the Singleton bounds for quantum

error-correcting G-codes.

Let G be a finite group of order g. Let m and n be positive integers and let (ρi, Vi) (1 ≤ i ≤ n)

be m-dimensional irreducible projective representations of G with multiplier αi. Let P1, P2 ∈
End(V1 ⊗ V2 ⊗ · · · ⊗ Vn). For each 1 ≤ i ≤ n, fix Gi ∈ G a system of representatives of the quotient

group G/Kerρi such that the identity 1G ∈ G is in Gi. Define Sn = {ρ1(g1)⊗ρ2(g2)⊗· · ·⊗ρn(gn)|gi ∈
Gi, 1 ≤ i ≤ n}. An element E ∈ Sn has weight t if E = e1⊗e2⊗· · ·⊗en and |{j : ej 6= id}| = t. Here

for an element e ∈ U(V ), we denote by e the image of e in PU(V ) under the natural projection

U(V )→ PU(V ). We denote the weight of E by w(E).

Definition 1.1. The weight distributions Bi and B⊥i with respect to {(ρi, Vi)1≤i≤n, P1, P2} are

defined by

Bi : =
∑

E∈Sn,w(E)=i

Tr(E−1P1)Tr(EP2),

B⊥i : =
∑

E∈Sn,w(E)=i

Tr(E−1P1EP2),
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and the weight enumerators with respect to {(ρi, Vi)1≤i≤n, P1, P2} are defined by

f(x, y) : =

n∑
i=0

Bix
n−iyi,

f⊥(x, y) : =

n∑
i=0

B⊥i x
n−iyi.

We then have the following result.

Theorem 1.2. With the notation as above, we have

(1.1) f(x, y) = (
n∏
i=1

si) · f⊥(
m2x+ (g2 −m2)y

mg
,
m(x− y))

g
),

where si = #Kerρi, 1 ≤ i ≤ n.

Assume now that the subgroups Kerρi have the same size, say s. Fix a bijection oi from Gi to the

subset {1, 2, ..., gs} of Z such that the identity 1G corresponds to the integer 1. Let ρ1i := o−1i ◦ o1
be the induced bijection from G1 to Gi and denote its inverse by ρi1. For simplicity, we write o for

o1. Let IND(n) be the set {J = (ji) ∈ Z
g
s
≥0|

g
s∑
i=1

ji = n}. For E = ρ1(g1)⊗ ρ2(g2)⊗ · · · ⊗ ρn(gn) ∈ Sn
and g ∈ G1, let Ng(E) be the number #{i | 1 ≤ i ≤ n, gi = ρ1i(g)}. We define an error set E[J ]

associated to an index matrix J = (jo(g)) ∈ IND(n) by

E[J ] := {E ∈ Sn | Ng(E) = jo(g),∀g ∈ G1}.

Definition 1.3. The complete weight distributions with respect to {(ρi, Vi)1≤i≤n, P1, P2} are

defined by

DJ : =
∑

E∈Sn, E∈E[J ]

Tr(E−1P1)Tr(EP2),

D⊥J : =
∑

E∈Sn, E∈E[J ]

Tr(E−1P1EP2),

and the complete weight enumerators with respect to {(ρi, Vi)1≤i≤n, P1, P2} are defined by

D(M) :=
∑

J=(jo(g))∈IND(n)

DJM
J ,

D⊥(M) :=
∑

J=(jo(g))∈IND(n)

D⊥JM
J ,

where M = (Mg)g∈G1 is a 1-by-gs matrix and MJ =
∏
g∈G1

M
jo(g)
g .

We then have the following result.

Theorem 1.4. With the notation as above, let G be an abelian group, then

(1.2) D(M) = D⊥(M⊥)

where M⊥g =
sm

g

∑
l∈G1

α−1(l−1, g−1)α(g−1, l−1)Ml for all g ∈ G1 and M⊥ = (M⊥g ).
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Finally we consider a particular case where all the ρi are the same and given by the Weyl-

Heisenberg representation. More precisely, let (H,+, 0H) be an abelian group with order m and

Ĥ = Hom(H,C×) be its dual group with identity. Fix a basis {xh|h ∈ H} of Cm indexed by

elements of H. Let ρ be the Weyl-Heisenberg representation of H × Ĥ defined by

(1.3)
ρ : H × Ĥ → U(Cm)

(a, χ)→ (xh → χ(h)xa+h, ∀h ∈ H).

