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1. Introduction

In this short note, we explain the proof of the Breuil-Mézard conjecture and the geo-
metric Breuil-Mézard conjecture in the case K = Qp and n = 2 following [1, Section 2] and
[3, Section 3]. In order to illustrate the ideas of the proof, we focus on this specific case
and make certain technical assumptions. The notions on automorphic multiplicities and
cycles are introduced in the previous talks, so we will use these notions without repeating
the definitions.

Fix a prime number p > 3, a finite extension F/Fp, and a continuous representation
r̄ : GQp → GL2(F). Let E be a finite totally ramified extension of W (F)[1/p] with ring
of integers O and uniformiser π. We assume that E is sufficiently large; in particular, we
assume that ]F > 5, so that PGL2(F) is a simple group. Let τ : IQp → GL2(E) be an
inertial type, i.e., a representation with open kernel which extends to WQp . Let ε and ω
be the p-adic cyclotomic character and the mod p cyclotomic character respectively. Fix
integers a, b with b ≥ 0 and a character ψ : GQp → O× such that ψε = det r̄. We will

also write ψ for the character (A∞F )×/F× → O× corresponding to ψ via class field theory,
which we normalize so that uniformisers correspond to geometric Frobenius elements.

We let R�,ψ(a, b, τ, r̄) and R�,ψ
cr (a, b, τ, r̄) be the framed deformation O-algebra which are

universal for framed deformations of r̄ with determinant ψε, and are potentially semistable
(respectively potentially crystalline) with Hodge-Tate weights (a, a + b + 1) and inertia
type τ . Let σ( tau) and σcr(τ) denote the finite-dimensional irreducible E-representation
of GL2(Zp) corresponding to τ via Henniart’s inertia local Langlands correspondence.

We set σ(a, b, τ) = σ(τ) ⊗E deta SymmbE2 and σcr(a, b, τ) = σcr(τ) ⊗E deta SymmbE2.
We let La,b,τ (respectively Lcra,b,τ ) be a GL2(Zp)-stable O-lattice in σ(a, b, τ) (respectively

σcr(a, b, τ).) Write σm,n for the representation detm⊗Symmn F2 of GL2(Fp), 0 ≤ m ≤
p− 2, 0 ≤ n ≤ p− 1. Then we may write

(La,b,τ ⊗O F)ss
∼−→ ⊕m,nσ

am,n
m,n ,

and

(Lcra,b,τ ⊗O F)ss
∼−→ ⊕m,nσ

acrm,n
m,n ,

for some integers am,n and acrm,n. The Breuil-Mézard conjecture is the following.

Conjecture 1.1. There are integers µm,n(r̄) depending only on m, n, and r̄ such that for
any a, b, τ ,

e(R�,ψ(a, b, τ, r̄)/π) =
∑
m,n

am,nµm,n(r̄),

1
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and

e(R�,ψ
cr (a, b, τ, r̄)/π) =

∑
m,n

acrm,nµm,n(r̄),

The geometric version of the Breuil-Mézard conjecture is the following.

Conjecture 1.2. There are cycles Cm,n(r̄) depending only on m, n, and r̄ such that for
any a, b, τ ,

Z(R�,ψ(a, b, τ, r̄)/π) =
∑
m,n

am,nCm,n(r̄)

and

Z(R�,ψ
cr (a, b, τ, r̄)/π) =

∑
m,n

acrm,nCm,n(r̄)

Remark 1.3. As remarked in [3], or by [3, Lemma 4.3.1], the truth of the conjectures is
independent of the choice of ψ. We may assume that ψ is crystalline. If the Conjecture
1.1 is true for all a, b, τ , then µm,n(ρ̄) = 0 unless det ρ̄|IQp = ω2m+n+1. Furthermore, if

det ρ|IQp = ω2m+n+1, we must have

µm,n(ρ̄) = e(R�,ψ
cr (m̃, n,1, r̄)/π),

where m̃ is chosen so that ψ|IQp = ε2m̃+n+1.

Similarly, if the Conjecture 1.2 is true for all a, b, τ , then we must have

Cm,n(r̄) = Z(R�,ψ
cr (m̃, n,1, r̄)/π).

The main goal of this note is to explain the proofs of the following two theorems.

Theorem 1.4 (Kisin). If r̄ 6∼
(
ωχ ∗
0 χ

)
for any χ, then Conjecture 1.1 holds for r̄.

Theorem 1.5 (Emerton, Gee). If r̄ 6∼
(
ωχ ∗
0 χ

)
for any χ, then Conjecture 1.2 holds for

r̄.

