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Given two non-CM newforms with integral Fourier coefficients, 
in this paper we study the number of distinct prime divisors 
of their Fourier coefficients in a probability way. Based on 
a multivariate version of the Erdős-Kac theorem, using the 
Galois representations attached to newforms and the effective 
Chebotarev density theorem, and assuming the generalized 
Riemann hypothesis, we show that the distribution of the 
number of distinct primes dividing the Fourier coefficients 
behaves like the standard multivariate normal distribution if 
these newforms are not twists of each other. As a consequence, 
we prove a multiplicity one result for modular forms under 
the generalized Riemann hypothesis.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Denote by Sk(N) the space of cusp forms of weight k for Γ0(N). Let an(f) denote 
the n-th Fourier coefficient of f ∈ Sk(N). A newform is an element in Sk(N) which 
is an eigenvector of every Hecke operator and satisfies a1(f) = 1 (cf. [1]). One natural 
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question is whether, if we know certain information about the Fourier coefficients of a 
newform, we can reconstruct the newform itself. The classical multiplicity-one result for 
newforms says that if two such forms f , h satisfy that ap(f) = ap(h) for primes p in a 
set of density 1, then f = h. Results like these have been studied by a number of authors 
(cf. [7,11,12]). In this paper, we take a probabilistic view of this problem. Recall that a 
newform f has complex multiplication (CM, for short) if there is a quadratic character χ
such that ap(f) = ap(f)χ(p) for almost all primes p (cf. [13]). Denote by ω(n) the number 
of distinct prime divisors of nonzero integer n. Assuming the Riemann hypothesis for all 
Dedekind zeta functions of number fields (GRH), we prove the following result which 
can be viewed as a multiplicity-one theorem from a probabilistic point of view.

Theorem 1.1. Let f and h be two newforms with integral Fourier coefficients of levels 
Nf and Nh, respectively. Suppose that f and h are not of CM type. If for some constant 
C ≥ 0,

lim sup
x→+∞

1
x/ log x {p ≤ x : ap(f) �= 0, ap(h) �= 0, |ω (ap(f)) − ω (ap(h)) | ≤ C} > 0,

then assuming GRH, there exists a Dirichlet character χ such that ap(f) = χ(p)ap(h)
for p prime to NfNh.

In a word, one can distinguish newforms by the number of distinct primes dividing 
the Fourier coefficients. The proof is based on a multivariate version of the Erdős-Kac 
theorem in probabilistic number theory. The Erdős-Kac theorem provides a splendid 
connection between probability theory and number theory. It states that the random 
variables

ω(n) − log logn√
log logn

defined on the set of natural numbers less than x equipped with the uniform proba-
bility measure, as x goes to infinity converge in distribution to the standard normal 
distribution. More precisely, for any α ∈ R,

lim
x→+∞

1
x

#
{
n ≤ x : ω(n) − log logn√

log log n
< α

}
= G(α) := 1√

2π

α∫
−∞

e−x2/2dx.

Erdős and Kac’s proof is based on the central limit theorem and sieve methods [6]. 
They provide a method to study the properties of arithmetic functions by studying their 
statistical properties. Since then, various generalizations of the Erdős-Kac theorem have 
been studied by many mathematicians, for example see [5].

R. Murty and K. Murty proved a modular analogue of the Erdős-Kac theorem [10]. 
For the Ramanujan τ -function, assuming GRH, they proved that for all α ∈ R,
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lim
x→+∞

1
x/ log x#

{
p ≤ x : τ(p) �= 0 and ω (τ(p)) − log log p√

log log p
< α

}
= G(α).

Liu proved another prime analogue of the Erdős-Kac theorem regarding elliptic curves 
[8]. Let E be a non-CM elliptic curve defined over Q. For a prime p of good reduction, 
denote by E(Fp) the set of rational points of the elliptic curve E defined over the finite 
field Fp. Under GRH Liu proved that for all α ∈ R,

lim
x→+∞

1
x/ log x#

{
p ≤ x : p is of good reduction and ω(#E (Fp)) − log log p√

log log p
< α

}
= G(α).

In a recent paper [4], El-Baz, Loughran and Sofos generalized the work of predecessors 
and established a multivariate version of the Erdős-Kac theorem. Roughly speaking, if 
a family of integer sequences satisfies certain hypotheses, the number of distinct prime 
divisors of these sequences has a probabilistic behavior which fits a multivariate normal 
distribution. El-Baz, Loughran and Sofos used their result to study the distributions of 
integral points on varieties.

Applying the result of El-Baz, Loughran, Sofos and generalizing the works of R. Murty, 
K. Murty and Liu, in this paper we establish a result regarding the joint distribution of 
the number of prime divisors of the Fourier coefficients of two distinct newforms.