It is well-known that (ρ,Cm) is a unitary irreducible faithful projective representation of H × Ĥ
(cf. [1, Exercise 4.1.8, Theorem 4.8.2]). In the following we consider the case that G = H × Ĥ
and (ρi, Vi) = (ρ,Cm) for all 1 ≤ i ≤ n. For E ∈ Sn, let wX(E) =

∑
(a,χ)∈G
a6=0H

N(a,χ)(E) and wZ(E) =

∑
(a,χ)∈G
χ 6=1Ĥ

N(a,χ)(E), and we call them X weight and Z weight of E respectively. Let E[i, j] = {E ∈

Sn|wX(E) = i, wZ(E) = j}.

Definition 1.5. The double weight distributions with respect to {ρ, P1, P2} are defined by

Ci,j : =
∑

E∈E[i,j]

Tr(E−1P1)Tr(EP2),

C⊥i,j : =
∑

E∈E[i,j]

Tr(E−1P1EP2),

and the double weight enumerators with respect to {ρ, P1, P2} are defined by

C(X,Y, Z,W ) : =

n∑
i,j=0

Ci,jX
n−iY iZn−jW j ,

C⊥(X,Y, Z,W ) : =
n∑

i,j=0

C⊥i,jX
n−iY iZn−jW j .

We then have the following result.

Theorem 1.6. With the notation as above, we have

C(X,Y, Z,W ) = C⊥(X + (m− 1)Y,X − Y, Z + (m− 1)W

m
,
Z −W
m

).

In Section 2.1, we review basic properties of projective representations and prove necessary iden-

tities of matrix coefficients. We then prove Theorems 1.2, 1.4 and 1.6 in Sections 2.2, 2.3 and 2.4

respectively.

In section 3, we apply Theorems 1.2, 1.4 and 1.6 in the study of quantum error correcting G-

codes. In particular, we deduce three versions of MacWilliams identities and obtain the Singleton

bounds for quantum error correcting G-codes. As we shall see, the Singleton bounds depend only

on the size of G. On the other hand, as explained in [8], it is meaningful to construct G-codes for

various groups G.
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1.1. Notation. In this paper, T is the set of complex numbers with modulus one. For a Hilbert

space V , denote by U(V ) the space of unitary operators on V , PU(V ) the quotient of U(V ) by

T. Given i ∈ {1, 2, ...,m} and j ∈ {1, 2, ...,m}, Ei,j ∈ Cm×m is the matrix whose ij entry is 1 and

other entries are zero.

2. The MacWilliams identities for projective representations

In this section, we prove Theorems 1.2, 1.4 and 1.6. The main ingredients are some identities of

matrix coefficients of projective representations of finite groups, which we review/ prove in Section

2.1 via Schur’s lemma.

2.1. Projective representaitons of finite groups. We recall the basic properties of projective

representations of finite groups (cf. [2, 5]). Let G be a finite group with identity 1G and let V be a

finite dimensional C-vector space.

Definition 2.1. Let α : G×G→ C× be a multiplier in Z2(G,T). A map

ρ : G→ U(V )

is called a projective representation of G with respect to α (or an α-representation) if ρ(x)ρ(y) =

α(x, y)ρ(xy) for all x, y ∈ G.

We denote this projective representation by (π, V, α) or (π, V ). Let PGL(V ) = GL(V )/C×. Let

π : U(V )→ PU(V ) be the natural homomorphism. If ρ : G→ U(V ) is a projective representation

of G, then π ◦ ρ is a homomorphism. We define the kernel of ρ by

(2.1) Kerρ := {g ∈ G|ρ(g) ∈ C× · 1V } = Ker(π ◦ ρ),

If Kerρ is 1G then we call ρ a faithful projective representation (cf. [5, Chapter 3]).

Definition 2.2. A subprojective representation of a projective representation (π, V ) is a vector

subspace W of V which is stable under G, i.e π(g)W ⊂W for all g ∈ G. A projective representation

is called irreducible if there is no proper nonzero G-stable subspace W of V .