The proofs of these two results are similar. We first realize local representations globally
using potential modularity theorems. Then we deduce the theorems using the global
argument made in [1]. For the first step, we recall the following result.

Proposition 1.6. Let r̄ : GQp → GL2(F) be a continuous representation. Then there is a
totally real field F and a continuous irreducible representation ρ̄ : GF → GL2(F) such that

(1) p splits completely in F ;
(2) ρ̄ is totally odd;
(3) ρ̄(GF ) = GL2(F);
(4) if v - p is a place of F then ρ̄|GFv is unramified;
(5) if v | p is a place of F then ρ̄|GFv ∼= r̄;
(6) [F : Q] is even;
(7) ρ̄ is modular.

Proof. This is [3, Proposition 3.2.1]. �
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This proposition finishes the first step. In the rest of this paper, we concentrate on
the global argument. In Section 2, we recall the definitions of quaternionic forms and
Hecke operators. We also prove some properties of these objects which are needed in
the argument. In Section 3, we explain the global patching. We construct an important
object M∞ and state the relation of M∞ and the Breuil-Mézard conjecture. In Section 4,
we sketch the proofs of the mains results.

2. Quaternionic forms and basic properties

2.1. Definition of quaternionic forms. Let F be a totally real field such that [F : Q]
is even. Let D be a quaternion algebra over F which is ramified at all the infinite places of
F and at finite places in the set Σ. We assume that Σ∩{v : v | p} = ∅. Fix OD a maximal

order of D and isomorphisms (OD)v := OD ⊗OF OFv
∼−→ M2(OFv) for each finite place

v 6∈ Σ. For each finite place v of F , fix a uniformizer πv of Fv. Write Σp = Σ∪ {v : v | p}.
Let U =

∏
v Uv ⊂ (D ⊗F A∞F )× be an open compact subgroup contained in

∏
v(OD)×v .

Assume that Uv = (OD)×v for all v ∈ Σp. In particular, Uv = GL2(OFv) for v | p.
Let A be a topological Zp-algebra. For each v | p, we fix a continuous representation

σv : Uv → Aut(Wσv) on a finite free A-module. We write Wσ = ⊗v|pWσv and denote
by σ :

∏
v|p Uv → Aut(Wσ) the corresponding representation. We regard σ as being a

representation of U by letting Uv act trivially if v - p. Let ψ : (A∞F )×/F× → A× be a
continuous character such that for any place v of F , σ on Uv∩O×Fv is given by multiplication

by ψ. Then Wσ becomes a U(A∞F )×-module if we let (A∞F )× act on Wσ via ψ.
Let Sσ,ψ(U,A) denote the set of continuous functions

f : D×\(D ⊗F A∞F )× →Wσ

such that

• f(gu) = σ(u)−1f(g) for u ∈ U , g ∈ (D ⊗F A∞F )×,
• f(gz) = ψ(z)−1f(g) for z ∈ (A∞F )×, g ∈ (D ⊗F A∞F )×.

We may write (D⊗F A∞F )× =
∐
i∈I D

×tiU(A∞F )× for some ti ∈ (D⊗F A∞F )× and some
finite index set I, then we have isomorphism

Sσ,ψ(U,A)
∼−→ ⊕i∈IW

(U(A∞F )×∩t−1
i D×ti)/F×

σ

f 7→ {f(ti)}i∈I .

We assume that U satisfies the following condition

(2.1) (U(A∞F )× ∩ t−1D×t)/F× = 1 for all t ∈ (D ⊗F A∞F )×.

Under this condition, we have the following lemma.

Lemma 2.1. With the notation as above,

(1) if B is an A-algebra, then

Sσ,ψ(U,A)⊗A B
∼−→ Sσ⊗AB,ψ(U,B)

is an isomorphism.
(2) Sσ,ψ(U,A) is a finite projective A-module, and the functor Wσ 7→ Sσ,ψ(U,A) is

exact in Wσ.
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2.2. Hecke operators. Let S be the union of the primes in Σp and the primes v of F such
that Uv ∈ D×v is not maximal compact. We assume that for v ∈ S\Σp, Uv ⊂ GL2(OFv)
is contained in the matrices whose reduction modulo πv is upper triangular and contains
those whose reduction is upper triangular unipotent.

Let TunivS,O = O[Tv, Sv, Uπw ]v 6∈S,w∈S\Σp be a commutative polynomial ring in the indicated

formal variables. We consider the left action of (D ⊗F A∞F )× on Wσ-valued functions on
(D⊗F A∞F )× given by (gf)(z) = f(zg). Then Sσ,ψ(U,O) becomes a TunivS,O -module with Sv

acting via the double coset Uv

(
πv 0
0 πv

)
Uv, Tv acting via the double coset Uv

(
πv 0
0 1

)
Uv,

and Uπw acting via the double coset Uw

(
πw 0
0 1

)
Uw. These operators do not depend

on the choice of πv. We write Tσ,ψ(U,O) or simply Tσ,ψ(U) for the image of TunivS,O in

EndSσ,ψ(U,O).