Theorem 1.2. Let f and h be two newforms with integral Fourier coefficients of weights 
k1, k2, respectively. Assume that f, h are not of CM type and f, h are not twists of each 
other. Let r1(x) and r2(x) be two polynomials with integral coefficients. For every x > 0, 
let

Tx := {p ≤ x : ap(f) + r1(pk1−1) �= 0 and ap(h) + r2(pk2−1) �= 0}.

For notational simplicity, write ω1 := ω
(
ap(f) + r1(pk1−1)

)
and ω2 := ω

(
ap(h) +

r2(pk2−1)
)
. Then under GRH, for any Borel set A ⊆ R2 with zero measure on the 

boundary,

lim
x→+∞

1
x/ log x#

{
p ∈ Tx :

(
ω1 − log log x√

log log x
,
ω2 − log log x√

log log x

)
∈ A

}
= 1

2π

∫
A

e−
1
2 (x2+y2)dxdy.

Taking A = {(x, y) ∈ R2 : x < y} in Theorem 1.2, we obtain the following result.

Corollary 1.3. With the notation and assumptions of Theorem 1.2,

lim 1 # {p ∈ Tx : ω1 < ω2} = 1
.

x→+∞ x/ log x 2



W. Wang, C. Cheng / Journal of Number Theory 255 (2024) 148–165 151
In particular, given two non-isogenous non-CM elliptic curves E1 and E2 over Q, 
by the modularity theorem and the above result with r1 = r2 = −1 − x, we have the 
following corollary.

Corollary 1.4. If E1 is not a quadratic twist of E2, then under GRH,

lim
x→+∞

1
x/ log x# {p ≤ x : p is of good reduction and ω (#E1(Fp)) < ω (#E2(Fp))} = 1

2 .

Theorem 1.1 follows directly from Theorem 1.2. More precisely, taking r1 = r2 = 0 in 
Theorem 1.2, the following two random variables

(
ω (ap(f)) − log log x√

log log x
,
ω (ap(h)) − log log x√

log log x

)

behave like two independent normally distributed random variables when x goes to 
infinity, so the random variables

Rx(p) := ω (ap(f)) − ω (ap(h))√
log log x

converge in distribution to a difference of two independent standard normal distributions, 
i.e. a normal distribution with mean 0 and variance 2. Hence for any ε > 0,

lim
x→+∞

1
x/ log x#

{
p ≤ x : ap(f) �= 0, ap(h) �= 0, |ω (ap(f)) − ω (ap(h)) |√

log log x
> ε

}

= 1
2
√
π

∞∫
ε

e−x2/4dx.

This implies that for any constant C ≥ 0, the set

{p : ap(f) �= 0, ap(h) �= 0, |ω (ap(f)) − ω (ap(h)) | ≥ C}

has natural density 1. Thus for two newforms which are not twists of each other, the 
number of distinct prime divisors of their Fourier coefficients will always diverge.

This paper is organized as follows. El-Baz, Loughran and Sofos’ theorem is briefly re-
viewed in Section 2. In Section 3, we use the Galois representations attached to newforms 
and the effective Chebotarev density theorem to prove Theorem 1.2 by applying El-Baz, 
Loughran and Sofos’ result. Finally Section 4 contains some examples and generalizations 
of Theorem 1.2.
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1.1. Notation

Let f, g be two complex-valued maps defined on some set D. If g(x) is positive and 
there is a constant C such that |f(x)| ≤ Cg(x) for all x ∈ D, we write either f(x) � g(x)
or f(x) = O (g(x)). We write f(x) = o (g(x)) if limx→∞,x∈D f(x)/g(x) = 0. Throughout 
this paper, π(x) denotes the number of primes less than x; p, � denote prime numbers; 
k1, k2 denote integers at least 2.

2. A multivariate version of the Erdős-Kac theorem

In this section, we reformulate El-Baz, Loughran and Sofos’ result in a concise form 
which is sufficient for our application. Let T be an infinite subset of N. For every x > 1, 
denote by Tx the subset of T consisting of elements less than x. Given a family of integer 
sequences {ai(n)}1≤i≤m,n∈T , we have the following conditions.

C1. The sequences have polynomial growth, in other words, there exists a constant d > 0
such that ai(n) = O

(
nd
)

for all n. Note that this condition is stronger than the 
condition appeared in [4, (2.7)].

