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Abstract. In this paper, we construct a character theory for projective representations
of finite groups. Consequently, we compute the number of distinct irreducible projective
representations (up to isomorphism) of a finite group with a given associated Schur
multiplier and deduce properties on the degrees of such projective representations.

1. Introduction

Throughout this paper, except in Subsection 3.3, G is a finite group. As in [3, Definition
2] and [5], a projective representation (π, V, α) of G over C of degree n is a map π : G →
GL(V ) such that π(x)π(y) = α(x, y)π(xy) for all x, y ∈ G, where V is an n-dimensional
vector space over C, α : G×G→ C× is the associated multiplier ([3, Definition 1]).

Denote by RepαG the set of projective representations of G with multiplier α. We say
that the projective representation (π, V, α) is unitary if the multiplier α is unitary, i.e.,
there exists a number N with α(x, y)N = 1 for any x, y ∈ G.

For a multiplier α, denote by [α] the image of α in H2(G,C×). For any α, there exists a
unitary multiplier α′ with [α′] = [α] ([2, Section 1]). Since there is an equivalence between

RepαG and Repα
′
G ([3, Remark 5] or [11]), to study RepαG, we may assume that α is unitary.

In Section 2, we develop a character theory for unitary projective representations of finite
groups by exploiting the analogy with the character theory of linear representations of
finite groups.

Moreover, by the standard averaging argument, a projective representation in RepαG
decomposes as a direct sum of irreducible ones ([3, Definition 8]). To understand RepαG,
it suffices to understand the irreducible objects in it. We compute the number of distinct
irreducible projective representations in RepαG (Proposition 2.6) and prove some properties
of the degrees of these irreducible objects (Theorem 3.5 and 3.9).

The theory of projective representations of finite groups has a long history ([1], [5], [6],
[7], [8], [9], etc.). Some of the results in this paper have been proved before. The author
claims no originality of those results. See the survey paper [3] for more discussion on the
history and a more complete list of references.

Nevertheless, the treatment in this paper is different and induces new results. One main
feature is that the representation groups G∗ ([3, Definition 12]) play no roles here. If we
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take α to be the trivial multiplier, we recover the properties of linear representations of
finite groups.

2. The character theory

Fix α a unitary multiplier of G. Let (π, V, α) be a projective representation of G. The
character of (π, V, α) χπ : G→ C is defined by the equation

χπ(g) = Tr(π(g)) for all g ∈ G.
Since α is unitary, π(g)M = idV for some number M . A simple computation shows that

χπ(g−1) = α(g, g−1)χπ(g), where ¯ denotes the complex conjugation. This property is the
main reason that we only consider characters of unitary projective representations.

By tracking through the role of the multiplier α and following the argument in the theory
of linear representations of finite groups, we may prove many properties of projective
representations which are similar to those of linear representations. In the following, we
explain this strategy. If the proofs are straightforward generalizations from the linear
representations case, we skip the details and refer to the corresponding parts in the book
[10].

2.1. Basic properties. Let (π, V, α) and (π′,W, α) be two projective representations of
G with the same multiplier α. A linear map ϕ : V →W is called a G-morphism or a map
of projective representations if for any g ∈ G and v ∈ V , ϕ(π(g)v) = π′(g)(ϕ(v)). Write
HomG(V,W ) for the set of all G-morphisms from V to W . First, the Schur’s Lemma is
true for projective representations.

Lemma 2.1 (Schur’s Lemma). If V and W are irreducible projective representations of
G in RepαG and ϕ : V →W is a map of projective representations, then

(1) Either ϕ is an isomorphism or ϕ = 0.
(2) If V = W , then ϕ = λ · idV for some λ ∈ C.

If φ and ψ are two C-valued functions on G, define

(φ, ψ) =
1

|G|
∑
g∈G

φ(g)ψ(g).

This is a scalar product, i.e., it is linear in φ, semi-linear in ψ, and (φ, φ) > 0 for all φ 6= 0.
Applying Schur’s Lemma, we have the orthogonality relations for characters ([10, Section
2.3]).