As in linear representations case, we have Schur’s lemma for projective representations (cf. [2,

Lemma 2.1] and [14, Section 2.2]).

Proposition 2.3 (Schur’s lemma). Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two irreducible

α-representations of G, and let f be a linear map from V1 to V2 such that ρ1(g) ◦ f = f ◦ ρ1(g) for

all g ∈ G. Then the following statements hold.

(1) If ρ1 and ρ2 are not isomorphic, then f = 0.

(2) If V1 = V2 and ρ1 = ρ2, then f is a homothety.

Starting with Schur’s lemma, one could deduce orthogonality relations of matrix coefficients of

α-representations of finite groups. In particular, we have the following two results. Their proofs are

similar as in linear representations case (cf. [14, Section 2.2]).
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Corollary 2.4. Let h be a linear mapping from V1 to V2, and define

h0 =
1

g

∑
g∈G

(ρ2(g))−1hρ1(g).

Then the following two statements hold.

(1) If ρ1 and ρ2 are not isomorphic, then h0 = 0.

(2) If V1 = V2 and ρ1 = ρ2, let G1 be a system of representatives of the quotient group G/Kerρ1.

Then

h0 =
1

g

∑
g∈G

(ρ1(g))−1hρ1(g) =
s

g

∑
g∈G1

(ρ1(g))−1hρ1(g)

and h0is a homothety of ratio (
1

m
)Tr(h), where m = dim(V1) and s = #Kerρ1.

Assume that ρ1, ρ2 and h are given in matrix form

ρ1(g) = (ri1j1(g)), ρ2(g) = (ri2j2(g)), h = (xj2j1).

Let h0 =
1

g

∑
g∈G

(ρ2(g))−1hρ1(g). If we write h0 = (x0i2i1), then

x0i2i1 =
1

g

∑
g∈G

∑
j2,j1

r∗i2j2(g)xj2j1rj1i1(g) =
s

g

∑
g∈G1

∑
j2,j1

r∗i2j2(g)xj2j1rj1i1(g),

where (ρ2(g))−1 = (r∗i2j2(g)). Therefore we have the following result.

Corollary 2.5. With the notation as above, the following statements hold.

(1) In the case of Proposition 2.3(1), we have

1

g

∑
g∈G

r∗i2j2(g)rj1i1(g) = 0

for arbitrary i1, i2, j1, j2.

(2) In the case of Proposition 2.3(2), we have

1

g

∑
g∈G

r∗i2j2(g)rj1i1(g) =
s

g

∑
g∈G1

r∗i2j2(g)rj1i1(g) =


1

m
if j1 = j2 and i1 = i2 ,

0 otherwise,

where m is the dimension of V , s = #Kerρ1 and g is the order of G.

The following result is a twisted version of Corollary 2.5, which is trivial in linear representations

case.

Corollary 2.6. With the notation as above, let G be an abelian group and fix an l ∈ G. In the case

of Proposition 2.3(2), we have

1

g

∑
g∈G

α(g−1, l−1)α−1(l−1, g−1)r∗i2j2(g)rj1i1(g)
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=
s

g

∑
g∈G1

α(g−1, l−1)α−1(l−1, g−1)r∗i2j2(g)rj1i1(g)

=
1

m
r∗j1j2(l)ri2i1(l)

for arbitrary i1, i2, j1, j2.

Proof. Replacing h with h′ = ρ1(l−1)h in Proposition 2.3, we have

h0 =
1

g

∑
g∈G

(ρ1(g))−1ρ1(l−1)hρ1(g)

=
s

g

∑
g∈G1

(ρ1(g))−1ρ1(l−1)hρ1(g)

= (
1

m
)Tr(ρ1(l−1)h).

Note that ρ1(g)−1ρ1(l−1) = α(g−1, l−1)α−1(l−1, g−1)ρ1(l−1)ρ1(g)−1 for any g ∈ G since G is abelian.