C2. For each m-tuple of square-free integers (d1, . . . , dm), write

R(d1, . . . , dm;x) := 1
|Tx|

# {n ∈ Tx : d1 | a1(n), . . . , dm | am(n)} .

Then there exist two functions g and e such that

R(d1, . . . , dm;x) = g(d1, . . . , dm) + e(d1, . . . , dm;x)

for all m-tuples of square-free integers (d1, . . . , dm) whose prime divisors are greater 
than a given constant P . The function g should possess a multiplicative property, 
that is to say

g(a1b1, . . . , ambm) = g(a1, . . . , am)g(b1, . . . , bm) if gcd(a1a2 · · · am, b1b2 · · · bm) = 1.

C3. Let y = xF (x), F (x) = log log log x/
√

log log x, then for all γ > 0,

∑′
|e(d1, . . . , dm;x)| = O

(
(log log x)−γ

)
, (1)

where 
∑′ runs through all m-tuples of square-free integers (d1, . . . , dm) which satisfy 

that the prime divisors of di are greater than P and di < y for every i.
C4. For each 1 ≤ i, j ≤ n, let

gi(d) := g(1, . . . , 1, d
↑
, 1, . . . , 1) and gi,j(d) := g(1, . . . , 1, d

↑
, 1, . . . , 1, d

↑
, 1, . . . , 1).
i i j
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Then for every 1 ≤ i ≤ m,

∑
�>x

g2
i (�) = O

(
1

log x

)
and

∑
�≤x

gi(�) = ci log log x + c′i + O

(
1

log x

)
(2)

for some ci > 0, c′i ∈ R. Moreover for every 1 ≤ i, j ≤ m, i �= j,∑
�

gi,j(�) < +∞. (3)

Note that this condition implies that the covariance matrix in [4, (2.11)] is trivial.

For each integer x > 0, define a uniform measure Px on T as follows. For any subset 
A of T , define the probability measure:

Px(A) := 1
|Tx|

#{n ≤ x : n ∈ A},

then equipping with the discrete σ-algebra, T becomes a probability space. Define the 
random vector Kx : T → Rn via

Kx(n) :=
(
ω (a1(n)) − c1 log log x√

c1 log log x
, . . . ,

ω (am(n)) − cm log log x√
cm log log x

)
.

Recall that a sequence of Rm-valued random vectors (Xn)n≥1 converges in distribution 
to X if the distribution functions of (Xn)n≥1 converge to the distribution function F of 
X for all continuous points of F , it is equivalent to saying that Pn[Xn ∈ A] → P[X ∈ A]
for all Borel sets A ⊆ Rm with P[X ∈ ∂A] = 0 (cf. [2, p. 26]).

The result of [4, Theorem 2.1] claims the convergence of the above random vectors.

Theorem 2.1. If the family of sequences {ai(n)}1≤i≤m,n∈T satisfies C1, C2, C3 and C4, 
then the random vectors

(T,Px) → Rm : n �→ Kx(n),

converge in distribution as x → +∞ to the standard multivariate normal distribution.

Remark 1. Although in the statement of [4] g is defined on all Nm, from El-Baz, Loughran 
and Sofos’ proof it is enough to assume that the support of g is the set of vectors 
(d1, . . . , dm) with square-free entries whose prime divisors are greater than some prime 
P .

Remark 2. In order that the error function satisfies condition (1), it suffices to check the 
following stronger condition: there exist constants k, δ > 0 such that
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e(d1, . . . , dm;x) = O
(
(d1 · · · dm)kx−δ

)
. (4)

Indeed, if inequality (4) holds, then∑′
|e(d1, . . . , dm;x)| � x−δ

∑′
(d1 · · · dm)k

� x−δ
∑′

ymk � x−δymk+m � x−δ,

where 
∑′ runs through all m-tuples of square-free integers (d1, . . . , dm) such that di < y

and p | di ⇒ p > P . The last inequality holds since y = o(xε) for any ε > 0.

Remark 3. If the family of sequences {ai(n)}1≤i≤m,n∈T satisfies C1, C2, C3 and C4, by 
Theorem 2.1 we have the following Erdős-Kac type theorem: for any Borel set A ⊆ Rm

with zero measure on the boundary,

lim
x→+∞

1
|Tx|

#
{
n ∈ Tx :

(
ω (a1(n)) − c1 log log x√

c1 log log x
, . . . ,

ω (am(n)) − cm log log x√
cm log log x

)
∈ A

}
= 1

(2π)m/2

∫
A

e−
1
2 (x2

1+···+x2
m)dx1 · · · dxm.

