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1. Introduction

The theory of displays was introduced by Zink in [23] and then developed by Zink 
and Lau in a series of papers ([22,9,10] etc.). One of the main results of this theory is 
that, for any ring R with p nilpotent in it, the category of formal p-divisible groups over 
R and the category of nilpotent displays over R are equivalent.

Let O be the ring of integers of a non-Archimedean local field with characteristic 
(0, p) and uniformizer π. The goal of this paper is to generalize the above equiv-
alence to nilpotent O-displays and π-divisible formal O-modules over O-algebras R
with π nilpotent in R. For this purpose we combine the idea of Drinfeld in [3] (where 
Drinfeld established the equivalence between certain Cartier EO,R-modules and formal 
O-modules over R) and the ideas in [23] and [10]. Hence, we generalize many results 
needed for establishing the equivalence of nilpotent displays over R and p-divisible for-
mal groups over R and also use the already established equivalence for the O = Zp

case. Some parts of this generalized theory are already utilized in [8, Chapter 9]. 
In a recent paper of Verhoek [18], a more general notion of Cartier A-modules is 
introduced, where A is the ring of integers of a number field. An equivalence be-
tween certain Cartier EA-modules and certain formal A-modules is also established 
in [18].

After establishing the equivalence between nilpotent O-displays and π-divisible 
formal O-modules, we introduce Dieudonné O-displays and extend the equivalence 
to an equivalence between Dieudonné O-displays and π-divisible O-modules follow-
ing [22].

In the first part of this introduction, we state the main results and outline the contents 
of this paper. All the notions related to Witt vectors and formal groups are the standard 
ones and will be recalled in the second part of this introduction.
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1.1. Statement of the main results

Let O be the ring of integers of a non-Archimedean local field of characteristic (0, p)
with uniformizers π. All rings and algebras over a commutative ring are assumed to be 
commutative.

Let NilO be the category of O-algebras with π nilpotent. Let R be an object of NilO. 
Let ndispO /R be the category of nilpotent O-displays over R (Definitions 2.1 and 2.3). 
Let (π-divisible formal O-modules/R) be the category of π-divisible formal O-modules 
over R (Definition 1.15). The main result of this paper is the following theorem.

Theorem 1.1. There exists a functor BTO

BTO : ndispO /R → (π-divisible formal O-modules/R),

which is an equivalence of categories.

Remark 1.2. This is the main result of the first author’s thesis [1]. This paper is mostly 
based on [1].

Remark 1.3. Assume that R is π-adic, i.e., R = lim←−R/(π)n. By the discussion at the end 
of Section 2.2 and taking projective limits, Theorem 1.1 holds for such R as well.

Remark 1.4. The idea of the proof is similar as Drinfeld’s idea in [3]. More precisely, let 
(O′, π′) be a finite extension of (O, π), we show that if Theorem 1.1 is true for (O, π), 
then it is true for (O′, π′). We sketch the strategy in the following.

The functor BTO is constructed in Section 2.4. Let R ∈ NilO′ . Let ndispO,O′ be 
the category of nilpotent O-displays over R with strict O′-action (Definition 2.4). In 
Section 2.5, we construct a functor Γ(O, O′) : ndispO,O′ /R → ndispO′ /R and show the 
commutativity of the following diagram

(ndispO,O′ /R)
BTO

Γ(O,O′)

(π′-divisible formal O′-modules/R)

(ndispO′ /R)
BTO′

(1.1)

By adapting the argument in [10], we show in Section 4 that Γ(O, O′) is an equivalence if 
and only if it is fully faithful (Proposition 4.10). If BTO is an equivalence, then to show 
that BTO′ is an equivalence, it suffices to show that BTO′ is faithful. This faithfulness 
property is proved in Section 3 using the theory of crystals (Proposition 3.28). Therefore 
Theorem 1.1 follows from the equivalence of BTZp

[10, Theorem 1.1].
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The construction of Γ(O, O′) is divided into two cases (Section 2.5). The first case 
is that O → O′ is unramified with degree f . For this we introduce the category of 
nilpotent f -O-displays (f −ndispO), construct two functors Ω1(O, O′) : ndispO,O′ /R →
(f − ndispO /R), Ω2(O, O′) : (f − ndispO /R) → ndispO′ /R, and define Γ1(O, O′) =
Ω2(O, O′) ◦ Ω1(O, O′). The second case is that O → O′ is totally ramified. For this, we 
construct Γ(O, O′) directly.

One consequence of Theorem 1.1 is the following result.

Theorem 1.5. Let p be an odd prime. Let R be a Noetherian complete local O-algebra 
with perfect residue field of characteristic p. Then the equivalence BTO in Theorem 1.1
extends to an equivalence

BTO : DdispO /R → (π-divisible O-modules/R).

Furthermore, this equivalence is compatible with duality in the sense that

BTO(Pt) ∼= G∨.

Here DdispO /R is the category of Dieudonné O-displays over R (Definition 5.1), Pt is 
the dual of P (Definition 5.8), G∨ is the Serre O-dual of G.

As mentioned before, a large part of the paper is a generalization of the O = Zp case. 
In the body of the paper, we give precise definitions and constructions of the generalized 
notions. On the other hand, if the argument of a result is the same as the argument in 
the O = Zp case, we skip the details and only refer to the original references.

In Section 2, we study the category (f − dispO) of f -O-displays (Definition 2.1) in 
detail, explain the constructions of the functors in Remark 1.4, and prove the commu-
tativity of the diagram (1.1).

In Section 3, we introduce O-frames and O-windows, which generalize the notion of 
O-displays. We define the crystals associated with O-displays and the Grothendieck–
Messing crystals associated with π-divisible formal O-modules. By the study of the 
universal extensions of π-divisible formal O-modules, we show that if the π-divisible for-
mal O-module and the O-display are related by the functor BTO, then the corresponding 
crystals on O-pd-thickenings are isomorphic (Theorem 3.26). As a consequence of this 
result, the faithfulness of BTO follows (Proposition 3.28).

In Section 4, we apply the ideas of [10] to the functors Ωi(O, O′) and Γi(O, O′) we 
constructed in Section 2.5. We show that the functors are equivalences of categories if 
they are fully faithful (Proposition 4.10). Combine with the faithfulness of BTO (Propo-
sition 3.28), we obtain Theorem 1.1.

In Section 5 we study Dieudonné O-displays and prove Theorem 1.5.
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1.2. Background on Witt vectors, formal groups, and Cartier modules

In this section, we recall the basic properties of Witt vectors and formal groups and 
review Drinfeld’s result on Cartier modules. Along the way, we fix the notation we use 
in this paper. The readers may skip this part to next section and only come back for 
references.

Let O be the ring of integers of a non-Archimedean local field of characteristic (0, p)
with uniformizer π and residue field Fq.

1.2.1. The functors WO(−) and ŴO(−)
Let WO(−) : AlgO → AlgO be the functor of ramified Witt vectors associated with 

(O, π). See for example [5, Section 5.1] or [7] for more details on this object. The n-th 
Witt polynomial attached to (O, π) is defined by

wn : WO(R) → R

b = (b0, b1, . . .) �→ bq
n

0 + πbq
n−1

1 + . . . + πnbn.

Let V = Vπ : WO(R) → WO(R) be the Verschiebung morphism and F : WO(R) →
WO(R) the Frobenius morphism. Note that V depends on the choice of π. Define IO,R =
V (WO(R)) and WO,n(R) = WO(R)/V n(WO(R).

Let a ∈ R, the Teichmüller lift of a is [a] ∈ WO(R) given by (a, 0, 0 . . .).
Let O′ be a finite extension of O with a fixed uniformizer π′ and residue field k′. 

Denote by u the natural morphism in [5, Lemma 5.3]

u : WO(−) → WO′(−).

Recall that we have u([a]) = [a], u(Vπx) = π
π′

Vπ′F f−1
u(x), and u(F f

x) = Fu(x), where f
is the degree of residue extension for O′/O.

Denote by Δ the unique natural morphism (Cartier morphism) of O-algebras

Δ : WO(−) −→ WO(WO(−))

such that W(Δ(x)) = [Fn

x]n≥0. Here W = (w0, w1, . . . ).

Remark 1.6. With the notation as above, let E and E′ be the fraction field of O and 
O′ respectively. Let E0/E be the maximal unramified extension of E in E′ with ring of 
integers OE0 . We identify WO(k′) = OE0 . If A is an O′-algebra, we have the following 
morphism

OE0 = WO(k′) Δ−→ WO(OE0) → WO(A),

which makes WO(A) an OE0-algebra. The natural morphism WO(A) −→ WO′(A) is then 
a morphism of OE0-algebras and induces a natural morphism



134 T. Ahsendorf et al. / Journal of Algebra 457 (2016) 129–193
WO(A) ⊗OE0
O′ −→ WO′(A),

where F
f
E ⊗ id on the left hand side corresponds to FE′ on the right hand side.

If A is a perfect k′-algebra, the reductions modulo π′ of the above two algebras coincide 
with A. Since WO′(A) has no π′-torsion, we obtain the following isomorphism

WO(A) ⊗OE0
O′ ∼−→ WO′(A).

Thus, if E0 is the maximal unramified extension of Qp in E with degree f(E/Qp), 
W = WZp

, for every perfect k-algebra A we have a canonical isomorphism

W (A) ⊗OE0
O ∼−→ WO(A)

[a] ⊗ 1 �→ [a]
F f(E/Qp) ⊗ id ↔ F .

If R is a nilpotent O-algebra, there is a subalgebra ŴO(R) of WO(R) which is stable 
under F and V and defined by

ŴO(R) = {(x0, x1, · · · ) ∈ WO(R) | xi = 0 for almost all i}.

Let R be an O-algebra which is a Noetherian local ring with perfect residue field 
k and is complete with respect to the topology defined by the maximal ideal. In the 
following, we define an important subring ŴO(R) of the ring of Witt vectors WO(R). 
The construction follows from [22]. Assume first that R is Artinian. Note that there 
is a unique ring homomorphism WO(k) → R, which for any element a ∈ k, maps the 
Teichmüller representative [a] of a in WO(k) to the Teichmüller representative of a in R. 
Let m ⊂ R be the maximal ideal of R. Then we have the following exact sequence

0 → WO(m) → WO(R) τ−→ WO(k) → 0.

It admits a canonical section δ : WO(k) Δ−→ WO(WO(k)) → WO(R), which is a ring 
homomorphism commuting with F .

Since m is nilpotent, we have a subalgebra of WO(m):

ŴO(m) = {(x0, x1, · · · ) ∈ WO(m) | xi = 0 for almost all i}.

ŴO(m) is stable under F and V . Moreover, ŴO(m) is an ideal of WO(R). The proof of 
this fact is exactly the same as the argument in [22, Section 2]. Indeed, by definition, any 
element in ŴO(m) may be represented as a finite sum 

∑N
i=0

V i [xi], it suffices to show 
that [x]η ∈ ŴO(m) for any x ∈ m and for any η ∈ WO(R). This follows from the formula

[x](η0, η1, · · · , ηn, · · · ) = (xη0, x
qη1, · · · , xqnηn, · · · ).
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Definition 1.7. If R is Artinian, we define the subring ŴO(R) ⊂ WO(R) by

ŴO(R) = {ξ ∈ WO(R) | ξ − δτ(ξ) ∈ ŴO(m)}.

Again we have an exact sequence

0 → ŴO(m) → ŴO(R) τ−→ WO(k) → 0

with a canonical section δ of τ .
If R is Noetherian, define ŴO(R) = lim←−ŴO(R/mn

R).
We also define ÎO,R = V (ŴO(R)).

Lemma 1.8. (Cf. [22, Lemma 2].) Assume that p ≥ 3. Then the subring ŴO(R) of WO(R)
is stable under F and V .

Proof. Note that δ commutes with F , the stability under F is obvious. We only have to 
check the stability under V . It suffices to show that

δ(V x) − V (δx) ∈ ŴO(m) for x ∈ WO(k).

By assumption, k is perfect. If we write x = F y and use that ŴO(m) is an ideal in 
WO(R), it suffices to show the above claim for x = 1. In the ring WO(WO(k)), let 
W = (w0, w1, · · · ), we have

W(δ(V 1) − V (δ1)) = [V 1, 0, · · · , 0, · · · ] = [π, 0, · · · ].

Assume that

[π, 0, · · · ] = W(u0, u1, · · · ) where ui ∈ WO(k).

Then π = u0, and 0 = wn(u0, · · · , un) for n ≥ 1. By induction, we see that ordπ un =
qn − qn−1 − · · · − 1. The lemma follows. �
1.2.2. O-pd-structures

We recall the definition and basic properties of O-pd-structure following [4, Section 7]
and [6, Section B.5.1]. Let R be an O-algebra. Let a ⊆ R be an ideal. An O-pd-structure
on a is a map γ : a → a, such that

• π · γ(x) = xq,
• γ(r · x) = rq · γ(x) and
• γ(x + y) = γ(x) + γ(y) +

∑
0<i<q(

(
q
i

)
/π) · xi · yq−i

hold for all r ∈ R and x, y ∈ a.
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Remark 1.9. For any S ∈ AlgR, an O-pd-structure on S is defined as above by considering 
S as the kernel of the morphism R|S| := R⊕ S → R.

Let us denote by γn the n-fold iterate of γ. We call γ nilpotent if a[n] = 0 for all 
n � 0, where a[n] ⊂ a is generated by all products 

∏
γai(xi) with xi ∈ a and 

∑
qai ≥ n. 

Define α0 = id and for each n ≥ 1, define

αn = πqn−1+qn−2+...+q+1−n · γn : a → a.

Define the n-th divided Witt polynomial by

w′
n : WO(a) → a

(x0, x1, . . . , xn, . . .) �→ αn(x0) + αn−1(x1) + . . . + α1(xn−1) + xn.

The map w′
n is wn-linear, i.e., w′

n(rx) = wn(r)w′
n(x) for all n ∈ N, x ∈ WO(a) and 

r ∈ WO(R).
The main application of this structure is as follows (cf. [6, Lemma B.5.8]). Define on 

aN a WO(R)-module structure by setting

ξ[a0, a1, . . .] = [w0(ξ)a0,w1(ξ)a1, . . .]

for all ξ ∈ WO(R) and [a0, a1, . . .] ∈ aN. Then we have an isomorphism of WO(R)-modules

log : WO(a) → aN

a = (a0, a1, . . .) �→ [w′
0(a),w′

1(a), . . .].

Moreover, if γ is nilpotent, the above isomorphism induces an isomorphism

log : ŴO(a) → a⊕N.

We may view a as an ideal of WO(a) via the map a �→ ã = log−1([a, 0, . . .]). Since F

acts on the right hand side by

F [a0, a1, . . .] = [πa1, πa2, . . . , πai, . . .]

for all [a0, a1, . . .] ∈ aN, we obtain that, for the ideal a ⊂ WO(a), F a = 0.

Definition 1.10. Let S → R be a surjection of O-algebras, such that the kernel a is 
equipped with an O-pd-structure. We call S → R an O-pd-thickening if the O-pd-
structure over a is nilpotent. We call S → R a topological O-pd-thickening, if there is a 
sequence of ideals an ⊂ a, such that S is complete and separated in the linear topology 
defined by the an, and each a/an is equipped with a nilpotent O-pd-structure.
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Proposition 1.11. Let S be an O-algebra and a ⊂ S an ideal equipped with an O-pd-
structure γ. Then for any nilpotent S-algebra N the algebra a ⊗S N inherits a nilpotent 
O-pd-structure γ̃ from a which is uniquely determined by γ̃(a ⊗ n) = γ(a) ⊗ nq for a ∈ a

and n ∈ N .

Proof. We only need to refer to the proof of [14, Chapter III, Lemma (1.8)], where one 
defines the map ϕ : S(a×N ) → a ⊗N by the formula

ϕ(
l∑

i=1
si(ai, ni)) =

l∑
i=1

γ(ai) ⊗ (sini)q +
∑

(
(

q

i1, . . . , il

)
/π)

l∏
j=1

(sjaj ⊗ nj)ij .

Here the last sum runs through all l-tuples (i1, . . . , il) with ij > 0 and 
∑l

j=1 ij = q. A sim-
ilar argument, compared to the one there, shows that γ̃ determines an O-pd-structure 
on a ⊗S N . It is nilpotent since N is nilpotent.

Note that if N is flat over S, we obtain an O-pd-structure on aN via the inverse of 
a ⊗S N → aN . �
1.2.3. π-divisible formal O-modules

Let R be a commutative unitary ring and NilR denote the category of nilpotent 
R-algebras. We embed the category of R-modules ModR into NilR by setting M2 = 0
for any M ∈ ModR. In particular, this is the case for the R-module R.

If H is a functor on NilR, we denote by tH its restriction to ModR.

Definition 1.12. (Cf. [20, Chapter 2], [23, Definition 80].) A (finite dimensional) formal 
group over R is a functor F : NilR → Ab such that

(1) F (0) = 0.
(2) F is exact, i.e., if

0 → N1 → N2 → N3 → 0

is a sequence in NilR, which is exact as a sequence of R-modules, then

0 → F (N1) → F (N2) → F (N3) → 0

is an exact sequence of abelian groups.
(3) The functor tF commutes with infinite direct sums.
(4) tF (R) is a finitely generated projective R-module. (By [23, 3.1 The functor BT]

tF (M) is in a canonical way an R-module for each M ∈ ModR.)