Hence

1

g

∑
g∈G

α(g−1, l−1)α−1(l−1, g−1)(ρ1(g))−1hρ1(g)

=(
1

m
)(ρ1(l−1))−1Tr(ρ1(l−1)h)

=(
1

m
)(ρ1(l)Tr(ρ1(l)−1h),

and

s

g

∑
g∈G1

α(g−1, l−1)α−1(l−1, g−1)(ρ1(g))−1hρ1(g)

=(
1

m
)(ρ1(l−1))−1Tr(ρ1(l−1)h)

=(
1

m
)(ρ1(l)Tr(ρ1(l)−1h).

So

1

g

∑
g∈G

α(g−1, l−1)α−1(l−1, g−1)(ρ1(g))−1hρ1(g)

=
s

g

∑
g∈G1

α(g−1, l−1)α−1(l−1, g−1)(ρ1(g))−1hρ1(g)

=(
1

m
)(ρ1(l)Tr(ρ1(l)−1h)).

Let h go through the matrices Ej1j2 , we obtain the expected identity by comparing the entries of

the matrices on both sides of the above equation. �
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2.2. Proof of Theorem 1.2.

Proof. For E ∈ Sn, say E = ρ1(g1) ⊗ ... ⊗ ρn(gn), gt ∈ Gt (1 ≤ t ≤ n), if we fix a basis of

V1 ⊗ V2 ⊗ · · · ⊗ Vn, then we have the matrix form of E and P1, P2.

E = (eij), E
−1 = (e∗ij), P = (p1ij), P = (p2ij) (1 ≤ i, j ≤ mn).

Via Kronecker product of matrices, we may write

eij = (ρ1(g1))i1j1 ⊗ ...⊗ (ρn(gn))injn =
n∏
t=1

(ρt(gt))itjt .

In this way, f(x, y) can be written as

(2.2)

f(x, y) =
n∑
t=0

xn−tyt
∑
E∈Sn
w(E)=t

∑
i,j,k,l

e∗ijp
1
jieklp

2
lk

=
∑
i,j,k,l

p1jip
2
lk

∑
E∈Sn

e∗ijeklx
n−w(E)yw(E)

=
∑
i,j,k,l

p1jip
2
lk

∑
E∈Sn

(

n∏
t=1

(ρt(gt)
−1)itjt(ρt(gt))ktltx

n−w(E)yw(E)).

Let

(2.3) bitjtktlt(x, y) = x(I)itjt(I)ktlt + y(
∑
g∈Gt
g 6=1G

(ρt(g)−1)itjt(ρt(g))ktlt)

for all 1 ≤ t ≤ n. Then it is easy to verify that

(2.4)

∑
E∈Sn

(
n∏
t=1

(ρt(gt)
−1)itjt(ρt(gt))ktltx

n−w(E)yw(E))

=
∑
E∈Sn

(

n∏
t=1
gt 6=1G

(ρt(gt)
−1)itjt(ρt(gt))ktlty

w(E) ·
n∏
t=1
gt=1G

(ρt(gt)
−1)itjt(ρt(gt))ktltx

n−w(E))

=
n∏
t=1

bitjtktlt(x, y).

Similarly,

(2.5)

f⊥(x, y) =
n∑
t=0

xn−tyt
∑
E∈Sn
w(E)=t

∑
i,j,k,l

e∗kjp
1
jieilp

2
lk

=
∑
i,j,k,l

p1jip
2
lk

∑
E∈Sn

e∗kjeilx
n−w(E)yw(E)

=
∑
i,j,k,l

p1jip
2
lk

∑
E∈Sn

(

n∏
t=1

(ρt(gt)
−1)ktjt(ρt(gt))itltx

n−(E)yw(E))

.
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Let

(2.6) b⊥itjtktlt(x, y) = x(I)ktjt(I)itlt + y(
∑
g∈Gt
g 6=1G

(ρt(g)−1)ktjt(ρt(g))itlt).

Then

(2.7)

∑
E∈Sn

(
n∏
t=1

(ρt(gt)
−1)ktjt(ρt(gt))itltx

n−w(E)yw(E))

=
∑
E∈Sn

(
n∏
t=1
gt 6=1G

(ρt(gt)
−1)ktjt(ρt(gt))itlty

w(E) ·
n∏
t=1
gt=1G

(ρt(gt)
−1)ktjt(ρt(gt))itltx

n−w(E))

=
n∏
t=1

b⊥itjtktlt(x, y).

