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Abstract. Let K be a number field with class number 1. In this paper, we study the family of

Severi-Brauer conics over K defined by equations z2 − ax2 − by2 = 0, where (a, b) ∈ K∗/(K∗)2 ×
K∗/(K∗)2. We prove that, within this family, the density of the conics admitting at least one

nontrivial K-rational point is zero. As an application, let E/K be an elliptic curve satisfying

E(K) ⊃ E[4], we show that the subset of H1(K,E)[2] consisting of classes with equal period and

index has density zero. This is closely related to the question proposed in [3, Problem 2].

1. Introduction

Let K be a number field with class number 1. In this paper, we prove that within the family

of Severi–Brauer conics parameterized by K∗/(K∗)2 ×K∗/(K∗)2, the density (cf. Definition 1.1)

of the conics admitting at least one nontrivial K-rational point is zero. Our motivation originates

from a period-index distribution problem for elliptic curves (cf. [3, Problem 2]). Through O’Neil’s

obstruction map (cf. Equation (3.3)), which coincides with the Hilbert symbol in our setting, we

establish a connection between the period-index distribution problem and the density problem for

Severi–Brauer conics. Furthermore, we clarify part of [3, Problem 2] and give an answer for the

case that P = 2 for number fields with class number 1.

We fix some notation and explain our main results in the following. Let K be a number field.

For each pair (a, b) ∈ K∗ ×K∗, the associated Severi–Brauer conic is defined by the homogeneous

equation z2 − ax2 − by2 = 0. We study the density of such conics that have at least one nontrivial

K-rational point. In the case that K has class nubmer 1, for each prime ideal p ⊆ OK , we can fix a

generator π ∈ p and call π a prime of OK . We say that π is an odd prime if 2 /∈ (π). Every x ∈ K∗

admits a unique factorization of the form

(1.1) x = uπα1
1 πα2

2 · · ·παn
n ,

where αi ∈ Z, u ∈ O∗
K and πi are distinct primes ofK. Let U = {1, u2, · · · , ur} ⊆ O∗

K be a system of

representatives of the quotient group O∗
K/O

∗
K

2, where 1 is the representatives of the identity element.

For any [a] ∈ K∗/K∗2, we can choose a representative a ∈ K∗ of the form a = uaπ1π2 · · ·πn, where
ua ∈ U and πi are distinct primes of K. This construction gives a one-to-one correspondence ϕ

between K∗/K∗2 and the set of “square-free number”:

ΣK := {a ∈ K∗ | a = u

n∏
i=1

πi, u ∈ U, πi are distinct primes}.
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In the following, for any [a] ∈ K∗/K∗2, the image of [a] under ϕ is denoted by a.

Definition 1.1. Let K be a number field with class number 1. For X ∈ R>0, define

ΣX
K := {a ∈ ΣK | −X ≤ N(a) ≤ X} ,

and

ΣH,X
K :=

{
(a, b) ∈ ΣX

K × ΣX
K | (a, b)H = 1

}
,

where (a, b)H is the Hilbert symbol (cf. Definition 2.1) and N is the field norm NK/Q. The rational

density of Severi–Brauer conics over K is defined by

δH,K := lim sup
X→+∞

|ΣH,X
K |

|ΣX
K |2

.

Our main result is the following theorem.

Theorem 1.2. Let K be a number field with class number 1. The rational density of Severi–Brauer

conics over K is zero.

As an immediate application to the period-index problem discussed in Section 3, we obtain the

following result. See Theorem 3.4 for the precise meaning of density.

Theorem 1.3. Let K be a number field with class number 1, and let E/K be an elliptic curve with

E(K) ⊃ E[4]. Then in H1(K,E)[2], the density of the subset of classes with coinciding period and

index is zero.

In Section 2, we review basic notions of the Hilbert symbol and prove Theorem 1.2 through

analytic number theory techniques.

In Section 3, we review basic notions of period and index of homogeneous spaces for elliptic curves

and prove Theorem 3.4, by relating the rational density (cf. Definition 1.1) and the period-index

density (cf. Definition 3.3) via O’Neil’s obstruction map (cf. Equation (3.3)).

Notation Let f(x) and g(x) be functions defined on Z>0. We employ the following asymptotic

notation:

• f(x) = O(g(x)) if ∃C > 0 such that |f(x)| ≤ C|g(x)|;

• f(x) = o(g(x)) if lim
x→∞

f(x)
g(x) = 0;

• f(x) ∼ g(x) if lim
x→∞

f(x)
g(x) = 1.

Let K be a number field:

• OK denotes the ring of integers of K;

• For a ∈ OK (when K with class number 1), ω(a) counts distinct prime divisors of a;

• For ideals a ⊆ OK , ω(a) counts distinct prime ideal divisors of a ;
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• N(α) denotes the field norm NK/Q(α) for α ∈ K∗, and N(a) denotes the ideal norm NK/Q(a)

for ideals a ⊆ OK ;

• Let K be of degree n = r1+2r2, where r1 denotes the number of real embeddings and r2 the

number of conjugate pairs of complex embeddings. For α ∈ K, let α(i) (1 ≤ i ≤ r1) denote

its real embeddings, and α(j) (r1 + 1 ≤ j ≤ r1 + r2) denote a fixed choice of non-conjugate

complex embedings;

• For every v = (v1, · · · , vn) ∈ Rn, ∥v∥ :=
√
(v1)2 + · · ·+ (vn)2.

