MULTIPLICITY ONE OF REGULAR SERRE WEIGHTS

CHUANGXUN CHENG

ABSTRACT. We consider a potentially Barsotti-Tate deformation problem of a modular
Galois representation. By constructing a Diamond-Taylor-Wiles system, we prove an
R = T theorem and a multiplicity one result in characteristic 0. Applying this result, we
then prove a multiplicity one result in characteristic p, which provides certain evidence
for a conjecture of Breuil.

1. INTRODUCTION

In this paper, we prove a multiplicity one result for Galois representations in cohomology
groups of Shimura curves with certain non-trivial coefficients. Namely, we show that, under
some technical conditions, the localized mod p cohomology group of a Shimura curve is
free of rank two over the localized Hecke algebra. In the modular curves case, this is
well-understood by [24], [27], and [37] (and so we exclude this case in this paper). The
main tool we use is Diamond’s refined Taylor-Wiles construction. In this approach, the
freeness part becomes a consequence of the construction.

The novel part of this paper is that, by using a lifting result of Toby Gee [20] and
transferring the problem in characteristic p to a problem in characteristic 0, we are able to
deal with non-trivial coefficients associated to regular Serre weights (see Definition 2.6).
In particular, we do not need a parity condition on the weights. Our results in this paper
deal primarily with the minimally ramified case because of the lack of a general Ihara’s
lemma for Shimura curves.

To explain our results in more detail, we introduce some notation. Let F' be a totally
real field with degree d = [F' : Q]. Let p > 3 be a prime number which is unramified in
F. The unramifiedness of p is crucial for Corollary 2.8 and crucial for the deformation
problem we consider in this paper. (In particular, we use the identity d = Zmp[kv Iy,
where k, is the residue field of F,.) Let G =[], GLa(ky). Fix an archimedean prime 7y
of F' and a finite set Sp of non-archimedean primes such that

(1.1) | Sp|l=d—1 (mod 2).

Let D be the quaternion algebra over F' which is ramified at the primes in Sp U {v |
v|oo,v # 11} We also use Sp to denote the ideal which is the product of the primes in
Sp. Fix Op a maximal order of D. Let G = Resp/gD> be the algebraic group over Q
associated to D*. Then G(Q) = D*, G(R) ~ GLs(R) x (H*)?! where in the second
term there appear d — 1 copies of the multiplicative group of non-zero elements of the
classical Hamiltonian quaternion H.

Let Ky denote [[,(Op ® OF,)*, where v runs through all finite places of F. For v { Sp,
fix isomorphisms D ® F,, = My(F,) and (Op ® OF,)* = GL3(Op,). Define K;(N), for
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an ideal N prime to pSp, to be the subgroup of Ky consisting of those u for which wu,

congruent to mod (v % (N)) for every v | N.

*
0

Let p : Gp — GLs(F,) be a continuous, irreducible Galois representation with conductor
N, where (N " p)=1land N " is square free. Assume that p comes from the Shimura curve
M, () associated to the quaternion algebra D, i.e., p is a subquotient of HI(MKl(N) ®
F, Fyo)m, where 0 : G — Aut(W/H:-p) is a Serre weight, F,op is the sheaf associated to o°P
(see section 2.1), m is a maximal ideal of the corresponding Hecke algebra, N is square
free and N' | NSp. Let a = dimg  Home . (p, H (Mg, (ny ® F, Fgor)m). We call a the
multiplicity of p in H' (Mg, (n) ® F, Fyop)m.

In the case of modular curves, we have multiplicity one (i.e. a = 1) except some
very special cases (see for example [27] Theorem 5.2). But from [28] Theorem 3 and [14]
Theorem 3.6, we may have higher multiplicities in the case of Shimura curves. In this
paper, we consider the case when o is regular (see Definition 2.6 below). We show that, if
p satisfies some technical conditions (see equation (3.2) below), then we have multiplicity
one. The main result is Theorem 5.3. It follows from Theorem 4.1, which proves a
multiplicity one result in characteristic 0.

The paper is organized as follows. In section 2, we recall some basic properties of
Shimura curves and Serre weights. Specially, we introduce the lifting result of Toby Gee,
which plays an important role in this paper. In section 3 and section 4, we consider
a potentially Barsotti-Tate deformation problem and construct a Taylor-Wiles system.
Then applying Diamond’s result, we prove an R = T theorem as well as a freeness result
in characteristic 0 (Theorem 4.1). In this case, we can also compute the rank because
we have Lemma 4.10, which is proved by the comparison theorem in characteristic 0. In
section 5, we show how we can deduce multiplicity one in characteristic p from multiplicity
one in characteristic 0 and prove our main theorem (Theorem 5.3). We also explain how
we can get a stronger result (Theorem 5.14) by considering another deformation problem.
To compute the size of local deformation rings at primes dividing p in the potentially
Barsotti-Tate deformation problem, we use the theory of Breuil modules with descent
data. We introduce this theory and prove Lemma 3.3 in section 6. In section 6.1, 6.2, and
6.3, the notation is not consistent with the notation in other parts of this paper.

1.1. Notation. If L is a perfect field we will let L denote the algebraic closure of L and
G, its absolute Galois group Gal(L/L). If L is a number field, we let A denote the ring
of adeles over L, and A7° denote the ring of finite adeles over L. If L = Q, we write A
and A for Ag and Ag’, respectively.

Let F', p, D, G, p, N be as above. For any prime v of F, let F, be the completion of
F at v, Op, the ring of integers of F),, k, the residue field of Op,, w, a uniformizer of
OF,, and Frob, € Gal(F,/F,) an arithmetic Frobenious element. Write I, C G, for the
inertia group at prime v.

Let X be a set of primes of F. If a group U has the form U = [], .5, Uy, and J is an
ideal which is a product of some elements in ¥, we will write U” for the subgroup of U
given by U’ = HUGE,UJ[J U, and U for the subgroup of U given by U; = Hvez,vu U,.

Let Ky and K;(N), for N prime to pSp, be the subgroups of G(A) as defined before.
We then write K = K1(N), K' = K{(N)? x (14 pM(0,)) C K. Suppose that n is an
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ideal of Op such that (n,pNSp) = 1, and for each finite place v of F dividing n, H, is a
quotient of (O, /ny)*. Then we will write H for [[,, Hy. We willlet Ky (n) =[], K (n)o

denote the open subgroup of K defined by setting Kz (n), to be the subgroup of GL2(OF,)

b . . . .
) with ¢ € n, and, in the case v | n, with ad~! mapping to 1

consisting of elements (Ccl d

n H,.
For v | n we have the decompositions

g, (50 9) wutw = T1 (5 ) Ko,

a€ky

Katw. (2 ) K, - il (& 9) s,
" Kp(n)y <Tf £U> Kp(n)y = <7)U £v> Kp(n)o,

and for v t nSp we have the decomposition

Ka(n), (wov 2) KH<n>U—(}) ;’v) wu, [TTT (7;’ ‘}) Ki(n)y),

a€ky

where a is some lift of a to Op,.

In this paper, except the last section, F will denote a sufficiently large finite extension
of Qp. It will serve as the coefficient ring. Let O and « be its ring of integers and residue
field. Denote by Cp the category of local complete Noetherian O-algebras with residue
field k.

2. SHIMURA CURVES
Let X be the G(R)-conjugacy class of the map
h:C* = GR) ~GLy(R) x H* x --- x H*,

a
—b
with the union of the upper and lower half plane by the map ghg™! + g(i), where g(i) =

-1
which maps a + b to (( Z) ,1,...,1). The conjugacy class X is naturally identified

et org = (¢ 1)

Let M = M(G,X) = (Mpg)g be the canonical model defined over F' of the Shimura
variety defined by G and X. (Here H runs through the open compact subgroups of
G(A>).) Each My is proper and smooth but not necessarily geometrically connected
over F', and

My (C) ~ G(Q)\X x G(A>™)/H.

For each H and H’ sufficiently small (see [7] Lemma 1.4.1.1) and g € G(A*) with
g 'H'g C H, there is an etale map 0g : My — Mpy which on complex points coincides
with the one induced by right multiplication by g in G(A). For a normal subgroup H’
of H, the etale cover g, : My — My is Galois, and the mapping g~ ! 04 defines an
isomorphism of H/H' with a group of covering maps.
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2.1. Sheaf cohomology and the Hecke algbra. Suppose that H is an open compact
subgroup of G(A*). We assume that H is sufficiently small and H is of the form [], H,
with H, C (Op ® Op,)*. Suppose that ¥ is a finite set of primes, and that for each
v € X we are given a finitely generated O-module V,, with a left action of H, which is
continuous with respect to the discrete topology of V,,. We can then associate to the
H-module V =), V, a locally constant sheaf

(2.1) Fv =GQ\GA) xV)/H

My

on M. In order to define Hecke operators, we assume that for all v € ¥ we have
H,=(0Op ® Op,)* and H, acts trivially on V. Write F = Fy.

Suppose that H and H' are sufficiently small open compact subgroups of G(A*), and
L F9H g |

g € G(A*). There is a natural identification of sheaves on M, , =
HnNgH g_1

ﬂgH/g_
FHOH 97" fere FR means that we consider F as a sheaf over the curve M r. Then define
)

. _ H’ -1
— H' (M H’g—lmH®F’fg I\,

g gH g~ 1nH

[HgH']: H' (M @ F, F*') = H (M1, @ F, F7 |

ﬁg_ng

(2.2) )

. — ro—1
= H/ (M g 1y @ F, FH9T 97

— H)(My @ F,FH),

where the first arrow is the restriction map, the second arrow is induced from g, :
MH’mg—ng — MgH’g—lmH’ and the last arrow is the trace map. See section 15 of [22]
for more details.

Let H=H . If q is a prime of Op which is unramified in D and does not divide p, let

wq € AP be such that wy is a uniformizer at q and is 1 at every other place. Then write

T,=[H <°‘(’)q (1)) H.

If also Hy = GL2(0Oy), define
Sq=[H (“’q 0> H.

0wy
If H = Ki(N), denote by To(H,V) the O-algebra generated by T for q { NSp and S,
for q with Hy = GL2(Oq). Write To(H,V) = To(H,V) ® A for any O-algebra A. Write
Uy =T, ifq| N.

Definition 2.1. A maximal ideal of T4(H,V) is Eisenstein if it contains T, — 2 and
Sy — 1 for all but finitely many primes v of F' which split completely in some finite abelian
extension of F'.

Lemma 2.2. Suppose that H, V are as above and let m be a non-FEisenstein maximal

ideal of To(H, V') with finite residue field. Then
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(1) H*(My ® F, F)m and H*(My ® F, F)w vanish.
(2) If 0 — V' =V = V" =0 is an exact sequence of O[H]-modules, then the sequence

0 H' My ®F,Fp)m = H(My @ F,Fy)m — H' (Mg @ F, Fyyr )m — 0

18 exact.
(8) If V' is free over O, then the natural map

H'(Mp ® F,Fy)n ®0 k = H' (Mg @ F, Fygon)m
s an isomorphism.

