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ABSTRACT. Let K be a number field with class number 1. In this paper, we study the family of
Severi-Brauer conics over K defined by equations 2 — az? — by® = 0, where (a,b) € K*/(K*)? x
K*/(K*)?. We prove that, within this family, the density of the conics admitting at least one
nontrivial K-rational point is zero. As an application, let E/K be an elliptic curve satisfying
E(K) D E[4], we show that the subset of H' (K, E)[2] consisting of classes with equal period and
index has density zero. This is closely related to the question proposed in [3, Problem 2].

1. INTRODUCTION

Let K be a number field with class number 1. In this paper, we prove that within the family
of Severi-Brauer conics parameterized by K*/(K*)? x K*/(K*)2, the density (cf. Definition 1.1)
of the conics admitting at least one nontrivial K-rational point is zero. Our motivation originates
from a period-index distribution problem for elliptic curves (cf. [3, Problem 2]). Through O’Neil’s
obstruction map (cf. Equation (3.3)), which coincides with the Hilbert symbol in our setting, we
establish a connection between the period-index distribution problem and the density problem for
Severi—Brauer conics. Furthermore, we clarify part of [3, Problem 2] and give an answer for the
case that P = 2 for number fields with class number 1.

We fix some notation and explain our main results in the following. Let K be a number field.
For each pair (a,b) € K* x K*, the associated Severi—Brauer conic is defined by the homogeneous
equation 2% — ax? — by? = 0. We study the density of such conics that have at least one nontrivial
K-rational point. In the case that K has class nubmer 1, for each prime ideal p C Ok, we can fix a
generator 7 € p and call 7 a prime of Ox. We say that 7 is an odd prime if 2 ¢ (7). Every € K*
admits a unique factorization of the form

(1.1) x =untny? o,
where o; € Z, u € O}, and 7; are distinct primes of K. Let U = {1, ug,- -, u,} C O} be a system of

representatives of the quotient group 03 /07, 2 where 1 is the representatives of the identity element.
For any [a] € K*/K*Q, we can choose a representative a € K* of the form a = ugm 7 - - - 7, where
ug, € U and m; are distinct primes of K. This construction gives a one-to-one correspondence ¢
between K*/K*? and the set of “square-free number”:

n
Yk={aeK"'|a= uHm, u € U, m; are distinct primes}.
=1
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In the following, for any [a] € K*/K*?, the image of [a] under ¢ is denoted by a.

Definition 1.1. Let K be a number field with class number 1. For X € R+, define
Y%X :={a€ Xk | -X < N(a) < X},

and
Dt = {(a,b) € X x X | (a,b)gr =1},
where (a,b)y is the Hilbert symbol (cf. Definition 2.1) and N is the field norm Ny /q. The rational
density of Severi—Brauer conics over K is defined by
Dl

K
X‘Q'
K

0,k := limsup
X—+o0 |E

Our main result is the following theorem.

Theorem 1.2. Let K be a number field with class number 1. The rational density of Severi—Brauer
conics over K 1s zero.

As an immediate application to the period-index problem discussed in Section 3, we obtain the
following result. See Theorem 3.4 for the precise meaning of density.

Theorem 1.3. Let K be a number field with class number 1, and let E/K be an elliptic curve with
E(K) D E[4]. Then in H' (K, E)[2], the density of the subset of classes with coinciding period and
mdex s zero.

In Section 2, we review basic notions of the Hilbert symbol and prove Theorem 1.2 through
analytic number theory techniques.

In Section 3, we review basic notions of period and index of homogeneous spaces for elliptic curves
and prove Theorem 3.4, by relating the rational density (cf. Definition 1.1) and the period-index
density (cf. Definition 3.3) via O’Neil’s obstruction map (cf. Equation (3.3)).

Notation Let f(x) and g(z) be functions defined on Zo. We employ the following asymptotic
notation:

e f(x) =0(g(z)) if 3C > 0 such that |f(z)| < C|g(x)|;
e f(z)=o0(g(x)) if lim He) — o,

o0 9(@

|

o f(z)~g(x)if xll)rgo % =1

Let K be a number field:
e Ok denotes the ring of integers of K;
e For a € Og (when K with class number 1), w(a) counts distinct prime divisors of a;

e For ideals a C Ok, w(a) counts distinct prime ideal divisors of a ;
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e N(a) denotes the field norm N g(a) for o € K*, and N(a) denotes the ideal norm Ng g (a)
for ideals a C Ok;

e Let K be of degree n = r1 +2ry, where r; denotes the number of real embeddings and r; the
number of conjugate pairs of complex embeddings. For a € K, let a(? (1 < i < r;) denote
its real embeddings, and al?) (ri+1<j <r;+ry) denote a fixed choice of non-conjugate
complex embedings;

e For every v = (v1,-+ ,v,) € R, |[o]| := \/(v1)2 + -+ + (vp)2.