2. The Hilbert symbol and the rational density

In this section, we provide necessary background on the Hilbert symbol (cf. [14, Chapter 14])

connecting the period-index problem in Section 3 with Theorem 1.2. We then proceed to prove

Theorem 1.2, utilizing the computability of Hilbert symbols alongside tools from analytic number

theory.

Let K be a field of character 0 that contains an n-th primitive root of unity, where n ∈ Z>0.

It is well known that K∗/K∗n ∼= H1(K,Z/nZ) ∼= Hom(K,Z/nZ). Thus for any a ∈ K∗, we can

associate a character χa ∈ H1(K,Z/nZ).

Definition 2.1. Let K be field of character 0 and a, b in K∗. Denote by Br(K) the Brauer group

of K and by Br(K)[n] its n-torsion subgroup. We define the symbol (a, b)Hn,K ∈ Br(K)[n] to be

the cup-product b ∪ δ(χa) of b ∈ H0(K, K̄∗) = K∗ with χa ∈ H1(K,Q/Z)
∼=−→
δ
H2(K,Z).

The symbol is a bilinear map from K∗ × K∗ to Br(K)[n]. In fact, when K contains an n-th

primitive root of unity, it induces a bilinear map ( , )Hn,K from K∗/K∗n ×K∗/K∗n to Br(K)[n].

We call it the Hilbert symbol over K. When n = 2, we denote ( , )H2,K by ( , )H,K and a necessary

and sufficient condition for the Hilbert symbol to be trivial is given by the following proposition (cf.

[14, Ch. 14, Sec. 2, Prop. 4] or [15, Chapter 3]).

Proposition 2.2. Let K be a field of character 0. Let a, b ∈ K∗. Then (a, b)H,K = 1 if and only

if b is a norm of the extension K(a1/2)/K. In other words, (a, b)H,K = 1 if and only if the conic

z2 − ax2 − by2 = 0 has a nontrivial K-rational point.

Let π ∈ OK be a prime of OK . For any a ∈ OK , define
(
a
π

)
2
to be the quadratic residue symbol

of a mod (π), i.e.,

(a
π

)
2
=


1 if a mod (π) is a square in κ∗π,

−1 if a mod (π) is not a square in κ∗π,

0 if a ∈ (π).

where κπ is the residue field OK/(π). For any ideal I = (π1 · · ·πn) ⊆ OK , denote by
(

a
π1···πn

)
2
the

product
(

a
π1

)
2
· · ·
(

a
πn

)
2
for any a ∈ OK . It is a character of (OK/I)

∗.
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Remark 2.3. When b = −a, the conic z2 − ax2 + ay2 = 0 admits the solution (x, y, z) = (1, 1, 0).

Hence there exist infinitely many pairs (a, b) ∈ K∗ ×K∗ such that (a, b)H,K = 1. Thus Theorem

1.2 is not trivial.

Theorem 2.4. Let (a, b) ∈ ΣK such that a = u1π1 . . . πn ·ϖ1 . . . ϖl and b = u2π
′
1 . . . π

′
m ·ϖ1 . . . ϖl,

with πi, π
′
j , ϖk distinct primes. Assume that π is an odd prime among πi for 1 ≤ i ≤ n, then

(a, b)H,Kpis trivial if and only if ( bπ )2 is trivial, where Kp denote the completion of K at p := (π).

The symbol (a, b)H,Kp is abbreviated as (a, b)p in the following.

Proof. Let π be an odd prime with (π) = p, and suppose π | a but π ∤ b. Let a′ = aπ−1.

We claim that (a′, b)p = 1. Assuming this, it follows that (a, b)p = (a′, b)p(π, b)p = (π, b)p =(
b
π

)
2
, which completes the proof. To prove the claim, it suffice to show that a′x2 + by2 =

z2 has a nontrivial solution in Kp by Proposition 2.2. Fix a unit c ∈ O∗
Kp

. As y2 ranges over

squares in κp = Fq (q = |κp|), the values c2 − by2 mod p take q+1
2 distinct residues. Similarly for

a′x2. Thus there exist x0, y0 ∈ OKp such that

a′x20 + by20 ≡ c2 (mod p).

The multi-variable version of Hensel’s lemma (cf. [17, Ch. 4, Ex. 4.27]) lifts this to a solution

(x1, y1, z1) ̸= (0, 0, 0) of a′x2 + by2 = z2 in Kp. Thus (a
′, b)p = 1, as claimed. □

By Theorem 2.4, we can provide a necessary condition for the vanishing of the Hilbert symbol.