Definition 2.2. Let m be a maximal ideal of TunivS,O . We say that m is in the support of

(σ, ψ) if Sσ,ψ(U,O)m is non-zero. We say that m is Eisenstein if Tv − 2 ∈ m for all but
finitely many primes which split in some fixed abelian extension of F .

2.3. Some properties. Let Q be a finite set of primes of F which is disjoint from S, and
for each v ∈ Q fix a quotient ∆v of (OFv/πv)× of p-power order. Write ∆ =

∏
v∈Q ∆v.

Define open compact subgroups UQ and U−Q of U by setting (UQ)v = (U−Q )v = Uv if v 6∈ Q,
and setting

(U−Q )v = {g ∈ GL2(OFv) : g ≡
(
∗ ∗
0 ∗

)
(mod πv)}

and

(UQ)v = {g =

(
a b
c d

)
∈ (U−Q )v : ad−1 7→ 1 ∈ ∆v}

if v ∈ Q.
By definition, ∆

∼−→ U−Q/UQ and it acts naturally on Sσ,ψ(UQ,O) via the right multi-

plication of U−Q on D×\(D⊗F A∞F )×. For each h ∈ ∆ we denote by 〈h〉 the corresponding
operator.

Lemma 2.3. With the notation as above,

(1) the operator
∑

h∈∆〈h〉 on Sσ,ψ(UQ,O) induces an isomorphism∑
h∈∆

〈h〉 : Sσ,ψ(UQ,O)∆
∼−→ Sσ,ψ(U−Q ,O).

(2) Sσ,ψ(UQ,O) is a finite projective O[∆]-module.

Proof. By definition, we have

dimSσ,ψ(UQ,O) = [U−Q : UQ] dimSσ,ψ(U−Q ,O).

Thus property (2) follows from property (1). For t ∈ (D ⊗F A∞F )×, we have

(UQ(A∞F )× ∩ t−1D×t)/F× = (U−Q (A∞F )× ∩ t−1D×t)/F×.
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Hence it suffices to show that ∆ acts freely on D×\(D⊗F A∞F )×/UQ(A∞F )×. Suppose u ∈
U−Q fixes one of these double cosets, then there exists t ∈ (D⊗F A∞F )× and v ∈ UQ(A∞F )×

such that
uv−1 ∈ U−Q (A∞F )× ∩ t−1D×t = F×.

Hence u ∈ UQ. �

Fix a maximal ideal m ⊂ TunivS,O such that m is induced by a maximal ideal of Tσ,ψ(U),

and for v ∈ Q the Hecke polynomial X2−TvX+Norm(v)Sv has distinct roots in TunivS,O /m.
After increasing F, we may assume that m has residue field F, and then each of these
polynomials has two distinct roots αv, βv ∈ F.

Write SQ = S ∪ Q. Let mQ denote the ideal TunivSQ,O generated by m ∩ TunivSQ,O and the

elements Uπv − α̃v, where v ∈ Q and α̃v ∈ O is any lifting of αv.

Lemma 2.4. The ideal mQ induces proper, maximal ideals in Tσ,ψ(UQ) and Tσ,ψ(U−Q ). If

αvβv 6= Norm(v)±1 and Norm(v) ≡ 1 (mod π) for all v ∈ Q, then the natural map

(2.2) Sσ,ψ(U,O)m → Sσ,ψ(U−Q ,O)mQ

is an isomorphism of TunivSQ,O-modules.

Proof. The first claim follows from the fact that the Hecke polynomial X2 − TvX +
Norm(v)Sv acting on Sσ,ψ(U,O) ⊂ Sσ,ψ(U−Q ,O) vanishes at X = Uπv . To see the sec-
ond claim, it suffices to consider the case when Q consists of a single element v. We have
the following map

Sσ,ψ(U,O)m ⊕ Sσ,ψ(U,O)m → Sσ,ψ(U−Q ,O)m

(f1, f2) 7→ π∗1f1 + π∗2f2,
(2.3)

where π∗1 and π∗2 are induced by Id2 and

(
1 0
0 πv

)
respectively. By next lemma, this is an

isomorphism. Moreover, we have the following identity

(2.4) (Uπv −Bv)(π∗1f1 + π∗2f2) = (Uπv −Bv)(π∗1(f1 +Bvf2)).

