A CHARACTER THEORY FOR PROJECTIVE REPRESENTATIONS
OF FINITE GROUPS

CHUANGXUN CHENG

ABSTRACT. In this paper, we construct a character theory for projective representations
of finite groups. Consequently, we compute the number of distinct irreducible projective
representations (up to isomorphism) of a finite group with a given associated Schur
multiplier and deduce properties on the degrees of such projective representations.

1. INTRODUCTION

Throughout this paper, except in Subsection G is a finite group. As in [3, Definition
2] and [5], a projective representation (w,V,a) of G over C of degree n is a map 7 : G —
GL(V) such that m(x)n(y) = a(z,y)n(zy) for all z,y € G, where V is an n-dimensional
vector space over C, a : G x G — C* is the associated multiplier ([3, Definition 1]).

Denote by Repg: the set of projective representations of G' with multiplier a. We say
that the projective representation (m,V,«) is unitary if the multiplier « is unitary, i.e.,
there exists a number N with a(z,y)Y = 1 for any z,y € G.

For a multiplier o, denote by [a] the image of o in H?(G,C*). For any «, there exists a
unitary multiplier o' with [o/] = [a] (|2, Section 1]). Since there is an equivalence between
Rep¢ and Repg (B, Remark 5] or [I1]), to study Repg, we may assume that « is unitary.
In Section [2| we develop a character theory for unitary projective representations of finite
groups by exploiting the analogy with the character theory of linear representations of
finite groups.

Moreover, by the standard averaging argument, a projective representation in Repg
decomposes as a direct sum of irreducible ones ([3, Definition 8]). To understand Repg,
it suffices to understand the irreducible objects in it. We compute the number of distinct
irreducible projective representations in Repg: (Proposition [2.6) and prove some properties
of the degrees of these irreducible objects (Theorem and [3.9)).

The theory of projective representations of finite groups has a long history ([1, [5], [6],
[7], [8], [9], etc.). Some of the results in this paper have been proved before. The author
claims no originality of those results. See the survey paper [3] for more discussion on the
history and a more complete list of references.

Nevertheless, the treatment in this paper is different and induces new results. One main
feature is that the representation groups G* ([3, Definition 12]) play no roles here. If we
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take « to be the trivial multiplier, we recover the properties of linear representations of
finite groups.

2. THE CHARACTER THEORY

Fix a a unitary multiplier of G. Let (7, V, a) be a projective representation of G. The
character of (w,V,a) xr : G — C is defined by the equation

Xx(g) = Tr(w(g)) for all g € G.

Since « is unitary, 7(g)" = idy for some number M. A simple computation shows that
Xx(g71) = alg, g7 )xx(g), where ~ denotes the complex conjugation. This property is the
main reason that we only consider characters of unitary projective representations.

By tracking through the role of the multiplier v and following the argument in the theory
of linear representations of finite groups, we may prove many properties of projective
representations which are similar to those of linear representations. In the following, we
explain this strategy. If the proofs are straightforward generalizations from the linear
representations case, we skip the details and refer to the corresponding parts in the book
[10].

)M

2.1. Basic properties. Let (m,V,«a) and (7, W, ) be two projective representations of
G with the same multiplier a. A linear map ¢ : V — W is called a G-morphism or a map
of projective representations if for any g € G and v € V, p(w(g)v) = 7'(g)(¢(v)). Write
Homg(V, W) for the set of all G-morphisms from V to W. First, the Schur’s Lemma is
true for projective representations.

Lemma 2.1 (Schur’s Lemma). If V' and W are irreducible projective representations of
G in Repg and ¢ : V. — W is a map of projective representations, then

(1) Either ¢ is an isomorphism or ¢ = 0.

(2) If V=W, then ¢ = X -idy for some X € C.

If ¢ and 9 are two C-valued functions on G, define

(6,) = ,10| S 6(9)0(g).

geG
This is a scalar product, i.e., it is linear in ¢, semi-linear in v, and (¢, ¢) > 0 for all ¢ # 0.
Applying Schur’s Lemma, we have the orthogonality relations for characters ([10, Section
2.3]).

Proposition 2.2. Let (71, V}) and (ma, Va) be two unitary projective representations of G
with the same multiplier. Then

(1) If Xm1 = X then w1 = .

(2) (Xﬂ'l ) Xﬂ'z) = dlm@ HomG(ﬂ-h 71—2)'

(3) If G is abelian, then all finite dimensional irreducible projective representations of
G with multiplier o have the same degree. Denote this number by dg.