Lemma 2.5. Let ([a], [b]) ∈ K∗/(K∗)2 ×K∗/(K∗)2. If ([a], [b])H = 1, then the product∏
π|a,π∤b

π odd prime

(1+( b
π ))

2 is equal to 1.

We now turn to the proof of our main theorem on the rational density of Severi-Brauer conics

over K. The proof relies on the following preparatory lemmas, which provide the necessary analytic

tools for Theorem 2.13. Let K be a number field. We say a function f defined on all ideals of K

is a multiplicative arithmetic function if for any two coprime ideals a, b, we have f(ab) = f(a)f(b).

For any two ideals a, b, gcd(a, b) denotes the greatest common divisor of a, b, i.e. gcd(a, b) = a+ b.

In particular, if the class number of K is 1, for any elements a, b ∈ OK , gcd(a, b) also denotes the

greatest common divisor of the elements.

Lemma 2.6. Let λ1, λ2 be constants, such that λ1 > 0, 0 ≤ λ2 < 2. For any multiplicative

arithmetic function f satisfying

(2.1) 0 ≤ f(pv) ≤ λ1λ
v−1
2 (N(p) ≥ 2, v = 1, 2, ...),

we have

(2.2)
∑

N(a)≤X
a⊆OK

f(a) = O(X ·
∏

N(p)≤X
p prime ideal

(1−N(p)−1)
∞∑
v=0

f(pv)(N(p))−v) (X ≥ 2).
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Proof. By adapting the method of [18, Part III, Ch. 3, Sec. 3, Cor. 3.6] to number fields (with

primes replaced by prime ideals and p−s systematically substituted by N(p)−s), we establish the

corresponding number field analogue. This completes the proof. □

Lemma 2.7. Let K be a number field.

(1) For any y ∈ R>0,
∑

1≤N(a)≤X
a⊆OK

(y)ω(a) = O(X(logX)y−1),

(2)
∑

1≤N(a)≤X
a⊆OK

∑
1≤N(b)≤X

b⊆OK

(12)
ω( a

gcd(a,b)
)
= O( X2

(logX)
1
6
).

Proof. (1). We adapt the strategy of [18, Part III, Ch. 3, Sec. 3, Thm. 6]. Note that the function

a → (y)ω(a) is a multiplicative arithmetic function , and satisfies the condition (2.1) for λ1 =

1 + y, λ2 = 1. Thus by Equation (2.2),∑
1≤N(a)≤X

(y)ω(a) = O(X
∏

N(p)≤X

(1−N(p)−1){1 + yN(p)−1 +O(N(p)−2)}).

By the Mertens’ formula (cf. [7, Theorem 1, M(3)]), the proof is complete.

(2). Note that for any fixed ideal b, the function fb(a) := (12)
ω( a

gcd(a,b)
)
is a multiplicative arithmetic

function such that 0 ≤ fb(p
v) ≤ 1 · 1v−1. Therefore

(2.3) ∑
1≤N(a)≤X

∑
1≤N(b)≤X

(
1

2
)
ω( a

gcd(a,b)
)

≤ X
∑

1≤N(b)≤X

 ∏
N(p)≤X

p|b

(1−N(p)−1)

∞∑
v=0

fb(p
v)N(p)−v

 ·

 ∏
N(p)≤X

p∤b

(1−N(p)−1)

∞∑
v=0

(fb(p
v))N(p)−v



≤ X
∑

N(b)≤X

∏
N(p)≤X

(1−N(p)−1)(1 +

∞∑
v=1

(
1

2
)N(p)−v)

∏
p|b

(

∞∑
v=0

N(p)−v

1 +
∞∑
v=1

(12)N(p)−v

)

≤X
∏

N(p)≤X

(1−N(p)−1)(1 +

∞∑
v=1

(
1

2
)N(p)−v)

∑
N(b)≤X

∏
p|b

(

∞∑
v=0

N(p)−v

1 +
∞∑
v=1

(12)N(p)−v

).

Moreover,

∑
N(b)≤X

∏
p|b

(

∞∑
v=0

N(p)−v

1 +
∞∑
v=1

(12)N(p)−v

)



6 CHUANGXUN CHENG, CHENG NIU, AND XIAOGUANG SHANG

≤
∑

N(b)≤X

∏
p|b

(
N(p)

N(p)− 1
2

)

≤
∑

N(b)≤X

∏
p|b

(1 +
1
2

N(p)− 1
2

)

≤2 ·
∑

N(b)≤X

(1 +
1

3
)ω(b).

By Lemma 2.6,
∑

N(b)≤X

(1 + 1
3)

ω(b) = O(X(logX)
1
3 ). By the Mertens’ formula (cf. [7, Theorem 1,

M(3)]), X ·
∏

N(p)≤X

(1−N(p)−1)(1 +
∞∑
v=1

(12)N(p)−v) = O( X

(logX)
1
2
). Thus

∑
N(a)≤X

∑
N(b)≤X

(
1

2
)
ω( a

gcd(a,b)
)
= O(

X

(logX)
1
2

) ·O(X(logX)
1
3 ) = O(

X2

(log x)
1
6

),

which completes the proof. □

Let K be a number field with degree n = r1 + 2r2. From now on, we fix a basis {ϵi}r1+r2−1
i=1 of

O∗
K/µK , where µK is the group of roots of unity in K. For a constant C > 0, let RK,C be the set

{α ∈ OK | 0 < |α(i)| < C|N(α)|
1
n , 0 < |α(j)|2 < C|N(α)|

2
n for i = 1, ..., r1, j = r1 + 1, ..., r1 + r2}.

