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1. Introduction

This is the third part of the notes on modularity theorems. The aim of the third part

is to study modularity/ automorphy lifting theorems for two-dimensional p-adic represen-

tations, using wherever possible arguments that go over to the n-dimensional case. The

main tool is the Taylor-Wiles-Kisin patching method. To demonstrate the power of this

method, we prove a modularity result following the strategy in [36]. Let p > 3 be a prime

number. Let L/Qp be a finite extension with ring of integers O, maximal ideal λ, residue

field F = O/λ. Let F be a totally real field. Assume that L is sufficiently large so that L

contains the images of all embeddings F ↪→ L.
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Theorem 1.1. Let ρ, ρ0 : GF → GL2(O) be two continuous representations, such that

ρ = ρ (mod λ) = ρ0 (mod λ). Assume that ρ0 is modular and that ρ is geometric. Assume

further that the following properties hold.

(1) p is unramified in F .

(2) Im ρ ⊇ SL2(Fp).
(3) For all v|p, ρ|GFv and ρ0|GFv are crystalline.

(4) For all σ : F ↪→ L, HTσ(ρ) = HTσ(ρ0) contains two distinct elements differ by at

most p− 2.

Then ρ is modular.

Recall that we have proved another modularity result in [92], which (partially) con-

firms the Shimura-Taniyama conjecture on the modularity of elliptic curves over Q. Theo-

rem 1.1 here is clearly stronger than the one in [92], as we have relaxed certain conditions

and F could be totally real. We have explained the history of the Shimura-Taniyama

conjecture and its relation with the Fermat’s Last Theorem in [92]. In the last section

of [92], we briefly discussed the limitation of the Taylor-Wiles-Diamond argument and

some of the generalizations. These notes are the result of detailed studies on one of those

generalizations.

In the second part of these notes [93], we studied Galois representation, especially

the theory of (framed) deformations in detail. Using framed deformations, as opposed to

merely deformations, we could deal with reducible residual Galois representations, and this

is a huge improvement of [92]. We will use the results in [93] frequently in the following.

The contents of this article is as follows. In Section 2, we study the transition from

modular forms to automorphic forms and the automorphic representations for general

reductive groups. In Sections 3.1 and 3.3, we study some basic results on Langlands

correspondence, especially the base change procedure, which enables us to simplify our

situations tremendously. In these sections, we only describe the general picture but give

no proofs, as it would take us too far away from our main goal. Nevertheless, in Sections

3.2 and 3.4, we study the special case, where the reductive group is associated with a

quaternion algebra over a totally real field F , and provide complete proofs for most of the

results.

In Section 4, we recall the Taylor-Wiles-Kisin construction from [50]. For completeness

and for better understanding of results in Section 6, we also give a detail proof of the

construction.

Section 5 is the key part of this article, where we construct the Taylor-Wiles-Kisin

system explicitly and apply Kisin’s result to obtain a proof of Theorem 1.1. For this we
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need basically all the preparations we have done and it also exhibits the power of the

patching argument.

There are further things we could do with patching. In Section 6, we study the so

called ultrapatching and make Proposition 4.1 into a ”program” via pure algebraic method.

The applications of ultrapatching is on the top of our to-do list.

The list of references is rather long in this article, as we include those references from

[92]. We use the notation in [93] in the following.

2. From modular forms to automorphic forms

Historically the theory of automorphic forms began with modular and cusp forms

for the group SL2(Z). To understand the Langlands correspondence and the Jacquet-

Langlands correspondence later in the notes, we review some general results on automor-

phic forms and automorphic representations. Here we will not be precise and will not

provide proofs, details could be found in [5, 25, 53, 73].

2.1. Modular forms for SL2(R). The group GL2(R) acts on C − R via g(z) = az+b
cz+d ,

where g =

(
a b

c d

)
∈ GL2(R) and z ∈ C− R. Define

j(g, z) = (cz + d)(det g)1/2.

In the rest of this section j(g, z) will occur only in the form j(g, z)2 as we only consider

modular forms of level SL2(Z) and of even weight.

Definition 2.1. Let H+ be the upper half plane. A modular form of weight k (an even

integer) for SL2(Z) is an analytic function f : H+ → C such that

(1) f(γ(z)) = j(γ, z)kf(z) for all f ∈ SL2(Z);

(2) f is analytic at ∞ in the following sense: since f is analytic and periodic under

z 7→ z + 1, f has an expansion f(z) =
∑+∞

n=−∞ cne
2πinz, then the analyticity

condition at ∞ is that cn = 0 for n < 0.

A cusp form is a modular form that vanishes at ∞ in the sense that c0 = 0.

Remark 2.2. The analyticity condition at ∞ can be reformulated as the slow-growth con-

dition

|f(x+ iy)| ≤ CyN for some C and N as y → +∞.
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The additional condition that a modular form is a cusp form can be reformulated as the

vanishing of an integral:∫ 1

0
f(x+ iy) dx = 0 for some or equivalently every y > 0.

A cusp form f satisfies the rapid-decrease condition that for each N

|f(x+ iy)| ≤ Cy−N for some C as y → +∞.

A cusp form of weight k can be expanded as f(z) =
∑+∞

n=1 cne
2πinz. The L-function

associated with f is defined by

L(s, f) =
∞∑
n=1

cn
ns
,

and it satisfies a functional equation relating the values at s and k−s. Let Vk be the space

of cusp forms of weight k. Then Vk is finite dimensional and Hecke introduced what we

now call Hecke operators on Vk. The Hecke operators commute and are simultaneously

diagonalizable. The eigenfunctions all have c1 6= 0 and if c1 is normalized to be 1 for an

eigenfunction, then the corresponding L-function has an Euler product expansion and the

product being taken over all primes.

Gelfand and Fomin were the first to notice that cusp forms could be realized as smooth

vectors in representations of a certain ambient Lie group. We lift modular forms and cusp

forms to SL2(Z)\ SL2(R) and to GL2(Z)\GL2(R). See [5] for more details.

Given a modular form f as above, define

(2.1) φf,∞(g) = f(g(i))j(g, i)−k

for g ∈ SL2(R). Then φf,∞ has the following properties:

(1) φ∞(γg) = φ∞(g) for all γ ∈ SL2(Z);

(2) φ∞(gr(θ)) = e−ikθφ∞(g) for all r(θ) =

(
cos θ − sin θ

sin θ cos θ

)
;

(3) φ∞(g) satisfies the slow-growth condition that

|φ∞(

(
1 x

0 1

)(
y1/2 0

0 y−1/2

)
r(θ))| ≤ CyN for some C and N as y → +∞;

(4) ∆φ∞ = −k
2 (k2 − 1)φ∞ for a suitable normalization of the Casimir operator ∆ of

SL2(R);

(5) if f is a cusp form, then φ∞ is cuspidal in the sense that∫ 1

0
φ∞(

(
1 x

0 1

)
g) dx = 0 for all g.
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For the lifting to GL2(Z)\GL2(R), we start by extending f to C− R by setting f(−z) =

f(z). Then we define φf,∞(g) by equation (2.1) for g ∈ GL2(R). The invariance property

in (1) extends to be valid for all γ ∈ GL2(Z), properties (2)-(5) are unchanged, and there

is one new property:

• φ∞(zg) = φ∞(g) for all z in the center of GL2(R).

Remark 2.3. There are some other classical theories of automorphic forms that can be

lifted to Lie groups in the same way. For example

• the theory of Maass forms [56] concerns certain non-holomorphic functions on H+,

and these lift to GL2(Z)\GL2(R);

• a theory [25] begun by Hecke for modular form with level Γ0(N);

• the theory of Hilbert modular forms [34] leads to quotients of products of GL2(R);

• the theory of Siegel modular forms [76] leads to quotients of real symplectic groups.

In each case the theory can be reinterpreted in an adelic setting, in which case one could

see more symmetries in the space of forms. In the following, we explain the SL2(Z) case

with more detail.

Let AQ denote the ring of adeles of Q. We have the following decomposition

GL2(AQ) = GL2(Q) GL2(R)
∏
p

GL2(Zp)

and each g ∈ GL2(AQ) could be written as g = γg∞k1. Given a modular form f , define

φf (g) = f(g∞(i))j(g∞, i)
−k for g ∈ GL2(AQ).

The function φ := φf on GL2(AQ) has the properties that

(1) φ(γg) = φ(g) for all γ ∈ GL2(Q);

(2) φ(gk1) = φ(g) for all k1 ∈
∏
p GL2(Zp);

(3) φ(gr∞(θ)) = e−ikθφ(g) for all r∞(θ) =

(
cos θ − sin θ

sin θ cos θ

)
at the infinite place;

(4) as a function of the variable in the infinite place, φ satisfies the equation ∆φ∞ =

−k
2 (k2 − 1)φ∞ for a suitable normalization of the Casimir operator ∆ of SL2(R);

(5) φ∞(zg) = φ∞(g) for all scalar z in GL2(AQ)

(6) φ∞(g) satisfies the slow-growth condition: for each c > 0 and compact subset ω of

GL2(AQ), there exist constants C and N such that

φ(

(
a 0

0 1

)
g) ≤ C|a|N

for all g ∈ ω and a ∈ A×Q with |a|AQ > c;
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(7) if f is a cusp form, then φ is cuspidal in the sense that∫
Q\AQ

φ(

(
1 x

0 1

)
g) dx = 0 for all g ∈ GL2(AQ).

The group SL2(Z), relative to which f satisfies an invariance property, is captured by the

compact group in property (2). The relevant identity is

GL2(Z) = GL2(Q) ∩ (GL2(R)×
∏
p

GL2(Zp)).

For the general congruence subgroup Γ0(N), the corresponding compact group that ap-

pears in property (2) is
∏
pK
′
p, where

K ′p = {

(
a b

c d

)
∈ GL2(Zp) | vp(c) ≥ vp(N)}.

One sees that K ′p coincides with GL2(Zp) for all p prime to N , and the relevant identity is

Γ0(N) ∪

(
1 0

0 −1

)
Γ0(N) = GL2(Q) ∩ (GL2(R)×

∏
p

K ′p.

2.2. Automorphic forms for general reductive group G. The adelic setting is what

one could generalize to arbitrary reductive groups (cf. [8]). Let F be a number field, let

O be the ring of integers of F , let A = AF (resp. A∞) be the ring of adeles of F (resp.

finite adeles of F ), let G be a reductive group over F such that G(C) is connected. Let

Z be a maximal F -split torus of the center of G. Let G∞ := G(F∞) be the archimedean

component of G(A), so that

(2.2) G(A) = G∞ ×G(A∞).

Let

K∞ = a maximal compact subgroup of the Lie group G∞

g = complexification of the (real) Lie algebra of G∞

U(g) = universal enveloping algebra of g

Z(g) = center of g.

Let K1 be the open compact subgroup G(
∏
v finiteOv) of G(A∞).

Definition 2.4. A function f : G(A)→ C is smooth if it is continuous and, when viewed

as a function of two variables (x, y) as in (2.2) (x ∈ G∞ and y ∈ G(A∞)), it is smooth in

x for each fixed y and is locally constant with compact support in y for each fixed x.
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Let ρ be a finite-dimensional representation of K∞, J ⊂ Z(g) be an ideal of finite codi-

mension, and K be an open subgroup of K1. A smooth function f on G(A) is automorphic

relative to (ρ, J,K) if

(1) f(γg) = f(g) for all γ ∈ G(F );

(2) f(gk) = f(g) for all k ∈ K;

(3) the span of the right translations of f by K∞ is finite-dimensional, and every

irreducible constituent of this representation of K∞ is a constituent of ρ;

(4) Jf = 0, where J acts on f in the G∞ variable;

(5) for each y ∈ G(A∞), the function x 7→ f(xy) on G∞ satisfies a certain slow-growth

condition. See [8] for the precise statement.

The set of automorphic functions relative to (ρ, J,K) will be denoted by A(ρ, J,K).

Remark 2.5. By properties (1) and (2), we may consider f as a function on the double

quotient G(F )\G(A)/K. Note that this double quotient has a structure of manifold and

we have an identification

(2.3) G(F )\G(A)/K =
∐
c∈C

(Γc\G∞).