Proof. We prove the last assertion. Assume that a is unitary. Let m; be an irreducible
projective representation of G with multiplier o and character y; (i = 1,2). Let 72
be the projective representation of G defined by 72(g) = m2(g). Here Z is the complex
conjugation of x. Then the associated multiplier of 75 is @ = o~ ! since a is unitary.
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The character of 75 is 2. Consider the projective representation m; ® To. The associated
multiplier is a - a~! = 1. Because G is abelian, there exists a one-dimensional linear
representation 7 : G — C*, such that dim¢c Homg(7, 7 ® 72) > 1, i.e., the number

|Tl;| > gec T(9)x1(9)x2(g) is a positive integer. Thus

dimc Homg (7o, 7 ® 71) = ]G| ZXQ 9)x1(g 9)
geG

is a positive integer. Moreover, both m and T ® 7 are irreducible and thus they are
isomorphic. The claim follows. O
Let R be the a-regular representation of G. It has a basis (eg4)4ec such that R(h)(ey) =
a(h, g)eng. It is easy to see that Tr(R(h)) = 0 if h # 1, Tr(R(1)) = degR = |G|. As a
consequence of Proposition we have a decomposition of R ([10], Section 2.4]).

Proposition 2.3. As an object in Repg, R decomposes as

R @ gOdegm,

mERepg irreducible

Definition 2.4. A function f: G — C is called an a-class function if for all g, h € G,

alh,h™1) (b
Fhoh™) = b ghat A1) = ol giathg. i)

Let H, denote the space of a-class functions on GG. The characters of projective repre-
a(hh™t) _
allgh Nalgh ) ~ |

sentations belong to H,. Let g € G. We say that g is an a-element if
for all elements in Cg(g) = {h € G | hg = gh}.
Remark 2.5. From the definition, it is easy to check that g is an a-element if and only if
a(g,h) = a(h, g) for all h € Cg(g). Note that Cg(xgz~') = 2Cq(g)z~!. Then if g € G is
an a-element, so are the conjugates of g. This follows from the equation
a(z, ghz™Ya(ge™t, zha™")
a(z, gz~1)
a(z,ghz™!) a(gr, 2)a(g, ha™!)
2.1) alz, gr—1) a(x, hz=1)
a(z,gheNa(ga™", x) alg, h)a(gh,a~")
a(z, gz a(z, ha=1) alh,z=1)
a(z,ghzYa(g, h)a(gh,z=Ha(z,z71)
alz, gz~ a(z, hx=a(h,z7)a(g,x~1)’
Therefore, dimc H, = l,, where [, is the number of the conjugacy classes of G' which
consists of a-elements.

a(zgr™t zha™t) =

We have the following result ([10, Section 2.5]).

Proposition 2.6. Let a be a unitary multiplier. The characters (x;) of irreducible projec-
tive representations in Repg: form an orthonormal basis of Hy. In particular, the number
of irreducible projective representations with associated multiplier o (up to isomorphism)
s equal to dimc H, = (.
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2.2. Induced projective representations. Fix a unitary multiplier a of G. Let H C G
be a subgroup of G. Denote by ay : H x H — C* the restriction of . Let (p, W, i) be
a projective representation of H. Let V be the vector space

V={f:G—W| f(hg) =alhg,g Hp(h)f(g) for all h € H,g € G}.

We define a map 7 : G — GL(V) by the equation (w(g)f)(¢") = a(¢’,9)f(d'g). It is
easy to check that 7 is a projective representation of G with multiplier «, which is called
the induction of p and is denoted by Indg W or Indg p. In this case, the character x,
is determined by the character y, ([I0, Section 3.3, Exercise 3.3]). First, we have the
following lemma.

Lemma 2.7. For any w € W, define f, : G — W by
w ifgeH
fulg) = {p(g) /g

0 otherwise.