In the following we shall demonstrate that K contains sufficiently many elements in the set RK,C

for some suitble constant C. This construction is designed to facilitate the application of Lemma

2.10 for analytic estimation of the density.

Lemma 2.8. Let Λ be a lattice of Rn with basis {vi}ni=1. For any a = (a1, . . . , an) ∈ Rn, define

Sa =

{
x = (x1, . . . , xn) ∈ Rn | |xi − ai| ≤

n∑
i=1

||vi|| for all 1 ≤ i ≤ n

}
.

Then Λ ∩ Sa ̸= ∅.

Proof. Since {vi} is an R-basis, write a =
∑n

i=1 bivi with bi ∈ R. Choose integers mi satisfying

|bi −mi| ≤ 1
2 . Then

∥a−
n∑

i=1

mivi∥ ≤
n∑

i=1

1

2
∥vi∥,

which implies
∑n

i=1mivi ∈ Sa and this completes the proof. □

Let K be a number field of degree n = r1 + 2r2, define the map

l : O∗
K → Rr1+r2

by

l(η) =
(
log
∣∣∣η(1)∣∣∣ , . . . , log ∣∣∣η(r1)∣∣∣ , 2 log ∣∣∣η(r1+1)

∣∣∣ , . . . , 2 log ∣∣∣η(r1+r2)
∣∣∣) .
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Lemma 2.9. Let {ϵi}r1+r2−1
i=1 be the fixed basis of O∗

K/µK . For any α ∈ OK , there exists a unit

u ∈ O∗
K such that αu ∈ RK , where RK := R

K,e
(n−1)

∑r1+r2−1
k=1

∥vk∥ and {vi}r1+r2−1
i=1 is the image of

{ϵi}r1+r2−1
i=1 under l.

Proof. Let α ∈ OK . By Dirichlet’s unit theorem, the image l(O∗
K) forms a full lattice in the hyper-

plane

H :=

{
(a1, . . . , ar1+r2) ∈ Rr1+r2

∣∣∣∣ r1+r2∑
i=1

ai = 0

}
.

Since {vi}r1+r2−1
i=1 is the image of {ϵi}r1+r2−1

i=1 under l, {vi}r1+r2−1
i=1 is a basis of l(O∗

K). For each

m ∈ Z>0, let Sm be the set

Sm :=



(b1, . . . , br1+r2) ∈ Rr1+r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣bi − log |N(α)|
n

+ log |α(i)|
∣∣∣∣

< m

r1+r2−1∑
k=1

∥vk∥, 1 ≤ i ≤ r1∣∣∣∣bj − 2 log |N(α)|
n

+ 2 log |α(j)|
∣∣∣∣

< m

r1+r2−1∑
k=1

∥vk∥, r1 + 1 ≤ j ≤ r1 + r2



.

This lemma is equivalent to showing that l(O∗
K) ∩ (Sn−1) ̸= ∅. Let p : Rr1+r2 → Rr1+r2−1 be the

linear projection

p(a1, . . . , ar1+r2) = (a1, . . . , ar1+r2−1).

Then p(l(O∗
K)) becomes a full lattice in Rr1+r2−1. By Lemma 2.8, there exists a

b = p(l(u)) ∈ p(l(O∗
K)) ∩ p(S1)

for some unit u ∈ O∗
K , which implies l(u) ∈ Sn−1. This completes the proof. □

Let K be a number field of degree n = r1 + 2r2, for each α ∈ OK , we can fix one uα ∈ O∗
K

by Lemma 2.9, such that uαα ∈ RK . Then we can choose a suitble constant C ′, depending on

K and the choice of basis {ϵi}r1+r2−1
i=1 of O∗

K/µK , such that u−1
i ujuαα ∈ {α ∈ OK | 0 < |α(i)| <

C ′N(α)
1
n , 0 < |α(j)|2 < C ′N(α)

2
n for i = 1, ..., r1, j = r1 + 1, ..., r1 + r2} for any ui, uj ∈ U and

any α ∈ OK , where U is the fixed representatives of O∗
K/O

∗
K

2 in Section 1. Define RX
K to be the set

{α ∈ OK | 0 < |α(i)| < C ′X
1
n , 0 < |α(j)|2 < C ′X

2
n for i = 1, ..., r1, j = r1 + 1, ..., r1 + r2} for any

X ∈ R>0.

The following lemma is an immediate consequence of [12, Theorem 2].