The module tF (R) is called the tangent space of F . The rank of tF (R) is called the dimen-
sion of F . The morphisms between two formal groups are the natural transformations 
between the functors.
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Definition 1.13. Let S be a unitary ring and R a unitary S-algebra. A formal S-module 
over R is a formal group over R with an action of S, which induces the natural ac-
tion on the tangent space, i.e., it coincides with the S-module structure obtained by 
the R-module structure of the tangent space and restriction of scalars. The morphisms
between two formal S-modules are the natural transformations between the functors 
respecting the attached S-actions.

Definition 1.14. (Cf. [20, 5.4 Definition].) Let R ∈ AlgO. A morphism ϕ : G → H of 
formal O-modules over R of equal dimension is called an isogeny if Kerϕ is representable 
(i.e., Kerϕ � Spf A with A ∈ NilR, where Spf A : NilR → Sets is given by Spf A(N ) =
HomAlgR

(A, R⊕N ) for N ∈ NilR.)

Definition 1.15. (Cf. [20, 5.28 Definition], [6, Definition B.2.1].) A formal O-module G
over an O-algebra R is called π-divisible, if the multiplication map π : G → G is an 
isogeny. The category of π-divisible formal O-modules over R is a full subcategory of the 
category of formal O-modules over R.

Lemma 1.16. Let (O′, π′) be a finite extension of (O, π). Then a formal O′-module G is 
π′-divisible, if and only if π : G → G is an isogeny.

Proof. This follows easily by [20, 5.10 Satz], which says that the composition of two 
morphisms is an isogeny if and only if both morphisms are. See [6, Remarque B.2.2] for 
more discussion. �
1.2.4. Cartier modules and Drinfeld’s result

Let R ∈ AlgO. Let EO,R be the Cartier ring defined in [3].

Definition 1.17. (Cf. [3].) A Cartier module M over R and O (i.e., an EO,R-module) 
is reduced, if the action of V is injective, M = lim←−−M/V kM , and M/VM is a finite 
projective R-module. The quotient M/VM is called the tangent space of M . Note that 
in [3], M/VM is required to be free.

Theorem 1.18. (Cf. [3].) The category of formal O-modules over R is equivalent to the 
category of reduced EO,R-modules.

Although Definition 1.17 is slightly different from the one in [3], the proof is an easy 
combination of the proof in [3] (the induction step) and the proof of [20, 4.23 Satz] (the 
base step O = Zp). The readers may also find the detail proof in [1, Section 2.4] or [18].

One may give an explicit description of the equivalence in Theorem 1.18. Note that 
we may consider ŴO(N ) for each N ∈ NilR as an EO,R-module. For e ∈ EO,R, it can be 
written in a unique way as

e =
∑

V n[am,n]Fm, (1.2)

n,m≥0
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where am,n ∈ R and for fixed n the coefficients am,n are zero for m large enough. Then 
the module structure is written as a right multiplication and is defined by

we =
∑

n,m≥0

V m

([an,m](F
n

w)),

where w is an element of ŴO(N ). This generalizes [23, Equation (166)]. Clearly, a mor-
phism between N → N ′ in NilR induces a morphism of EO,R-modules ŴO(N ) →
ŴO(N ′).

Lemma 1.19. (Cf. [21, (2.10) Lemma].) Let R be an O-algebra, N a nilpotent R-algebra 
with a nilpotent O-pd-structure and M a reduced EO,R-module. Then we have an iso-
morphism of O-modules

ŴO(N ) ⊗EO,R
M � N ⊗R M/VM,

given by n ⊗m �→
∑

i w′
i(n) ⊗ F im for all n ∈ ŴO(N ) and m ∈ M , where the w′

i are 
divided Witt polynomials. The inverse map is given by n ⊗m �→ log−1[n, 0, . . .] ⊗m for 
all n ∈ N and m ∈ M/VM , where m is any lift of m.

Proof. The two arrows are well-defined. One checks that they are inverse of each other 
via direct computation. �
Lemma 1.20. (Cf. [20, 4.41 Satz].) Let M be a reduced EO,R-module and N a nilpotent 
R-algebra. Then TorEO,R

i (ŴO(N ), M) = 0 for each i ≥ 1.

Proposition 1.21. For each reduced EO,R-module M , the functor ŴO(−) ⊗EO,R
M on 

NilR is a formal O-module. Furthermore, the equivalence functor from the category of 
reduced EO,R-modules to the category of formal O-modules in Theorem 1.18 is given by 
this functor.

Proof. To show that ŴO(−) ⊗EO,R
M is a formal O-module, it suffices to show that the 

tangent space is a finite projective R-module and that it preserves exact sequences. But 
this follows from Lemmas 1.19 and 1.20.

The second assertion is already confirmed in the Zp-case (cf. [20, 4.23 Satz]). Hence, 
as in Drinfeld’s proof, it suffices to show that if the assertion is true for some O, for any 
finite extension O → O′ the assertion is true for O′. This is easy to check by writing 
down Drinfeld’s construction explicitly. �



140 T. Ahsendorf et al. / Journal of Algebra 457 (2016) 129–193
1.2.5. The exponential map
We reformulate Lemma 1.19. Let S be an O-algebra. By Proposition 1.21, we obtain 

for each formal O-module G over S and each nilpotent S-algebra N equipped with a 
nilpotent O-pd-structure an isomorphism

logG(N ) : G(N ) → LieG⊗S N .

Definition 1.22. Let G be a formal O-module over an O-algebra S and a ⊆ S be an ideal 
equipped with an O-pd-structure. We define the exponential map

expG : a⊗ LieG → G

by

a⊗ LieG(N ) = a⊗S N ⊗S LieG
log−1

G (a⊗SN )−→ G(a⊗S N ) → G(N )

for each N ∈ NilS , where logG is defined as above (which makes sense by Proposi-
tion 1.11) and the last map is induced by the multiplication morphism a ⊗S N → N .

Following [23, Section 3.2. The Universal Extension], one may also define the expo-
nential maps via Cartier modules. For S an O-algebra and L an S-module, define the 
group C(L) =

∏
i≥0 V

iL. We may turn C(L) into an EO,S-module by the equations

ξ(
∑
i≥0

V ili) =
∑
i≥0

V iwn(ξ)li,

V (
∑
i≥0

V ili) =
∑
i≥0

V i+1li,

F (
∑
i≥0

V ili) =
∑
i≥1

V i−1πli,

for all ξ ∈ WO(S) and li ∈ L. We may interpret C(L) as the Cartier module of the 
additive group of L. If L̂+ denotes the functor from NilS to ModO defined by

L̂+(N ) = (N ⊗S L)+

for N ∈ NilS , then there is a functor isomorphism

N ⊗S L � ŴO(N ) ⊗EO,S
C(L) (1.3)

given by n ⊗ l �→ [n] ⊗ V 0l for n ∈ N and l ∈ L. The inverse map is given by sending 
w ⊗

∑
i≥0 V

ili to 
∑

i≥0 wi(w) ⊗ li for w ∈ ŴO(N ) and li ∈ L for all i ≥ 0 (cf. [21, (2.1) 
Lemma]). By Proposition 1.21, the following is now clear. (See also [6, Section B.5.3].)
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Proposition 1.23. (Cf. [21, (2.3) Satz, (2.11) Satz].) Let S → R be an O-pd-thickening 
with kernel a, M ′ a reduced EO,S-module and M = EO,R ⊗EO,S

M ′. Then there is an 
exact sequence of EO,S-modules

0 → C(a⊗S M ′/VM ′) exp→ M ′ → M → 0.

Here the map exp is given by sending V i(a ⊗ m) to V i log−1[a, 0, . . .]m. It induces the 
map

expG′ : a⊗S LieG′ → G′,

where G′ is the formal O-module over S attached to M ′.

2. f -O-Displays

In this section we study f -O-displays. Since f -O-displays are generalizations of dis-
plays, the materials in the first three subsections are similar to those in [23]. We give 
details here for completeness.

2.1. Definitions

Definition 2.1. Let R be an O-algebra. An f -O-display P over R is a quadruple 
(P, Q, F, F1), where P is a finitely generated projective WO(R)-module, Q is a sub-
module of P , F : P → P and F1 : Q → P are F

f -linear maps, such that the following 
properties are satisfied:

(1) IO,RP ⊂ Q and there is a decomposition of P as WO(R)-modules P = L ⊕ T , such 
that Q = L ⊕ IO,RT . (We call such a decomposition a normal decomposition.)

(2) F1 is an F
f -linear epimorphism, i.e., its linearization

F �
1 : WO(R) ⊗Ff

,WO(R) Q → P

w ⊗ q �→ wF1q,

where w ∈ WO(R) and q ∈ Q, is surjective.
(3) For x ∈ P and w ∈ WO(R), we have

F1(V wx) = F f−1
wFx.

The finite projective R-module P/Q is the tangent space of P. If f = 1, we call P an 
O-display.

A morphism α : (P, Q, F, F1) → (P ′, Q′, F ′, F ′
1) between two f -O-displays is a mor-

phism of WO(R)-modules α : P → P ′, such that α(Q) ⊂ Q′ and α commutes with F
and F1.



142 T. Ahsendorf et al. / Journal of Algebra 457 (2016) 129–193
Together with these morphisms, the f -O-displays over R form a category, we call it 
(f − dispO /R) or only (dispO /R) if f = 1.

This definition is similar to [23, Definition 1]. Note that

F1(V 1x) = Fx

for all x ∈ P . Hence F is uniquely determined by F1. Applying this equation to y ∈ Q, 
we obtain Fy = π · F1y.

We introduce an operator V �. The following lemma is an easy generalization of the 
corresponding result in [23].

Lemma 2.2. (Cf. [23, Lemma 10].) Let R be an O-algebra and P an f -O-display over R. 
There exists a unique WO(R)-linear map

V � : P → WO(R) ⊗Ff
,WO(R) P,

which satisfies the following equations for all w ∈ WO(R), x ∈ P and y ∈ Q:

V �(wFx) = π · w ⊗ x,

V �(wF1y) = w ⊗ y.

Furthermore, F �V � = π idP and V �F � = π idWO(R)⊗
Ff

,WO(R)
P .

By V n� : P → WO(R) ⊗Ffn
,WO(R) P we mean the composite map F

f(n−1)
V � ◦ . . . ◦

F f

V � ◦ V �, where F
fi

V � is the WO(R)-linear map

id⊗Ffi
,WO(R)V

� : WO(R) ⊗Ffi
,WO(R) P → WO(R) ⊗Ff(i+1)

,WO(R) P.

Definition 2.3. Let R be an object in NilO and P an f -O-display over R. We call P
nilpotent, if there is a number N such that the composite map

pr ◦V N� : P → WO(R) ⊗FfN
,WO(R) P → WO(R)/(IO,R + πWO(R)) ⊗FfN

,WO(R) P

is the zero map.
Denote by (f − ndispO /R) the subcategory of (f − dispO /R) consisting of nilpotent 

objects.

Definition 2.4. Let O′ be a finite extension of O, R an O′-algebra, and P an f -O-display 
over R. We call an O′-action of P, i.e., an O-algebra morphism ι : O′ → EndP, strict, 
if the induced action ι : O′ → End(P/Q) coincides with the O′-module structure given 
by the R-module structure of P/Q and restriction of scalars.
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We denote by (disp(f)
O,O′ /R) (resp. (ndisp(f)

O,O′ /R)) the category of f -O-displays (resp. 
nilpotent f -O-displays) over R equipped with a strict O′-action.

In fact, for this situation, we consider only the case f = 1. When f = 1, we omit the 
script f in the notation.

2.2. Base change for f -O-displays

Let R → S be a morphism of O-algebras.

Definition 2.5. (Cf. [23, Definition 20].) Let P = (P, Q, F, F1) be an f -O-display over 
R. The f -O-display obtained by base change with respect to R → S is the quadruple 
PS = (PS , QS , FS , F1,S), where

• PS := WO(S) ⊗WO(R) P ,
• QS := Ker(w0 ⊗ pr : WO(S) ⊗WO(R) P → S ⊗R P/Q),
• FS := F f ⊗ F , and
• F1,S : QS → PS is the unique F

f -linear morphism which satisfies

F1,S(w ⊗ y) = F f

w ⊗ F1y,

F1,S(V w ⊗ x) = F f−1
w ⊗ Fx

for all w ∈ WO(S), x ∈ P and y ∈ Q.

It is easy to check that PS is an f -O-display over S. In particular, if we choose a 
normal decomposition P = L ⊕ T , then

QS � WO(S) ⊗WO(R) L⊕ IO,S ⊗WO(R) T.

Remark 2.6. We remark a very important case of base change, which will be needed for 
the study of the functor BT(f)

O (P, −) (cf. [23, Example 23]). Let R be an O-algebra, such 
that πR = 0. Let Frobq denote the Frobenius endomorphism defined by Frobq(r) = rq

for all r ∈ R and P = (P, Q, F, F1) be an f -O-display over R. The Frobenius F on 
WO(R) is given by WO(Frobq). If we set

P (q) = WO(R) ⊗F ,WO(R) P,

Q(q) = IO,R ⊗F ,WO(R) P + Im(WO(R) ⊗F ,WO(R) Q)

and define the operators F (q) and F (q)
1 in a unique way by

F (q)(w ⊗ x) = F f

w ⊗ Fx,

F
(q)
1 (V w ⊗ x) = F f−1

w ⊗ Fx,

F
(q)
1 (w ⊗ y) = F f

w ⊗ F1y
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for all w ∈ WO(R), x ∈ P and y ∈ Q, we see that the f -O-display obtained by base 
change with respect to Frobq is P(q) = (P (q), Q(q), F (q), F (q)

1 ). It is essential to demand 
πR = 0 here, otherwise Q(q)/IO,RP

(q) would not necessarily be a direct summand of 
P (q)/IO,RP

(q).
Let us denote the k-fold iterate of this construction by P(qk) and consider the map 

V � : P → WO(R) ⊗Ff
,WO(R) P of Lemma 2.2 and F � : WO(R) ⊗Ff

,WO(R) P → P . V �

maps P into Q(qf ) and F � maps Q(qf ) into IO,RP . Both maps commute with the pairs 
(F, F (qf )) and (F1, F

(qf )
1 ) respectively, so V � induces the so called Frobenius morphism 

of P, which is a morphism of f -O-displays

FrP : P → P(qf ), (2.1)

and F � induces the so called Verschiebung

VerP : P(qf ) → P.

By Lemma 2.2, we obtain two analogous relations

FrP VerP = π · idP(qf ) and VerP FrP = π · idP .

Let R be a topological O-algebra, where the linear topology is given by the ideals 
R = a0 ⊃ a1 ⊃ . . . ⊃ an . . . , such that aiaj ⊂ ai+j . Suppose further that π is nilpotent 
in R/a1 (and hence in all R/ai) and that R is complete and separated with respect to 
this filtration.

Definition 2.7. With R as above, an f -O-display over R is called nilpotent, if the 
f -O-display obtained by base change to R/a1 is nilpotent in the sense of Definition 2.3.

Let P be a nilpotent f -O-display over R. We denote by Pi the f -O-display over R/ai
obtained by base change. Then Pi is a nilpotent f -O-display in the sense of Definition 2.3. 
There are obvious transition isomorphisms

φi : (Pi+1)R/ai
→ Pi.

Conversely, assume we are given for each index i a nilpotent f -O-display Pi over 
O-algebra R/ai and transition isomorphisms φi as above. It is easily seen that the system 
(Pi, φi) is obtained from a nilpotent f -O-display P over R. The category of systems of 
nilpotent f -O-displays (Pi, φi) and the category of nilpotent f -O-displays over R are 
equivalent by the above association. This equivalence fits well to [14, Chapter II, Lemma 
(4.16)].
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2.3. Descent data for f -O-displays

We introduce descent theory for f -O-displays.

Lemma 2.8. (Cf. [23, 1.3. Descent].) Let R → S be a faithfully flat O-algebra morphism. 
Then we have the exact sequence

R → S
q1−→
−→
q2

S ⊗R S

q12−→
q23−→
q13−→

S ⊗R S ⊗R S,

where qi is the map, which sends an element of S to the i-th factor of S ⊗R S and qij is 
given by sending the first component of S ⊗R S to the i-th component of S ⊗R S ⊗R S

and the second one to the j-th component of it.

Definition 2.9. With O, R → S, qi and qij as above. Let P be an f -O-display over S. 
Denote the f -O-display over S⊗RS obtained by base change via qi by q�i P and similarly 
for f -O-displays over S⊗R S ⊗R S and qij . A descend datum for P relative to R → S is 
an isomorphism of f -O-displays α : q�1P → q�2P, such that the cocycle condition holds, 
i.e., the diagram

q�12q
�
1P

q�12α
q�12q

�
2P

q�13q
�
1P

q�13α

q�23q
�
1P

q�23α

q�13q
�
2P q�23q

�
2P

is commutative.

It is obvious that we obtain for any f -O-display P over R a canonical descent datum 
αP for the base change PS over S relative to R → S.