Then for any f €V, f = ZHIEH\GW(x_l)ff(w)'

Proposition 2.8. Let a be a unitary multiplier of G. Let (p,W,ap) be a projective
representation of H with character xp. Let (mw,V, ) be the projective representation of G
induced from (p, W). If xr is the character of G, then

o 7“_1 o 3_1
o= X A e ) = g ¥t L),

-1 —1 -1 —1
reH\G roo,rgr s€EG § 5898
Tg'rileH sgsileH

Proof. Fix a set {z;} of representatives of the right cosets H\G. Define V' = @&,,W,,,
where W,,, = W as vector spaces for all z;. Define a map 7' : G — GL(V’) by

(2.2) ™ () (wi)w,ews,) = (

Here 6(i) is the index such that ;g € Hwg(;). Using the functions in Lemma we define
amap F : V' — V by
F((wi)wews,) = > m(@; ") fur-
i

One checks that F is an isomorphism of vector spaces and 7(g) o F' = Fon/(g). Thus F is
an isomorphism of projective representations of G. The first equality follows by the same
argument as in [I0, Chap 3, Prop. 12]. The second equality follows from the equation
(which can be shown by direct computation with multipliers)

a(g,r™)

_1)Xp(7“97"*1) =

Oé(g,S_l) —1
a(r=Y rgr 1)Xp(898 ),

a(s~1 sgs™
where r € G with rgr~! € H and s € Hr. a

Remark 2.9. By identifying projective representations in Repg with modules over the
twisted group algebra C[G], ([2]), the proof of Proposition shows that Ind$ W =
ClGla & Hoy W- Therefore, for any E in Repg:, we have a canonical isomorphism

Hompy (W, E|i) = Homg(Ind$, W, E).



5

Starting with Proposition and arguing as in [I0, Section 7.3, 7.4], we obtain the
Mackey’s irreducibility criterion for projective representations. For g € G, denote by
H, the subgroup g 'HgN H. The projective representation p of H defines a projective
representation Resgg p by restriction to H,.

Proposition 2.10 (Mackey’s criterion). In order that the induced projective represen-
tation V = Ind%W be irreducible, it is necessary and sufficient that the following two
conditions be satisfied:

(1) W is irreducible.
(2) For each s € G — H, the two representations p* and Resgs p of Hs are disjoint,
i.e., (Xp%XReSg p)HS = 0. Here p® is the projective representation of Hg over W

defined by

(2.3) p*(z) =

OZ(.T, 5_1) —1
Wp(sl‘s ) fOT’ T € HS~

Assume that H is a normal subgroup of G. Let (p, W, o) be a projective represen-
tation of H. For any s € G, p* : H — GL(W) defined by equation (2.3) is a projective
representation of H with associated multiplier aiy. It is called the twist of p by s. (See
for example [3, Lemma 59].)

Corollary 2.11. Suppose that H is a normal subgroup of G. In order that Indgp be
irreducible, it is necessary and sufficient that p is irreducible and is not isomorphic to any
of its twists p* for s € G — H.

2.3. On abelian groups. In this subsection, assume that G is abelian. We describe the
number d¢ in Proposition (3) more precisely using the results in Subsection Let
be a multiplier of group G. Let A C G be a subgroup. We say that A is a-symmetric if
a(a,b) = a(b,a) for any a,b € A.

Lemma 2.12. If G is abelian and a-symmetric, then a is a coboundary.

Proof. Let 7 be any irreducible projective representation of G with multiplier a. Then by
assumption 7(a)w(b) = m(b)w(a) for any a,b € G. Therefore, each 7(a) is an element of
Homg (m, ). By Schur’s Lemma, 7(a) is a scalar, say pu(a). Then a(a,b) = % is a

coboundary. O

Lemma 2.13. Let A be an a-symmetric subgroup of an abelian group G. Let s € G — A.
If a(a,s") = a(s’,a) for all a € A and i € Z, then the subgroup B = (A,s) is also
a-symmetric.

a(a,b)a(ab,s't)a(s?,s7)
a(a,s?)a(s?,b) : O

Proof. This follows from the identity a(as’,bs’) =

Proposition 2.14. Let G be an abelian group. Let « be a fixed multiplier of G. Let A be
a mazximal a-symmetric subgroup of G. Then d% = (G : A).

Proof. Let m be an irreducible projective representation of G with unitary multiplier «.
Consider the restriction 7|4, it is a projective representation of A with multiplier a4,
which is a coboundary by Lemma Thus 7|4 = @iery; is a finite direct sum of one-
dimensional projective representations. Fix one x € {x;}icr and consider the projective
representation V/ = Ind§ x.
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First, we show that V'’ is irreducible. By Corollary it suffices to show that x is not
isomorphic to x® for any s € G — A. Suppose that there exists s € G — A such that x = x*.
From the definition of x*, we have a(a,s™!) = a(s7!,a) for any a € A. Inductively, we
see that a(a,s’) = a(s’,a) for any a € A and i € Z. Therefore, by Lemma (A, s) is
an a-symmetric subgroup, which contradicts the assumption on A. Thus V" is irreducible.