Lemma 2.10. Let K be a number field of degree n = r1 + 2r2, q is an ideal of OK . Let χ be a

nonprincipal character of (OK/q)
∗. Then we have∑

α∈RX
K

χ(α) = O((Nq)
1

(r2+2)X
r2

r2+2 log
2r1
r2+2 X),

where O depends only on K.
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By Lemma 2.9, for each b of the form uπ1 · · ·πt ∈ ΣX
K , there exists uπ1···πt ∈ O∗

K (fixed for each

π1 · · ·πt) such that uπ1···πtπ1 · · ·πt ∈ RK . Let u′π1···πt
∈ U satisfy u′π1···πt

≡ uπ1···πt (mod O∗
K

2).

Then u′−1
π1···πt

uuπ1···πtπ1 · · ·πt ∈ RX
K , which induces an injective map:

{b = uπ1 · · ·πt | b ∈ ΣX
K} −→ RX

K ,

uπ1 · · ·πt 7−→ u′−1
π1···πt

uuπ1···πtπ1 · · ·πt.

We use this injective map to apply Lemma 2.10 in subsequent computations. Fix α ∈ OK and

X > 0, we estimate the cardinality
∣∣αO∗

K ∩RX
K

∣∣, which is important for the proof of Theorem 2.13.

Lemma 2.11. Let Λ be a full lattice in Rn. Then there exists a constant C depending only on Λ,

such that the number Num(X) of points of Λ in a sphere {x ∈ Rn|||x|| < X} is at most C(Xn +1)

for any X ∈ R>0.

Proof. See [13, Chapter 3, Lemma 1]. □

Lemma 2.12. Let K be a number field of degree n. For any α ∈ OK , there exists u ∈ O∗
K , such

that αu ∈ RK (denote αu) by Lemma 2.9. Then there exist constants C̃ ′, C̃ ′′ > 0 such that for all

X ∈ R>0,

|αuO
∗
K ∩RX

K | < C̃ ′′((logX − log α̃u) + C̃ ′)n,

where α̃u = min
i
{|α(i)

u |}.

Proof. Note that |αuO
∗
K ∩RX

K | = |O∗
K ∩ α−1

u RX
K |. Define the logarithmic map

ℓ : OK \ {0} → Rr1+r2 , η 7→
(
{log |η(i)|}r1i=1, {2 log |η

(i)|}r1+r2
i=r1+1

)
.

Let H = {(bi) ∈ Rr1+r2 |
r1+r2∑
i=1

bi = 0} and S = ℓ(α−1
u RX

K) ∩H. For any s ∈ S with s = ℓ(α−1
u b),

since s ∈ H, the coordinate bounds

log |b(i)| − log |α(i)
u | ≥ −

(
r1∑
j=1
j ̸=i

log
X1/n

|α(j)
u |

+

r1+r2∑
j=r1+1
j ̸=i

log
X2/n

|α(j)
u |2

+ C

)

hold for some C > 0. We can therefore choose constants C ′, C ′′ > 0 and define

S′ :=
{
(ci) ∈ Rr1+r2

∣∣∣ |ci| < C ′(logX − log α̃u) + C ′′, 1 ≤ i ≤ r1 + r2

}
,

such that S ⊂ S′. Consider the projection p : Rr1+r2 → Rr1+r2−1 dropping the last coordinate. Let

S′′ = {x ∈ Rr1+r2−1 | ∥x∥ <
√
nC ′(logX − log α̃u) + C ′′}. By Lemma 2.11,

|S′′ ∩ pℓ(O∗
K)| < C̃((logX − log α̃u) + C̃ ′)n,

for some suitable constants C̃, C̃ ′ > 0. Since p|ℓ(O∗
K)∩S is injective and p(S′) ⊆ S′′, we conclude

|l(O∗
K ∩ α−1

u RX
K)| < C̃((logX − log α̃u) + C̃ ′)n.

Since l|O∗
K

has finite kernel, |O∗
K ∩ α−1

u RX
K | < C̃ ′′((logX − log α̃u) + C̃ ′)n for a suitable constant

C̃ ′′ > 0 and this completes the proof. □
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With the above preparations, we establish our main theorem.

Theorem 2.13. Let K be a number field of degree n = r1 + 2r2 with class number 1. Then the

rational density δH,K = 0.

Proof. Let ΣH′,X
K := {(a, b)|(a, b) ∈ ΣX

K × ΣX
K , ( bπ )2 = 1 for any prime π|a, π ∤ b}. Since ΣH,X

K ⊆
ΣH′,X
K , it suffices to show that

δH′,K := lim sup
X→+∞

|ΣH′,X
K |

|ΣX
K |2

is zero. To establish this, we first recall that applying the Wiener-Ikehara Tauberian theorem [18,

Chapter 7] to the Dirichlet L-series associated with the square of the Möbius function yields the

asymptotic formula for square-free positive integers:

(2.4) #
{
1 ≤ n ≤ X : n square-free

}
∼ 6

π2
X + o(X).