Here C is a finite subset of G(A) such that

G(A) =
∐
c∈C

G(F )cG∞K,

and Γc = G∞cKc
−1 ∩ G(F ). The finiteness of C follows from our assumption that G is

reductive, hence in particular G has the strong approximation property. The case G =

SL2 /Q and K = K1 before is a simple example of (2.3) where C = {1}. The right side of

(2.3) is more concrete than the left side, but part of the action is lost in working with the

right side rather than with the adeles, e.g., the symmetry of G(Fv) is missing.

Remark 2.6. When G = GL1, any grossencharacter is an example of an automorphic form

relative to a suitable triple.

The following fundamental result is due to Harish-Chandra ([43, 44]), where it is

proved in the setting of the right side of (2.3). The translation into the following form is

in [8, Page 195].

Theorem 2.7. For every triple (ρ, J,K), A(ρ, J,K) is finite-dimensional.

Moreover, automorphic functions are closely related to Lp-functions. We have the

following result [8, Page 191-195].
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Theorem 2.8. Let f be a function on G(A) satisfying conditions (1)-(4) and

(2.4) f(zx) = χ(z)f(x) for all z ∈ Z(A) and x ∈ G(A)

for some (unitary) character of Z(F )\Z(A), so that |f | may be regarded as a function on

(Z(A)G(F ))\G(A). If |f | is in Lp((Z(A)G(F ))\G(A)) for some p ≥ 1, then f satisfies

condition (5) and hence is an automorphic form.

Remark 2.9 (Some geometry on the quotient space). With G defined over F , let X∗(G)F

be the set of all F -rational homomorphisms of G into GL1. If χ ∈ X∗(G)F , then χ extends

at each place to a continuous homomorphism χv : G(Fv) → F×v . Let χA : G(A) → A×

be the product of χv. Then |χA|A is a homomorphism of G(A) into R×+. Define G(A)1 :=

∩χ∈X∗(G)F Ker |χA|A.

Recall thatG(C) is connected in our setting. In this case, the groupG(F ) lies inG(A)1

and the quotient G(F )\G(A)1 has finite volume. Moreover, G(F )\G(A)1 is compact if and

only if every unipotent element of G(F ) belongs to the radical of G(F ). See for example

[3, 4].

An example of a nonabelian G for which compactness of G(F )\G(A)1 follows from

this result is the multiplicative group D× of a finite-dimensional division algebra of F with

center F . This is exactly the case we will study later.

Definition 2.10. A cusp form is an automorphic form f such that (2.4) holds for some

unitary character χ of Z(F )\Z(A) and such that

(2.5)

∫
N(F )\N(A)

f(ng) dn = 0

for the unipotent radical N of every parabolic subgroup of G and for all g ∈ G(A). Let

A0(ρ, J,K) denote the space of cusp forms relative to (ρ, J,K).

Remark 2.11. For G = GL1, the condition (2.5) is empty, and therefore all unitary grossen-

characters are cusp forms for GL1.

The classical analytic cusp forms relative to SL2(Z) yield cusp forms for G = GL2 /Q
in the sense of Definition 2.10. Similar relation holds for congruence groups Γ0(N).

Theorem 2.12. Let a smooth function f on G(A) satisfy (1)-(4) above, as well as the cus-

pidal condition (2.5) and the condition (2.4) for some (unitary) character of Z(F )\Z(A).

Then the following conditions are equivalent:

(1) f satisfies (5) and hence is a cusp form;

(2) f is bounded;

(3) |f | is in L2((Z(A)G(F ))\G(A)).
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2.3. Automorphic representations. We want to define notion of an automorphic repre-

sentation of G(A). Put A = ∪A(ρ, J,K). The idea is that an automorphic representation

is any irreducible subquotient of A, but the trouble is that A need not be mapped to itself

under right translation of G(A). Specifically, right translation by G(A) does not preserve

the K∞-finiteness in general. The idea is to make A into a module for an algebra H (the

Hecke algebra) that reflects the action by G(Fv) for each finite place v and reflects the

action by U(g) and K∞ at the infinite place. The following is a summary of Knapp [53].

See [28] for the detail construction, see [2] for the relation between representations of real

reductive Lie groups and (g,K)-modules.

For each finite place v, let Hv be the space of all complex-valued locally constant

functions of compact support on G(Fv). Let f, f ′ ∈ Hv, define

(f ∗ f ′)(x) =

∫
G(Fv)

f(y)f ′(y−1x) d y =

∫
G(Fv)

f(y−1)f ′(yx)∆(y−1) d y,

and

f∗(x) = ∆(x−1)f(x−1).

These two operations make Hv into a Banach ∗-algebra with no unity. Haar measure

on G(Fv) is to be normalized so that G(Ov) has measure 1. Then the characteristic

function Iv of G(Ov) is an idempotent inHv. Easy computation shows that the normalized

characteristic function of each open subgroup of G(Ov) is an idempotent and they form a

directed system of idempotents.

Definition 2.13. An Hv-module is approximately unital if, for each member of the mod-

ule, all idempotents corresponding to sufficiently small open subgroups of G(Ov) act as

the identity.

A G(Fv)-representation is smooth if each member of the representation space is fixed

by some open compact subgroup of G(Fv).

It is easy to see that smooth G(Fv)-representations correspond to approximately

unital Hv-modules. Such a representation is called addmissible if the set of vectors fixed

by any open compact subgroup is finite-dimensional.

There is a natural way of forming a restricted tensor product of the algebras Hv with

respect to the idempotents Iv. The resulting algebra Hf is the part of H corresponding to

the finite places of F and is generated by product functions that equal Iv at almost every

place. A tuple of local idempotents, one for each Hv with almost all of them being Iv,

yields another idempotent in Hf , and the idempotents obtained in this way are indexed

by a directed set.
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Definition 2.14. A right Hf -module is smooth if each member of the module is fixed by

all idempotents corresponding to members of the directed set that are sufficiently large.

The module is admissible if the set of vectors fixed by any of these idempotents is finite-

dimensional.

Next let H∞ be the convolution algebra of all K∞-finite distributions on G∞ that are

supported on K∞. It contains a directed family of idempotents as follows, constructed

via the Peter-Weyl Theorem. Let d k denote the normalized Haar measure on K∞. For

each class of irreducible representations τ of K∞, let χτ be the character and let dτ be

the degree. The directed family of idempotents is indexed by all finite subsets of τ ’s, the

idempotent corresponding to a given set being the sum of dτχτ for all τ in the set.

Definition 2.15. A right H∞-module is approximately unital if, for each member of the

module, all sufficiently large idempotents act as the identity. Such a module is admissible

if the set of vectors fixed by any of these idempotents is finite-dimensional, i.e., if each

K∞-type has finite multiplicity.

Remark 2.16. As explained in [54], (g,K∞)-modules correspond exactly to approximately

unital H∞-modules.

Define H = H∞ ⊗Hf . Smoothness and admissibility of right H-modules are defined

using idempotents that are pure tensors from H∞ and Hf . Then A is a sooth right

H-module. An automorphic representation of H is any irreducible subquotient of A.

Similarly, if we put A0 = ∪A0(ρ, J,K), then a cuspidal automorphic representation of H
is any irreducible subquotient of A0.

If f is an automorphic form, then by Theorem 2.7, f ∗ H is a smooth admissible

H-module. It follows that every automorphic representation of H is smooth and admissi-

ble. Such representations are commonly called automorphic representations of G(A) even

though not all of G(A) really acts.

Definition 2.17. A topologically irreducible G(A)-module is called automorphic if its

underlying space of smooth vectors is an automorphic representation of H.

According to [28, Theorem 4], if χ is any (unitary) character of Z(F )\Z(A), then any

G(A)-invariant irreducible closed subspace of

L2(G(F )\G(A))χ

= {f | f ∈ L2(G(F )\G(A)) and f(zx) = χ(z)f(x) for z ∈ Z(A), x ∈ G(A)}

is automorphic in this sense. The following result is due to Gelfand and Piatetski-Shapiro

[38].
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Theorem 2.18. The subspace of cuspidal functions in L2(G(F )\G(A))χ decomposes dis-

cretely with finite multiplicity. Consequently whenever f is a cusp form, f ∗ H is a finite

direct sum of cuspidal automorphic representations.

Remark 2.19. It follows from the theorem that cuspidal automorphic representations are

unitarizable. That is, they are the underlying smooth representations for irreducible uni-

tary representations of G(A). One principal object of Langlands correspondence is the set

of equivalence classes of smooth admissible representations of G(A). Being unitarizable is

an important property of the cuspidal automorphic representations.

Remark 2.20. Classical cusp forms for GL2 /Q lead to cusp forms in the adelic setting by

Theorem 2.12. Those whose L-function has Euler product expansions (i.e. eigenforms)

lead to adelic cusp forms that generate single irreducible cuspidal automorphic represen-

tations.

3. Automorphic forms on quaternion algebras

In this section, following the general idea in last section, we study automorphic forms

on quaternion algebras in detail.

3.1. Representations of GL2(E). In this section, E is a local field with mixed charac-

teristic with valuation ring O. We fix an uniformizer $E of E. We briefly review the

representations of GL2(E) (cf. [5, 14]). For simplicity, let G = GL2(E) and K = GL2(O),

so that K is a maximal open compact subgroup of G. Let B = NM = MN , where

M = {m = m(a) =

(
a1

a2

)
} and N = {n = n(x) =

(
1 x

1

)
},

where a1, a2 ∈ E× and x ∈ E. Let Z be the center of G.

Definition 3.1. Let (π, V ) be a representation of G. We say that π is smooth if for any

v ∈ V , the stabilizer of v in G is open. We say that a smooth π is admissible if for any

open compact subgroup U ⊂ G, V U is finite-dimensional.

An irreducible admissible representation (π, V ) of G is called unramified if V K 6= 0.

For each pair µ = (µ1, µ2) of characters of E×, there is an induced representation

I(µ) = {f : G→ C | f(bg) = µ(b)δ(b)1/2f(g)},

where f is smooth (i.e. right invariant under an open subgroup K ′ ⊂ G), and for b =

nm(a),

µ(b) = µ1(a1)µ2(a2) and δ(b) = |a1/a2|.
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Note that δ is the modulus for the adjoint action of B on N , i.e.,

d(bnb−1) = δ(b) dn

for a Haar measure dn on N . Thus the induction is normalized so that a pair (µ1, µ2)

of unitary characters yields a unitarizable representation I(µ). As we have the Iwasawa

decomposition G = BK, the functions in I(µ) are determined by their restriction to K

and we have

I(µ)|K ∼= IKK∩B(µ).

It is also easy to see that the central character of I(µ) is µ1µ2. The following two theorems

provide a partial classification of admissible GL2(E)-representations.

Theorem 3.2. With notation as above, the following claims hold.

(1) I(µ) is irreducible if and only if µ1µ
−1
2 6= ω±1, where ωs(x) = |x|s.

(2) If µ1µ
−1
2 = ω1, then I(µ) has a one-dimensional quotient on which G acts by

the character χ ◦ det, where µ = (χω1/2, χω−1/2), and an infinite dimensional

irreducible subrepresentation σ(µ).

(3) If µ1µ
−1
2 = ω−1, then I(µ) has a one-dimensional subrepresentation on which G

acts by the character χ ◦ det, where µ = (χω−1/2, χω1/2), and an infinite dimen-

sional irreducible quotient σ(µ).

(4) The only equivalences among these representations are the following. Let µ′ =

(µ2, µ1).

• If µ1µ
−1
2 6= ω±1, then I(µ) ∼= I(µ′).

• If µ1µ
−1
2 = ω±1, then σ(µ) ∼= σ(µ′).

Theorem 3.3. For an irreducible admissible representation (π, V ) of G = GL2(E), the

following are equivalent.

(1) HomG(π, I(µ)) = 0 for all µ.

(2) The matrix coefficients of π are compactly supported modulo Z.

The representations satisfying the conditions in Theorem 3.3 are the supercuspidal

representations of G. Together with the irreducible principal series representations I(µ),

the special representations σ(µ) and the one-dimensional representations χ ◦ det, they

give all of the irreducible admissible representations of G up to isomorphism. The special

representations and the supercuspidal representations are called discrete series.

