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Abstract. We consider a potentially Barsotti-Tate deformation problem of a modular
Galois representation. By constructing a Diamond-Taylor-Wiles system, we prove an
R = T theorem and a multiplicity one result in characteristic 0. Applying this result, we
then prove a multiplicity one result in characteristic p, which provides certain evidence
for a conjecture of Breuil.

1. Introduction

In this paper, we prove a multiplicity one result for Galois representations in cohomology
groups of Shimura curves with certain non-trivial coefficients. Namely, we show that, under
some technical conditions, the localized mod p cohomology group of a Shimura curve is
free of rank two over the localized Hecke algebra. In the modular curves case, this is
well-understood by [24], [27], and [37] (and so we exclude this case in this paper). The
main tool we use is Diamond’s refined Taylor-Wiles construction. In this approach, the
freeness part becomes a consequence of the construction.

The novel part of this paper is that, by using a lifting result of Toby Gee [20] and
transferring the problem in characteristic p to a problem in characteristic 0, we are able to
deal with non-trivial coefficients associated to regular Serre weights (see Definition 2.6).
In particular, we do not need a parity condition on the weights. Our results in this paper
deal primarily with the minimally ramified case because of the lack of a general Ihara’s
lemma for Shimura curves.

To explain our results in more detail, we introduce some notation. Let F be a totally
real field with degree d = [F : Q]. Let p > 3 be a prime number which is unramified in
F . The unramifiedness of p is crucial for Corollary 2.8 and crucial for the deformation
problem we consider in this paper. (In particular, we use the identity d =

∑
v|p[kv : Fp],

where kv is the residue field of Fv.) Let G =
∏
v|pGL2(kv). Fix an archimedean prime τ1

of F and a finite set SD of non-archimedean primes such that

(1.1) | SD |≡ d− 1 (mod 2).

Let D be the quaternion algebra over F which is ramified at the primes in SD ∪ {v |
v|∞, v 6= τ1}. We also use SD to denote the ideal which is the product of the primes in
SD. Fix OD a maximal order of D. Let G = ResF/QD

× be the algebraic group over Q
associated to D×. Then G(Q) = D×, G(R) ' GL2(R) × (H×)d−1, where in the second
term there appear d − 1 copies of the multiplicative group of non-zero elements of the
classical Hamiltonian quaternion H.

Let K0 denote
∏
v(OD⊗OFv)×, where v runs through all finite places of F . For v - SD,

fix isomorphisms D ⊗ Fv ∼= M2(Fv) and (OD ⊗ OFv)× ∼= GL2(OFv). Define K1(N), for
1
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an ideal N prime to pSD, to be the subgroup of K0 consisting of those u for which uv

congruent to

(
∗ ∗
0 ∗

)
mod(vordv(N)) for every v | N .

Let ρ̄ : GF → GL2(F̄p) be a continuous, irreducible Galois representation with conductor

N
′
, where (N

′
, p) = 1 and N

′
is square free. Assume that ρ̄ comes from the Shimura curve

MK1(N) associated to the quaternion algebra D, i.e., ρ̄ is a subquotient of H1(MK1(N) ⊗
F̄ ,Fσop)m, where σ : G → Aut(W/F̄p) is a Serre weight, Fσop is the sheaf associated to σop

(see section 2.1), m is a maximal ideal of the corresponding Hecke algebra, N is square

free and N
′ | NSD. Let a = dimF̄p HomGF (ρ̄, H1(MK1(N) ⊗ F̄ ,Fσop)m). We call a the

multiplicity of ρ̄ in H1(MK1(N) ⊗ F̄ ,Fσop)m.
In the case of modular curves, we have multiplicity one (i.e. a = 1) except some

very special cases (see for example [27] Theorem 5.2). But from [28] Theorem 3 and [14]
Theorem 3.6, we may have higher multiplicities in the case of Shimura curves. In this
paper, we consider the case when σ is regular (see Definition 2.6 below). We show that, if
ρ̄ satisfies some technical conditions (see equation (3.2) below), then we have multiplicity
one. The main result is Theorem 5.3. It follows from Theorem 4.1, which proves a
multiplicity one result in characteristic 0.

The paper is organized as follows. In section 2, we recall some basic properties of
Shimura curves and Serre weights. Specially, we introduce the lifting result of Toby Gee,
which plays an important role in this paper. In section 3 and section 4, we consider
a potentially Barsotti-Tate deformation problem and construct a Taylor-Wiles system.
Then applying Diamond’s result, we prove an R = T theorem as well as a freeness result
in characteristic 0 (Theorem 4.1). In this case, we can also compute the rank because
we have Lemma 4.10, which is proved by the comparison theorem in characteristic 0. In
section 5, we show how we can deduce multiplicity one in characteristic p from multiplicity
one in characteristic 0 and prove our main theorem (Theorem 5.3). We also explain how
we can get a stronger result (Theorem 5.14) by considering another deformation problem.
To compute the size of local deformation rings at primes dividing p in the potentially
Barsotti-Tate deformation problem, we use the theory of Breuil modules with descent
data. We introduce this theory and prove Lemma 3.3 in section 6. In section 6.1, 6.2, and
6.3, the notation is not consistent with the notation in other parts of this paper.

1.1. Notation. If L is a perfect field we will let L̄ denote the algebraic closure of L and
GL its absolute Galois group Gal(L̄/L). If L is a number field, we let AL denote the ring
of adeles over L, and A∞L denote the ring of finite adeles over L. If L = Q, we write A
and A∞ for AQ and A∞Q , respectively.

Let F , p, D, G, ρ̄, N be as above. For any prime v of F , let Fv be the completion of
F at v, OFv the ring of integers of Fv, kv the residue field of OFv , $v a uniformizer of
OFv , and Frobv ∈ Gal(F̄v/Fv) an arithmetic Frobenious element. Write Iv ⊂ GFv for the
inertia group at prime v.

Let Σ be a set of primes of F . If a group U has the form U =
∏
v∈Σ Uv, and J is an

ideal which is a product of some elements in Σ, we will write UJ for the subgroup of U
given by UJ =

∏
v∈Σ,v-J Uv and UJ for the subgroup of U given by UJ =

∏
v∈Σ,v|J Uv.

Let K0 and K1(N), for N prime to pSD, be the subgroups of G(A) as defined before.

We then write K = K1(N), K
′

= K1(N)p × (1 + pM2(Op)) ⊂ K. Suppose that n is an
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ideal of OF such that (n, pNSD) = 1, and for each finite place v of F dividing n, Hv is a
quotient of (OFv/nv)×. Then we will write H for

∏
v|nHv. We will let KH(n) =

∏
vKH(n)v

denote the open subgroup of K defined by setting KH(n)v to be the subgroup of GL2(OFv)

consisting of elements

(
a b
c d

)
with c ∈ nv and, in the case v | n, with ad−1 mapping to 1

in Hv.
For v | n we have the decompositions

KH(n)v

(
$v 0
0 1

)
KH(n)v =

∐
a∈kv

(
$v ã
0 1

)
KH(n)v,

KH(n)v

(
1 0
0 $v

)
KH(n)v =

∐
a∈kv

(
$v 0
$vã 1

)
KH(n)v,

and

KH(n)v

(
$v 0
0 $v

)
KH(n)v =

(
$v 0
0 $v

)
KH(n)v,

and for v - nSD we have the decomposition

KH(n)v

(
$v 0
0 1

)
KH(n)v =

(
1 0
0 $v

)
KH(n)v

∐
(
∐
a∈kv

(
$v ã
0 1

)
KH(n)v),

where ã is some lift of a to OFv .
In this paper, except the last section, E will denote a sufficiently large finite extension

of Qp. It will serve as the coefficient ring. Let O and κ be its ring of integers and residue
field. Denote by CO the category of local complete Noetherian O-algebras with residue
field κ.

2. Shimura curves

Let X be the G(R)-conjugacy class of the map

h : C× → G(R) ' GL2(R)×H× × · · · ×H×,

which maps a+ ib to (

(
a b
−b a

)−1

, 1, ..., 1). The conjugacy class X is naturally identified

with the union of the upper and lower half plane by the map ghg−1 7→ g(i), where g(i) =

a+ib
c+id for g = (

(
a b
c d

)
, · · · ).

Let M = M(G,X) = (MH)H be the canonical model defined over F of the Shimura
variety defined by G and X. (Here H runs through the open compact subgroups of
G(A∞).) Each MH is proper and smooth but not necessarily geometrically connected
over F , and

MH(C) ' G(Q)\X ×G(A∞)/H.

For each H and H ′ sufficiently small (see [7] Lemma 1.4.1.1) and g ∈ G(A∞) with
g−1H ′g ⊂ H, there is an etale map %g : MH′ → MH which on complex points coincides
with the one induced by right multiplication by g in G(A). For a normal subgroup H ′

of H, the etale cover %1 : MH′ → MH is Galois, and the mapping g−1 7→ %g defines an
isomorphism of H/H ′ with a group of covering maps.
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2.1. Sheaf cohomology and the Hecke algbra. Suppose that H is an open compact
subgroup of G(A∞). We assume that H is sufficiently small and H is of the form

∏
vHv

with Hv ⊂ (OD ⊗ OFv)×. Suppose that Σ is a finite set of primes, and that for each
v ∈ Σ we are given a finitely generated O-module Vv with a left action of Hv which is
continuous with respect to the discrete topology of Vv. We can then associate to the
H-module V =

⊗
v Vv a locally constant sheaf

(2.1) FV = G(Q)\(G(A)× V )/H

π

��

MH

on MH . In order to define Hecke operators, we assume that for all v 6∈ Σ we have
Hv = (OD ⊗OFv)× and Hv acts trivially on V . Write F = FV .

Suppose that H and H
′

are sufficiently small open compact subgroups of G(A∞), and

g ∈ G(A∞). There is a natural identification of sheaves onMH∩gH′g−1 : FgH
′
g−1 |M

H∩gH′g−1
=

FH∩gH
′
g−1

. Here FR means that we consider F as a sheaf over the curve MR. Then define

[HgH
′
] : Hj(MH′ ⊗ F̄ ,F

H
′
)→ Hj(MH′∩g−1Hg ⊗ F̄ ,F

H
′
|M

H
′∩g−1Hg

)

→ Hj(MgH′g−1∩H ⊗ F̄ ,F
gH
′
g−1 |M

gH
′
g−1∩H

)

= Hj(MgH′g−1∩H ⊗ F̄ ,F
H∩gH′g−1

)

→ Hj(MH ⊗ F̄ ,FH),

(2.2)

where the first arrow is the restriction map, the second arrow is induced from %g :
MH′∩g−1Hg → MgH′g−1∩H , and the last arrow is the trace map. See section 15 of [22]

for more details.
Let H = H

′
. If q is a prime of OF which is unramified in D and does not divide p, let

ωq ∈ A∞F be such that ωq is a uniformizer at q and is 1 at every other place. Then write

Tq = [H

(
ωq 0
0 1

)
H].

If also Hq = GL2(Oq), define

Sq = [H

(
ωq 0
0 ωq

)
H].

If H = K1(N), denote by TO(H,V ) the O-algebra generated by Tq for q - NSD and Sq
for q with Hq = GL2(Oq). Write TA(H,V ) = TO(H,V )⊗ A for any O-algebra A. Write
Uq = Tq if q | N .

Definition 2.1. A maximal ideal of TA(H,V ) is Eisenstein if it contains Tv − 2 and
Sv−1 for all but finitely many primes v of F which split completely in some finite abelian
extension of F .

Lemma 2.2. Suppose that H, V are as above and let m be a non-Eisenstein maximal
ideal of TO(H,V ) with finite residue field. Then
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(1) H0(MH ⊗ F̄ ,F)m and H2(MH ⊗ F̄ ,F)m vanish.

(2) If 0→ V
′ → V → V

′′ → 0 is an exact sequence of O[H]-modules, then the sequence

0→ H1(MH ⊗ F̄ ,FV ′ )m → H1(MH ⊗ F̄ ,FV )m → H1(MH ⊗ F̄ ,FV ′′ )m → 0

is exact.
(3) If V is free over O, then the natural map

H1(MH ⊗ F̄ ,FV )m ⊗O κ→ H1(MH ⊗ F̄ ,FV⊗Oκ)m

is an isomorphism.

Proof. (1) By Lemma 2.2 of [5], the action ofGF on the cohomology groupsH0(MH⊗F̄ ,F)
and H2(MH ⊗ F̄ ,F) factors through an abelian quotient. Since m is non-Eisenstein, the
localizations vanish.
(2) Certainly, we have a short exact sequence of sheaves

0→ FV ′ → FV → FV ′′ → 0.