To see this, it suffices to show

(Uπv −Bv)(π∗2f2) = (Uπv −Bv)(π∗1(Bvf2)))

= π∗1(TvBvf2)− π∗2(Bvf2)−Bvπ∗1Bvf2
(2.5)

This follows from the fact that B2
v − TvBv + Norm(v)Sv = 0. By identity (2.4), the map

Sσ,ψ(U,O)m → Sσ,ψ(U−Q ,O)mQ is surjective. Since both sides are finite free O-modules of
the same rank, it is an isomorphism. �

Lemma 2.5. The map (2.3) is an isomorphism.

Proof. Since both sides of (2.3) are finite free O-modules, it suffices to show that the map
is an isomorphism modulo π. First, we have the following identities.

• Tv = π1∗π
∗
2

• Norm(v) + 1 = π1∗π
∗
1

• Uπv(π∗1(f1)) = π∗1(Tv(f1))− π∗2(f1)
• Uπv(π∗2(f2)) = Norm(v)Svπ

∗
1(f2)



6 CHUANGXUN CHENG, HENDRIK VERHOEK

• U2
πv − TvUπv + Norm(v)Sv = 0

Assume that π∗1(f1) = π∗2(f2) (mod π), then

π1∗π
∗
1(f1) = π1∗π

∗
2(f2) (mod π)

⇒((Norm(v) + 1)f1 = Tvf2 (mod π)
(2.6)

On the other hand,

((Norm(v) + 1)Tvf1 − Tvf1 = π1∗(Uπv(π
∗
1(f1)))

= π1∗(Uπv(π
∗
2(f2))) = Norm(v)Sv(Norm(v) + 1)f2 (mod π)

(2.7)

Therefore,

Norm(v)Tvf1 = Norm(v)Sv(Norm(v) + 1)f2 (mod π)

⇒T 2
v f1 = Sv(Norm(v) + 1)Tvf2 = Sv(Norm(v) + 1)2f1 (mod π)

⇒(T 2
v − 4Sv)f1 = 0 (mod π)

(2.8)

Since αv 6= βv, so (T 2
v − 4Sv) 6= 0 (mod π). Thus f1 = 0 (mod π), and f2 = 0 (mod π).

The map modulo π is injective. Hence the map modulo π is an isomorphism and the
lemma follows. �

3. Global patching

3.1. Setup. Let ρ̄ : GF → GL2(F) be a continuous representation. Assume that ρ̄ satisfies
the following conditions.

(1) det ρ̄ = ψε (mod π).
(2) ρ̄ is unramified outside Σp, and has odd determinant.
(3) The restriction of ρ̄ to GF (ζp) is absolutely irreducible.
(4) If p = 5 and ρ̄ has projective image isomorphic to P GL2(F5), then the kernel of

projρ̄ does not fix F (ζ5).
(5) S\Σp contains exactly one prime v and Uv consists of matrices with upper trian-

gular, unipotent reduction. Moreover (1 − Norm(v)) ∈ F×, and the ratio of the
eigenvalues of ρ̄(Frobv) is not in {1,Norm(v),Norm(v)−1}. Here, Frobv denotes an
arithmetic Frobenius at v. (This condition makes sure that U satisfies condition
(2.1).)

Write VF for the underlying F-vector space of ρ̄ and fix a basis for VF. For v ∈ Σp,

we denote by R�
v the universal framed deformation O-algebra of ρ̄|GFv , and by R�,ψ

v the

quotient of R�
v corresponding to deformations with determinant ψε. When ρ̄ is absolutely

irreducible, we denote by RψF,S the quotient of the universal deformation O-algebra of ρ̄,

corresponding to deformations with determinant ψε. We denote by R�,ψ
F,S the complete

local O-algebra representing the functor which assigns to a local Artinian O-algebra A,
the set of isomorphism classes of tuples {VA, βv}v∈Σp , where VA is a deformation of VF to
A having determinant ψε, and βv is a lifting of the chosen basis of VF to an A-basis of VA.

For v ∈ Σp, the functor {VA, βw}w∈Σp 7→ {VA, βv} induces the structure of an R�,ψ
v -

algebra on R�,ψ
F,S . We set R�,ψ

Σp
= ⊗̂O,v∈ΣpR

�,ψ
v .
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Suppose that m ⊂ TunivS,O is a maximal non-Eisenstein ideal with associated representa-

tion ρ̄. That is, Tr ρ̄(Frobv) = Tv (mod m) for v 6∈ S. We assume that m is chosen so that
for v ∈ S\Σp, Uπv (mod m) is equal to one of the eigenvalues of ρ̄(Frobv). We assume
that Tσ,ψ(U)m 6= 0. In this case, by condition (5) above, Sσ,ψ(U,O)m is a rank two (not

necessarily free) Tσ,ψ(U)m-module. The induced map RψF,S → Tσ,ψ(U)m is surjective.