Moreover if c1 = · · · = cm and A = {(x1, . . . , xm) ∈ Rm : x1 < · · · < xm}, we have

lim
x→+∞

1
|Tx|

# {n ∈ Tx : ω (a1(n)) < · · · < ω (am(n))} = 1
m! .

3. Proof of Theorem 1.2

In this section, we choose the elements of the sequences in Section 2 to be the Fourier 
coefficients of certain newforms. We then check that these sequences satisfy all the con-
ditions in Section 2, then by Theorem 2.1 we get the desired result.

3.1. Images of Galois representations

Let f =
∑∞

n=1 an(f)qn ∈ Z�q� ∩ Sk1(Nf ) be a newform which does not have 
complex multiplication (non-CM, for short). Following the construction of Shimura, 
Deligne and Serre (cf. [3]), attached to f , there exists an �-adic Galois representation 
ρf,� : Gal(Q/Q) → GL2(Z�) which is unramified outside �Nf . Composing with the nat-
ural projection GL2(Z�) → GL2(Z/�Z), we obtain a mod � Galois representation ρf,�
such that for any p � �Nf ,

tr ρf,� (Frobp) ≡ ap(f) mod � and det ρf,� (Frobp) ≡ pk1−1 mod �.

By Ribet’s work [14], the image of the mod � representations can be well described. For 
any sufficiently large prime �, the image of ρf,� is
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G(�, 1) :=
{
u ∈ GL2(Z/�Z) : detu = vk1−1 for some v ∈ (Z/�Z)∗

}
.

Let h =
∑∞

n=1 an(h)qn ∈ Z�q� ∩Sk2(Nh) be another non-CM newform, and we assume 
that there is no Dirichlet character χ such that f = h ⊗χ or h = f⊗χ. Loeffler described 
the image of the adelic Galois representation ρ̂f × ρ̂h, and he proved that the image of 
the adelic Galois representation is open in the sense of [9, Theorem 3.4.1].

For sufficiently large primes � and �′, consider the direct sum

ρ�,�′ := ρf,� ⊕ ρh,�′ : Gal(Q/Q) → GL2(Z/�Z) × GL2(Z/�′Z).

If � = �′, Loeffler’s result implies that the image of ρ�,�′ is

G(�, �) :=
{

(u1, u2) ∈ GL2(Z/�Z) × GL2(Z/�Z) :

detu1 = vk1−1, detu2 = vk2−1 for some v ∈ (Z/�Z)∗

}
.

If � �= �′, by Loeffler’s result again, the image of ρ�,�′ is{
(u1, u2) ∈ GL2(Z/�Z) × GL2(Z/�′Z);

detu1 = vk1−1
1 , detu2 = vk2−1

2 for some v1 ∈ (Z/�Z)∗ and v2 ∈ (Z/�′Z)∗

}
.

For two square-free integers d1, d2, if their prime factorizations are d1 = p1 · · · pr and 
d2 = q1 · · · qs, consider

ρd1,d2
:= ρf,p1

⊕ · · · ⊕ ρf,pr
⊕ ρh,q1 ⊕ · · · ⊕ ρh,qs .

Without loss of generality, we write d1 = LP, d2 = LQ, gcd(P, Q) = 1. By Loeffler’s 
result and the Chinese remainder theorem, the image of ρd1,d2

is G(d1, d2) :=⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(u1, u2, u3, u4) ∈ GL2(Z/LZ) × GL2(Z/LZ) × GL2(Z/PZ) × GL2(Z/QZ) :

detu1 = αk1−1, detu2 = αk2−1 for some α ∈ (Z/LZ)∗,

detu3 = βk1−1 for some β ∈ (Z/PZ)∗,

detu4 = γk2−1 for some γ ∈ (Z/QZ)∗

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

3.2. Chebotarev density theorem

To gain the arithmetic information from the Galois representations, we need the effec-
tive Chebotarev density theorem. The following version of Chebotarev density theorem 
is from Serre [15, Théorème 4].

Theorem 3.1. Let K/Q be a finite Galois extension of number fields with Galois group G. 
Let C be a subset of G which is stable under conjugation, and let Frobp be the Frobenius 
element at an unramified prime p. Denote by πC(x) the set of primes p unramified in 
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K for which Frobp ∈ C and p ≤ x. Assuming that the Dedekind zeta function ζK(s)
satisfies the Riemann Hypothesis, then

πC(x) = |C|
|G|π(x) + O

(
|C|x 1

2

(
log dK
nK

+ log x
))

,

where dK and nK are the discriminant and the degree of the extension K/Q, respectively.