If the characters µ1 and µ2 are unramified, so that

µj(x) = t
ord(x)
j
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for some (t1, t2) ∈ (C×)2, then µ|(B∩K) = 1 and we have an K-isomorphism

(3.1) I(µ)|K ∼= C∞(B ∩K\K).

Therefore, we have dimC I(µ)K = 1. In fact, this construction accounts for all unramified

representations.

Theorem 3.4. The following claims hold.

(1) For every pair (t1, t2) ∈ (C×)2, there is an irreducible admissible unramified rep-

resentation π(t1, t2) of G.

(2) Every irreducible admissible unramified representation of G is isomorphic to one

π(t1, t2). The only equivalence between such representations is

π(t1, t2) ∼= π(t2, t1).

(3) The special representations and the supercuspidal representations are ramified.

The parametrization of the unramified representations of G can be expressed as fol-

lows, which is a special case of the so called Satake parametrization for an arbitrary

connected reductive group G (cf. [41]).

Corollary 3.5. There is a bijection between isomorphism classes of irreducible admissible

unramified representations of G and semisimple conjugacy classes in complex group G∨ :=

GL2(C), given by

π = π(t1, t2)↔ t(π) := conjugacy class of

(
t1

t2

)
.

The local Langlands correspondence provides a unique family of bijections recE from

the set of irreducible admissible representations of GLn(E) to the set of n-dimensional

Frobenius semisimple Weil-Deligne representations of WE over C, satisfying a list of prop-

erties. In order to be uniquely determined, one needs to formulate the correspondence for

all n at once, and the properties are expressed in terms of L- and ε-factors, neither of which

we have defined and we will need later. We state the properties of the correspondence

that we need to use.

Theorem 3.6. The recE for n = 1 is given by recE(π) = π ◦Art−1
E . Here Art : GE → E×

is the Artin reciprocity map.

The recE for n = 2 satisfies the following conditions.

(1) If χ is a smooth character, then recE(π ⊗ (χ ◦ det)) = recE(π)⊗ recE(χ).

(2) If µ1µ
−1
2 6= ω±1, then recE(I(µ)) = µ1 ⊕ µ2.
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(3) If µ1µ
−1
2 = ω±1, i.e., µ = (χω1/2, χω−1/2) or µ = (χω−1/2, χω1/2), then recE(σ(µ)) =

χ⊕ χω1 with N =

(
0 1

0 0

)
. This is the only case with N nontrivial. In this case,

recE(σ(µ)) is indecomposable.

(4) If π = χ ◦ det, then recE(π) = χω1/2 ⊕ χω−1/2.

(5) π is discrete series if and only if recK(π) is indecomposable, is cuspidal if and only

if recE(π) is irreducible.

Remark 3.7 (Hecke operators). Let ψ be a compactly supported C-valued function on

GL2(O)\GL2(E)/GL2(O). Concretely, these are functions which vanish outside of a

finite number of double cosets GL2(O)gGL2(O). The set of such functions is in fact a

ring, with the multiplication being given by convolution (cf. Section 2.3, where we consider

the non-unital Hecke algebra). To be precise, we fix µ the (left and right) Haar measure

on GL2(E) such that µ(GL2(O)) = 1 and define

(ψ1 ∗ ψ2)(x) =

∫
GL2(E)

ψ1(g)ψ2(g−1x) dµg.

From our assumption on ψ, this integral is just a finite sum. Denote this ring by HE .

Then in this case, it is isomorphic to C[T, S±1], where T is the characteristic function of

the double coset

GL2(O)

(
$E 0

0 1

)
GL2(O)

and S is the characteristic function of the double coset

GL2(O)

(
$E 0

0 $E

)
GL2(O).

The algebra HE acts on an irreducible admissible GL2(E)-representation π. Given ψ ∈
HE , we have a linear map π(ψ) given by

π(ψ) : π → πGL2(O) ⊂ π

w 7→
∫

GL2(E)
ψ(g)π(g)w dµg.

In particular, if π is an unramified irreducible admissible representation, then πGL2(O) is

one dimensional and π(ψ) acts via a scalar on this one-dimensional space. As we have a

classification of π, we could compute this action explicitly.

First note that we have two decompositions

(3.2) GL2(O)

(
$E 0

0 $E

)
GL2(O) =

(
$E 0

0 $E

)
GL2(O)
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and

(3.3) GL2(O)

(
$E 0

0 1

)
GL2(O) = (

∐
a∈kE

(
$E ã

0 1

)
GL2(O))

∐(
1 0

0 $E

)
GL2(O),

where ã ∈ O is a lifting of a. Denote by q the cardinality of the residue field of E. Then

it is easy to check that

(1) Suppose that π = (χ| · |1/2) ◦ det with χ unramifed. Then πGL2(O) = π, and S and

T acts via χ($E)2q−1 and χ($E)(q1/2 + q−1/2) respectively.

(2) Suppose that χ1 and χ2 are unramified characters and that χ1χ
−1
2 6= | · |±1. Let

π = I(µ1, µ2). Then from equation (3.1), πGL2(O) is spanned by a function φ0

with φ0(

(
a b

0 d

)
) = χ1(a)χ2(d)|a/d|1/2. Moreover, S and T acts on πGL2(O) via

χ1χ2($E) and q1/2(χ1($E) + χ2($E)) respectively.

3.2. Notation and definition. In this section, we construct antomorphic forms on defi-

nite quaternion algebras (cf. [36, 84]). Let F be a totally real field. Let D be a quaternion

algebra over F , i.e. central simple F -algebra of dimension 4. Denote by S(D) the set of

ramified places of D over F , i.e. those for which D ⊗F Fv is a division algebra, (equiva-

lently, is not isomorphic to M2(Fv)). Then S(D) is a finite set of places of F with even

cardinality and it determines D up to isomorphism. In particular, S(D) = ∅ if and only

if D = M2(F ).

Fix a maximal order OD of D, that is, a Z-subalgebra of D which is finitely generated

as a Z-module and for which OD ⊗Z Q ∼= D. For example, if D = M2(F ), one may take

OD = M2(OF ). For v 6∈ S(D) and finite, fix an isomorphism D ⊗F Fv
∼−→ M2(Fv) such

that it induces an isomorphism OD ⊗OF OFv
∼−→M2(OFv).

Let G := GD be the algebraic group over Q such that for any Q-algebra R, G(R) =

(D⊗Q R)×. For each infinite place v|∞ of F , we define a subgroup Uv of G(Fv) = (D⊗F
Fv)
× as follows.

• If v ∈ S(D), then G(Fv) = (D⊗F Fv)× = H×, where H is the Hamilton quaternion

algebra. Define Uv = (D ⊗F Fv)×.

• If v 6∈ S(D), then G(Fv) = (D ⊗F Fv)× = GL2(R). Define Uv = R× SO2(R), the

group generated by the center and the maximal compact subgroup.

If γ =

(
a b

c d

)
∈ GL2(R) and z ∈ C − R, we let j(γ, z) = cz + d. Note that here j

is a little different from the one we introduced in last section, but this is only for writing
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convenience. It is easy to check that if we have two matrices γ and δ, then

j(γδ, z) = j(γ, δz)j(δ, z).

For each v|∞, fix kv ≥ 2 and ηv ∈ Z such that kv +2ηv−1 = w is independent of v. These

will be the weights of our modular forms. We define a representation (τv,Wv) of Uv over

C.

• If v ∈ S(D), we have Uv ↪→ GL2(Fv) ∼= GL2(C) which acts on C2. We let (τv,Wv)

be the representation

(Symkv−2C2)⊗ (∧2C2)ηv .

• If v 6∈ S(D), we have Uv ∼= R× SO2(R). We let (τv,Wv) be the one dimensional

representation given by

τv(γ) = j(γ, i)kv(det γ)ηv−1.

We write U∞ =
∏
v|∞ Uv, W∞ = ⊗v|∞Wv, τ∞ = ⊗v|∞τv. Let A = AQ be the adeles of Q

and A∞ the finite adeles. Define SD,k,η to be the space of functions f : G(Q)\G(A)→W∞

which satisfy the following conditions:

(1) φ(gu∞) = τ∞(u∞)−1φ(g) for all u∞ ∈ U∞ and g ∈ G(A).

(2) There is a nonempty open subset U∞ ⊂ G(A∞) such that φ(gu) = φ(g) for all

u ∈ U∞ and g ∈ G(A).

(3) Let S∞ denote the set of infinite places of F . If g ∈ G(A∞) then the function

h∞ : (C− R)S∞−S(D) →W∞

(i, . . . , i) 7→ τ∞(h∞)φ(gh∞)

is holomorphic. Note that this function is well-defined by the first condition, as

U∞ is the stabilizer of (i, . . . , i).

(4) If S(D) = ∅, then for all g ∈ G(A) = GL2(AF ), we have∫
F\AF

φ(

(
1 x

0 1

)
g) dx = 0.

If in addition we have F = Q, then we furthermore demand that for all g ∈ G(A∞),

h∞ ∈ GL2(R)+, the function φ(gh∞)| Im(h∞i)|k/2 is bounded on C− R.

There is a natural action of G(A∞) on SD,k,η by right translation, i.e., (gφ)(x) := φ(xg).

Note that here we do not consider the right translation of G∞, the problem mentioned at

the beginning of Section 2.3 dose not appear here.
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Remark 3.8. If D is a definite quaternion algebra, i.e. S∞ ⊂ S(D), the situation is

particularly simple, since the double quotient

Γ(Q)\G(A)/G∞U

is a finite set, where U ⊂ G(A∞) is an open subgroup. When proving modularity lifting

theorems for rank two Galois representations, we will be able to reduce to this simple case

as we shall see in Section 3.3.9.

Definition 3.9. A representation (π, V ) of G(A∞) is called admissible if

• for any x ∈ V , the stabilizer of x is open, and

• for any U ⊂ G(A∞) an open subgroup, dimC V
U <∞.

With this definition, SD,k,η is a semisimple admissible representation of G(A∞). As

explained in [28], irreducible admissible representations of G(A∞) are restricted tensor

products of irreducible admissible representations of G(Fv) (v finite). Let us first recall

the general construction. Let I be an indexing set and let Vi be a C-vector space (i ∈ I).

Suppose that we are given 0 6= ei ∈ Vi for almost all i ∈ I. Then we define the restricted

tensor product

⊗′eiVi := lim−→J∈I(⊗i∈JVi),

where the colimit is over the finite subsets J ⊂ I containing all the places for which ei is

not defined, the transition maps for the colimit are given by tensoring with the ei. It is

easy to check that ⊗′eiVi ∼= ⊗
′
fi
Vi if for almost all i, ei and fi span the same line.

Now if πv is an irreducible smooth (so admissible) representation of (D ⊗F Fv)
×.

Assume that π
GL2(OFv )
v 6= {0} for all most all v. These are called unramified representa-

tions, and in this case, we must have dimC π
GL2(OFv )
v = 1 (cf. Section 3.1). Then ⊗′πv

is an irreducible admissible representation of G(A∞), where the restricted tensor product

is taken with respect to the one dimensional spaces π
GL2(OFv )
v . Moreover any irreducible

admissible representation of G(A∞) arises in this way for unique πv.

Definition 3.10. The irreducible constituents of SD,k,η are called the cuspidal automor-

phic representations of G(A∞) of weight (k, η).

The Hecke algebra is easy to construct in this case (cf. Section 2.3). For each finite

place v of F we choose Uv ⊂ G(Fv) a open compact subgroup, such that Uv = GL2(OFv)
for almost all v. Let µv be a Haar measure on G(Fv) normalized so that µv(G(OFv)) = 1.

Then there is a unique Haar measure µ on G(A∞) such that for any Uv as above, if we

set U =
∏
v Uv ⊂ G(A∞), then µ(U) =

∏
v µv(Uv). Then there is a decomposition

Cc(U\G(A∞)/U)µ ∼= ⊗′1UvµvCc(Uv\G(Fv)/Uv)µv,
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which decomposes the (finite) global Hecke algebra as a restricted product of the local

Hecke algebras. Certainly, the actions of these Hecke algebras are compatible with the

decomposition π = ⊗′πv.