By adapting this strategy to the ideal-theoretic setting—replacing integers with ideals—we analyze

the Dirichlet L-series for the squared Möbius function over ideals. This leads to the analogous

asymptotic estimate:

(2.5) #|ΣX
K | ∼ CKX + o(X),

where CK > 0 is a constant depending onK. From above, |ΣH′,X
K | =

∑
(a,b)∈ΣX

K×ΣX
K

∏
π|a,π∤b

π odd prime

(1+( b
π
)2)

2 ,

and it suffices to show that

(2.6) |ΣH′,X
K | = o(X2).

By direct computation,∑
(a,b)∈ΣX

K×ΣX
K

∏
π|a,π∤b

π odd prime

(1 +
(
b
π

)
2
)

2

≤r ·
∑

1≤N((a))≤X
(a)⊆OK

∑
b∈RX

K

∏
π|a,π∤b

π odd prime

(1 +
(
b
π

)
2
)

2

≤r ·
∑

1≤N((a))≤X
(a)⊆OK

∑
b∈RX

K

∑
1̸=(d)|(a)
2/∈(d)

d square free

(
1

2
)ω(d)

(
b

d

)
2

+ 2r ·
∑

1≤N((a))≤X
(a)⊆OK

∑
b∈RX

K

(
1

2
)
ω( a

gcd(a,b)
)
,

where r = |U | and U is the fixed representatives of O∗
K/O

∗
K

2 in Section 1. We begin by estimating

the summation

r ·
∑

1≤N((a))≤X
(a)⊆OK

∑
b∈RX

K

(
1

2

)ω
(

a
gcd(a,b)

)
.
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Notice that

RX
K =

∐
b⊆OK

(
buO

∗
K ∩RX

K

)
,

where bu is a fixed generator of the ideal b such that bu ∈ RK . By Lemma 2.11, we have∣∣buO∗
K ∩RX

K

∣∣ < C̃ ′′
(
logX − log b̃u + C̃ ′

)n
,

where b̃u = min
i
{|b(i)u |}. We divide the ideals (bu) into two classes:

• Class I: Ideals satisfying

C̃ ′′
(
logX − log b̃u + C̃ ′

)n
> log1/7X.

• Class II: Ideals violating the above inequality.

Equivalently, Class I consists of ideals with

log b̃u < logX − log1/(7n)X

(C̃ ′′)1/n
+ C̃ ′,

while Class II contains the remaining ideals. Since bu ∈ RK , elements in Class I satisfy

|N(bu)| < C̃1e
n

(
logX− log1/(7n) X

(C̃′′)1/n

)

for some constant C̃1 > 0. Let AX := logX − log1/7n X

C̃′′1/n . Notice that C̃1e
n(logX−AX) = O( X

logn+1 X
).

Then ∑
1≤N(a)≤X

a⊆OK

∑
b∈RX

K

(
1

2
)
ω( a

gcd(a,(b))
)

=
∑

1≤N(a)≤X
a⊆OK

∑
b∈

∐
b⊆OK

(buO∗
K∩RX

K )

(
1

2
)
ω( a

gcd(a,b)
)

≤
∑

1≤N(a)≤X
a⊆OK

∑
1≤N(b)≤C̃1e

nAX

C̃ ′′
(
logX − log b̃u + C̃ ′

)n
· 1

+
∑

1≤N(a)≤X
a⊆OK

∑
C̃1e

nAX≤N(b)≤C′nX

log1/7X · (1
2
)
ω( a

gcd(a,b)
)

=O(
X2

logX
) +O(

X2

log
1
42

X
) (By Lemma 2.7 (2)).

Thus ∑
(a,b)∈ΣX

K

∏
π|a,π∤b

π odd prime

(1 +
(
b
π

)
2
)

2
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≤r ·
∑

1≤N((a))≤X
(a)⊆OK

∑
−X≤N(b)≤X

b∈RX
K

∑
1 ̸=(d)|(a)
2/∈(d)

d square free

(
1

2
)ω(d)

(
b

d

)
2

+ o(X2)

=r ·
∑

1≤N((a))≤X
(a)⊆OK

∑
1̸=(d)|(a)
2/∈(d)

d square free

∑
−X≤N(b)≤X

b∈RX
K

(
1

2
)ω(d)

(
b

d

)
2

+ o(X2)

≤r ·
∑

1≤N((a))≤X
(a)⊆OK

∑
(d)|(a)

(
1

2
)ω(d)(N((d)))

1
r2+2X

r2
r2+2 log

2r1
r2+2 X + o(X2) (By Lemma 2.10)

≤r ·X
r2+1
r2+2 log

2r1
r2+2 X ·

∑
1≤N((a))≤X

(a)⊆OK

∑
(d)|(a)

(
1

2
)ω(d) + o(X2).

Here ∑
1≤N((a))≤X

(a)⊆OK

∑
(d)|(a)

(
1

2
)ω(d)

=


∑

1≤N((d1))≤
√
X

(d1)⊆OK

(
1

2
)ω(d1) · (

∑
√
X<N((d2))≤ X

N((d1))

(d2)⊆OK

1)

+


∑

1≤N((d2))≤
√
X

(d2)⊆OK

1 · (
∑

√
X≤N((d1))≤ X

d2
(d1)⊆OK

(
1

2
)ω(d1))

 .

