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Abstract. In this paper, we study the mod p representations of D×, where D is a
division algebra over a finite extension F of Qp. Moreover, in the case D is a quater-
nion algebra, we construct a bijection between rank two mod p representations of D×

and rank two mod p representations of GF . We also study the deformations of mod p
representations of D×.

1. Introduction and notation

Let p > 2 be a prime number. Let F be a finite extension of Qp. Let D be a division
algebra over F . In this note, we classify the irreducible mod p representations of D×. This
is Theorem 2.9. Using this classification, we shall see that there is a bijection between n-
dimensional irreducible mod p representations of D× and n-dimensional irreducible mod p
representations of the absolute Galois group GF = Gal(F̄ /F ). This bijection is explained
in Subsection 2.4. If furthermore D is a quaternion algebra, we classify all rank two mod p
representations of D× and extend the above bijection by computing certain Ext1 groups.
See Theorem 3.1 and Theorem 3.4.

In this paper, F denotes a finite extension of Fp. We assume that F is sufficiently large
in the sense that it is the coefficient ring for all the representations we consider in the
following and it contains all the images of embeddings k ↪→ F̄ where k is the residue field
of F or D. We write R× for the group of invertible elements of a ring R.

2. mod p representations of D×

2.1. Properties of local division algebras. Recall that F is a finite field extension of
Qp. We let

OF = the valuation ring in F ,

pF = the maximal ideal of OF ,
kF = OF /pF , the residue field of F ,

q = pf = qF = |kF |, the cardinality of kF .

The unit group O×F has a filtration

O×F ⊃ 1 + pF ⊃ 1 + p2
F ⊃ · · · .

We also write

vF : F× → Z
for the canonical surjective valuation of F .
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Let D be a finite dimensional central F -division algebra with dimF D = n2. The
homomorphism vF : F× → Z extends to a surjective homomorphism

vD : D× → Z

which is indeed a valuation. Extend vD to D by defining vD(0) =∞. Let

OD = {x ∈ D | vD(x) ≥ 0},
pD = {x ∈ D | vD(x) ≥ 1},
piD = {x ∈ D | vD(x) ≥ i},
kD = OD/pD.

Lemma 2.1. With the above notation,

(1) OD is a ring, and it is the unique maximal order in D.
(2) pD is the unique maximal ideal of OD. Moreover, any left (or right) OD lattice

spanning D over F is of the form piD for some uniquely determined i ∈ Z.
(3) The residue ring kD is a field, and indeed an extension of kF of degree n.

We have a chain of subgroups

O×D ⊃ 1 + pD ⊃ 1 + p2
D ⊃ · · · ,

each of them is compact, open, and normal in D×. We have canonical isomorphisms

O×D/1 + pD ∼= k×D,

1 + piD/1 + pi+1
D
∼= piD/p

i+1
D ,

and therefore, for i ≥ 1, 1 + piD/1 + pi+1
D is an elementary abelian p-group of order qn. In

particular, we have a short exact sequence

(2.1) 1→ 1 + pD → O×D → k×D → 1

with the kernel 1 + pD a pro-p group.
We fix uniformizers ωF and ωD for OF and OD respectively.

Lemma 2.2. With the above notation,

(1) pFOD = pnD.
(2) F×O×D is a subgroup of D× with index n. Therefore, D× is compact modulo its

center F×.
(3) D× acts on k×D by conjugation. In particular, we have

ωDxω
−1
D = xq, x ∈ kD.

2.2. 1-dimensional representations. Write Nrd : D× → F× for the reduced norm. We
have a short exact sequence

1→ D×Nrd=1 → D×
Nrd−−→ F× → 1.

Just as in the GL2 case, D×Nrd=1 is the commutator of D×, every character of D× factor
through Nrd. Therefore, there is a one to one correspondence between characters of D×

and characters of F×.
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Lemma 2.3. The following diagram is commutative.

O×D −−−−→ k×D

Nrd

y yNorm

O×F −−−−→ k×F

where Norm : k×D → k×F is the map x 7→ x1+q+···+qn−1
.

Proof. Easy to check from the definition. �

Since 1+pD is a pro-p group, every mod p representation of 1+pD is trivial. Therefore,
every representation of O×D factor through π : O×D → k×D. In particular, every irreducible

mod p representation of O×D is 1-dimensional. We may (and will) identify the mod p

characters of O×D and of k×D. We say a character χ : k×D → F× or χ : O×D → F× of order

a if χ = χq
a

and a is the smallest positive integer satisfies this condition. Note that if chi
is of order a, then a|n.

2.3. Higher dimensional representations. We show that every irreducible mod p rep-
resentation of D× has dimension dividing n. We start with the following lemma.

Lemma 2.4. A smooth irreducible admissible representation of D× over E always has a
central character.