Proof. (1) By Lemma 2.2 of [5], the action of G- on the cohomology groups HO(My®F, F)
and H*(My ® F',F) factors through an abelian quotient. Since m is non-Eisenstein, the
localizations vanish.

(2) Certainly, we have a short exact sequence of sheaves

0— Fy — Fv — Fyn — 0.
Write down the long exact sequence of cohomology groups
> H' (Mg @ F,Fyn) - H(My @ F,Fy) » H' (My ® F,Fy) —

HY(My @ F,Fyn) = H*(My @ F, Fi) — ---
By (2), we get the desired short exact sequence after localization.

(3) We have a short exact sequence 0 -V — V — V ®p k — 0. Then by (3), we have a
short exact sequence

0= H My ®@F,Fy)m — H (Mg @ F,Fy)m — H' (My @ F, Frgor)m — 0,

which gives the desired isomorphism. O

2.2. Serre weights. For our fixed F' and p, since p is unramified in F', G = Hv‘p GLa(ky) =

GL2(Op/p). A Serre weight is an isomorphism class of irreducible F,-representations of
G. They can be described explicitly as follows. For each prime v of F' dividing p, let S, be
the set of embeddings A : k, — F,. Then every irreducible F,-representation of GLs(k,)
is equivalent to one of the form

Vi = ) (det™ @, Sym™ k%) @5 Fy,
AESy,

where ay, bAGZ,d’;&(pil),OSa)\gp—landl§b)\§pf0reach)\€SU. The

irreducible representations of G are thus of the form V' = ®,,V,,, where the tensor product

is over F,, and each V,, is of the form V., ; for (@, b) as above. We write Vo for the dual of
V.

Definition 2.3. Suppose that p : Gp — GL»(IF,) is a continuous, irreducible represen-
tation and V is a finite-dimensional I_Fp vector space with a left action of G. We say that
p is modular of weight V' if there is a quaternion algebra D over F' split at the primes
above p, at 71 and at no other archimedean places of F', and a sufficiently small open
compact subgroup U of G(A*°) of level prime to p, such that p is an IF‘pG r-subquotient of

HLY(My ® F, Fyor) =~ Homg(V, HY, (M, ® F,F,)), where U = Ker(U — G).
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Remark 2.4. By Lemma 2.4 of [5], we see that the above definition is equivalent to saying
that p is modular of weight V if there is a quaternion algebra D over F split at the primes
above p, at 7 and at no other archimedean places of F', and a sufficiently small open
compact subgroup U of G(A™) of level prime to p, such that p is an F,G p-subquotient
of (Pic®(M)[p|(F) ® V)9. Here U = Ker(U — G), G acts diagonally on the tensor
product, and G g acts trivially on V.

In this paper, we use the cohomology version of the definition. For an irreducible
p: Gr — GLa(F,), from Corollary 2.12 of [5], the following conditions are equivalent:
(1) p & py for some holomorphic cuspidal automorphic representation m of GLo(Ap);
(2) p & pr for some holomorphic cuspidal automorphic representation 7 of GLa(Af) of
weight (2, 0);
(3) p = xpr for some holomorphic cuspidal automorphic representation m of GLy(Afr) of
weight (2,0) and level U = UPU,(p), where U;(p) = {((CCL: ZZ) Jolp € I GL2(OF,) |
¢y =0 (mod v) and d, =1 (mod v)};
(4) p is modular of weight V' for some Serre weight V.

Let p : Gp — GLy(F,) be a continuous, irreducible and totally odd representation. In
[5], the authors construct a set W (p) of Serre weights, and make the following conjecture.

Conjecture 2.5. If p: Gp — GLy(F,) is modular, then
W(p) =A{V | p is modular of weight V}.

For the detailed construction of W (p) and related topics, we refer to [5]. In fact, for
each v|p, they define a set of representations W, (p) of GLa(k,) depending on p|z,, and
then define W(p) as the set of Serre weights of the form ®,V, with V,, € W,(p). This
conjecture has been proved in many cases by Toby Gee [20]. In a recent paper [21], the
authors proved the conjecture completely. We give the following definition of regularity
as in paper [20].

Definition 2.6. We say that a weight V. ; for GLa(ky) is regular if 2 < b < p — 2 for all

b. We say that a Serre weight V' = ®,,,V; is regular if all the V;’s are regular.

Theorem 2.7 (Toby Gee). Suppose that V_.; € Wy(p) is regular. Then there is a rep-
resentation f/a’g of GLa(ky) over Q, with a Zy-lattice I(V(u;), such that there is precisely

one of the Jordan-Holder factors of the reduction mod p of I(V_ ;) belonging to Wy(p), and
that factor is isomorphic to V. .

Proof. In Proposition 3.5.2 and Proposition 4.1.2 of [20], the author constructed an explicit
I(V, ;) (for each regular V') which satisfies the conditions in the theorem. In this paper,

we will take I(V. ;) to be the one constructed in [20]. O

Corollary 2.8. Let p : Gp — GLy(IF,) be an irreducible modular representation. If
V e W(p) is a regular weight of p, then there exists a representation V of G over Qp
with a Zp—lattice Iy, such that there is precisely one of the Jordan-Holder factors of the
reduction mod p of Iy in W(p), and the factor is isomorphic to V.
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Proof. Assume that V = ®,,V.7. Then by the above theorem, we can take Iy to be
@ulpl (V. 5), where I(V.7) is the one constructed in [20]. O

3. THE DEFORMATION PROBLEM

For our fixed field F, quaternion algebra D, and group K = K;(NV), let Mg be the
corresponding Shimura curve. Let V be a regular Serre weight such that V = ®v‘p V(_i’g.
Let VP denote the dual of V. We assume that V' is defined over k.

The cohomology group H' (Mg ®F, Fyop) is a module over the Hecke algebra T, (K, V).
Let m be a non-Eisenstein maximal ideal of T, (K, V°). We have an irreducible Galois
representation ([6], [33])

Tm : Gp — GLo(Tx (K, VP)y)

such that if v 4 SpNp, then ry is unramified at v and Trace(ry(Frob,)) = T,. Write 7
for r mod (m), then 7 is a modular representation of weight V.

Let Iy be the lattice attached to (¥ ® F,, V) constructed in the proof of Corollary
2.8. We may assume that V is defined over E and Iy is an O-lattice in V. We also
have a sheaf .7-"1319 in characteristic 0. The projection Iyy — V induces natural maps
H' (Mg @ F, For) = H' (Mg @ F, Fyor) and To(K, Ij/) — Ty (K, V). We also write m
for the preimage of m C Ty (K, V) in To(K, I;’) under the natural map. We have the
following diagram.

(3.1) GLa(To(K, I} )m)

Py
Gp —™ GLy(T. (K, VP)y)

We will write p for pp mod (m). Notice that it is the same as 1y (mod m). We impose
the following conditions on p:

p is absolutely irreducible;

if | N, then p is ramified at v;

2

(3:2) if v|Sp, and Norm(v)? =1 mod p, then j is ramified at v;
if v|p, then Endg (g, 1((plv) ® F,) = F,.

Let e : Gp — @; be the cyclotomic character. Let x : A% /F* — O* be a character such
that x|px is trivial if v { pN’, e(x o Art~1) reduces to det(py), and therefore reduces to
det(p). This is possible since we chose E to be sufficiently large.

The rest of this section is devoted to stating a deformation condition for p which is a
good candidate for having To (K, I}})m as the universal deformation ring.

3.1. Deformation conditions at v|p. Fix v|p. If a p-adic representation p, of G, is
potentially semistable, one associates to p, a Weil-Deligne representation WD(p,) over
Qp (See for example Appendix B.1 of [11]). Then p, becomes semistable over L if and
only if WD(p,)|r, is trivial. The Galois type 7(p,) associated to such p, is defined to be
the isomorphism class of the representation WD(p,)]|r, -
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Let V = ®’U|p
constructed at the beginning of this section. Let p, = plg,, . For A € Co, we consider the

deformations p, : Gg, — GLa(A) of p, with the following properties:

(1) py is potentially semistable with Hodge-Tate weights (0, 1),

(2) 7(py) is isomorphic to T,

(3) det(py) = e(x o Art!) where € is the cyclotomic character and y is the character
defined as above.
Here if p, is reducible, then 7, is defined by equation (3.4); if p, is irreducible, then 7,
is defined by equation (3.5). Define H}(GFU, Ad(py)) € HY(GF,, Ad(p,)) to be the set of
extensions of p, by itself which are potentially Barsotti-Tate. We will use the theory of
Breuil modules with descent data to compute the size of H}(G F,, Ad(py)). For a detail
introduction to this theory, please see section 6.

V.7 be the regular Serre weight and p be the representation of Gp

3.1.1. Define 7, in the reducible case. Assume that

Py ~ Yoo is reducible and nonsplit.
0

1
Let L = F,((—p)?*-1), where d, = [F, : Qp]. Let w : Gal(L/F,) — kJ be the map
1

defined by w(g) = g(7)/m (mod 7), where m = (—p)r¥-1 is a uniformizer of L. Fix
T0 ¢ ky — I_Fp and define 7; = 79 o Frob~® where Frob is given by (z ~ zP). Define
wi = Tow : Gal(L/F,) — I_F;. We assume that s is large enough that it contains the
image of one, and hence all, w;.

Let S, = Hom(F,,Qp) = Hom(ky,F,) = Z/d,. From section 3.5 of [20], there exists a
subset J, C S, = Hom(F,,Q,), such that

S I | A A I

€S, 1€y €Sy 1€ Jy
We define
b; —dy (i+1 if 1 € J,
(33) =t onlitl)  fie
p—>bi—9d;5(+1) ifiglJ,
lifie J
where 0, (1) = 1 Z € Ju We then define a type 7, by
0if i & Jy.

TJu = )ZJU @XJ'U H @1627
1€Sy
where ~ means Techmuller lift and
i bi—
XJU:HCU;I Hwi P,
€S i€y

In the reducible case, we define
(3.4) Ty =TJ,-

Remark 3.1. Notice that in this case, the lattice constructed by Gee in Theorem 2.7 is a
lattice in I(X7,, X, [[ieg, @;'), which is a representation of G'La(k,) defined in section 1
of [15].
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3.1.2. Define 1, in the irreducible case. Assume that p, : Gp, — GLy(k) is irreducible.
Let F) be the degree two unramified extension of F,. Let ki, be the residue field of F}.
1
Then k], has degree two over k,. Let L = F)((—p)»**-1), where d, = [F, : Qp]. Let w :
1

Gal(L/F,) — k;* be the map defined by w(g) = g(m)/m (mod ), where m = (—p)»*¥ -1
is a uniformizer of L. Fix 79 : k;, — F) and define 7; = 79 o Frob™" where Frob is the
Frobenius of &, given by (z + ). Define w; = 7;0w : Gal(L/F,) — F,\. We assume that
K contains the image of all w;. B - B

Let S, = Hom(F,,Q,) = Hom(k,,F,) = Z/d,, S, = Hom(F},Q,) = Hom(k,,F,) =
Z/2d,. We say a subset J, C S, is full if the restriction to J, of the natural projection

7 : 8" — S is a bijection onto S. From section 4.1 of [20], there exists a full subset
Jy C Sl, = Hom(F},Q,), such that

b
Y ~ Qo HUEJ’U an 0
p‘IF{) H wo' < 0 Ho_ng wga>

UES’U
where we write a; and b, for ar(s) and by (,) respectively.
For the given regular weight V_; of GLa(k,) and the full subset J, C ', we define a
representation of GLy(k,) and a type as follows. Let Kj = n(J, N{1,---,dy}). Then let

bi+5KJU(1)_1 ifOIiEKJU
p—bi+5K1(1)—1 ifOZi%KJU
C; = Ju
") b+ 0k, (i + 1) if0+£icKjy,
p—bi =0k, (i+1) H0#ig Ky,
Define a character
-4 1 ) _
vy, = oKJ()szql szlp
1€Sy €K g
Then we define
dy
I, = O(,aq, [[2F)
=1
and
do i do
75, = $a,ba, [ [ @ (bs,@a, [J @57
i=1 =1

Here ~ means Techmuller lift, © (1, &g, Hf;l @;") is a cuspidal representation of GLa(k,)
defined in section 1 of [15]. We define

(3.5) Ty =TY,.