3.3. Langlands correspondence: some facts. Now we review some important facts

on automorphic representations and the Jacquet-Langlands correspondence, which enable

us to reduce the proof of modularity results to a relatively simple situation.

3.3.1. Multiplicity one for GL2. Suppose that S(D) = ∅. Then every irreducible con-

stituent of SD,k,η has multiplicity one. Moreover, if π (resp. π′) is a cuspidal automorphic

representation of weight (k, η) (resp. (k′, η′)) such that πv ∼= π′v for almost all v, then

k = k′, η = η′, and π ∼= π′. (cf. [8, 5, 72, 46].)

3.3.2. The theory of newforms. Suppose that S(D) = ∅. If n is an ideal of OF , write

U1(n) = {g ∈ GL2(OF ) | g ≡

(
∗ ∗
0 1

)
(mod n)}.

If π is a cuspidal automorphic representation of G(A∞), then there is a unique ideal n such

that πU1(n) is one-dimensional, and πU1(m) 6= 0 if and only if n|m. We call n the conductor

of π, πU1(n) the space of newforms. (cf. [8, 18].)

3.3.3. The local Jacquet-Langlands correspondence. Let E be a local field with mixed char-

acteristic (0, p). Analogous to the theory of admissible representations of GL2(E), there

is a theory of admissible representations of D×, where D/E is a nonsplit quaternion al-

gebra. Since D×/E× is compact, any irreducible admissible representation of D× is finite

dimensional. There is a bijection JL, the local Jacquet-Langlands correspondence, from

the irreducible admissible representations of D× to the discrete series representations of

GL2(E). (cf. [45, 8, 14].)

3.3.4. The global Jacquet-Langlands correspondence. Let D be a quaternion algebra over

F such that S(D) is nonempty. We have the following facts on cuspidal automorphic

representations of G(A∞) (cf. [45, 8, 14]).

(1) The only finite dimensional cuspidal automorphic representation of G(A∞) are

one-dimensional representations which factor through the reduced norm.

(2) There is a bijection JL from the infinite-dimensional cuspidal automorphic repre-

sentaions of G(A∞) of weight (k, η) to the cuspidal automorphic representations

of GL2(A∞) of weight (k, η) which are discrete series for all finite places v ∈ S(D).

(3) The local and global Jacquet-Langlands correspondence are compatible in the fol-

lowing sense:
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• if v 6∈ S(D), then JL(π)v = πv;

• if v ∈ S(D), then JL(π)v = JL(πv).

3.3.5. Galois representations associated with automorphic representations. Let π be a reg-

ular algebraic cuspidal automorphic representation of GL2(A∞) of weight (k, η). Then

there is a CM field Lπ and for each finite place λ of Lπ a continuous irreducible Galois

representation

ρλ(π) : GF → GL2(Lπ,λ)

such that

(1) if πv is unramified and v does note divide the residue characteristic of λ, then

ρλ(π)|GFv is unramified, and the characteristic polynomial of Frobv is

X2 − tvX + (]kv)sv,

where Tv and Sv are the eigenvalues of Tv and Sv respectively on πGL2(OFv ) (cf.

Remark 3.7). By the Chebotarev density theorem, this already characterises ρλ(π)

up to isomorphism.

(2) the Frobenius semisimplification of the Weil-Deligne representation associated with

ρλ(π)|GFv is isomorphic to recFv(πv ⊗ | det |−1/2).

(3) If v divides the residue characteristic of λ, then ρλ(π)|GFv is de Rham with τ -

Hodge-Tate weights ητ , ητ + kτ − 1, where τ : F ↪→ Lπ ⊂ C is an embedding lying

over v. Moreover, if πv is unramified, then ρλ(π)|GFv is crystalline.

(4) det rλ(π)(c) = −1 for each complex conjugation c.

Using the global Jacquet-Langlands correspondence, we may associate a Galois repre-

sentation to the infinite dimensional cuspidal automorphic representations of GD(A∞) for

any D. On the other hand, in order to prove the existence of the Galois representation,

we use the Jacquet-Langlands correspondence and transfer to a D over F for which S(D)

contains all but one infinite place. Then the Galois representations are realized in the étale

cohomology group of the associated Shimura curve. The remaining Galois representations

are constructed from these ones via congruences. [81, 16]

3.3.6. Base change theory. Fix E a cyclic extension of the number field F , of prime de-

gree l. Roughly speaking, the theory of base change describes the correspondence between

automorphic representations of the groups GLn(AF ) and GLn(AE) which reflects the op-

erations of restriction of Galois representations of WF to WE . The first results on base

change for automorphic forms used the theory of L-functions, and were restricted to the

case of quadratic E and GL2. The introduction of the trace formula is due to H. Saito,
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who dealt with GL2 and arbitrary cyclic E using the classical language of automorphic

forms ([65]). Immediately after that, Shintani reformulated Saito’s result using group

representations, and gave the correct local definition of base change lifting ([74]). Finally,

Langlands saw the connection with Artin’s conjecture, and reshaped the trace formula

proof for GL2 in a form suitable for later generalizations to GLn developed by Arthur and

Clozel (cf. [55, 1]). Since only the case n = 2 is required here, we restricted ourselves to

this case.

Let E/F be a cyclic extension of totally real fields of prime degree. Let Gal(E/F ) =

〈σ〉 and let Gal(E/F )∨ = 〈δE/F 〉 be the dual group of Gal(E/F ). Let π be a cuspidal

automorphic representation of GL2(A∞F ) of weight (k, η). Then there is a cuspidal auto-

morphic representation BCE/F (π) of GL2(A∞E ) of weight (BCE/F (k),BCE/F (η)) such that

the following claims hold.

(1) Let v be a finite place of F and w be a finite place of E with w|v. Then

recEw(BC(π)w) = recFv(πv)|WEw
. In particular, rλ(BCE/F (π)) ∼= rλ(π)|GE .

(2) BCE/F (k)w = kv and BCE/F (η)w = ηv.

(3) BCE/F (π) ∼= BCE/F (π′) if and only if π ∼= π′ ⊗ (δiE/F ◦ArtF ◦ det) for some i.

(4) A cuspidal automorphic representation Π of GL2(A∞E ) is in the image of BCE/F if

and only if Π ◦ σ ∼= Π.

Note that BCE/F exists for general cyclic extension E/F and it satisfies similar prop-

erties as above except one point. In the general case, the representation BCE/F (π) is

automorphic. It is cuspidal (as opposed to just automorphic) unless E/F is quadratic

over F , and π is monomial (i.e. rλ(π) = IndWF
WE

θ).

The theory of base change is a strong tool in the study of automprhic representations.

In particular, it has two consequences that are important in the study of modularity

representations: the Langlands-Tunnell theorem used in [92] and the simplification in

Section 3.3.9.

3.3.7. The Langlands-Tunnell theorem. As a partial converse of Section 3.3.5, the Langlands-

Tunnell theorem associated a cuspidal automorphic representation to a Galois representa-

tion. Suppose F is a number field and the irreducible representation

ρ : WF → GL2(C)

has a solvable image in PGL2(C). Then there exists a (unique) irreducible cuspidal auto-

morphic representation π(ρ) = ⊗πv of GL2(A∞F ) such that

Tr(ρ(Frobv)) = Tr(Tv)
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for almost all v. (cf. [55, 87].)

3.3.8. Modular Galois representations.

Definition 3.11. A Galois representation r : GF → GL2(Qp) is modular (of weight (k, η))

if it is isomorphic to i(ρλ(π)) for some cuspidal automorphic representation π (of weight

(k, η)) and some i : Lπ ↪→ Qp lying over λ.

As an application of base change, we have the following result.

Proposition 3.12. Suppose that r : GF → GL2(Qp) is a continuous representation, and

that E/F is a finite solvable Galois extension of totally real fields. Then r|GE is modular

if and only if r is modular.

Proof. Without loss of generality, we may assume that E/F is cyclic of prime degree. If r is

modular, then r|GE is modular by base change. Conversely, suppose that r|GE is modular,

say r|GE ∼= i(rλ(Π)), where Π is a cuspidal automorphic representation of GL2(AE). By

multiplicity one result (cf. Section 3.3.1), we must have Π ◦ σ ∼= Π. Therefore, there is an

automorphic representation π of GL2(AF ) such that BCE/F (π) = Π. As i(rλ(π))|GE =

r|GE is irreducible, we must have r ∼= i(rλ(π))⊗ χ ∼= i(rλ(π ⊗ (χ ◦Art−1 ◦|det |−1/2))) for

some χ. Hence r is modular. �

3.3.9. The simplification. We need the following result from [83, Lemma 2.2].

Lemma 3.13. Let K be a number field and let S be a finite set of places of K. For

each v ∈ S, let Lv be a finite Galois extension of Kv. Then there is a finite solvable

Galois extension M/K such that for each place w of M above a place v ∈ S there is an

isomorphism Lv ∼= Mw as Kv-algebras.

In order to prove Theorem 1.1, by replacing F with a solvable totally real extension

which is unramified at all primes above p, we may assume that

• [F : Q] is even.

• ρ is unramified outside p.

• For all primes v - p, both ρ(IFv) and ρ0(IFv) are unipotent (possible trivial).

• If ρ or ρ0 are ramified at some place v - p, then ρ|GFv is trivial and ]k(v) ≡ 1

(mod p).

• det ρ = det ρ0. (To see this, note that the assumption that ρ and ρ0 are crystalline

with the same Hodge-Tate weights for all places dividing p implies that det ρ/ det ρ0

is unramified at all places dividing p. Since we have already assumed that ρ(IFv)

and ρ0(IFv) are unipotent for all v - p, therefore det ρ/ det ρ0 is unramified at all
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places, and thus has finite order. Moreover, it is residually trivial, it has p-power

order and thus is trivial on all complex conjugations as p 6= 1. The extension

cut out by the kernel of the character det ρ/ det ρ0 is a finite, abelian, totally real

extension unramified at all places dividing p. The claim then follows by base

change.)

From now on, we assume that all of these conditions hold. Write χ for det ρ = det ρ0.

Then χεp = χ0,ι for some algebtaic grossencharacter χ0. We assume further that the

coefficient field L is sufficiently large, in the sense that L contains a primitive p-th root of

unity, and for all g ∈ GF , F contains the eigenvalues of ρ(g).

3.4. The integral theory of automorphic forms over quaternion algebras. In or-

der to prove Theorem 1.1, we will need to study congruences between modular/ automor-

phic forms. In order to do so, it is convenient to work with automorphic forms on GD(A∞)

with S(D) = S∞. This is possible as [F : Q] is even. In this case, GD(A∞) = GL2(A∞)

and (D ⊗Q R)×/(F ⊗Q R)× is compact.

3.4.1. Definition. Fix an isomorphism ι : L
∼−→ C and some k ∈ ZHom(F,C)

≥2 , η ∈ ZHom(F,C)

with kτ + 2ητ − 1 independent of τ ∈ Hom(F,C). Denote this number by w. Let U =∏
v Uv ⊂ GL2(A∞) be a open compact subgroup, and let S be a finite set of finite places

of F , not containing any of the places over p, with the property that Uv = GL2(OFv) if

v 6∈ S.

Let US :=
∏
v∈S Uv and write U = USU

S . Let ψ : US → O× be a continuous

homomorphism and let χ0 : A×F /F
× → C× be an algebraic grossencharacter such that

• χ0 is unramified outside S;

• for each place v|∞, χ0|(F×v )◦(x) = x1−w, where A◦ means the component of identity

of A;

• χ0|(∏v∈S)∩US = ψ−1.

Then χ0 gives us a character

χ0,ι : A×F /F×(F×∞)◦ → L
×

x 7→ (
∏

τ :F→L
τ(xp)

1−w)ι−1(
∏

τ :F ↪→C
τ(x∞))w−1χ0(x).

The spaces of algebraic automorphic forms will be defined in a similar way to the classical

spaces defined in Section 2.2, but with the role of the infinite places being played by the

places lying over p (cf. [84, 50, 36]). First, we define coefficient systems as follows. Let

Λ = Λk,η,ι =
⊗

τ :F ↪→C
Symkτ−2O2 ⊗ (∧2O2)⊗ητ .