2. THE HILBERT SYMBOL AND THE RATIONAL DENSITY

In this section, we provide necessary background on the Hilbert symbol (cf. [14, Chapter 14])
connecting the period-index problem in Section 3 with Theorem 1.2. We then proceed to prove
Theorem 1.2, utilizing the computability of Hilbert symbols alongside tools from analytic number
theory.

Let K be a field of character 0 that contains an n-th primitive root of unity, where n € Z-g.
It is well known that K*/K*" = HY(K,Z/nZ) = Hom(K,Z/nZ). Thus for any a € K*, we can
associate a character x, € H'(K,Z/nZ).

Definition 2.1. Let K be field of character 0 and a,b in K*. Denote by Br(K) the Brauer group
of K and by Br(K)[n| its n-torsion subgroup. We define the symbol (a,b)s, x € Br(K)[n| to be

the cup-product bU 6(x,) of b € H(K, K*) = K* with x, € HY(K,Q/Z) % H?(K,Z).

The symbol is a bilinear map from K* x K* to Br(K)[n]. In fact, when K contains an n-th
primitive root of unity, it induces a bilinear map ( , )g, x from K*/K*" x K*/K*" to Br(K)[n].
We call it the Hilbert symbol over K. When n = 2, we denote (, )m, x by (, )u i and a necessary
and sufficient condition for the Hilbert symbol to be trivial is given by the following proposition (cf.
[14, Ch. 14, Sec. 2, Prop. 4] or [15, Chapter 3]).

Proposition 2.2. Let K be a field of character 0. Let a,b € K*. Then (a,b)gx =1 if and only

if b is a norm of the extension K(a'/?)/K. In other words, (a, bk =1 if and only if the conic

22 — ax® — by? = 0 has a nontrivial K -rational point.

Let m € Ok be a prime of Og. For any a € O, define (%)2 to be the quadratic residue symbol
of a mod (7), i.e.,
1 ifa mod (7) is a square in K%,
(E)2 =4 -1 ifa mod (m) is not a square in K,
0 ifae(m).

where k., is the residue field Ok /(7). For any ideal I = (71 ---m,) C Ok, denote by ( ¢ )2 the

T T

Tn

product (7%1)2 e (i)2 for any a € Ok. It is a character of (O /I)*.
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Remark 2.3. When b = —a, the conic 22 — az? + ay? = 0 admits the solution (x,y, z) = (1,1,0).
Hence there exist infinitely many pairs (a,b) € K* x K* such that (a,b)y x = 1. Thus Theorem
1.2 is not trivial.

Theorem 2.4. Let (a,b) € Xx such that a = uymy ... 7 - w1 ... and b = ugr) ... 7, w1 ... W],
with m,w},wk distinct primes. Assume that 7w is an odd prime among m; for 1 < i < n, then
(a,b)H.K,1s trivial if and only if (%)2 is trivial, where K, denote the completion of K at p := (7).
The symbol (a,b) g i, is abbreviated as (a,b)y in the following.

Proof. Let m be an odd prime with (1) = p, and suppose m | @ but 7 { b. Let o’ = an '
We claim that (a’,b), = 1. Assuming this, it follows that (a,b), = (da’,b)y(7,b), = (7,b), =
(%)2, which completes the proof. To prove the claim, it suffice to show that a/z? + by? =
22 has a nontrivial solution in K, by Proposition 2.2. Fix a unit ¢ € @}'}p. As ? ranges over
squares in ry = Fy (¢ = |kpl), the values ¢ — by?> mod p take %1 distinct residues. Similarly for
a’z?. Thus there exist xg,yo € Ok, such that

dzi+ by = (mod p).

The multi-variable version of Hensel’s lemma (cf. [17, Ch. 4, Ex. 4.27]) lifts this to a solution
(z1,v1,21) # (0,0,0) of a’z* + by? = 2* in K,. Thus (a/,b), = 1, as claimed. O

By Theorem 2.4, we can provide a necessary condition for the vanishing of the Hilbert symbol.