On the other hand, by Remark 2.9, Homg(V’,m) = Homu(x,7|4) has a nontrivial
element. So V' =7 and degm = (G : A). The theorem follows. O

Corollary 2.15. Let o be a multiplier of an abelian group G. Then all the mazximal -
symmetric subgroups of G have the same index in G, and this number is less or equal to
\/@. In particular, for any abelian group G and o € Z2(G,C*), there exists a subgroup
A of G with |A| > /|G| such that [a|4] is trivial in H?>(A,C*).

3. THE DEGREES OF IRREDUCIBLE PROJECTIVE REPRESENTATIONS

In this section, we study the degrees of irreducible projective representations in Repg
using the results in Section First, arguing as in [10, Section 6.5], we show that the
degree of an irreducible object in Rep¢ divides the order of G (Theorem [3.5). Then
by studying the extensions of irreducible projective representations, we prove a stronger
version Theorem [3.91

3.1. The structure of C[G],. Since C is algebraically closed, each skew field or field of
finite degree over C is equal to C. Thus the twisted group algebra C[G], ([2]) is a product
of matrix algebras M, (C). Let m; : G — GL(W;) be the distinct irreducible projective
representations of G with associated multiplier o (1 = 1,...,1 = l,). Let n; = dim W;.
Then the ring Endc(W;) of endomorphisms of W; is isomorphic to M, (C). The map m; :
G — GL(W;) extends by linearity to an algebra homomorphism II; : C[G], — End(W;).
We thus obtain a homomorphism

l
o= H End(W, H M, (C
=1
which is an isomorphism of (C—algebras ([10, Section 6.2} .

Lemma 3.1. [10, Section 6.5] The homomorphism II; maps Cent.C[G], (the center of
the twisted group algebra) into the set of homotheties of W; and defines an algebra homo-
morphism

wj : Cent .C[G], — C.
If a is unitary, f = deG kqagq is an element of Cent .C[G],, then

1

wi(f) = o Tryw, (IT Z kgxi(g
geG

Moreover, the family (w;)1<i<; defines an isomorphism of Cent .C[G], onto the algebra C'.

Let C be the set of conjugacy classes of a-elements of GG. For each ¢ € C, fix an element

ge € c. Set
-1 a(hagc)a(hgw hil)
e = Z Anlgetp = Z a(h, h71) Ahgeh—1-
heG heG
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It is easy to see that e, is an element of Cent.C[G],. The elements (e.).cc form a basis
of Cent .C|[Glq.-

Remark 3.2. The definition of e. depends on the choice of the fixed element g. € ¢. Let
g. = sg.s~1 € c be another element and define

) 1~ alh, gh)a(hg,, h7h)
€ = ];ahagéah = ]; ac(h7 h_f) ahgéhq.

_ os,ges™h) s
Then € = m@c.

Indeed, let g = g., to see this, it suffices to prove that
a(hs,g)a(hsg,h Na(gs™",s) _ al(h,sgs"a(hsgs™  h~ a(s,gs7")
] .

a(hs, (hs)™1) alh,h=1
This follows from
a(h, sgs Ha(hsgs™H, h Ya(s, gs Halhs, (hs)™)
(h, s)a(hs, gs Ha(hsgs™, h™Ha(hs, (hs)™1)
(h,s)a(hs,gs Th Ha(gs™, h Ha(hs, (hs)™1)
a(hs,gs th Ha(gs™, h Ha(h,h Ha(s,sth™1)
=a(hs, gs *h ™ YHa(h,h Ha(gs™, s)alg, s Th™1).

«

(3.1)

a

In particular, in the case « is unitary, the difference between e, and €/, is given by a root
of unity.

3.2. Degrees of irreducible projective representations. Let (m,V,«) be a unitary
projective representation of G with character x. Note that our « is unitary, therefore the
eigenvalues of 7(g) are roots of unity. In particular, they are algebraic integers. Thus the
value x(g), which is the sum of the eigenvalues of 7(g), is also an algebraic integer.

Lemma 3.3. Let f =3 kgag be an element of Cent .C[G|q such that ky’s are algebraic
integers. Then f is integral over Z. (Note that this makes sense since Cent .C|[G|, is a
commutative ring.)