Write down the long exact sequence of cohomology groups

· · · → H0(MH ⊗ F̄ ,FV ′′ )→ H1(MH ⊗ F̄ ,FV ′ )→ H1(MH ⊗ F̄ ,FV )→

H1(MH ⊗ F̄ ,FV ′′ )→ H2(MH ⊗ F̄ ,FV ′ )→ · · ·
By (2), we get the desired short exact sequence after localization.
(3) We have a short exact sequence 0→ V → V → V ⊗O κ→ 0. Then by (3), we have a
short exact sequence

0→ H1(MH ⊗ F̄ ,FV )m → H1(MH ⊗ F̄ ,FV )m → H1(MH ⊗ F̄ ,FV⊗Oκ)m → 0,

which gives the desired isomorphism. �

2.2. Serre weights. For our fixed F and p, since p is unramified in F , G =
∏
v|pGL2(kv) ∼=

GL2(OF /p). A Serre weight is an isomorphism class of irreducible F̄p-representations of
G. They can be described explicitly as follows. For each prime v of F dividing p, let Sv be
the set of embeddings λ : kv → F̄p. Then every irreducible F̄p-representation of GL2(kv)
is equivalent to one of the form

V
~a,~b

=
⊗
λ∈Sv

(detaλ ⊗kv Symbλ−1k2
v)⊗λ F̄p,

where aλ, bλ ∈ Z, ~a 6= ~(p− 1), 0 ≤ aλ ≤ p − 1 and 1 ≤ bλ ≤ p for each λ ∈ Sv. The
irreducible representations of G are thus of the form V = ⊗v|pVv, where the tensor product

is over F̄p and each Vv is of the form V
~a,~b

for (~a,~b) as above. We write V op for the dual of

V .

Definition 2.3. Suppose that ρ : GF → GL2(F̄p) is a continuous, irreducible represen-
tation and V is a finite-dimensional F̄p vector space with a left action of G. We say that
ρ is modular of weight V if there is a quaternion algebra D over F split at the primes
above p, at τ1 and at no other archimedean places of F , and a sufficiently small open
compact subgroup U of G(A∞) of level prime to p, such that ρ is an F̄pGF -subquotient of

H1
et(MU ⊗ F̄ ,FV op) ' HomG(V,H1

et(MU ′ ⊗ F̄ , F̄p)), where U
′

= Ker(U → G).
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Remark 2.4. By Lemma 2.4 of [5], we see that the above definition is equivalent to saying
that ρ is modular of weight V if there is a quaternion algebra D over F split at the primes
above p, at τ1 and at no other archimedean places of F , and a sufficiently small open
compact subgroup U of G(A∞) of level prime to p, such that ρ is an F̄pGF -subquotient

of (Pic0(MU ′ )[p](F̄ ) ⊗ V )G . Here U
′

= Ker(U → G), G acts diagonally on the tensor
product, and GF acts trivially on V .

In this paper, we use the cohomology version of the definition. For an irreducible
ρ : GF → GL2(F̄p), from Corollary 2.12 of [5], the following conditions are equivalent:
(1) ρ ∼= ρ̄π for some holomorphic cuspidal automorphic representation π of GL2(AF );
(2) ρ ∼= ρ̄π for some holomorphic cuspidal automorphic representation π of GL2(AF ) of

weight (~2, 0);
(3) ρ ∼= χρ̄π for some holomorphic cuspidal automorphic representation π of GL2(AF ) of

weight (~2, 0) and level U = UpU1(p), where U1(p) = {(
(
av bv
cv dv

)
)v|p ∈

∏
v|pGL2(OFv) |

cv ≡ 0 (mod v) and dv ≡ 1 (mod v)};
(4) ρ is modular of weight V for some Serre weight V .

Let ρ : GF → GL2(F̄p) be a continuous, irreducible and totally odd representation. In
[5], the authors construct a set W (ρ) of Serre weights, and make the following conjecture.

Conjecture 2.5. If ρ : GF → GL2(F̄p) is modular, then

W (ρ) = {V | ρ is modular of weight V}.

For the detailed construction of W (ρ) and related topics, we refer to [5]. In fact, for
each v|p, they define a set of representations Wv(ρ) of GL2(kv) depending on ρ|Iv , and
then define W (ρ) as the set of Serre weights of the form ⊗vVv with Vv ∈ Wv(ρ). This
conjecture has been proved in many cases by Toby Gee [20]. In a recent paper [21], the
authors proved the conjecture completely. We give the following definition of regularity
as in paper [20].

Definition 2.6. We say that a weight V
~a,~b

for GL2(kv) is regular if 2 ≤ b ≤ p− 2 for all

b. We say that a Serre weight V = ⊗v|pVv is regular if all the Vv’s are regular.

Theorem 2.7 (Toby Gee). Suppose that V
~a,~b
∈ Wv(ρ) is regular. Then there is a rep-

resentation Ṽ
~a,~b

of GL2(kv) over Q̄p with a Z̄p-lattice I(V
~a,~b

), such that there is precisely

one of the Jordan-Holder factors of the reduction mod p of I(V
~a,~b

) belonging to Wv(ρ), and

that factor is isomorphic to V
~a,~b

.

Proof. In Proposition 3.5.2 and Proposition 4.1.2 of [20], the author constructed an explicit
I(V

~a,~b
) (for each regular V ) which satisfies the conditions in the theorem. In this paper,

we will take I(V
~a,~b

) to be the one constructed in [20]. �

Corollary 2.8. Let ρ : GF → GL2(F̄p) be an irreducible modular representation. If

V ∈ W (ρ) is a regular weight of ρ, then there exists a representation Ṽ of G over Q̄p

with a Z̄p-lattice IV , such that there is precisely one of the Jordan-Holder factors of the
reduction mod p of IV in W (ρ), and the factor is isomorphic to V .
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Proof. Assume that V = ⊗v|pV~a,~b. Then by the above theorem, we can take IV to be

⊗v|pI(V
~a,~b

), where I(V
~a,~b

) is the one constructed in [20]. �

3. The deformation problem

For our fixed field F , quaternion algebra D, and group K = K1(N), let MK be the
corresponding Shimura curve. Let V be a regular Serre weight such that V =

⊗
v|p V~a,~b.

Let V op denote the dual of V . We assume that V is defined over κ.
The cohomology groupH1(MK⊗F̄ ,FV op) is a module over the Hecke algebra Tκ(K,V op).

Let m be a non-Eisenstein maximal ideal of Tκ(K,V op). We have an irreducible Galois
representation ([6], [33])

rm : GF → GL2(Tκ(K,V op)m)

such that if v - SDNp, then rm is unramified at v and Trace(rm(Frobv)) = Tv. Write r̄
for rm mod (m), then r̄ is a modular representation of weight V .

Let IV be the lattice attached to (r̄ ⊗ F̄p, V ) constructed in the proof of Corollary

2.8. We may assume that Ṽ is defined over E and IV is an O-lattice in Ṽ . We also
have a sheaf FIopV in characteristic 0. The projection IV → V induces natural maps

H1(MK ⊗ F̄ ,FIopV )→ H1(MK ⊗ F̄ ,FV op) and TO(K, IopV )→ Tκ(K,V op). We also write m

for the preimage of m ⊂ Tκ(K,V op) in TO(K, IopV ) under the natural map. We have the
following diagram.

(3.1) GL2(TO(K, IopV )m)

����

GF
rm //

ρm
77

GL2(Tκ(K,V op)m)

We will write ρ̄ for ρm mod (m). Notice that it is the same as rm (mod m). We impose
the following conditions on ρ̄:

ρ̄ is absolutely irreducible;

if v|N, then ρ̄ is ramified at v;

if v|SD, and Norm(v)2 ≡ 1 mod p, then ρ̄ is ramified at v;

if v|p, then EndF̄p[GFv ]((ρ̄|v)⊗ F̄p) = F̄p.

(3.2)

Let ε : GF → Q̄×p be the cyclotomic character. Let χ : A×F /F
× → O× be a character such

that χ|F×v is trivial if v - pN ′, ε(χ ◦ Art−1) reduces to det(ρm), and therefore reduces to

det(ρ̄). This is possible since we chose E to be sufficiently large.
The rest of this section is devoted to stating a deformation condition for ρ̄ which is a

good candidate for having TO(K, IopV )m as the universal deformation ring.

3.1. Deformation conditions at v|p. Fix v|p. If a p-adic representation ρv of GFv is
potentially semistable, one associates to ρv a Weil-Deligne representation WD(ρv) over
Q̄p (See for example Appendix B.1 of [11]). Then ρv becomes semistable over L if and
only if WD(ρv)|IL is trivial. The Galois type τ(ρv) associated to such ρv is defined to be
the isomorphism class of the representation WD(ρv)|Iv .
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Let V =
⊗

v|p V~a,~b be the regular Serre weight and ρ̄ be the representation of GF
constructed at the beginning of this section. Let ρ̄v = ρ̄|GFv . For A ∈ CO, we consider the
deformations ρv : GFv → GL2(A) of ρ̄v with the following properties:

(1) ρv is potentially semistable with Hodge-Tate weights (0, 1),
(2) τ(ρv) is isomorphic to τv,
(3) det(ρv) = ε(χ ◦ Art−1) where ε is the cyclotomic character and χ is the character

defined as above.
Here if ρ̄v is reducible, then τv is defined by equation (3.4); if ρ̄v is irreducible, then τv
is defined by equation (3.5). Define H1

f (GFv , Ad(ρ̄v)) ⊂ H1(GFv , Ad(ρ̄v)) to be the set of
extensions of ρ̄v by itself which are potentially Barsotti-Tate. We will use the theory of
Breuil modules with descent data to compute the size of H1

f (GFv , Ad(ρ̄v)). For a detail
introduction to this theory, please see section 6.

3.1.1. Define τv in the reducible case. Assume that

ρ̄v ∼
(
ψ1 ∗
0 ψ2

)
is reducible and nonsplit.

Let L = Fv((−p)
1

pdv−1 ), where dv = [Fv : Qp]. Let ω : Gal(L/Fv) → k×v be the map

defined by ω(g) = g(π)/π (mod π), where π = (−p)
1

pdv−1 is a uniformizer of L. Fix
τ0 : kv → F̄p and define τi = τ0 ◦ Frob−i where Frob is given by (x 7→ xp). Define
ωi = τi ◦ ω : Gal(L/Fv) → F̄×p . We assume that κ is large enough that it contains the
image of one, and hence all, ωi.

Let Sv = Hom(Fv, Q̄p) ∼= Hom(kv, F̄p) ∼= Z/dv. From section 3.5 of [20], there exists a
subset Jv ⊂ Sv = Hom(Fv, Q̄p), such that

ψ1|IFv =
∏
i∈Sv

ωaii
∏
i∈Jv

ωbii , ψ2|IF =
∏
i∈Sv

ωaii
∏
i 6∈Jv

ωbii .

We define

(3.3) ci =

{
bi − δJv(i+ 1) if i ∈ Jv
p− bi − δJv(i+ 1) if i 6∈ Jv

where δJv(i) =

{
1 if i ∈ Jv,
0 if i 6∈ Jv.

We then define a type τJv by

τJv = χ̃Jv ⊕ χ̃Jv
∏
i∈Sv

ω̃cii ,

where ˜ means Techmuller lift and

χJv =
∏
i∈S

ωaii
∏
i 6∈Jv

ωbi−pi .

In the reducible case, we define

(3.4) τv = τJv .

Remark 3.1. Notice that in this case, the lattice constructed by Gee in Theorem 2.7 is a
lattice in I(χ̃Jv , χ̃Jv

∏
i∈Sv ω̃

ci
i ), which is a representation of GL2(kv) defined in section 1

of [15].
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3.1.2. Define τv in the irreducible case. Assume that ρ̄v : GFv → GL2(κ) is irreducible.
Let F ′v be the degree two unramified extension of Fv. Let k′v be the residue field of F ′v.

Then k′v has degree two over kv. Let L = F ′v((−p)
1

p2dv−1 ), where dv = [Fv : Qp]. Let ω :

Gal(L/Fv) → k×v be the map defined by ω(g) = g(π)/π (mod π), where π = (−p)
1

p2dv−1

is a uniformizer of L. Fix τ0 : k′v → F̄p and define τi = τ0 ◦ Frob−i where Frob is the
Frobenius of k′v given by (x 7→ xp). Define ωi = τi ◦ω : Gal(L/Fv)→ F̄×p . We assume that
κ contains the image of all ωi.

