MOD *p* REPRESENTATIONS OF LOCAL DIVISION ALGEBRAS OVER *p*-ADIC FIELDS

CHUANGXUN CHENG

ABSTRACT. In this paper, we study the mod p representations of D^{\times} , where D is a division algebra over a finite extension F of \mathbb{Q}_p . Moreover, in the case D is a quaternion algebra, we construct a bijection between rank two mod p representations of D^{\times} and rank two mod p representations of G_F . We also study the deformations of mod p representations of D^{\times} .

1. INTRODUCTION AND NOTATION

Let p > 2 be a prime number. Let F be a finite extension of \mathbb{Q}_p . Let D be a division algebra over F. In this note, we classify the irreducible mod p representations of D^{\times} . This is Theorem 2.9. Using this classification, we shall see that there is a bijection between ndimensional irreducible mod p representations of D^{\times} and n-dimensional irreducible mod prepresentations of the absolute Galois group $G_F = Gal(\bar{F}/F)$. This bijection is explained in Subsection 2.4. If furthermore D is a quaternion algebra, we classify all rank two mod prepresentations of D^{\times} and extend the above bijection by computing certain Ext¹ groups. See Theorem 3.1 and Theorem 3.4.

In this paper, \mathbb{F} denotes a finite extension of \mathbb{F}_p . We assume that \mathbb{F} is sufficiently large in the sense that it is the coefficient ring for all the representations we consider in the following and it contains all the images of embeddings $k \hookrightarrow \overline{\mathbb{F}}$ where k is the residue field of F or D. We write R^{\times} for the group of invertible elements of a ring R.

2. Mod p representations of D^{\times}

2.1. Properties of local division algebras. Recall that F is a finite field extension of \mathbb{Q}_p . We let

$$\mathcal{O}_F$$
 = the valuation ring in F ,
 \mathfrak{p}_F = the maximal ideal of \mathcal{O}_F ,
 $k_F = \mathcal{O}_F/\mathfrak{p}_F$, the residue field of F ,
 $q = p^f = q_F = |k_F|$, the cardinality of k_F

The unit group \mathcal{O}_F^{\times} has a filtration

 $\mathcal{O}_F^{\times} \supset 1 + \mathfrak{p}_F \supset 1 + \mathfrak{p}_F^2 \supset \cdots$

We also write

$$v_F: F^{\times} \to \mathbb{Z}$$

for the canonical surjective valuation of F.

CHUANGXUN CHENG

Let D be a finite dimensional central F-division algebra with $\dim_F D = n^2$. The homomorphism $v_F : F^{\times} \to \mathbb{Z}$ extends to a surjective homomorphism

$$v_D: D^{\times} \to \mathbb{Z}$$

which is indeed a valuation. Extend v_D to D by defining $v_D(0) = \infty$. Let

$$\mathcal{O}_D = \{ x \in D \mid v_D(x) \ge 0 \},$$

$$\mathfrak{p}_D = \{ x \in D \mid v_D(x) \ge 1 \},$$

$$\mathfrak{p}_D^i = \{ x \in D \mid v_D(x) \ge i \},$$

$$k_D = \mathcal{O}_D / \mathfrak{p}_D.$$

Lemma 2.1. With the above notation,

- (1) \mathcal{O}_D is a ring, and it is the unique maximal order in D.
- (2) \mathfrak{p}_D is the unique maximal ideal of \mathcal{O}_D . Moreover, any left (or right) \mathcal{O}_D lattice spanning D over F is of the form \mathfrak{p}_D^i for some uniquely determined $i \in \mathbb{Z}$.
- (3) The residue ring k_D is a field, and indeed an extension of k_F of degree n.

We have a chain of subgroups

$$\mathcal{O}_D^{\times} \supset 1 + \mathfrak{p}_D \supset 1 + \mathfrak{p}_D^2 \supset \cdots$$

each of them is compact, open, and normal in D^{\times} . We have canonical isomorphisms

$$\mathcal{O}_D^{\times}/1 + \mathfrak{p}_D \cong k_D^{\times}, \\ 1 + \mathfrak{p}_D^i/1 + \mathfrak{p}_D^{i+1} \cong \mathfrak{p}_D^i/\mathfrak{p}_D^{i+1}$$

and therefore, for $i \ge 1$, $1 + \mathfrak{p}_D^i/1 + \mathfrak{p}_D^{i+1}$ is an elementary abelian *p*-group of order q^n . In particular, we have a short exact sequence

(2.1)
$$1 \to 1 + \mathfrak{p}_D \to \mathcal{O}_D^{\times} \to k_D^{\times} \to 1$$

with the kernel $1 + \mathfrak{p}_D$ a pro-*p* group.