Before we explain the patching procedure, we recall the following result [2, Proposition
3.2.5],.

Proposition 3.1. Set g = dimFH
1(GF , ad

0ρ̄(1)) − [F : Q] + |Σp| − 1. For each positive
integer n, there exists a finite set of primes Qn of F , which is disjoint from S, and such
that

(1) If v ∈ Qn, then Norm(v) = 1 (mod pn) and ρ̄(Frobv) has distinct eigenvalues.

(2) |Qn| = dimFH
1(GF , ad

0ρ̄(1)). If SQn = S ∪Qn, then as an R�,ψ
Σp

-algebra, R�,ψ
F,SQn

is topologically generated by g elements. In particular, g ≥ 0.

3.2. Patching. For n ≥ 1 fix a set Qn as in Proposition 3.1. Let ∆v be the maximal
p-quotient of (OFv/πv)×. Write ∆Qn =

∏
v∈Qn ∆v. For each v ∈ Qn we fix a choice

of zero of polynomial X2 − TvX + Norm(v)Sv in F, and we denote mQn ⊂ TunivSQn ,O
the

corresponding maximal ideal. We apply the discussion of subsection 2.3 to each of these
Qn.

The universal property gives us a map of O-algebras RψF,SQn
→ Tσ,ψ(UQn)mQn such

that for v 6∈ SQn , the trace of the arithmetic Frobenius Frobv on the tautological RψF,SQn
-

representation of GF maps to Tv. We regard Sσ,ψ(UQn ,O)mQn as an RψF,SQn
-module via

this map. Moreover, RψF,SQn
has a natural structure of O[∆Qn ]-algebra so that the induced

O[∆Qn ]-structure on Sσ,ψ(UQn ,O)mQn is the one given in subsection 2.3. By Lemma 2.3,
this is a finite free O[∆Qn ]-module, whose rank does not depend on n. Denote this rank
by r. We set

Mn = R�,ψ
F,SQn

⊗
RψF,SQn

Sσ,ψ(UQn ,O)mQn

for n ≥ 0, and SQ0 = S.
Fix a filtration by F-subspaces

0 = L0 ⊂ L1 ⊂ · · · ⊂ Ls = Wσ ⊗O F = Wσ̄

on Wσ̄ such that Li is GL2(Zp)-stable, and for i = 0, 1, . . . , s−1, σi = Li+1/Li is absolutely
irreducible. This induces a filtration of Sσ,ψ(UQn ,O)mQn ⊗O F whose associated graded
pieces are the finite free F[∆Qn ]-modules Sσi,ψ(UQn ,F)mQn . We denote by

0 = M0
n ⊂M1

n ⊂ · · · ⊂M s
n = Mn ⊗O F

the induced filtration in Mn ⊗O F, obtained by extension of scalars.
Set j = 4|Σp| − 1, h = |Qn|, d = [F : Q] + 3|Σp|. Then g = h+ j− d. We fix surjections

(3.1) O[[y1, . . . , yh]]→ O[∆Qn ].

Then by Lemmas 2.3 and 2.4, we have M0
∼−→Mn/(y1, . . . , yh).
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The map RψF,SQn
→ R�,ψ

F,SQn
is formally smooth of relative dimension j. We extend the

maps (3.1) to maps

(3.2) O[[y1, . . . , yh+j ]]→ R�,ψ
F,SQn

in such a way thatR�,ψ
F,SQn

is identified withRψF,SQn
[[yh+1, . . . , yh+j ]]. We also fix surjections

of R�,ψ
Σp

-algebras

(3.3) R�,ψ
Σp

[[x1, . . . , xg]]→ R�,ψ
F,SQn

and a lifting of the maps in (3.2)

(3.4) O[[y1, . . . , yh+j ]]→ R�,ψ
Σp

[[x1, . . . , xg]].

We regard each Mn as a R�,ψ
Σp

[[x1, . . . , xg]]-module via (3.3) and the map RψF,SQn
→

Tσ,ψ(UQn)mQn .
For n ≥ 1, let

cn = (πn, (y1 + 1)p
n−1 − 1, . . . , (yh + 1)p

n−1 − 1, yp
n

h+1, . . . , y
pn

h+j) ⊂ O[[y1, . . . , yh+j ]].