Let Sv = Hom(Fv, Q̄p) ∼= Hom(kv, F̄p) ∼= Z/dv, S′v = Hom(F ′v, Q̄p) ∼= Hom(k′v, F̄p) ∼=
Z/2dv. We say a subset Jv ⊂ S′v is full if the restriction to Jv of the natural projection
π : S′ → S is a bijection onto S. From section 4.1 of [20], there exists a full subset
Jv ⊂ S′v = Hom(F ′v, Q̄p), such that

ρ̄|IF ′v ∼
∏
σ∈Sv

ωaσσ

(∏
σ∈Jv ω

bσ
σ 0

0
∏
σ 6∈Jv ω

bσ
σ

)
where we write aσ and bσ for aπ(σ) and bπ(σ) respectively.

For the given regular weight V
~a,~b

of GL2(kv) and the full subset Jv ⊂ S′, we define a

representation of GL2(kv) and a type as follows. Let KJv = π(Jv ∩ {1, · · · , dv}). Then let

ci =


bi + δKJv (1)− 1 if 0 = i ∈ KJv

p− bi + δKJv (1)− 1 if 0 = i 6∈ KJv

bi + δKJv (i+ 1) if 0 6= i ∈ KJv

p− bi − δKJv (i+ 1) if 0 6= i 6∈ KJv

Define a character

ψJv = ω
−δKJ (1)

0

∏
i∈Sv

ωaii
∏
i 6∈KJv

ωbi−pi .

Then we define

I ′Jv = Θ(ψ̃Jv ω̃dv

dv∏
i=1

ω̃cii )

and

τ ′Jv = ψ̃Jv ω̃dv

dv∏
i=1

ω̃cii ⊕ (ψ̃Jv ω̃dv

dv∏
i=1

ω̃cii )p
r
.

Here ˜ means Techmuller lift, Θ(ψ̃Jv ω̃dv
∏dv
i=1 ω̃

ci
i ) is a cuspidal representation of GL2(kv)

defined in section 1 of [15]. We define

(3.5) τv = τ ′Jv .

Remark 3.2. In this case, the lattice constructed by Gee in Theorem 2.7 is a lattice in

Θ(ψ̃Jv ω̃dv
∏dv
i=1 ω̃

ci
i ).

3.1.3. Local Selmer groups. Fix v|p. Recall that H1
f (GFv , Ad(ρ̄v)) ⊂ H1(GFv , Ad(ρ̄v)) is

the subset of infinitesimal deformations of ρ̄v which are potentially Barsotti-Tate. We
have the following lemma.
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Lemma 3.3. If ρ̄v is non-split, then
(1) dimκH

1
f (GFv , Ad(ρ̄v)) = 1 + dv.

(2) dimκH
1
f (GFv , Ad

0(ρ̄v)) = dv.

This lemma is proved in section 6.4 by using the theory of Breuil modules with descent
data.

3.2. Deformation conditions at primes dividing NSD. (The argument in this section
is based on the idea in [35] section 2.2.) Fix a finite prime v|NSD. If v|N , then ρ̄ is ramified

at v, and we consider the deformations ρv of ρ̄|GFv such that ρv(Iv) ⊂
(

1 ∗
0 1

)
. (See section

2.7 of [12] for more details.)
If v|SD, we need to consider the deformations of ρ̄ which are special at v. Let g

be a weight (2, ..., 2) Hilbert eigenform such that ρ̄g ' ρ̄. Let πg be the automorphic
representation of GL2(AF ). Then the local component πg,v is special of conductor v if and

only if ρg |Iv∼
(

1 ∗
0 1

)
with ∗ ramified.

First, if ρ̄ is ramified at v, we get a suitable deformation condition at v by requiring the
restriction to Iv to be unipotent.

If ρ̄ is unramified at v, we have to rule out those deformations of ρ̄ arising from Hilbert
modular forms which are not special at v. Note in this case, ε(χ ◦Art−1) = ε.

Lemma 3.4. Let v - p be a finite prime such that p - (Norm(v)2 − 1). Let ρ̄v : GFv →

GL2(κ) be an unramified representation. Assume that ρ̄v(Frobv) = ±
(
Norm(v) 0

0 1

)
.

Then every deformation of ρ̄v over an O-algebra A ∈ CO is strictly equivalent to an upper

triangular representation ρ such that ρ(Iv) ⊂
(

1 ∗
0 1

)
.

Proof. Let mA be the maximal ideal of A. Since ρ̄v is unramified, ρ(Iv) ⊂ 1 + mA, and
the wild inertia group acts trivially. Let f be Frobv in GFv , and let t be a topological

generator of Itamev . Since p - (Norm(v)2 − 1), we may assume that ρ(f) =

(
a 0
0 b

)
with a ≡ ±Norm(v), b ≡ ±1 (mod mA). It suffices to prove that ρ(t) has the form(

1 ι
0 1

)
for some ι ∈ mA. By induction on n, we write ρ(t) =

(
1 ιn
0 1

)
+ Θn, with

Θn =

(
an bn
cn dn

)
≡ 0(mod mn

A). Using the relation ftf−1 = tNorm(v), we have

ρ(ftf−1) = (

(
1 ιn
0 1

)
+ Θn)Norm(v) ≡

(
1 Norm(v)ιn
0 1

)
+Norm(v)Θn mod(mn+1

A ).

On the other hand,

ρ(ftf−1) =

(
a 0
0 b

)
(

(
1 ιn
0 1

)
+ Θn)

(
a−1 0
0 b−1

)
.

Comparing the entries shows that an, cn, dn ∈ mn+1
A . The desired result follows by the

topological nilpotency of mA. �
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Considering the deformations of ρ̄v, by the previous lemma, every class of strict equiv-
alence of deformations ρ over A with cyclotomic determinant is determined by a pair of
elements (µ, ι) in mA, given by

ρ(f) =

(
a 0
0 b

)
, ρ(t) =

(
1 ι
0 1

)
,

where a = ±Norm(v) + µ, b = Norm(v)/a, such that(
a 0
0 Norm(v)/a

)(
1 ι
0 1

)(
a−1 0
0 a/Norm(v)

)
=

(
1 Norm(v)ι
0 1

)
.

The last equation is (a2/Norm(v))ι = Norm(v)ι, which is the same as µι = 0. Moreover,
two deformations ρ1, ρ2 corresponding to the pairs (µ1, ι1) and (µ2, ι2) respectively are
strictly equivalent if and only if there exists M ∈ Id2×2+M2(mA) such that Mρ1(f)M−1 =
ρ2(f) and Mρ1(t)M−1 = ρ2(t), if and only if µ1 = µ2 and ι2 ∈ (1 + mA)ι1. Then
the universal deformation ring of ρ̄v is given by Rv = O[[X,Y ]]/(XY ). If the residue
representation ρ̄ is suitably diagonalized, then the universal deformation ρunivv is given by

ρunivv (f) =

(
±Norm(v) +X 0

0 Norm(v)/(±Norm(v) +X)

)
, ρunivv (t) =

(
1 Y
0 1

)
.

Definition 3.5. Let v be a finite prime such that p - (Norm(v)2−1) and ρ̄v is unramified
at v. We say that a deformation ρ of ρ̄v over an O-algebra A ∈ CO satisfies sp-condition
if the homomorphism ψ : Rv → A associated to ρ has ψ(X) = 0.

Remark 3.6. From the computation, it is obvious that a deformation ρ satisfies sp-
condition if and only if

Trace(ρ(f))2 = (Norm(v) + 1)2.

Remark 3.7. Suppose that ρ̄ is unramified at v, where Norm(v)2 6≡ 1 mod p. Let g be a

Hilbert modular form such that ρ̄g,v ∼ ρ̄v. If g is special at v, then ρg,v ∼
(
ε ∗
0 1

)
⊗ ψ

for some unramified character ψ. Therefore ρg,v satisfies the sp-condition. On the other
hand, if g is not special at v, then by local Langlands correspondence for GL2, ρg,v does

not satisfy sp-condition. Indeed, if we assume that πg,v = IndGL2
B µ1 ⊗ µ2 such that

µ1µ
−1
2 6= | · |±, then Trace(ρ(fg,v))

2 = (µ1($v) + µ2($v))
2 6= (Norm(v) + 1)2, where $v

is a uniformizer of Fv.

If v|SD such that p - (Norm(v)2 − 1) and ρ̄v is unramified at v, we consider the
deformations of ρ̄v which are special. This space includes the representations coming from
Hilbert modular forms which are special at v. The corresponding universal deformation
ring is

Rv,sp = O[[X,Y ]]/(X,XY ) = O[[Y ]].

If we think of the geometric picture, we just choose an irreducible component from the
universal deformation space.
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3.3. The global deformation conditions.

Definition 3.8. Let Σ be a square free ideal of OF , prime to pNSD. We consider the
functor QΣ from CO to the category of sets which associates to an object A in CO the set
of strictly equivalent classes of continuous homomorphisms ρ : GF → GL2(A) lifting ρ̄
satisfying the following conditions:
(1) ρ is unramified outside pN

′
SDΣ;

(2) if v|N ′ , i.e. ρ̄ is ramified at v, then ρ|Iv is unipotent;
(3) if v|SD, ρ̄ is unramified at v, then ρ satisfies sp-condition at v;
(4) if v|p, then ρv = ρ|GFv is Barsotti-Tate over L and WD(ρv) ∼= τv;

(5) det(ρ) = ε(χ ◦Art−1).

Proposition 3.9. The functor QΣ is representable.

Proof. We need to check that being potentially Barsotti-Tate is a deformation condition,
i.e., it satisfies conditions (1)-(3) in section 6 of [13]. This is true by the results proved in
Appendix B of [11]. �

We say that the functor is represented by the universal deformation

ρunivΣ : GF → GL2(RΣ).

We use the notation R and ρuniv if Σ = ∅.

4. Taylor-Wiles system

In this section, we construct a Taylor-Wiles system corresponding to our potentially
Barsotti-Tate deformation problem. Recall that K = K1(N) and K

′
= K1(N)p × (1 +

pM2(Op)) ⊂ K. We have a short exact sequence

0→ K
′ → K → G → 0.

The aim is to prove the following theorem.

Theorem 4.1. Let ρ̄ be the Galois representation constructed at the beginning of section
3. Suppose that ρ̄ satisfies the conditions in equation (3.2) and the restriction of ρ̄ to

the absolute Galois group of F (
√

(−1)(p−1)/2p) is irreducible. Then there is a natural
surjection

R → TO(K, IopV )m.

Furthermore, it is an isomorphism of complete intersections and H1(MK ⊗ F̄ ,FIopV )m is

free of rank two as a TO(K, IopV )m module.

4.1. The construction. Let Q be a finite set of finite places of F not dividing pNSD
such that if x ∈ Q, then
• Norm(x) ≡ 1 (mod p),
• ρ̄ is unramified at x and ρ̄(Frobx) has distinct eigenvalues αx 6= βx.

By Hensel’s Lemma the polynomial X2−TxX+Norm(x)χ($x) splits as (X−Ax)(X−
Bx) in TO(K, IopV )m.

For x ∈ Q we will let ∆x denote the maximal p-power quotient of (OF /x)×. We will
let nQ =

∏
x∈Q x; ∆Q =

∏
x∈Q ∆x; K0,Q = K{1}(nQ)∩K; and K1,Q = K∆Q

(nQ)∩K. Let

mQ denote the ideal of either TO(K0,Q, I
op
V ) or TO(K1,Q, I

op
V ) generated by
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• p;
• Tx − Trace(ρ̄(Frobx)) for x - pNnQ.

Remark 4.2. Let TredO (K0,Q, I
op
V ) be the Hecke algebra TO(K0,Q, I

op
V )[Ux|x ∈ Q], and let

mred be the maximal ideal of TO(K0,Q, I
op
V ) generated by

• p;
• Tx − Trace(ρ̄(Frobx)) for x - pNnQ; and
• Ux − αx for x ∈ Q.
Then we have an isomorphism TredO (K0,Q, I

op
V )mred

∼= TO(K0,Q, I
op
V )m.

Lemma 4.3. Let Q satisfy the assumptions as above, then
(1) if x ∈ Q, then ρunivQ |GFx ∼ χα,x ⊕ χβ,x where χα,x and χβ,x mod mRQ are unramified
and take Frobx to αx and βx.
(2) All χα,x◦Art |O×F,x factor through ∆x and these maps make RQ into an O[∆Q]-module.

(3) The universal property of RQ gives rise to a surjection of O[∆Q]-algebras

RQ � TO(K1,Q, I
op
V )mQ

under which ρunivQ pushes forward to ρmQ.

Proof. (1) Since ρ̄ is unramified at x, and RQ is a p-adic ring, ρunivQ (Ix) is a pro-p group.