We estimate the first term ∑
1≤N((d1))≤

√
X

(d1)⊆OK

(
1

2
)ω(d1) · (

∑
√
X<N((d2))≤ X

N((d1))

(d2)⊆OK

1),

and the estimation for the second term is the same. By Lemma 2.7 (1)∑
√
X<N((d2))≤ X

N((d1))

(d2)⊆OK

1 ≤ C5

(
X

N((d1))

)

for some constant C5. Thus ∑
1≤N((d1))≤

√
X

(d1)⊆OK

(
1

2
)ω(d1) · (

∑
√
X<N((d2))≤ X

N((d1))

(d2)⊆OK

1)

≤C5 ·
∑

1≤N((d1))≤
√
X

(d1)⊆OK

(
1

2
)ω(d1)

X

N((d1))

≤C5X ·
∑

1≤N((d1))≤
√
X

(
1

2
)ω(d1) · 1

N((d1))
.
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But ∑
1≤N((d1))≤

√
X

(
1

2
)ω(d1) · 1

N((d1))
= (

∑
1≤N((d1))≤

√
X

(
1

2
)ω(d1)) · 1√

X
+

∫ √
X

1

∑
1≤N((d1))≤t

(
1

2
)ω(d1)

1

t2
dt

≤ C6

log
1
2

√
X

+ C7

∫ √
X

2

t

log
1
2 t

1

t2
dt

≤ C6

log
1
2

√
X

+ C7 · log
1
2

√
X + C8.

Here C6, C7, C8 are constants. Therefore∑
1≤N((d1))≤

√
X

(
1

2
)ω(d1) · (

∑
√
X<N((d2))≤ X

N((d1))

1) = O(X log
1
2 X).

This completes the proof. □

3. The period-index density of elliptic curves

The Hilbert symbol is closely related to the period-index problem of elliptic curves. As an

application, we can use Theorem 2.13 to compute the period-index density of elliptic curves. In the

following, we review the notions of period and index of homogeneous spaces for elliptic curves, and

explain the relationship between the Hilbert symbol and the period-index obstruction map..

Let K be a field with absolute Galois group GK = Gal(K̄/K), and let E/K be an elliptic

curve over K. The Weil-Châtelet group WC(E/K), which classifies homogeneous spaces of E,

is canonically isomorphic to the Galois cohomology group H1(K,E(K̄)) (cf. [6, Proposition 4]).

Under this isomorphism, each homogeneous space [C] of E corresponds to a cohomology class in

H1(K,E(K̄)), which we still denote by [C]. The period of C, denoted by P (C), is defined as the

order of [C] in the group H1(K,E(K̄)). The index of C, denoted by I(C), is the smallest positive

integer d for which there exists a K-rational divisor of degree d on C. The period-index problem

asks whether P (C) equal I(C) for all C ∈ WC(E/K). When K is a local field, Lichtenbaum [8]

(see also [11, Section 5]) proved that P (C) = I(C) holds for all homogeneous spaces C of E/K. In

contrast, when K is a number field, the period and index do not necessarily coincide (cf. [1]), but

they satisfy the divisibility relation

(3.1) P (C) | I(C) | P (C)2

as shown in [9, Theorem 8] (see also [11, Proposition 2.4]). Building on this constraint, the necessary

conditions for a positive integer pair (P, I) to arise as the period and index of a homogeneous space

C are that I = Pl for some positive integer l, and that l divides P . Furthermore, Sharif [16,

Theorem 2] proved that for any such pair (P, P l) with l | P , there exist infinitely homogeneous

spaces C of E satisfying P (C) = P and I(C) = Pl.

A natural question arises: If the period is fixed, what is the distribution of distinct indices (cf.

[3, Problem 2])? In the following, suppose C ∈ H1(K,E) satisfies P (C) = 2. From the divisibility

relation (3.1), I(C) must equal 2 or 4. This reduces to determining the density of the subset

{C | C ∈ H1(K,E)[2], I(C) = 2}
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within the entire set

{C | C ∈ H1(K,E)[2]}.

In the rest of this section, we will answer this question under some constraints.

In the rest of this paper, let K be a number field and E/K be an elliptic curve defined over K,

and n be a positive integer.

Recall the following Kummer sequence for elliptic curve E:

(3.2) 0 → E(K)/nE(K)
δ→ H1(K,E[n])

ρ→ H1(K,E)[n] → 0.

The main tool of period-index problem is the following O’Neil’s obstruction map :

(3.3) Ob : H1(K,E[n]) → Br(K).

The details of obstruction map can be found in [11]. The map Ob can be used to determine

whether or not I(C) = P (C) for a given homogeneous space C. Concretely, we have the following

proposition.

Proposition 3.1. Let E/K be an elliptic curve defined over number field K. Let C ∈ H1(K,E)

be of period n. Then C has index n if and only if there exists a lift ζ ∈ H1(K,E[n]) of C such that

Ob(ζ) = 1.