PATCHING AND MODULARITY 23

Let GL2(OF,p) :=
∏
v|p GL2(OFv) act on Λ via ι−1τ on the τ -component. In particular,

Λ⊗ι:O→C C ∼=
⊗

τ :F ↪→C
Symkτ−2C2 ⊗ (∧2C2)⊗ητ ,

which has an obvious action of GL2(F∞), and the two actions of GL2(OF,(p)) via its

embeddings into GL2(OF,p) and GL2(F∞) are compatible.

Let A be a finite O-module. Define S(U,A) = Sk,η,ψ,χ0(U,A) to be the space of

functions

φ : D×\GL2(A∞F )→ Λ⊗O A

such that

• φ(gu) = ψ(uS)−1u−1
p φ(g) for all g ∈ GL2(A∞F ) and u ∈ U ;

• φ(gz) = χ0,ι(z)φ(g) for all g ∈ GL2(A∞F ) and z ∈ (A∞F )×.

Since D×\GL2(A∞F )/(A∞F )×U is finite, S(U,A) is a finite free O-module. More precisely,

write

GL2(A∞F ) =
∐
i∈I

D×giU(A∞F )×

for some finite indexing set I, we have an injection

S(U,A) ↪→ ⊕i∈I(Λ⊗A)

φ 7→ (φ(gi)).

To determine the image, we need to consider the equation gi = δgiuz for δ ∈ D×, u ∈ U ,

and z ∈ (A∞F )×, because then φ(gi) = φ(δgiuz) = χ0,ι(z)ψ(us)
−1u−1

p φ(gi). From this we

obtain an isomorphism

(3.4) S(U,A)
∼−→ ⊕i∈I(Λ⊗A)(U(A∞F )×∩g−1

i D×gi)/F× .

Lemma 3.14. Each group (U(A∞F )×∩g−1
i D×gi)/F

× is finite. If p > 3 and p is unramified

in F , the order of (U(A∞F )× ∩ g−1
i D×gi)/F

× is not divisible by p.

Proof. This is [84, Lemma 1.1]. Set V =
∏
v-∞O

×
F,v. Then we have exact sequences

0→ (UV ∩g−1
i Ddet=1gi)/{±1} → (U(A∞F )×∩g−1

i D×gi)/F
× → (((A∞F )×)2V ∩F×)/(F×)2

and

0→ O×F /(O
×
F )2 → (((A∞F )×)2V ∩ F×)/(F×)2 → H[2]→ 0,

where H is the class group of OF . We see that (((A∞F )×)2V ∩ F×)/(F×)2 is finite of

2-power order. Moreover UV ∩ g−1
i Ddet=1gi is finite. For p > 3 and p unramified in F ,

D× and hence UV ∩ g−1
i Ddet=1gi contain no elements of order exactly p. The lemma

follows. �
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Remark 3.15. If U is sufficiently small so that (UV ∩ g−1
i Ddet=1gi)/{±1} is trivial, then

(U(A∞F )× ∩ g−1
i D×gi)/F

× is a 2-group.

Remark 3.16. Let g−1
i δgi represents an element in (U(A∞F )×∩g−1

i D×gi)/F
× with δ ∈ D×,

we see that δ2/ det δ ∈ D×giUg−1
i (detU), the intersection of a discrete set and a compact

set, so δ2/det δ has finite order, i.e. is a root of unity. However any element of D generates

an extension of F of degree at most 2, it must be a root of unity of degree prime to p since

[F (ζp) : F ] > 2.

Corollary 3.17. With the above notation, the following claims hold.

(1) S(U,O)⊗O A
∼−→ S(U,A).

(2) If V is an open normal subgroup of U with [U : V ] a power of p, then S(V,O) is

a free O[U/V (U ∩ (A∞F )×)]-module.

Proof. Denote by Gi the group (U(A∞F )× ∩ g−1
i D×gi)/F

×. Since Gi has order prime to p,

we have (Λ⊗A)Gi = ΛGi ⊗A. The first claim follows immediately from the isomorphism

S(U,A)
∼−→ ⊕i∈I(Λ⊗A)Gi .

For the second claim, write U =
∐
j∈J ujV (U ∩ (A∞F )×). It suffices to prove that

GL2(A∞F ) =
∐
i∈I,j∈J D

×giujV (A∞F )×. To see this, we need to show that if giuj = δgi′uj′vz

for some δ ∈ D×, v ∈ V , z ∈ (A∞F )×, then i = i′ and j = j′.

From the definition of I, it is clear that i = i′. Then we have uj′vu
−1
j z = g−1

i δ−1gi.

The argument as in Remark 3.16 tells us that there is some positive integer N coprime

to p such that δN ∈ F×, so (uj′vu
−1
j )N ∈ (A∞F )×. Since V is normal in U , we can write

(uj′vu
−1
j )N = (uj′u

−1
j )Nv′ for some v′ ∈ V . Therefore (uj′u

−1
j )N ∈ V (U ∩ (A∞F )×). Since

[U : V ] is a power of p, we see that uj′u
−1
j ∈ V (U ∩ (A∞F )×) and hence j = j′. �

3.4.2. The Hecke algebra. If v - p or if v|p but τ |Uv = 1, then the Hecke algebraO[Uv\GL2(Fv)/Uv]

acts on S(U,O). Explicitly, if

UvhUv =
∐
i

hiUv,

then

([UvhUv]f)(g) =
∑
i

f(ghi).

Let T̃ := O[Tv, Sv : v - p, v 6∈ S], where Tv and Sv be the double coset operators

corresponding to

(
$v 0

0 1

)
and

(
$v 0

0 $v

)
respectively. Let TU be the image of T̃ in

EndO(S(U,O)), so that TU is a commutative O-algebra which acts faithfully on S(U,O)

and finite free as an O-module.
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By definition, we have

S(U,O)⊗O,ι C
∼−→ HomUS (C(ψ−1), SU

S ,χ0

k,η )

φ 7→ (g 7→ g−1
∞ ι(gpφ(g∞))),

where the target of the isomorphism is the set of elements φ ∈ Sk,η with zφ = χ0(z)φ for

all x ∈ (A∞F )×, uφ = ψ(uS)−1φ for all u ∈ U . This isomorphism is compatible with the

action of T̃ on each side. The target is isomorphic to⊕
π

HomUS (C(ψ−1), πS)⊗ (⊗′v 6∈Sπ
GL2(OFv )
v ),

where the sum is over the cuspidal automorphic representations π of GD(A∞) of weight

(k, η), which have central character χ0 and are unramified outside S.

By strong multiplicity one (cf. Section 3.3.1), we have an isomorphism

TU ⊗O,ι C ∼=
∏

π as above, with HomUS
(C(ψ−1),πS) 6=0

C

sending Tv, Sv to their eigenvalues on π
GL2(OFv )
v . In particular TU is reduced. Moreover,

this shows that there is a bijection between ι-linear ring homomorphisms θ : TU → C
and the set of π as above, where π corresponds to the character taking Tv, Sv to their

corresponding eigenvalues.

As explained in Section 3.3.5, each π has a corresponding Galois representation. Tak-

ing the product of these represntations, we obtain a representation

ρmod : GF →
∏
π

GL2(L) = GL2(TU ⊗O L),

which is characterized by the properties that it is unramified outside S ∪ {v : v|p}, and

for any unramified v, ρmod(Frobv) has characteristic polynomial

X2 − TvX + (]kv)Sv = 0.

Let m be a maximal ideal of TU . Then if p  m is a minimal prime, then there is

an injection θ : TU/p ↪→ L, which corresponds to some π above. The semisimple mod

p Galois representation corresponding to π can be conjugated to give a representation

ρm : GF → GL2(TU/m). This is well defined up to isomorphism independently of the

choice of p and θ.

Since TU is finite over the complete local ring O, it is semilocal. Write TU =
∏

m TU,m.

Suppose that ρm is absolutely irreducible. Then we have the representation

ρmod : GF → GL2(TU,m ⊗O L) =
∏
π

GL2(L),
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where the product is over the π as above with ρπ,ι
∼= ρm. Each representation to GL2(L)

can be conjugated to lie in GL2(OL), and after further conjugation (so that the residual

representations are equal to ρm, rather than just conjugate to it), the image of ρmod
m lies

in the subring of
∏
π GL2(OL) consisting of elements whose image modulo the maximal

ideal of OL lie in TU/m. Then ρmod
m can be conjugated to lie in GL2(TU,m). We will write

ρmod
m : GF → GL2(TU,m) for the resulting representation from now on.

Remark 3.18. Later in the notes we need to consider Hecke operators at places in S.

To this end, let T ⊂ S such that ψ|UT = 1 and choose gv ∈ GL2(Fv) for each v ∈ T .

Set Wv = [UvgvUv] and define T̃′U = T̃U [Wv : v ∈ T ]. Similarly we have TU ⊂ T′U ⊂
EndO(S(U,O)). The algebra T′U is commutative, and finite and flat over O. However it

need not be reduced. Indeed, we have

T′U ⊗O,ι C ∼=
⊕
π

⊗v∈T {subalgebra of EndC(πUvv ) generated by Wv},

so that there is a bijection between ι-linear homomorphisms T′U → C and tuples (π, {αv}v∈T ),

where αv is an eigenvalue of Wv on πUvv .

4. The Taylor-Wiles-Kisin method

In this section, we review the patching result of Kisin [50, Proposition 3.3.1]. It is a

criterion for a map of O-algebras to be isomorphism up to p-torsion. This will be applied

to establish that certain Galois deformation rings and Hecke rings are isomorphic up to

p-torsion. The argument is analogous to that of Taylor-Wiles [86] and Diamond [24]. One

of the differences with this approach is that Kisin’s criterion could be used to treat both

the minimal and non-minimal case.

Proposition 4.1. Let B be a complete local, flat O-algebra, which is a domain of dimen-

sion d+1, and such that B[1/p] is formally smooth over E. Suppose that R is a B-algebra

and M is a non-zero R-module, and that there are non-negative integers h and j such that

for each non-negative integer n there are maps of O-algebras

(4.1) O[[y1, . . . , yh+j ]]→ Rn → R

and a map of Rn-modules Mn →M satisfying the following conditions:

(1) The maps Rn → R and Mn → M are surjective, and the first is a map of B-

algebras.

(2) (y1, . . . , yh)Rn = Ker(Rn → R) and (y1, . . . , yh)Mn = Ker(Mn →M).



PATCHING AND MODULARITY 27

(3) If bn ⊂ O[[y1, . . . , yh+j ]] is the annihilator of Mn, then

bn ⊂ ((1 + y1)p
n − 1, . . . , (1 + yh)p

n − 1),

and Mn is finite free over O[[y1, . . . , yh+j ]]/bn. So, in particular, M is finite free

over O[[yh+1, . . . , yh+j ]].

(4) Rn is a quotient of B[[x1, . . . , xh+j−d]].

Then the R is a finite O[[yh+1, . . . , yh+j ]]-algebra, and M ⊗O E is a finite projective and

faithful R[1/p]-module.

To apply this result, R is certain universal deformation ring and M is the space of

certain automorphic forms. As the action of R on M comes form the surjection R � T ,

where T is certain Hecke algebra, the faithfulness statement implies that R[1/p] = T [1/p].

Proof. For a complete local ring A, denote by mA its maximal ideal. For a non-negative

integer n, denote by m
(n)
A ⊂ mA the ideal generated by the elements of mA which are n-th

powers.

Let s denote the O[[yh+1, . . . , yh+j ]]-rank of M . This is also the O[[y1, . . . , yh+j ]]/bn-

rank of Mn. For a non-negative integer m, write rm = smpm(h+ j), and

cm = (πmE , (y1 + 1)p
m − 1, . . . , (yh + 1)p

m − 1, yp
m

h+1, . . . , y
pm

h+j) ⊂ O[[y1, . . . , yh+1j ]].