Therefore it suffices to show that

(2.8) bitjtktlt(x, y) = b⊥itjtktlt(
s(m2x+ (g2 −m2)y)

mg
,
sm(x− y)

g
), for all 1 ≤ t ≤ n.

Considering the projective representations (ρt, Vt) in Corollary 2.5 we have

(2.9)

s

g

∑
g∈Gt

(ρt(g)−1)itjt(ρt(g))ktlt =
1

m
(I)ktjt(I)itlt ,

s

g

∑
g∈Gt

(ρt(g)−1)ktjt(ρt(g))itlt =
1

m
(I)itjt(I)ktlt .

Thus

(2.10)

sx

g

∑
g∈Gt

(ρt(g)−1)itjt(ρt(g))ktlt =
x

m
(I)ktjt(I)itlt ,

sy

g

∑
g∈Gt

(ρt(g)−1)ktjt(ρt(g))itlt =
y

m
(I)itjt(I)ktlt .

We then obtain that

(2.11)

(
sx

g
− y

m
)(I)itjt(I)ktlt +

sx

g

∑
g∈Gt
g 6=1G

(ρt(g)−1)itjt(ρt(g))ktlt

=(
x

m
− sy

g
)(I)ktjt(I)itlt +

−sy
g

∑
g∈Gt
g 6=1G

(ρt(g)−1)ktjt(ρt(g))itlt ,

Let
sx

g
− y

m
= X,

sx

g
= Y , we have

(2.12)

X(I)itjt(I)ktlt + Y
∑
g∈Gt
g 6=1G

(ρt(g)−1)itjt(ρt(g))ktlt

=
s(m2X + (g2 −m2)Y )

mg
(I)ktjt(I)itlt +

sm(X − Y )

g

∑
g∈Gt
g 6=1G

(ρt(g)−1)ktjt(ρt(g))itlt .
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Therefore

(2.13) bitjtktlt(X,Y ) = b⊥itjtktlt(
s(m2X + (g2 −m2)Y )

mg
,
sm(X − Y )

g
), 1 ≤ t ≤ n.

This completes the proof. �

2.3. Proof of Theorem 1.4.

Proof. We use the notation in Section 2.2. Direct computation shows that

(2.14)

D(M) =
∑

J=(jo(g))∈IND(n)

DJM
J

=
∑

J=(jo(g))∈IND(n)

∏
g∈G1

M
jo(g)
g

∑
E∈E[J ]

∑
i,j,k,l

e∗ijp
1
jieklp

2
lk

=
∑
i,j,k,l

p1jip
2
lk

∑
E∈Sn

e∗ijekl
∏
g∈G1

M
Ng(E)
g

=
∑
i,j,k,l

p1jip
2
lk

∑
E∈Sn

n∏
t=1

(ρt(gt)
−1)itjt(ρt(gt))ktlt

∏
g∈G1

M
Ng(E)
g

=
∑
i,j,k,l

p1jip
2
lk

∑
E∈Sn

∏
g∈G1

n∏
t=1

ρt1(gt)=g

(ρt(gt)
−1)itjt(ρt(gt))ktltM

Ng(E)
g

=
∑
i,j,k,l

p1jip
2
lk

n∏
t=1

dt(M),

where

dt(M) =
∑
g∈Gt

(ρt(g)−1)itjt(ρt(g))ktltMρt1(g).

Similarly we have

D⊥(M⊥) =
∑
i,j,k,l

p1jip
2
lk

n∏
t=1

d⊥t (M⊥)

where

d⊥t (M⊥) =
∑
g∈G1

(ρt(g)−1)ktjt(ρt(g))itltM
⊥
ρt1(g)

.

Let M⊥g =
sm

g

∑
l∈G1

α(g−1, l−1)α−1(l−1, g−1)Ml for all g ∈ G1. By Corollary 2.6, we have d⊥t (M⊥) =

dt(M) for every t, which completes the proof. �

2.4. Proof of Theorem 1.6. We adapt the strategy from the proof of [4, Theorem 4] and give

the relation between Theorem 1.4 and Theorem 1.6. Then we get the MacWilliams identity for

double weight enumerators easily. For convenience, we change the notation a little bit. Let IND(n)

be {J = (jλ,µ) ∈ Zm×m≥0 |
m∑

λ,µ=1

jλ,µ = n} and fix two bijections from H, Ĥ to the subset {1, 2, ...,m}

of Z, such that the group units correspond to integer 1. They induce a bijection o from G to
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{(λ, µ)|λ, µ ∈ {1, 2, ...,m}}. Then variables of the complete weight enumerators can be written as

a m-by-m matrix M = (Mλ,µ).