The following estimate is useful in our computation:

log dK ≤ (nK − 1)
∑

p∈P (K)

log p + nK |P (K)| lognK , (5)

where P (K) denotes the set of ramified primes [15, Proposition 6].
We follow the notation in Section 3.1. Given two bivariate polynomials F1, F2 with 

integral coefficients, and for two square-free integers d1, d2 whose prime divisors are large 
enough, define

C(d1, d2) :=
{

(u1, u2, u3, u4) ∈ G(d1, d2) :
F1(tr u1,detu1) = 0, F1(tr u3,detu3) = 0

F2(tr u2,detu2) = 0, F2(tr u4,detu4) = 0

}
.

It is a subset of G(d1, d2) which is stable under conjugation.
Applying the effective Chebotarev density theorem for the fixed field of ker ρd1,d2

, we 
get

1
π(x)

{
p ≤ x : d1 | F1

(
ap(f), pk1−1) and d2 | F2

(
ap(h), pk2−1)}

= |C(d1, d2)|
|G(d1, d2)|

+ e(d1, d2;x).

Let g(d1, d2) := |C(d1, d2)|/|G(d1, d2)|. The multiplicativity of g follows from the iso-
morphism G(d1d

′
1, d2d

′
2) ∼= G(d1, d2) ×G(d′1, d′2) for gcd(d1d2, d′1d

′
2) = 1.

For the remainder term, the degree of the extension is O
(
(d1d2)4

)
(cf. Lemma 3.2), 

by inequality (5) we have

π(x)e(d1, d2;x) = O
(
(d1d2)4x

1
2 log

(
(d1d2)5NfNhx

))
.

So for some ε > 0,

e(d1, d2;x) = O
(
(d1d2)5xε− 1

2

)
.

Remark 4. Note that the above error estimation has a similar form to condition (4). 
Rather, according to Remark 2, a quasi-GRH, which assumes that the associated zeta 
functions have no zero in the region Re(s) > δ for some δ ∈ (1 , 1), is sufficient for our 
2
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purpose, although it seems as difficult as the original GRH. The GRH assumption is only 
used in the proof of inequality (1), which in turn relies on a sufficiently good effective 
version of the Chebotarev density theorem.

3.3. Calculate conjugacy classes

In this section, we verify conditions (2) and (3) in some special cases. Throughout 
this section, we keep the notation in Section 3.2.

Lemma 3.2. Let δ = gcd(� −1, k1−1) and d = gcd(� −1, k1−1, k2−1), then for sufficiently 
large prime �,

|G(�, 1)| = (�− 1)2�(� + 1)
δ

and |G(�, �)| = (�− 1)3�2(� + 1)2

d
.

Proof. The first assertion follows from the exact sequence

1 → SL2(F�) −→ G(�, 1) −→ F∗δ
� → 1.

Similarly, we have the exact sequence

1 → SL2(F�) × SL2(F�) −→ G(�, �) −→ D → 1,

where D = {(vk1−1, vk2−1) : v ∈ F∗
� }. The order of D can be calculated from

1 → 〈g �−1
d 〉 −→ F∗

�
ϕ−→ D → 1,

where g is a generator of F∗
� and ϕ is given by v �→ (vk1−1, vk2−1), so

|D| = �− 1
d

,

the lemma follows. �
Lemma 3.3. Let � be an odd prime. For given t ∈ F� and d ∈ F∗

� ,

# {u ∈ GL2(F�) : tr u = t, detu = d} = �2 +
(
t2 − 4d

�

)
�,

where 
(·
�

)
denotes the Legendre symbol modulo �.

Proof. This follows easily from Table 1. �
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Table 1
Conjugacy classes of GL2(F�).

Representative No. of elements in each class No. of classes tr2 − 4 det(
x 0
0 x

)
1 � − 1 0(

x 1
0 x

)
�2 − 1 � − 1 0(

x 0
0 y

)
�2 + � (� − 1)(� − 2)/2 (x − y)2(

x εy
y x

)
�2 − � �(� − 1)/2 4εy2

ε is a quadratic nonresidue (mod �)

Lemma 3.4. For every δ | k1 − 1, define

Lδ = {� : gcd(k1 − 1, �− 1) = δ}.

Given a bivariate polynomial F1(x, y) with integral coefficients, for every sufficiently large 
� ∈ Lδ, let

NF1(�) =
{
(x, y) ∈ F� × F∗δ

� : F1(x, y) = 0
}
.

Assuming that there exist constants ε ∈ (0, 1] and cδ ∈ R>0 such that

#NF1(�) = cδ� + O(�1−ε),

then

g(�, 1) = cδδ

�
+ O

(
�−1−ε

)
,

and there exist constants c1 ∈ R>0 and c′ ∈ R such that

∑
�>x

g(�, 1)2 = O

(
1

log x

)
and

∑
�≤x

g(�, 1) = c1 log log x + c′ + O

(
1

log x

)
.