Then by the proof of [2, Proposition 3.3.1], after replacing the sequence {Qn}n≥1 by a

subsequence, we may assume that there exist maps of R�,ψ
Σp

[[x1, . . . , xg]]-modules fn :

Mn+1/cn+1 → Mn/cn, which reduce modulo (y1, . . . , yh) + cn to the identity on M0/cn.
Moreover, if we give Mn/(cn, π) the filtration induced by that on Mn⊗OF, we may assume
that fn (mod π) is compatible with filtrations.

Passing to the limit over n, we obtain a map of R�,ψ
Σp

[[x1, . . . , xg]]-modules

M∞ →M∞/(y1, . . . , yh)
∼−→M0.

SinceMn is a finite freeO[∆Qn ][[yh+1, . . . , yh+j ]]-module, Mn/cn is a finite freeO[[y1, . . . , yh+j ]]/cn-
module, and M∞ is a finite free O[[y1, . . . , yh+j ]]-module. Moreover, M∞ ⊗O F has a
filtration

0 = M0
∞ ⊂M1

∞ ⊂ · · · ⊂M s
∞ = M∞ ⊗O F

and since M i
n/M

i−1
n is a finite free F[∆Qn ][[yh+1, . . . , yh+j ]]-module, M i

∞/M
i−1
∞ is a finite

free F[[y1, . . . , yh+j ]]-module for i = 1, . . . , s.

3.3. Some properties of M∞. For each place v | p of F , we choose integers av, bv with
bv ≥ 0, together with an inertial type τv. Let ∗ be either cr or nothing (the same choice

of ∗ being made for all v | p). We assume that 2av + bv is independent of v. Let R̄�,ψ
v :=

R∗(av, bv, τv, ρ̄|GFv ) be the quotient of R�,ψ
v as defined in Section 1. The action of R�,ψ

v on

Mn factors through R̄�,ψ
v follows from the fact that the Galois representations attached

to Hilbert modular eigenforms are compatible with the local Langlands correspondence,
as well as the compatibility of the local and global Jacquet-Langlands correspondences.

For v ∈ Σ, let γv : GFv → O× be an unramified character such that γ2
v = ψ|GFv and ρ̄|GFv

is an extension of γv by γv(1). In this case, by [2, Corollary 2.6.7], there is a quotient R̄�,ψ
v

of R�,ψ
v which is a domain of dimension 4, with R̄�,ψ

v formally smooth over E, and such

that for any finite extension E′/E and a map x : R�,ψ
v → E′ factors through R̄�,ψ

v if and
only if the corresponding representation Vx is an extension of γv by γv(1). Again, the fact
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that the action of R�,ψ
v on Mn factors through R̄�,ψ

v is a consequence of the compatibility
between the local and global Langlands and Jacquet-Langlands correspondence.

We write R̄�,ψ
Σp

= ⊗̂O,v∈ΣpR̄
�,ψ
v . The relative dimension of R̄�,ψ

v over O is 3 + [Fv :

Qp] = 4 if v | p, and 3 if v ∈ Σ. In particular, R̄�,ψ
Σp

has relative dimension [F : Q] + 3|Σp|
over O. Define

R̄∞ := R̄�,ψ
Σp

[[x1, . . . , xg]].

Remark 3.2. In order to prove the Breui-Mezard conjecture, it suffices to take Σ = ∅. We
consider the general case here since it has applications to modularity problems.

Lemma 3.3. The following conditions are equivalent.

(1) M∞ is a faithful R̄∞-module.
(2) M∞ is a faithful R̄∞-module which has rank 2 at all generic point of R̄∞.
(3) e(R̄∞/π) = 1

2e(M∞/π, R̄∞/π).

(4) e(R̄∞/π) ≤ 1
2e(M∞/π, R̄∞/π).

Moreover, if these conditions hold, and ρ : GF → GL2(O) is a deformation of ρ̄ such
that for v ∈ Σp, ρ|GFv is an extension of γv by γv(1) if v ∈ Σ, and ρ|GFv is potentially
semi-stable of type (av, bv, τv, ψ) if v | p, then ρ is modular, and arises from an eigenform
in Sσ,ψ(U,O)⊗O E.

Proof. This is [1, Lemma 2.2.10]. Write O[[∆∞]] = O[[y1, . . . , yh+j ]], and denote by T∞
the image of R̄∞ in EndO[[∆∞]](M∞). Since M∞ is finite free over O[[∆∞]], T∞ is a
finite torsion free O[[∆∞]]-module, and hence all its components have relative dimension
h+ j over SpecO. Let Z be such a component, then Z surjects onto SpecO[[∆∞]]. This
implies that the rank of M∞|Z is 2. (Otherwise, M0 = M∞ ⊗O[[∆∞]] O would have a fibre

of dimension a 6= 2 over some point of SpecRψF,S [1/p], and Sσ,ψ(U,O)m would have rank

a 6= 2 over some point of Tσ,ψ(U)m, which is impossible.) Thus, if M∞ is a faithful T∞
module, its rank is exactly two on each component of SpecT∞. This shows (1)⇔ (2).