Theorem 2.10. (Cf. [23, Theorem 37].) With the terminology as in Definition 2.9, the 
functor P �→ (P, αP) from the category of f -O-displays over R to the category of 
f -O-displays over S equipped with a descent datum relative to R → S is an equivalence 
of categories. We also obtain an equivalence, when we restrict to nilpotent f -O-display 
structures.

The following result is important in Section 4.

Proposition 2.11. Let R → S be a faithfully flat morphism of O′-algebras, and f, f ′

two natural numbers ≥ 1. Let GA be a functor between the category of (nilpotent) 
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f -O-displays over A and the category of (nilpotent) f ′-O′-displays over A for A =
R, S, S ⊗R S, S ⊗R S ⊗R S. Assume that these functors are compatible with the base 
change functors induced by qi, qij (with the obvious notation) and R → S, that GS⊗RS

is fully faithful and GS⊗RS⊗RS is faithful. Let P ′ be a (nilpotent) f ′-O′-display over R, 
such that the base change P ′

S lies in the image of GS. Then P ′ lies in the image of 
GR. The same assertion is true, when the domain of GA is the category of (nilpotent) 
f -O-displays over A equipped with a strict O′-action for each A as above.

Proof. Let P be a (nilpotent) f -O-display over S, such that GS(P) = P ′
S . It suffices to 

construct for P a descent datum relative to R → S, so we would obtain by Theorem 2.10
a (nilpotent) f -O-display over R, which has the image P ′. We have the obvious descent 
datum for P ′

S . One may lift the isomorphism α′ : q�1P ′
S
∼= q�2P ′

S to α : q�1P ∼= q�2P, 
since GS⊗RS is fully faithful. Now we may establish the cocycle diagram for α and 
the commutativity of the diagram because of the faithfulness of GS⊗RS⊗RS and the 
compatibility of the G’s with the base change functors.

The last assertion follows from the same argument as above by attaching a strict 
O′-action to the objects of the categories in Theorem 2.10. �
2.4. The formal O-module BT(f)

O (P, −)

For a given f -O-display P = (P, Q, F, F1) we consider the following WO(R)-modules, 
which can be considered as O-modules by restriction of scalars via O → WO(R):

P̂N = ŴO(N ) ⊗WO(R) P (2.2)

Q̂N = ŴO(N ) ⊗WO(R) L⊕ ÎO,N ⊗WO(R) T. (2.3)

Here P = L ⊕T is a normal decomposition and N ∈ NilR. Let S be the unitary R-algebra 
R|N | = R⊕N with an addition in the obvious way and a multiplication given by

(r1, n1)(r2, n2) = (r1r2, r1n2 + r2n1 + n1n2) (2.4)

for all ni ∈ N and ri ∈ R. If we denote by PS = (PS , QS , FS , F1,S) the f -O-display 
over S obtained from P via base change relative to R → S, we can consider P̂N as 
a submodule of PS and obtain Q̂N = P̂N ∩ QS . By restricting FS : PS → PS and 
F1,S : QS → PS , we obtain operators

F : P̂N → P̂N ,

F1 : Q̂N → P̂N .

Now we are able to associate to an f -O-display P a finite dimensional formal O-module 
BT(f)

O (P, −). In the case that f = 1, we will just refer to BTO(P, −). The following 
theorem is a modified version of [23, Theorem 81].
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Theorem 2.12. Let P = (P, Q, F, F1) be an f -O-display over R. Then the functor from 
NilR (the category of nilpotent R-algebras) to the category of O-modules, which associates 
to any N ∈ NilR the cokernel of the morphism of abelian groups

F1 − id : Q̂N → P̂N (2.5)

is a finite dimensional formal O-module, when considered as a functor to abelian groups 
equipped with a natural O-action. Denote this functor by BT(f)

O (P, −). Then we have an 
exact sequence of O-modules

0 Q̂N
F1−id

P̂N BT(f)
O (P,N ) 0. (2.6)

First note the following lemma.

Lemma 2.13. (Cf. [23, Lemma 38].) Let P = (P, Q, F, F1) be an f -O-display over R and 
a ⊆ R an ideal equipped with a nilpotent O-pd-structure. Then there is a unique extension 
of F1 to

F1 : WO(a)P + Q → P,

such that F1aP = 0.

Proof. If we choose a normal decomposition P = L ⊕ T , then

WO(a)P + Q = aT ⊕ L⊕ IO,RT.

Define F1 : WO(a)P +Q → P by setting F1(aT ) = 0. Then F1aL = 0 since F a = 0. (See 
Section 1.2.2.) �
Proof of Theorem 2.12. First, we show that (2.5) is injective. Since any nilpotent N
admits a filtration

0 = N0 ⊂ N1 ⊂ . . . ⊂ Nr = N

with N 2
i ⊂ Ni−1, it suffices to prove the injectivity for N with N 2 = 0. In this case, N

has a trivial O-pd-structure γ = 0. Extend F1 : Q̂N → P̂N to a map

F1 : ŴO(N ) ⊗WO(R) P → ŴO(N ) ⊗WO(R) P (2.7)

by applying Lemma 2.13 to F1 : QS → PS first (with S = R ⊕N ) and then restricting 
to ŴO(N ) ⊗WO(R) P . By our assumption on N , we get an isomorphism

ŴO(N ) ⊗WO(R) P →
⊕

N ⊗wi,WO(R) P. (2.8)

i≥0
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Define the operators Ki for i ≥ 0 by

Ki : N ⊗wf+i,WO(R) P −→ N ⊗wi,WO(R) P

a⊗ x �−→ πf−1a⊗ Fx.

It is easy to check that F1 on the right side of (2.8) is given by

F1[u0, u1, . . .] = [K1uf ,K2uf+1, . . .].

In particular, F1 is pointwise nilpotent. Therefore, the morphism

F1 − id : ŴO(N ) ⊗WO(R) P → ŴO(N ) ⊗WO(R) P, (2.9)

is an isomorphism. Here F1 is the map (2.7). The injectivity of (2.5) follows.
Define BT(f)

O (P, N ) by the exact sequence

0 Q̂N
F1−id

P̂N BT(f)
O (P,N ) 0.

There is an obvious O-module structure on BT(f)
O (P, N ). For an R-algebra morphism 

η : N → M in NilR, we obtain an O-module morphism BT(f)
O (P, η) : BT(f)

O (P, N ) →
BT(f)

O (P, M) by the commutative diagram

0 Q̂N
F1−id

η′

P̂N

η′′

BT(f)
O (P,N )

BT(f)
O (P,η)

0

0 Q̂M
F1−id

P̂M BT(f)
O (P,M) 0,

where η′′ is the induced morphism η⊗id : P̂N → P̂M and η′ is the restriction of η′′ to Q̂N . 
It is easily seen that the image of η′ is contained in Q̂M. This shows that BT(f)

O (P, −)
is a functor.

We need to verify that the conditions of Definition 1.12 hold. The first two conditions 
are clear because the functors N �→ P̂N and N �→ Q̂N are exact. For the remaining 
conditions we need to study tBT(f)

O (P,−). Because we only consider ModR in NilR, we 

may assume that N 2 = 0. Thus N has the trivial O-pd-structure. Define a morphism

expP : N ⊗R P/Q −→ BT(f)
O (P,N )

by the commutative diagram
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0 Q̂N
id

P̂N

F1−id

N ⊗R P/Q

expP

0

0 Q̂N
F1−id

P̂N BT(f)
O (P,N ) 0.

One can easily deduce from this diagram that expP is an isomorphism. We see further-
more that tBT(f)

O (P,−) is isomorphic to M �→ M ⊗R P/Q via this exponential map. Then 
it is easy to see that the last two conditions of Definition 1.12 are satisfied. We conclude 
that BT(f)

O (P, −) is a formal group (with O-action). Since WO(R) → R is O-linear, the 
two O-actions on the tangent space coincide. Hence it is a formal O-module. �

Let α : R → S be an O-algebra morphism and P an f -O-display over R. We get an 
f -O-display α�P over S by base change and obtain a formal O-module BT(f)

O (α�P, −)
over S. On the other hand, we obtain a formal O-module α� BT(f)

O (P, −) over S by 
restriction. The following corollary says that the functor P → BT(f)

O (P, −) commutes 
with base change.

Corollary 2.14. (Cf. [23, Corollary 86].) With the conditions as above we get an isomor-
phism of formal O-modules over S

α� BT(f)
O (P,−) ∼= BT(f)

O (α�P,−).

Proof. The isomorphism is induced from the isomorphism

ŴO(N ) ⊗WO(R) P ∼= ŴO(N ) ⊗WO(S) WO(S) ⊗WO(R) P = ŴO(N ) ⊗WO(S) α�P,

for N ∈ NilS . �
We cite two propositions of [23], from which we deduce that BT(f)

O (P, −) is a 
π-divisible formal O-module for nilpotent f -O-displays P.

Proposition 2.15. (Cf. [23, Proposition 87].) Let R be an O-algebra, such that πR = 0, 
and P a nilpotent f -O-display over R. Furthermore, let FrP : P → P(qf ) be the Frobenius 
endomorphism (see (2.1)) and G = BT(f)

O (P, −) resp. G(qf ) = BT(f)
O (P(qf ), −) be the 

formal O-module attached to P resp. P(qf ). Because BT(f)
O commutes with base change, 

we obtain a morphism of formal O-modules

BT(f)
O (FrP) : G → G(qf ),

which is the Frobenius morphism of the formal O-module G (with respect to x �→ xq) 
iterated f times FrfG. (This Frobenius is the obvious generalization of [20, Kapitel V].)
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Proposition 2.16. (Cf. [23, Proposition 88].) With the setting as in Proposition 2.15, 
there is a number N and a morphism of nilpotent f -O-displays

γ : P → P(qfN ),

such that the diagram

P π

FrNP

P

γ

P(qfN )

is commutative.

Corollary 2.17. (Cf. [23, Proposition 89].) Let R ∈ NilO and P be a nilpotent f -O-display 
over R. Then BT(f)

O (P, −) is a π-divisible formal O-module (cf. Definition 1.15).

Proof. First assume that πR = 0. In this case, we may apply BT(f)
O to the diagram of 

Proposition 2.16 and obtain that some iteration of the Frobenius on BT(f)
O (P, −) factors 

through π and some other morphism. By [20, 5.18 Lemma] and [20, 5.10 Satz], we obtain 
that π is an isogeny. Hence, BT(f)

O (P, −) is a π-divisible formal O-module over R.
If π is nilpotent in R, then a formal O-module is π-divisible, if and only if its reduction 

modulo π is π-divisible (cf. [20, 5.12 Korollar]). Hence, BT(f)
O (P, −) is π-divisible. �

The following proposition explains how we may describe the reduced Cartier module 
of a formal O-module associated with an f -O-display over an O-algebra R.

Proposition 2.18. (Cf. [23, Proposition 90].) Let P = (P, Q, F, F1) be an f -O-display 
over an O-algebra R. The reduced EO,R-module associated with the formal O-module 
BT(f)

O (P, −) is given by

M(P) = MBT(f)
O (P,−) = EO,R ⊗WO(R) P/(F ⊗x−V f−1 ⊗Fx, V f ⊗F1y− 1⊗ y)x∈P,y∈Q.

The proof is the same as the proof of [23, Proposition 90]. Here we use equation (2.6), 
which corresponds to [23, Equation (147)]. The only difference is that now F1 is F f -linear 
and the morphism V −1 in [23] is F -linear.

2.5. Construction of Γ(O, O′)

Let O′ be a finite extension of O. In this section, we construct a functor Γ(O, O′)
which makes the following diagram commutes
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(ndispO,O′ /R)
BTO

Γ(O,O′)

(π′-divisible formal O′-modules/R)

(ndispO′ /R)
BTO′

In order to do this, it suffices to treat the cases when O′/O is unramified and O′/O is 
totally ramified. The constructions in these two cases are different and we explain them 
separately. The above commutative diagram is obtained by combining Propositions 2.21, 
2.23, and 2.29.

2.5.1. Unramified case
Assume that O → O′ is unramified of degree f . In the following, we introduce the 

functors Ωi(O, O′) (i = 1, 2) and Γ1(O, O′).

Lemma 2.19. Let O → O′ be unramified of degree f , R an O′-algebra, and P =
(P, Q, F, F1) an O-display over R equipped with a strict O′-action ι. Then we may de-
compose P and Q canonically as P =

⊕
i∈Z/fZ Pi, Q =

⊕
i∈Z/fZ Qi, where Pi and 

Qi = Pi ∩Q are WO(R)-modules, Pi = Qi for all i �= 0, F (Pi), F1(Qi) ⊆ Pi+1 for all i
(where we consider i modulo f) and

μi,j : WO(R) ⊗Fi
,WO(R) Pj → Pi+j ,

given by w ⊗ pj �→ wF i
1pj is an isomorphism for all i, j with 0 ≤ i ≤ (f − 1), 1 ≤ j ≤

(f − 1), i + j ≤ f .

Proof. Let σ denote the relative Frobenius of the extension O → O′. The O′⊗OWO(R) =
WO(R)f -modules P and Q decompose as

P =
⊕

i∈Z/fZ

Pi, Q =
⊕

i∈Z/fZ

Qi,

where

Pi = {x ∈ P | (a⊗ 1)x = (1 ⊗ σi(a))x for all a ∈ O′ }

and Qi = Q ∩Pi. Because the O′-action is strict, it is easy to check that the modules Pi

and Qi satisfy the conditions in the lemma. �
Definition 2.20. With the setting as in Lemma 2.19, we define a functor

Ω1(O,O′) : (dispO,O′ /R) → (f − dispO /R)
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by sending (P, Q, F, F1) equipped with a strict O′-action to (P0, Q0, F
f−1
1 F, F f

1 ) and 
restricting a morphism between two (O, O′)-displays respecting the attached O′-actions 
to the zeroth component. Furthermore, if R ∈ NilO′ , we obtain by restriction the functor

Ω1(O,O′) : (ndispO,O′ /R) → (f − ndispO /R).

It is easy to check that the functors commute with base change.

Proposition 2.21. Let O → O′ be unramified of degree f and R an O′-algebra. Then the 
following diagram is commutative:

(dispO,O′ /R)
BTO

Ω1(O,O′)

( formal O′-modules/R)

(f − dispO /R)
BT(f)

O

If π′ is nilpotent in R, then the restriction of the above diagram

(ndispO,O′ /R)
BTO

Ω1(O,O′)

(π′-divisible formal O′-modules/R)

(f − ndispO /R)
BT(f)

O

is commutative.

Proof. Let P be a (nilpotent) O-display over R and P0 its image via Ω1(O, O′). It suffices 
to construct an isomorphism

BTO(P,−) → BT(f)
O (P0,−).

For a nilpotent R-algebra N , consider the sequence

0 Q̂N
F1−id

P̂N BTO(P,N ) 0

and the one defining BT(f)
O (P0, −). Using the Z/fZ-grading of Q and P , we obtain from 

the above sequence

0
⊕

i∈Z/fZ Q̂i,N
F1−id ⊕

i∈Z/fZ P̂i,N BTO(P,N ) 0,

where P̂i,N and Q̂i,N have the obvious meaning. Note that P̂i,N = Q̂i,N for all i �= 0.
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There is a map θ from 
⊕

i∈Z/fZ P̂i,N = P̂N to P̂0,N defined by θ(x0, x1, . . . , xf−1) =∑f
j=1 F

f−j
1 xj (with index taken modulo f) and we claim that the image of θ ◦ (F1 − id)

is contained in the image of F f
1 − id, which would establish a map BTO(P, N ) →

BT(f)
O (P0, N ).
Indeed, an element (x0, . . . , xf−1) of P̂N =

⊕
i∈Z/fZ P̂i,N is contained in (F1−id)(Q̂N )

if and only if there is a (q0, . . . , qf−1) ∈
⊕

i∈Z/fZ Q̂i,N = Q̂N , such that

xi = F1qi−1 − qi (2.10)

for all i. For such an element (x0, . . . , xf−1), we have

qi = F i
1q0 −

i∑
j=1

F i−j
1 xj (2.11)

for all i = 0, . . . , f . So we get

F f
1 q0 − q0 =

f∑
j=1

F f−j
1 xj , (2.12)

from which we can deduce θ(F1 − id)(Q̂N ) ⊆ (F f
1 − id)(Q̂0,N ). The morphism θ induces 

a well defined morphism

θ : BTO(P,N ) → BT(f)
O (P0,N ).

It is obvious that θ is a morphism respecting the O′-module structure and that θ = θ(N )
is functorial in N . The surjectivity of θ follows from the fact θ((x0, 0, . . . , 0)) =
x0. We check the injectivity. Indeed, assume that (x0, . . . , xf−1) ∈ P̂N such that 
θ((x0, . . . , xf−1)) = 0, then equation (2.12) holds for some q0 ∈ Q̂0,N . For i =
1, . . . , f − 1, define qi via equation (2.11). Then (F1 − id)(q0, . . . , qf−1) = (x0, . . . , xf−1)
and (x0, . . . , xf−1) = 0. The proposition follows. �

In order to obtain a functor from (O, O′)-displays over R to O′-displays over R, it 
suffices to construct a functor from f -O-displays over R to O′-displays over R.