We fix uniformizers ω_F and ω_D for \mathcal{O}_F and \mathcal{O}_D respectively.

Lemma 2.2. With the above notation,

- (1) $\mathfrak{p}_F \mathcal{O}_D = \mathfrak{p}_D^n$.
- (2) $F^{\times} \tilde{\mathcal{O}}_{D}^{\times}$ is a subgroup of D^{\times} with index n. Therefore, D^{\times} is compact modulo its center F^{\times} .
- (3) D^{\times} acts on k_D^{\times} by conjugation. In particular, we have

$$\omega_D x \omega_D^{-1} = x^q, \quad x \in k_D$$

2.2. **1-dimensional representations.** Write Nrd : $D^{\times} \to F^{\times}$ for the reduced norm. We have a short exact sequence

$$1 \to D_{\mathrm{Nrd}=1}^{\times} \to D^{\times} \xrightarrow{\mathrm{Nrd}} F^{\times} \to 1$$

Just as in the GL_2 case, $D_{\mathrm{Nrd}=1}^{\times}$ is the commutator of D^{\times} , every character of D^{\times} factor through Nrd. Therefore, there is a one to one correspondence between characters of D^{\times} and characters of F^{\times} .

Lemma 2.3. The following diagram is commutative.

$$\begin{array}{ccc} \mathcal{O}_D^{\times} & \longrightarrow & k_D^{\times} \\ \text{Nrd} & & & & \downarrow \text{Norm} \\ \mathcal{O}_F^{\times} & \longrightarrow & k_F^{\times} \end{array}$$

where Norm : $k_D^{\times} \to k_F^{\times}$ is the map $x \mapsto x^{1+q+\dots+q^{n-1}}$.

Proof. Easy to check from the definition.

Since $1 + \mathfrak{p}_D$ is a pro-p group, every mod p representation of $1 + \mathfrak{p}_D$ is trivial. Therefore, every representation of \mathcal{O}_D^{\times} factor through $\pi : \mathcal{O}_D^{\times} \to k_D^{\times}$. In particular, every irreducible mod p representation of \mathcal{O}_D^{\times} is 1-dimensional. We may (and will) identify the mod pcharacters of \mathcal{O}_D^{\times} and of k_D^{\times} . We say a character $\chi : k_D^{\times} \to \mathbb{F}^{\times}$ or $\chi : \mathcal{O}_D^{\times} \to \mathbb{F}^{\times}$ of order a if $\chi = \chi^{q^a}$ and a is the smallest positive integer satisfies this condition. Note that if *chi* is of order a, then a|n.

2.3. Higher dimensional representations. We show that every irreducible mod p representation of D^{\times} has dimension dividing n. We start with the following lemma.

Lemma 2.4. A smooth irreducible admissible representation of D^{\times} over E always has a central character.

Proof. Let π be such a representation and $H \subset \mathcal{O}_D^{\times}$ be an open subgroup such that $\pi^H \neq 0$. Because π is admissible, π^H has finite dimension over E, and there is $v \in \pi^H$ such that F^{\times} acts on v by multiplication by a character. As π is irreducible, $\pi = \langle D^{\times} v \rangle$. The lemma follows since F^{\times} is the center of D^{\times} .

Let π be a *b*-dimensional irreducible representation of D^{\times} . By the above lemma, we may assume that π has trivial central character. Then $\pi|_{F^{\times}\mathcal{O}_{D}^{\times}}$ decomposes to a direct sum of *b* 1-dimensional representations of $F^{\times}\mathcal{O}_{D}^{\times}$, say, $\pi|_{F^{\times}\mathcal{O}_{D}^{\times}} = \rho_{1} \oplus \rho_{2} \oplus \cdots \oplus \rho_{b}$. (Indeed, each subquotient of $\pi|_{F^{\times}\mathcal{O}_{D}^{\times}}$ is a representation of \mathcal{O}_{D}^{\times} . Therefore, they factor through $\mathcal{O}_{D}^{\times} \to k_{D}^{\times}$.) By Frobenius reciprocity, π is a subquotient of $\operatorname{Ind}_{F^{\times}\mathcal{O}_{D}^{\times}}^{D^{\times}}\rho_{1}$. By Lemma 2.2, π is at most *n* dimensional. As the representation $\pi^{\Delta} := \pi(\omega_{D} \cdot \omega_{D}^{-1})$ is isomorphic to π , and $\rho^{\Delta} = \rho^{q}$ by Lemma 2.2, we have $\{\rho_{i}\}_{i=1}^{n} = \{\rho_{i}^{q}\}_{i=1}^{n}$.