Lemma 2.5. Let ([a],[b]) € K*/(K*)? x K*/(K*)2. If ([a],[b])g = 1, then the product
a+(4)

5 is equal to 1.
w|a,mtb
7 odd prime

We now turn to the proof of our main theorem on the rational density of Severi-Brauer conics
over K. The proof relies on the following preparatory lemmas, which provide the necessary analytic
tools for Theorem 2.13. Let K be a number field. We say a function f defined on all ideals of K
is a multiplicative arithmetic function if for any two coprime ideals a, b, we have f(ab) = f(a)f(b).
For any two ideals a, b, gcd(a, b) denotes the greatest common divisor of a, b, i.e. ged(a,b) = a+b.
In particular, if the class number of K is 1, for any elements a,b € O, ged(a,b) also denotes the
greatest common divisor of the elements.

Lemma 2.6. Let A1, Ao be constants, such that \y > 0, 0 < Ao < 2. For any multiplicative
arithmetic function f satisfying

(2.1) 0< f(pY) S MASE (N(p) >2,0=1,2,..),

we have

(2.2) Yo f@=0x- J[ a=NmEHD FEOHNE)TY) (X >2).
N(a)<X N(p)<X v=0

aCOk p prime ideal
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Proof. By adapting the method of [18, Part III, Ch. 3, Sec. 3, Cor. 3.6] to number fields (with
primes replaced by prime ideals and p~* systematically substituted by N(p)~*), we establish the
corresponding number field analogue. This completes the proof. O

Lemma 2.7. Let K be a number field.
(1) Foranyy€Rso, > () =0(X(log X)),

1<N(a)<X

aQ@K
@ ¥ - » (U =02,
1<N(a)<X 1<N(B)<X (log X)®

aQ@K bg@}(

Proof. (1). We adapt the strategy of [18, Part III, Ch. 3, Sec. 3, Thm. 6]. Note that the function
a — (y)*® is a multiplicative arithmetic function , and satisfies the condition (2.1) for A\; =
14y, A2 = 1. Thus by Equation (2.2),

Y. wWr@=o0x H (1=N@E) H{L+yNp) ™ + 0N ()~}

1<N(a)<X

By the Mertens’ formula (cf. [7, Theorem 1, M(3)]), the proof is complete.

(2). Note that for any fixed ideal b, the function fy(a) := (%)w(gcd&"’)) is a multiplicative arithmetic
function such that 0 < fy(p?) < 111, Therefore

(2.3)
> oY

1<N(a)<X I<N(b)<X

<x > IT a=NE DI 6N ™| T G=NE)™Y (fep")NE) ™

1<N(b)<X | N(p)<x v=0 N(p)<X v=0
plo ptb
© 4 i_%N(p)‘”
<x ¥ H (L= NE)HO+ Y GNE (= )
N(6)<X N(p v=1 plo 1+ Z_:l(%)N(P)_”
| S N
<x ] a-n~ ’1)(1+Z(§)N Z [[—= ).
N(p)<X v=1 b)<X plo 1+ ;1(%) (p)~v
Moreover,
> N(p)™

[[—= )
N(®)<X plo 1+ Z_:l(%)N(P)‘”
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< > g

~io 1)
N(b )<X plb -2
1
<> o+ ; )
N(b )<X plb 2
1
<2. ~)w(®),
<2- Y (1+3)
N(b)<X

By Lemma 2.6, > (1+3)“(® =0O(X(log X)i) By the Mertens’ formula (cf. [7, Theorem 1,
N(b)<X

MED. X T (1= NG+ X GING) ) = 0( 2 ). Thus

N(p)<X (log X)2
X X2
Z > (UEE) = 0(——) - O(X (log X)$) = O(——),
<XN(h)<X (log X)2 (logx)s
which completes the proof. O

Let K be a number field with degree n = ry + 2ro. From now on, we fix a basis {el}flJ{r2 Lof

0% /1K, where pg is the group of roots of unity in K. For a constant C' > 0, let Rk ¢ be the set
{a €0k |0< | < C’|N(a)\%, 0 < |aW))? < C’|N(a)|% fori=1,..,r, j=ri+1,..,r1 + 12}
In the following we shall demonstrate that K contains sufficiently many elements in the set Zg ¢
for some suitble constant C. This construction is designed to facilitate the application of Lemma
2.10 for analytic estimation of the density.