Definition 2.22. With O → O′ unramified of degree f and R an O′-algebra, we define a 
functor

Ω2(O,O′) : (f − dispO /R) → (dispO′ /R)

by sending P0 = (P0, Q0, F0, F1,0) with a normal decomposition L0 ⊕ T0 = P0 to P ′ =
(P ′, Q′, F ′, F ′

1), where the elements of the quadruple are given by
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P ′ = WO′(R) ⊗WO(R) P0,

Q′ = IO′,R ⊗WO(R) T0 ⊕WO′(R) ⊗WO(R) L0,

F ′ = F ′ ⊗WO(R) F0,

F ′
1(w ⊗ z) = F ′

w ⊗WO(R) F1,0(z),

F ′
1(V

′
w ⊗ x) = w ⊗WO(R) F0x,

for all w ∈ WO′(R), x ∈ P0 and z ∈ Q0. Here u is the natural morphism u : WO(R) →
WO′(R), the operators related to WO′(R) are marked with a dash.

For R ∈ NilO′ this defines a functor

Ω2(O,O′) : (f − ndispO /R) → (ndispO′ /R).

We define

Γ1(O,O′) : (dispO,O′ /R) → (dispO′ /R)

to be the composite of Ω2(O, O′) and Ω1(O, O′) and analogously for the nilpotent case.

It is easily checked that the definition of Q′ is independent of the normal decomposition 
of P0 and that the functors commute with base change.

Proposition 2.23. Let O → O′ be unramified of degree f and R an O′-algebra. Then the 
following diagram is commutative:

(f − dispO /R)
BT(f)

O

Ω2(O,O′)

( formal O′-modules/R)

(dispO′ /R)
BTO′

If π′ is nilpotent in R, then the restriction of the above diagram

(f − ndispO /R)
BT(f)

O

Ω2(O,O′)

(π′-divisible formal O′-modules/R)

(ndispO′ /R)
BTO′

is commutative.

Proof. Let P0 = (P0, Q0, F0, F1,0) be a (nilpotent) f -O-display over R and P ′ =
(P ′, Q′, F ′, F ′

1) its image via Ω2(O, O′). We need to show that BT(f)
O (P0, −) and 
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BTO′(P ′, −) are isomorphic in the category of (π′-divisible) formal O′-modules over R. 
For N ∈ NilR the equations

P̂ ′N = ŴO′(N ) ⊗WO(R) P0

Q̂′
N = ÎO′,N ⊗WO(R) T0 ⊕ ŴO′(N ) ⊗WO(R) L0

hold (for a normal decomposition L0 ⊕ T0 of P0) and we define a map

μ = uN ⊗ id : P̂0,N → P̂ ′N ,

where uN is the natural map ŴO(N ) → ŴO′(N ). We obtain a commutative diagram

0 Q̂0,N
F1,0−id

μ|
Q̂0,N

P̂0,N

μ

BT(f)
O (P0,N )

μ

0

0 Q̂′
N

F ′
1−id

P̂ ′N BTO′(P ′,N ) 0,

where μ is the induced map. In order to show that μ is in fact an isomorphism, we may 
reduce to the case that N 2 = 0. Consider the exact sequence

0 Q′ P ′ = WO′(R) ⊗WO(R) P0
ω

R⊗R P0/Q0 = P0/Q0 0,

where ω = w′
0 ⊗ pr, we see that P ′/Q′ is isomorphic to P0/Q0 as R-modules. It is easily 

seen that the diagram

0 Q̂0,N
id

μ|
Q̂0,N

P̂0,N

μF1,0−id

N ⊗R P0/Q0

expO,P0 id

0

0 Q̂0,N
F1,0−id

μ|
Q̂0,N

P̂0,N

μ

BT(f)
O (P0,N )

μ

0

0 Q̂′
N

id
P̂ ′N

F ′
1−id

N ⊗R P ′/Q′

expO′,P′

0

0 Q̂′
N

F ′
1−id

P̂ ′N BTO′(P ′,N ) 0

is commutative, where the upper two rows and the lower two rows are as in the diagram 
at the end of the proof of Theorem 2.12 for the construction of expO,P0

and expO′,P′ , 
respectively. Since both exp maps are isomorphisms, μ : BT(f)

O (P0, N ) → BTO′(P ′, N )
is an isomorphism. The proposition follows easily. �
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2.5.2. Totally ramified case
We now construct Γ2(O, O′) in the case O → O′ is totally ramified. Let R be an 

O′-algebra. First, we prove some lemmas.

Lemma 2.24. Let ω ∈ πO. Then there are units ε, δ ∈ WO(O) such that

π − [π] = V ε, ω − [ωq] = δω.

Proof. The claim on ε follows from

πw0(ε) = w1(π − [π]) = π − πq.

Applying F to the first identity of the lemma, we obtain

π − [πq] = πε.

In particular, [πq]/π ∈ WO(O) and hence [πqm]/πm ∈ WO(O). Therefore, [ωq]/ω ∈
WO(O). Applying w0 to 1 −[ωq]/ω, we see that 1 −[ωq]/ω is a unit. The lemma follows. �
Lemma 2.25. Let (S, m) ↪→ (S, m) be an embedding of local rings which send m into m
and let P be a finite S-module. If P = S ⊗S P is free over S, then P is free over S.

Proof. Since P/mP is free over the field S/m, we may take a basis x1, . . . , xd of P/mP

and consider lifts x1, . . . , xd ∈ P , which lift the corresponding xi. Because

S/m⊗S/m P/mP = P/mP,

the elements 1 ⊗ xi ∈ S/m⊗S/m P/mP form a basis of P/mP . By Nakayama Lemma, if 
we consider now the elements 1 ⊗ xi ∈ S ⊗S P = P , we obtain a basis of P . Define

β : Sd → P

ei �→ xi

we obtain the commutative diagram of S-modules

Sd
β

P

S
d α

P .

The injectivity of β follows, since α is an isomorphism of S-modules. The surjectivity 
follows by Nakayama Lemma again. Hence β is an isomorphism and P is free over S. �
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Proposition 2.26. Let R ∈ NilO′ . Let P be a finite projective WO(R)-module equipped 
with an O-algebra morphism O′ → EndWO(R) P . Then P is a finite and projective O′⊗O
WO(R)-module.

Proof. First we consider the case, where R = k is a perfect field of characteristic p, which 
extends the residue fields of O and O′. Then WO(k) ⊗OO′ is isomorphic to WO′(k), hence 
a PID. Since P is finite and torsion free over WO(k) ⊗O O′, it must be free.

Now let R = k′ be an arbitrary field extending the residue fields of O and O′. We 
consider the algebraic closure k of k′ and the result follows from Lemma 2.25 if we take 
S = WO(k′) ⊗O O′ and S = WO(k) ⊗O O′.

Next we assume that (R, m) is local with residue field k. The module WO(k) ⊗WO(R)P

is free over WO(k) ⊗O O′, so there is a basis of the form 1 ⊗ y1, . . . , 1 ⊗ yd with yi ∈ P . 
We claim that the yi form a basis of the WO(R) ⊗O O′-module P . Let us consider the 
morphism of WO(R) ⊗O O′-modules

γ : (WO(R) ⊗O O′)d → P

ei �→ yi.

Clearly the cokernel B of γ is finitely generated as a WO(R)-module and WO(k) ⊗WO(R)B

is zero. Since R is local, we obtain that WO(R) is local with the maximal ideal M =
WO(m) + IO,R. By the above we get MB = B and so B = 0 by Nakayama. Hence, γ
is surjective. Since P is finite and projective as a WO(R)-module and WO(R) ⊗O O′ is 
finitely generated over WO(R), the kernel of γ is also finitely generated over WO(R). 
By tensoring with WO(k) we obtain the zero module, hence the kernel of γ is zero by 
Nakayama again and P is free over O′ ⊗O WO(R).

Finally let R be a general O′-algebra with π′ nilpotent in R. The module P is projective 
over WO(R) ⊗OO′, if and only if Pn := WO,n(R) ⊗WO(R)P is projective over WO,n(R) ⊗O
O′ for each n ≥ 1, where WO,n(R) = WO(R)/V n

WO(R).
We first show that Pn is finitely presented over WO,n(R) ⊗O O′. For any collection 

x1, . . . , xk of generators of Pn over WO,n(R), the kernel of the WO,n(R)-linear surjection

WO,n(R)k → Pn

ei �→ xi

is finitely generated. For a fixed choice of generators y1, . . . , yd of Pn over WO,n(R), we 
consider the WO,n(R) ⊗O O′-linear surjection

δ : (WO,n(R) ⊗O O′)d → Pn

ei �→ yi.

Since (WO(R) ⊗O O′)d is finite free over WO(R), the WO,n(R) ⊗O O′-module Ker δ is 
finitely generated over WO,n(R), hence also over WO,n(R) ⊗O O′, which establishes the 
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fact that Pn is finitely presented over WO,n(R) ⊗O O′. To finish the proof, it suffices 
to show that for each maximal ideal of WO,n(R) ⊗O O′, the localization of Pn at this 
ideal is free over the localized ring. It is not too hard to verify that the maximal ideals 
of A := WO,n(R) ⊗O O′ are of the form

M = π′ 0(WO,n(m) + IO,n,R) + π′WO,n(R) + . . . + π′ e−1WO,n(R),

where m runs through the maximal ideals of R and IO,n,R ⊆ WO,n(R) is the image of 
Verschiebung. We claim that

AM � WO,n(Rm) ⊗O O′. (2.13)

Indeed, first one sees that every element of the image of A\M via the obvious mor-
phism WO,n(R) ⊗O O′ → WO,n(Rm) ⊗O O′ is a unit. Now let B be any A-algebra 
such that A\M ⊂ B×. By considering WO,n(R) as a subring of A in the canoni-
cal way, there is a unique morphism of WO,n(R)-algebras g : WO,n(Rm) → B, since 
WO,n(Rm) is the localization of WO,n(R) at WO,n(m) + IO,n,R. By considering the value 
z of π′ ∈ A in B, we get a unique morphism of A-algebras WO,n(Rm) ⊗O O′ → B

given by g and π′ �→ z. By the universal property of localizations the isomorphism 
(2.13) is established. The general case follows since (WO,n(Rm) ⊗OO′) ⊗APn is free over 
WO,n(Rm) ⊗O O′. �

The WO(R) module O′ ⊗O WO(R) is free. It has a basis

1 ⊗ 1, (π′)m ⊗ 1 − 1 ⊗ [(π′)m], for m = 1, · · · , e− 1.

Assume now that R ∈ NilO′ . With the above basis, we can write J = Ker(O′ ⊗O
WO(R) → R) as

J = 1 ⊗ IO,R ⊕ (π′ ⊗ 1 − 1 ⊗ [π′])(O′ ⊗O WO(R)).

Let P = (P, Q, F, F1) be an object in dispO,O′ /R. An O′-equivariant normal decom-
position of P consists of two finitely generated projective direct summands L, T of the 
O′ ⊗O WO(R)-module P such that

P = L⊕ T, Q = L⊕ JT.

The existence of an O′-equivariant normal decomposition is shown as for the classical 
displays. Indeed, consider the exact sequence of R-modules

0 → Q/JP → P/JP → P/Q → 0.
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We choose finitely generated projective O′ ⊗O WO(R)-modules L and T , such that 
L/JL ∼= Q/JP and T/JT ∼= P/Q. Then we obtain factorizations

L → Q → Q/JP, T → P → P/Q.

By Nakayama Lemma, it is easy to see that P ∼= L ⊕ T and the existence follows.
Define

P ′ = WO′(R) ⊗O′⊗OWO(R) P,

Q′ = Ker(WO′(R) ⊗O′⊗OWO(R) P → P/Q : w ⊗ x �→ w0 pr(x)). (2.14)

If P = L ⊕ T is an O′-equivariant normal decomposition of P, we set

L′ = WO′(R) ⊗O′⊗OWO(R) L, T ′ = WO′(R) ⊗O′⊗OWO(R) T.

Then we obtain an induced decomposition

P ′ = L′ ⊕ T ′, Q′ = L′ ⊕ IO′,RT
′.

Proposition 2.27. With the notation as above, there are uniquely determined F
′-linear 

maps

F ′ : P ′ → P ′, F ′
1 : Q′ → P ′,

such that the quadruple (P ′, Q′, F ′, F ′
1) becomes an O′-display over R and such that the 

following diagram is commutative

Q
F1−−−−→ P⏐⏐� ⏐⏐�

Q′ −−−−→
F ′

1

P ′.

Proof. Applying Lemma 2.24 to O′, we obtain units ε, δ ∈ WO′(R) such that

V ′
ε = π′ − [π′], π′ε = π′ − [(π′)q], (π′)e − [(π′)eq] = δπ. (2.15)

The commutativity of the diagram forces us to define F ′ and F ′
1 as

F ′(w ⊗ x) = F ′
w · ε−1 ⊗ F1((π′ − [π′])x), (2.16)

F ′
1(V

′
w ⊗ x) = ε−1w ⊗ F1((π′ − [π′])x), (2.17)

F ′
1(w ⊗ z) = F ′

w ⊗ F1(z), (2.18)
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for all w ∈ WO′(R), x ∈ P and z ∈ Q. Here we have used the morphism

O′ ⊗O WO(R) → WO′(R)

a⊗ w �→ au(w),

where a ∈ O′ and w ∈ WO(R). Indeed, equation (2.18) follows from the commutativity 
easily. Equation (2.16) is determined by (2.18), since for all w ∈ WO′(R) and x ∈ P ,

ε−1F ′
w ⊗ F1((π′ − [π′])x) (2.18)= ε−1F ′

1(w ⊗ (π′ − [π′])x)

= ε−1F ′
1(wV ′

ε⊗ x)

= ε−1F ′
1((V

′
(F

′
wε) ⊗ 1)(1 ⊗ x))

= ε−1((F
′
wε) ⊗ 1)F ′(1 ⊗ x) = F ′(w ⊗ x)

must hold. Finally, equation (2.17) is determined by equation (2.16), since wF ′(x) =
F ′

1(V
′
wx) must hold for all w ∈ WO′(R) and x ∈ P ′.

We need to check that, with this definition, P ′ = (P ′, Q′, F ′, F ′
1) is an O′-display over 

R and the diagram is commutative. For the first assertion, we only need to check that 
F ′

1 is an F
′-linear epimorphism. But this follows from the commutativity of the diagram. 

Now we prove this commutativity.
We have to show that for y ∈ Q = L ⊕ JT

F ′
1(1 ⊗ y) = 1 ⊗ F1(y). (2.19)

This is clear if y ∈ L. Consider now the case y = V ρt, where ρ ∈ WO(R) and t ∈ T . 
Denote by ρ̃ the image of ρ under the map u : WO(R) → WO′(R). Then

F ′
1(1 ⊗ V ρt) = F ′

1(u(V ρ) ⊗ t) = F ′
1(

π

π′
V ′
ρ̃⊗ t) = π

π′ ρ̃F
′(1 ⊗ t)

= ρ̃δ−1εF
′
( (π′)e − [π′]e

π′ − [π′] )F ′(1 ⊗ t)

= ρ̃δ−1εF ′(1 ⊗ (π′)e − [π′]e

π′ − [π′] t)

= δ−1ρ̃⊗ F1(((π′)e − [π′]e)t). (2.20)

Let a ∈ O′ and ζ ∈ WO(R), such that

(π′)e = aπ, π − [π] = V ζ.

With this notation, we may write

(π′)e − [π′]e = aπ − [a][π] = aπ − [a]π + [a]V ζ.
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Thus

F1(((π′)e − [π′]e)t) = F1(π(a− [a])t) + F1([a]V ζt) = (a− [aq])F (t) + [aq]ζF (t),

and

F ′
1(1 ⊗ V ρt) = δ−1(a− [aq] + [aq]ζ̃) ⊗ ρF (t).

But in WO′(R) we have π − [πq] = πζ̃. From this we obtain

(π′)e − [π′]eq = aπ − [aπ]q = (a− [aq] + [aq]ζ̃)π

and hence

δ−1(a− [aq] + [aq]ζ̃) = 1.

Equation (2.19) is true for y = V ρt.
It remains to prove the commutativity of the diagram at the elements of Q with the 

form (π′ ⊗ 1 − 1 ⊗ [π′])t, where t ∈ T . This means we have to show the equality

F ′
1(1 ⊗ (π′ ⊗ 1 − 1 ⊗ [π′])t) = 1 ⊗ F1((π′ ⊗ 1 − 1 ⊗ [π′])t).

This follows from

F ′
1(1 ⊗ (π′ ⊗ 1 − 1 ⊗ [π′])t) = F ′

1(V
′
ε⊗ t)

= εF ′(1 ⊗ t) = εε−1 ⊗ F1((π′ ⊗ 1 − 1 ⊗ [π′])t).

The proposition follows. �
Finally, we define the functor Γ2(O, O′). The following definition is well defined by 

the previous results.