Remark 3.2. In this case, the lattice constructed by Gee in Theorem 2.7 is a lattice in
7 ~. d»u ~Cj

O(ts,wa, [ 1321 @;")-

3.1.3. Local Selmer groups. Fix v|p. Recall that H}(GFU,Ad(ﬁv)) C HYGE,, Ad(py)) is
the subset of infinitesimal deformations of p, which are potentially Barsotti-Tate. We
have the following lemma.
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Lemma 3.3. If p, is non-split, then
(1) dim,; H}(GR,, Ad(py)) =1 + dy.
(2) dim,, H{(GF,, Ad®(py)) = d,.

This lemma is proved in section 6.4 by using the theory of Breuil modules with descent
data.

3.2. Deformation conditions at primes dividing NSp. (The argument in this section
is based on the idea in [35] section 2.2.) Fix a finite prime v|N.Sp. If v| N, then p is ramified
at v, and we consider the deformations p, of p|g,, such that p,(l,) C <é I) (See section
2.7 of [12] for more details.)

If v|Sp, we need to consider the deformations of p which are special at v. Let g
be a weight (2,...,2) Hilbert eigenform such that p, ~ p. Let w4 be the automorphic

representation of GLa(Ap). Then the local component 7, ,, is special of conductor v if and
only if pg |7,~ (é T) with * ramified.

First, if p is ramified at v, we get a suitable deformation condition at v by requiring the
restriction to I, to be unipotent.

If p is unramified at v, we have to rule out those deformations of p arising from Hilbert
modular forms which are not special at v. Note in this case, ¢(y o Art™!) = e.

Lemma 3.4. Let v { p be a finite prime such that p { (Norm(v)? — 1). Let p, : Gp, —

Norm(v) 0
)

Then every deformation of p, over an O-algebra A € Co is strictly equivalent to an upper

GLs(k) be an unramified representation. Assume that p,(Frob,) = £

triangular representation p such that p(I,) C <é T)

Proof. Let my4 be the maximal ideal of A. Since p, is unramified, p(I,) C 1 4+ my, and
the wild inertia group acts trivially. Let f be Frob, in Gf,, and let ¢ be a topological
a 0
0 b
with a = +Norm(v), b = £1 (mod my). It suffices to prove that p(t) has the form

(é i) for some ¢+ € my. By induction on n, we write p(t) = (1) Lf) + O, with

0, = (i” Z") = 0(mod m%). Using the relation ftf~' = tNo™(") we have
n n

generator of I{%™m¢. Since p { (Norm(v)? — 1), we may assume that p(f) =

Pt = (<(1) T ) + 0Nt = <(1) NO”?“””) + Norm(v)©, mod(m’;™).

On the other hand,
_ a 0 1 ¢, al 0
e = (5 )5 1) ren (% )

Comparing the entries shows that a,, c¢,, d, € mzﬂ. The desired result follows by the
topological nilpotency of my. U
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Considering the deformations of p,, by the previous lemma, every class of strict equiv-
alence of deformations p over A with cyclotomic determinant is determined by a pair of
elements (p,t) in my, given by

=5 5) w=(g 1),

where a = £Norm(v) + pu, b = Norm(v)/a, such that

<8 Norrr?(v)/a) <(1) i) <a01 a/No?"m(v)> - <(1) NOTT(U)L)

The last equation is (a?/Norm(v))t = Norm(v)e, which is the same as put = 0. Moreover,
two deformations pi, pa corresponding to the pairs (p,¢1) and (ug2,t2) respectively are
strictly equivalent if and only if there exists M € Idayxa+Ma(m4) such that Mp; (f)M ! =
p2(f) and Mpi(t)M~t = py(t), if and only if 3 = pe and 1o € (1 + my)e;. Then
the universal deformation ring of p, is given by R, = O[[X,Y]]/(XY). If the residue

representation p is suitably diagonalized, then the universal deformation pU™ is given by

Py(f) = (iNOTmo(U) o Norm(v) /(izovorm(u) +X)) A = <(1) 11/> '

Definition 3.5. Let v be a finite prime such that p { (Norm(v)? —1) and p, is unramified
at v. We say that a deformation p of p, over an O-algebra A € C» satisfies sp-condition
if the homomorphism v : R, — A associated to p has ¥(X) = 0.

Remark 3.6. From the computation, it is obvious that a deformation p satisfies sp-
condition if and only if

Trace(p(f))? = (Norm(v) + 1)

Remark 3.7. Suppose that p is unramified at v, where Norm(v)? # 1 mod p. Let g be a
Hilbert modular form such that pg, ~ p,. If g is special at v, then pg, ~ (8 T ® P
for some unramified character 1. Therefore p,, satisfies the sp-condition. On the other
hand, if g is not special at v, then by local Langlands correspondence for G'La, py ., does

not satisfy sp-condition. Indeed, if we assume that 7y, = I ndngm ® po such that

pupy" # |- 1, then Trace(p(fy0))? = (11(w,) + pa(,))? # (Norm(v) + 1)2, where @,
is a uniformizer of F,.

If v|Sp such that p t (Norm(v)? — 1) and p, is unramified at v, we consider the
deformations of p, which are special. This space includes the representations coming from
Hilbert modular forms which are special at v. The corresponding universal deformation
ring is

Rosp = OlX, Y]J/(X, XY) = O[[Y]].

7‘)7Sp -

If we think of the geometric picture, we just choose an irreducible component from the
universal deformation space.



12 CHUANGXUN CHENG

3.3. The global deformation conditions.

Definition 3.8. Let X be a square free ideal of Op, prime to pNSp. We consider the
functor Oy, from Cp to the category of sets which associates to an object A in Cp the set
of strictly equivalent classes of continuous homomorphisms p : Gr — GLy(A) lifting p
satisfying the following conditions:

(1) p is unramified outside pN'Sp;

(2) if v|N', i.e. pis ramified at v, then pl|y, is unipotent;

(3) if v|Sp, p is unramified at v, then p satisfies sp-condition at v;

(4) if v|p, then p, = p|g,, is Barsotti-Tate over L and WD(p,) = 7y;

(5) det(p) = e(x o Art™1).

Proposition 3.9. The functor Qs is representable.

Proof. We need to check that being potentially Barsotti-Tate is a deformation condition,
i.e., it satisfies conditions (1)-(3) in section 6 of [13]. This is true by the results proved in
Appendix B of [11]. O

We say that the functor is represented by the universal deformation
p%mv :Gp — GLQ(RZ)
We use the notation R and p™ if 3 = ().

4. TAYLOR-WILES SYSTEM

In this section, we construct a Taylor-Wiles system corresponding to our potentially
Barsotti-Tate deformation problem. Recall that K = K;(N) and K = K{(N)? x (1 +
pM>(0p)) C K. We have a short exact sequence

0K - K—G—0.
The aim is to prove the following theorem.

Theorem 4.1. Let p be the Galois representation constructed at the beginning of section
3. Suppose that p satisfies the conditions in equation (3.2) and the restriction of p to
the absolute Galois group of F(\/(—1)P=1/2p) is irreducible. Then there is a natural
surjection

R = To(K, I[? )n.
Furthermore, it is an isomorphism of complete intersections and H' (Mg ® F,]—"I‘o/p)m 18
free of rank two as a To(K, I} )m module.

4.1. The construction. Let @ be a finite set of finite places of F' not dividing pNSp
such that if z € Q, then
e Norm(z) =1 (mod p),
e p is unramified at = and p(F'rob,) has distinct eigenvalues o, # f3;.

By Hensel’s Lemma the polynomial X2 —T, X + Norm(z)x(w,) splits as (X — A;)(X —
B,) in To(K, I? ).

For x € @ we will let A, denote the maximal p-power quotient of (Op/x)*. We will
let ng = HmeQ x; AQ = H:peQ Ay KO,Q = K{l}(nQ) N K; and KLQ = KAQ (nQ) N K. Let
mg denote the ideal of either To (Ko, i) or To(Ki1,0, 1) generated by
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D

o T, — T'race(p(Froby)) for x { pNng.

Remark 4.2. Let T4 (Ko, g, IyY) be the Hecke algebra To (Koo, I7)[Uz|z € @], and let
m™ be the maximal ideal of To(Ko,q, IP) generated by

° p;

o T, — Trace(p(Frob;)) for x { pNng; and

o U, —a, for x € Q.

Then we have an isomorphism TS (Ko g, Iy Jmred = To (Ko, Iy )m-

Lemma 4.3. Let Q satisfy the assumptions as above, then

(1) if € Q, then p%”“’|GFZ ~ Xax D Xp.e Where Xax and X, mod mg,, are unramified
and take Frob, to ay and B,.

(2) All xaz0Art ’(o; factor through A, and these maps make Rq into an O[Ag]-module.

(3) The universal property of Rq gives rise to a surjection of O[Ag]|-algebras
RQ - TO(Kl,Qa I{(;'p)mQ

UNLY

under which 2% pushes forward to pm,.

Proof. (1) Since p is unramified at z, and R is a p-adic ring, p’ém”(lz) is a pro-p group.
Since x 1 p, p”ém’” is tamely ramified at z. Let f and t be the generators of Gal(F!"/F,)
such that f restricts to the Frobenius automorphism on the maximal unramified extension
FY" of Fy, and ¢ fixes F'". Using the fact that o, # (;, choose a basis for the space of

p}f?m” in which pé"i”( f)= (g 2) is diagonal. Since p is unramified at x, p”ém”(t) = 1 mod

univ _ _ (TM11 Ni12 .
mg,. Now suppose that Py (t) =14 N, where N = <n21 o with n11,n22 € mg,

and nis,nig € m”RQ, and n > 0. Using the relation ftf~! = ¢4 (here ¢ = Norm(v)) one
gets

—1
1+< ni1 ab™ n12

— n+1
a by i~ > =(1+¢gN) (mod MR )

which implies that NV is diagonal mod m%zl, since a # b and ¢ = 1 mod p. The desired
result follows by induction.