Lemma 2.8. Let A be a lattice of R™ with basis {v;}}'_y. For any a = (ai,...,a,) € R", define

n
Sa:{:c:(xl,...,xn)ER” | i — ai| < ZHvinoralllgign}.
i=1

Then AN S, # 0.

Proof. Since {v;} is an R-basis, write a = Y ;" | bjv; with b; € R. Choose integers m; satisfying
’bi —mi\ S % Then

n n 1
la =Y " mi| < 3 il
=1 i=1

which implies Y1, m;v; € S, and this completes the proof. O

Let K be a number field of degree n = r1 + 2ry, define the map
l: 05 — Rt

by

ri+1) r1+r2)

l(n) = (log‘n 2log‘n )

, log ‘77(” , 2log ‘n
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Lemma 2.9. Let {el}””r" Y be the fized basis of Oy /pK. For any a € Ok, there exists a unit

u € Oy such that au € R, where Ri = R and {v; Y7427 s the image of

r1+ro—1
KoM= el

{e}d2=1 ynder 1.

Proof. Let o € Og. By Dirichlet’s unit theorem, the image (0} ) forms a full lattice in the hyper-

plane
r1+72
> u-of.

Since {v;}/11"27! is the image of {}/ 1™~ under I, {vl}””2 ! is a basis of [(0}). For each
m € Zwg, let Sy, be the set

H := {(al, ey Oy pry) € RTIHT

b; —

log |N ;
Og’n(a)‘ —l—log]a(’)\

r14re—1
<m Y fwl, 1<i<n
S = (b1, by ry) € RIITT N

2log [N (a)|
b — = =

+210ga(j)|‘

ritra—1
<m Z Jvell, m1+1<j<ri+mr

This lemma is equivalent to showing that 1(0F) N (Sp—1) # 0. Let p: R T2 — R™+7271 he the
linear projection

P(at, ..y Qrygry) = Q15 v oy Qryprp—1)-
Then p(1(6})) becomes a full lattice in R"+7271. By Lemma 2.8, there exists a

b= p(l(u)) € p(l(Ok)) N p(S1)
for some unit v € O}, which implies {(u) € S,,—1. This completes the proof. O

Let K be a number field of degree n = r1 + 2rg, for each a € Ok, we can fix one u, € O
by Lemma 2.9, such that u,a € £x. Then we can choose a suitble constant C’, depending on
K and the choice of basis {62}r1+r2 Y of 0% /ux, such that u; 'ujuse € {a € Ok | 0 < [a)] <
C'N(« ) , 0 < |aW)?2 < C'N(a )n fori=1,..,m, j=r1+1,..,71 4+ ro} for any u;, u; € U and
any o € O, where U is the fixed representatives of 0% /0%? in Section 1. Define %3 to be the set
{a €0k |0<|a®| < C'Xw, 0< la))? < C'Xnfori=1,..,r, j=r+1,..m + 7o} for any
X € Ryp.

The following lemma is an immediate consequence of [12, Theorem 2].

Lemma 2.10. Let K be a number field of degree n = r1 + 2ra, q 4s an ideal of Ox. Let x be a
nonprincipal character of (O /q)*. Then we have

2r
Z x(a) = O((Nq) T2+2>Xr2+2 log'r2<‘i2 X),
QERX

where O depends only on K.
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By Lemma 2.9, for each b of the form um; ---m € Eﬁ, there exists ur,..r, € O (fixed for each

71+ -m) such that wgy.pr,m - 71 € Ri. Let ]

. _ 2
rom € U satisfy ul . = Ur,..r, (mod OF).

—1 X . . .. . X
Then ., Uz, ..;yT1 - - - Tt € Ry, which induces an injective map:

b=um ---m|beTE} — RBX,
K K

1—1

UTTY + T > Up g,

Uy oo, TL - T

We use this injective map to apply Lemma 2.10 in subsequent computations. Fix a € Ok and
X > 0, we estimate the cardinality ’a@}‘( N !%ﬁ , which is important for the proof of Theorem 2.13.

Lemma 2.11. Let A be a full lattice in R™. Then there exists a constant C' depending only on A,
such that the number Num(X) of points of A in a sphere {z € R"|||z|| < X} is at most C(X™ +1)
for any X € Ryg.