For m ≥ 1 a patching datum (D,L) of level m consists of

(1) A sequence of maps of O-algebras

(4.2) O[[y1, . . . , yh+j ]]/cm → D → R/(cmR+ m
(rm)
R )

where the second map is a surjective map of B-algebras and m
(rm)
D = 0.

(2) A surjection of B-algebras B[[x1, . . . , xh+j−d]]→ D.

(3) A D-module L which is finite free over O[[y1, . . . , yh+j ]]/cm of rank s, and a sur-

jection of D-modules L→M/cmM .

A morphism of patching data (D1, L1) → (D2, L2) consists of a pair of morphisms α :

D1 → D2 and β : L1 → L2 such that:

(1) α : D1 → D2 is a map of B[[x1, . . . , xh+j−d]]-algebras and is compatible with (4.2),

i.e., the following diagram is commutative

O[[y1, . . . , yh+j ]]/cm −−−−→ D1 −−−−→ R/(cmR+ m
(rm)
R )∥∥∥ yα ∥∥∥

O[[y1, . . . , yh+j ]]/cm −−−−→ D2 −−−−→ R/(cmR+ m
(rm)
R )
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(2) β : L1 → L2 is a surjection of D1-modules which is compatible with the surjections

of L1 and L2 onto M/cmM .

Since the number of elements of D is bounded by B[[x1, . . . , xh+j−d]]/m
(rm)
B[[x1,...,xh+j−d]],

there are only finitely many isomorphism classes of patching data.

Given positive integers n and m with n ≥ m, we define a patching datum (Dm,n, Lm,n)

of level m, by taking

Dm,n = Rn/(cmRn + m
(rm)
Rn

) and Lm,n = Mn/cmMn.

To check that Lm,n is a Dm,n-module we have to show that m
(rm)
Rn

Mn ⊂ cmMn. To see

this, let a ∈ mRn . Then a induces a nilpotent endomorphism of M/(πE , yh+1, . . . , yh+j)M ,

so as induces the zero endomorphism. Hence asMn ⊂ (πE , y1, . . . , yh+j)Mn, and

asp
m(h+j)Mn ⊂(πE , y

pm

1 , . . . , yp
m

h+j)M

= (πE , (y1 + 1)p
m − 1, . . . , (yh + 1)p

m − 1, yp
m

h+1, . . . , y
pm

h+j)Mn.

Finally armMn = asp
m(h+j)mMn ⊂ cmMn.

Since there are only finitely many isomorphism classes of patching data of level m,

after replacing the sequence (Rn,Mn) by a subsequence, we may assume that for each

m ≥ 1, and n ≥ m, the datum (Dm,n, Lm,n) is equal to (Dm,m, Lm,m). In particular, we

have maps of patching data

(Dm+1,m+1, Lm+1,m+1)→ (Dm,m, Lm,m),

an isomorphism of B[[x1, . . . , xh+j−d]]-algebras

Dm+1,m+1/(cmDm+1,m+1 + m
(rm)
Dm+1,m+1

)
∼−→ Dm,m,

and an isomorphism of Dm+1,m+1-modules

Lm+1,m+1/cmLm+1,m+1
∼−→ Lm,m.

Now set R∞ = lim←−Dm,m and M∞ = lim←−Lm,m. By construction we have a surjection

B[[x1, . . . , xh+j−d]]→ R∞,

and maps of complete local O-algebras

O[[y1, . . . , yh+j ]]→ R∞ → R

where the second map is a map of B-algebras, and identifies R∞/(y1, . . . , yh)R∞ with R.

We also have that M∞ is a finite free O[[y1, . . . , yh+j ]]-module of rank s > 0, and that the

Rn-module M∞/(y1, . . . , yh)M∞ is isomorphic to M . Note that

dimO[[y1, . . . , yh+j ]] = h+ j + 1 = d+ 1 + h+ j − d = dimB[[x1, . . . , xh+j−d]].



PATCHING AND MODULARITY 29

By Lemma 4.2 below, B[[x1, . . . , xh+j−d]] is a finiteO[[y1, . . . , yh+j ]]-module, andM∞⊗OE
is a finite projective, faithful B[[x1, . . . , xh+j−d]][1/p]-module. In particular we see that

B[[x1, . . . , xh+j−d]]
∼−→ R∞,

so that

M ⊗O E = M∞ ⊗O E/(y1, . . . , yh)(M∞ ⊗O E)

is a finite projective, faithful R[1/p] = R∞[1/p]/(y1, . . . , yh)R∞[1/p]-module, and R is

finite over O[[yh+1, . . . , yh+j ]]. The proposition follows. �

Lemma 4.2. Let A
ϕ−→ D be a map of Noetherian domains of the same finite dimension

d, and L a non-zero D-module which is finite and projective over A. Then ϕ is a finite

map. If A and D are regular then L is a finite projective, faithful D-module.

Proof. Let D′ be the image of D in EndA L. Then D′ is finite over A, since L is finite over

A. As L is a faithful A-module, so is D′. It follows that dimD′ ≥ d, so that D = D′.

To show the second statement, we first remark that since A is a domain, L has the

same rank s > 0 at all points of A. Similarly, if L is finite projective over D, it is a faithful

D-module. Let p be a prime of A, q a prime of D lying over p. Let Âp and D̂q be the

completions of A and D at p and q respectively. It suffices to show that L⊗D D̂q is a finite

free D̂q-module. Thus we may replace A, D, and L by Âp, D̂q, and L⊗D D̂q respectively

(note that D̂q is finite over Âp, and L ⊗D D̂q is a Âp-direct summand of L ⊗A Âp), and

assume that A and D are complete local regular rings.

Now the A-depth of L is d since L is A-free, hence the D-depth of L is ≥ d, and

therefore equal to d. The Auslander-Buchsbaum theorem then implies that L is D-free.

(cf. [24, Theorem 2.1]). �

5. Patching and the proof of Theorem 1.1

As explained in Section 3.3.9, to prove Theorem 1.1, we may assume that the assump-

tions in Section 3.3.9 hold. Let D be a quaternion algebra over F ramified at exactly the

infinite places. We work with automorphic representations of GD(A∞F ).

Let Tp be the set of places of F lying over p, let Tr be the set of primes not lying

over p at which ρ or ρ0 is ramified, let T = Tp
∐
Tr. If v ∈ Tr, write σv for a choice of

topological generator of IFv/PFv . By our assumptions, if v ∈ Tr, then ρ|GFv is trivial, ρ|IFv
and ρ0|IFv are unipotent, and ](k(v)) ≡ 1 (mod p).

Let Q be a set of finite places of F such that, if v ∈ Q, then

• v 6∈ T ;
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• ]k(v) ≡ 1 (mod p);

• ρ(Frobv) has distinct eigenvalues, which we denote αv and βv.

The existence of Q will the proved in Section 5.3.

5.1. The deformation rings. For each set Q of primes satisfying the above conditions,

we define two deformation problems SQ = (T ∪Q, {Dv}, χ) and SQ = (T ∪Q, {D′v}, χ) as

follows. Let ζ be a fixed primitive p-th root of unity in L.

• If v ∈ Tp, then Dv = D′v is chosen so that

R�ρ|GFv ,χ
/I(Dv) = R�ρ|GFv ,χ,cr,{HTσ(ρ)},

i.e., we consider crystalline deformations of ρ|GFv with determinant χ and with the

same Hodge-Tate weights as ρ.

• If v ∈ Q, then Dv = D′v consists of all lifts of ρ|GFv with determinant χ. In

particular, we allow our deformations to ramify at places in Q.

• If v ∈ Tr, then Dv consists of all lifts of ρ|GFv with Charρ(σv)(X) = (X−1)2, while

D′v consists of all lifts of ρ|GFv with Charρ(σv)(X) = (X − ζ)(X − ζ−1). Note that

the difference disappears if we modular λ since ζ ≡ 1 (mod λ).

We write

Rloc = ⊗̂v∈T,OR�ρ|GFv ,χ
/I(Dv), Rloc,′ = ⊗̂v∈T,OR�ρ|GFv ,χ

/I(D′v).

From our construction and the results proved on Galois deformations (cf. [93]), the fol-

lowing properties hold.

• Rloc/λ = Rloc,′/λ.

• (Rloc,′)red is irreducible, O-flat, and has Krull dimension 1 + 3]T + [F : Q].

• (Rloc)red is O-flat, equidimensional of Krull dimension 1 + 3]T + [F : Q], and

the reduction modulo λ gives a bijection between the irreducible components of

SpecRloc and those of SpecRloc/λ.

We have the global analogues

Runiv
Q := Runiv

ρ,SQ ; Runiv′
Q := Runiv

ρ,S′Q
; R�Q := R�Tρ,SQ ; R�,

′

Q := R�T
ρ,S′Q

.

It is easy to see that the following properties hold.

• Runiv
Q /λ = Runiv,′

Q /λ, and R�Q/λ = R�,
′

Q /λ.

• There are obvious natural maps Rloc → R�Q, Rloc,′ → R�,
′

Q , and these maps agree

after reduction modulo λ.
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We may and do fix representatives ρuniv
Q and ρuniv,′

Q for the universal deformations of

ρ over Runiv
Q and Runiv,′

Q respectively, which are compatible with the choices of ρuniv
∅ and

ρuniv,′

∅ , so that the induced surjections

Runiv
Q � Runiv

∅ , Runiv,′

Q � Runiv,′

∅

are identified modulo λ.

Fix a place v0 ∈ T and set J := O[[Xv,i,j ]]v∈T, i,j=1,2/(Xv0,1,1). Let a be the ideal of J
generated by the Xv,i,j . Then our choice of ρuniv

Q gives an identification R�Q
∼−→ Runiv

Q ⊗̂OJ ,

corresponding to the universal T -framed deformation (ρuniv
Q , {1 + (Xv,i,j)}v∈T ).

From the computation we made in [93], for each place v ∈ Q, we have an isomorphism

ρuniv
Q |GFv ∼= χα ⊕ χβ,

where χα, χβ : GFv → (Runiv
Q )× are characters with χα(Frobv) ≡ αv (mod mRuniv

Q
) and

χβ(Frobv) ≡ βv (mod mRuniv
Q

).

Let ∆v be the maximal p-power quotient of k(v)× (which we sometimes regard as a

subgroup of k(v)×). Then χα|IFv factors through the composite

(5.1) IFv � IFv/PFv � k(v)× � ∆v,

and if we write ∆Q =
∏
v∈Q ∆v, (

∏
v∈Q χα) : ∆Q → (Runiv

Q )×, then we see that

(Runiv
Q )∆Q

= Runiv
∅ .

5.2. The spaces of modular forms. Recall we have fixed an isomorphism ι : L → C,

and an algebraic grossencharacter χ0 such that χεp = χ0,ι. Define k, η by HTτ (ρ0) =

{ηιτ , ηιτ + kιτ − 1}. We define open compact subgroups UQ =
∏
UQ,v, where

• UQ,v = GL2(OFv) if v 6∈ Q ∪ Tr;

• UQ,v = U0(v) = {

(
a b

c d

)
∈ GL2(OFv) | c ≡ 0 (mod v)} if v ∈ Tr;

• UQ,v = {

(
a b

c d

)
∈ U0(v) | ad−1 (mod v) ∈ k(v)× 7→ 1 ∈ ∆v} if v ∈ Q.

Let ψ :
∏
v∈Tr UQ,v → O

× be the trivial character. Similarly, we set U ′Q = UQ and define

ψ′ :
∏
v∈Tr UQ,v → O

× as follows. For each v ∈ Tr, we have a homomorphism UQ,v →

k(v)× given by sending

(
a b

c d

)
to ad−1 (mod v), and we compose these characters with

the characters k(v)× → O× sending the image of σv to ζ, where σv is a generator of

IFv/PFv (cf. equation (5.1)).
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We obtain spaces of modular forms S(UQ,O), S(U ′Q,O) and the corresponding Hecke

algebras TUQ and TUQ′ . Here the Hecke algebras are generated by the Hecke operators

Tv, Sv with v /∈ T ∪Q, together with Hecke operators U$v for v ∈ Q defined by

U$v = [UQ,v

(
$v 0

0 1

)
UQ,v].