(2) This is clear since R is a p-adic ring.

(3) There exists such a map because of the construction of Iy and 7,,. From the definition
of Hecke algebra, it is easy to see that it is surjective. It induces the map between
representations because Tmce(pqém“(F roby)) — T for  { pNng and xa(F'roby) — Uy
for x € Q. O

4.2. Basic properties. In this subsection, we write H'(H) for the cohomology group
Helt(MH,FI‘o/p) and T(H) for the Hecke algebra To(H, I{Y).

Lemma 4.4. For any x € Q, the map

0+ H' (Ko g-a)mg_, = H' (Ko@)
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given by f— Azl f — <(1) 0

) f is an isomorphism which induces an isomorphism
T/ %

77, : T(KO,Q)mQ - T(KO,Q*:B)mQ—x'

—1
Proof. The map 7 is well defined because Koo C Ko Q—z, ((1) ;) > Ko (é wO ) -
xX xX

Kog-z, and Uy on = no A,. From the natural inclusion Koqg — Ky g—s, we have a

map 1, : HY(Kg_,) — H'(Kg). From section 3 of [17], we know that the adjoint of 1.
1 0

0 wx> = Norm(z)(Az) — Ty =

(Norm(z) — 1)A, — By & mg, so n is injective with torsion free cokernel. As a, # (5, no

lift of p with the required determinant has conductor at x exactly z. Thus

1 0
H (Kohng = (1L (Kog-2)+ () H'(Kng D
*

is 1*, the composition of n with 1* is 14,1, — 1* (

x
Furthermore,

1 0

LMhﬁ+Q)wggm:ﬂxﬂﬁ+UWWWWMWA@—(l Olﬁ

0 wy,

T, Norm(z)x(ws)
-1 0
mg. The lemma follows. O

and the matrix > has eigenvalues A, and B, which are distinct mod

Remark 4.5. The identities in the proof of the above lemma all come from the double coset
decompositions at the end of section 1. See for example chapter one of [26] and Lemma
2.2 of [32)].

Lemma 4.6. Let A be a finite abelian group. If we consider the group ring O[A] as a
A-module, then O[A]» ~ O[A].

Proof. Let N : O[A] — O[A] be the usual norm map which sends { € O[A] to Y, AE.
It is easy to see that ImN C O[A]*, and (1 — A)O[A] C KerN. It suffices to prove that
the two relations are actually equalities.

If 37, oA\ € O[A]A, then
Do =AY o

A A
Comparing the coefficients, we get o, = o01. Then all the o) are the same, and so
Yoo € ImN.
If Y, oA\ € KerN, then 0 =N >, 0x), and by computing the coefficient of 1, we get
> -x0x =0. Therefore >, oxA € (1 —A)O[A]. O

Lemma 4.7. (1) H' (K1 Q)m,, is a free O[Ag]-module.

(2) (H'(K1,Q)ag)m — HY(K)w is an isomorphism compatible with a map (T(K1,0)ap)m —
T(K)m sending T to T, for x {1 pSpng, <h > to 1 for h € Ag, and U, to A, for x € Q.
Proof. (1) H 1(K1’Q)mQ is certainly free over O. Then to prove the freeness over O[Ag],
we only need to prove that H(Ag, H'(K1,Q)m,) = 0 Vi > 0. We have a short exact

sequence
0— Kig— Kog — Ag — 0.
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By Serre-Hochschild spectral sequence, we have
By = HP (Mg, H'(K1,q)) = HY™(Koq).
Since localization is exact, we get another spectral sequence
By = H (A, H(K1Q)mg) = H'(Ko,Q)mg-

By Lemma 2.2(1), if p + ¢ > 2, HP* (Ko Q)m, = 0. E,"° = 0 since HO(K}Q)my = 0.
Therefore ‘ '
H'(Ag, H'(K1,Q)mg) = H T (Ko,Q)mg =0 Vi > 0.

(2)Using the same spectral sequence, we have an exact sequence
A
0— H' (Ag, H'(Ko,Q)my) = H' (Kog)mg = H (K1,Q)mg — H*(Ag, H'(KoQ)mg) — - --
By Lemma 2.2(1), we get an isomorphism
A
H'(Ko,g)mg = H' (K1,0)ng

By the last lemma and the freeness of H(K1 ) we get the desired isomorphism. [

mQ7
4.3. Computing the Selmer groups. The computation is standard. We sketch it here.
For more details about the computation, and the relation between Selmer groups and
Galois representations, see [36], [25], [31], and [37].

Let p be our mod p Galois representation, and define

(4.1) W = ad’(p) (trace zero matrices in the adjoint representation of p).

(4.2) W* = Hom(W, u,) = W (1) 2 Sym?(p).

We then define the local conditions, which are subgroups L, of H'(Gpg,, W) for the
various decomposition groups Gp,. (It is used to determine global cohomology classes
whose restrictions to every G, fall into L,.) Since p > 5, HY(Gp,, W) = 0 if v|oo, and
we only have to define those local conditions at the finite places. Let
(1) L, = HY (G, /L, W) if v | N';

(2) Lo = HNGry, W) i 0 | p

(3) Ly = H(Gp,, W) if 0 | Q;

(4) L, = HQP(GFU,W) if v|Sp and v { N’, where H;p(GFU, W) consists of the elements
whose corresponding Galois representations satisfying the sp-condition.

Now we compute the sizes of these local terms in our deformation problem.

o 1L, = tHO(Gp,, W) - (85)Fv @ if v | p

This is from Lemma 3.3.

o tL, =tHY(GF,,W)/tk =1if v | 00

Here L, = H'(Gp,, W) = 0 by definition. Since the eigenvalues of the complex conju-
gation are +1, the eigenvalues on W are {—1, 1,1}, so tH*(Gg,, W)/tk = 1.

oL, = tHY(GF,,W) for v | N’

There is an exact sequence
0— W - wh — wl — wh /(Frob, — )W — 0,
where the middle map is (Frob, — 1). The exactness at the first W follows from the fact

that if w € W and (Frob, — 1)w = 0, then w is fixed by both I, and Frob,, which
topologically generate Gr,. The first term gives H*(G,, W) and the last term gives L.
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o {L, =tk if v|Sp and v { N’

This is true because of the formula at the end of section 3.3.

o tHY(Gp,,W) =tk if v|Sp and v t N’

This is true because the eigenvalues of p(Frob,) are distinct, by condition (3.2).

e HY(F,W) = H(F,W*) =0

For W this follows from the irreducibility of p, since by Schur’s lemma the only en-
domorphisms commuting with the Galois action are the scalars, which are missing from
wW.

For W* we use equation (4.2). A Galois-invariant vector in W* is an invariant symmetric
bilinear form. If the bilinear form is degenerate, then its kernel is invariant, contradicting
the irreducibility of p. If the bilinear form is nondegenerate, this means that the image of
p is contained in some orthogonal group. This contradicts the fact that det(p) # 1.

e tHY(Gp,, W) =tk for v | Q

By assumption on @, the eigenvalues of Frob, on W are a3, = Norm(v) = 1, o and
2. The latter two are not equal to 1 since a, # f3,.

o tHY(Gp,,W) = tr? forv | Q

First, we have the inflation-restriction exact sequence

0— Hl(GFv/Iv,WI’U) N Hl(GFv,W) N Hl(IU7W)GFv/IU
— H*(Gp, /L, W) = H*(GFp,, W).

Since p is unramified at v, W/ = W. By the assumption on o, and 3,, H (G, /I,, W) =
W/(Frob, — 1)W is one-dimensional,

HY(I,, W)ro/ v = Hom(Z,(1), W)Frebe
= W[Frob, — Norm(v)]
= W{[Frob, — 1]
_ yyFroby

(4.3)

is again one-dimensional, and H?(Gf,/I,, W) = 0 since G, /I, = Z.

Lemma 4.8. Suppose that the restriction of p to the absolute Galois group of F(1/(—1)P=1)/2p)
is irreducible. Then for any m € Zsq we can find a set X, of primes such that

(1) 5 = dim B (G, ad’p(1)),

(2) Ry, can be topologically generated by dimH(Gr,adp(1)) elements as an O-algebra,

(3) if © € ¥y, then Norm(z) = 1 mod p™ and p(Frob,) has distinct eigenvalues o, and

Be-

Proof. See Lemma 2.5 of [32]. O
Recall the statement of Theorem 2.1 of [14].

Theorem 4.9. Fiz a positive integer r. Let A = K[[S1,...,Sy]] and B = g[[X1,...,X,]]
and write n for the maximal ideal of A. Suppose that R is a k-algebra and H is a nonzero
R-module, finite dimensional over k. Suppose that for each positive integer n, there exist
k-algebra homomorphisms ¢, : A = B and ¢, : B — R, a B-module H,, and a B-linear
homomorphism m, : H, — H such that the following hold:

(a) ¥y is surjective and Yy, o ¢p(n) = 0;

(b) m, induces an isomorphism H,/nH, — H;
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(¢) AnnygH, =n" and H,, is free over A/n™.
Then R is a complete intersection of dimension zero, and H is free over R.

Proof of Theorem 4.1. We apply the above theorem to our situation. Let A and B be as in
Theorem 4.9, r = dimHL (G, ad’p(1)), £, (n € Z=g) be sets which satisfy the conditions
in Lemma 4.8, G; be the maximal quotient of [[ .y (Or/x)* of p-power order. By
Lemma 4.8, R, = Ry, /ARy, is topologically generated by r elements. We may define
a surjective k-algebra homomorphism 6,, : B — R,. By Lemma 4.3, we can endow R,
with the structure of an algebra over the group ring k[G,]. The definition ensures that
the image of the maximal ideal of k[G,] in R is trivial. We also choose a surjective k-
algebra homomorphism A — k[G,]. Note that the kernel is contained in n”, where n is
the maximal ideal of A. We then define ¢, : A — B so that the diagram

AO@L—»B

| Lo

k[Gp] —— Rn

commutes. Define v, as the composite of 6, with R,, — R. Then 1, is surjective and
Yn 0 Pn(n) = 0.

Take H = Hl(MK®F_’,J-"I‘o/p), and H, = H'(Mk, 5 ®F_’,]-"I€/p). By Lemma 4.7, we may
apply Theorem 4.9 to prove the freeness result of Theorem 4.1. The rank is two because
of the following lemma. O

Lemma 4.10. ranko HL (Mg ® F,]:I‘o/p) =2 rankoTo(K,L}}).

Proof. We extend coefficients from F to @p. We have the following decomposition of the
cohomology of Shimura curves from [6]:

limy Hy (My @ F,Qp) = @ 7 @ p(n),

T=02XT>®

where the sum is extended to the set of all automorphic representations of G(A), with
infinite component isomorphic to

[ weight 2 holomorphic discrete trivial representation of
~ \series representation of GLa(R) (H*)d1 ’

and p(7) stands for some two dimensional p-adic representation of Gp. In particular, if
we do not consider the Galois action, we have

hﬂUHelt(MU ®F,Qp) = @ ()2,

T=09Xm>®
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Then
Hy (Mg @ F, Fror) = Homg(Iy, (limp Hey (My ® F, Q)"
= Homg(Iy, € ((=>)%)?)
T=02XQT>
(4.4)

= @ Homg(ly, (=*)")?