Proof. See [13, Chapter 3, Lemma 1]. O

Lemma 2.12. Let K be a number field of degree n. For any o € Of, there exists u € Oy, such
that au € R (denote ay,) by Lemma 2.9. Then there exist constants C',C" > 0 such that for all
X 6 R>0,

|, O3 N R%| < C"((log X — log diy) + C)™,

where a,, = mjn{]aq(j)|}.

Proof. Note that |, 0% N R:k| = |05 N a;*R:E|. Define the logarithmic map
0\ {0} = R s ({log g9}y, {210 [0 12 )

)
Let H = {(b;) € R | Y b; =0} and S = l(a; ' R%) N H. For any s € S with s = £(a;'b),
i=1
since s € H, the coordinate bounds
) ) T1 Xl/n 14712 X2/n
() _ (D) > _ i kN
log |b\"| — log |ay | > (Zlog 7 + Z log o +C
7=1 ’Otu ‘ j=r1+1 |Oéu |
i i#i
hold for some C' > 0. We can therefore choose constants C’, C” > 0 and define

8 i={(c) e R

’ci| < Cl<10gX - logdu) + Cl’a 1 S ] S 1 + 7"2} )
such that S C §’. Consider the projection p : R"*"2 — R"1+72~1 dropping the last coordinate. Let
S" = {x e Rtm2=1 | ||z]| < /nC'(log X — log &,) + C"}. By Lemma 2.11,
15" (1 pl(6%)| < C((log X — log ) +C)",
for some suitable constants C,C’ > 0. Since ple(or)ns s injective and p(S") C S”, we conclude
(03 N a, ' %%)| < C((log X — log &y,) + C)™.

oy, has finite kernel, |07 N a, ' RX| < C"((log X — logd,) + C'")" for a suitable constant
C” > 0 and this completes the proof. O

Since [
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With the above preparations, we establish our main theorem.

Theorem 2.13. Let K be a number field of degree n = r1 + 2ro with class number 1. Then the
rational density dp x = 0.

Proof. Let Eg’,x = {(a,b)|(a,b) € F x X, (£); =1 for any prime 7|a, 7 { b}. Since Eg’x C
Egl’x, it suffices to show that
H’,X|

Op k= limsup K 3
X—+4o00 ’ZK‘

is zero. To establish this, we first recall that applying the Wiener-Ikehara Tauberian theorem [18,
Chapter 7] to the Dirichlet L-series associated with the square of the M&bius function yields the
asymptotic formula for square-free positive integers:

6
(2.4) #{1 <n < X :nsquare-free} ~ =X + o(X).
T

By adapting this strategy to the ideal-theoretic setting—replacing integers with ideals—we analyze
the Dirichlet L-series for the squared Mobius function over ideals. This leads to the analogous
asymptotic estimate:

(2.5) #I5%| ~ Cx X + o(X),

’ b
where C' > 0 is a constant depending on K. From above, \Eg ’X| = > I (1+(2")2),

(ab)esEtxLX  mla,mfd
7 odd prime

and it suffices to show that
H' X
(2.6) Xk = o(XQ).
By direct computation,
Z H (1+(2),)
2

(a,D)eTE DX 7la,nid
7 odd prime

<r. Z Z H (1 +2(7r)2)

I<N((a))<X bexrX  mla, 7TJ[b
(a)C@K 7 odd prime

<r. Z Z Z (é)w(d) (Z) 2 + 2. Z Z W(zea(any)

1I<N((a))<X beaxX 1#(d)|(a 1<N((a))<X be@x
(a)C@K %(d) (a)COK
d square free
where r = |U| and U is the fixed representatives of 0y / @}‘(2 in Section 1. We begin by estimating
the summation

oy Z() gcd<ab>)_

1<N((a))<X beg?X
(a )C@K
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Notice that

Zn =[] (buOi N RX),
bCOK

where b, is a fixed generator of the ideal b such that b, € Zx. By Lemma 2.11, we have
|byOf N RE| < C" <logX —log by + é’)” ,
where b, = min{|b(ui )|} We divide the ideals (b,) into two classes:
(2

e Class I: Ideals satisfying

c” <1ogX —log by, + C")n > log"/T X

e Class II: Ideals violating the above inequality.