Proof. According to Lemma 3.3, we have

|C(�, 1)| = #
{
u ∈ GL2(F�) : F1(tr u, detu) = 0, detu ∈ F∗δ

�

}
=

∑
(x,y)∈NF1 (�)

# {u ∈ GL2(F�) : tr u = x, detu = y}

= �2#NF1(�) + �
∑

(x,y)∈NF1 (�)

(
x2 − 4y

�

)
= �3c + O(�3−ε).
δ
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By Lemma 3.2, |G(�, 1)| = �4/δ + O(�3), hence

g(�, 1) = cδδ

�
+ O

(
�−1−ε

)
, � ∈ Lδ.

The first assertion follows easily from the Euler summation formula.
To check that g(�, 1) has average order c log log x, we need the Mertens’ theorem for 

arithmetic progressions [16]: for any integer m ≥ 1 and integer a which is coprime with 
m, there exists a constant cm,a such that

∑
�≤x,�≡a(m)

1
�

= 1
ϕ(m) log log x + cm,a + O

(
1

log x

)
,

where ϕ(m) denotes Euler’s totient function. If a is not coprime with m, the above sum 
is bounded as x varies. Note that the set {n ∈ N : gcd(n− 1, k1 − 1) = δ} can be divided 
into disjoint arithmetic progressions modulo k1 − 1, so there exist constants αδ, βδ such 
that

∑
�≤x,�∈Lδ

1
�

= αδ log log x + βδ + O

(
1

log x

)
.

Then we have ∑
�≤x

g(�, 1) =
∑

δ|k1−1

∑
�≤x,�∈Lδ

g(�, 1)

=
∑

δ|k1−1

cδδ
∑

�≤x,�∈Lδ

1
�

+ O(1)

=

⎛⎝ ∑
δ|k1−1

cδαδδ

⎞⎠ log log x + c′ + O

(
1

log x

)
. �

Lemma 3.5. For every d | gcd(k1 − 1, k2 − 1), define

Pd = {� : gcd(k1 − 1, k2 − 1, �− 1) = d}.

Given two bivariate polynomials F1(x, y), F2(x, y) with integral coefficients, for every 
sufficiently large � ∈ Pd, let

NF1,F2(�) = {(x1, x2, y1, y2) ∈ F� × F� ×D : Fi(xi, yi) = 0, i = 1, 2} .

Assuming that there exist constants ε ∈ (0, 1] and cd ∈ R�0 such that

#NF1,F2(�) = cd� + O(�1−ε), (6)
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then ∑
�

g(�, �) < +∞.

Proof. For any � ∈ Pδ, by Lemma 3.3 we have

|C(�, �)|

= #
{

(u1, u2) ∈ GL2(F�) × GL2(F�) :
F1(tr u1,detu1) = 0,

F2(tr u2,detu2) = 0,
(detu1,detu2) ∈ D

}

=
∑

(xi,yi)∈NF1,F2 (�)

#
{
u1 ∈ GL2(F�) :

tr u1 = x1

detu1 = y1

}
#
{
u2 ∈ GL2(F�) :

tr u2 = x2

detu2 = y2

}

= �4#NF1,F2(�) + O(�4)

= �5cd + O(�5−ε).

By Lemma 3.2, |G(�, �)| = �7/d + O(�6), we have

g(�, �) = cdd

�2
+ O

(
�−2−ε

)
, for � ∈ Pd.

Hence ∑
�≤x

g(�, �) =
∑

d|(k−1,k′−1)

∑
�≤x,�∈Pd

g(�, �) �
∑
�≤x

1
�2
,

the last series converges, which completes the proof. �
Lemma 3.6. If F1(x, y) = x + r1(y) and F2(x, y) = x + r2(y), r1(y), r2(y) ∈ Z[y], then 
conditions (2) (3) are satisfied and the constants c1, c2 in condition (2) are equal to 1.

Proof. For any δ | k − 1, � ∈ Lδ,

#NF1(�) =
∑

y∈F∗δ
�

# {x ∈ F� : x = −r1(y)}

=
∑

y∈F∗δ
�

1 = �− 1
δ

.