Definition 2.28. With O → O′ totally ramified and R ∈ NilO′ , we define a functor

Γ2(O,O′) : (dispO,O′ /R) → (dispO′ /R)

by sending the O-display P equipped with a strict O′-action to the O′-display P ′, which 
is defined by

P ′ = WO′(R) ⊗O′⊗OWO(R) P,

Q′ = Ker(WO′(R) ⊗O′⊗OWO(R) P → P/Q : w ⊗ x �→ w0 pr(x)),

F ′(w ⊗ x) = F ′
w · ε−1 ⊗ F1((π′ − [π′])x),

F ′
1(V

′
w ⊗ x) = ε−1w ⊗ F1((π′ − [π′])x), (2.21)

F ′
1(w ⊗ z) = F ′

w ⊗ F1(z), (2.22)
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for all w ∈ WO′(R), x ∈ P and z ∈ Q. Here we have used the morphism

O′ ⊗O WO(R) → WO′(R)

a⊗ w �→ au(w),

where a ∈ O′ and w ∈ WO(R), and ε ∈ WO′(R) is given by V
′
ε = π′ − [π′]. Also, P is 

considered as an O′ ⊗O WO(R)-module. The functor

Γ2(O,O′) : (ndispO,O′ /R) → (ndispO′ /R)

is defined by restriction.
One can easily verify that the functors commute with base change.

Proposition 2.29. Let O → O′ be totally ramified and R an O′-algebra with π′ nilpotent 
in R. Then the following diagram is commutative:

(dispO,O′ /R)
BTO

Γ2(O,O′)

( formal O′-modules/R)

(dispO′ /R)
BTO′

Also the restriction of the above diagram

(ndispO,O′ /R)
BTO

Γ2(O,O′)

(π′-divisible formal O′-modules/R)

(ndispO′ /R)
BTO′

is commutative.

Proof. Let P = (P, Q, F, F1) be a (nilpotent) O-display over R with a strict O′-action 
and P ′ = (P ′, Q′, F ′, F ′

1) be its image via Γ2(O, O′). We need to show that BTO(P, −)
and BTO′(P ′, −) are isomorphic in the category of (π′-divisible) formal O′-modules over 
R. For a nilpotent R-algebra N we have P̂ ′N � ŴO′(N ) ⊗O′⊗OWO(R) P and we may 
define

μ = uN ⊗ id : P̂N = ŴO(N ) ⊗WO(R) P → P̂ ′N .

It is easy to check that the diagram

Q̂N
F1−id

μ|
Q̂N

P̂N

μ

Q̂′
N

F ′
1−id

P̂ ′N
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is commutative (cf. Proposition 2.27). It induces an O′-module morphism
μ : BTO(P, N ) → BTO′(P ′, N ). To show that μ is an isomorphism of O′-modules, 
we can reduce to the case N 2 = 0 and proceed in a similar manner as in the unramified 
case for BTO(P0, N ) and BTO′(P ′, N ). The proposition follows. �
3. Crystals

In this section, we attach to each nilpotent O-display P over R a crystal DP on 
O-pd-thickenings and attach to each π-divisible formal O-module G a crystal DG on 
O-pd-thickenings. If G = BTO(P, −), following the ideas in [23], we show that DP ∼= DG. 
As a consequence, we deduce the faithfulness of BTO.

3.1. O-frames and O-windows

Definition 3.1. (Cf. [11, Definition 2.1].) An O-frame is a quintuple F = (S, I, R, σ, σ1), 
where S is an O-algebra, I ⊆ S an ideal, R = S/I together with an O-algebra morphism 
σ : S → S and a σ-linear morphism of S-modules σ1 : I → S, which satisfy the following 
conditions:

(1) I + πS ⊆ Rad(S),
(2) σ(a) ≡ aq (mod πS) for all a ∈ S, and
(3) σ1(I) generates S as an S-module.

Let F = (S, I, R, σ, σ1) and F ′ = (S′, I ′, R′, σ′, σ′
1) be two O-frames. A morphism 

of O-frames α : F → F ′ is an O-algebra morphism α : S → S′, such that α(I) ⊆ I ′, 
σ′α = ασ and σ′

1α = ασ1. In the sense of Lau [11, Definition 2.6], these are strict 
morphisms.

A special example is the so called Witt O-frame

WO,R = (WO(R), IO,R,WO(R)/IO,R = R, F , V
−1

).

Let ρ : A → B be a ring homomorphism. For any A-module M , define the B-module 
M (ρ) by B ⊗ρ,A M . For any B-module N and ρ-linear map g : M → N , define the 
B-linear map g� : M (ρ) → N by b ⊗m �→ bg(m).

Lemma 3.2. (Cf. [11, Lemma 2.2].) Let F be an O-frame. Then there is a unique θ ∈ S, 
such that σ(a) = θσ1(a) for all a ∈ I.

Proof. The third condition of Definition 3.1 says that the linearization σ�
1 : I(σ) → S is 

surjective. If b ∈ I(σ) satisfies σ�
1(b) = 1, then necessarily θ = σ�(b). For a ∈ I we obtain 

σ(a) = σ�
1(b)σ(a) = σ�

1(ba) = σ�(b)σ1(a), which confirms the assertion. �
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Definition 3.3. (Cf. [11, Definition 2.3].) Let F = (S, I, R, σ, σ1) be an O-frame. An 
O-window over F , or an F-window, is a quadruple P = (P, Q, F, F1), where P is a finitely 
generated projective S-module, Q ⊂ P is a submodule, F : P → P and F1 : Q → P are 
σ-linear maps of S-modules, such that the following conditions hold:

(1) There is a decomposition P = T ⊕ L with Q = IT ⊕ L.
(2) F1(ax) = σ1(a)F (x) for a ∈ I and x ∈ P .
(3) F1(Q) generates P as an S-module.

If P = (P, Q, F, F1) is an F-window, define a morphism of S-modules V � : P →
S ⊗σ,S P by V �(F1y) = 1 ⊗ y for y ∈ Q and V �(Fx) = θ ⊗ x for x ∈ P . Here θ ∈ S is 
the element in Lemma 3.2. Let (V N )� be the composition of the following maps

P
V �

−−→ S ⊗σ,S P
id ⊗V �

−−−−−→ S ⊗σ,S (S ⊗σ,S P ) → · · · → S ⊗σN ,S P.

We say that P is nilpotent if (V N )� ≡ 0 (mod I + πS) for some N ∈ Z>0.

Remark 3.4. The operator F is determined by F1. Indeed, assume that σ�
1(b) = 1 with 

b ∈ I(σ). Then F (x) = F �
1(bx) for x ∈ P . In particular, F (x) = θF1(x) if x ∈ Q.

Remark 3.5. It is easy to see that the O-windows over WO,R are precisely the O-displays 
over R.

The O-windows have similar properties as windows. We collect some of them in the 
following and refer to [11] for proofs and more details.

By writing down the structure equation explicitly, we have the following lemma.

Lemma 3.6. (Cf. [11, Lemma 2.5].) Let F = (S, I, R, σ, σ1) be an O-frame, P = L ⊕ T

a finitely generated projective S-module and Q = L ⊕ IT , where L, T are S-submodules 
of P . Then the set of O-window structures (P, Q, F, F1) over F corresponds bijectively 
to the set of σ-linear isomorphisms Ψ : L ⊕ T → P given by Ψ(l + t) = F1(l) + F (t) for 
l ∈ L and t ∈ T . Conversely, if we start with a Ψ, we obtain an O-window over F by 
F (l + t) = θΨ(l) + Ψ(t) and F1(l + at) = Ψ(l) + σ1(a)Ψ(t) for l ∈ L, t ∈ T and a ∈ I.

We call the triple (L, T, Ψ) a normal decomposition of (P, Q, F, F1).

Definition 3.7. Let P (respectively P ′) be an F-window (respectively F ′-window). Let 
α : F → F ′ be a homomorphism of O-frames. A homomorphism of O-windows g :
P → P ′ over α, also called an α-homomorphism, is an S-linear map g : P → P ′ with 
g(Q) ⊂ Q′, such that F ′g = gF and F ′

1g = gF1. A homomorphism of F-windows is an 
idF -homomorphism in the previous sense.
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Definition 3.8. With α as above, we associate an O-window α�P =: P ′ = (P ′, Q′, F ′, F ′
1)

over F ′ to an O-window P over F in the following way.

P ′ = S′ ⊗S P

Q′ = S′ ⊗S L⊕ I ′ ⊗S T

F ′ = σ′ ⊗ F

F ′
1(s′ ⊗ q) = σ′(s′) ⊗ F1y

F ′
1(i′ ⊗ p) = σ′

1(i′) ⊗ Fx.

Here P = L ⊕ T is a normal decomposition and s′ ∈ S′, i′ ∈ I ′, y ∈ Q and x ∈ P . There 
is an obvious map HomF ′(α�P, P̃) → Homα(P, P̃) for all O-windows P̃ over F ′ given by 
composing maps, which is in fact an isomorphism (cf. [11, Lemma 2.9]). This property 
determines α�P uniquely.

Definition 3.9. Let F and F ′ be two O-frames and α : F → F ′ a morphism between 
them. We say that α is crystalline if it induces an equivalence of categories between 
O-windows over F and O-windows over F ′. We say that α is nilcrystalline if it induces 
an equivalence of categories between the nilpotent O-windows.

Theorem 3.10. (Cf. [11, Theorem 3.2, Theorem 10.3].) Let α : F = (S, I, R, σ, σ1) →
F ′ = (S′, I ′, R′, σ′, σ′

1) be a morphism of O-frames, such that it induces R ∼= R′ and a 
surjection S → S′ with kernel b ⊂ I. If there is a finite sequence b = b0 ⊇ . . . ⊇ bn = 0
with σ(bi) ⊆ bi+1 and σ1(bi) ⊆ bi such that σ1 is elementwise nilpotent on bi/bi+1 and 
finitely generated projective S′-modules lift to projective S-modules, then α is crystalline.

Let J = (I, π). If Jnb = 0 for some n ∈ Z>0, then α is nilcrystalline.

Definition 3.11. Let F = (S, I, R, σ, σ1) be an O-frame. The Hodge filtration of an 
O-window P over F is the R-submodule Q/IP ⊆ P/IP .

Lemma 3.12. (Cf. [11, Lemma 4.2].) Let α : F = (S, I, R, σ, σ1) → F ′ = (S′, I ′, R′, σ′, σ′
1)

be a morphism between two O-frames, such that S ∼= S′. (Then R → R′ is surjective 
and I ⊆ I ′.) The O-windows P over F are equivalent to pairs (P ′, V ) consisting of an 
O-window P ′ over F ′ together with a lift of its Hodge filtration to a direct summand 
V ⊆ P/IP . The same is true for nilpotent objects.

3.2. The crystals associated with O-displays

Let S → R be an O-pd-thickening with kernel a. Let Ĩ = IO,S + WO(a). We extend 
V −1 : IO,S → WO(S) to

σ′′
1 : Ĩ → WO(S)
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by setting σ′′
1 (a) = 0. Here we consider a as an ideal of WO(a) via the log map (Sec-

tion 1.2.2). Then it is easy to check that WO,S/R = (WO(S), Ĩ , R, σ = F , σ′′
1 ) is an 

O-frame. Consider the obvious morphisms

WO,S
α1→ WO,S/R = (WO(S), Ĩ, R, σ, σ′′

1 ) α2→ WO,R. (3.1)

The morphism α2 satisfies the conditions in Theorem 3.10 and hence is nilcrystalline.
For an O-display P over an O-algebra R ∈ NilO, we define a functor KP on O-pd-

thickenings as follows. For an O-pd-thickening S → R, we define

KP(S → R) = P̃ ,

where (P̃ , Q̂, F, F1) is the uniquely determined window over WO,S/R. We also denote it 
by KP(S) if the setting is clear.

Definition 3.13. The functor KP is called the Witt crystal attached to P. We define the 
Dieudonné crystal by

DP(S) = KP(S)/IO,SKP(S).

We define for any topological O-pd-thickening (S, an) → R the crystals by

KP(S) = lim←−−
n

KP(S/an)

DP(S) = lim←−−
n

DP(S/an).

Both crystals are compatible with base change in the following sense. If we consider a 
morphism of O-pd-thickenings

S S′

R R′

we obtain

KPR′ (S′) � WO(S′) ⊗WO(S) KP(S),

DPR′ (S′) � S′ ⊗S DP(S).

These isomorphisms also hold for topological O-pd-thickenings.
Now let us consider the canonical morphism

w0 : WO(R) → R.
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The kernel IO,R may be equipped with an O-pd-structure defined by

γ(V w) = πq−2 V (wq) (3.2)

for all w ∈ WO(R). The morphism w0 : WO(R) → R is a topological O-pd-thickening, 
since w0 : WO,n(R) → R are O-pd-thickenings with an O-pd-structure given by γ.

If S → R is an O-pd-thickening with kernel a, then a considered as an ideal of WO(S)
has the same O-pd-structure as considered as an ideal of S. The kernel of the composite 
map WO(S) → S → R is IO,S ⊕ a, where on both summands we have O-pd-structures. 
So this follows for the whole kernel ([2, 3.12. Proposition]). Hence, WO(S) → R is a 
topological O-pd-thickening by considering WO,n(S) → R for each n.

Theorem 3.14. (Cf. [23, Proposition 53, Corollary 56].) Let S → R be an O-pd-thickening 
with kernel a and P = (P, Q, F, F1) be a nilpotent O-display over R. Then

KP(S) = DP(WO(S)).

If WO(R) → S is a morphism of (topological) O-pd-thickenings over R, then

KP(S) � WO(S) ⊗WO(R) KP(R)

DP(S) � S ⊗WO(R) KP(R),

where WO(R) → WO(S) is given by WO(R) Δ→ WO(WO(R)) → WO(S).

The proof here is analogous to the proof of [23, Proposition 53]. Note that in [23], the 
result is proved using P-triples. Yet it is easy to see that the category of P-triples with 
respect to S → R is equivalent to the category of O-windows over the frame WO,S/R, 
thus the argument in [23] carries over. The last assertion of the theorem follows by 
considering the trivial O-pd-thickening R → R and then making a base change with 
respect to WO(R) → S. The most important situations, in which we will use this fact, 
are for S = WO,n(R) (e.g., Proposition 3.28).

3.3. Universal extensions of π-divisible formal O-modules

In this subsection, we prove the existence of the universal extension of a π-divisible 
formal O-module. The argument here is taken from [19], where the case for p-divisible 
formal groups is treated. Let R be a unitary ring. We consider functors from the cate-
gory AlgR to the category of abelian groups Ab. Let M be an R-module. We define a 
functor M

M(T ) = M ⊗R T,

where T ∈ AlgR and with the additive group structure on the right hand side.
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Let G = SpecA be a finite locally free group scheme. Let G∗ = SpecA∗ be its Cartier 
dual. Let J ⊂ A∗ be the ideal of neutral element. Set

ωG∗ = J/J2.

The following result is well-known. See for example [14, Chap 4, Section 1].

Proposition 3.15. There is a canonical isomorphism

HomAb(G,M) ∼= HomModR
(ωG∗ ,M).

As in [19], for a functor X : AlgR → Ab, we consider its completion X̂ : AugR → Ab
on the category of augmented nilpotent algebras, which is defined by

X̂(A) = Ker(X(A) → X(R)).

In the following, we assume that G is a local, finite locally free group scheme, i.e., the 
augmentation ideal of G is nilpotent. Then Hom(Ĝ, ̂M) = Hom(G, M). We also assume 
that R ∈ NilO.

From now on we work with functors on AugR. We write M and mean the completion. 
The functors F : AugR → Ab, with F (R) = 0 form an abelian category. Exact sequences 
and extensions are meant in this category unless otherwise stated.

Proposition 3.16. Let G be a π-divisible formal O-module over R ∈ NilO. There exist a 
locally free and finite R module U and an O-extension of formal O-modules over R

0 → U → L → G → 0, (3.3)

such that for any extension

0 → M → E → G → 0, (3.4)

where M is an R-module, there is a unique morphism of R-modules U → M (inducing 
U → M) which sits in a morphism of exact sequences

0 U L G 0

0 M E G 0.

In particular, the map

HomModR
(U,M) → Ext1O(G,M)

induced from the connecting homomorphism is an isomorphism.
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The extension (3.3) is called the universal extension of G. It commutes with base 
change.

Proof. Without the strict O-action, the result is well-known. Fix a natural number n
such that πnR = 0. Let Gn = G(πn). Let I = Ker(O ⊗R → R).

In the category of formal groups (i.e., without O-action), there exists a universal 
extension of G given by

0 → ωG∗
n
→ Lu → G → 0.

Note that G is an O-module, thus I. LieLu ⊂ ωG∗
n
. The push-out of this sequence via 

ωG∗
n
→ ωO

G∗
n

:= ωG∗
n
/I. LieLu induces the following extension

0 → ωO
G∗

n
→ L → G → 0. (3.5)

We check that this extension satisfies the properties in the statement.
First, LieL ∼= LieLu/I. LieLu. The induced O-action on L is strict and L is an 

O-module.
Secondly, for any extension (3.4) of O-modules, we have a diagram

0 ωG∗
n

Lu G 0

0 M E G 0.

The vertical arrows obviously factor through the sequence (3.5).
Note that the universal extension is compatible with base change because it is com-

patible with base change in the Zp-case.
Finally, there exists an isomorphism Ext1(G, M) ∼= Hom(ωG∗

n
, M) induced from the 

connection homomorphism in the category of formal groups (cf. Proposition 3.15). The 
last statement follows easily. �
Remark 3.17. In the sense of Messing / Fargues [6, Definition B.3.2], π-divisible formal 
O-modules are fppf-sheaves in O-modules with additional structures. This notion is 
closely related to the notion of π-divisible formal O-modules in this paper. As in [1], one 
may also prove Proposition 3.16 by a close study of the relations and by [6, Proposition 
B.3.3, Remarque B.3.6].