Proposition 2.2. Let (π1, V1) and (π2, V2) be two unitary projective representations of G
with the same multiplier. Then

(1) If χπ1 = χπ2, then π1 ∼= π2.
(2) (χπ1 , χπ2) = dimC HomG(π1, π2).
(3) If G is abelian, then all finite dimensional irreducible projective representations of

G with multiplier α have the same degree. Denote this number by dαG.

Proof. We prove the last assertion. Assume that α is unitary. Let πi be an irreducible
projective representation of G with multiplier α and character χi (i = 1, 2). Let π̄2
be the projective representation of G defined by π̄2(g) = π2(g). Here x̄ is the complex
conjugation of x. Then the associated multiplier of π̄2 is ᾱ = α−1 since α is unitary.
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The character of π̄2 is χ̄2. Consider the projective representation π1 ⊗ π̄2. The associated
multiplier is α · α−1 = 1. Because G is abelian, there exists a one-dimensional linear
representation τ : G → C×, such that dimC HomG(τ, π1 ⊗ π̄2) ≥ 1, i.e., the number
1
|G|

∑
g∈G τ(g)χ1(g)χ̄2(g) is a positive integer. Thus

dimC HomG(π2, τ̄ ⊗ π1) =
1

|G|
∑
g∈G

χ2(g)χ1(g)τ̄(g)

is a positive integer. Moreover, both π2 and τ̄ ⊗ π1 are irreducible and thus they are
isomorphic. The claim follows. �

Let R be the α-regular representation of G. It has a basis (eg)g∈G such that R(h)(eg) =
α(h, g)ehg. It is easy to see that Tr(R(h)) = 0 if h 6= 1, Tr(R(1)) = degR = |G|. As a
consequence of Proposition 2.2, we have a decomposition of R ([10, Section 2.4]).

Proposition 2.3. As an object in RepαG, R decomposes as

R ∼=
⊕

π∈RepαG irreducible

π⊕ deg π.

Definition 2.4. A function f : G→ C is called an α-class function if for all g, h ∈ G,

f(hgh−1) =
α(h, h−1)

α(h, gh−1)α(g, h−1)
f(g) =

α(h, h−1)

α(h, g)α(hg, h−1)
f(g).

Let Hα denote the space of α-class functions on G. The characters of projective repre-

sentations belong to Hα. Let g ∈ G. We say that g is an α-element if α(h,h−1)
α(h,gh−1)α(g,h−1)

= 1

for all elements in CG(g) = {h ∈ G | hg = gh}.

Remark 2.5. From the definition, it is easy to check that g is an α-element if and only if
α(g, h) = α(h, g) for all h ∈ CG(g). Note that CG(xgx−1) = xCG(g)x−1. Then if g ∈ G is
an α-element, so are the conjugates of g. This follows from the equation

α(xgx−1, xhx−1) =
α(x, ghx−1)α(gx−1, xhx−1)

α(x, gx−1)

=
α(x, ghx−1)

α(x, gx−1)

α(gx−1, x)α(g, hx−1)

α(x, hx−1)

=
α(x, ghx−1)α(gx−1, x)

α(x, gx−1)α(x, hx−1)

α(g, h)α(gh, x−1)

α(h, x−1)

=
α(x, ghx−1)α(g, h)α(gh, x−1)α(x, x−1)

α(x, gx−1)α(x, hx−1)α(h, x−1)α(g, x−1)
.

(2.1)

Therefore, dimCHα = lα, where lα is the number of the conjugacy classes of G which
consists of α-elements.

We have the following result ([10, Section 2.5]).

Proposition 2.6. Let α be a unitary multiplier. The characters (χi) of irreducible projec-
tive representations in RepαG form an orthonormal basis of Hα. In particular, the number
of irreducible projective representations with associated multiplier α (up to isomorphism)
is equal to dimCHα = lα.
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2.2. Induced projective representations. Fix a unitary multiplier α of G. Let H ⊂ G
be a subgroup of G. Denote by αH : H ×H → C× the restriction of α. Let (p,W, αH) be
a projective representation of H. Let V be the vector space

V = {f : G→W | f(hg) = α(hg, g−1)p(h)f(g) for all h ∈ H, g ∈ G}.
We define a map π : G → GL(V ) by the equation (π(g)f)(g′) = α(g′, g)f(g′g). It is
easy to check that π is a projective representation of G with multiplier α, which is called
the induction of p and is denoted by IndGHW or IndGH p. In this case, the character χπ
is determined by the character χp ([10, Section 3.3, Exercise 3.3]). First, we have the
following lemma.