Lemma 2.7. Let H be an abelian group. Let G = H × Ĥ and ρ be the representation defined by

equation (1.3). Let C, C⊥ be the corresponding double weight polynomials, D, D⊥ the corresponding

complete weight polynomials. Then the following identities hold:

(2.15)
C(X,Y, Z,W ) = D(Ψ(X,Y, Z,W )),

C⊥(X,Y, Z,W ) = D⊥(Ψ(X,Y, Z,W )),

where Ψ(X,Y, Z,W ) is the matrix


XZ XW XW · · · XW

Y Z YW YW · · · YW

Y Z YW YW · · · YW
...

...
...

. . .
...

Y Z YW YW · · · YW

 .

Proof. For J = (jo(a,χ)) ∈ IND(n), let |J1| :=
∑

(a,χ)∈G
a6=0H

jo(a,χ) and |J2| :=
∑

(a,χ)∈G
χ 6=1Ĥ

jo(a,χ). From the

definition of X weight and Z weight, for 0 ≤ i, j ≤ n, we have

∑
J∈IND(n)
|J1|=i,|J2|=j

DJ = Ci,j ,

∑
J∈IND(n)
|J1|=i,|J2|=j

D⊥ = C⊥i,j .

Hence the identities hold and the lemma follows. �

Proof of Theorem 1.6. Let Ψ⊥(X,Y, Z,W ) = (M⊥(a,χ)(X,Y, Z,W )) be the matrix associated with

Ψ(X,Y, Z,W ), where M⊥(a,χ)(X,Y, Z,W ) can be calculated from (1.2):

(2.16)

M⊥(a,χ)(X,Y, Z,W ) =
1

m
(XZ +

∑
χ0∈Ĥ
χ0 6=1Ĥ

χ0(−a)Y Z +
∑
b∈H
b6=0H

χ−1(−b)XW

+
∑

b 6=0H ,χ0 6=1Ĥ
(b,χ0)∈G

χ−1(−b)χ0(−a)YW ).
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It follows from the properties of characters that

(2.17)

M⊥(1,1) =
1

m
(X + (m− 1)Y )(Z + (m− 1)W ),

M⊥(a,1) =
1

m
(X − Y )(Z + (m− 1)W ), a 6= 0H ,

M⊥(1,χ) =
1

m
(X + (m− 1)Y )(Z −W ), χ 6= 1Ĥ ,

M⊥(a,χ) =
1

m
(X − Y )(Z −W ), a 6= 0H , χ 6= 1Ĥ .

From Equations (2.15), (2.16) and (2.17) we see that

C(X,Y, Z,W ) = D(Ψ(X,Y, Z,W )),

= D⊥(Ψ⊥(X,Y, Z,W )),

= C⊥(X + (m− 1)Y,X − Y, Z + (m− 1)W

m
,
Z −W
m

).

This completes the proof. �

3. The MacWilliams identities for quantum error-correcting G-codes

In 1997, Shor and Laflamme [15] proved the quantum MacWilliams identities of weight enumer-

ator for binary QECCs and later Rains [12] proved this in a general setting. These identities are

important in deducing certain bounds of QECCs. Recently Hu-Yang-Yau [3, 4] proved the quantum

MacWilliams identities for double and complete enumerators for binary and non-binary QECCs.

In the following we recall three versions of quantum MacWilliams identities for general errors and

explain that these are special cases of Theorems 1.2 1.4 and 1.6. We refer to [7, 9, 11, 15] for more

information of quantum codes.

In this section, |a〉 and |b〉 denote complex vectors, E|a〉 denotes the operator E acting on |a〉
and 〈a|b〉 the usual inner product between |a〉 and |b〉 in complex vector spaces.