Proof. Let π be such a representation and H ⊂ O×D be an open subgroup such that πH 6= 0.

Because π is admissible, πH has finite dimension over E, and there is v ∈ πH such that F×

acts on v by multiplication by a character. As π is irreducible, π = 〈D×v〉. The lemma
follows since F× is the center of D×. �

Let π be a b-dimensional irreducible representation of D×. By the above lemma, we
may assume that π has trivial central character. Then π|F×O×D decomposes to a direct sum

of b 1-dimensional representations of F×O×D, say, π|F×O×D = ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρb. (Indeed,

each subquotient of π|F×O×D is a representation of O×D. Therefore, they factor through

O×D → k×D.) By Frobenius reciprocity, π is a subquotient of IndD
×

F×O×D
ρ1. By Lemma 2.2,

π is at most n dimensional. As the representation π∆ := π(ωD · ω−1
D ) is isomorphic to π,

and ρ∆ = ρq by Lemma 2.2, we have {ρi}ni=1 = {ρqi }ni=1.

We construct all irreducible representations of D× from character of O×D. Let χ : k×D →
F× be a character of k×D. We may and will consider it as a character of O×D via the

map O×D → k×D. Extending χ to a character of F×O×D by triviality, we then obtain a

representation πχ = IndD
×

F×O×D
χ of D×.

Lemma 2.5. πχ = IndD
×

F×O×D
χ is reducible if and only if χ(x) = χ(xq

a
) for some integer

a|n and a < n.

Proof. We know that {ωiD}
n−1
i=0 is a set of representatives ofD×/F×O×D. The representation

IndD
×

F×O×D
χ is reducible if and only if there exists an positive integer a such that χ ∼= χω

a
D ,

i.e., χ ∼= χq
a
. The integer a must divide n since χ ∼= χq

n
. �
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Remark 2.6. Assume that χ is a character of order a with a|n, then χ extends to a character
of F×O×D〈ωaD〉 by letting χ(ωaD) = 1. Thus

πχ ∼= (IndD
×

F×O×D〈ω
a
D〉
χ)n/a.

In the above formula, IndD
×

F×O×D〈ω
a
D〉
χ is an a-dimensional irreducible representation of D×.

Lemma 2.7. Assume that χi and χ′ are two characters of k×D. Then πχ ∼= πχ′ if and only

if χ′ = χq
a

for some integer a|n.

Proof. First, if χ′ = χq
a
, it is easy to check that πχ′ = π

ωa
D

χ
∼= πχ. On the other hand, if

πχ′ ∼= πχ, then

πχ|F×O×D
∼= πχ′ |F×O×D .

Thus {χqi} = {(χ′)qi}. The lemma follows. �

Fix an embedding k×D → F̄×p . Let χi be the character of k×D with the form x 7→ xi. Let

Q = 1 + q + · · ·+ qn−1.

Lemma 2.8. With the above notation, we have

(IndD
×

F×O×D
χ)⊗ (µ ◦Nrd) ∼= IndD

×

F×O×D
(χ · χQ).

Here, µ : F× → k×F is the residue map with µ(ωF ) = 1.

Proof. By Lemma 2.3, χ⊗ (µ ◦Nrd) ∼= χ · χQ, the lemma follows. �

From the above discussion, we have the following theorem.

Theorem 2.9. The irreducible mod p representations of D× are the following:

(1) the one-dimensional representations κ ◦Nrd,
(2) the a-dimensional representations

(IndD
×

F×O×D
χ)⊗ (κ ◦Nrd),

where χ is a level a character, a|n.

Here κ : F× → F× is a character of F×.

2.4. Galois representations. In this section, we recall the classification of n-dimensional
irreducible mod p representations of GF .

Let ρ be a n-dimensional irreducible representation of GF . Let I and Iw be the inertia
and the wild inertia subgroup of GF . Note that they are actually normal subgroups.
Let ρI

w
be the subspace of ρ where Iw acts trivially. For w ∈ Iw, g ∈ GF , v ∈ ρI

w
,

wgv = g(g−1wg)v = gv. So ρI
w

is a subrepresentation of ρ. On the other hand, Iw is a
pro-p group, ρI

w
is not trivial. Therefore, ρI

w
= ρ and ρ|I factor through I/Iw. Thus ρ|I

is the direct sum of n fundamental characters ψ1 ⊕ · · · ⊕ ψn. Let f ∈ GF be a lift of the
Frobenius element (x 7→ xq). As ρf := ρ(f · f−1) is isomorphic to ρ, we have ρ|I ∼= ρf |I .
That is

ψ1 ⊕ · · · ⊕ ψn = ψq1 ⊕ · · · ⊕ ψ
q
n.