Since R̄∞ is pure of relative dimension d+ g = h+ j over O, the inclusion SpecT∞ ↪→
Spec R̄∞ identifies SpecT∞ with a union of irreducible components of Spec R̄∞. Thus
e(T∞/π) ≤ e(R̄∞/π). The equality holds if and only if the inclusion is an isomorphism.

On the other hand, we have

e(M∞/π, R̄∞/π) = e(M∞/π,T∞/π) (since dim R̄∞ = dimT∞)

= 2e(T∞/π) (since generically M∞ has rank two.)

Therefore, (1)⇔ (2)⇔ (3)⇔ (4).
Suppose that the conditions (1)-(4) hold. Then ρ induces a map T∞ = R̄∞ → O,

which kills the ideal (y1, . . . , yh+j), and hence a map ξ : T∞/(y1, . . . , yh+j)[1/p] → E.
Since M∞ has positive rank on all components of T∞, the fibre of M0 over the closed
point of T∞/(y1, . . . , yh+j)[1/p] corresponding to ξ is non-empty, and ξ induces a map
Tσ,ψ(U)m → E, which corresponds to the required eigenform in Sσ,ψ(U,O)⊗O E. �

4. Proof of the main results

In this section, we sketch the proof of the main results in the potentially semistable
case. The proof in the potentially crystalline case is the same. We assume that the finite
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set Σ is empty and the character ψ is crystalline. For any Serre weight σm,n, as in Remark
1.3 we define

µm,n(ρ̄) = e(R�,ψcr
cr (m̃, n,1, r̄)/π)

and

Cm,n(ρ̄) = Z(R�,ψcr
cr (m̃, n,1, r̄)/π).

First, we calculate the Hilbert-Samuel multiplicities of the modules M i
∞/M

i−1
∞ . For

i = 1, . . . , s, write σi for the representation Li/Li−1. Then we may write σi = ⊗v|pσmi,v ,ni,v
where (mi,v, ni,v) ∈ {0, 1, . . . , p − 2} × {0, 1, . . . , p − 1} and σmi,v ,ni,v is an irreducible

constituent of Wσv/π. Let R̄�,ψ
v,i = R�,ψ

cr (m̃i,v, ni,v,1, ρ̄|GFv )/π for v | p. Define

R̄�,ψ
Σp,i

[[x1, . . . , xg]] = ⊗̂v∈ΣpR̄
�,ψ
v,i

and

R̄i∞ = R̄�,ψ
Σp,i

[[x1, . . . , xg]].

Lemma 4.1. The action of R∞ on M i/M i−1 factors through R̄i∞.

Proof. It suffices to show that for a fixed prime v0|p, the action of R�,ψ
v /π on M i/M i−1

factors through R̄�,ψ
v0,i

= R�,ψ
cr (m̃i,v0 , ni,v0 ,1, ρ̄|GFv0 )/π. Fix i and a prime v0|p. Let

σ̃i,v0 = Symmni,v0 O2 ⊗ ω̃mi,v0 ◦ det .

For v 6= v0, let σ̃i,v be a representation of GL2(OFv) of the form Symmni,v0 O2 ⊗ σ̃smi,v ,

where σ̃smi,v is a smooth representation of GL2(OFv) on a finite free O-module, such that

σ̃smi,v has an O×-valued central chsracter, and σ̃i,v⊗OF admits σmi,v ,ni,v as a Jordan-Hölder

factor. (Indeed, since HomF(Symmni,v F2 ⊗ detmi,v ,Symmni,v0 F2) is a smooth GL2(OFv)-
representation and can therefore be embedded into a sum of a finite number of copies of
the space of smooth F-valued functions on GL2(OFv), the representation σ̃smi,v exists.) Let
σ̃i = ⊗v|pσ̃i,v.

Next we choose a continuous character ψ̃ : (A∞F )×/F× → O× such that ψ̃ ≡ ψ (mod π).

We also choose a compact open subgroup Ũ =
∏
v Ũv ⊂ UQn such that Ũv is maximal

compact for v ∈ Σp and for all v the restriction σ̃i,v|Ũv∩O×Fv is given by multiplication by

ψ̃.
Let S̃ be the union of the primes in SQn and the primes where Ũv is not maximal.