Lemma 2.7. For any w ∈W , define fw : G→W by

fw(g) =

{
p(g)w if g ∈ H
0 otherwise.

Then for any f ∈ V , f =
∑

Hx∈H\G π(x−1)ff(x).

Proposition 2.8. Let α be a unitary multiplier of G. Let (p,W, αH) be a projective
representation of H with character χp. Let (π, V, α) be the projective representation of G
induced from (p,W ). If χπ is the character of G, then

χπ(g) =
∑
r∈H\G
rgr−1∈H

α(g, r−1)

α(r−1, rgr−1)
χp(rgr

−1) =
1

|H|
∑
s∈G

sgs−1∈H

α(g, s−1)

α(s−1, sgs−1)
χp(sgs

−1).

Proof. Fix a set {xi} of representatives of the right cosets H\G. Define V ′ = ⊕xiWxi ,
where Wxi = W as vector spaces for all xi. Define a map π′ : G→ GL(V ′) by

(2.2) π′(g)((wi)wi∈Wxi
) = (

α(g, x−1θ(i))

α(x−1i , xigx
−1
θ(i))

p(xigx
−1
θ(i))wθ(i)).

Here θ(i) is the index such that xig ∈ Hxθ(i). Using the functions in Lemma 2.7, we define
a map F : V ′ → V by

F ((wi)wi∈Wxi
) =

∑
i

π(x−1i )fwi .

One checks that F is an isomorphism of vector spaces and π(g) ◦F = F ◦π′(g). Thus F is
an isomorphism of projective representations of G. The first equality follows by the same
argument as in [10, Chap 3, Prop. 12]. The second equality follows from the equation
(which can be shown by direct computation with multipliers)

α(g, r−1)

α(r−1, rgr−1)
χp(rgr

−1) =
α(g, s−1)

α(s−1, sgs−1)
χp(sgs

−1),

where r ∈ G with rgr−1 ∈ H and s ∈ Hr. �

Remark 2.9. By identifying projective representations in RepαG with modules over the

twisted group algebra C[G]α ([2]), the proof of Proposition 2.8 shows that IndGHW
∼=

C[G]α ⊗C[H]αH
W. Therefore, for any E in RepαG, we have a canonical isomorphism

HomH(W,E|H) = HomG(IndGHW,E).
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Starting with Proposition 2.8 and arguing as in [10, Section 7.3, 7.4], we obtain the
Mackey’s irreducibility criterion for projective representations. For g ∈ G, denote by
Hg the subgroup g−1Hg ∩ H. The projective representation p of H defines a projective

representation ResHHg p by restriction to Hg.

Proposition 2.10 (Mackey’s criterion). In order that the induced projective represen-
tation V = IndGHW be irreducible, it is necessary and sufficient that the following two
conditions be satisfied:

(1) W is irreducible.
(2) For each s ∈ G − H, the two representations ps and ResHHs p of Hs are disjoint,

i.e., (χps , χResHHs p
)Hs = 0. Here ps is the projective representation of Hs over W

defined by

(2.3) ps(x) =
α(x, s−1)

α(s−1, sxs−1)
p(sxs−1) for x ∈ Hs.

Assume that H is a normal subgroup of G. Let (p,W, αH) be a projective represen-
tation of H. For any s ∈ G, ps : H → GL(W ) defined by equation (2.3) is a projective
representation of H with associated multiplier αH . It is called the twist of p by s. (See
for example [3, Lemma 59].)

Corollary 2.11. Suppose that H is a normal subgroup of G. In order that IndGH p be
irreducible, it is necessary and sufficient that p is irreducible and is not isomorphic to any
of its twists ps for s ∈ G−H.