Arguing as before, we see that {ψi} = {ψqi} for some level n fundamental character ψ.
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By the above discussion, the n-dimensional irreducible mod p representations of D×

are parameterized by order n characters k×D → F× and the characters F× → F×. The
n-dimensional irreducible mod p representations of GF are parameterized by level n char-
acters I → F× and characters GF → F×. If we fix an embedding k×D ↪→ F× and the Artin

map F× ∼= GabF , we obtain a natural bijection between the n-dimensional irreducible mod
p representations of D× and of GF .

3. Quaternion algebra case

3.1. Two dimensional mod p representations of D×. Let D be a quaternion algebra
over F . Then we have the following result.

Theorem 3.1. Let π : D× → GL2(E) be a continuous representation, then ρ is of one of
the following forms:

(1) π is irreducible and

π ∼= (IndD
×

F×O×D
χi)⊗ (κ ◦Nrd),

where 1 ≤ i < q. In this case,

π|O×D
∼= χi ⊕ χqi .

(2) π is reducible and

π|O×D
∼=
(
χaq+1 ∗

0 χbq+1

)
,

where a and b are two integers. In this case, we may write

π|O×D
∼=
(
χcq+1 ∗

0 1

)
⊗ η

for some η extends to D× and some integer c with 0 ≤ c ≤ q − 2.

Proof. We only have to prove part (2). Since π is reducible, hence in particular π|O×D
is reducible. Assume that it is of the form

(
δ1 ∗
0 δ2

)
where δ1 and δ2 are continuous

characters of O×D that extend to D×. Therefore, δi = δqi and each δi factors through

O×D → k×D → k×F . The result follows. �

Lemma 3.2. We have an isomorphism

IndD
×

F×O×D
χi ∼= (IndD

×

F×O×D
χq+1−i)⊗ (µ ◦Nrd)i−1.

Proof. It suffices to check that xi = xq(q+1)−i+(q+1)(i−1) for x ∈ k×D, which is clear. �

The following result is well known, see for example Proposition 2.7 and Corollary 2.9
of [4].

Theorem 3.3. Let ρ : GF → GL2(E) be a continuous representation, let w1, w2 : I → E×

be fundamental characters of level q and qf respectively. Then ρ is of one of the following
form:
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(1) ρ is irreducible and:

ρ|I ∼=
(
wa2 0
0 wqa2

)
⊗ η

for some character η that extends to GF and some integers 1 ≤ a < q.
(2) ρ is reducible and:

ρ|I ∼=
(
wc1 ∗
0 1

)
⊗ η

for some character η that extends to GF and some integers 0 ≤ c ≤ q − 2.

We can define a bijection between rank two semisimple mod p representations of D×

and rank two semisimple mod p representations of GF as follows.

Irreducible representations:

(IndD
×

F×O×D
χa)⊗ (η ◦Nrd)↔ ρ|I ∼=

(
wa2 0
0 wqa2

)
⊗ η

Reducible representations:

π|O×D
∼=
(
χcq+1 ∗

0 1

)
⊗ (η ◦Nrd)↔ ρ|I ∼=

(
wc1 ∗
0 1

)
⊗ η

Here η : F× → F×, and we consider it also as a character of GF via local class field theory.
We can extend this bijection to a bijection between all two dimensional mod p represen-

tations of D× and GF . First note that we may extend w1 to a character of GF by letting
w1(Frob) = 1, where Frob is a lifting of the Frobenius element. We may also extend χq+1

to a character of D× by letting χq+1(ωD) = 1. We have the following result.

Theorem 3.4. For 1 ≤ c ≤ q − 1, there exists a bijection H1(GF , w
c
1) ∼= H1(D×, χcq+1).

Therefore, there is a bijection between two dimensional mod p representations of D× and
two dimensional mod p representations of GF , under which the irreducible ones corresponds
to irreducible ones.

Proof. We have the following short exact sequence

0→ I → GF → Ẑ→ 0,

which induces
0→ I/Iw → GF /I

w → Ẑ→ 0.

Since Iw is a pro-p group, it acts trivially on w1.

H1(GF , w
c
1) ∼= H1(GF /I

w, wc1).

The exact sequence of low degree terms in Lyndon-Hochschild-Serre spectral sequence is

0→ H1(Ẑ, (wc1)I/I
w

)→ H1(GF /I
w, wc1)→ H1(I/Iw, wc1)Ẑ

→ H2(Ẑ, (wc1)I/I
w

)→ H2(GF /I
w, wc1).