T=02XT>®

= @ Homg(Iy, (JL(w)>)K")2,

T=02XT>®

In the above equation, JL means the Jacquet-Langlands correspondence. By the Jacquet-
Langlands correspondence, the last term is the same as

P Homg(Iv, (77)%)?,
!

where the direct sum is over Hilbert new forms which are of weight (2, ...,2) and special
at primes v|Sp, and 7y is the automorphic representation of GLa(Af) associated with f.
By the result on multiplicities of types (see for example the appendix of [2]), we have
dimg Homg(Iy, (77)") < 1,
and
(5) dimg, Hiy (Mg ® F, Fror) =2 #{f | Homg(Iv, (7 7)) # 0}
=2-dimg, To(K, }/) ® Qp-

This proves the lemma.

5. FROM CHARACTERISTIC 0 TO CHARACTERISTIC p

5.1. Computation for the multiplicity. In the following two lemmas, we write H LK)
for HY (Mg ® F, Fyop).

Lemma 5.1. The natural inclusion

(5.1) Homg,, (p, H' (K)[m]) = Homg,(p, H'(K))
s an equality.

Proof. Consider the evaluation map

(5.2) p &5, Homa, (p, H'(K)) — H'(K).

This is injective since p is irreducible, and is T, (K, V)[Gg]-linear, if T.(K,VP)[GF]
acts on the tensor product through the action of G on the first factor and the action of
T, (K, V) on the second factor. By Eichler-Shimura relations on M, we have

F'robz — Ty Frob, + Norm(v)S, =0
on HY(K) for all v { pSpN. Therefore we have
(5.3) p(Froby)(a)® (T, —Trace(p(Froby)))(b)+a® (Sy,Norm(v)—det(p(Froby)))(b) =0
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for every a € p, b € Homg ¢, (P, HY(K)), and v {pSpN. If v is such that p(Frob,) does
not act by a scalar, then it is easy to see that

(5.4) T, — Trace(p(Froby,)) = SyNorm(v) — det(p(Frob,)) = 0.

The above equality is actually true for all v t pSpN since those Frob, for which p(F'rob,)
does not act by a scalar generate a dense subgroup of G5, n. Then the result follows. [

Lemma 5.2. The evaluation map p®g, Home, (p, HY(K)) - HY(K) induces an isomor-
phism

(5:5) p @5, Home, (p, H'(K)) = H'(K)[m]

Proof. Since p is irreducible, the evaluation map is injective by Schur’s lemma. By the
above lemma, the image lies in H*(K)[m]. By [1], we know that the semisimplification
of H'(K)[m] is a direct sum of copies of p because of Eichler-Shimura relation. The
evaluation map is also surjective. O

Theorem 5.3. Let K = K (N) and Mg be the Shimura curve of level K attached to
the totally real field F' and the quaternion algebra D. Let p: Gp — GLy(k) be the Galois
representation constructed at the beginning of section 3. Assume that p satisfies conditions
in equation (5.2) and the restriction of p to the absolute Galois group of F(1/(—1)®=1)/2p)
18 irreducible, then

dim, Homg, (p, Helt(MK ® F;fvop)m) =L

Proof. Let Iy, be the lattice constructed in the proof of Corollary 2.8. If VP is a subrep-
resentation of I‘(}p ®e Kk, we may assume that we have a short exact sequence

(5.6) 0= VP = I ®ok— (V)P =0,

where V¢ is a representation of G with no Jordan-Holder factor compatible with p. Then
by Lemma 2.2(2), we have a short exact sequence
(5.7)

0= Hey (Mg @ F, Fyon)m = Hy(Mi @ F, Frovg o )m — Hey(Mi @ F, Fyeyop)m — 0.

From the construction of V¢, we know that Homg, (p, Hy (Mg ® F, Fyejor)m) = 0. Thus
HomGF (ﬁ, Helt(MK &® F, fvop)m) = HomGF (ﬁ, Helt(MK ® F, f13p®oﬁ)m).

If V°P is a quotient representation of I‘O/p ®oHK, a similar argument proves Homg,.(p, H, L(Mg®
F,Fyor)m) = Homg, (p, HY (Mg @ F, F1oP@or)m)- Note that I} @0 # has finite length as
a representation of G, the theorem follows by induction on the length of I‘O/p R0 K. O

Remark 5.4. See [4] for more topics on multiplicities of Serre weights. See also [18] section
3.5.

5.2. Another R = T theorem. We explain how we can prove a stronger result from
Theorem 5.3, i.e., we prove that HL (M ® F, Fyop )y is free of rank 2 over T, (K, V).
The strategy is the same as the proof of Theorem 4.1. We consider a Fontaine-Laffaille
deformation problem, construct a Taylor-Wiles system, and apply Theorem 4.9 to prove
a multiplicity free result. It follows from Theorem 5.3 that the rank is two.
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5.2.1. Fontaine-Laffaille theory. Fontaine-Laffaille theory is needed to state the deforma-
tion condition at primes dividing p. Suppose that I/Q), is a finite unramified extension,
that O is the ring of integers of a finite extension of I with uniformizer A and residue field
K.
Recall that a filtered Dieudonné O; ® O-module is an O; ® O-module ® furnished with
a decreasing, exhaustive, separated filtration (D%);cz of sub O ® O-modules such that for
each integer i, we have a F'rob® 1-linear map ¢ : ®° — ©. Furthermore, it is required that
for z € DL ¢ (z) = pgi(x). These filtered modules form an O; ® O-linear additive
category MFr 0.
We denote by MF {,O the full subcategory of MJF o whose objects ® have underlying
spaces that are O; ® O-modules of finite length and satisfy > Im¢’ = ©. The category
/\/1.7-"7;’_01 is the full subcategory of M]-“?O whose objects satisfy D0 = ©, D771 = 0. We

write K—M]-'II’E for the subcategory of ./\/l}'];jol whose objects are killed by A.

Theorem 5.5. There is a fully faithful, O length preserving, exact, O-additive, covariant
functor M from ./\/l]-"?_o1 to the category of continuous O[Gr]-modules with essential image
closed under the formation of sub-objects and quotients.

Proof. See for example section 2.4.1 of [10] and section 9 of [19]. O

Remark 5.6. (1) If M is an object in MF? ), then the O length of M is [I : Q] times
the O length of M(M).
(2) For any objects M and N in ./\/1.7-"?_01 (resp. /ﬁ—M.F];TOI), the map

Eat) p1(M,N) = Extyq, (M(M), M(N))

Fro
1,0

(resp. Extllﬁ—/\/lj:?_ol (M,N) — E:ct}{[GI] (M(M),M(N)))

is an injection.

(3) We also have the following isomorphisms.

Bty (M(M),M(N)) = HY(G1, Homy(M(M),M(N))),

Hom M,N) = HY(Gr, Homo(M(M),M(N))).

Mf?,’jol<
Lemma 5.7. Suppose that M and N are objects of /i—./\/l.FZ;_OI. Then there is an ezact
sequence

0 —Hom (M,N) = Fil’Homo,s0(M,N) —

-MFY S
(5.8) e

Home, 20, Frobe1(9grM, N) — Ext!

2(M,N) — 0;
H—M]:?Ol( ’ ) ’

where Fil' Homo,s0(M, N) denotes the subset of Homo,s0(M, N) consisting of elements
which take File to F?li+jN for all j and where grM = @;gr'M. The middle map is
given by B — (Behy — oy B).

Proof. This is Lemma 2.4.2 of [10]. O

Proposition 5.8. The representation py is Fontaine-Laffaille. i.e., for v|p, pm|ay, is in
the image of M : K—MFZE}O — Mody g, |-
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We want to apply p-adic Hodge theory to prove this result. First recall the construction
of unitary Shimura curves from section 2.2 of [7].

Let ¢ < 0 be a rational number such that Q(,/q) splits p. Define L = F(,/q). Let z — Z
denote the conjugation of L with respect to F. Define B = D ®p L and denote by [ +— [
the product of the canonical involution of D with the conjugation of L over F. Let V
denote the underlying Q-vector space of B with left action of B. Choose § € B such that
§ = ¢ and define an involution on B by I* = ¢~ '16. Choose o € L such that &@ = —a. One
can define a symplectic form ® on V: for v,w € V, define

(v, w) = Tracer,jg(aTraceg r(véw®)).
The symplectic form ® is an alternating nondegenerate form on V' and satisfies
O(lv,w) = (v, ["w).
Let G’ be the reductive algebraic group over Q such that for any Q-algebra R, G'(R) is
group of B linear symplectic similitudes of (V ® R, ® ® R). Following section 2.2.4 of [7],

we can define a morphism 4’ : RestG,, — G, such that the G’(R)-conjugacy class X' of
h' can be identified with the complex upper half plane, and the composition Res]%((}m —
Gi — GL(VR) defines a Hodge structure on Vg which is of type {(—1,0), (0,—1)}.

Now, (G, X’) gives us Shimura data. For K’ C G’(A*) open compact, we have a
compact unitary Shimura curve M., defined over L with complex points

M (C) = G'(Q)\G'(A®) x X' /K.
Mj,, is a fine moduli space of certain abelian varieties with additional structures. Let
H C G(A*)? be sufficiently small and open compact, and My i be the Shimura curve

with level GL2(Oy)H. Then we have the following theorem which is proved in [7] section
4.5.4.

Theorem 5.9. There exists an open compact subgroup H' C G'(A*)P, such that for any
connected component Ny of Mo g7, there is a connected component Ng: of My g with the
property that Ng and Nps are isomorphic over FJ'".

From [7] section 3.2.3, we know that the Weil group W(Fp“b/Fp) = F,* acts on the set

of connected components of limg+ M}, via the map
E = T(Q) =Q) x F x Fyy x--- x F

defined by z — (Norm Fo/QpZi %y 1y ,1). This tells us that every connected component
of limgr My, is defined over F,'". If we consider the action of W(F'fb /Fy) = F,* on the
set of connected components of M(’)’ 1> We see that it is unramified and factors through a
finite quotient. (See for example [7] section 3.2.4.) Therefore, every connected component
of M(’), g 1s defined over a finite unramified extension of Fj,.

Similarly, using the description in section 1.3 of [7], we see that every connected com-
ponent of My is also defined over a finite unramified extension of Fy,.

Now we prove Proposition 5.8. I would like to thank Toby Gee for suggesting to transfer
the problem to unitary Shimura curve case.