2.3. On abelian groups. In this subsection, assume that G is abelian. We describe the
number dαG in Proposition 2.2(3) more precisely using the results in Subsection 2.2. Let α
be a multiplier of group G. Let A ⊂ G be a subgroup. We say that A is α-symmetric if
α(a, b) = α(b, a) for any a, b ∈ A.

Lemma 2.12. If G is abelian and α-symmetric, then α is a coboundary.

Proof. Let π be any irreducible projective representation of G with multiplier α. Then by
assumption π(a)π(b) = π(b)π(a) for any a, b ∈ G. Therefore, each π(a) is an element of

HomG(π, π). By Schur’s Lemma, π(a) is a scalar, say µ(a). Then α(a, b) = µ(a)µ(b)
µ(ab) is a

coboundary. �

Lemma 2.13. Let A be an α-symmetric subgroup of an abelian group G. Let s ∈ G−A.
If α(a, si) = α(si, a) for all a ∈ A and i ∈ Z, then the subgroup B = 〈A, s〉 is also
α-symmetric.

Proof. This follows from the identity α(asi, bsj) = α(a,b)α(ab,si+j)α(si,sj)
α(a,si)α(sj ,b)

. �

Proposition 2.14. Let G be an abelian group. Let α be a fixed multiplier of G. Let A be
a maximal α-symmetric subgroup of G. Then dαG = (G : A).

Proof. Let π be an irreducible projective representation of G with unitary multiplier α.
Consider the restriction π|A, it is a projective representation of A with multiplier α|A,
which is a coboundary by Lemma 2.12. Thus π|A = ⊕i∈Iχi is a finite direct sum of one-
dimensional projective representations. Fix one χ ∈ {χi}i∈I and consider the projective
representation V ′ = IndGA χ.
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First, we show that V ′ is irreducible. By Corollary 2.11, it suffices to show that χ is not
isomorphic to χs for any s ∈ G−A. Suppose that there exists s ∈ G−A such that χ ∼= χs.
From the definition of χs, we have α(a, s−1) = α(s−1, a) for any a ∈ A. Inductively, we
see that α(a, si) = α(si, a) for any a ∈ A and i ∈ Z. Therefore, by Lemma 2.13, 〈A, s〉 is
an α-symmetric subgroup, which contradicts the assumption on A. Thus V ′ is irreducible.

On the other hand, by Remark 2.9, HomG(V ′, π) = HomA(χ, π|A) has a nontrivial
element. So V ′ ∼= π and deg π = (G : A). The theorem follows. �

Corollary 2.15. Let α be a multiplier of an abelian group G. Then all the maximal α-
symmetric subgroups of G have the same index in G, and this number is less or equal to√
|G|. In particular, for any abelian group G and α ∈ Z2(G,C×), there exists a subgroup

A of G with |A| ≥
√
|G| such that [α|A] is trivial in H2(A,C×).

3. The degrees of irreducible projective representations

In this section, we study the degrees of irreducible projective representations in RepαG
using the results in Section 2. First, arguing as in [10, Section 6.5], we show that the
degree of an irreducible object in RepαG divides the order of G (Theorem 3.5). Then
by studying the extensions of irreducible projective representations, we prove a stronger
version Theorem 3.9.

3.1. The structure of C[G]α. Since C is algebraically closed, each skew field or field of
finite degree over C is equal to C. Thus the twisted group algebra C[G]α ([2]) is a product
of matrix algebras Mni(C). Let πi : G → GL(Wi) be the distinct irreducible projective
representations of G with associated multiplier α (i = 1, . . . , l = lα). Let ni = dimWi.
Then the ring EndC(Wi) of endomorphisms of Wi is isomorphic to Mni(C). The map πi :
G → GL(Wi) extends by linearity to an algebra homomorphism Πi : C[G]α → End(Wi).
We thus obtain a homomorphism

Π : C[G]α →
l∏

i=1

End(Wi) ∼=
l∏

i=1

Mni(C),

which is an isomorphism of C-algebras ([10, Section 6.2]).