We construct all irreducible representations of D^{\times} from character of \mathcal{O}_D^{\times} . Let $\chi : k_D^{\times} \to \mathbb{F}^{\times}$ be a character of k_D^{\times} . We may and will consider it as a character of \mathcal{O}_D^{\times} via the map $\mathcal{O}_D^{\times} \to k_D^{\times}$. Extending χ to a character of $F^{\times}\mathcal{O}_D^{\times}$ by triviality, we then obtain a representation $\pi_{\chi} = \operatorname{Ind}_{F^{\times}\mathcal{O}_D^{\times}}^{D^{\times}} \chi$ of D^{\times} .

Lemma 2.5. $\pi_{\chi} = \operatorname{Ind}_{F^{\times}\mathcal{O}_{D}^{\times}}^{D^{\times}} \chi$ is reducible if and only if $\chi(x) = \chi(x^{q^{a}})$ for some integer $a \mid n \text{ and } a < n$.

Proof. We know that $\{\omega_D^i\}_{i=0}^{n-1}$ is a set of representatives of $D^{\times}/F^{\times}\mathcal{O}_D^{\times}$. The representation $\operatorname{Ind}_{F^{\times}\mathcal{O}_D^{\times}}^{D^{\times}}\chi$ is reducible if and only if there exists an positive integer a such that $\chi \cong \chi^{\omega_D^a}$, i.e., $\chi \cong \chi^{q^a}$. The integer a must divide n since $\chi \cong \chi^{q^n}$.

Remark 2.6. Assume that χ is a character of order a with a|n, then χ extends to a character of $F^{\times}\mathcal{O}_{D}^{\times}\langle\omega_{D}^{a}\rangle$ by letting $\chi(\omega_{D}^{a}) = 1$. Thus

$$\pi_{\chi} \cong (\operatorname{Ind}_{F^{\times}\mathcal{O}_{D}^{\times}\langle \omega_{D}^{a}\rangle}^{D^{\times}}\chi)^{n/a}$$

In the above formula, $\operatorname{Ind}_{F^{\times}\mathcal{O}_{D}^{\times}\langle\omega_{D}^{a}\rangle}^{D^{\times}}\chi$ is an *a*-dimensional irreducible representation of D^{\times} .

Lemma 2.7. Assume that χ_i and χ' are two characters of k_D^{\times} . Then $\pi_{\chi} \cong \pi_{\chi'}$ if and only if $\chi' = \chi^{q^a}$ for some integer a|n.

Proof. First, if $\chi' = \chi^{q^a}$, it is easy to check that $\pi_{\chi'} = \pi_{\chi}^{\omega_D^a} \cong \pi_{\chi}$. On the other hand, if $\pi_{\chi'} \cong \pi_{\chi}$, then

$$\pi_{\chi}|_{F^{\times}\mathcal{O}_{D}^{\times}} \cong \pi_{\chi'}|_{F^{\times}\mathcal{O}_{D}^{\times}}.$$

Thus $\{\chi^{q^i}\} = \{(\chi')^{q^i}\}$. The lemma follows.

Fix an embedding $k_D^{\times} \to \overline{\mathbb{F}}_p^{\times}$. Let χ_i be the character of k_D^{\times} with the form $x \mapsto x^i$. Let $Q = 1 + q + \cdots + q^{n-1}$.

Lemma 2.8. With the above notation, we have

$$(\mathrm{Ind}_{F^{\times}\mathcal{O}_{D}^{\times}}^{D^{\times}}\chi)\otimes(\mu\circ\mathrm{Nrd})\cong\mathrm{Ind}_{F^{\times}\mathcal{O}_{D}^{\times}}^{D^{\times}}(\chi\cdot\chi_{Q}).$$

Here, $\mu: F^{\times} \to k_F^{\times}$ is the residue map with $\mu(\omega_F) = 1$.