Proof of Proposition 5.8. 1t suffices to prove that pn is Fontaine-Laffaille after restricting
to some unramified extension. Write F = Fyop. Since py is realized in H} (M K®F,F), it
suffices to prove that HY, (Mg ® F', F) is Fontaine-Laffaille. Write My = [[ M} as a finite
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disjoint union of its connected components. These components are rational over a finite
extension of F' which is unramified at p. Let Fx be an extension of F' which is unramified
at p. We may assume that Fx is large enough that each component of M is rational over
Fk, and is isomorphic over Fi to a component of Mj.,. Here, M}, is a unitary Shimura
curve with level K’. Since K has no level structure at p, we can choose K’ with no level
structure at p. Then over F,

Helt(MKaf) = Helt(]_[ M};,]-') = Helt(H N}(/7f) = @Helt(M}(’vf)a

which makes HY (Mg, F) a submodule of @, HY(M}.,F). It suffices to prove that
HYL (M}, ® L, F) is Fontaine-Laffaille.

For the curve My, we do not need the parity condition on by to lift V7 to characteristic
zero. In fact, the maximal Q-split torus in the center of G’ coincides with the maximal
R-split torus in the center of G’. Let VP = @y det®™ @ SymmP~1(02, this is a lift of V.
Then Vo @ F gives us a well defined smooth sheaf on Mb.,. (See part I section 1 of [23].
In particular, G’ satisfies the requirements in that paper, but G does not.) Since M}, is a
fine moduli space of certain abelian varieties, the sheaf Fyep can be constructed from the
universal object over M., (see for example [29] section 6.1.) Therefore, since V is regular,
HY (M} @ L, Fiyop) is crystalline with Hodge-Tate weights in [0, p — 2] by p-adic Hodge
theory. Because HY,(M}., @ L,F) is the reduction of HY(M}. @ L, Fi,) (mod p), it is
Fontaine-Laffaille. g

5.2.2. Deformation conditions at primes dividing p. Fix a finite prime v|p of F', and write

F, for the completion of F' at v, Sf, for the set of embeddings F;, — Q,. We generalize
section 2.1 of [16] to the totally real field case.
For i = 1,2, let V; be representations of G, over E which are from the category

M]:%:}O, i.e., there exists D; € MF%;IO such that, M(®;) ® E = V;. Suppose that L; is
a Gp,-stable O lattice in V; with L; = M(D,) and set

V =Homg(Vi,Va), T = Homop(Li,Ls), W =V/T.

For n > 1, put

Wy={zeW |X'z=0} =2T/\"T.
Then we have a natural isomorphism
(5.9) HY(Gr,s Wn) = Bty gy (L1 /A L1, A" Lo/ La).
Definition 5.10. Let V; be as above, then L; /A" L; are in the essential image of M. Define

H}(GF,,Wn) C H'(GFR,, Wy)

to be the subset of extensions of O/A\"[G,]-modules
(5.10) 0= AN"Ly/Ly—E — L1 /\"L1 — 0
so that £ is in the essential image of M.

We consider the deformations of p|g,, satisfying the following: if p, : Gk, — GL2(R) is
a deformation of p|g,, where R is a complete local Noetherian ring, then for any Artinian
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quotient R’, p, ® R’ is in the essential image of M. This is a local deformation problem.
From the above, we have

Emt}i—MfII’BI (M_l(ﬁ‘GFv>vM_l<ﬁ’GFv)> = H}(GFmad(ﬁ‘GFU» C Hl(GFwad(ﬁ‘GFv))'

Now we can prove the following lemma which will be used when we apply the Taylor-
Wiles argument.

Lemma 5.11. Suppose that L is a two-dimensional G representation over the finite
ﬁeld_/i of chizmctem'stic p >_2 so that L |G, = M(€) for some object € € /i—/\/lf%;lo. Let
ad’L C ad,L := Hom(L, L) be the set of endomorphisms of trace zero. Then

(5.11) dim, H}(GF,,ad)L) = §SF, + dim, H(Gp,, ad,L).

Proof. From Lemma 5.7, taking M = N = & we have

dim, H}(Gp,,adxL) = §S5,(2 x 2 = 3) + dim, H*(GF,, adx L)
= #Sp, + dim, H°(Gp,, ad,.L).

Taking M = N = k we have dim, H}(GFU, k) = dim, H°(GF,, k). Since we have ad)L @
k = ad,, L, the lemma follows. O

(5.12)

5.2.3. The Global deformation problem.

Definition 5.12. Let ¥ be a square free ideal of Op, prime to pNSp. We consider the
functor Py, from Cp to the category of sets which associates to an object A in Cp the set
of strictly equivalent classes of continuous homomorphisms p : Gp — GLo(A) lifting p
satisfying the following conditions:

(1) p is unramified outside pN'Sp¥;

(2) if v|N', i.e. pis ramified at v, then p |7, is unipotent;

(3) if v|Sp, p is unramified at v, then p satisfies sp-condition at v;

(4) if v|p, then for each finite length (as an O-module) quotient A/J of A, the O[GF,]-
module (A/J)? is isomorphic to M(D) for some object ® € MF’}:}O;

(5) det(p) = e(x o Art™1).

Proposition 5.13. The functor Px is representable.

Proof. The proof is similar to the proof of Proposition 3.9. Condition (4) is a deformation
condition by the discussion in Section 2.4.1 of [10]. O

We say that the functor is represented by the universal deformation
P%nLif)z :Gp — GL?(RFL,E)'

We write Rpr, and p}é”Li” if ¥ = (. We also write 7'\’,lFL’E =RrLy Q0 K.
We have the following theorem.

Theorem 5.14. Let p be the Galois representation constructed at the beginning of section
3. Suppose that p satisfies the conditions in equation (3.2) and the restriction of p to
the absolute Galois group of F(1/(—1)®P=1/2p) is irreducible. Then there is a natural
surjection

Ry, — Te(K, VP,
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Furthermore, it is an isomorphism of complete intersections and H'(My @ F, Fyop)m 15
free of rank two as a T, (K, VP)y module.

Proof. The proof is essentially the same as the proof of Theorem 4.1. Although we have
sheaf Fyop, we construct the same Taylor-Wiles system as in section 4 and apply Theorem
4.9 to get R =T and the freeness result. The rank is two by Theorem 5.3. (|

6. COMPUTATION ON BREUIL MODULES

In this section, we review the definition of Breuil modules and prove Lemma 3.3. The
notation in subsection 6.1, 6.2, and 6.3 is not consistent with the notation in other parts
of this paper. We choose this notation to be consistent with the notation used in the
references [20] and [9].

6.1. Introduction and definitions. In [9], the author studied the structure of reducible
rank two Breuil modules with descent data and computed Ext!(M, M) for reducible rank
two M of type J (see Definition 6.4 below). The computation is limited to a special case.
In this paper, we introduce an exact sequence of Breuil modules, which can be used to
compute Ezt! (M, M) for more general M. In particular, we reprove Theorem 4.2 of [9].
Furthermore, we compute Ext!(M, M) for irreducible rank two Breuil modules of type .J
(see Definition 6.5).

We first recall the definition of Breuil modules with descent data. Let k& be a finite
extension of F,, of degree r, W (k) the ring of Witt vectors. Let Ko = W (k)[1/p], K be
a totally and tamely ramified extension of Ky of degree e. Fix a subfield F' of Kj, and
assume that there is a uniformizer m of O such that 7¢ € F. Then K/F is tamely
ramified, Ky/F is unramified. Assume that K/F is Galois. Write G = Gal(K/F). Let
S = Homp, (k,Fp) = Z/rZ. Fix 19 € S, let 7, = 790 Frob™*, where Frob is the arithmetic
Frobenius. Let E be a finite extension of I, such that the image of 7; is a subset of E.
Let S = k ®F, E[u]/u.

Let w: G — k* be the map defined by w(g) = g(7)/m (mod 7). We see that w(gh) =
g(w(h))w(g). It is a cocycle. It is a character if and only if G acts trivially on k>, if and
only if Ky = F. Let w; be the composite of w with 7;. Then we have w; = wf 41~ For any
g € G, we write [g] : S — S to be the endomorphism of § as k ® E-algebra such that
[g9](u) = (w(g) ® 1)u. Let ¢ : S — S be the map of S such that ¢((a ® b)u) = (aP @ b)uP.

Definition 6.1. Let x € [2,p — 1] be an integer. The category BrMod®; L. . consists of

dd,K/F
quintuples (M, Fil* ' M, ¢,._1, [g], N) where:
(1) M is a finitely generated S module, free over kfu]/uP.
(2) Fil*~'M is an S-submodule of M containing u¢*~1) M.
(3) ¢r1 : Fil**M — M is an E-linear and ¢-semilinear map with image generating
M as an S-module.
(4) N : M — uM is a k ® E-linear map such that

N(uzx) =uN(x) —ux Ve M,
uN (Fil" "' M) c Fil* ' M,
Gr-1(uN(2)) = (=7¢/P)N($p-1()) Yz € Fil""' M.
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(5) [g] : M — M are additive bijections for each g € G, preserving Fil*~' M, commut-
ing with the ¢,_1-, N-, and E-actions, and satisfying [g1] o [g2] = [g1g2] for all g1, 92 € G,
and [1] is the identity map. Furthermore, if a € k ®p, E/, m € M, then

l9)(au'm) = g(a)((g(m)/7)" @ 1)u'[g](m).

If kK = 2, the category BrM od}i 4 K/F is equivalent to the category of finite flat group
schemes over O together with an F-action and descent data on the generic fiber from K
to F' (this equivalence depends on 7). In this case it follows from other axioms that there
is always a unique NV which satisfies the required properties. See for example Proposition
5.1.3 of [3].

In this paper, we always assume that x = 2. Then to give an object in BrMod}MK/F is

the same to give an object (M, Fil' M, ¢1,[g]). In the following, we give some examples
of Breuil modules with descent data.

Recall that S = Hom(k,F,) = Z/rZ and E contains the image of 7; € S, so we have a
ring isomorphism k ®p, £ =~ ES where the action of  ® 1 on the T7-component coincides
with the action of 1 ® 7(z) for 7 € S. Therefore we may write S = ©gF[u|/u®. We also
denote ¢ to be the map ¢ : Elu|/u®? — Elu|/u®’ which sends u to u? and acts trivially on
E

If M is an object of BrModg;}{/Ko, then

M=MPMsP---BM,,

where M; = M ®s -, Efu]l/u® is a free E[u]/uP-module, which is characterized by the
fact that the action of z ® 1 on M; coincides with the action of 1 ® 7(x) for 7; € S. In
this paper if M is a Breuil module over S, then M; will always denote the 7;-component
of M. By convention, the subscripts i are taken modulo r. Similarly, Fil*~!M has a
decomposition

Fill "M = Fil" My @ Fil" " "My @ - - @ Fil" ' M,,
with w¢"=Y M, ¢ Fil"1M; c M;. The Frobenius action of k ®p, £ maps Er, to E

Ti+19

br—1 induces ¢p_1 : Fil" "1 M; — M;,1 for i € Z/r7Z and the image generates M, 1, and

6.1.1. Rank one objects. Assume that K = Ko((—p)'/?"~') and F = K,. Note that in
this case we have e = p” — 1 and K is Galois over Ky with Gal(K/Ky) = Z/(p" — 1)Z.
The following proposition is Proposition 2.2 of [8] (see also Proposition 2.3 of [9]).
Proposition 6.2. If M is a rank one object of BTMOdSCZ}(/K07 then there exist integers
m; € [0,e(k —1)], u; € [0,e — 1], and a € E*, such that we can choose basis e; for M;,
and

(1) Fil"=IM; = E[u] /u® (u™ie;),

(2) dr—1(u™e;) = (a)it1€it1,

(3) pit1 = p(pi +mq)(mod e),

(4) lg] - e = wi" (9)es,

(5) N(ei) =0.