Lemma 3.1. [10, Section 6.5] The homomorphism Πi maps Cent .C[G]α (the center of
the twisted group algebra) into the set of homotheties of Wi and defines an algebra homo-
morphism

ωi : Cent .C[G]α → C.
If α is unitary, f =

∑
g∈G kgag is an element of Cent .C[G]α, then

ωi(f) =
1

ni
TrWi(Πi(f)) =

1

ni

∑
g∈G

kgχi(g).

Moreover, the family (ωi)1≤i≤l defines an isomorphism of Cent .C[G]α onto the algebra Cl.

Let C be the set of conjugacy classes of α-elements of G. For each c ∈ C, fix an element
gc ∈ c. Set

ec =
∑
h∈G

ahagca
−1
h =

∑
h∈G

α(h, gc)α(hgc, h
−1)

α(h, h−1)
ahgch−1 .
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It is easy to see that ec is an element of Cent .C[G]α. The elements (ec)c∈C form a basis
of Cent .C[G]α.

Remark 3.2. The definition of ec depends on the choice of the fixed element gc ∈ c. Let
g′c = sgcs

−1 ∈ c be another element and define

e′c =
∑
h∈G

ahag′ca
−1
h =

∑
h∈G

α(h, g′c)α(hg′c, h
−1)

α(h, h−1)
ahg′ch−1 .

Then ec = α(s,gcs−1)
α(gcs−1,s)

e′c.

Indeed, let g = gc, to see this, it suffices to prove that

α(hs, g)α(hsg, h−1)α(gs−1, s)

α(hs, (hs)−1)
=
α(h, sgs−1)α(hsgs−1, h−1)α(s, gs−1)

α(h, h−1)
.

This follows from

α(h, sgs−1)α(hsgs−1, h−1)α(s, gs−1)α(hs, (hs)−1)

=α(h, s)α(hs, gs−1)α(hsgs−1, h−1)α(hs, (hs)−1)

=α(h, s)α(hs, gs−1h−1)α(gs−1, h−1)α(hs, (hs)−1)

=α(hs, gs−1h−1)α(gs−1, h−1)α(h, h−1)α(s, s−1h−1)

=α(hs, gs−1h−1)α(h, h−1)α(gs−1, s)α(g, s−1h−1).

(3.1)

In particular, in the case α is unitary, the difference between ec and e′c is given by a root
of unity.

3.2. Degrees of irreducible projective representations. Let (π, V, α) be a unitary
projective representation of G with character χ. Note that our α is unitary, therefore the
eigenvalues of π(g) are roots of unity. In particular, they are algebraic integers. Thus the
value χ(g), which is the sum of the eigenvalues of π(g), is also an algebraic integer.

Lemma 3.3. Let f =
∑

g∈G kgag be an element of Cent .C[G]α such that kg’s are algebraic

integers. Then f is integral over Z. (Note that this makes sense since Cent .C[G]α is a
commutative ring.)

Proof. By Remark 3.2, we may write f =
∑

c∈C kcec for some algebraic integers kc. To
show that f is integral over Z, it suffices to show that each ec is integral over Z. Let
O = Z[Im(α)]. It is contained in the ring of integers of the field Q(Im(α)) and thus is
finitely generated over Z. Note that eced is a linear combination with O-coefficients of the
ec’s, the subgroup R = ⊕c∈CO · ec is a subring of Cent .C[G]α and it is finitely generated
over Z. Every element in R is integral over Z. The claim follows. �

Lemma 3.4. Let (πi,Wi, α) be an irreducible unitary projective representation of G with
degree ni and character χi. Let f =

∑
g∈G kgag be an element of Cent .C[G]α such that

kg’s are algebraic integers. Then the number 1
ni

∑
g∈G kgχi(g) is an algebraic integer.

Proof. By Lemma 3.1, this number is the image of f under the homomorphism

ωi : Cent .C[G]α → C.
As f is integral over Z by Lemma 3.3, the same is true for its image under ωi. �
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Theorem 3.5. The degrees of the irreducible projective representations of G divide the
order of G.