Let H be a π-divisible formal O-module over S. Let a ⊂ S be an ideal of S equipped 
with an O-pd-structure. Let V be a finitely generated locally free S-module. Assume we 
are given an extension

0 → V → E → H → 0.
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Let N ∈ NilS . By Definition 1.22, we have an exact sequence

tE ⊗S a⊗S N → E(N ) → E(N/aN ) → 0,

where the first arrow is the composition of log−1
G (a ⊗S N ) : tE ⊗S a ⊗S N → E(a ⊗S N )

and E(a ⊗S N ) → E(N ). The first arrow is injective if N is a flat S-module, in which 
case a ⊗S N ∼= aN . Note that LieV exp−−→ V is an isomorphism. Thus we obtain an exact 
sequence

(V ⊕ (a⊗S tE)/(a⊗S V )) ⊗S N → E(N ) → H(N/aN ) → 0. (3.6)

This sequence is left exact if N is a flat S-module.
Let S → R be an O-pd-extension in NilO with kernel a. We start with a π-divisible 

formal O-module G over S. Let

0 → U → L → G → 0

be the universal extension of G, where U is a finite locally free S-module. Denote by 
G0 the base change of G to R. The base change of U is the functor attached to the 
R-module U0 = U⊗SR. Let ρ̄ : G0 → H0 be a morphism of π-divisible formal O-modules 
over R.

Because the universal extension commutes with base change, we obtain a uniquely 
determined diagram

0 U0

τ̄

L0

μ̄

G0

ρ̄

0

0 V 0 E0 H0 0.

Here τ̄ is induced by an R-module morphism τ0 : U0 → V0, which we denote by the same 
letter.

Theorem 3.18. There is a unique morphism of formal O-modules μ : L → E which lifts 
μ̄ and which has the following property:

Let τ : U → V be an arbitrary S-module homomorphism which lifts τ0 and consider 
the following diagram

U

τ

L

μ

V E.
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It needs not to be commutative but the difference of the two maps U → E factors as

U → a⊗S tE
exp−−→ E.

Here the first arrow is induced by an S-module homomorphism U → a ⊗S tE, the mor-
phism exp is defined in Section 1.2.5.

Proof. We begin with the construction of μ. Fix a natural number n with πnS = 0. For 
N ∈ NilS , we consider the canonical map

G(N ) → G(N/a) = G0(N/a) μ̄−→ H0(N/a). (3.7)

We first construct a morphism t : G → E such that the following diagram is commuta-
tive.

G(πn)(N ) G(N ) πn

t

G(N )

((V ⊕ a⊗S tE)/(a⊗S V )) ⊗S N E(N ) H0(N/aN ) 0.

(3.8)

The first arrow of the upper row is injective. Let ξ ∈ G(N ). Let η be the image of ξ in 
H0(N/aN ) under the map (3.7). Let η̃ ∈ E(N ) be a lift of η. We define

t(ξ) = πnη̃.

It is clear that this is well defined and the diagram is commutative.
Let M denote the S-module (V ⊕ a ⊗S tE)/(a ⊗S V ). If N is a flat S-module, then 

the first arrow of the lower row of diagram (3.8) is also injective. In this case we obtain 
a map

G(πn)(N ) → M(N ).

Inserting for N the flat augmentation ideal of G(πn) and taking the image of id ∈
G(πn)(N ) we obtain a morphism of functors

G(πn) → M.

It is a morphism of group functors. Indeed, let G(πn) = SpecA. Since A ⊗S A is flat, 
the map

G(πn)(A⊗S A) → M(A⊗S A)

is a group homomorphism. Thus G(πn) → M is a morphism of group functors. Moreover, 
it fits into a commutative diagram
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G(πn) G

M E.

By the property of the universal extensions, the morphism factors as

G(πn) → U → M.

Thus we obtain another commutative diagram

G(πn) G

U E.

By the construction of the universal extension the following diagram is a cofiber product 
in the abelian category of abelian sheaves.

G(πn) G

U L.

The last two diagram thus provide the desired map μ : L → E. It enjoys the required 
properties because U → M is induced by an S-module homomorphism.

Finally, we show the uniqueness of μ. Let μ be an arbitrary lifting of μ̄ with the 
required properties. Note that we have a commutative diagram

0 G(πn) G
πn

λ

G

id

0 U L G 0.

First, we show that the map μ ◦ λ coincides with the map t in (3.8). The assumption 
that μ lifts μ̄ gives us for each N ∈ NilS a commutative diagram
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G(N ) πn

λ

G(N )

L(N )

μ

G(N/aN )

ρ̄

E(N ) H(N/aN ).

(3.9)

Let ξ ∈ G(N ). Let ξ̄ ∈ H(N/aN ) be its image under the two arrows on the right hand 
side. Let η ∈ E(N ) be a preimage of ξ̄. Then to show μ ◦λ = t, it is equivalent to showing 
that

μ ◦ λ(ξ) = πnη. (3.10)

As sheaves, μ ◦ λ = t : G → E is a local property. We may assume that ξ = πnξ1 for 
ξ1 ∈ G(N ). Thus μ ◦ λ(ξ) = πn(μ ◦ λ(ξ1)). From this, equation (3.10) is obvious. In 
particular, we see that μ ◦ λ is uniquely determined. Consider the diagram

G(πn) πn

G

λ

U

μ̌

L

μ

E
id

E.

(3.11)

Here μ̌ denotes the restriction of μ. Because the upper square is a push-out in the 
category of sheaves, it follows that μ is uniquely determined by μ̌ and μ ◦ λ. It remains 
to show that μ̌ is uniquely determined.

Let N ∈ NilS be flat as an S-module. Then we obtain a morphism from (3.11)

G(πn)(N ) → U(N ) μ̌−→ M(N ).

Since the composition of the above two arrows is uniquely determined and μ̌ is induced 
from a map of S-modules U → M , μ̌ is uniquely determined by Proposition 3.15. The 
theorem follows. �
3.4. Extensions of Cartier modules and Grothendieck–Messing crystals

In this subsection we follow the idea of [23] to prove the faithfulness of the functor 
BTO.
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Definition 3.19. Let S → R be an O-pd-thickening with kernel a and G a (π-divisible) 
formal O-module over R with Cartier module M , which we consider as an EO,S-module. 
Then an extension (L, ι, N, κ, M) of M by the S-module L is an exact sequence of 
EO,S-modules

0 → C(L) ι→ N
κ→ M → 0,

with N a reduced EO,S-module and aN ⊂ V 0L. Here C(L) is defined in Section 1.2.5. 
For simplicity, we just write (with abuse of notation) (L, N, M) instead of (L, ι, N, κ, M).

Let G, G′ be two formal O-modules over R, M, M ′ their Cartier modules and β : M →
M ′ a morphism over R. Furthermore, let (L, N, M) and (L′, N ′, M ′) be extensions of M
and M ′ respectively. Then a morphism of extensions (L, N, M) → (L′, N ′, M ′) consists 
of a morphism of S-modules ϕ : L → L′, a morphism of EO,S-modules u : N → N ′, and 
the EO,R-linear morphism β, such that the diagram of EO,S-modules

0 C(L)

C(ϕ)

N

u

M

β

0

0 C(L′) N ′ M ′ 0

is commutative, where C(ϕ) is given by sending V il to V iϕ(l) for each i ≥ 0 and l ∈ L.

Definition 3.20. With the above notation, we define the category Ext1,S→R by the objects 
(L, N, M), such that M is the Cartier module of a π-divisible formal O-module over R. 
The morphisms are those previously described.

We want to show that the universal objects exist in the category Ext1,S→R. For 
this purpose, we introduce another category of extensions, which is similar to the one 
explained in [15, 5.19].

Let S → R be an O-pd-thickening. We consider sextuples (W, ι, E, ρ, G̃, G), where G̃ is 
a π-divisible formal O-module over S, G its base change to R, E a formal O-module over 
S, and W a vector group attached to a finite projective S-module, such that ι : W → E

and ρ : E → G̃ induce an O-extension of G̃

0 → W → E → G̃ → 0.

A morphism (W, ι, E, ρ, G̃, G) → (W′, ι′, E′, ρ′, ̃G′, G′) is a tuple (v, β), where v : E → E′

is a morphism of formal O-modules over S and β a morphism of formal O-modules 
G → G′ over R, which gives rise to the commutative diagram
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0 WR

v0

ιR
ER

vR

G

β

0

0 W′
R

ι′R

E′
R G′ 0,

where v0 is required to be a morphism of vector groups. Furthermore, we require that 
for each lift of v0 to a morphism of vector groups ṽ0 : W → W′ the map

ι′ ◦ ṽ0 − v ◦ ι : W → E′

factors through

W
ξ→ a⊗S LieE′ expE′→ E′,

where ξ is a morphism of vector groups.

Definition 3.21. We define the category Ext2,S→R by the above objects and morphisms.

By the same argument in the Remark after [23, Lemma 91], we have the following 
result.

Proposition 3.22. Let S → R be an O-pd-thickening with nilpotent kernel a. There is an 
equivalence between Ext1,S→R and Ext2,S→R, such that

Ext1,S→R Ext2,S→R

(π-divisible formal O-modules/R)

is commutative.

By Proposition 3.22 and Theorem 3.18, the following result is clear.

Theorem 3.23. (Cf. [23, Theorem 92].) If S → R is an O-pd-thickening with nilpotent 
kernel and G a π-divisible formal O-module over R, then there is a universal extension 
(Luniv, Nuniv, MG) ∈ Ext1,S→R. Here the universality means that, for any π-divisible 
formal O-module G′ over R, any morphism of EO,R-modules β : MG → MG′ and any 
extension (L, N, MG′) ∈ Ext1,S→R, there is a unique morphism

(ϕ, u, β) : (Luniv, Nuniv,MG) → (L,N,MG′).
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Definition 3.24. With the notation as in the theorem, we define the Grothendieck–Messing 
crystal attached to G on O-pd-thickenings by

DG(S) = LieNuniv.

Lemma 3.25. (Cf. [23, Lemma 93].) Let S → R be an O-pd-thickening and P =
(P, Q, F, F1) a nilpotent O-display over R. Let (P̃ , Q̂, F, F1) be the unique window over 
WO,S/R which lifts P. The exact sequence of EO,S-modules

0 → C(Q̂/IO,SP̃ ) → EO,S ⊗WO(S) P̃ /U → M(P) → 0 (3.12)

lies in Ext1,S→R, where M(P) is given by Proposition 2.18, the second arrow maps y ∈ Q̂

to V ⊗ F1y − 1 ⊗ y, the third arrow is given by the canonical map P̃ → P , and U is the 
EO,S-submodule of EO,S ⊗WO(S) P̃ generated by (F ⊗ x − 1 ⊗ Fx)x∈P̃ .

Moreover, the sequence (3.12) is the universal extension of BT(P, −).

Theorem 3.26. (Cf. [23, Theorem 94].) Let R ∈ NilO. For a nilpotent O-display P over 
R and the associated π-divisible formal O-module G = BTO(P, −), there is a canonical 
isomorphism of crystals on the category of O-pd-thickenings S → R:

DP � DG.

Proof. By Lemma 3.25, we obtain DP(S) = P̃ /IO,SP̃ = DG(S). �
Remark 3.27. (Cf. [23, Corollary 95].) Let S → R be an O-pd-thickening or a surjection 
with nilpotent kernel, then the following diagram of categories is Cartesian.

(ndispO /S) (π-divisible formal O-modules/S)

(ndispO /R) (π-divisible formal O-modules/R).

In particular, BTO is an equivalence for S if and only if it is an equivalence for R.

Now we can prove the faithfulness of the functor BTO.

Proposition 3.28. (Cf. [23, Proposition 98].) Let R ∈ NilO. Then BTO is faithful.

Proof. Let P and P ′ be two nilpotent O-displays over R and α : P → P ′ a morphism 
between them. If we denote by G and G′ the associated π-divisible formal O-modules, 
then α induces a morphism a : G → G′ and hence a morphism b : MG → MG′ . For each 
n ≥ 1, we obtain with S = WO,n(R) and Lemma 3.25 that there is a unique morphism of 
the above described universal extensions lying over b. Since α induces such a morphism 
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of extensions as well, it must be induced by it. By Theorem 3.14 and Theorem 3.26 we 
obtain DG(WO,n(R)) = WO,n(R) ⊗WO(R) P and DG′(WO,n(R)) = WO,n(R) ⊗WO(R) P

′

for each n ≥ 1. If we now apply a to the functor D, we obtain for each n ≥ 1 a morphism

WO,n(R) ⊗WO(R) P = DG(WO,n(R)) → DG′(WO,n(R)) = WO,n(R) ⊗WO(R) P
′,

which is given by 1 ⊗ α. Since we clearly obtain by these morphisms a morphism of the 
inverse systems (WO,n(R) ⊗WO(R) P )n and (WO,n(R) ⊗WO(R) P

′)n, we get α back by 
passing to the projective limit. Hence, the faithfulness follows. �
Remark 3.29. The above argument does not say much about the functor BT(f)

O or the 
relations between the categories (ndispO,O′ /R), (f−ndispO /R), and (ndispO′ /R) when 
O → O′ is unramified of degree f .

In Section 3.5, by deformation theory and adapting the ideas of [23] and [10], we show 
the faithfulness of the functor BT(f)

O and prove Theorem 1.1 for those R ∈ NilO′ , which 
are complete local rings with perfect residue field and nilpotent nilradical (Theorem 3.30). 
Then in Section 4, we apply the ideas of [10] to the functors Ωi(O, O′) and Γi(O, O′)
and complete the proof of Theorem 1.1 in the way sketched in Remark 1.4. The category 
(f − ndispO /R) has useful applications. See for example [16].

3.5. More on the functors Ωi and Γi

The main result of this section is the following one.

Theorem 3.30. Let R be a complete local ring with maximal ideal m, perfect residue field, 
nilpotent nilradical, and p nilpotent in R. Then the following assertions hold.

• Let O → O′ be an unramified extension and R equipped with an additional O′-algebra 
structure. If BTO is an equivalence over R, then Ω1(O, O′) is an equivalence of 
categories. Hence BT(f)

O is an equivalence.
• Let O → O′ be an unramified extension and R equipped with an additional O′-algebra 

structure. If BT(f)
O is an equivalence over R, then Ω2(O, O′) is an equivalence of 

categories. Hence BTO′ is an equivalence.
• Let O → O′ be a totally ramified extension and R equipped with an additional 

O′-algebra structure. If BTO is an equivalence over R, then Γ2(O, O′) is an equiva-
lence of categories. Hence BTO′ is an equivalence.

In particular, since BTZp
is an equivalence over R by [10, Proposition 4.4], the functors 

Ω1(O, O′), Ω2(O, O′), Γ2(O, O′) are equivalences over R.

The main tool of the proof is deformation theory. We sketch the main ideas following 
the proofs of [23, Theorem 103] and [10, Proposition 4.1]. First, we prove the following 
base case.
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Proposition 3.31. Let R = l be a perfect field of characteristic p extending the residue 
field of O′. Then Theorem 3.30 holds.

Proof. Consider the case that O′ is unramified over O and l extends the residue field 
of O′. We first show the essential surjectivity of Ω1(O, O′). Let P0 = (P0, Q0, F0, F10)
be a nilpotent f -O-display over l. We define for each i = 1, . . . , f − 1

Pi = WO(l) ⊗Fi−f
,WO(l) P0

and consider

P =
f−1⊕
i=0

Pi, Q = Q0 ⊕
f−1⊕
i=1

Pi.

The operators F and F1 are given by

F (x0, 1 ⊗ x1, . . . , 1 ⊗ xf−1) = (xf−1, 1 ⊗ F0x0, 1 ⊗ x1, . . . , 1 ⊗ xf−2)

F1(y0, 1 ⊗ x1 . . . , 1 ⊗ xf−1) = (xf−1, 1 ⊗ F10y0, 1 ⊗ x1, . . . , 1 ⊗ xf−2)

with xi ∈ P0 and y0 ∈ Q0. Then P = (P, Q, F, F1) is a nilpotent O-display over l. By 
letting the O′-action of P0 act on the second factors of the tensor products of the Pi we 
obtain a strict O′-action of P. It is clear that P is mapped via Ω1(O, O′) to P0. The 
fully faithfulness is easy.