Proof. By Remark we may write f = ) - kce. for some algebraic integers k.. To
show that f is integral over Z, it suffices to show that each e. is integral over Z. Let
O = Z[Im(«)]. It is contained in the ring of integers of the field Q(Im(a)) and thus is
finitely generated over Z. Note that e.eq is a linear combination with O-coefficients of the
ec’s, the subgroup R = ®.ccO - e, is a subring of Cent .C[G], and it is finitely generated
over Z. Every element in R is integral over Z. The claim follows. O

Lemma 3.4. Let (m;, Wi, «) be an irreducible unitary projective representation of G with
degree n; and character x;. Let f =3 qkgaq be an element of Cent.C[Gl such that

ky’s are algebraic integers. Then the number n% deG kgxi(g) is an algebraic integer.

Proof. By Lemma this number is the image of f under the homomorphism
wj : Cent .C[G], — C.
As f is integral over Z by Lemma the same is true for its image under w;. U
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Theorem 3.5. The degrees of the irreducible projective representations of G divide the
order of G.

Proof. 1t suffices to prove this for unitary irreducible projective representations. Let x be
the character of such a projective representation with multiplier a. First, we show that the
element 3 . a(g,97) x(g7 )ay is an element of Cent.C[G],. It suffices to show that

an(P e (9,97 ) x(g7ag) = (XCyeq (g, 97 x(g7 ag)an for any h € G. This is
equivalent to
a(hgh™ hg'h™ 1) Ix(hg A ahgh™", h) = alg,g~") "X (g a(h, g)
1 hgh™', h)a(h,h~")a(g,g7")
3.2 hgh", hg~ W) = kg holh, :
32 albol g ) = S g Th Da(g Toh Dalhig)
alhgh™", h)a(h,gh™Ya(g,h™") = a(h,h"a(h,g)  (by equation (2.1)),

which is easy to see since « is a multiplier.
Now applying Lemma to the element deG a(g, g7 1) tx(g7 )a,, the number

1 1 L - a G
LS kpxite) = — 3 ale.g™) Mo xle) = Hx = 19
ng n; n; g

is an algebraic integer. Therefore n; | |G|. The claim follows. 0

Corollary 3.6. Let G be a finite group of order N. Let I¢ be the number of conjugacy
classes of G. If the equation
has no solution with m € Zs1, m < ¢, n; € Z>3 and n; | N (1 < i < m), then
H?*(G,C*) =0.

Let o be a multiplier of G. Let A be a normal subgroup of G. Let p: A — GL(W) be
a projective representation of A with multiplier «. Define

Iy={geG: p?=p}.
It is easy to see that I, is a subgroup of G and A is a normal subgroup of I,.

Lemma 3.7. ([3, Theorem 62]) Let (p, W, «) be an irreducible projective representation of
A. One can extend W to a projective representation p’ of I, with some multiplier B such
that

(1) p'(9)p(h)p'(9)~" = p9(h) for all g € I, and h € A.

(2) p'(h) = p(h) for all h € A.

(3) p(R)p'(9) = a(h, g)p’(hg).

The following lemma corresponds to [10, Chap. 8, Proposition 24].

Lemma 3.8. Let A be a normal subgroup of G and m : G — GL(V) be an irreducible
projective representation of G. Then

(1) either there exist a subgroup H of G, unequal to G and containing A, and an
irreducible projective representation p of H such that 7 is induced from p;

(2) or else the restriction Resﬁw is isotypic, i.e., it is a direct sum of isomorphic
projective representations of A.
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Theorem 3.9. Let A be a normal subgroup of G. Let da be the least common multiple
of the degrees of the irreducible projective representations of A. (Note that dg | |A|.)
Then the degree of each irreducible projective representation m of G divides the number

da-(G:A).

Proof. We prove this theorem by induction on the order of G. In case (1) of Lemma
by induction, the degree of p divides d4 - (H : A). Therefore, the degree of = divides
(G:H)da-(H:A)=da-(G:A).