Proof. It suffices to prove this for unitary irreducible projective representations. Let χ be
the character of such a projective representation with multiplier α. First, we show that the
element

∑
g∈G α(g, g−1)−1χ(g−1)ag is an element of Cent .C[G]α. It suffices to show that

ah(
∑

g∈G α(g, g−1)−1χ(g−1)ag) = (
∑

g∈G α(g, g−1)−1χ(g−1)ag)ah for any h ∈ G. This is
equivalent to

α(hgh−1, hg−1h−1)−1χ(hg−1h−1)α(hgh−1, h) = α(g, g−1)−1χ(g−1)α(h, g)

⇔α(hgh−1, hg−1h−1) =
α(hgh−1, h)α(h, h−1)α(g, g−1)

α(h, g−1h−1)α(g−1, h−1)α(h, g)

⇔α(hgh−1, h)α(h, gh−1)α(g, h−1) = α(h, h−1)α(h, g) (by equation (2.1)),

(3.2)

which is easy to see since α is a multiplier.
Now applying Lemma 3.4 to the element

∑
g∈G α(g, g−1)−1χ(g−1)ag, the number

1

ni

∑
g∈G

kgχi(g) =
1

ni

∑
g∈G

α(g, g−1)−1χ(g−1)χ(g) =
|G|
ni

(χ, χ) =
|G|
ni

is an algebraic integer. Therefore ni | |G|. The claim follows. �

Corollary 3.6. Let G be a finite group of order N . Let lc be the number of conjugacy
classes of G. If the equation

N = n21 + · · ·+ n2m
has no solution with m ∈ Z≥1, m ≤ lc, ni ∈ Z≥2 and ni | N (1 ≤ i ≤ m), then
H2(G,C×) = 0.

Let α be a multiplier of G. Let A be a normal subgroup of G. Let p : A→ GL(W ) be
a projective representation of A with multiplier α. Define

Ip = {g ∈ G : pg ∼= p}.
It is easy to see that Ip is a subgroup of G and A is a normal subgroup of Ip.

Lemma 3.7. ([3, Theorem 62]) Let (p,W, α) be an irreducible projective representation of
A. One can extend W to a projective representation p′ of Ip with some multiplier β such
that

(1) p′(g)p(h)p′(g)−1 = pg(h) for all g ∈ Ip and h ∈ A.
(2) p′(h) = p(h) for all h ∈ A.
(3) p(h)p′(g) = α(h, g)p′(hg).

The following lemma corresponds to [10, Chap. 8, Proposition 24].

Lemma 3.8. Let A be a normal subgroup of G and π : G → GL(V ) be an irreducible
projective representation of G. Then

(1) either there exist a subgroup H of G, unequal to G and containing A, and an
irreducible projective representation p of H such that π is induced from p;

(2) or else the restriction ResGA π is isotypic, i.e., it is a direct sum of isomorphic
projective representations of A.
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Theorem 3.9. Let A be a normal subgroup of G. Let dA be the least common multiple
of the degrees of the irreducible projective representations of A. (Note that dA | |A|.)
Then the degree of each irreducible projective representation π of G divides the number
dA · (G : A).

Proof. We prove this theorem by induction on the order of G. In case (1) of Lemma 3.8,
by induction, the degree of p divides dA · (H : A). Therefore, the degree of π divides
(G : H)dA · (H : A) = dA · (G : A).

In case (2) of Lemma 3.8, assume that V |A = W⊕k for an irreducible projective rep-
resentation (p,W ) of A. Thus any twist of p is isomorphic to p. By Lemma 3.7, we
may extend W to a projective representation p′ of G with associated multiplier β. Define
W ′ = HomA(W,V ) = {f : W → V | f(p(a)w) = π(a)f(w)}. Define q : G → GL(W ′) via
the equation

(q(g)f)(w) = π(g)f(p′(g)−1w).

(1) By Lemma 3.7, p′(g)−1p(a) = α(a,g)
α(g,g−1ag)

p(g−1ag)p′(g)−1. One has

(q(g)f)(p(a)w) = π(g)f(p′(g)−1p(a)w)

= π(g)
α(a, g)

α(g, g−1ag)
f(p(g−1ag)p′(g)−1w)

= π(g)
α(a, g)

α(g, g−1ag)
π(g−1ag)f(p′(g)−1w)

= π(a)π(g)f(p′(g)−1w) = π(a)(q(g)f)(w).