(3.1)

Similarly, let Γ = D×/1 + ωDOD, we also have

H1(D×, χq+1) ∼= H1(Γ, χq+1)

and the following exact sequence

1→ k×D = (OD/ωD)× → Γ
vD−−→ Z→ 0



MOD p REPRESENTATIONS OF LOCAL DIVISION ALGEBRAS 7

The Lyndon-Hochschild-Serre spectral sequence in this case gives us the following exact
sequence

0→ H1(Z, (χcq+1)k
×
D)→ H1(Γ, χcq+1)→ H1(k×D, χ

c
q+1)Z

→ H2(Z, (χcq+1)k
×
D)→ H2(Γ, χcq+1).

(3.2)

If we identity wc1 = χcq+1 as vector spaces, then the Frob-action on wc1 corresponds to the

ωD-action on χcq+1 and the I/Iw-action on wc1 corresponds to the k×D-action on χcq+1. Thus

Hj(Ẑ, (wc1)I/I
w

) ∼= Hj(Z, (χcq+1)k
×
D) for j = 1, 2. On the other hand, H1(I/Iw, wc1)Ẑ ∼=

H1(k×D, χ
c
q+1)Z since Frob ·g · Frob−1 = gq for any g ∈ GF and ωD · x · ω−1

D = xq for any
x ∈ D. The lemma follows by five-lemma. �

3.2. Some remarks. We make some remarks on representations of D×.

3.2.1. Representations of D× in characteristic zero. Let π : D× → GL(V ) be an irre-
ducible representation of D× over a complex vector space. By the same argument as that
of Lemma 2.4, π admits a central character. On the other hand, we know that D×/F× is
compact. Therefore π is finite dimensional and Kerπ contains an open normal subgroup
of D×. In particular, π is trivial on a unit group UmD = 1 + pmD ⊂ D× for some m ≥ 0.
Starting with this fact, we may parameterize all complex irreducible representations of
D×. See Section 54 of [5] for this parametrization.

Let K be a sufficiently large finite extension of Qp with residue field F. Let V be a vector
space over K and π : D× → GL(V ) an irreducible smooth admissible representation of
D×. Similarly, π admits a central character. On the other hand, we know that D×/F× is
compact. Therefore π is finite dimensional. Yet in this case, it is not true that π is trivial
on a unit group UmD = 1 + pmD ⊂ D× for some m ≥ 0. This is because that the topology
on 1 + pD and the topology on 1 + pK are compatible in some sense. One trivial example
is the reduced norm Nrd : D× → F× whose kernel is D×Nrd=1.

3.2.2. A mod p Jacquet-Langlands correspondence for GL2(Qp). In this subsection, we
assume that F = Qp. Let Z denote the center of GL2(Qp), let r be an integer with
0 ≤ r ≤ p − 1 and Symmr E2 be the representation of GL2(Zp) (via the natural projec-
tion GL2(Zp) → GL2(Fp)) and extend it to Z · GL2(Zp) by letting p act trivially. For
convenience, we write σr = Symmr E2. Denote

c- Ind
GL2(Qp)
GL2(Zp)Z σr

the E-vector space of functions f : GL2(Qp)→ Symmr E2 with compact support modulo
Z and f(kg) = σr(k)f(g) (for k ∈ GL2(Zp)Z and g ∈ GL2(Qp)). It is a GL2(Qp)
representation with right regular action.

Lemma 3.5. EndGL2(Qp)(c- Ind
GL2(Qp)
GL2(Zp)Z σr) ' E[T ].

This lemma is a special case of Proposition 8 of [2]. See Section 3.1 of [2] for the
definition of the operator T and more details. The following theorem is proved in [2] and
[3].
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Theorem 3.6. The smooth irreducible admissible mod p representations of GL2(Qp) over
E are the following:
(1) the one dimensional representations χ ◦ det
(2) the representations

(c- Ind
GL2(Qp)
GL2(Zp)Z σr/(T − λ))⊗ (χ ◦ det)

for 0 ≤ r ≤ p− 1, λ ∈ E× and (r, λ) 6∈ {(0,±1), (p− 1,±1)}
(3) the representations

Ker(c- Ind
GL2(Qp)
GL2(Zp)Z 1/(T − 1) � 1)⊗ (χ ◦ det)

(4) the representations

(c- Ind
GL2(Qp)
GL2(Zp)Z σr/T )⊗ (χ ◦ det).

Definition 3.7. Let r ∈ {0, ..., p − 1}, κ : Q×p → F̄×p . With the above notation, we give
the following modulo p Jacquet-Langlands correspondence:
(1)

κ ◦Nrd↔ Ker(c- Ind
GL2(Qp)
GL2(Zp)Z 1/(T − 1) � 1)⊗ (κ ◦ det),

(2)

(IndD
×

F×O×D
χr+1)⊗ (κ ◦Nrd)↔ (c- Ind

GL2(Qp)
GL2(Zp)Z σr/T )⊗ (κ ◦ det).
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