We will write the Breuil module with these invariants M(m;, p;, a).
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Definition 6.3. Let J C S. We say M(my, p;,a) is of type J if m; = e(k — 1)d;(i + 1),

' lLif ; € J,
where 07(i) = { 0 Oth;rwise

6.1.2. Reducible rank two objects of type J. In this subsection, we still assume that K =
Ko((=p)/P"~1) and F = K,,.

Definition 6.4. Let J be a subset of S. We say a reducible rank two Breuil module M
is of type J if it is an extension of a rank one Breuil module of type J (in the sense of
Definition 6.3) by a rank one Breuil module of type J¢. Here J¢ = S\J.

Assume that M is a reducible rank two Breuil module of type J such that the rank
one submodule and the rank one quotient of M have non isomorphic generic fibers. By
Theorem 3.9 of [9], we may assume that M = @&;cgM; has the following form.

M; = Elu]/u®{e;, fi),
Fil' M; = Elu] fu (ue;, u7 f; + Aule;),
d1(uie;) = (B)ipreipr, O (w7 f; + Nutie;) = ()i fira,
glei =wi*(g)ei, [gfi = wi(9) fis
where \; € B with A = 0 i +1¢ J, (a)i =1 | ;ftfl;ilse = g ZE Z‘j ,and

hi € [0,e — 1] with h; = a; — 5;( mod e). Note that M is split if and only if all the A.s
are 0.

6.1.3. Irreducible rank two objects of type J. Assume now that k is a finite extension of
[, with even degree [k : Fp] = r = 2s. Let Ko = W (k)[1/p], k' C k be the subfield with
[k:k']=2,and F = W(K')[1/p]. Then Ky/F is an unramified extension of degree 2. Let
K = Ko((—=p)Y/?*~1). Then K/Kj is a totally ramified extension of degree e = p2 — 1.
In this section, we consider Breuil modules over § = k ® Ffu]/u®’ with descent data
from K to F. Let w: Gal(K/F) — k* be the map given by g — ¢g(m)/m (mod 7) for

T = (—p)l/p2s_1. Note that wi|ga(x/K,) 18 a character.

Let S = Hom(k',F,). Fix g5 € Gal(K/F) such that it maps to the nontrivial element
of Gal(Ky/F). For g € Gal(K/Ky), it acts on S as [g](u) = (w(g) ® 1)u. In the following,
we use g to denote the elements in Gal(K/Kj).

Let M = &g M; in BrM odé 4K/ F be an irreducible rank two Breuil module that has
the the following form

M; = Elu]/u®{e;, f;)

Fil* M; = Elu]/u®? (u"e;, u™ f;)
pr(ue;) = (a)ipreiv, ¢1(u™ fi) = (a)iy1fina
N(e;)) =0, N(f;)=0
[9s)€i = fits, [90]fi = €its
l9lei = W] (9)ei, [g]fi = wi (g) fi.

(
(
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a ifi=1
Here n; and m; are integers in [0, €], ; and p; are integers in [0, e—1], (a); = .
1 otherwise

(a); = Clz i)ftlzle_rv:is—; ! . To make sure that M is a well defined object in BrMod}ide/F,
the m;, n;, v, and u; satisfy the following equations.

(1) n; = mjts because ¢1 commutes with [gg).

(2) vit1 = p(n; + i) (mod e) and p;+1 = p(m; + p;) (mod e) because ¢ commutes
with [g].

(3) Vi = pi+s (mod e) and p; = ;45 (mod e) because ggy = 9og" -

Let J C S = Hom(k,F,) be a subset such that the restriction of the projection S — S’
to J — S’ is a bijection. We define a special type of Breuil modules.

Definition 6.5. Let M and J be as above, we say that M is of type J if we have
e ifi+leJ
n; =
0 ifi+1¢J,

if i+ 1
mi:{e ifti+1¢J

0 ifi+leld
6.2. The exact sequence. Let M and N be two objects in BrModéd K/F Let € €
Ext! (M, N). We have a short exact sequence

1
BTMOddd,K/F

0N —=-E&—->3M—=0.

We say that the pair (M, N) is simple if for every £, we can write & = N & M such that
N — £ is the natural inclusion and £ — M is the natural projection, and

(1) Fil'é = Fil'! N @ Fil' M;

(2) the descent data [¢]° = [g]V ®[¢]M, i.e., if (n,m) is an element in &, then [g]€ (n, m) =
(g (n), [gM(m)).

We have the following result.

Lemma 6.6. Let M, N be objects in BrMod},, x/r Such that (M, N) is simple, then we
have the following exact sequence.

0— Hom 1
BrMOddd,K/F

(M, N) = Homgq pit(M,N)
— Homde@Frob(FillM,N) — EmtlBrModl (M,N) — 0.

dd,K/F

(6.1)

Here Homygq ri1 is the set of S-module homomorphisms which commute with the descent
data and map Fil' to Fil', Homgq1gFrrob i the set of S-module homomorphisms which
commute with the descent data and are 1 ® Frob-linear, the middle arrow is given by

B (Bt — 1V B).

Proof. This is an analogy of Lemma 2.4.2 of [10], where the result is about Fontaine-
Laffaille modules (see also Lemma 5.7). The proof is similar. Assume that we have a
short exact sequence in BrM od}i 4K/ F

0N —=>E-M-—=0.
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We may write £ = N @& M, Fil'€ = Fil'l N @ Fil' M, and [g]° = [g]V @ [g]™, such
that A/ — & is the natural injection and £ — M is the natural projection. Then & is
determined by the map qb‘f : Fil'E — £. Write

e_(#V a
¢1<6 ¢_{\/I)a

where « is an element in Homde@Fmb(FillM,/\/').
Conversely, any element a in Homgq1grros(E il' M, N') gives rise to such an extension.
Two elements o and o give rise to isomorphic extensions if there exists an element 3 €

HOmdd,Fil(MaN) such that

(1 5) <<z>f¥ a)_<¢¥ a'>(1 5|FW>
0 1)\ 0 o¢M) L0 ¢M)\0 1 '

Therefore we get an exact sequence

Homddpll(/\/l N) — Homyy 1®FT05(F’ll M N) — E.CCtB Modl (M,N) — 0.

dd,K|F

Here the first arrow is the map 8 + (B¢ — qﬁfl\f B). The kernel of this map is clearly
Hompg, ot (M,N). O

dd,K/F

Remark 6.7. Unfortunately, most of the pairs (M, N) are not simple. Even if (M, N) is
simple, we can not get a nice formula as in Lemma 2.4.3 of [10]. Nevertheless, there are
certain pairs (M, N') which are simple and we can use the exact sequence to make useful
computations. We give some examples in next section.

6.3. Computation with the exact sequence. In this section, we use the exact sequence
(6.1) to compute dimg Ext!(M, M), where M is a rank two Breuil module of type J in
the sense of Definition 6.4 and 6.5.

6.3.1. Reducible case. Let M be a reducible rank two Breuil module with descent data of
type J as given in section 6.1.2. By Lemma 4.3 and 4.4 of [9], the pair (M, M) is simple,
we may apply the exact sequence to compute dimg Ext! (M, M). Write M = @;csM;,
then

(6.2) Homdd71®pmb(Fil1M, ./\/l) = @iHomdd(FillMi, Mi+1)-
Assume that 1 € Homgq(Fil'* M;, M;11) with

Y(ulie;) = Xiyreip1 + Yig1 firr

Y(uei fi + Auliey) = Zigreipr + Wigr i,

where X, Y, Z, W are elements in E[u]/u’. Notice that G acts trivially on u" and 4™
since n; is either 0 or e. Because ¥ commutes with the G-action, it is easy to see that

9(Xiy1) = Xi1
g(Yi)wiii (9) = wiii(9)Yier
9( z+1) Wita

(

9(Zi 1)l (g) = WP (9) Ziga.-

(6.3)

(6.4)
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Zix1 Wipa

element in Homgq(Fil' M;, Miy1).
The equation g(X;+1) = X;+1 means that all nonzero terms of X;;; have degree con-
gruent to 0 (mod e). Equation g(Yit1)wiii'(9) = wff"l(g)Y}H means that all nonzero
terms of Y; 11 have degree congruent to (pf; — a;+1) (mod e). Similar statements hold for

Zi+1 and Wiy 1. Because the degrees of these elements are less than ep, we have

dimpg Homdd(Fill/\/li, M) =4p
dimpg Homga1erros(Fil' M, M) = 4pr.

. (X Y; . o . . .
On the other hand, every matrix ( ol Hl) satisfying these equations gives rise an

(6.5)

Similarly, we have
(6.6) Homgq pa(M, M) = &;Homgq pi(M;, M;).
We show that dimg Homgq pi(M;i, M;) = 4p — 1. Let p € Homgq piy(M;, M;) with

p(ei) = Piei + Qi f;
p(fi) = Rie; + Sifi.
First, p commutes with the G-action, it is easy to get that

9(P) = Py, g(Qi) = w " (9)Qi, g(R:) = wPi(g)Ri, 9(Si) = S
Second, p maps Fil' M; to Fil' M,;.
(Case 1) Fil*M; = (e;, u°f).
In this case, p(Fil' M;) = (Pie; + Qi fi, u¢(Rie; + Si fi)). Therefore Pie; + Qi f; € (ei, u®f;).
We get v | Q;. In this case dimg Homgq rif(M;, M;) = 4p — 1.
(Case 2) FleMZ = <u6€i, fi+ )\iuhiei>.
In this case, p(Fil' M;) = (u¢(Pie; + Qi f;), Rie; + Sifi + M\uli(Pie; + Q;fi)). Therefore
Rie; + Si fi + )\iuhi(Piei + Qlfz) S <ueei, fi+ )\iuhiel). Note that
Riei + Sifi + N (Pie; + Qi fi) =(Si + A Qi) (fi + Aiue;)
+ (RZ + )\iuhiPi — )\iuhi Sz — )\?UZhin‘)ei,
we have u€ | (R; + \u" P; — \juh S; — A?thiQi).
If A; =0, then it is the same as u® | R;, so dimp Homgq pit(M;, M;) = 4p — 1.
If \; # 0and h; = 0, then u® | (Ri+X\iPi—\iS;i—A?Q;), we have dimpg Homgq pif(M;, M;) =
4p — 1.
If A\; # 0 and h; # 0, then deg()\?u%iQi) > e, and u® | (R; + \ul Py — \juliS;), we still
have dimg Homgq, pi(M;, M;) = 4p — 1.
Then we have

(6.9) dimpg Homdd,Fz’l(Ma M) = Z dimpg Homdd,Fil(Miv M;)=r(dp—1).