Note that ψ ≡ ψ′ (mod λ), so S(U∅,O)/λ = S(U ′∅,O)/λ. Let m∅ ⊂ TU∅ be the ideal

generated by

• λ;

• Tr ρ(Frobv)− Tv, v 6∈ T ;

• det ρ(Frobv)− ]k(v)Sv, v 6∈ T .

This is a proper maximal ideal of TU∅ as it is the kernel of the homomorphism TU∅ →
O � F, where TU∅ → O is the map coming from the automorphicity of ρ0, sending Tv to

Tr ρ0(Frobv) and Sv to ]k(v)−1 det ρ0(Frobv).

The universal property of Runiv
∅ gives us a surjection Runiv

∅ � T∅ := TU∅,m∅ and a

corresponding lifting ρmod : GF → GL2(T∅) of type S∅. Similarly, we have a surjection

Runiv,′

∅ � T′∅ := TU ′∅,m∅ . Set S∅ := S(U∅,O)m∅ and S′∅ := S(U ′∅,O)m∅ . Then the identifi-

cation Runiv
∅ /λ ∼= Runiv,′

∅ /λ is compatible with S∅/λ = S′∅/λ. An important observation is

the following result.

Lemma 5.1. If SuppRuniv
∅

(S∅) = SpecRuniv
∅ , then ρ is modular.

Proof. Since S∅ is a faithful T∅-module by definition, we see that Ker(Runiv
∅ → T∅) is

nilpotent, so that (Runiv
∅ )red ∼−→ T∅. Then ρ corresponds to some homomorphism Runiv

∅ →
O, and thus to a homomorphism T∅ → O, and the composite of this homomorphism with

ι : O → C correponds to a cuspidal automorphic representation π of GD(A∞F ) of weight

(k, η), which by construction has the property that ρ ∼= ρπ,ι, as required. �

In order to apply Kisin’s patching argument, we study the above constructions as Q

varies. Let mQ be the maximal ideal of TUQ generated by

• λ;

• Tr ρ(Frobv)− Tv, v 6∈ T ∪Q;

• det ρ(Frobv)− ]k(v)Sv, v 6∈ T ∪Q;

• U$v − αv, v ∈ Q.
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Write SQ = SUQ := S(UQ,O)mQ and TQ := (TUQ)mQ . We have two homomorphisms

∆Q → End(SQ), one is given by

δ ∈ ∆v 7→

(
δ 0

0 1

)
,

and the other one is given by the composite

∆Q → Runiv
Q � TQ → End(SQ).

5.2.1. The local-global compatibility at places in Q. A homomorphism θ : TQ → C corre-

sponds to a cuspidal automorphic representation π, and for each v ∈ Q the image αv of

U$v is such that αv is an eigenvalue of U$v on π
UQ,v
v .

It can be checked that since π
UQ,v
v 6= 0, πv is necessarily a subquotient of I(χ1, χ2) for

some tamely ramified characters χ1, χ2 : F×v → C×. Then one checks explicitly that

(I(χ1, χ2))UQ,v ∼= Cφ1 ⊕ Cφw,

where w =

(
0 1

1 0

)
, φ1(1) = φw(w) = 1, and Suppφ1 = B(Fv)UQ,v, Suppφw = B(Fv)wUQ,v.

As computed in [84, Section 2],

(5.2)

U$vφ1 = ]k(v)1/2χ1($v)φ1 +Xφw

U$vφw = ]k(v)1/2χ2($v)φw.

Here X = 0 if χ1χ
−1
2 is ramified. By local-global compatibility, ι−1(]k(v)1/2χ1($v)) and

ι(]k(v)1/2χ2($v)) are the eigenvalues of ρπ,ι(Frobv), so one of them is a lift of αv, and one

is a lift of βv.

Moreover, easy computation shows that(
δ 0

0 1

)
φ1 = χ1(δ)φ1,

(
δ 0

0 1

)
φw = χ2(δ)φw.

By local-global compatibility,

ρπ,ι|ssWFv

∼= (χ1| · |−1/2 ⊕ χ2| · |−1/2) ◦Art−1
Fv

= χβ ⊕ χα,

Reducing modulo λ, we see that

{αv, βv} = {]k(v)1/2ι−1(χ1($v)), ]k(v)1/2ι−1(χ2($v))}.

As a consequence, we see that χ1χ
−1
2 6= | · |±1. (Indeed, if χ1χ

−1
2 = | · |±1, then αvβ

−1
v ≡

]k(v)±1 ≡ 1 (mod λ). This contradicts to our assumption.) Therefore, we have πv =

I(χ1, χ2) ∼= I(χ2, χ1). Without loss of generality, we assume that χ1($v) = βv and

χ2($v) = αv.
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We see that SQ⊗O,ιC = ⊕π(⊗v∈QXv), where Xv is the one-dimensional space where

U$v acts via a lift of αv. Since this space is spanned by φw, we see that ∆v acts on SQ

via χ2 = χα ◦Art . We then have proved the following result.

Lemma 5.2. The two homomorphisms ∆Q → End(SQ) are equal.

Let UQ,0 :=
∏
v 6∈Q UQ,v

∏
v∈Q U0(v). Then UQ is a normal subgroup of UQ,0 and

UQ,0/UQ = ∆Q. The following lemma is immediate from Corollary 3.17.

Lemma 5.3. SQ is finite free over O[∆Q].

Fix a place v ∈ Q. Since αv 6= βv, by Hensel’s lemma, we may write

Char ρmod
∅ (Frobv) = (X −Av)(X −Bv)

for some Av, Bv ∈ T∅ with Av ≡ αv, Bv ≡ βv (mod m∅).

Lemma 5.4. The map ∏
v∈Q

(U$v −Bv) : S∅ → S(UQ,0,O)mQ

is an isomorphism. Here we view the source and the target as submodules of S(UQ,0,O)m∅.

Proof. We claim that it is enough to prove that the map is an isomorphism after tensoring

with L, and an injection after tensoring with F. To see this, write X := S∅, Y :=

S(UQ,0,O)mQ , and write Q for the cokernel of the map X → Y . As X and Y are finite

free O-modules, if the map X ⊗ L → Y ⊗ L is injective, then so is the map X → Y and

we have a short exact sequence

0→ X → Y → Q→ 0.

Tensoring with L, we have Q⊗ L = 0. Tensoring with F, we obtain an exact sequence

0→ Q[λ]→ X ⊗ F→ Y ⊗ F→ Q⊗ F,

so we have Q[λ] = 0. Thus Q = 0 as required.

To check that we have an isomorphism after tensoring with L, it suffices to check that

the induced map ∏
v∈Q

(U$v −Bv) : S∅ ⊗O,ι C→ S(UQ,0,O)mQ ⊗O,ι C

is an isomorphism. This is easily checked. Indeed, we have

S∅ ⊗ C ∼= ⊕π(⊗v∈QI(χ1,v, χ2,v))
GL2(OFv ), S(UQ,0,O)mQ ⊗ C ∼= ⊕π(⊗v∈QMv).
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Here Mv is the subspace of I(χ1,v, χ2,v))
U0(v) on which U$v acts via a lift of αv, which is

spanned by φw. On the other hand, we have computed that I(χ1,v, χ2,v))
GL2(OFv ) = Cφ0

(cf. Remark 3.7). Since the natural map I(χ1,v, χ2,v))
GL2(OFv ) → I(χ1,v, χ2,v))

U0(v) sends

φ0 to φ1 + φw, it suffices to check that (U$v − Bv)(φ1 + φw) is nontrivial. This follows

from equation (5.2).

It remains to check the injectivity after tensoring with F. The kernel of the map

would be a nonzero finite module for the Artinian local ring T∅/λ, and would thus have

nonzero m∅-torsion, so it suffices to prove that the induced map∏
v∈Q

(U$v −Bv) : (S∅ ⊗ F)[m∅]→ S(UQ,0,O)mQ ⊗ F

is an injection. By induction on the number of elements in Q, it suffices to prove this

in the case that Q = {v}. Suppose for the sake of contradiction that there is a nonzero

x ∈ (S∅ ⊗ F)[m∅] with (U$v − Bv)x = (U$v − βv)x = 0. Since x ∈ S∅ ⊗ F, we also have

Tvx = (αv + βv)x.

The Hecke operators are defined by double coset decomposition and we make them

explicit. Note that there are elements gi (cf. [84] and Remark 3.7) such that

Uv

(
$v 0

0 1

)
Uv =

∐
i

giUQ,v,

GL2(OFv)

(
$v 0

0 1

)
GL2(OFv) = (

∐
i

gi GL2(OFv))
∐(

1 0

0 $v

)
GL2(OFv).

We have

(
1 0

0 $v

)
x = Tvx−U$vx = αvx. Note that x is just a function D×\GL2(A∞F )→

Λ⊗ F, on which GL2(A∞F ) acts by right translation. We then have(
$v 0

0 $1

)
x = w

(
1 0

0 $v

)
wx = αvx,

and

U$vx =
∑
a∈k(v)

(
$v ã

0 1

)
x =

∑
a∈k(v)

(
1 ã

0 2

)(
$v 0

0 1

)
x = ]k(v)αvx = αvx.

Here ã ∈ OFv is a lift of a ∈ F. Then we obtain that αv = βv, which is a contradiction. �

5.3. The existence of auxiliary primes. As promised, we prove the existence of aux-

iliary primes in the following.

Proposition 5.5. Let r = max{dimH1(GF,T , (ad0 ρ)(1)), 1 + [F : Q] − ]T}. For each

N ≥ 1, there exists a set QN of primes of F such that
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• QN ∩ T = ∅.
• If v ∈ QN , then ρ(Frobv) has distinct eigenvalues αv 6= βv.

• If v ∈ QN , then ]k(v) ≡ 1 (mod pN ).

• ]QN = r.

• R�QN (resp. R�,
′

QN
is topologically generated over Rloc (resp. Rloc,′) by ]T − 1− [F :

Q] + r elements.

Proof. By what we have proved in [93], the last condition may be replaced by

H1
QN

(GF,T , (ad0 ρ)(1)) = (0).

Therefore, it suffices to show that for each 0 6= [φ] ∈ H1(GF,T , (ad0 ρ)(1)), there are

infinitely many v 6∈ T such that

(1) ]k(v) ≡ 1 (mod pN ).

(2) ρ(Frobv) has distinct eigenvalues αv 6= βv.

(3) Res[φ] ∈ H1(Gk(v), (ad0 ρ)(1)) is nonzero.

Note that condition (1) is equivalent to v splitting completely in F (ζpN ), condition (2) is

equivalent to asking that ad ρ(Frobv) has an eigenvalue not equal to 1.

Set E = F
Ker ad ρ

(ζpN ). We have assumed that Im ρ ⊇ SL2(Fp), from the classification

of finite subgroups of PGL2(Fps), this implies that Im ad ρ = PGL2(Fps) or Im ad ρ =

PSL2(Fps) for some s. In particular (Im ad ρ)ab is trivial or cyclic of order 2. Since p ≥ 5

and p is unramified in F , we have [F (ζp) : F ] ≥ 4. Therefore ζp 6∈ F
Ker ad ρ

.

The extension E/F
Ker ad ρ

is abelian. Let E0 be the intermediate field such that

Gal(E/E0) has order prime to p and Gal(E0/F
Ker ad ρ

) has p-power order. Write Γ1 =

Gal(E0/F ) and Γ2 = Gal(E/E0). We have the inflation-restriction exact sequence

0→ H1(Γ1, (ad0 ρ)(1)Γ2)→ H1(Gal(E/F ), (ad0 ρ)(1))→ H1(Γ2, (ad0 ρ)(1))Γ1 .

Since E0 contains F
Ker ad ρ

, Γ2 acts trivially on ad0 ρ. Therefore (ad0 ρ)(1)Γ2 = 0 since

ζp 6∈ E0. Moreover, H1(Γ2, (ad0 ρ)(1)) = 0 since Γ2 has prime-to-p order. Hence the

middle term H1(Gal(E/F ), (ad0 ρ)(1)) = 0.