Since x - p, ρunivQ is tamely ramified at x. Let f and t be the generators of Gal(F trx /Fx)
such that f restricts to the Frobenius automorphism on the maximal unramified extension
F urx of Fx, and t fixes F urx . Using the fact that αx 6= βx, choose a basis for the space of

ρunivQ in which ρunivQ (f) =

(
a 0
0 b

)
is diagonal. Since ρ̄ is unramified at x, ρunivQ (t) ≡ 1 mod

mRQ . Now suppose that ρunivQ (t) = 1 + N , where N =

(
n11 n12

n21 n22

)
with n11, n22 ∈ mRQ

and n12, n12 ∈ mn
RQ , and n > 0. Using the relation ftf−1 = tq (here q = Norm(v)) one

gets

1 +

(
n11 ab−1n12

a−1bn21 n22

)
≡ (1 + qN) (mod mn+1

RQ )

which implies that N is diagonal mod mn+1
RQ , since a 6= b and q ≡ 1 mod p. The desired

result follows by induction.
(2) This is clear since RQ is a p-adic ring.
(3) There exists such a map because of the construction of IV and τv. From the definition

of Hecke algebra, it is easy to see that it is surjective. It induces the map between
representations because Trace(ρunivQ (Frobx)) 7→ Tx for x - pNnQ and χα,x(Frobx) 7→ Ux
for x ∈ Q. �

4.2. Basic properties. In this subsection, we write H1(H) for the cohomology group
H1
et(MH ,FIopV ) and T(H) for the Hecke algebra TO(H, IopV ).

Lemma 4.4. For any x ∈ Q, the map

η : H1(K0,Q−x)mQ−x → H1(K0,Q)mQ
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given by f 7→ Ax1∗f −
(

1 0
0 $x

)
∗
f is an isomorphism which induces an isomorphism

η′ : T(K0,Q)mQ → T(K0,Q−x)mQ−x .

Proof. The map η is well defined because K0,Q ⊂ K0,Q−x,

(
1 0
0 $x

)−1

K0,Q

(
1 0
0 $x

)
⊂

K0,Q−x, and Ux ◦ η = η ◦ Ax. From the natural inclusion K0,Q ↪→ K0,Q−x, we have a
map 1∗ : H1(KQ−x) → H1(KQ). From section 3 of [17], we know that the adjoint of 1∗

is 1∗, the composition of η with 1∗ is 1∗Ax1∗ − 1∗
(

1 0
0 $x

)
∗

= Norm(x)(Ax) − Tx =

(Norm(x)− 1)Ax −Bx 6∈ mQ, so η is injective with torsion free cokernel. As αx 6= βx, no
lift of ρ̄ with the required determinant has conductor at x exactly x. Thus

H1(K0,Q)mQ = (1∗H
1(K0,Q−x) +

(
1 0
0 $x

)
∗
H1(K0,Q−x))mQ .

Furthermore,

Ux(1∗f1 +

(
1 0
0 $x

)
∗
f2) = 1∗(Txf1 + (Norm(x))χ($x)f2)−

(
1 0
0 $x

)
∗
f1

and the matrix

(
Tx Norm(x)χ($x)
−1 0

)
has eigenvalues Ax and Bx which are distinct mod

mQ. The lemma follows. �

Remark 4.5. The identities in the proof of the above lemma all come from the double coset
decompositions at the end of section 1. See for example chapter one of [26] and Lemma
2.2 of [32].

Lemma 4.6. Let Λ be a finite abelian group. If we consider the group ring O[Λ] as a
Λ-module, then O[Λ]Λ ' O[Λ]Λ.

Proof. Let N : O[Λ] → O[Λ] be the usual norm map which sends ξ ∈ O[Λ] to
∑

λ∈Λ λξ.

It is easy to see that ImN ⊂ O[Λ]Λ, and (1− Λ)O[Λ] ⊂ KerN . It suffices to prove that
the two relations are actually equalities.

If
∑

λ oλλ ∈ O[Λ]Λ, then ∑
λ

oλλ = λ−1
1

∑
λ

oλλ.

Comparing the coefficients, we get oλ1 = o1. Then all the oλ are the same, and so∑
λ oλλ ∈ ImN .
If
∑

λ oλλ ∈ KerN , then 0 = N
∑

λ oλλ, and by computing the coefficient of 1, we get∑
λ oλ = 0. Therefore

∑
λ oλλ ∈ (1− Λ)O[Λ]. �

Lemma 4.7. (1) H1(K1,Q)mQ is a free O[∆Q]-module.

(2) (H1(K1,Q)∆Q
)m → H1(K)m is an isomorphism compatible with a map (T(K1,Q)∆Q

)m →
T(K)m sending Tx to Tx for x - pSDnQ, < h > to 1 for h ∈ ∆Q, and Ux to Ax for x ∈ Q.

Proof. (1) H1(K1,Q)mQ is certainly free over O. Then to prove the freeness over O[∆Q],

we only need to prove that H i(∆Q, H
1(K1,Q)mQ) = 0 ∀i > 0. We have a short exact

sequence
0→ K1,Q → K0,Q → ∆Q → 0.
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By Serre-Hochschild spectral sequence, we have

Ep,q2 := Hp(∆Q, H
q(K1,Q))⇒ Hp+q(K0,Q).

Since localization is exact, we get another spectral sequence

E
′p,q
2 := Hp(∆Q, H

q(K1,Q)mQ)⇒ Hp+q(K0,Q)mQ .

By Lemma 2.2(1), if p + q ≥ 2, Hp+q(K0,Q)mQ = 0. E
′1,0
2 = 0 since H0(K1,Q)mQ = 0.

Therefore
H i(∆Q, H

1(K1,Q)mQ) = H i+1(K0,Q)mQ = 0 ∀i > 0.

(2)Using the same spectral sequence, we have an exact sequence

0→ H1(∆Q, H
0(K0,Q)mQ)→ H1(K0,Q)mQ → H1(K1,Q)

∆Q
mQ → H2(∆Q, H

0(K0,Q)mQ)→ . . .

By Lemma 2.2(1), we get an isomorphism

H1(K0,Q)mQ ' H
1(K1,Q)

∆Q
mQ .

By the last lemma and the freeness of H1(K1,Q)mQ , we get the desired isomorphism. �

4.3. Computing the Selmer groups. The computation is standard. We sketch it here.
For more details about the computation, and the relation between Selmer groups and
Galois representations, see [36], [25], [31], and [37].

Let ρ̄ be our mod p Galois representation, and define

(4.1) W = ad0(ρ̄) (trace zero matrices in the adjoint representation of ρ̄).

(4.2) W ∗ = Hom(W,µp) ∼= W (1) ∼= Sym2(ρ̄).

We then define the local conditions, which are subgroups Lv of H1(GFv ,W ) for the
various decomposition groups GFv . (It is used to determine global cohomology classes
whose restrictions to every GFv fall into Lv.) Since p ≥ 5, H1(GFv ,W ) = 0 if v|∞, and
we only have to define those local conditions at the finite places. Let
(1) Lv = H1(GFv/Iv,W

Iv) if v | N ′ ;
(2) Lv = H1

f (GFv ,W ) if v | p;
(3) Lv = H1(GFv ,W ) if v | Q;
(4) Lv = H1

sp(GFv ,W ) if v|SD and v - N ′, where H1
sp(GFv ,W ) consists of the elements

whose corresponding Galois representations satisfying the sp-condition.
Now we compute the sizes of these local terms in our deformation problem.
• ]Lv = ]H0(GFv ,W ) · (]κ)[Fv :Qp] if v | p
This is from Lemma 3.3.
• ]Lv = ]H0(GFv ,W )/]κ = 1 if v | ∞
Here Lv = H1(GFv ,W ) = 0 by definition. Since the eigenvalues of the complex conju-

gation are ±1, the eigenvalues on W are {−1,−1, 1}, so ]H0(GFv ,W )/]k = 1.
• ]Lv = ]H0(GFv ,W ) for v | N ′
There is an exact sequence

0→WGFv →W Iv →W Iv →W Iv/(Frobv − 1)W Iv → 0,

where the middle map is (Frobv− 1). The exactness at the first W Iv follows from the fact
that if w ∈ W Iv and (Frobv − 1)w = 0, then w is fixed by both Iv and Frobv, which
topologically generate GFv . The first term gives H0(GFv ,W ) and the last term gives Lv.
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• ]Lv = ]κ if v|SD and v - N ′
This is true because of the formula at the end of section 3.3.
• ]H0(GFv ,W ) = ]κ if v|SD and v - N ′
This is true because the eigenvalues of ρ̄(Frobv) are distinct, by condition (3.2).
• H0(F,W ) = H0(F,W ∗) = 0
For W this follows from the irreducibility of ρ̄, since by Schur’s lemma the only en-

domorphisms commuting with the Galois action are the scalars, which are missing from
W .

For W ∗ we use equation (4.2). A Galois-invariant vector in W ∗ is an invariant symmetric
bilinear form. If the bilinear form is degenerate, then its kernel is invariant, contradicting
the irreducibility of ρ̄. If the bilinear form is nondegenerate, this means that the image of
ρ̄ is contained in some orthogonal group. This contradicts the fact that det(ρ̄) 6= 1.
• ]H0(GFv ,W ) = ]κ for v | Q
By assumption on Q, the eigenvalues of Frobv on W are αvβv = Norm(v) = 1, α2

v and
β2
v . The latter two are not equal to 1 since αv 6= βv.
• ]H1(GFv ,W ) = ]κ2 for v | Q
First, we have the inflation-restriction exact sequence

0→ H1(GFv/Iv,W
Iv)→ H1(GFv ,W )→ H1(Iv,W )GFv/Iv

→ H2(GFv/Iv,W
Iv)→ H2(GFv ,W ).

Since ρ̄ is unramified at v, W Iv = W . By the assumption on αv and βv, H
1(GFv/Iv,W ) =

W/(Frobv − 1)W is one-dimensional,

H1(Iv,W )GFv/Iv = Hom(Zp(1),W )Frobv

= W [Frobv −Norm(v)]

= W [Frobv − 1]

= WFrobv

(4.3)

is again one-dimensional, and H2(GFv/Iv,W ) = 0 since GFv/Iv
∼= Ẑ.

Lemma 4.8. Suppose that the restriction of ρ̄ to the absolute Galois group of F (
√

(−1)(p−1)/2p)
is irreducible. Then for any m ∈ Z>0 we can find a set Σm of primes such that
(1) ]Σm = dimH1

∅(GF , ad
0ρ̄(1)),

(2) RΣm can be topologically generated by dimH1
∅(GF , ad

0ρ̄(1)) elements as an O-algebra,
(3) if x ∈ Σm then Norm(x) ≡ 1 mod pm and ρ̄(Frobx) has distinct eigenvalues αx and
βx.

Proof. See Lemma 2.5 of [32]. �

Recall the statement of Theorem 2.1 of [14].

Theorem 4.9. Fix a positive integer r. Let A = κ[[S1, . . . , Sr]] and B = κ[[X1, . . . , Xr]]
and write n for the maximal ideal of A. Suppose that R is a κ-algebra and H is a nonzero
R-module, finite dimensional over κ. Suppose that for each positive integer n, there exist
κ-algebra homomorphisms φn : A → B and ψn : B → R, a B-module Hn and a B-linear
homomorphism πn : Hn → H such that the following hold:
(a) ψn is surjective and ψn ◦ φn(n) = 0;
(b) πn induces an isomorphism Hn/nHn → H;
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(c) AnnAHn = nn and Hn is free over A/nn.
Then R is a complete intersection of dimension zero, and H is free over R.

Proof of Theorem 4.1. We apply the above theorem to our situation. Let A and B be as in
Theorem 4.9, r = dimH1

∅(GF , ad
0ρ̄(1)), Σn (n ∈ Z>0) be sets which satisfy the conditions

in Lemma 4.8, Gn be the maximal quotient of
∏
x∈Σn

(OF /x)× of p-power order. By
Lemma 4.8, Rn = RΣn/λRΣn is topologically generated by r elements. We may define
a surjective κ-algebra homomorphism θn : B → Rn. By Lemma 4.3, we can endow Rn
with the structure of an algebra over the group ring κ[Gn]. The definition ensures that
the image of the maximal ideal of κ[Gn] in R is trivial. We also choose a surjective κ-
algebra homomorphism A → κ[Gn]. Note that the kernel is contained in nn, where n is
the maximal ideal of A. We then define φn : A→ B so that the diagram

A
φn−−−−→ By yθn

κ[Gn] −−−−→ Rn

commutes. Define ψn as the composite of θn with Rn → R. Then ψn is surjective and
ψn ◦ φn(n) = 0.

Take H = H1(MK⊗ F̄ ,FIopV ), and Hn = H1(MK1,Σn
⊗ F̄ ,FIopV ). By Lemma 4.7, we may

apply Theorem 4.9 to prove the freeness result of Theorem 4.1. The rank is two because
of the following lemma. �

Lemma 4.10. rankOH
1
et(MK ⊗ F̄ ,FIopV ) = 2 · rankOTO(K, IopV ).