Now consider Ω2(O, O′). Since ul : WO(l) → WO′(l) is an isomorphism, it is easily 
seen that Ω2(O, O′) is essentially surjective. Since BT(f)

O is an equivalence, we need for 
the fully faithfulness only to show that

HomO(P0,P�0) → HomO′(P ′,P ′
�)

is surjective, where P0, P�0 are nilpotent f -O-displays over l and P ′, P ′
� are the respec-

tive associated O′-displays over l. This is again fairly obvious.
Let O′ be totally ramified over O and let l extend the residue field of O′ and O. We 

consider Γ2(O, O′) and assume that BTO is an equivalence. Let P = (P, Q, F, F1) be an 
O-display over l equipped with a strict O′-action and P ′ = (P ′, Q′, F ′, F ′

1) its image via 
Γ2(O, O′). Note that we have an isomorphism of rings O′⊗O WO(l) � WO′(l). Thus the 
module P ′ is P interpreted as O′⊗OWO(l)-module, from which the essential surjectivity 
follows easily. It is also easy to verify that Γ2(O, O′) is fully faithful for l, which shows 
that it is an equivalence. �
Proposition 3.32. Let O → O′ be an unramified extension of rings of integers of non-
Archimedean local fields of characteristic (0, p) of degree f and R an O′-algebra with 
nilpotent nilradical and π′ nilpotent in R. Then BT(f)

O is faithful.
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Proof. Let k′ be the residue field of O′.
If R = l is a perfect field extending k′, the fully faithfulness of BT(f)

O follows from 
Proposition 3.31.

Now let k be any field extending k′ and l the algebraic closure of k. If P, P� are 
two nilpotent f -O-displays over k, Pl, P�,l the corresponding nilpotent f -O-displays 
over l obtained by base change and X, X�, Xl, X�,l the corresponding π′-divisible formal 
O′-modules, then the faithfulness of the BT(f)

O,k functor follows from the commutative 
diagram

HomO,k(P,P�)
BT(f)

O,k

HomO′,k(X,X�)

HomO,l(Pl,P�,l)
BT(f)

O,l

HomO′,l(Xl, X
′
�,l),

where the indices of the Hom-sets should indicate over which O′-algebra we consider 
them.

Now let R be a reduced O′-algebra with π′R = 0 and P, P� two nilpotent f -O-displays 
over R. We may embed R into a product 

∏
i∈I Ki of fields, each extending k′. Consider 

the commutative diagram

HomO,R(P,P�) HomO′,R(X,X�)

∏
i∈I HomO,Ki

(PKi
,P�,Ki

)
∏

i∈I HomO′,Ki
(XKi

, X�,Ki
)

the faithfulness follows for this case.
Now assume that R is an O′-algebra with π nilpotent in R and with nilpotent nil-

radical a. Let R1 = R/a and P, P� be nilpotent f -O-displays over R. We obtain the 
injectivity of HomO,R(P, P�) → HomO,R1(PR1 , P�,R1) by Lemma 3.12. (Here we should 
define f -O-windows and their Hodge filtrations. But this is straightforward.) With the 
commutative diagram

HomO,R(P,P�) HomO′,R(X,X�)

HomO,R1(PR1 ,P�,R1) HomO′,R1(XR1 , X�,R1)

the result follows. �
Proposition 3.33. Let O → O′ be an unramified / totally ramified extension, S → R a 
surjection of O′-algebras with π′ nilpotent in S and nilpotent kernel. Let P̂ be a nilpotent 
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f -O-display over S (for Ω1(O, O′)) resp. a nilpotent O′-display over S (for Ω2(O, O′)
resp. Γ1(O, O′) resp. Γ2(O, O′)), such that P̂R lies in the image of Ω1(O, O′)R resp. 
Ω2(O, O′)R resp. Γ1(O, O′)R resp. Γ2(O, O′)R. Then P̂ lies in the image of the respective 
functor over S. In particular, if one of the functors Ω1(O, O′), Ω2(O, O′), Γ1(O, O′) or 
Γ2(O, O′) is essentially surjective over R, then it is also essentially surjective over S.

Proof. The assertions for Γ1(O, O′) follows from the assertions for Ωi(O, O′), so we only 
consider Ωi(O, O′) and Γ2(O, O′).

Let a be the kernel of S → R and an = 0 for an integer n ≥ 0. By considering the 
sequence S/ai for i = 0, . . . , n and the O′-algebra surjections S/ai → S/ai−1, we may 
assume that a2 = 0. So we may assume that S → R is an O-pd-thickening. Consider the 
morphisms of O-frames (see (3.1))

WO,S
α1→ (WO(S), Ĩ, R, σ, σ1)

α2→ WO,R.

Applying Theorem 3.10 and Lemma 3.12, we get that the category of nilpotent 
(f -)O-displays over S is equivalent to the category of nilpotent (f -)O-displays over R
equipped with a lift of the Hodge filtration. The same is true for O′. Additionally, the 
equivalence assertions over O continue to hold, if we add a strict O′-action to each 
object and consider only those morphisms respecting the O′-actions. Hence, we obtain 
commutative diagrams

(ndispO,O′ /S)
Ω1,S

(f − ndispO /S) (f − ndispO /S)
Ω2,S

(ndispO′ /S)

(ndisp†
O,O′ /R)

α1 (f − ndisp†
O /R) (f − ndisp†

O /R)
α2 (ndisp†

O′ /R)

(ndispO,O′ /R)
Ω1,R

(f − ndispO /R), (f − ndispO /R)
Ω2,R

(ndispO′ /R)

and

(ndispO,O′ /S)
Γ2,S

(ndispO′ /S)

(ndisp†
O,O′ /R) α′

(ndisp†
O′ /R)

(ndispO,O′ /R)
Γ2,R

(ndispO′ /R),
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where the dagger at each category in the middle of each diagram should indicate the 
further structure (i.e., the lift of the Hodge filtration) and the horizontal functors are 
Ω1(O, O′), Ω2(O, O′) and Γ2(O, O′) (over S and R) or the functors induced by them (for 
the α-arrows in the middle of each diagram).

To prove the essential surjectivity of the three functors in the first rows of the dia-
grams, it suffices to prove the essential surjectivity of the three functors in the middle 
rows of the diagrams. This is equivalent to showing that lifts of Hodge filtrations on the 
right hand sides of the diagrams are from lifts of Hodge filtrations on the left hand sides 
of the diagrams, which follows from the construction. The proposition follows. �
Proof of Theorem 3.30. By Proposition 3.32, we only have to show the essential surjec-
tivity of the corresponding functors in each case. By Proposition 3.33, we may assume 
that R is reduced. By Proposition 3.31 this is immediate when R is a perfect field of 
characteristic p extending the residue field of O′. For general reduced complete local 
O′-algebra R with perfect residue field and p nilpotent in R, applying Proposition 3.33, 
the equivalences are established for R/mn for each n.

We explain the proof for Ω1(O, O′) and the other two cases are similar. Since Ω1(O, O′)
is compatible with base change, we may take a nilpotent f -O-display P over R, make a 
base change to R/mn for each n ≥ 1, and obtain a nilpotent f -O-display PR/mn . These 
nilpotent displays correspond to nilpotent O-displays over R/mn with strict O′-actions 
and they form an inverse system.

By building the projective limit we obtain an O-display over R with a strict O′-action, 
say P�, which is mapped to P via Ω1(O, O′), when the functor is considered as a functor 
from general display structures, i.e., not necessarily nilpotent ones.

To show the essential surjectivity of Ω1(O, O′), when restricted to nilpotent display 
structures, it remains to show that P� is nilpotent. Since R is reduced and may be 
embedded into a product of algebraic closed fields of characteristic p, we may assume 
that R is an algebraically closed field of characteristic p which extends the residue field 
of O′. Consider the commutative diagram of WO(R)-modules

P�

V fN�
�

P = P�,0

V N�

WO(R) ⊗F fN ,WO(R) P� WO(R) ⊗F fN ,WO(R) P�,0

R⊗wfN ,WO(R) P� R⊗wfN ,WO(R) P�,0,

where N is chosen large enough such that the right vertical composite map is zero. The 
nilpotence of P� follows, since P�,i = F i

1(Q�,0) for each i = 1, . . . , f − 1 with the usual 
grading and so the composite map
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P�
V f(N+1)�

−→ WO(R) ⊗F f(N+1),WO(R) P� → R⊗wf(N+1),WO(R) P�

is zero. �
4. The stack of truncated f -O-displays

In this section we assume that the reader is familiar with the basic terminology of 
stacks, as it can be found in [13]. We take the ideas of [10], but instead of applying them 
to the functors BTO or BT(f)

O , we apply them to the functors Ωi(O, O′) and Γi(O, O′), 
where O → O′ is an unramified / totally ramified extension of rings of integers of non-
Archimedean local fields of characteristic (0, p). The primary ideas are essentially taken 
from [10], but with the definition of a truncated f -O-display inspired by [12, Chapter 3]. 
The main result is Proposition 4.10, which completes the proof of Theorem 1.1.

4.1. Truncated f -O-displays

Let R be a π-adic O-algebra. Let n be a positive integer. Denote by WO,n(R) the ring 
of truncated ramified Witt vectors of length n, by IO,R,n the kernel of w0. We have an 
O-algebra morphism Fn : WO,n+1(R) → WO,n(R) induced by the Frobenius on WO(R)
and an Fn-linear bijective map V

−1
n : IO,R,n+1 → WO,n(R) induced by the inverse of the 

Verschiebung of WO(R).
If πR = 0, the Frobenius induces an O-algebra endomorphism Fn of WO,n(R) and the 

ideal IO,R,n+1 of WO,n+1(R) is a WO,n(R)-module.

Definition 4.1. Let f ≥ 1, O′ an unramified extension of O with degree f and residue 
field k, R a k-algebra. An f -O-pre-display over R is a sextuple P = (P, Q, ι, ε, F, F1), 
where P and Q are WO(R)-modules with morphisms

IO,R ⊗WO(R) P
ε−→ Q

ι−→ P,

and F : P → P and F1 : Q → P are F
f -linear maps, such that ιε : IO,R ⊗WO(R)

P → P and ε(1 ⊗ ι) : IO,R ⊗WO(R) Q → Q are the multiplication morphisms and 

F1ε = F f−1V −1 ⊗ F .
If P and Q are WO,n(R)-modules, we call P an f -O-pre-display of level n.

A morphism between two f -O-pre-displays P, P ′ consists of a tuple of morphisms 
(α0, α1), such that

IO,R ⊗WO(R) P
ε

1⊗α1

Q
ι

α0

P

α1

IO,R ⊗WO(R) P
′ ε′

Q′ ι′

P ′
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commutes, α1 ◦ F1 = F ′
1 ◦ α0, and α1 ◦ F = F ′ ◦ α1. It is easily seen that we obtain 

an abelian category, named (f − pre-dispO /R), which contains (f − dispO /R) as a 
full subcategory. We denote the abelian subcategory of f -O-pre-displays of level n by 
(f − pre-dispO,n /R).

Definition 4.2. A truncated pair of level n over R is a quadruple B = (P, Q, ι, ε), where 
P and Q are WO,n(R)-modules with module morphisms

IO,n+1,R ⊗WO,n(R) P
ε−→ Q

ι−→ P

such that

• ιε : IO,n+1,R ⊗WO,n(R) P → P and ε(1 ⊗ ι) : IO,n+1,R ⊗WO,n(R) Q → Q are the 
multiplication maps, i.e., they coincide with

IO,n+1,R ⊗WO,n(R) P → IO,n,R ⊗WO,n(R) P
mult−−−→ P

and

IO,n+1,R ⊗WO,n(R) Q → IO,n,R ⊗WO,n(R) Q
mult−−−→ Q,

respectively, where IO,n+1,R → IO,n,R is the restriction map and mult the multipli-
cation map,

• P is projective and of finite type over WO,n(R),
• Coker(ι) is projective over R, and
• There exists an exact sequence

0 → JR,n+1 ⊗R Coker(ι) ε→ Q
ι→ P → Coker(ι) → 0,

where JR,n+1 is defined as the kernel of the restriction map WO,n+1(R) → WO,n(R)
and ε is induced by ε.

A normal decomposition for a truncated pair is a pair of projective WO,n(R)-modules 
(L, T ) with L ⊆ Q and T ⊆ P , such that

L⊕ T
ι+id−−−→ P and L⊕ (IO,R,n+1 ⊗WO,n(R) T ) id +ε−−−→ Q

are bijective. By the obvious generalization of [12, Lemma 3.3], every ramified truncated 
pair admits a normal decomposition.

Definition 4.3. A truncated f -O-display of level n over R is an f -O-pre-display P =
(P, Q, ι, ε, F, F1) of level n over R, such that (P, Q, ι, ε) is a truncated pair of level n and 
the image of F1 generates P as a WO,n(R)-module.
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The rank of P is defined to be the rank of P over WO,n(R). We denote the category of 
truncated f -O-displays of level n over R by (f − dispO,n /R). This is a full subcategory 
of the category of f -O-pre-displays of level n over R.

If we are given a truncated pair (P, Q, ι, ε) with normal decomposition (L, T ), then 
we have a bijection between the set of pairs (F, F1) such that (P, Q, ι, ε, F, F1) is a 
truncated f -O-display and the set of F f

n -linear isomorphisms Ψ : L ⊕ T → P , such 
that Ψ|L = F1|L and Ψ|T = F |T . If L and T are free WO,n(R)-modules, then Ψ is 
described by an invertible matrix with coefficients in WO,n(R). The proof of the bijection 
is an obvious variation of [23, Lemma 9] and the case, when L and T are free, is a 
variation of the discussion after that Lemma. We call (L, T, Ψ) a normal decomposition 
of P = (P, Q, ι, ε, F, F1).

Furthermore, we need to remark that morphisms (α0, α1) between two truncated 
f -O-displays of level n, say P, P ′, may be described in a reduced way. If we are given a 
normal decomposition (L, T ) of P, it suffices to know (α0|L, α1|T ), since we obtain by the 
definition of a morphism that α1|ιL = ι′◦α0|L and α0|ε(IO,n+1,R⊗WO,n(R)T ) = ε′(1 ⊗α1|T ).

All assertions from Lemma 3.5 to Lemma 3.17 in [12] are true in their obvious gen-
eralization, and the proofs are essentially the same. We state two of the results in the 
following, since we need them in next section.

Fix integers h ≥ 0, f ≥ 1 and the ring O and denote by f − DispO,n →
Spec k the fibered category of truncated f -O-displays of level n and rank h. Hence, 
f − DispO,n(SpecR) is the groupoid of truncated f -O-displays of level n and rank h
over R. There is an obvious morphism τO,n : f − DispO,n+1 → f − DispO,n induced by 
the truncation functors.

Lemma 4.4. (Cf. [12, Proposition 3.15].) The fibered category f − DispO,n is a smooth 
Artin algebraic stack with affine diagonal. The truncation morphism f − DispO,n+1 →
f − DispO,n is smooth and surjective.

Proof. By the generalization of [12, Proposition 3.14], we know that f − DispO,n is an 
fpqc stack. To show the affineness of the diagonal, we have to show that for truncated 
f -O-displays P1 and P2 of level n and rank h over a k-algebra R, the sheaf Isom(P1, P2)
is represented by an affine scheme. By passing to an open cover of SpecR, we may 
assume that P1 and P2 have normal decompositions with free modules. The homomor-
phisms of the underlying truncated pairs are clearly represented by an affine scheme. 
Commuting with F and F1 is a closed condition and a homomorphism of truncated 
pairs is an isomorphism if and only if it induces isomorphisms on Coker(ι) and Coker(ε), 
which is equivalent to saying that two determinants are invertible. Hence, Isom(P1, P2)
is represented by an affine scheme.

For each integer d with 0 ≤ d ≤ h, let f − DispO,n,d be the substack of f − DispO,n

where Coker(ι) has rank d. We define the functor XO,n,d from the category of affine 
k-schemes to (Sets) by defining XO,n,d(SpecR) as the set of invertible WO,n(R)-matrices 
of rank h. Hence, XO,n,d is an affine open subscheme of the affine space of dimension nh2
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over k. We now define the morphism πO,n,d : XO,n,d → f − DispO,n,d in the way that 
πO,n,d(M) is the truncated f -O-display given by the normal representation (L, T, Ψ), 
where L = WO,n(R)h−d, T = WO,n(R)d, and M is the matrix representation of Ψ. We 
define the sheaf of groups GO,n,d by associating to each k-algebra R the group of invert-
ible matrices 

(
AB
CD

)
with A ∈ Aut(L), B ∈ Hom(T, L), C ∈ Hom(L, IO,R,n+1⊗WO,n(R) T )

and D ∈ Aut(T ), where L and T are as above. GO,n,d is an affine open subscheme of 
the affine space of dimension nh2 over k and πO,n,d is a GO,n,d-torsor. So we see that 
f −DispO,n,d and f −DispO,n are smooth algebraic stacks over k. The truncation mor-
phism τO,n is smooth and surjective because it commutes with the obvious projection 
XO,n+1,d → XO,n,d, which is smooth and surjective. �

For a truncated f -O-display P of level n over a k-algebra R there is a unique morphism 
V � : P → P (1) = WO,n(R) ⊗Ff

n ,WO,n(R)P with V �(F1(x)) = 1 ⊗x for all x ∈ Q. The proof 
of this is similar to the one of Lemma 2.2. V � is compatible with truncation. We call P
nilpotent, if there is an m, such that the m-th fold iteration of V �, i.e., the composite 
morphism P → P (1) → . . . → P (m), is zero. Because IO,R,m is nilpotent, P is nilpotent 
if and only if its truncation to level 1 is nilpotent. An f -O-display over R is nilpotent if 
and only if all its truncations are nilpotent.