Equivalently, Class I consists of ideals with

log /™ x o,
(Cw)l/n

while Class II contains the remaining ideals. Since b, € R, elements in Class I satisfy

1/(7n)
|N(b )| < élen(ngflo(gc‘w)l/nx>
u

log by < log X —

)

for some constant C; > 0. Let Ay := log X — log'/ ™ X Notice that Crenllos X=4x) — (X,

Cri/n lognJrl X
Then
Z Z @ (gedta,m)
1<N(a)<X beRX
aC@K
Iiw(—2 )
— Z (5) gcd(a,b)
ISN(@<Xbe [ (buO}NRX)
aCOk bCOK
< ¥ > " (logX —logh, +C")" 1
ISN(a)<X 1<N(0)<CpenAx
ag@K
1 a
U7 x . (2 cd(u,b))
D YD DR S
1SN(a)<X e AX <N(b)<C'mX
CLC@K
X? X?
=0 + O(——— By Lemma 2.7 (2)).
(o) + O ge) (® (2))
Thus

S O] (1+ (7))
2
D i prime
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1 b
<p. 2yw(d) (2 2
o Y Y () red
1<N((a))<X —X<N(b)<X 1#£(d)|(a)
(a)COK bERE 2¢(d)
d square free

1 b
—r . Syw(d) [ 2 2
r E E E (2) <d>2 +o(X?)
L1<N((@)<X  1A(d)|(@) —X<N(B)<X
(@Cox  2¢(d) beRX
dsquare free

1 r 2r
<Y Z ((d))) 272 X272 log 232 X + 0(X2) (By Lemma 2.10)
1<N((a))<X (d)|(a)
(a)SOx
ro+1 271

<p- X72i2 logn2t? X - Z Z w(d+ox2)
1<N((a)<X (d)|(
(a )C@K

Here

1 1
= Z (i)w(dﬁ ( Z |+ Z 1-( Z (§)W(dl))
1<N((d))<VX VX <N((d2))< wtamyy ISN((d2)<SVX  VXSN((d)< g
(d1)COK (d2)COx (d2)COK (d1)COx

We estimate the first term

> Y,

1<N((d1))<vVX VX<N((d2)< 55y
(d1)COK (d2)COK

and the estimation for the second term is the same. By Lemma 2.7 (1)

X =)

VXN ((@2)< wtaryy
(d2)COK

for some constant C5. Thus

3 (Lywtan 3 1)

\V)

1<N((dr))<VX VX <N ((d2)) < wtaryy
(d1)COx (d2)COK
1 X
< ) Sw(d) 2
<G 2 G*"wmy
1<N((d1))SVX
(d1)COK
<csx- Y (@G L
= 2 N((d1))

1<N((d1))<vVX
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But
1 1 1 1 23 1 1
Zyw(dy) | — 2yw(d)y, = Zywldi) =
Y g X G [ e
1<N((d1)<VX 1<N((d1))<vX 1<N((d1))<t
C VX
<4 07/ —zdt
logz VX 2 log2tt
<9 L cogVE 4G
log?2

Here Cg, C7, Cy are constants. Therefore

3 (%)wwl) ( 3 1) = O(X log? X).

1<N((d1))<vVX VX<N((d2))< 55y

This completes the proof. O

3. THE PERIOD-INDEX DENSITY OF ELLIPTIC CURVES

The Hilbert symbol is closely related to the period-index problem of elliptic curves. As an
application, we can use Theorem 2.13 to compute the period-index density of elliptic curves. In the
following, we review the notions of period and index of homogeneous spaces for elliptic curves, and
explain the relationship between the Hilbert symbol and the period-index obstruction map..

Let K be a field with absolute Galois group Gx = Gal(K/K), and let E/K be an elliptic
curve over K. The Weil-Chatelet group WC(E/K), which classifies homogeneous spaces of F,
is canonically isomorphic to the Galois cohomology group H'(K, E(K)) (cf. [6, Proposition 4]).
Under this isomorphism, each homogeneous space [C] of E corresponds to a cohomology class in
HY(K, E(K)), which we still denote by [C]. The period of C, denoted by P(C), is defined as the
order of [C] in the group H'(K, E(K)). The index of C, denoted by I(C), is the smallest positive
integer d for which there exists a K-rational divisor of degree d on C. The period-index problem
asks whether P(C') equal I(C) for all C € WC(E/K). When K is a local field, Lichtenbaum [§]
(see also [11, Section 5]) proved that P(C') = I(C') holds for all homogeneous spaces C of E/K. In
contrast, when K is a number field, the period and index do not necessarily coincide (cf. [1]), but
they satisfy the divisibility relation

(3.1) P(C) | 1(C) | P(C)?

as shown in [9, Theorem 8] (see also [11, Proposition 2.4]). Building on this constraint, the necessary
conditions for a positive integer pair (P, I) to arise as the period and index of a homogeneous space
C are that I = PI for some positive integer [, and that ! divides P. Furthermore, Sharif [16,
Theorem 2] proved that for any such pair (P, Pl) with [ | P, there exist infinitely homogeneous
spaces C of E satisfying P(C') = P and I(C) = PI.