Proof. We extend coefficients from E to Q̄p. We have the following decomposition of the
cohomology of Shimura curves from [6]:

lim−→UH
1
et(MU ⊗ F̄ , Q̄p) =

⊕
π=σ2⊗π∞

π∞ ⊗ ρ(π),

where the sum is extended to the set of all automorphic representations of G(A), with
infinite component isomorphic to

σ2 =

(
weight 2 holomorphic discrete

series representation of GL2(R)

)
⊗
(

trivial representation of
(H×)d−1

)
,

and ρ(π) stands for some two dimensional p-adic representation of GF . In particular, if
we do not consider the Galois action, we have

lim−→UH
1
et(MU ⊗ F̄ , Q̄p) =

⊕
π=σ2⊗π∞

(π∞)2.
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Then

H1
et(MK ⊗ F̄ ,FIopV ) = HomG(IV , (lim−→UH

1
et(MU ⊗ F̄ , Q̄p))

K
′
)

= HomG(IV ,
⊕

π=σ2⊗π∞
((π∞)K

′
)2)

=
⊕

π=σ2⊗π∞
HomG(IV , (π

∞)K
′
)2

=
⊕

π=σ2⊗π∞
HomG(IV , (JL(π)∞)K

′
)2.

(4.4)

In the above equation, JL means the Jacquet-Langlands correspondence. By the Jacquet-
Langlands correspondence, the last term is the same as⊕

f

HomG(IV , (π̃
∞
f )K

′
)2,

where the direct sum is over Hilbert new forms which are of weight (2, ..., 2) and special
at primes v|SD, and π̃f is the automorphic representation of GL2(AF ) associated with f .
By the result on multiplicities of types (see for example the appendix of [2]), we have

dimQ̄p HomG(IV , (π̃
∞
f )K

′
) ≤ 1,

and

dimQ̄p H
1
et(MK ⊗ F̄ ,FIopV ) = 2 · ]{f | HomG(IV , (π̃

∞
f )K

′
) 6= 0}

= 2 · dimQ̄p TO(K, IopV )⊗ Q̄p.
(4.5)

This proves the lemma.
�

5. From characteristic 0 to characteristic p

5.1. Computation for the multiplicity. In the following two lemmas, we write H1(K)
for H1(MK ⊗ F̄ ,FV op).

Lemma 5.1. The natural inclusion

(5.1) HomGF (ρ̄, H1(K)[m]) ↪→ HomGF (ρ̄, H1(K))

is an equality.

Proof. Consider the evaluation map

(5.2) ρ̄⊗F̄p HomGF (ρ̄, H1(K))→ H1(K).

This is injective since ρ̄ is irreducible, and is Tκ(K,V op)[GF ]-linear, if Tκ(K,V op)[GF ]
acts on the tensor product through the action of GF on the first factor and the action of
Tκ(K,V op) on the second factor. By Eichler-Shimura relations on MK , we have

Frob2v − TvFrobv +Norm(v)Sv = 0

on H1(K) for all v - pSDN . Therefore we have

(5.3) ρ̄(Frobv)(a)⊗(Tv−Trace(ρ̄(Frobv)))(b)+a⊗(SvNorm(v)−det(ρ̄(Frobv)))(b) = 0
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for every a ∈ ρ̄, b ∈ HomF̄p[GF ](ρ̄, H
1(K)), and v - pSDN . If v is such that ρ̄(Frobv) does

not act by a scalar, then it is easy to see that

(5.4) Tv − Trace(ρ̄(Frobv)) = SvNorm(v)− det(ρ̄(Frobv)) = 0.

The above equality is actually true for all v - pSDN since those Frobv for which ρ̄(Frobv)
does not act by a scalar generate a dense subgroup of GF,pSDN . Then the result follows. �

Lemma 5.2. The evaluation map ρ̄⊗F̄pHomGF (ρ̄, H1(K))→ H1(K) induces an isomor-
phism

(5.5) ρ̄⊗F̄p HomGF (ρ̄, H1(K))
∼−→ H1(K)[m]

Proof. Since ρ̄ is irreducible, the evaluation map is injective by Schur’s lemma. By the
above lemma, the image lies in H1(K)[m]. By [1], we know that the semisimplification
of H1(K)[m] is a direct sum of copies of ρ̄ because of Eichler-Shimura relation. The
evaluation map is also surjective. �

Theorem 5.3. Let K = K1(N) and MK be the Shimura curve of level K attached to
the totally real field F and the quaternion algebra D. Let ρ̄ : GF → GL2(κ) be the Galois
representation constructed at the beginning of section 3. Assume that ρ̄ satisfies conditions

in equation (3.2) and the restriction of ρ̄ to the absolute Galois group of F (
√

(−1)(p−1)/2p)
is irreducible, then

dimκHomGF (ρ̄, H1
et(MK ⊗ F̄ ,FV op)m) = 1.

Proof. Let IV be the lattice constructed in the proof of Corollary 2.8. If V op is a subrep-
resentation of IopV ⊗O κ, we may assume that we have a short exact sequence

(5.6) 0→ V op → IopV ⊗O κ→ (V c)op → 0,

where V c is a representation of G with no Jordan-Holder factor compatible with ρ̄. Then
by Lemma 2.2(2), we have a short exact sequence
(5.7)

0→ H1
et(MK ⊗ F̄ ,FV op)m → H1

et(MK ⊗ F̄ ,FIopV ⊗Oκ)m → H1
et(MK ⊗ F̄ ,F(V c)op)m → 0.

From the construction of V c, we know that HomGF (ρ̄, H1
et(MK ⊗ F̄ ,F(V c)op)m) = 0. Thus

HomGF (ρ̄, H1
et(MK ⊗ F̄ ,FV op)m) = HomGF (ρ̄, H1

et(MK ⊗ F̄ ,FIopV ⊗Oκ)m).

If V op is a quotient representation of IopV ⊗Oκ, a similar argument provesHomGF (ρ̄, H1
et(MK⊗

F̄ ,FV op)m) = HomGF (ρ̄, H1
et(MK ⊗ F̄ ,FIopV ⊗Oκ)m). Note that IopV ⊗O κ has finite length as

a representation of G, the theorem follows by induction on the length of IopV ⊗O κ. �

Remark 5.4. See [4] for more topics on multiplicities of Serre weights. See also [18] section
3.5.

5.2. Another R = T theorem. We explain how we can prove a stronger result from
Theorem 5.3, i.e., we prove that H1

et(MK ⊗ F̄ ,FV op)m is free of rank 2 over Tκ(K,V op)m.
The strategy is the same as the proof of Theorem 4.1. We consider a Fontaine-Laffaille
deformation problem, construct a Taylor-Wiles system, and apply Theorem 4.9 to prove
a multiplicity free result. It follows from Theorem 5.3 that the rank is two.
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5.2.1. Fontaine-Laffaille theory. Fontaine-Laffaille theory is needed to state the deforma-
tion condition at primes dividing p. Suppose that I/Qp is a finite unramified extension,
that O is the ring of integers of a finite extension of I with uniformizer λ and residue field
κ.

Recall that a filtered Dieudonné OI ⊗O-module is an OI ⊗O-module D furnished with
a decreasing, exhaustive, separated filtration (Di)i∈Z of sub OI ⊗O-modules such that for
each integer i, we have a Frob⊗1-linear map φi : Di → D. Furthermore, it is required that
for x ∈ Di+1, φi+1(x) = pφi(x). These filtered modules form an OI ⊗ O-linear additive
category MFI,O.

We denote byMFfI,O the full subcategory ofMFI,O whose objects D have underlying

spaces that are OI ⊗ O-modules of finite length and satisfy
∑
Imφi = D. The category

MFp−1
I,O is the full subcategory of MFfI,O whose objects satisfy D0 = D, Dp−1 = 0. We

write κ-MFp−1
I,O for the subcategory of MFp−1

I,O whose objects are killed by λ.

Theorem 5.5. There is a fully faithful, O length preserving, exact, O-additive, covariant
functor M from MFp−1

I,O to the category of continuous O[GI ]-modules with essential image
closed under the formation of sub-objects and quotients.

Proof. See for example section 2.4.1 of [10] and section 9 of [19]. �

Remark 5.6. (1) If M is an object in MFp−1
I,O , then the O length of M is [I : Qp] times

the O length of M(M).

(2) For any objects M and N in MFp−1
I,O (resp. κ-MFp−1

I,O ), the map

Ext1MFp−1
I,O

(M,N) ↪→ Ext1O[GI ](M(M),M(N))

(resp. Ext1
κ-MFp−1

I,O
(M,N) ↪→ Ext1κ[GI ](M(M),M(N)))

is an injection.
(3) We also have the following isomorphisms.

Ext1κ[GI ](M(M),M(N)) ∼= H1(GI , Homκ(M(M),M(N))),

HomMFp−1
I,O

(M,N) ∼= H0(GI , HomO(M(M),M(N))).

Lemma 5.7. Suppose that M and N are objects of κ-MFp−1
I,O . Then there is an exact

sequence

0→Hom
κ-MFp−1

I,O
(M,N)→ Fil0HomOI⊗O(M,N)→

HomOI⊗O,F rob⊗1(grM,N)→ Ext1
κ-MFp−1

I,O
(M,N)→ 0;

(5.8)

where FiliHomOI⊗O(M,N) denotes the subset of HomOI⊗O(M,N) consisting of elements
which take FiljM to Fili+jN for all j and where grM = ⊕igriM . The middle map is
given by β 7→ (βφiM − φiNβ).

Proof. This is Lemma 2.4.2 of [10]. �

Proposition 5.8. The representation ρm is Fontaine-Laffaille. i.e., for v|p, ρm|GFv is in

the image of M : κ-MFp−1
Fv ,O →Modκ[GFv ].
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We want to apply p-adic Hodge theory to prove this result. First recall the construction
of unitary Shimura curves from section 2.2 of [7].

Let q < 0 be a rational number such that Q(
√
q) splits p. Define L = F (

√
q). Let z 7→ z̄

denote the conjugation of L with respect to F . Define B = D ⊗F L and denote by l 7→ l̄
the product of the canonical involution of D with the conjugation of L over F . Let V
denote the underlying Q-vector space of B with left action of B. Choose δ ∈ B such that
δ̄ = δ and define an involution on B by l∗ = δ−1 l̄δ. Choose α ∈ L such that ᾱ = −α. One
can define a symplectic form Φ on V : for v, w ∈ V , define

Φ(v, w) = TraceL/Q(αTraceB/L(vδw∗)).

The symplectic form Φ is an alternating nondegenerate form on V and satisfies

Φ(lv, w) = Φ(v, l∗w).

Let G′ be the reductive algebraic group over Q such that for any Q-algebra R, G′(R) is
group of B linear symplectic similitudes of (V ⊗R,Φ⊗R). Following section 2.2.4 of [7],
we can define a morphism h′ : ResCRGm → G′R, such that the G′(R)-conjugacy class X ′ of

h′ can be identified with the complex upper half plane, and the composition ResCRGm →
G′R → GL(VR) defines a Hodge structure on VR which is of type {(−1, 0), (0,−1)}.

Now, (G′, X ′) gives us Shimura data. For K ′ ⊂ G′(A∞) open compact, we have a
compact unitary Shimura curve M ′K′ defined over L with complex points

M ′K′(C) = G′(Q)\G′(A∞)×X ′/K ′.
M ′K′ is a fine moduli space of certain abelian varieties with additional structures. Let

H ⊂ G(A∞)p be sufficiently small and open compact, and M0,H be the Shimura curve
with level GL2(Op)H. Then we have the following theorem which is proved in [7] section
4.5.4.

Theorem 5.9. There exists an open compact subgroup H ′ ⊂ G′(A∞)p, such that for any
connected component NH of M0,H , there is a connected component NH′ of M0,H′ with the
property that NH and NH′ are isomorphic over F urp .

From [7] section 3.2.3, we know that the Weil group W (F abp /Fp) ∼= F×p acts on the set
of connected components of limK′M

′
K′ via the map

F×p → T ′(Q) = Q×p × F×p × F×p2
× · · · × F×pr

defined by z 7→ (NormFp/Qpz; z, 1, · · · , 1). This tells us that every connected component

of limK′M
′
K′ is defined over F urp . If we consider the action of W (F abp /Fp) ∼= F×p on the

set of connected components of M ′0,H′ , we see that it is unramified and factors through a

finite quotient. (See for example [7] section 3.2.4.) Therefore, every connected component
of M ′0,H′ is defined over a finite unramified extension of Fp.

Similarly, using the description in section 1.3 of [7], we see that every connected com-
ponent of M0,H is also defined over a finite unramified extension of Fp.

Now we prove Proposition 5.8. I would like to thank Toby Gee for suggesting to transfer
the problem to unitary Shimura curve case.