Fix positive integers m,n, let H = Cm and a QECC of length n is a subspace Q ⊂ H⊗n. Let E
be a set of unitary linear operators. We say that a QECC Q to be E-correcting if for an orthogonal

basis {|iL〉}i of Q and every A,B ∈ E , we have 〈iL|A∗B|jL〉=λA,Bδi,j for some λA,B ∈ C depending

on A and B. Let PQ be the projection operator on Q. Then the condition can be restated in the

form

PQA
∗BPQ = αijPQ,

for some Hermitian matrix α = (αij).

Let E be a set of unitary linear operators on H and En = E⊗n. We say that E ∈ En has weight t

if E = A1 ⊗A2 ⊗ ...⊗An where Aj ∈ E , 1 ≤ j ≤ n, and |{j : Aj /∈ C× · id}| = t. Denote by wQ(E)

the weight of E.

Let Q ⊂ H⊗n be a QECC with dimension K, we say that Q can detect an error E if for any

c1, c2 ∈ Q, the condition 〈c1|E|c2〉 = λE〈c1|c2〉 holds for some λE ∈ C just related to E. The

minimal distance of the QECC Q is the maximal integer d such that Q can detect all errors in En
of weight less than d. Then we say that Q has parameters ((n,K, d))m.
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Let Q ⊂ H⊗n be a QECC, we say that Q can correct all errors of weight ≤ l (0 ≤ l ≤ n) if Q is

E ln-correcting, where E ln = {E ∈ En, wQ(E) ≤ l}.

Definition 3.1. LetG be a finite group and ρ : G→ U(H) be an irreducible faithful α-representation.

Let E = {ρ(g)|g ∈ G} and En = E⊗n. A QECC Q ⊂ Hn is called a quantum error-correcting G-code.

In the following, we deduce the MacWilliams identities for quantum error-correcting G-codes.

3.1. The MacWilliams identity for weight enumerates.

Definition 3.2. Let (ρ,H) be an irreducible faithful unitary projective representation of a finite

group G and let E = {ρ(g)|g ∈ G}. We put En = E⊗n. Let Q be a quantum G-code of dimension

K, and let

Bi =
1

K2

∑
E∈En,wQ(E)=i

Tr(E−1PQ)Tr(EPQ),

B⊥i =
1

K

∑
E∈En,wQ(E)=i

Tr(E−1PQEPQ),

DJ =
1

K2

∑
E∈En,E∈E[J ]

Tr(E−1PQ)Tr(EPQ),

D⊥J =
1

K

∑
E∈En,E∈E[J ]

Tr(E−1PQEPQ).

The weight enumerators of Q are defined by

fQ(x, y) =
n∑
i=0

Bix
n−iyi,

f⊥Q (x, y) =
n∑
i=0

B⊥i x
n−iyi,

and the complete weight enumerators of Q are defined by

DQ(M) =
∑

J∈IND(n)

DJM
J ,

D⊥Q(M) =
∑

J∈IND(n)

D⊥JM
J ,

where E[J ], IND(n) are defined as in Theorem 1.4.

Theorem 3.3 (Weight enumerators). With the notation as above, we have

fQ(x, y) =
1

K
f⊥Q (

m2x+ (g2 −m2)y

mg
,
m(x− y)

g
),

where m is the dimension of H, g is the order of G.
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Proof. This is a special case of Theorem 1.2 with (ρi, Vi) = (ρ,H) for 1 ≤ i ≤ n and P1 = P2 =

PQ. �

By the same argument as in [12, Theorem 2], we have the following result.

Theorem 3.4. For a quantum G-code Q and the corresponding real numbers Bi, B
⊥
i (0 ≤ i ≤ n),

we have

(1) B0 = B⊥0 = 1, B⊥i ≥ Bi ≥ 0 (0 ≤ i ≤ n).

(2) If there exists t ≤ n−1, such that B⊥i = Bi (0 ≤ i ≤ t), and B⊥t+1 > Bt+1, then the minimal

distance d is t+ 1.

For quantum G-codes, the MacWilliams identities give necessary conditions for their existence.