Proof. By Lemma 2.3, $\chi \otimes (\mu \circ \operatorname{Nrd}) \cong \chi \cdot \chi_Q$, the lemma follows.

From the above discussion, we have the following theorem.

Theorem 2.9. The irreducible mod p representations of D^{\times} are the following:

- (1) the one-dimensional representations $\kappa \circ \text{Nrd}$,
- (2) the a-dimensional representations

$$(\operatorname{Ind}_{F^{\times}\mathcal{O}_{D}^{\times}}^{D^{\times}}\chi)\otimes(\kappa\circ\operatorname{Nrd}),$$

where χ is a level a character, a|n.

Here $\kappa: F^{\times} \to \mathbb{F}^{\times}$ is a character of F^{\times} .

2.4. Galois representations. In this section, we recall the classification of *n*-dimensional irreducible mod p representations of G_F .

Let ρ be a *n*-dimensional irreducible representation of G_F . Let I and I^w be the inertia and the wild inertia subgroup of G_F . Note that they are actually normal subgroups. Let ρ^{I^w} be the subspace of ρ where I^w acts trivially. For $w \in I^w$, $g \in G_F$, $v \in \rho^{I^w}$, $wgv = g(g^{-1}wg)v = gv$. So ρ^{I^w} is a subrepresentation of ρ . On the other hand, I^w is a pro-p group, ρ^{I^w} is not trivial. Therefore, $\rho^{I^w} = \rho$ and $\rho|_I$ factor through I/I^w . Thus $\rho|_I$ is the direct sum of n fundamental characters $\psi_1 \oplus \cdots \oplus \psi_n$. Let $f \in G_F$ be a lift of the Frobenius element $(x \mapsto x^q)$. As $\rho^f := \rho(f \cdot f^{-1})$ is isomorphic to ρ , we have $\rho|_I \cong \rho^f|_I$. That is

$$\psi_1 \oplus \cdots \oplus \psi_n = \psi_1^q \oplus \cdots \oplus \psi_n^q.$$

Arguing as before, we see that $\{\psi_i\} = \{\psi^{q^i}\}$ for some level *n* fundamental character ψ .

By the above discussion, the *n*-dimensional irreducible mod *p* representations of D^{\times} are parameterized by order *n* characters $k_D^{\times} \to \mathbb{F}^{\times}$ and the characters $F^{\times} \to \mathbb{F}^{\times}$. The *n*-dimensional irreducible mod *p* representations of G_F are parameterized by level *n* characters $I \to \mathbb{F}^{\times}$ and characters $G_F \to \mathbb{F}^{\times}$. If we fix an embedding $k_D^{\times} \hookrightarrow \mathbb{F}^{\times}$ and the Artin map $F^{\times} \cong G_F^{ab}$, we obtain a natural bijection between the *n*-dimensional irreducible mod *p* representations of G_F .

3. QUATERNION ALGEBRA CASE

3.1. Two dimensional mod p representations of D^{\times} . Let D be a quaternion algebra over F. Then we have the following result.

Theorem 3.1. Let $\pi : D^{\times} \to GL_2(E)$ be a continuous representation, then ρ is of one of the following forms:

(1) π is irreducible and

$$\pi \cong (\operatorname{Ind}_{F^{\times}\mathcal{O}_D^{\times}}^{D^{\times}}\chi_i) \otimes (\kappa \circ \operatorname{Nrd}),$$

where $1 \leq i < q$. In this case,

$$\pi|_{\mathcal{O}_D^{\times}} \cong \chi_i \oplus \chi_i^q.$$

(2) π is reducible and

$$\pi|_{\mathcal{O}_D^{\times}} \cong \begin{pmatrix} \chi_{q+1}^a & * \\ 0 & \chi_{q+1}^b \end{pmatrix},$$

where a and b are two integers. In this case, we may write

$$\pi|_{\mathcal{O}_D^{\times}} \cong \begin{pmatrix} \chi_{q+1}^c & * \\ 0 & 1 \end{pmatrix} \otimes \eta$$

for some η extends to D^{\times} and some integer c with $0 \leq c \leq q-2$.