Proof. This is [2, Theorem 5]. □

We explain the relationship between the Hilbert symbol and the obstruction map. Assume that

the entire n-torsion group E[n] ⊂ E(K). Via the theory of the Weil pairing, the n-th roots of unity

µn are contained in K. Fix a basis (S, T ) for E[n] once and for all. Again by the Weil pairing,

ζ = en(S, T ) is a generator of µn. After making this choice, we get an isomorphism

(3.4) ψn : H1(K,µn)×H1(K,µn)
∼→ H1(K,E[n]).

Via the canonical Kummer isomorphism H1(K,µn) = K∗/K∗n, we may equally well view ψn as

maps defined on (K∗/K∗n)2.

Theorem 3.2. For n ∈ Z>0, let n
∗ be n if n is odd and 2n if n is even. If E[n∗] ⊂ E(K), then

Ob ◦ ψn = ( , )Hn,K , where ( , )Hn,K is the Hilbert symbol defined in Section 2.

Proof. This is [4, Theorem 10]. □

Suppose that C ∈ H1(K,E[n]) with P (C) = 2, then I(C) = 2 or 4. Moreover, we suppose that

E[4] ⊂ E(K). As the above discussion, we have an isomoprhism H1(K,E[2])
∼→ K∗/K∗2×K∗/K∗2.

In this isomorphism, we view the map Ob as a map from K∗/K∗2 ×K∗/K∗2 to Br(K). Then by
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Theorem 3.2 , the map Ob coincides with the Hilbert symbol. In summary, replacing H1(K,E[2])

with K∗/K∗2 ×K∗/K∗2, we have the following diagram:

(3.5)

0 E(K)/2E(K) K∗/K∗2 ×K∗/K∗2 H1(K,E)[2] 0.

Br(K)

δ ρ

Ob=( , )H,K

Definition 3.3. Let K be a number field with class number 1, and let E/K be an elliptic curve

satisfying E[4] ⊂ E(K). Retaining the notation introduced earlier, for homogeneous spaces of

period 2, the period-index density Θ is defined as the following limit:

Θ := lim sup
X→+∞

∣∣{C | C ∈ ρ(ΣX
K × ΣX

K), I(C) = 2}
∣∣∣∣ρ(ΣX

K × ΣX
K)
∣∣

Theorem 3.4. Let K be a number field with class number 1, and let E/K be an elliptic curve

satisfying E[4] ⊂ E(K). Then Θ = 0.

Proof. By Proposition 3.1, the set {C | C ∈ ρ(ΣX
K × ΣX

K), I(C) = 2} is equal to the set

{C ∈ ρ(ΣX
K × ΣX

K) | ∃ (a, b) ∈ K∗/K∗2 ×K∗/K∗2, such that ρ(a, b) = C and (a, b)H,K = 1}.

Let {(ai, bi)}ti=1 denote the image of E(K)/2E(K) in K∗/K∗2 ×K∗/K∗2. Let A be defined as

A = max

{
max
1≤i≤t

|N(ai)|, max
1≤j≤t

|N(bj)|
}
.

Then {C | C ∈ ρ(ΣX
K × ΣX

K), I(C) = 2} ⊂ {C | C ∈ ρ(ΣH,A·X
K )}. Thus by Equation (2.6) and

{C | C ∈ ρ(ΣX
K ×ΣX

K), I(C) = 2} ⊆ {C | C ∈ ρ(ΣH,A·X
K )}, we have |{C | C ∈ ρ(ΣX

K ×ΣX
K), I(C) =

2}| = o(X2). Hence

Θ = lim sup
X→+∞

∣∣{C | C ∈ ρ(ΣX
K × ΣX

K), I(C) = 2}
∣∣∣∣ρ(ΣX

K × ΣX
K)
∣∣

= lim sup
X→+∞

o(X2)

X2

= 0.

□

Remark 3.5. By the divisibility relation (3.1), every non-trivial homogeneous space C ∈ H1(K,E)[2]

satisfies P (C) = 2 and I(C) ∈ {2, 4}. This theorem establishes that within the 2-torsion subgroup

H1(K,E)[2], the subset of elements with I(C) = 2 is sparse (exhibiting period-index density 0),

whereas those with I(C) = 4 dominate (attaining period-index density 1) under the conditions spec-

ified in Theorem 3.4. Notably, there exist elliptic curves satisfying the hypotheses of Theorem 3.4.

A concrete example is the curve 256.b1 in the LMFDB database, whose Weierstrass equation is

explicitly given by

y2 = x3 − 2x.

Further instances from the LMFDB database, such as 200.2− a3, 225.2− a6 and 5525.5− b9,

also satisfy the conditions in Theorem 3.4.

https://www.lmfdb.org/EllipticCurve/Q/256/b/1
https://www.lmfdb.org/EllipticCurve/2.0.4.1/200.2/a/3
https://www.lmfdb.org/EllipticCurve/2.0.4.1/225.2/a/6
https://www.lmfdb.org/EllipticCurve/2.0.4.1/5525.5/b/9
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