Proof of Proposition 5.8. It suffices to prove that ρm is Fontaine-Laffaille after restricting
to some unramified extension. Write F = FV op . Since ρm is realized in H1

et(MK⊗ F̄ ,F), it
suffices to prove that H1

et(MK⊗ F̄ ,F) is Fontaine-Laffaille. Write MK =
∐
M i
K as a finite
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disjoint union of its connected components. These components are rational over a finite
extension of F which is unramified at p. Let FK be an extension of F which is unramified
at p. We may assume that FK is large enough that each component of MK is rational over
FK , and is isomorphic over FK to a component of M ′K′ . Here, M ′K′ is a unitary Shimura
curve with level K ′. Since K has no level structure at p, we can choose K ′ with no level
structure at p. Then over FK ,

H1
et(MK ,F) = H1

et(
∐
i

M i
K ,F) = H1

et(
∐
i

N i
K′ ,F) ↪→

⊕
i

H1
et(M

′
K′ ,F),

which makes H1
et(MK ,F) a submodule of

⊕
iH

1
et(M

′
K′ ,F). It suffices to prove that

H1
et(M

′
K′ ⊗ L̄,F) is Fontaine-Laffaille.

For the curve M ′K′ , we do not need the parity condition on bλ to lift V op to characteristic
zero. In fact, the maximal Q-split torus in the center of G′ coincides with the maximal
R-split torus in the center of G′. Let ˜V op = ⊗λdetaλ ⊗ Symmbλ−1O2, this is a lift of V op.
Then ˜V op ⊗ E gives us a well defined smooth sheaf on M ′K′ . (See part I section 1 of [23].
In particular, G′ satisfies the requirements in that paper, but G does not.) Since M ′K′ is a
fine moduli space of certain abelian varieties, the sheaf F ˜V op can be constructed from the
universal object over M ′K′ (see for example [29] section 6.1.) Therefore, since V is regular,
H1
et(M

′
K′ ⊗ L̄,F ˜V op) is crystalline with Hodge-Tate weights in [0, p − 2] by p-adic Hodge

theory. Because H1
et(M

′
K′ ⊗ L̄,F) is the reduction of H1

et(M
′
K′ ⊗ L̄,F ˜V op) (mod p), it is

Fontaine-Laffaille. �

5.2.2. Deformation conditions at primes dividing p. Fix a finite prime v|p of F , and write
Fv for the completion of F at v, SFv for the set of embeddings Fv ↪→ Q̄p. We generalize
section 2.1 of [16] to the totally real field case.

For i = 1, 2, let Vi be representations of GFv over E which are from the category

MFp−1
Fv ,O, i.e., there exists Di ∈ MFp−1

Fv ,O such that, M(Di)⊗ E ∼= Vi. Suppose that Li is

a GFv -stable O lattice in Vi with Li ∼= M(Di) and set

V = HomE(V1, V2), T = HomO(L1, L2), W = V/T.

For n ≥ 1, put

Wn = {x ∈W | λnx = 0} ∼= T/λnT.

Then we have a natural isomorphism

(5.9) H1(GFv ,Wn) ∼= Ext1O/λn[GFv ](L1/λ
nL1, λ

−nL2/L2).

Definition 5.10. Let Vi be as above, then Li/λ
nLi are in the essential image of M. Define

H1
f (GFv ,Wn) ⊂ H1(GFv ,Wn)

to be the subset of extensions of O/λn[GFv ]-modules

(5.10) 0→ λ−nL2/L2 → E → L1/λ
nL1 → 0

so that E is in the essential image of M.

We consider the deformations of ρ̄|GFv satisfying the following: if ρv : GFv → GL2(R) is
a deformation of ρ̄|GFv where R is a complete local Noetherian ring, then for any Artinian
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quotient R′, ρv ⊗ R′ is in the essential image of M. This is a local deformation problem.
From the above, we have

Ext1
κ-MFp−1

I,O
(M−1(ρ̄|GFv ),M−1(ρ̄|GFv )) ∼= H1

f (GFv , ad(ρ̄|GFv )) ⊂ H1(GFv , ad(ρ̄|GFv )).

Now we can prove the following lemma which will be used when we apply the Taylor-
Wiles argument.

Lemma 5.11. Suppose that L̄ is a two-dimensional GF representation over the finite
field κ of characteristic p > 2 so that L̄ |GFv∼= M(Ē) for some object Ē ∈ κ-MFp−1

Fv ,O. Let

ad0
κL̄ ⊂ adκL̄ := Homκ(L̄, L̄) be the set of endomorphisms of trace zero. Then

(5.11) dimκH
1
f (GFv , ad

0
κL̄) = ]SFv + dimκH

0(GFv , ad
0
κL̄).

Proof. From Lemma 5.7, taking M = N = Ē we have

dimκH
1
f (GFv , adκL̄) = ]SFv(2× 2− 3) + dimκH

0(GFv , adκL̄)

= ]SFv + dimκH
0(GFv , adκL̄).

(5.12)

Taking M = N = κ we have dimκH
1
f (GFv , κ) = dimκH

0(GFv , κ). Since we have ad0
κL̄⊕

κ = adκL̄, the lemma follows. �

5.2.3. The Global deformation problem.

Definition 5.12. Let Σ be a square free ideal of OF , prime to pNSD. We consider the
functor PΣ from CO to the category of sets which associates to an object A in CO the set
of strictly equivalent classes of continuous homomorphisms ρ : GF → GL2(A) lifting ρ̄
satisfying the following conditions:
(1) ρ is unramified outside pN

′
SDΣ;

(2) if v|N ′ , i.e. ρ̄ is ramified at v, then ρ |Iv is unipotent;
(3) if v|SD, ρ̄ is unramified at v, then ρ satisfies sp-condition at v;
(4) if v|p, then for each finite length (as an O-module) quotient A/J of A, the O[GFv ]-

module (A/J)2 is isomorphic to M(D) for some object D ∈MFp−1
Fv ,O;

(5) det(ρ) = ε(χ ◦Art−1).

Proposition 5.13. The functor PΣ is representable.

Proof. The proof is similar to the proof of Proposition 3.9. Condition (4) is a deformation
condition by the discussion in Section 2.4.1 of [10]. �

We say that the functor is represented by the universal deformation

ρunivFL,Σ : GF → GL2(RFL,Σ).

We write RFL and ρunivFL if Σ = ∅. We also write R′FL,Σ = RFL,Σ ⊗O κ.
We have the following theorem.

Theorem 5.14. Let ρ̄ be the Galois representation constructed at the beginning of section
3. Suppose that ρ̄ satisfies the conditions in equation (3.2) and the restriction of ρ̄ to

the absolute Galois group of F (
√

(−1)(p−1)/2p) is irreducible. Then there is a natural
surjection

R′FL → Tκ(K,V op)m.
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Furthermore, it is an isomorphism of complete intersections and H1(MK ⊗ F̄ ,FV op)m is
free of rank two as a Tκ(K,V op)m module.

Proof. The proof is essentially the same as the proof of Theorem 4.1. Although we have
sheaf FV op , we construct the same Taylor-Wiles system as in section 4 and apply Theorem
4.9 to get R = T and the freeness result. The rank is two by Theorem 5.3. �

6. Computation on Breuil modules

In this section, we review the definition of Breuil modules and prove Lemma 3.3. The
notation in subsection 6.1, 6.2, and 6.3 is not consistent with the notation in other parts
of this paper. We choose this notation to be consistent with the notation used in the
references [20] and [9].

6.1. Introduction and definitions. In [9], the author studied the structure of reducible
rank two Breuil modules with descent data and computed Ext1(M,M) for reducible rank
twoM of type J (see Definition 6.4 below). The computation is limited to a special case.
In this paper, we introduce an exact sequence of Breuil modules, which can be used to
compute Ext1(M,M) for more general M. In particular, we reprove Theorem 4.2 of [9].
Furthermore, we compute Ext1(M,M) for irreducible rank two Breuil modules of type J
(see Definition 6.5).

We first recall the definition of Breuil modules with descent data. Let k be a finite
extension of Fp of degree r, W (k) the ring of Witt vectors. Let K0 = W (k)[1/p], K be
a totally and tamely ramified extension of K0 of degree e. Fix a subfield F of K0, and
assume that there is a uniformizer π of OK such that πe ∈ F . Then K/F is tamely
ramified, K0/F is unramified. Assume that K/F is Galois. Write G = Gal(K/F ). Let
S = HomFp(k, F̄p) ∼= Z/rZ. Fix τ0 ∈ S, let τi = τ0 ◦Frob−i, where Frob is the arithmetic
Frobenius. Let E be a finite extension of Fp such that the image of τi is a subset of E.
Let S = k ⊗Fp E[u]/uep.

Let ω : G → k× be the map defined by ω(g) = g(π)/π (mod π). We see that ω(gh) =
g(ω(h))ω(g). It is a cocycle. It is a character if and only if G acts trivially on k×, if and
only if K0 = F . Let ωi be the composite of ω with τi. Then we have ωi = ωpi+1. For any
g ∈ G, we write [g] : S → S to be the endomorphism of S as k ⊗ E-algebra such that
[g](u) = (ω(g)⊗ 1)u. Let φ : S → S be the map of S such that φ((a⊗ b)u) = (ap ⊗ b)up.

Definition 6.1. Let κ ∈ [2, p− 1] be an integer. The category BrModκ−1
dd,K/F consists of

quintuples (M, F ilκ−1M, φκ−1, [g], N) where:
(1) M is a finitely generated S module, free over k[u]/uep.

(2) Filκ−1M is an S-submodule of M containing ue(κ−1)M.
(3) φκ−1 : Filκ−1M→M is an E-linear and φ-semilinear map with image generating

M as an S-module.
(4) N :M→ uM is a k ⊗ E-linear map such that

N(ux) = uN(x)− ux ∀x ∈M,

ueN(Filκ−1M) ⊂ Filκ−1M,

φκ−1(ueN(x)) = (−πe/p)N(φκ−1(x)) ∀x ∈ Filκ−1M.
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(5) [g] :M→M are additive bijections for each g ∈ G, preserving Filκ−1M, commut-
ing with the φκ−1-, N -, and E-actions, and satisfying [g1] ◦ [g2] = [g1g2] for all g1, g2 ∈ G,
and [1] is the identity map. Furthermore, if a ∈ k ⊗Fp E, m ∈M, then

[g](auim) = g(a)((g(π)/π)i ⊗ 1)ui[g](m).

If κ = 2, the category BrMod1
dd,K/F is equivalent to the category of finite flat group

schemes over OK together with an E-action and descent data on the generic fiber from K
to F (this equivalence depends on π). In this case it follows from other axioms that there
is always a unique N which satisfies the required properties. See for example Proposition
5.1.3 of [3].

In this paper, we always assume that κ = 2. Then to give an object in BrMod1
dd,K/F is

the same to give an object (M, F il1M, φ1, [g]). In the following, we give some examples
of Breuil modules with descent data.

Recall that S = Hom(k, F̄p) ∼= Z/rZ and E contains the image of τi ∈ S, so we have a
ring isomorphism k ⊗Fp E ' ES where the action of x⊗ 1 on the τ -component coincides
with the action of 1⊗ τ(x) for τ ∈ S. Therefore we may write S = ⊕SE[u]/uep. We also
denote φ to be the map φ : E[u]/uep → E[u]/uep which sends u to up and acts trivially on
E.

If M is an object of BrModκ−1
dd,K/K0

, then

M =M1 ⊕M2 ⊕ · · · ⊕Mr,

where Mi = M⊗S,τi E[u]/uep is a free E[u]/uep-module, which is characterized by the
fact that the action of x ⊗ 1 on Mi coincides with the action of 1 ⊗ τi(x) for τi ∈ S. In
this paper if M is a Breuil module over S, then Mi will always denote the τi-component
of M. By convention, the subscripts i are taken modulo r. Similarly, Filκ−1M has a
decomposition

Filκ−1M = Filκ−1M1 ⊕ Filκ−1M2 ⊕ · · · ⊕ Filκ−1Mr,

with ue(κ−1)Mi ⊂ Filκ−1Mi ⊂Mi. The Frobenius action of k ⊗Fp E maps Eτi to Eτi+1 ,

φκ−1 induces φκ−1 : Filκ−1Mi →Mi+1 for i ∈ Z/rZ and the image generatesMi+1, and
N(Mi) ⊂Mi.

6.1.1. Rank one objects. Assume that K = K0((−p)1/pr−1) and F = K0. Note that in
this case we have e = pr − 1 and K is Galois over K0 with Gal(K/K0) ∼= Z/(pr − 1)Z.
The following proposition is Proposition 2.2 of [8] (see also Proposition 2.3 of [9]).