Proof. We only have to prove part (2). Since π is reducible, hence in particular $\pi|_{\mathcal{O}_D^{\times}}$ is reducible. Assume that it is of the form $\begin{pmatrix} \delta_1 & * \\ 0 & \delta_2 \end{pmatrix}$ where δ_1 and δ_2 are continuous characters of \mathcal{O}_D^{\times} that extend to D^{\times} . Therefore, $\delta_i = \delta_i^q$ and each δ_i factors through $\mathcal{O}_D^{\times} \to k_D^{\times} \to k_F^{\times}$. The result follows.

Lemma 3.2. We have an isomorphism

$$\operatorname{Ind}_{F^{\times}\mathcal{O}_{D}^{\times}}^{D^{\times}}\chi_{i}\cong(\operatorname{Ind}_{F^{\times}\mathcal{O}_{D}^{\times}}^{D^{\times}}\chi_{q+1-i})\otimes(\mu\circ\operatorname{Nrd})^{i-1}.$$

Proof. It suffices to check that $x^i = x^{q(q+1)-i+(q+1)(i-1)}$ for $x \in k_D^{\times}$, which is clear.

The following result is well known, see for example Proposition 2.7 and Corollary 2.9 of [4].

Theorem 3.3. Let $\rho : G_F \to GL_2(E)$ be a continuous representation, let $w_1, w_2 : I \to E^{\times}$ be fundamental characters of level q and q^f respectively. Then ρ is of one of the following form:

(1) ρ is irreducible and:

$$\rho|_I \cong \begin{pmatrix} w_2^a & 0\\ 0 & w_2^{qa} \end{pmatrix} \otimes \eta$$

for some character η that extends to G_F and some integers $1 \leq a < q$.

(2) ρ is reducible and:

$$\rho|_I \cong \begin{pmatrix} w_1^c & * \\ 0 & 1 \end{pmatrix} \otimes \eta$$

for some character η that extends to G_F and some integers $0 \le c \le q-2$.

We can define a bijection between rank two semisimple mod p representations of D^{\times} and rank two semisimple mod p representations of G_F as follows.

Irreducible representations:

$$(\operatorname{Ind}_{F^{\times}\mathcal{O}_{D}^{\times}}^{D^{\times}}\chi_{a})\otimes(\eta\circ\operatorname{Nrd})\leftrightarrow\rho|_{I}\cong\begin{pmatrix}w_{2}^{a}&0\\0&w_{2}^{qa}\end{pmatrix}\otimes\eta$$

Reducible representations:

$$\pi|_{\mathcal{O}_D^{\times}} \cong \begin{pmatrix} \chi_{q+1}^c & * \\ 0 & 1 \end{pmatrix} \otimes (\eta \circ \operatorname{Nrd}) \leftrightarrow \rho|_I \cong \begin{pmatrix} w_1^c & * \\ 0 & 1 \end{pmatrix} \otimes \eta$$

Here $\eta: F^{\times} \to \mathbb{F}^{\times}$, and we consider it also as a character of G_F via local class field theory.

We can extend this bijection to a bijection between all two dimensional mod p representations of D^{\times} and G_F . First note that we may extend w_1 to a character of G_F by letting $w_1(\text{Frob}) = 1$, where Frob is a lifting of the Frobenius element. We may also extend χ_{q+1} to a character of D^{\times} by letting $\chi_{q+1}(\omega_D) = 1$. We have the following result.

Theorem 3.4. For $1 \le c \le q-1$, there exists a bijection $H^1(G_F, w_1^c) \cong H^1(D^{\times}, \chi_{q+1}^c)$. Therefore, there is a bijection between two dimensional mod p representations of D^{\times} and two dimensional mod p representations of G_F , under which the irreducible ones corresponds to irreducible ones.