By Lemma 3.4, g(�, 1) = �−1 +O(�−2) for all sufficiently large � and in the same manner 
g(1, �) = �−1 + O(�−2). Therefore condition (2) follows from the Mertens’ theorem. 
Similarly for any d | (k − 1, k′ − 1), � ∈ Pd,
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#NF1,F2(�) =
∑

(y1,y2)∈D

# {(x1, x2) ∈ F� × F� : x1 = −r1(y1), x2 = −r2(y2)}

=
∑

(y1,y2)∈D

1 = �− 1
d

,

this calculation combined with Lemma 3.5 completes the proof. �
3.4. Conclusion

The polynomial growth condition C1 follows from Hecke’s bound, which states that for 
cusp form f of weight k, ap(f) = O(pk/2). We have checked the multiplicativity of g and 
the error condition in Section 3.2, then combined with Lemma 3.6, all the conditions C1-
C4 have been verified. We claim that |Tx| ∼ x/ log x as x goes to infinity, this follows from 
[15, Théorème 15]: # 

{
p ≤ x : ap(f) + r1(pk1) = 0

}
= o(x/ log x). Hence Theorem 1.2

follows from Theorem 2.1 and Remark 3.

4. Remarks and generalizations

4.1. Examples

Let f and h be two newforms as in Theorem 1.2 and assuming that the generalized 
Riemann hypothesis is true for all Dedekind zeta functions of number fields. We choose 
r1 = r2 = 0, −y − 1, respectively. Then by Theorem 1.2, we have

lim
x→+∞

1
x/ log x# {p ≤ x : ap(f) �= 0, ap(h) �= 0, ω (ap(f)) < ω (ap(h))} = 1

2 ,

lim
x→+∞

1
x/ log x#

{
p ≤ x : p � NfNh, ω

(
pk1−1 − ap(f) + 1

)
< ω

(
pk2−1 − ap(h) + 1

)}
= 1

2 .

We remark here that Theorem 1.2 also holds if we replace ap(f) +r1(pk1) and ap(h) +
r2(pk2) by F1(ap(f), pk1) and F2(ap(h), pk2) if the bivariate polynomials F1, F2 satisfy 
conditions in Lemma 3.4 and Lemma 3.5. For example, take F1 = F2 = x2 − y and write 
δi = gcd(� − 1, ki − 1). Since ki is even, we have

|NFi
(�)| = #

{
(x, y) ∈ F� × F∗δi

� : x2 = y
}

= �− 1
δi

.

Let D = {(vk1−1, vk2−1) : v ∈ F∗
� }, then

|NF1,F2(�)| =#
{
(x1, x2, y1, y2) ∈ F� × F� ×D : x2

1 = y1, x2
2 = y2

}
=

∑ (
1 +

(
y1

�

))(
1 +

(
y2

�

))
= O(�).
(y1,y2)∈D
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By Theorem 2.1, Remark 3, Lemma 3.4 and Lemma 3.5, we conclude that

lim
x→+∞

1
x/ log x#

{
p ≤ x : p � NfNh, ω

(
ap2(f)

)
< ω

(
ap2(h)

)}
= 1

2 .

4.2. On m newforms

Loeffler pointed out that the open image theorem also holds for three or more new-
forms which are not twists of each other (see [9, Theorem 3.4.2]). Similar arguments can 
be applied to these newforms and we have the following generalization.

Theorem 4.1. Let f1, . . . , fm be a family of non-CM newforms with integral Fourier co-
efficients of weights k1, . . . , km, respectively. Let r1(x), . . . , rm(x) be polynomials with 
integral coefficients. For every x > 0, let

Tx :=
{
p ≤ x : ap(fi) + ri(pki−1) �= 0, i = 1, . . . ,m

}
.

For simplicity of notation, write ωi instead of ω
(
ap(fi) + ri(pki−1))

)
. Assuming GRH, 

then either

• there is a Dirichlet character χ such that fi = fj ⊗ χ for some i �= j;
• or for any permutation σ ∈ Sn,

lim
x→+∞

1
x/ log x#

{
p ∈ Tx : ωσ(1) < · · · < ωσ(m)

}
= 1

m! .

4.3. On combinations of newforms

Let f be a cusp form of weight k1 such that

(i) f =
∑m

i=1 aifi, where each fi is a non-CM newform with integral Fourier coefficients 
and ai ∈ Z \ {0}.

(ii) For i �= j, there exists no Dirichlet character χ such that fi = fj ⊗ χ.

Let h be another cusp form of weight k2 satisfying the above conditions. Write h as a sum 
of distinct newforms: h =

∑n
j=1 bjhj . We further assume that there exists no Dirichlet 

character χ such that fi = hj ⊗ χ or hi = fj ⊗ χ for 1 ≤ i ≤ m, 1 ≤ j ≤ n. For every 
x > 0, let

Tx := {p ≤ x : ap(f) �= 0 and ap(h) �= 0} .