Proposition 6.2. If M is a rank one object of BrModκ−1
dd,K/K0

, then there exist integers

mi ∈ [0, e(κ − 1)], µi ∈ [0, e − 1], and a ∈ E×, such that we can choose basis ei for Mi,
and

(1) Filκ−1Mi = E[u]/uep〈umiei〉,
(2) φκ−1(umiei) = (a)i+1ei+1,
(3) µi+1 ≡ p(µi +mi)(mod e),
(4) [g] · ei = ωµii (g)ei,
(5) N(ei) = 0.
We will write the Breuil module with these invariants M(mi, µi, a).
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Definition 6.3. Let J ⊂ S. We say M(mi, µi, a) is of type J if mi = e(κ − 1)δJ(i + 1),

where δJ(i) =

{
1 if τi ∈ J,
0 otherwise.

6.1.2. Reducible rank two objects of type J . In this subsection, we still assume that K =
K0((−p)1/pr−1) and F = K0.

Definition 6.4. Let J be a subset of S. We say a reducible rank two Breuil module M
is of type J if it is an extension of a rank one Breuil module of type J (in the sense of
Definition 6.3) by a rank one Breuil module of type Jc. Here Jc = S\J .

Assume that M is a reducible rank two Breuil module of type J such that the rank
one submodule and the rank one quotient of M have non isomorphic generic fibers. By
Theorem 3.9 of [9], we may assume that M = ⊕i∈SMi has the following form.

Mi = E[u]/uep〈ei, fi〉,

F il1Mi = E[u]/uep〈ujiei, ue−jifi + λiu
hiei〉,

φ1(ujiei) = (b)i+1ei+1, φ1(ue−jifi + λiu
hiei) = (a)i+1fi+1,

[g]ei = ωβii (g)ei, [g]fi = ωαii (g)fi,

where λi ∈ E with λi = 0 if i+ 1 6∈ J , (a)i =

{
a if i = 1

1 otherwise
, ji =

{
e i+ 1 ∈ J
0 i+ 1 6∈ J

, and

hi ∈ [0, e − 1] with hi ≡ αi − βi( mod e). Note that M is split if and only if all the λ′is
are 0.

6.1.3. Irreducible rank two objects of type J . Assume now that k is a finite extension of
Fp with even degree [k : Fp] = r = 2s. Let K0 = W (k)[1/p], k′ ⊂ k be the subfield with
[k : k′] = 2, and F = W (k′)[1/p]. Then K0/F is an unramified extension of degree 2. Let

K = K0((−p)1/p2s−1). Then K/K0 is a totally ramified extension of degree e = p2s − 1.
In this section, we consider Breuil modules over S = k ⊗ E[u]/uep with descent data
from K to F . Let ω : Gal(K/F ) → k× be the map given by g 7→ g(π)/π (mod π) for

π = (−p)1/p2s−1. Note that ωi|Gal(K/K0) is a character.

Let S′ = Hom(k′, F̄p). Fix gφ ∈ Gal(K/F ) such that it maps to the nontrivial element
of Gal(K0/F ). For g ∈ Gal(K/K0), it acts on S as [g](u) = (ω(g)⊗ 1)u. In the following,
we use g to denote the elements in Gal(K/K0).

Let M = ⊕SMi in BrMod1
dd,K/F be an irreducible rank two Breuil module that has

the the following form

Mi = E[u]/uep〈ei, fi〉

Fil1Mi = E[u]/uep〈uniei, umifi〉

φ1(uniei) = (a)′i+1ei+1, φ1(umifi) = (a)i+1fi+1

N(ei) = 0, N(fi) = 0

[gφ]ei = fi+s, [gφ]fi = ei+s

[g]ei = ωγii (g)ei, [g]fi = ωµii (g)fi.



MULTIPLICITY ONE OF REGULAR SERRE WEIGHTS 27

Here ni andmi are integers in [0, e], γi and µi are integers in [0, e−1], (a)i =

{
a if i = 1

1 otherwise
,

(a)′i =

{
a if i = s+ 1

1 otherwise
. To make sure that M is a well defined object in BrMod1

dd,K/F ,

the mi, ni, γi, and µi satisfy the following equations.
(1) ni = mi+s because φ1 commutes with [gφ].
(2) γi+1 ≡ p(ni + γi) (mod e) and µi+1 ≡ p(mi + µi) (mod e) because φ1 commutes

with [g].
(3) γi ≡ µi+s (mod e) and µi ≡ γi+s (mod e) because ggφ = gφg

ps .
Let J ⊂ S = Hom(k, F̄p) be a subset such that the restriction of the projection S → S′

to J → S′ is a bijection. We define a special type of Breuil modules.

Definition 6.5. Let M and J be as above, we say that M is of type J if we have

ni =

{
e if i+ 1 ∈ J
0 if i+ 1 6∈ J,

mi =

{
e if i+ 1 6∈ J
0 if i+ 1 ∈ J.

6.2. The exact sequence. Let M and N be two objects in BrMod1
dd,K/F . Let E ∈

Ext1
BrMod1

dd,K/F

(M,N ). We have a short exact sequence

0→ N → E →M→ 0.

We say that the pair (M,N ) is simple if for every E , we can write E = N ⊕M such that
N → E is the natural inclusion and E →M is the natural projection, and

(1) Fil1E = Fil1N ⊕ Fil1M;
(2) the descent data [g]E = [g]N⊕[g]M, i.e., if (n,m) is an element in E , then [g]E(n,m) =

([g]N (n), [g]M(m)).
We have the following result.

Lemma 6.6. Let M, N be objects in BrMod1
dd,K/F such that (M,N ) is simple, then we

have the following exact sequence.

0→ HomBrMod1
dd,K/F

(M,N )→ Homdd,F il(M,N )

→ Homdd,1⊗Frob(Fil
1M,N )→ Ext1BrMod1

dd,K/F
(M,N )→ 0.

(6.1)

Here Homdd,F il is the set of S-module homomorphisms which commute with the descent
data and map Fil1 to Fil1, Homdd,1⊗Frob is the set of S-module homomorphisms which
commute with the descent data and are 1 ⊗ Frob-linear, the middle arrow is given by
β 7→ (βφM1 − φN1 β).

Proof. This is an analogy of Lemma 2.4.2 of [10], where the result is about Fontaine-
Laffaille modules (see also Lemma 5.7). The proof is similar. Assume that we have a
short exact sequence in BrMod1

dd,K/F

0→ N → E →M→ 0.
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We may write E = N ⊕M, Fil1E = Fil1N ⊕ Fil1M, and [g]E = [g]N ⊕ [g]M, such
that N → E is the natural injection and E → M is the natural projection. Then E is
determined by the map φE1 : Fil1E → E . Write

φE1 =

(
φN1 α
0 φM1

)
,

where α is an element in Homdd,1⊗Frob(Fil
1M,N ).

Conversely, any element α in Homdd,1⊗Frob(Fil
1M,N ) gives rise to such an extension.

Two elements α and α′ give rise to isomorphic extensions if there exists an element β ∈
Homdd,F il(M,N ) such that(

1 β
0 1

)(
φN1 α
0 φM1

)
=

(
φN1 α′

0 φM1

)(
1 β|Fil1M
0 1

)
.

Therefore we get an exact sequence

Homdd,F il(M,N )→ Homdd,1⊗Frob(Fil
1M,N )→ Ext1BrMod1

dd,K/F
(M,N )→ 0.

Here the first arrow is the map β 7→ (βφM1 − φN1 β). The kernel of this map is clearly
HomBrMod1

dd,K/F
(M,N ). �

Remark 6.7. Unfortunately, most of the pairs (M,N ) are not simple. Even if (M,N ) is
simple, we can not get a nice formula as in Lemma 2.4.3 of [10]. Nevertheless, there are
certain pairs (M,N ) which are simple and we can use the exact sequence to make useful
computations. We give some examples in next section.

6.3. Computation with the exact sequence. In this section, we use the exact sequence
(6.1) to compute dimE Ext

1(M,M), where M is a rank two Breuil module of type J in
the sense of Definition 6.4 and 6.5.

6.3.1. Reducible case. LetM be a reducible rank two Breuil module with descent data of
type J as given in section 6.1.2. By Lemma 4.3 and 4.4 of [9], the pair (M,M) is simple,
we may apply the exact sequence to compute dimE Ext

1(M,M). Write M = ⊕i∈SMi,
then

(6.2) Homdd,1⊗Frob(Fil
1M,M) ∼= ⊕iHomdd(Fil

1Mi,Mi+1).

Assume that ψ ∈ Homdd(Fil
1Mi,Mi+1) with

(6.3)

{
ψ(ujiei) = Xi+1ei+1 + Yi+1fi+1

ψ(ue−jifi + λiu
hiei) = Zi+1ei+1 +Wi+1fi+1,

where X,Y, Z,W are elements in E[u]/uep. Notice that G acts trivially on uni and ue−ni

since ni is either 0 or e. Because ψ commutes with the G-action, it is easy to see that

(6.4)


g(Xi+1) = Xi+1

g(Yi+1)ω
αi+1

i+1 (g) = ωpβii+1(g)Yi+1

g(Wi+1) = Wi+1

g(Zi+1)ω
βi+1

i+1 (g) = ωpαii+1(g)Zi+1.
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On the other hand, every matrix

(
Xi+1 Yi+1

Zi+1 Wi+1

)
satisfying these equations gives rise an

element in Homdd(Fil
1Mi,Mi+1).

The equation g(Xi+1) = Xi+1 means that all nonzero terms of Xi+1 have degree con-

gruent to 0 (mod e). Equation g(Yi+1)ω
αi+1

i+1 (g) = ωpβii+1(g)Yi+1 means that all nonzero
terms of Yi+1 have degree congruent to (pβi−αi+1) (mod e). Similar statements hold for
Zi+1 and Wi+1. Because the degrees of these elements are less than ep, we have

(6.5)

{
dimE Homdd(Fil

1Mi,Mi+1) = 4p

dimE Homdd,1⊗Frob(Fil
1M,M) = 4pr.

Similarly, we have

(6.6) Homdd,F il(M,M) ∼= ⊕iHomdd,F il(Mi,Mi).

We show that dimE Homdd,F il(Mi,Mi) = 4p− 1. Let ρ ∈ Homdd,F il(Mi,Mi) with

(6.7)

{
ρ(ei) = Piei +Qifi

ρ(fi) = Riei + Sifi.

First, ρ commutes with the G-action, it is easy to get that

g(Pi) = Pi, g(Qi) = ωβi−αii (g)Qi, g(Ri) = ωαi−βi(g)Ri, g(Si) = Si.

Second, ρ maps Fil1Mi to Fil1Mi.
(Case 1) Fil1Mi = 〈ei, uefi〉.
In this case, ρ(Fil1Mi) = 〈Piei+Qifi, u

e(Riei+Sifi)〉. Therefore Piei+Qifi ∈ 〈ei, uefi〉.
We get ue | Qi. In this case dimE Homdd,F il(Mi,Mi) = 4p− 1.

(Case 2) Fil1Mi = 〈ueei, fi + λiu
hiei〉.

In this case, ρ(Fil1Mi) = 〈ue(Piei + Qifi), Riei + Sifi + λiu
hi(Piei + Qifi)〉. Therefore

Riei + Sifi + λiu
hi(Piei +Qifi) ∈ 〈ueei, fi + λiu

hiei〉. Note that

Riei + Sifi + λiu
hi(Piei +Qifi) =(Si + λiu

hiQi)(fi + λiu
hiei)

+ (Ri + λiu
hiPi − λiuhiSi − λ2

iu
2hiQi)ei,

(6.8)

we have ue | (Ri + λiu
hiPi − λiuhiSi − λ2

iu
2hiQi).

If λi = 0, then it is the same as ue | Ri, so dimE Homdd,F il(Mi,Mi) = 4p− 1.
If λi 6= 0 and hi = 0, then ue | (Ri+λiPi−λiSi−λ2

iQi), we have dimE Homdd,F il(Mi,Mi) =
4p− 1.
If λi 6= 0 and hi 6= 0, then deg(λ2

iu
2hiQi) > e, and ue | (Ri + λiu

hiPi − λiuhiSi), we still
have dimE Homdd,F il(Mi,Mi) = 4p− 1.

Then we have

(6.9) dimE Homdd,F il(M,M) =
∑
i∈S

dimE Homdd,F il(Mi,Mi) = r(4p− 1).

By the above analysis, we conclude that

(6.10) dimE Ext
1
BrMod1

dd,K/F
(M,M) = dimE HomBrMod1

dd,K/F
(M,M) + r.