(3.3)

Thus q(g)f ∈W ′ and q is well-defined.
(2) For any g1, g2 ∈ G,

(q(g1g2)f)(w) = π(g1g2)f(p′(g1g2)
−1w)

= α(g1, g2)
−1β(g1, g2)π(g1)π(g2)f(p′(g2)

−1p′(g1)
−1w)

= α(g1, g2)
−1β(g1, g2)(q(g1)q(g2)f)(w).

(3.4)

Thus q is a projective representation of G over W ′ with multiplier αβ−1.

Consider the natural map
W ⊗C W

′ → V,

it is easy to check that it is an isomorphism of projective G-representations. Furthermore,
since V is irreducible, W ′ is also irreducible as a projective representation of G. On the
other hand, if g ∈ A, then q(g) acts as scalar. Thus W ′ has a structure as an irreducible
projective representation of G/A. Therefore, degW ′ | (G : A) by Theorem 3.5. Thus
deg V | dA · (G : A). The theorem follows. �

The same argument proves the following result.

Theorem 3.10. Let α be a multiplier of G. Let A be a normal subgroup of G. Let dαA be
the least common multiple of the degrees of the irreducible projective representations of A
with associated multiplier α. Then the degree of each irreducible projective representation
π of G with multiplier α divides the number dαA · (G : A).

In particular, if α = 1 and A is an abelian normal subgroup of G, then the degree of
each irreducible linear representation of G divides the number (G : A).
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Corollary 3.11. Let A be a cyclic normal subgroup of G. Then the degree of each irre-
ducible projective representation π of G divides the number (G : A).

Proof. Since A is cyclic, H2(G,C×) = 0. Therefore dA = 1 and the claim follows. �

The above results have useful applications. We explain the idea in the following simple
but nontrivial example.

Example 3.12. Let G = D2m be the dihedral group of order 2m. Let Cm be the normal
subgroup of G generated by an element of order m. By Corollary 3.11, the degree of
each irreducible projective representation of G divides 2. Similarly as in Corollary 3.6, we
obtain the fact that H2(D2m,C×) = 0 if m is odd.

Assume now thatm is even. Let α be a multiplier of D2m such that [α] is nontrivial. (For
example, m = 4, H2(D8,C×) = Z/2Z.) Then every irreducible projective representation
of D2m with multiplier α has degree 2 and there are m/2 of them up to isomorphism.
(Note that in this case the number of conjugacy classes of G is m/2 + 3.) By the proof
of Theorem 3.9, all these irreducible projective representations are induced from one-
dimensional projective representations of Cm with multiplier αCm .

3.3. Remarks on compact groups. In the following, G is a compact topological group.
Fix a Haar measure

∫
G · d g on G.

A projective representation (π, V, α) of G over C is a continuous map π : G → U(V )
such that π(x)π(y) = α(x, y)π(xy) for all x, y ∈ G, where α is a multiplier on G with
|α(x, y)| = 1 for any x, y ∈ G, V is a Hilbert space, U(V ) is the space of unitary operators
from V to V . Here continuous means that the map (g, v) 7→ π(g)v is a continuous map
from G× V to V .

Most of the properties of projective representations of finite groups carry over to finite
dimensional projective representations of compact groups. The strategy in [10, Section
4.3] applies to the projective representations case.

Let (π, V, α) be a finite dimensional projective representation of G. Let 〈, 〉 be a G-
invariant Hermitian inner product on V , which exists by the averaging argument. Given
v, w ∈ V , the function f : g 7→ 〈π(g)v, w〉 is a matrix coefficient of π. Let Aα(G) be
the space spanned by all matrix coefficients of finite dimensional irreducible projective
representations of G with multiplier α. The following result can be proved by the same
strategy as for linear representations (see for example [4]) with an extra attention on the
multiplier α.

Theorem 3.13 (Peter-Weyl Theorem). Let L2(G) be the space of measurable functions
on G with

∫
G |f(g)|2 d g <∞. Then Aα(G) is dense in L2(G).

As a consequence, every irreducible projective representation of G is finite dimensional
and the character theory provides a tool to study RepαG for compact groups G as well.
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