Denote by m̃ the maximal ideal in Tuniv
S̃,O corresponding to ρ̄. Then

M i
n/M

i−1
n = R�,ψ

F,SQn
⊗
RψF,SQn

Sσi,ψ(UQn ,F)mQn

is a subquotient of R�,ψ̃
F,S̃
⊗
Rψ̃
F,S̃

Sσ̃i,ψ̃(Ũ ,O)m̃⊗O F. On the latter module, the action of R�
v0

factors through R�,ψ
cr (m̃i,v0 , ni,v0 ,1, ρ̄|GFv0 ). This proves the lemma with ψi,v0 = ψ̃|GFv .

On the other hand, R�,ψ
cr (m̃i,v0 , ni,v0 ,1, ρ̄|GFv0 )/π is independent of the character ψi,v0 , the

lemma follows. �
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Proposition 4.2. The R̄∞-module M i
∞/M

i−1
∞ is non-zero if and only if for each v | p we

have µmi,v ,ni,v(ρ̄|GFv ) 6= 0. If this condition holds for all v | p, and for each v | p we have

ρ̄|GFv 6∼
(
ωχ ∗
0 χ

)
for any χ, then

(4.1)
1

2
e(M i

∞/M
i−1
∞ , R̄∞/π) =

∏
v|p

µmi,v ,ni,v(ρ̄|GFv ) := eΣp .

Proof. This is [1, Proposition 2.2.14]. For simplicity, we give the proof only for those ρ̄
where ρ̄|GFv is not a direct sum of two characters for each v | p. For the proof for the

general case, see [1]. Since M i
∞ is flat over O[[∆∞]], the image of R̄i∞ in EndO[[∆∞]](M

i
∞)

has relative dimension h + j over O. Thus the support of M i
∞ consists all of Spec R̄i∞.

Since R̄i∞ is irreducible and generically reduced, the same computation as in Lemma 3.3
gives us

e(M i
∞, R̄

i
∞) = 2e(R̄i∞) = 2e(R̄�,ψ

Σp,i
) = 2

∏
v∈Σp

e(R̄�,ψ
v,i ) = 2eΣp .

The proposition follows. �

Theorem 4.3. Suppose that for each v | p, ρ̄|GFv 6∼
(
ωχ ∗
0 χ

)
for any χ,. Then

(1) M∞ is a faithful R̄∞-module. In particular, the conditions in Lemma 3.3 hold.
(2) For each v | p, we have

e(R̄�,ψ
v /π) = µ(av, bv, τv, ρ̄|GFv ).

In particular, Theorem 1.4 holds.

Proof. (1) Using the results in [1, Section 1.7], which are explained in the previous talks,
we have

e(R̄∞/π) = eΣ

∏
v|p

e(R̄�,ψ
v /π) ≤ eΣ

∏
v|p

µ(av, bv, τv, ρ̄|GFv ).

On the other hand, by the above proposition, we have

1

2
e(M∞/π, R̄∞/π) =

1

2

s∑
i=1

e(M i
∞/M

i−1
∞ , R̄∞/π)

=eΣ

s∑
i=1

∏
v|p

µmi,v ,ni,v(ρ̄|GFv )

=eΣ

∏
v|p

µ(av, bv, τv, ρ̄|GFv ).

Hence

e(R̄∞/π) ≤ 1

2
e(M∞/π, R̄∞/π).

The result follows from Lemma 3.3.
(2) We have inequality

e(R̄�,ψ
v /π) ≤ µ(av, bv, τv, ρ̄|GFv ).
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If this inequality is strict, then we must have

e(R̄∞/π) <
1

2
e(M∞/π, R̄∞/π).

This contradicts to Lemma 3.3. �

Proof of Theorem 1.5. Note that we may assume Σ = ∅. We have

Z(R̄∞/π) = (
∏
v|p

Z(R̄�,ψ
v /π)× Z(SpecF[[x1, . . . , xg]]).

On the other hand,

Z(R̄∞/π) =
1

2
Z(M∞/π) =

1

2

s∑
i=1

Z(M i
∞/M

i−1
∞ )

≥
s∑
i=1

Z(R̄i∞/π)

=(
∏
v|p

∑
m,n

am,nCm,n)× Z(SpecF[[x1, . . . , xg]]).

(4.2)

Note that the inequality on cycles gives a corresponding inequality on multiplicities, which
is in fact an equality. Therefore, the above inequality is an equality, and we deduce that∏

v|p

Z(R̄�,ψ
v /π) =

∏
v|p

∑
m,n

am,nCm,n.

Therefore
Z(R̄�,ψ

v /π) =
∑
m,n

am,nCm,n

as required. �
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