In case (2) of Lemma assume that V|4 = W% for an irreducible projective rep-
resentation (p, W) of A. Thus any twist of p is isomorphic to p. By Lemma we
may extend W to a projective representation p’ of G with associated multiplier 8. Define
W' =Homs(W, V) ={f : W = V| f(p(a)w) = 7(a)f(w)}. Define q: G — GL(W’') via
the equation

(a(9).f)(w) = m(9) f(¥'(9) " w).
(1) By Lemma 3.7 p'(g) *p(a) = 524 _p(g ™ ag)p'(9) ! One has

9,9 tag

(a(g)f)(p(a)w) = 7(9) f(0'(9) " p(a)w)

— (o) 0 ol e (9) M)

= W(g)mﬂ(g‘lag)ﬂp'(g)_lw)
= m(a)m(9)f(¥'(9) " w) = 7(a)(alg) f)(w).
Thus q(g)f € W’ and q is well-defined.
(2) For any g1,92 € G,

(a(g192) f)(w) = 7(g192) f (b (9192) w)
(3.4) = a(g1,92) Blgr, g2)m(g1)m(g2) f (9 (92) "'9'(g1) " 'w)
= a(g1,92) ' Blg1, 92)(a(g1)a(g2) f) (w).

Thus q is a projective representation of G' over W’ with multiplier o371,

Consider the natural map

W ®c w' — V,
it is easy to check that it is an isomorphism of projective G-representations. Furthermore,
since V is irreducible, W’ is also irreducible as a projective representation of G. On the
other hand, if g € A, then q(g) acts as scalar. Thus W’ has a structure as an irreducible
projective representation of G/A. Therefore, degW’ | (G : A) by Theorem [3.5| Thus
degV | da- (G : A). The theorem follows. O

The same argument proves the following result.

Theorem 3.10. Let a be a multiplier of G. Let A be a normal subgroup of G. Let d$ be
the least common multiple of the degrees of the irreducible projective representations of A
with associated multiplier . Then the degree of each irreducible projective representation
7 of G with multiplier o divides the number d5 - (G : A).

In particular, if « = 1 and A is an abelian normal subgroup of G, then the degree of
each irreducible linear representation of G divides the number (G : A).
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Corollary 3.11. Let A be a cyclic normal subgroup of G. Then the degree of each irre-
ducible projective representation m of G divides the number (G : A).

Proof. Since A is cyclic, H*(G,C*) = 0. Therefore d4 = 1 and the claim follows. O

The above results have useful applications. We explain the idea in the following simple
but nontrivial example.

Example 3.12. Let G = Dy, be the dihedral group of order 2m. Let C,,, be the normal
subgroup of G generated by an element of order m. By Corollary the degree of
each irreducible projective representation of G divides 2. Similarly as in Corollary we
obtain the fact that H2(Da,,, C*) = 0 if m is odd.

Assume now that m is even. Let a be a multiplier of Dy, such that [a] is nontrivial. (For
example, m = 4, H?(Dg,C*) = Z/27Z.) Then every irreducible projective representation
of Dy, with multiplier « has degree 2 and there are m/2 of them up to isomorphism.
(Note that in this case the number of conjugacy classes of G is m/2 + 3.) By the proof
of Theorem all these irreducible projective representations are induced from one-
dimensional projective representations of C,, with multiplier a¢,, .

3.3. Remarks on compact groups. In the following, G is a compact topological group.
Fix a Haar measure [ -dg on G.

A projective representation (m,V,a) of G over C is a continuous map 7 : G — U(V)
such that 7(z)m(y) = a(z,y)n(zy) for all z,y € G, where « is a multiplier on G with
|a(z,y)| =1 for any z,y € G, V is a Hilbert space, U(V) is the space of unitary operators
from V to V. Here continuous means that the map (g,v) — m(g)v is a continuous map
from G XV to V.

Most of the properties of projective representations of finite groups carry over to finite
dimensional projective representations of compact groups. The strategy in [10, Section
4.3] applies to the projective representations case.

Let (m,V,a) be a finite dimensional projective representation of G. Let (,) be a G-
invariant Hermitian inner product on V', which exists by the averaging argument. Given
v,w € V, the function f : g — (n(g)v,w) is a matriz coefficient of w. Let A,(G) be
the space spanned by all matrix coefficients of finite dimensional irreducible projective
representations of G with multiplier a. The following result can be proved by the same
strategy as for linear representations (see for example [4]) with an extra attention on the
multiplier «.

Theorem 3.13 (Peter-Weyl Theorem). Let L?(G) be the space of measurable functions
on G with [, |f(g)|?dg < co. Then Ay(G) is dense in L*(G).

As a consequence, every irreducible projective representation of G is finite dimensional
and the character theory provides a tool to study Repg for compact groups G as well.
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