In particular, if M is split, then dimE Ext
1
BrMod1

dd,K/F

(M,M) = 2 + r. If M is nonsplit,

then dimE Ext
1
BrMod1

dd,K/F

(M,M) = 1 + r.
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6.3.2. Irreducible case. Let M be an irreducible rank two Breuil module of type J as in
Definition 6.5. First, we show that the pair (M,M) is simple. Let N ∈ Ext1(M,M).
Write N = ⊕i∈SNi. Assume that

Ni = E[u]/uep〈ei, fi, e′i, f ′i〉,
where e′i ∈ Ni (resp. f ′i ∈ Ni) is a lift of ei ∈Mi (resp. fi ∈Mi).

Lemma 6.8. We may assume that

Fil1Ni = E[u]/uep〈uniei, ue−nifi, unie′i, ue−nif ′i〉.

Proof. If i+ 1 ∈ J , then ni = e. Write Fil1Ni = E[u]/uep〈ueei, fi, uee′i +Aiei +Bifi, f
′
i +

Ciei +Difi〉. We may assume that Bi = Di = 0. Since uee′i ∈ Fil1Ni, we have ue|Ai. Let
Ai/u

e ∈ E[u]/uep such that ue(Ai/u
e) = Ai. Let e′′ = e′i + (Ai/u

e)ei and f ′′i = f ′i + Ciei,
we may assume that Ai = Ci = 0.

If i+ 1 6∈ J , the argument is the same. �

Assume that N = ⊕Ni has the following form.

Ni = E[u]/uep〈ei, fi, e′i, f ′i〉,
F il1Ni = E[u]/uep〈uniei, ue−nifi, unie′i, ue−nif ′i〉,
φ1(unie′i) = (a)′i+1e

′
i+1 +Xi+1ei+1 + Yi+1fi+1,

φ1(ue−nif ′i) = (a)i+1f
′
i+1 + Zi+1ei+1 +Wi+1fi+1,

[g](e′i) = ωγii (g)e′i +Ai,gei +Bi,gfi,

[g](f ′i) = ωµii (g)f ′i + Ci,gei +Di,gfi,

[gφ](e′i) = f ′i+s + Pi+sei+s +Qi+sfi+s,

[gφ](f ′i) = e′i+s +Ri+sei+s + Si+sfi+s,

where the X,Y, Z,W and A,B,C,D are in E[u]/uep.

Lemma 6.9. We may assume that Ai,g = Bi,g = Ci,g = Di,g = 0.

Proof. LetM′ beM without the descent data of gφ, thenM′ is a direct sum of two rank
one objects in BrMod1

dd,K/K0
. More precisely, M′ is isomorphic to a reducible rank two

object of some type J ′ in the sense of Definition 6.4. Then the proof is the same as the
proof of [9] Lemma 4.4. �

Lemma 6.10. We may assume that Pi+s = Qi+s = Ri+s = Si+s = 0.

Proof. If i + 1 ∈ J , since [gφ](Fil1) ⊂ Fil1, we have ue|Qi+s, Si+s. Let e′′i+s = e′i+s +
Ri+sei+s+Si+sfi+s and f ′′i+s = f ′i+s+Pi+sei+s+Qi+sfi+s. This does not change the form

of Fil1 since E[u]/uep〈ei+s, uefi+s, e′i+s, uef ′i+s〉 = E[u]/uep〈ei+s, uefi+s, e′′i+s, uef ′′i+s〉. We

have to check that it does not change the form of [g]. By the relation gφg
ps = ggφ, we

have

[ggφ](e′i) = ω
µi+s
i+s (g)f ′i+s + g(Pi+s)ω

γi+s
i+s (g)ei+s + g(Qi+s)ω

µi+s
i+s (g)fi+s

= [gφg
ps ](e′i)

= ω
µi+s
i+s (g)(f ′i+s + Pi+sei+s +Qi+sfi+s).

Therefore, [g]f ′′i+s = ω
µi+s
i+s (g)f ′′i+s. Similarly, [g]e′′i+s = ω

γi+s
i+s (g)e′′i+s

If i+ 1 6∈ J , the argument is the same. �
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Lemma 6.11. Xi = Wi+s, Yi = Zi+s, Zi = Yi+s, Wi = Xi+s.

Proof. This is an easy consequence of the equation [gφ] ◦ φ1 = φ1 ◦ [gφ]. �

By Lemma 6.8, 6.9, 6.10, we can apply the exact sequence (6.1) to the pair (M,M). If
we forget about the descent data of [gφ], then the same computation as in the reducible
case shows that

dimE Hom
′
dd,1⊗Frob(Fil

1M,M) = 4pr,

dimE Hom
′
dd,F il(M,M) = (4p− 1)r.

Here ′ means that we do not consider the descent data of [gφ]. Then by Lemma 6.11 and
a similar computation as for equation (6.7), we have

dimE Homdd,1⊗Frob(Fil
1M,M) = 4ps,

dimE Homdd,F il(M,M) = (4p− 1)s.

Therefore,

(6.11) dimE Ext
1
BrMod1

dd,K/F
(M,M) = dimE HomBrMod1

dd,K/F
(M,M) + s = 1 + s.

6.4. Proof of Lemma 3.3. Now we can prove Lemma 3.3 by applying the above com-
putation. We use the notation in section 3.1. Note that we have the following facts.

If ρ̄v is reducible and nonsplit, ρ̄v is of type Jv in the sense of Definition 3.1.3 of [20].
Therefore, there exists a Breuil module Mred ∈ BrMod1

dd,L/Fv
(here the coefficient ring

is S = kv ⊗ κ[u]/uep) such that the generic fibre of Mred is ρ̄v and Mred =
⊕

i:kv→F̄pMi

has the following form.
Mi = κ[u]/uep〈ei, fi〉

Fil1Mi = κ[u]/uep〈ujiei, ue−jifi + λiu
hiei〉

φ1(ujiei) = (b)i+1ei+1, φ1(ue−jifi + λiu
hiei) = (a)i+1fi+1

[g]ei = (ψ′1
∏
i∈Jv

ω−pi (g))ei, [g]fi = (ψ′2
∏
i 6∈Jv

ω−pi )fi

where λi ∈ κ with λi = 0 if i + 1 6∈ Jv, ji =

{
e i+ 1 ∈ Jv
0 i+ 1 6∈ Jv

, hi is an integer between 0

and e, ψ′1 and ψ′2 are restrictions of ψ1 and ψ2 to Gal(L/Fv). Note that Mred is split if
and only if all the λ′is are 0.

If ρ̄v is irreducible, from Theorem 4.1.4 of [20], there exists a rank two Breuil module
Mirr ∈ BrMod1

dd,L/Fv
(here the coefficient ring is S = k′v⊗κ[u]/uep), such that the generic

fiber of Mirr is ρ̄v and Mirr = ⊕i∈S′Mi has the following form.

Mi = κ[u]/uep〈ei, fi〉

Fil1Mi = κ[u]/uep〈uniei, umifi〉
φ1(uniei) = (a)′i+1ei+1, φ1(umifi) = (a)i+1fi+1

N(ei) = 0, N(fi) = 0

[gφ]ei = fi+dv , [gφ]fi = ei+dv

[g]ei = ((
∏
i∈Sv

ωaii
∏
i∈Jv

ωbi−pi ))(g)ei, [g]fi = ((
∏
i∈Sv

ωaii
∏
i 6∈Jv

ωbi−pi ))(g)fi.
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Here ni = δJv(i+ 1)e and mi = e−ni, (a)i =

{
a if i = 1

1 otherwise
, (a)′i =

{
a if i = dv + 1

1 otherwise
,

gφ ∈ Gal(L/Fv) is a fixed element such that it maps to the nontrivial element inGal(F ′v/Fv)
under the natural surjectionGal(L/Fv)→ Gal(F ′v/Fv), g denotes the elements inGal(L/F ′v).
Notice that Mirr is of type Jv in the sense of Definition 6.5.

Suppose that ρv : GFv → GL2(E) is a potentially Barsotti-Tate representation with Ga-
lois type τv. Since τv|IL is trivial, ρv is Barsotti-Tate when restricted to GL. Consequently,
there exists a p-divisible group Γ over OL such that the generic fibre of Γ is ρv|GL . Γ also
has an action of the Galois group Gal(L/Fv) over the action of Gal(L/Fv) on Spec(OL).
Let D(Γ/kv⊗κ) be the contravariant Dieudonné module of Γ. Then D(Γ/kv⊗κ) is a free
W (kv) ⊗ O-module of rank two with an action of the Dieudonné ring W (kv)[F,V]. We
may define an action of the Weil group Wv on D(Γ/kv ⊗ κ) (see for example appendix of
[11]). Then

WD(ρv) ∼= HomW (kv)⊗O(D(Γ/kv ⊗ κ),W (kv)⊗O)⊗W (kv)⊗O Q̄p.

6.4.1. The reducible case. Assume that ρ̄v is reducible and nonsplit. Since τv = τJv =
χ̃Jv⊕χ̃Jv

∏
i∈Sv ω̃

ci
i , there exist basis elements ~v and ~w of WD(ρv) so that for g ∈ Iv ⊂ GFv ,

(6.12) g(~v) = χ̃Jv(g)~v, g(~w) = χ̃Jv
∏
i∈Sv

ω̃cii (g)~w.

Let BrMod1
dd,L/Fv

be the category of Breuil modules with descent data (S = kv ⊗
κ[u]/uep in this case). Then there is an equivalence between BrMod1

dd,L/Fv
and the cat-

egory of finite flat group schemes over OL with an action of Gal(L/Fv). Let MΓ ∈
BrMod1

dd,L/Fv
be the Breuil module with descent data corresponding to the group scheme

Γ. Then there is a canonical isomorphism

D(Γ/kv ⊗ κ)⊗kv⊗κ,Frob⊗1 (kv ⊗ κ) ∼=MΓ/uMΓ

under which F ⊗ Frob corresponds to φ (in our case, φ(x) = φ1(ue · x)) and V ⊗ Frob−1

corresponds to the composition

MΓ/uMΓ
φ−1

1−−→ Fil1MΓ/uFil
1MΓ →MΓ/uMΓ.

(This is well defined since φ−1
1 is a bijection.)

We determine those group schemes with descent data such that the corresponding Breuil
modules with descent data have Dieudonné modules with basis satisfying (6.12). Note that
if M is a Breuil module such that the associated Dieudonné module D(M) has a basis
satisfying (6.12), then it is easy to see that the descent data of M are determined by the
reductions of χ̃Jv and χ̃Jv

∏
i∈Sv ω̃

ci
i . More precisely, M has the following form

Mi = κ[u]/uep〈ei, fi〉
Fil1Mi = κ[u]/uep〈uniei, umifi + λiu

hiei〉
φ1(uniei) = (b)i+1ei+1, φ1(umifi + λiu

hiei) = (a)i+1fi+1

[g]ei =
∏
i∈Sv

ωaii
∏
i 6∈Jv

ωbi−pi (g)ei, [g]fi =
∏
i∈Sv

ωaii
∏
i 6∈Jv

ωbi−pi

∏
i∈Sv

ωcii (g)fi

where mi and ni are integers between 0 and e.
Since we know the generic fibre of M, then we can determine M completely.
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Lemma 6.12. If the Dieudonné module associated to M satisfies (6.12), then M is of
type Jv.

Proof. As remarked above, there exists at most one such Breuil module. From the defini-
tion, it is easy to see that D(Mred) has all the required properties. ThusM =Mred is of
type Jv. �

We then have the following lemma.

Lemma 6.13. If ρ̄v is reducible and nonsplit, then
(1) dimκH

1
f (GFv , Ad(ρ̄v)) = 1 + dv.

(2) dimκH
1
f (GFv , Ad

0(ρ̄v)) = dv.

Proof. (1) follows from equation (6.10). (2) follows from the fact that

dimκExt
1(M(mi, µi, a),M(mi, µi, a)) = 1

for any rank one Breuil module. (This fact is a special case of Theorem 3.9 of [9].) �

6.4.2. The irreducible case. Assume that ρ̄v is irreducible, then the same argument as in
the reducible case shows that there exists a unique Breuil module with descent data M
such that the corresponding Dieudonné module has basis elements ~v and ~w with

g(~v) = (ψ̃Jv ω̃r

dv∏
i=1

ω̃cii )(g)~v, g(~w) = (ψ̃Jv ω̃r

dv∏
i=1

ω̃cii )p
r
(g)~w.

Indeed, M = Mirr which is the one constructed in Theorem 4.1.4 of [20]. In particular,
M is of type Jv in the sense of Definition 6.5.

Lemma 6.14. If ρ̄v is irreducible, then
(1) dimκH

1
f (GFv , Ad(ρ̄v)) = 1 + dv.

(2) dimκH
1
f (GFv , Ad

0(ρ̄v)) = dv.

Proof. The proof is almost the same as the proof of last lemma, except now we use equation
(6.11). �
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