A natural question arises: If the period is fixed, what is the distribution of distinct indices (cf.
[3, Problem 2])? In the following, suppose C' € H!(K, E) satisfies P(C') = 2. From the divisibility
relation (3.1), I(C) must equal 2 or 4. This reduces to determining the density of the subset

{C|CeH K, ,E)2,I(C)=2}
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within the entire set
[C|C e H'(K, B)2]}.
In the rest of this section, we will answer this question under some constraints.

In the rest of this paper, let K be a number field and E/K be an elliptic curve defined over K,
and n be a positive integer.

Recall the following Kummer sequence for elliptic curve E:

(3.2) 0 — E(K)/nE(K) > HY(K, E[n]) & HY(K, E)[n] — 0.

The main tool of period-index problem is the following O’Neil’s obstruction map :
(3.3) Ob: H'(K, E[n]) — Br(K).

The details of obstruction map can be found in [11]. The map Ob can be used to determine
whether or not I(C) = P(C) for a given homogeneous space C. Concretely, we have the following
proposition.

Proposition 3.1. Let E/K be an elliptic curve defined over number field K. Let C € H (K, E)
be of period n. Then C has index n if and only if there exists a lift ¢ € H'(K, E[n]) of C such that
Ob(¢) =1.

Proof. This is [2, Theorem 5]. O

We explain the relationship between the Hilbert symbol and the obstruction map. Assume that
the entire n-torsion group E[n] C E(K). Via the theory of the Weil pairing, the n-th roots of unity
pn, are contained in K. Fix a basis (5,7 for E[n| once and for all. Again by the Weil pairing,
¢ =en(S,T) is a generator of p,. After making this choice, we get an isomorphism

(3.4) U HY (K, pn) x HY(K, p) = HY(K, E[n)]).
Via the canonical Kummer isomorphism H'(K, u,) = K*/K*", we may equally well view 1, as

maps defined on (K*/K*")2.

Theorem 3.2. For n € Zg, let n* be n if n is odd and 2n if n is even. If En*] C E(K), then
Obo )y, =(, )H, K, where (1, )m, Kk is the Hilbert symbol defined in Section 2.

Proof. This is [4, Theorem 10]. O

Suppose that C' € H(K, E[n]) with P(C) = 2, then I(C) = 2 or 4. Moreover, we suppose that
E[4] C E(K). As the above discussion, we have an isomoprhism H!(K, E[2]) = K*/K*?x K*/K*2.
In this isomorphism, we view the map Ob as a map from K*/K*? x K*/K*? to Br(K). Then by
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Theorem 3.2 , the map Ob coincides with the Hilbert symbol. In summary, replacing H'(K, E[2])
with K*/K*? x K*/K*?, we have the following diagram:

0 —— E(K)/2E(K) o K*/K*? x K*/K*? AN HY(K,E)[2] — 0.
(3.5) loz):( VHK
Br(K)
Definition 3.3. Let K be a number field with class number 1, and let E/K be an elliptic curve

satisfying E[4] C FE(K). Retaining the notation introduced earlier, for homogeneous spaces of
period 2, the period-index density © is defined as the following limit:

c|cC X x 3K, I(C) =2
@::limsupH O el KXX KX>’ ©) }‘
X —+o0 ‘P(ZK X EK)}

Theorem 3.4. Let K be a number field with class number 1, and let E/K be an elliptic curve
satisfying E[4] C E(K). Then © = 0.