Moreover they also give the bound of minimum distance. The binary version of the quantum

Singleton bound was first proved by Knill and Laflamme in [10], and later generalized by Rains

using the quantum MacWilliams identities in [13, Theorem 2]. By Theorem 3.3, we obtain the

Singleton bound for quantum G-codes.

Theorem 3.5 (Quantum Singleton Bound). : If Q is a quantum G-code with parameters ((n,K, d))m,

then

K ≤ (
g

m
)n−2d+2.

3.2. The MacWilliams identity for complete weight enumerators. In [3, 4], Hu-Yang-Yau

proved the MacWilliams identity for double weight enumerators and the weight complete enumer-

ators for binary and non-binary quantum codes. One could generalize them easily to G-codes.

Theorem 3.6 (Complete enumerators). Let G be an abelian group with order g. For a quantum

G-code Q with parameters ((n,K, d))m we have

DQ(M) =
1

K
D⊥Q(M⊥),

where M⊥g =
m

g

∑
l∈G

α(g−1, l−1)α−1(l−1, g−1)Ml, for all g ∈ G and M⊥ = (M⊥g ).

Proof. This is a special case of Theorem 1.4. �

3.3. The MacWilliams identity for double weight enumerates.

Definition 3.7. Let H be an abelian group and (G, ρ) be the Weyl-Heisenberg representation of

G = H× Ĥ as in equation (1.3). Let Q be a quantum G-code with parameters ((n,K, d))m, and let

Ci,j : =
1

K2

∑
E∈E[i,j]

Tr(E−1PQ)Tr(EPQ),

C⊥i,j : =
1

K

∑
E∈E[i,j]

Tr(E−1PQEPQ).
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The double weight enumerators of Q are defined by

C(X,Y, Z,W ) : =

n∑
i,j=0

Ci,jX
n−iY iZn−jW j ,

C⊥(X,Y, Z,W ) : =
n∑

i,j=0

C⊥i,jX
n−iY iZn−jW j .

The following result follows from Theorem 1.6.

Theorem 3.8 (Double weight enumerators). The relation between the double weight enumerators

of Q is

C(X,Y, Z,W ) =
1

K
C⊥(X + (m− 1)Y,X − Y, Z + (m− 1)W

m
,
Z −W
m

).

As in [4], we can also define the asymmetric quantum G-code.

Definition 3.9. Let H be an abelian group and (G, ρ) be the Weyl-Heisenberg representation of

G = H × Ĥ as in equation (1.3). Let dX and dZ be the maximum integers such that each error

E ∈ E[i, j] with i < dX , j < dZ is detectable, then we call Q an asymmetric quantum G-code with

parameters ((n,K, dZ/dX))m.

The following theorems can be deduced in the same way as in [4, Theorems 1, 2, 6].

Theorem 3.10. Let Q be a asymmetric quantum G-code with double weight distribution Ci,j, C
⊥
i,j

and parameters ((n,K, dZ/dX))m, then

(1) C⊥i,j ≥ Ci,j ≥ 0 for 0 ≤ i, j ≤ n, and C0,0 = C⊥0,0 = 1.

(2) If tX , tZ are the two largest integers such that Ci,j = C⊥i,j for i < tX and j < tZ , then

dX = tX and dZ = tZ .

(3) (Singleton bound) K ≤ mn+2−dX−dZ .

(4) (Hamming bound) K ≤ mn(1−H(
δX
2

)−H(
δZ
2
)+o(1)). Here δX = dX

n and δZ = dZ
n satisfying

0 ≤ δX ≤ 1
5 and 0 ≤ δZ ≤ 1

5 respectively, H(x) is the m-ary entropy function defined by

H(x) = xlogm(m− 1)− xlogmx− (1− x)logm(1− x), 0 ≤ x ≤ 1.

Remark 3.11. The set E = {ρ(g), g ∈ G} forms a nice error bases (cf. [7]) if and only if ρ is

an irreducible faithful projective representation of G of degree |G|1/2. In [8], Knill discussed the

construction of quantum codes based on nice error bases and some equivalent characterizations for

nice error bases. There are examples where the nice error bases occur with nonablian group G

(cf. the list in [7]). The above results show that the Singleton bound and the Hamming bound of

quantum G-codes depend only on the size of G. This is closely related to the question motivated

by [8, Theorem 3.4].
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