Proposition 4.2. With the above notation, under GRH, for any constant C ≥ 0,

lim 1 # {p ∈ Tx : |ω (ap(f)) − ω (ap(h)) | ≥ C} = 1.

x→+∞ x/ log x
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Proof. The strategy is the same as the proof of Theorem 1.2, we sketch the proof in 
the following. We need to check that the pair (ap(f), ap(h)) satisfies C1, C2, C3 and C4 
in Section 2. The polynomial growth condition is obvious. For two square-free integers 
d1, d2 with sufficiently large prime divisors, we consider the Galois representation

ρd1,d2
=

⊕
1≤i≤m

ρfi,d1
×

⊕
1≤j≤n

ρhj ,d2
.

The image of ρd1,d2
is well described by Loeffler’s theorem. It has a similar form to 

G(d1, d2) in Section 3.1, denote by G̃(d1, d2) the image of ρd1,d2
. Without loss of gener-

ality, we write d1 = LP, d2 = LQ, gcd(P, Q) = 1, then G̃(d1, d2) is the direct product of 
the following two groups:

G̃(L,L) =

⎧⎪⎪⎨⎪⎪⎩
(u1, . . . , um, v1, . . . , vn) ∈

m∏
i=1

GL2(Z/LZ) ×
n∏

j=1
GL2(Z/LZ) :

∀i, j, detui = αk1−1,det vj = αk2−1 for some α ∈ (Z/LZ)∗

⎫⎪⎪⎬⎪⎪⎭ ,

G̃(P,Q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(u1, . . . , um, v1, . . . , vn) ∈

m∏
i=1

GL2(Z/PZ) ×
n∏

j=1
GL2(Z/QZ) :

∀i, detui = αk1−1 for some α ∈ (Z/PZ)∗,

∀j, det vj = βk2−1 for some β ∈ (Z/QZ)∗

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

By the Chebotarev density theorem, we have

1
π(x) {p ≤ x : d1 | ap(f), d2 | ap(h)} = |C̃(d1, d2)|

|G̃(d1, d2)|
+ ẽ(d1, d2;x),

where C̃(d1, d2) is the union of the conjugacy classes of G̃(d1, d2) whose elements satisfy 
a trace zero condition. For example, if gcd(d1, d2) = 1 or d1 = d2, then

C̃(d1, d2) =

⎧⎨⎩(u1, . . . , um, v1, . . . , vn) ∈ G(d1, d2) :
m∑
i=1

ai trui = 0,
n∑

j=1
bj tr vj = 0

⎫⎬⎭ .

Let g̃(d1, d2) := |C̃(d1, d2)|/|G̃(d1, d2)|, according to our construction, the multiplica-
tivity of g̃ is obvious. Under GRH, the error condition (4) is satisfied. We need to check 
conditions (2) and (3). We claim that for any sufficiently large �,

g̃(�, 1) = 1
�

+ O

(
1
�2

)
and g̃(1, �) = 1

�
+ O

(
1
�2

)
.

The proof runs as in that of Lemma 3.4. Let δ = (� − 1, k1 − 1), the order of
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G̃(�, 1) =
{

(u1, . . . , um) ∈
m∏
i=1

GL2(F�) : ∀i, detui = αk1−1, α ∈ F∗
�

}

is �3m+1/δ +O(�3m). It remains to calculate the order of C̃(�, 1). Note that the order of

N(�) := {(x1, . . . , xm) ∈ F� × · · · × F� : a1x1 + · · · + amxm = 0}

is �m−1. Let Δ := {(vk1−1, . . . , vk1−1) : v ∈ F∗
� }, we have

|C̃(�, 1)| = #
{

(u1, . . . , um) ∈ G̃(�, 1) : a1 tru1 + · · · + am trum = 0
}

=
∑

(x1,...,xm)∈N(�)

∑
(y1,...,ym)∈Δ

∏
1≤i≤m

# {ui ∈ GL2(F�) : tr ui = xi, detui = yi}

=
∑

(x1,...,xm)∈N(�)

∑
(y1,...,ym)∈Δ

(
�2m + O

(
�2m−1))

= �3m/δ + O
(
�3m−1) .

Similar calculation holds for g̃(1, �) and the claim follows. Using the same argument as 
before, we have

|G̃(�, �)| = �3m+3n+1/d + O
(
�3m+3n) and |C̃(�, �)| = �3m+3n−1/d + O

(
�3m+3n−2) ,

where d = gcd(k1 − 1, k2 − 1, � − 1). Hence

∑
�

g̃(�, �) < +∞.

Finally, by a standard sieve method combining Galois representations (for example see 
[17]), we have # {p ≤ x : ap(f) = 0} = o(x/ log x), hence |Tx| ∼ x/ log x as x goes to 
infinity. The result then follows from Theorem 2.1. �
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