Proof. By Proposition 3.1, the set {C | C' € p(X% x ¥%),1(C) = 2} is equal to the set
{Cep(Ex xTX)| 3 (a,b) € K*/K*? x K*/K*?, such that p(a,b) = C and (a,b)gx = 1}.
Let {(ai, b;)}i_; denote the image of E(K)/2E(K) in K*/K** x K*/K*?. Let A be defined as

A = ma { e [N (@), e (01}

Then {C | C € p(EX x ©X), I(C) = 2} C {C | C € p(E*%)}. Thus by Equation (2.6) and
{C] Cep(ZX =), I(C) =2} T{C'| C € p(Z¢" ™)}, we have [{C' | C € p(3% x £X), I(C) =
2}| = o(X?). Hence

{C] C € p(E5 x E5), 1(C) = 2}

© = limsup

R PE =)
. o(X?)

= lim sup
X —+o00 X2

=0.

0

Remark 3.5. By the divisibility relation (3.1), every non-trivial homogeneous space C € H!(K, E)[2]
satisfies P(C') = 2 and I(C) € {2,4}. This theorem establishes that within the 2-torsion subgroup
H!(K, E)[2], the subset of elements with I(C) = 2 is sparse (exhibiting period-index density 0),
whereas those with I(C') = 4 dominate (attaining period-index density 1) under the conditions spec-
ified in Theorem 3.4. Notably, there exist elliptic curves satisfying the hypotheses of Theorem 3.4.
A concrete example is the curve 256.b1 in the LMFDB database, whose Weierstrass equation is
explicitly given by

y? = 2% — 2.
Further instances from the LMFDB database, such as 200.2 — a3, 225.2 — a6 and 5525.5 — b9,
also satisfy the conditions in Theorem 3.4.


https://www.lmfdb.org/EllipticCurve/Q/256/b/1
https://www.lmfdb.org/EllipticCurve/2.0.4.1/200.2/a/3
https://www.lmfdb.org/EllipticCurve/2.0.4.1/225.2/a/6
https://www.lmfdb.org/EllipticCurve/2.0.4.1/5525.5/b/9

ON THE DENSITY FOR SEVERI-BRAUER CONICS AND PERIOD-INDEX DISTRIBUTIONS FOR ELLIPTIC CURVES

REFERENCES

[1] J. W. S. Cassels, Arithmetic on curves of genus 1, V. Two counterexamples, J. London Math.
Soc. 38 (1963), 244-248.

[2] P. Clark, The period—index problem in WC-groups I: elliptic curves, J. Number Theory 114:1
(2005), 193-208.

[3] P. Clark and S. Sharif, Period, index and potential Sha, arXiv:0811.3019 [math.NT] (2008).

[4] P. Clark and S. Sharif, Period, index and potential. III, Algebra Number Theory 4:2 (2010),
151-174.

[5] J. G. Hinz, Character sums in algebraic number fields, J. Number Theory 17:1 (1983), 52-70.

[6] S. Lang and J. Tate, Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80
(1958), 659—684.

[7] E. S. Lee, Explicit Mertens’ Theorems for Number Fields, Bull. Austral. Math. Soc. 108(1)
(2023), 169-172.

[8] S. Lichtenbaum, The period-index problem for elliptic curves, Amer. J. Math. 90 (1968),
1209-1223.

[9] S. Lichtenbaum, Duality theorems for curves over p-adic fields, Invent. Math. 7 (1969), 120-136.

[10] J. Neukirch, Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften, vol.
322, Springer, 1999.

[11] C. O’Neil, The period-index obstruction for elliptic curves, J. Number Theory 95:2 (2002),
329-339.

[12] U. Rausch, Character Sums in Algebraic Number Fields, J. Number Theory 46:2 (1994), 179-
195.

[13] C. A. Rogers and J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer,
1959.

[14] J.-P. Serre, Local Fields, translated by M. J. Atkinson, Graduate Texts in Mathematics, vol.
67, Springer, 2013.

[15] J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, vol. 7, Springer, 1973.

[16] S. Sharif, Period and index of genus one curves over global fields, Math. Ann 354 (2012),
1029-1047.

[17] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in
Mathematics, vol. 151, Springer, 1994.

[18] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, vol. 163, American
Mathematical Society, 2015.



16 CHUANGXUN CHENG, CHENG NIU, AND XIAOGUANG SHANG

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, CHINA

Email address: cxcheng@nju.edu.cn

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, CHINA

Email address: chengniu@smail.nju.edu.cn

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, CHINA

Email address: xgshang@smail.nju.edu.cn



	1. Introduction
	2. The Hilbert symbol and the rational density 
	3. The period-index density of elliptic curves
	References