Proof. We have the following short exact sequence

$$0 \to I \to G_F \to \hat{\mathbb{Z}} \to 0,$$

which induces

$$0 \to I/I^w \to G_F/I^w \to \hat{\mathbb{Z}} \to 0.$$

Since I^w is a pro-*p* group, it acts trivially on w_1 .

$$H^1(G_F, w_1^c) \cong H^1(G_F/I^w, w_1^c).$$

The exact sequence of low degree terms in Lyndon-Hochschild-Serre spectral sequence is

(3.1)
$$0 \to H^{1}(\hat{\mathbb{Z}}, (w_{1}^{c})^{I/I^{w}}) \to H^{1}(G_{F}/I^{w}, w_{1}^{c}) \to H^{1}(I/I^{w}, w_{1}^{c})^{\hat{\mathbb{Z}}} \to H^{2}(\hat{\mathbb{Z}}, (w_{1}^{c})^{I/I^{w}}) \to H^{2}(G_{F}/I^{w}, w_{1}^{c}).$$

Similarly, let $\Gamma = D^{\times}/1 + \omega_D \mathcal{O}_D$, we also have

$$H^1(D^{\times}, \chi_{q+1}) \cong H^1(\Gamma, \chi_{q+1})$$

and the following exact sequence

$$1 \to k_D^{\times} = (\mathcal{O}_D / \omega_D)^{\times} \to \Gamma \xrightarrow{v_D} \mathbb{Z} \to 0$$

The Lyndon-Hochschild-Serre spectral sequence in this case gives us the following exact sequence

(3.2)
$$0 \to H^{1}(\mathbb{Z}, (\chi_{q+1}^{c})^{k_{D}^{\times}}) \to H^{1}(\Gamma, \chi_{q+1}^{c}) \to H^{1}(k_{D}^{\times}, \chi_{q+1}^{c})^{\mathbb{Z}} \to H^{2}(\mathbb{Z}, (\chi_{q+1}^{c})^{k_{D}^{\times}}) \to H^{2}(\Gamma, \chi_{q+1}^{c}).$$

If we identity $w_1^c = \chi_{q+1}^c$ as vector spaces, then the Frob-action on w_1^c corresponds to the ω_D -action on χ_{q+1}^c and the I/I^w -action on w_1^c corresponds to the k_D^{\times} -action on χ_{q+1}^c . Thus $H^j(\hat{\mathbb{Z}}, (w_1^c)^{I/I^w}) \cong H^j(\mathbb{Z}, (\chi_{q+1}^c)^{k_D^{\times}})$ for j = 1, 2. On the other hand, $H^1(I/I^w, w_1^c)^{\hat{\mathbb{Z}}} \cong H^1(k_D^{\times}, \chi_{q+1}^c)^{\mathbb{Z}}$ since Frob $g \cdot \text{Frob}^{-1} = g^q$ for any $g \in G_F$ and $\omega_D \cdot x \cdot \omega_D^{-1} = x^q$ for any $x \in D$. The lemma follows by five-lemma.

3.2. Some remarks. We make some remarks on representations of D^{\times} .

3.2.1. Representations of D^{\times} in characteristic zero. Let $\pi : D^{\times} \to GL(V)$ be an irreducible representation of D^{\times} over a complex vector space. By the same argument as that of Lemma 2.4, π admits a central character. On the other hand, we know that D^{\times}/F^{\times} is compact. Therefore π is finite dimensional and Ker π contains an open normal subgroup of D^{\times} . In particular, π is trivial on a unit group $U_D^m = 1 + \mathfrak{p}_D^m \subset D^{\times}$ for some $m \geq 0$. Starting with this fact, we may parameterize all complex irreducible representations of D^{\times} . See Section 54 of [5] for this parametrization.

Let K be a sufficiently large finite extension of \mathbb{Q}_p with residue field \mathbb{F} . Let V be a vector space over K and $\pi : D^{\times} \to GL(V)$ an irreducible smooth admissible representation of D^{\times} . Similarly, π admits a central character. On the other hand, we know that D^{\times}/F^{\times} is compact. Therefore π is finite dimensional. Yet in this case, it is not true that π is trivial on a unit group $U_D^m = 1 + \mathfrak{p}_D^m \subset D^{\times}$ for some $m \ge 0$. This is because that the topology on $1 + \mathfrak{p}_D$ and the topology on $1 + \mathfrak{p}_K$ are *compatible* in some sense. One trivial example is the reduced norm $\operatorname{Nrd}: D^{\times} \to F^{\times}$ whose kernel is $D_{\operatorname{Nrd}=1}^{\times}$.