Lemma 4.5. (Cf. [12, Lemma 3.17].) There is a unique reduced closed substack 
f −nDispO,n ⊂ f −DispO,n such that the geometric points of f −nDispO,n are precisely 
the nilpotent truncated f -O-displays of level n. We have the Cartesian diagram

f − nDispO,n+1 f − nDispO,n

f − DispO,n+1 f − DispO,n

and the morphism f − nDispO,n → f − DispO,n is of finite presentation. In particular, 
f − nDispO,n+1 → f − nDispO,n is smooth and essentially surjective on R-valued points 
for every R.

Proof. The diagram is the obvious generalization of [12, Lemma 3.17]. The last assertion 
follows from Lemma 4.4. �
4.2. Applications to f -O-displays

Proposition 4.6. (Cf. [10, Proposition 1.2].) Let f ≥ 1 and O be given. For any positive 
integer h there is a sequence of finitely generated reduced k-algebras B1 → B2 → . . . with 
faithfully flat smooth maps and a nilpotent f -O-display P of rank h over B =

⋃
Bi with 

the property that for any other nilpotent f -O-display P ′ over a reduced k-algebra R and 
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of rank h, there exist a sequence R → S1 → S2 → . . . of faithfully flat étale k-algebra 
morphisms and a k-algebra morphism B → S =

⋃
Si such that PS

∼= P ′
S.

Proof. We construct recursively an infinite commutative diagram

Y1 Y2 Y3 . . .

f − nDispO,1 f − nDispO,2 f − nDispO,3 . . . ,

where Ym = SpecBm for a finitely generated k-algebra Bm, such that Y1 → f−nDispO,1
and Ym+1 → χm+1 = f − nDispO,m+1 ×f−nDispO,m

Ym are smooth presentations. By 
Lemma 4.5 the morphisms Bm → Bm+1 are faithfully flat and smooth. We have a 
canonical nilpotent f -O-display P over B = lim−−→Bm.

A nilpotent f -O-display P ′ over a reduced k-algebra R is equivalent to a compatible 
system of morphisms SpecR → f−nDispO,m. For SpecS1 = SpecR×f−nDispO,1Y1, there 
is a natural map SpecS1 → χ2. For m ≥ 2 we have for SpecSm = SpecSm−1 ×χm

Ym a 
natural map SpecSm → χm+1. Hence we obtain compatible isomorphisms τn(P)S ∼=
τn(P ′)S over S =

⋃
Sn, where τn should be the truncation morphisms. Therefore 

PS
∼= P ′

S . Because a surjective smooth morphism has a section étale locally, we may 
replace the Sn by an étale system. �
Definition 4.7. (Cf. [10, Definition 5.4].) A nilpotent f -O-display over a k-algebra R is 
of reduced type if all its truncations are in f − nDispO,m.

Proposition 4.8. (Cf. [10, Lemma 5.5].) A nilpotent f -O-display over a k-algebra R is of 
reduced type, if and only if there are k-algebra morphisms R → S ← A with A reduced, 
S =

⋃
Si for a system of étale faithfully flat k-algebra morphisms R → S1 → S2 → . . . , 

and the base change of this f -O-display to S descends to A.

Proof. This follows from the definition and Proposition 4.6. �
Definition 4.9. We call a faithfully flat morphism of O′-algebras R → S an admissible 
covering, if S ⊗R S is reduced.

All assertions we will need about admissible coverings can be found in [10, Chapter 3], 
where the ring morphisms have to be replaced by O′-algebra morphisms. The proof of 
[10, Proposition 3.4] depends on [10, Lemma 3.3], which is not correct. In [12, Section 
8.2] it is clarified, how to prove the Proposition without using this Lemma.

Proposition 4.10. (Cf. [10, Proposition 4.4, Lemma 6.1].) Let O → O′ be an unramified /
totally ramified extension. Assume that Ω1(O, O′), Ω2(O, O′), Γ1(O, O′), or Γ2(O, O′) is 
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fully faithful for all O′-algebras with π′ nilpotent in them, then the respective functor is 
an equivalence for all such algebras.

Proof. It remains to show that Ω1(O, O′), Ω2(O, O′), Γ1(O, O′) resp. Γ2(O, O′) is es-
sentially surjective for all O′-algebras R with π′ nilpotent in R. We treat only the 
Ω1(O, O′)-case, since the others follow analogously.

First we show the assertion for all reduced k-algebras R, where k is the residue field 
of O′. Let P be a nilpotent f -O-display over R. With R → S ← B given as in Proposi-
tion 4.6, PS descends to B. Since R → S is an admissible covering, it is enough to show 
that Ω1(O, O′) is essentially surjective over B (Proposition 2.11).

When k′ is an uncountable algebraically closed field of characteristic p extending k, 
then B → B ⊗k k′ is an admissible covering and we may apply [10, Proposition 3.2] to 
B⊗k k

′ =
⋃
Bi⊗k k

′. So we may reduce to the base ring 
∏

(B⊗k k
′)m, where the product 

runs through all maximal ideals m of B⊗kk
′. We may reduce to (B⊗kk

′)m, since nilpotent 
f -O-displays are compatible with arbitrary products of reduced local O′-algebras. The 
residue field of (B⊗kk

′)m is k′ by [10, Lemma 4.3] and we may apply [10, Proposition 3.4]
to consider just the completion of (B ⊗k k′)m, which is a reduced complete local ring 
with perfect residue field. The assertion then follows from Theorem 3.30.

Now we consider general O′-algebras R with π′ nilpotent in R. By Proposition 3.33, it 
suffices to treat the case, where R is a k-algebra. Let P be a nilpotent f -O-display over R. 
Because f−DispO,1 is of finite type and f−nDispO,1 → f−DispO,1 is finitely presented, 
P is of reduced type modulo a nilpotent ideal. We may assume by Proposition 3.33 that 
P is of reduced type. Now let R → S ← A be as in Proposition 4.8. Because Ω1(O, O′)
is fully faithful, it suffices to show that PS lies in the image of Ω1(O, O′), which holds, 
since A is reduced and PS descends to A. Therefore the proposition follows. �
5. Dieudonné O-displays

Let R be a complete Noetherian local O-algebra with perfect residue field of charac-
teristic p and p ≥ 3. For each G, a π-divisible O-module over R, there is a connected-etale 
sequence

0 → G0 → G → Get → 0, (5.1)

where G0 is connected and Get is etale (cf. [17]). The connected part can be described by 
nilpotent O-displays by Theorem 1.1. In this section, we introduce Dieudonné O-displays 
and describe the sequence (5.1) in a similar manner. Since we define things in an appro-
priate way, most of the results in [22] and [9] can be generalized to Dieudonné O-displays. 
We explain the main results and constructions in the following and refer to [22] and [9]
for the detail proofs.



188 T. Ahsendorf et al. / Journal of Algebra 457 (2016) 129–193
5.1. Basic properties of Dieudonné O-displays

Definition 5.1. A Dieudonné O-display over R is a quadruple (P, Q, F, Ḟ ), where P is a 
finitely generated free ŴO(R)-module, Q ⊂ P is a ŴO(R)-submodule, and F : P → P , 
F1 : Q → P are F -linear maps, such that

(1) ÎO,RP ⊂ Q ⊂ P and P/Q is a free R-module.
(2) F1 : Q → P is an F -linear epimorphism.
(3) For any x ∈ P and w ∈ ŴO(R), we have

F1(V wx) = wFx.

Denote by DdispO /R the category of Dieudonné O-displays over R. If O = Zp, then a 
Dieudonné O-display is the same as a Dieudonné display as defined in [22, Definition 1]. 
See Section 1.2.1 for the precise definition of ŴO and ÎO.

Let S → R be an O-algebra morphism. The base change of a Dieudonné O-display 
with respect to S → R is defined by the same formulae as in Definition 2.5 by replacing 
WO by ŴO.

We construct a functor from the category of Dieudonné O-displays over R to the 
category of O-displays over R. Let P = (P, Q, F, F1) be a Dieudonné O-display over R, 
define F(P) = (P ′, Q′, F, F1), where P ′ = WO(R) ⊗

ŴO(R) P , Q′ = Ker(WO(R) ⊗
ŴO(R)

P → P/Q), and the operators F : P ′ → P ′ and F1 : Q′ → P are defined as follows:

• F (ξ ⊗ x) = F ξ ⊗ Fx ξ ∈ W (R), x ∈ P

• F1(ξ ⊗ y) = F ξ ⊗ F1y ξ ∈ W (R), y ∈ Q

• F1(V ξ ⊗ x) = ξ ⊗ Fx ξ ∈ W (R), x ∈ P .

It is easy to check that F(P) is an O-display over R. A Dieudonné O-display P over 
R is nilpotent if F(P) is a nilpotent O-display. Following the same argument in [22, 
Section 2], we have the following result.

Proposition 5.2. (Cf. [22, Theorem 5 and Corollary 6].) Let R be a Noetherian complete 
local O-algebra with perfect residue field of characteristic p. The following three categories 
are equivalent.

• The category of nilpotent Dieudonné O-displays over R.
• The category of nilpotent O-displays over R.
• The category of π-divisible formal O-modules over R.

Definition 5.3. Let P = (P, Q, F, F1) be a Dieudonné O-display over R. We say that P
is etale, if Q = P . We say that P is multiplicative, if Q = ÎO,RP .
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Applying [22, Lemmas 6, 8 and 9] to the case A = ŴO(R), τ = F , M = P , φ = F :
P → P , we may rewrite [22, Propositions 16 and 17] for Dieudonné O-displays over R.

Proposition 5.4. Let P = (P, Q, F, F1) be a Dieudonné O-display over R.

(1) There is a morphism P → Pet to an etale Dieudonné O-display over R, such that 
any other morphism to an etale Dieudonné O-display P → P1 factors uniquely 
through Pet. Moreover Pet has the following properties:
• the induced map P → P et is surjective;
• let P nil be the kernel of P → P et. Then (Pnil , P nil ∩ Q, F, F1) is a nilpotent 

Dieudonné O-display over R.
(2) There is a morphism from a multiplicative Dieudonné O-display over R Pmult to P, 

such that any other morphism from a multiplicative Dieudonné O-display P1 → P
factors uniquely through Pmult. Moreover Pmult has the following properties:
• the induced map Pmult → P is injective and Pmult ∩Q = ÎO,RP

mult;
• (P/Pmult, Q/ÎO,RP

mult, F, F1) is an F -nilpotent Dieudonné O-display over R.

5.2. Dieudonné O-displays and π-divisible O-modules

The same argument as in [22, Section 4] shows that there is an equivalence between 
Dieudonné O-displays and π-divisible O-modules. We sketch the main ideas in the fol-
lowing.

Let R be an Artinian local O-algebra with perfect residue field k. We will denote by 
R̄ the unramified extension of R with residue field k̄. We write Γ = Gal(k̄/k) for the 
Galois group. Then Γ acts continuously on the discrete module R̄.

Let H be a finitely generated O-module. Assume that we are given an action of Γ on 
H, which is continuous with respect to the π-adic topology on H. The action of Γ on 
ŴO(R̄) and H induces an action on ŴO(R̄) ⊗O H. We set

P (H) = (ŴO(R̄) ⊗O H)Γ.

As remarked in [22], one can show by reduction to the case R = k that P (H) is a finitely 
generated free ŴO(R)-module and that the natural map

ŴO(R̄) ⊗
ŴO(R) P (H) → ŴO(R̄) ⊗O H

is an isomorphism. We define an etale Dieudonné O-display over R

P(H) = (P (H), Q(H), F, F1)

where Q(H) = P (H) and F1 is induced by the map
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ŴO(R̄) ⊗O H → ŴO(R̄) ⊗O H

w ⊗ h �→ Fw ⊗ h.

Conversely, if P is an etale Dieudonné O-display over R, we define H(P) to be the 
kernel of the homomorphism of O-modules

F1 − id : ŴO(R̄) ⊗
ŴO(R) P → ŴO(R̄) ⊗

ŴO(R) P,

which is an O[Γ]-module. We see that the category of etale Dieudonné O-displays over 
R is equivalent to the subcategory of the category of continuous O[Γ]-modules, of which 
the objects are free and finitely generated over O.

Proposition 5.5. (Cf. [22, Proposition 18].) Let P = (P, Q, F, F1) be a nilpotent 
Dieudonné O-display over R. Let us denote by CR̄ the cokernel of the map F1 − id :
QR̄ → PR̄ with its natural structure of a Γ-module. Then we have a natural isomor-
phism

HomΓ,O(H,CR̄) ∼= Ext1(P(H),P).

Let H be a continuous O[Γ]-module, which is free and finitely generated over O. We 
define a Barsotti–Tate group

BTO(H) = lim−→nGn,

where Gn is the finite etale group scheme corresponds to the finite Γ-module π−nH/H.

Proposition 5.6. (Cf. [22, Proposition 19].) Let H be as above and let G be a formal 
π-divisible O-module over R. Then there is a canonical isomorphism

HomΓ,O(H,G(R̄)) ∼= Ext1(BTO(H), G).

Combine the above results, we obtain the following result, which corresponds to [22, 
Theorem 20].

Theorem 5.7. Let R be a Noetherian complete local O-algebra with perfect residue field 
of characteristic p. There is a functor BTO from the category of Dieudonné O-displays 
over R to the category of π-divisible O-modules over R which is an equivalence of cate-
gories. On the subcategory of nilpotent Dieudonné O-displays, this is the equivalence in 
Proposition 5.2.

We explain that the equivalence in Theorem 5.7 is compatible with duality. First, 
we recall the definition of dual Dieudonné O-displays. Let Gm = (ŴO(R), ÎO,R, F , V

−1). 
If P and P ′ are Dieudonné O-displays over R, a bilinear form α : P × P ′ → Gm is a 
ŴO(R)-bilinear map α : P × P ′ → ŴO(R) such that
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V (α(F1x, F
′
1x

′)) = α(x, x′)

for x ∈ Q, x′ ∈ Q′. This implies the following equations:

(1) α(F1x, F ′y′) = F (α(x, y′))
(2) α(Fy, F ′

1x
′) = F (α(y, x′))

(3) α(Fy, F ′y) = πF (α(y, y′))

for x ∈ Q, x′ ∈ Q′, y ∈ P , y ∈ P ′. Let Bil(P × P ′, Gm) denote the abelian group of 
bilinear forms.

Definition 5.8. Let P be a Dieudonné O-display over R. The contravariant functor P ′ �→
Bil(P×P ′, Gm) is represented by a Dieudonné O-display Pt over R, called the dual of P.

More precisely, Pt can be described as follows. Let P = (P, Q, F, F1), then

Pt = (P∨, Q̃, F ′, F ′
1)

where Q̃ = {x ∈ P∨ | x(Q) ⊂ ÎO,R} and M∨ = Hom
ŴO(R)(M, ̂WO(R)) for any 

ŴO(R)-module M . If P = L ⊕ T is a normal decomposition and Q = L ⊕ ÎO,RT , 
then P∨ = L∨ ⊕ T∨ and Q̃ = ÎO,RL

∨ ⊕ T∨. In particular, taking duals sends etale 
Dieudonné O-displays to multiplicative Dieudonné O-displays and vice versa.

Let GO be the O-module attached to Gm. Let GO[πn] be the πn-torsion of GO. For a 
π-divisible O-module G over R, the Serre O-dual (or special O-dual) G∨ of G is defined 
in the same way as the Serre dual of G, by using GO and GO[πn] instead of Gm and 
μpn = Gm[pn].

Theorem 5.9. With the notation as above, for every Dieudonné O-display P over R, the 
two O-modules BTO(Pt) and BTO(P)∨ are isomorphic.

Proof. The proof is the same as the proof of [9, Theorem 3.4]. We explain the main steps 
in the following.

Let CR be the category of all R-algebras S with the properties: (1) the nilradical 
N (S) is a nilpotent ideal; (2) mS ⊂ N (S); (3) S/N (S) is a union of finite dimensional 
k-algebras. Let C̃R be the category of abelian sheaves on Cop

R for the flat topology, i.e., 
coverings are faithfully flat R-algebra homomorphisms in CR. Suppose that R is an 
O-algebra. Let L be the fraction field of O. Let P = (P, Q, F, F1) be a Dieudonné 
O-display over R. Then base change of Dieudonné O-displays makes P and Q into 
abelian sheaves on Cop

R . If P = (P, Q, F, F1) is a Dieudonné O-display over R, we define

Z(P) = [Q F1−id−−−−→ P ]

as a complex in C̃R in degree 0, 1 and
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BTL
O(P) = Z(P) ⊗L L/O

in the derived category D(C̃R).
Arguing as in [9, Theorem 1.7], the functor BTL

O induces an equivalence between the 
category DdispO /R and the category of π-divisible O-modules over R. This equivalence 
coincides with the equivalence defined by the functor BTO in Theorem 5.7. Note that 
Hom(ŴO, GO) is the Cartier EO-module of the formal group GO. By Proposition 2.18, 
for any R ∈ NilO and B ∈ NilR, the morphism

WO(R) × ŴO(B) mult−−−→ ŴO(B) → GO(B)

induces an isomorphism

WO(R) ∼−→ Hom(ŴO,GO). (5.2)

Now the same argument of [9, Theorem 3.4] goes through in the case of Dieudonné 
O-displays and the theorem follows. �
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