€S

(6.7)

(6.8)

By the above analysis, we conclude that
(6.10) dimp Ext} (M, M) = dimg Homp, roar (M, M) +r.

BTMOdgld,K/F d,K/F
In particular, if M is split, then dimg Ext}BrModl (M, M) =2+ r. If M is nonsplit,
dd, K/ F
then dimp Exty, . (M,M)=1+r.

dd,K/F
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6.3.2. Irreducible case. Let M be an irreducible rank two Breuil module of type J as in
Definition 6.5. First, we show that the pair (M, M) is simple. Let N' € Ext'(M, M).
Write N = ®;esN;. Assume that
= E[u]/u€p<6i7 fi7 egjv fz/>)
where e, € N (resp. f! € N;) is a lift of e; € M, (resp. fi € M;).
Lemma 6.8. We may assume that
Fil' N; = Elu] /u (u™e;, u™™ f;, u™iel, u®=" f1).
Proof. If i +1 € J, then n; = e. Write Fil'N; = E[u]/u®(u®e;, fi, u®e, + Ase; + Bifi, fi +
Cie; + D, fi). We may assume that B; = D; = 0. Since u®e; € Fil'N;, we have u¢|4;. Let
A;/u € Elu]/u? such that u®(A;/u®) = A;. Let € = €] + (A;/u®)e; and f!' = f! + Cie;,
we may assume that A, = C; = 0.
Ifi+1¢&J, the argument is the same. O
Assume that N/ = @N; has the following form.
- E[u]/u€p<€i, fi7 6;7 f1/>7
Fil’ N; = Elu] /u® (u™e;, u®™™ f;, u"ie}, u" ff),
¢1( "ier) = (a)iy1€iv1 + Xivi€iv1 + Yig1 firn,
u"ifl) = (a )z+1fi/+1 + Ziv1€iv1 + Wig1 fiva,
[91(e5) = w;" (9)e; + Aigei + Bigfi,
[91(fi) = wi" (9)fi + Cigei + Digfi,
[gfb]( ) fi+s + Piyseits + Qitsfits,
[ ¢]( ) = e;—i-s + Ri+sei+s + Si+sfi+37
where the X, Y, Z, W and A, B,C, D are in E[u]/u®P.
Lemma 6.9. We may assume that A; g = B; g = C; g = D; g = 0.

Proof. Let M’ be M without the descent data of g4, then M’ is a direct sum of two rank
one objects in BrM od}l 4K Ko More precisely, M’ is isomorphic to a reducible rank two

/
1
/

object of some type J’ in the sense of Definition 6.4. Then the proof is the same as the
proof of [9] Lemma 4.4. O

Lemma 6.10. We may assume that Piys = Qijt+s = Rixs = Si+s = 0.

Proof. If i + 1 € J, Since [g(zﬂ(Fill) C Fil', we have u®|Qits, Sivs. Let e, = el +
Ritseiys+Sivsfivs and fi' o = fi  + Piyseips+ Qiysfiys. This does not change the form
of Fil' since Elu]/u{e;ys,u’ fivs, €y ufips) = E[u]/uep<ei+s,uest,e;’Jrs,sue is). We
have to check that it does not change the form of [¢g]. By the relation g;¢” = ggy, we
have

l99s(e7) = Wit (9) firs + 9(Pirs)wi it (9)eivs + 9(Qits)wi 5" (9) fits
= [969”"(¢})
= w;t—it;s( )(fz,—‘,-s + PiJrSeiJrs + Q7j+sfi+s).

Therefore, [g]fi’, = wﬁzs (9)f7 Fes: Similarly, [glef, , = w;/fgs (9)ef s

Ifi+1¢& J, the argument is the same. O
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Lemma 6.11. X@ = Wi+s; Y; = Zi+s; Zz = Y'H»s; WZ == XiJrS.
Proof. This is an easy consequence of the equation [gg] 0 ¢1 = ¢1 0 [gg). O

By Lemma 6.8, 6.9, 6.10, we can apply the exact sequence (6.1) to the pair (M, M). If
we forget about the descent data of [gg4], then the same computation as in the reducible
case shows that

dimp Homiyy 1 pyop(Fil' M, M) = dpr,
dlmE HOm&d7Fil(M, M) = (4p — 1)7”
Here ' means that we do not consider the descent data of [g4]. Then by Lemma 6.11 and
a similar computation as for equation (6.7), we have

dimg Homaagrrob(Fil' M, M) = 4ps,
dimg Homgq rit(M, M) = (4p — 1)s.
Therefore,

(6.11)  dimp Exty, Mod,, K/F(./\/l,./\/l) = dimp HomBTMOdédﬁk/F(M,M) +s=1+s.
6.4. Proof of Lemma 3.3. Now we can prove Lemma 3.3 by applying the above com-
putation. We use the notation in section 3.1. Note that we have the following facts.

If p, is reducible and nonsplit, p, is of type J, in the sense of Definition 3.1.3 of [20].
Therefore, there exists a Breuil module M,y € BrMod® dd,L/F, (here the coefficient ring

is § = ky ® k[u]/u) such that the generic fibre of M,.qq is p, and M,.eq = @i;kv_@p M;
has the following form.
M; = slu]/u®(e;, fi)
Fil' M; = klu ]/uep<ujlez w4 Multie)
¢1(U”€z') = (D)iy1€ir1, ¢1(u? fi +Aue) = (a )z’+1fz‘+1
¢1Hw 9)61, fz—¢2HW
i€y i€ Jy
+1ed, . .
where \; € k with \; =0ifi+1¢& J,, j; = © Z_+ €J , h; is an integer between 0
0i+1¢dJ,

and e, ¢} and ¢} are restrictions of 11 and 12 to Gal(L/F,). Note that M, is split if
and only if all the \}s are 0.

If p, is irreducible, from Theorem 4.1.4 of [20], there exists a rank two Breuil module
My, € BrMod}, 1/F, (here the coefficient ring is § = k! @ k[u]/uP), such that the generic

fiber of M. is p, and M, = B, M; has the following form.
M; = k[u]/uP(ei, fi)
Fil' M; = k[u]/uP {(u™e;,u™ f;)
o1 (u"e;) = (a)ip1eit1, d1(W™ fi) = (a)it1fit
N(e;) =0, N(fi)=0
lg ] = fitd,» [90)fi = €ita,

= (T w TT wi ™0 @es, lalfi = (J] wi T @i ")) fi-

i€S, i€y €Sy idJy
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, aifi=1 o faifi=d,+1
Here ni = 8y, (i+1)e and m; = e —n;, (a)i = 1 otherwise ¢ )1 otherwise
ge € Gal(L/F,) is a fixed element such that it maps to the nontrivial element in Gal(F}/F,)
under the natural surjection Gal(L/F,) — Gal(F}/F,), g denotes the elements in Gal(L/F}).
Notice that M;,.. is of type J, in the sense of Definition 6.5.

Suppose that p, : Gg, — GLo(E) is a potentially Barsotti-Tate representation with Ga-
lois type 7,. Since 7|7, is trivial, p, is Barsotti-Tate when restricted to Gr. Consequently,
there exists a p-divisible group I" over Oy, such that the generic fibre of I" is p,|g,. I" also
has an action of the Galois group Gal(L/F,) over the action of Gal(L/F,) on Spec(Op).
Let D(T'/k, ® k) be the contravariant Dieudonné module of T'. Then D(T'/k, ® k) is a free
W (k,) ® O-module of rank two with an action of the Dieudonné ring W (k,)[F,V]. We
may define an action of the Weil group W,, on D(I'/k, ® k) (see for example appendix of
[11]). Then

WD(py) = Homy (r,)00(D(L/ky @ k), W (ky) @ O) @w (k)00 Qp-

6.4.1. The reducible case. Assume that p, is reducible and nonsplit. Since 7, = 75, =
X7, DX, [ies, @i, there exist basis elements ¢ and « of W D(p,) so that for g € I, C GF,,

(6.12) 9(8) = X1, (9)7,  9(@) = x5, [] & (9).
1€Sy
Let BrM odcll AL/F, be the category of Breuil modules with descent data (S = k, ®
k[u]/u? in this case). Then there is an equivalence between BrMod}, s, and the cat-

egory of finite flat group schemes over Op with an action of Gal(L/F,). Let Mrp €
BrM odcli d4,L/F, be the Breuil module with descent data corresponding to the group scheme

I'. Then there is a canonical isomorphism
D(T/k, ® k) Olkey @1, Frob®1 (ky ® k) = Mrp/uMr

under which F ® Frob corresponds to ¢ (in our case, ¢(z) = ¢1(u®-x)) and V® Frob~!
corresponds to the composition

-1
MrJuMr 2 Pl Mp JuFil My — MpfuMy.

(This is well defined since ¢; ' is a bijection.)

We determine those group schemes with descent data such that the corresponding Breuil
modules with descent data have Dieudonné modules with basis satisfying (6.12). Note that
if M is a Breuil module such that the associated Dieudonné module D(M) has a basis
satisfying (6.12), then it is easy to see that the descent data of M are determined by the
reductions of X, and X, [[;cs, @;*. More precisely, M has the following form

M = k[ul/u{e;, fi)
Fil M; = klu] /u? (u™e;, u™ f; + Nulie;)
g1(ue;) = (b)isreiy1, S1(u™ fi+ Au'e;) = (a)it1fip

glei = [T wi [T wt P(9)ein lalfi = [ wi T] wi ™ TT wi(9)f:
1€S, 1€y 1€S, i€ Jy €Sy
where m; and n; are integers between 0 and e.
Since we know the generic fibre of M, then we can determine M completely.
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Lemma 6.12. If the Dieudonné module associated to M satisfies (6.12), then M is of
type J,.

Proof. As remarked above, there exists at most one such Breuil module. From the defini-
tion, it is easy to see that D(M,.q) has all the required properties. Thus M = M4 is of
type Jy. 0

We then have the following lemma.

Lemma 6.13. If p, is reducible and nonsplit, then
(1) dim, H{(GF,, Ad(py)) = 1 + d,.
(2) dim, H}(GR,, Ad(py)) = do.

Proof. (1) follows from equation (6.10). (2) follows from the fact that
dim, Ext!(M(m;, i, a), M(mi, p;,a)) = 1
for any rank one Breuil module. (This fact is a special case of Theorem 3.9 of [9].) O

6.4.2. The irreducible case. Assume that p, is irreducible, then the same argument as in
the reducible case shows that there exists a unique Breuil module with descent data M
such that the corresponding Dieudonné module has basis elements ¥ and @ with

du o
9(8) = s, [[ 8597, 9(@) = (Dr,@ [ (9)0.
i=1 i=1

Indeed, M = M,,, which is the one constructed in Theorem 4.1.4 of [20]. In particular,
M is of type J, in the sense of Definition 6.5.

Lemma 6.14. If p, is irreducible, then
(1) dimy H{(GF,, Ad(py)) = 1+ do.
(2) dim,, H}(GFU, Ad®(py)) = d,.

Proof. The proof is almost the same as the proof of last lemma, except now we use equation
(6.11). 0
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