3.2.2. A mod p Jacquet-Langlands correspondence for $GL_2(\mathbb{Q}_p)$. In this subsection, we assume that $F = \mathbb{Q}_p$. Let Z denote the center of $GL_2(\mathbb{Q}_p)$, let r be an integer with $0 \leq r \leq p-1$ and $\operatorname{Symm}^r E^2$ be the representation of $GL_2(\mathbb{Z}_p)$ (via the natural projection $GL_2(\mathbb{Z}_p) \to GL_2(\mathbb{F}_p)$) and extend it to $Z \cdot GL_2(\mathbb{Z}_p)$ by letting p act trivially. For convenience, we write $\sigma_r = \operatorname{Symm}^r E^2$. Denote

$$c\operatorname{-Ind}_{GL_2(\mathbb{Z}_p)Z}^{GL_2(\mathbb{Q}_p)}\sigma_r$$

the *E*-vector space of functions $f : GL_2(\mathbb{Q}_p) \to \operatorname{Symm}^r E^2$ with compact support modulo Z and $f(kg) = \sigma_r(k)f(g)$ (for $k \in GL_2(\mathbb{Z}_p)Z$ and $g \in GL_2(\mathbb{Q}_p)$). It is a $GL_2(\mathbb{Q}_p)$ representation with right regular action.

Lemma 3.5. End_{*GL*₂(\mathbb{Q}_p)}(*c*-Ind^{*GL*₂(\mathbb{Q}_p)}) σ_r) $\simeq E[T]$.

This lemma is a special case of Proposition 8 of [2]. See Section 3.1 of [2] for the definition of the operator T and more details. The following theorem is proved in [2] and [3].

Theorem 3.6. The smooth irreducible admissible mod p representations of $GL_2(\mathbb{Q}_p)$ over E are the following:

(1) the one dimensional representations $\chi \circ \det$

(2) the representations

$$(c \operatorname{Ind}_{GL_2(\mathbb{Z}_p)Z}^{GL_2(\mathbb{Q}_p)} \sigma_r / (T - \lambda)) \otimes (\chi \circ \det)$$

for $0 \le r \le p-1$, $\lambda \in E^{\times}$ and $(r, \lambda) \notin \{(0, \pm 1), (p-1, \pm 1)\}$ (3) the representations

$$\operatorname{Ker}(c\operatorname{-Ind}_{GL_2(\mathbb{Z}_p)Z}^{GL_2(\mathbb{Q}_p)}1/(T-1) \twoheadrightarrow 1) \otimes (\chi \circ \det)$$

(4) the representations

$$(c\operatorname{-Ind}_{GL_2(\mathbb{Z}_p)Z}^{GL_2(\mathbb{Q}_p)}\sigma_r/T)\otimes (\chi\circ\det).$$

Definition 3.7. Let $r \in \{0, ..., p-1\}, \kappa : \mathbb{Q}_p^{\times} \to \overline{\mathbb{F}}_p^{\times}$. With the above notation, we give the following modulo p Jacquet-Langlands correspondence: (1)

$$\kappa \circ \operatorname{Nrd} \leftrightarrow \operatorname{Ker}(c\operatorname{-Ind}_{GL_2(\mathbb{Z}_p)Z}^{GL_2(\mathbb{Q}_p)} 1/(T-1) \twoheadrightarrow 1) \otimes (\kappa \circ \det),$$

(2)

$$(\operatorname{Ind}_{F^{\times}\mathcal{O}_{D}^{\times}}^{D^{\times}}\chi_{r+1})\otimes(\kappa\circ\operatorname{Nrd})\leftrightarrow(c\operatorname{Ind}_{GL_{2}(\mathbb{Z}_{p})Z}^{GL_{2}(\mathbb{Q}_{p})}\sigma_{r}/T)\otimes(\kappa\circ\det).$$

References

- Barthel, L, Livne, R. Modular representations of GL₂ of a local field; the ordinary, unramified case. Journal of Number Theory Volume 55, Issue 1, November 1995, 1-27
- [2] Barthel, L, Livne, R. Irreducible modular representations of GL₂ of a local field. Duke Math. J. 75 (1994), 261-292
- [3] Breuil, Christophe. Sur quelques représentations modulaires et p-adiques de $GL_2(Q_p)$ I. Compositio Math. 138, 2003, 165-188.
- [4] Breuil, Christophe. Representations of Galois and of GL₂ in characteristic p. Columbia Notes, available at http://www.ihes.fr/~breuil/publications.html
- [5] Bushnell, Colin J., Henniart, Guy. The Local Langlands Conjecture for GL(2). Grundlehren der mathematischen Wissenschaften, Vol. 335