Suppose that ]k(v) ≡ 1 (mod p) and that ρ(Frobv) =

(
αv 0

0 βv

)
. Then ad0 ρ has the

basis

(
1 0

0 −1

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
of eigenvectors for Frobv, with eigenvalues 1, αv/βv,

βv/αv respectively. Consequently, since Gk(v) is a pro-cyclic group, we see that there is

an isomorphism H1(Gk(v), (ad0 ρ)(1)) ∼= F. This isomorphism is given by

[φ] 7→ πv ◦ φ(Frobv) ◦ iv,
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where iv is the injection of F into the αv-eigenspace of Frobv, πv is the Frobv-equivariant

projection onto that subspace.

Let σ0 ∈ Gal(E/F ) such that

(1) σ0(ζpN ) = ζpN ,

(2) ρ(σ0) has distinct eigenvalues α and β.

Indeed, such a σ0 exists, because Gal(F
Ker ρ

/F (ζpN )∩FKer ρ
) contains PSL2(Fp) and then

we may choose σ0 so that its image in this group is an element whose adjoint has an

eigenvalue other than 1.

Let Ẽ/E be the extension cut out by all the [φ] ∈ H1(GF,T , (ad0 ρ)(1)). In order

to complete the proof, it suffices to show that we can choose some σ ∈ Gal(Ẽ/F ) with

σ|E = σ0, and such that in the notation above, we have πσ0 ◦ φ(σ) ◦ iσ0 6= 0, because we

can then choose v to have Frobv = σ by the Cebotarev density theorem.

To this end, choose any σ̃0 ∈ Gal(Ẽ/F ) with σ̃0|E = σ0. If σ̃0 does not work, then

we have πσ0 ◦ φ(σ̃0) ◦ iσ0 6= 0. Take σ = σ1σ̃0 for some σ1 ∈ Gal(Ẽ/E). Then

φ(σ) = φ(σ1σ̃0) = φ(σ1) + σ1φ(σ̃0) = φ(σ1) + φ(α̃0),

so πσ0 ◦ φ(σ) ◦ iσ0 = πσ0 ◦ φ(σ1) ◦ iσ0 .
Note that φ(Gal(Ẽ/E)) is a Gal(E/F )-invariant subset of ad0 ρ, which is an ir-

reducible Gal(E/F )-module as the image of ρ contains SL2(Fp). Thus the F-span of

φ(Gal(Ẽ/E)) is all of ad0 ρ(1), from which it is immediate that we can choose σ1 so that

πσ0 ◦ φ(σ1) ◦ iσ0 6= 0. This completes the proof. �

5.4. Proof of Theorem 1.1. Set S�Q := SQ ⊗Runiv
Q

R�Q. Then we have

S�Q/aQ = S(UQ,0,O)mQ
∼−→ S∅,

compatibly with the isomorphism R�Q/aQ
∼−→ Runiv

∅ . Moreover, S�Q is finite free over J [∆Q].

We may and do choose a presentation

Rloc[[x1, . . . , xhQ ]]� R�Q,

where hQ = ]T + ]Q− 1− [F : Q] + dimFH
1
Q(GF,T , (ad0 ρ)(1)), and

H1
Q(GF,T , (ad0 ρ)(1)) = Ker(H1(GF,T , (ad0 ρ)(1))→ ⊕v∈QH1(Gk(v), (ad0 ρ)(1)).

Write h := ]T − 1 − [F : Q] + r and R∞ := Rloc[[x1, . . . , xh]]. For each set QN as

above, choose a surjection R∞ � R�QN . Let J∞ := J [[y1, . . . , yr]]. Choose a surjection
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J∞ � J [∆QN ], given by writing QN = {v1, . . . , vr} and mapping yi to (γi − 1), where γi

is a generator of ∆vi . Choose a homomorphism J∞ → R∞ so that the composites

J∞ → R∞ � R�QN and J∞ → J [∆QN ]→ R�QN

agree. Write a∞ := (a, y1, . . . , yr). Then

S�/a∞ = S∅ and R�QN /a∞ = Runiv
∅ .

Write bN := Ker(J∞ → J [∆QN ]), so that S�QN is finite free over J∞/bN . Since all the

elements of QN are congruent to 1 modulo pN , we see that

bN ⊂ ((1 + y1)p
N − 1, . . . , (1 + yr)

pN − 1).

We may and do choose the same data for Rloc,′ , in such a way that two sets of data

are compatible modulo λ.

Choose open ideals cN C J∞ such that

• cN ∩ O = (λN );

• cN ⊃ bN ;

• cN ⊃ cN+1;

• ∩N cN = (0).

For example we could take cN = ((1 + Xv,i,j)
pN − 1, . . . , (1 + yi)

pN − 1, λN ). Note that

since cN ⊃ bN , S�QN /cN is finite free over J∞/cN . Choose open ideals dN C Runiv
∅ such

that

• dN ⊂ Ker(Runiv
∅ → End(S∅/λ

N ));

• dN ⊃ dN+1;

• ∩NdN = (0).

If M ≥ N , write SM,N := S�QM /cN , so that SM,N is finite free over J∞/cN of rank equal to

the O-rank of S∅. Indeed, this follows from the isomorphism SM,N/a∞
∼−→ S∅/λ

N . Then

we have a commutative diagram

J∞ // R∞ // //

��

Runiv
∅ /dN

��

SM,N
// // S∅/dN .

Here the dotted arrows mean the module structure, the objects SM,N and S∅/dN have

finite cardinality. Therefore, there is an infinite subsequence of pairs (Mi, Ni) such that
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Mi+1 > Mi, Ni+1 > Ni, Mi ≥ Ni, and the induced diagram

J∞ // R∞ // //

��

Runiv
∅ /dNi

��

SMi+1,Ni+1/cNi
// // S∅/dNi .

is isomorphic to the diagram for (Mi, Ni). Then we could take the projective limit over

this subsequence, to obtain a commutative diagram

J∞ // R∞ // //

��

Runiv
∅

��

S∞ // // S∅.

Here S∞ is finite free over J∞. Furthermore, we can carry out the same construction in

the ′ world, compatibly with this picture modulo λ.

Now we could deduce our main result by purely commutative algebra arguments. We

have

dimR∞ = dimR′∞ = dimJ∞ = 4]T + r,

and since S∞ and S′∞ are finite free over the power series ring J∞, we have

depthJ∞(S∞) = depthJ∞(S′∞) = 4]T + r.

Since the action of J∞ on S∞ factors through R∞, we see that

depthR∞(S∞) ≥ 4]T + r,

and similarly

depthR′∞(S′∞) ≥ 4]T + r.

If P CR′∞ is a minimal prime in the support of S′∞, then we have

4]T + r = dimR′∞ ≥ dimR′∞/P ≥ depthR′∞ S
′
∞ ≥ 4]T + r,

hence equality holds throughout and P is a minimal prime of R′∞. But R′∞ has a unique

minimal prime, so in fact SuppR′∞(S′∞) = SpecR′∞.

By the same argument, SuppR∞(S∞) is a union of irreducible components of SpecR∞.

We show that it is all of SpecR∞ by reducing modulo λ and comparing with the situation

for S′∞.

Indeed, since SuppR′∞(S′∞) = SpecR′∞, we certainly have SuppR′∞/λ(S′∞/λ) = SpecR′∞/λ.

By the compatibility between the two pictures, this means that

SuppR∞/λ(S∞/λ) = SpecR∞/λ.
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Thus SuppR∞/λ(S∞/λ) is a union of irreducible components of SpecR∞, which contains

the entirety of SpecR∞/λ. Since the irreducible components of SpecR∞/λ are in bijection

with the irreducible components of SpecR∞, this implies that

SuppR∞(S∞) = SpecR∞.

Therefore SuppR∞/a∞(S∞/a∞) = SpecR∞/a∞, i.e. SuppRuniv
∅

S∅ = SpecRuniv
∅ , which

proves the modularity by Lemma 5.1.

6. Ultrapatching

The patching procedure in Section 4 works as a program: input rings and modules

satisfying certain conditions, we obtain objects with ”good” properties. In this section

we summarize the commutative algebra behind the patching method and explain the

ultrapatching construction introduced by Scholze in [68], see also [57, 58].

Let X be a set. An filter on X is a consistent choice of which subsets of X are ”large”.

Definition 6.1. A filter on X is F ⊂ P(X) such that

(1) X ∈ F (the whole set is large);

(2) ∅ 6∈ F (the empty set is not large);

(3) If A ∈ F and A ⊂ B, then B ∈ F (any set containing a large set is large);

(4) If A, B ∈ F , then A ∩B ∈ F (large sets have large intersection).

A filter is principal if F = {A ⊂ X | x ∈ A} for some x ∈ X.

A filter is an ultrafilter if for any A ⊂ X, A ∈ F or X −A ∈ F .

It is well known that for X = N, nonprincipal unltrafilters F exist provided we

assume the axiom of choice. From now on, we fix a nonprincipal ultrafilter F on N. For

convenience, we say that a property P(n) holds for F-many i if there is some I ∈ F such

that P(i) holds for all i ∈ I.

Definition 6.2. For any sequence of sets A = {An}n≥1, their ultraproduct is the quotient

U(A ) := (

∞∏
n=1

An)/ ∼,

where the equivalence relation ∼ is defined by (an)n ∼ (a′n)n if ai = a′i for F-many i.

Remark 6.3. If the An’s are sets with an algebraic structure (e.g. groups, rings, R-modules,

R-algebras, etc.) then U(A ) naturally inherits the same structure.

If each An is a finite set and the cardinalities of the An’s are bounded, then U(A )

is also a finite set and there are bijections U(A )
∼−→ Ai for F-many i. Moreover, if the
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An’s are sets with an algebraic structure, such that there are only finitely many distinct

isomorphism classes appearing in {An}n≥1 (which happens automatically if the structure

is defined by finitely many operations, e.g. groups, rings, R-modules and R-algebras over

a finite ring R), then these bijections may be taken to be isomorphisms. Indeed, by our

assumption, there is some A such that A ∼= Ai for F-many i and then U(A ) is isomorphic

to the unltraproduct U({A}n≥1), which is isomorphic to A if A is a finite set.

In the case when each An is a module over a finite local ring R, there is a simple

algebraic description of U(A ). Specifically, the ring R =
∏∞
n=1R contains a unique

maximal ideal I for which RI
∼= R and (

∏∞
n=1An)I ∼= U(A ) as R-modules. This shows

that U(−) is a particularly well-bahaved functor in this special situation. In particular, it

is exact.

In the following, fix a power series ring S∞ = O[[z1, . . . , zd]] and consider the ideal

n = (z1, . . . , zd). Fix a sequence of ideals In ⊂ S∞ such that for any open ideal a ⊂ S∞

we have In ⊂ a for all but finitely many n. Define

S∞ = S∞/($) = F[[z1, . . . , zd]] and In = (In + ($))/($) ⊂ S∞.

For any finitely generated S∞-module M , the S∞-rank of M , denoted by rankS∞M , is

defined to be the cardinality of a minimal generating set for M as an S∞-module.

Definition 6.4. Let M = {Mn}n≥1 be a sequence of finitely generated S∞-modules with

In ⊂ AnnS∞Mn for all but finitely many n.

• We say that M is a weak patching system if the S∞-ranks of the Mn’s are uniformly

bounded. If we further have $Mn = 0 for all but finitely many n, we say that M

is a residual weak patching system.

• We say that M is a patching system if it is a weak patching system and AnnS∞Mn =

In for all but finitely many n.

• We say that M is a residual patching system if it is a patching system and

AnnS∞Mn = In for all but finitely many n.

• We say that M is MCM (resp. MCM residual) if M is a patching system (resp.

residual patching system) and Mn is free over S∞/In (resp. S∞/In) for all but

finitely many n.

Furthermore, assume that R = {Rn}n≥1 is a sequence of finite type local S∞-algebras.

• We say that R = {Rn}n≥1 is a (weak, residual) patching algebra, if it is a (weak,

residual) patching system.
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• If Mn is an Rn-module (viewed as an S∞-module via the S∞-algebra structure on

Rn) for all n, we say that M = {Mn}n≥1 is a (weak, residual) patching R-module

if it is a (weak, residual) patching system.

Let wP be the category of weak patching systems, with the obvious notion of mor-

phism. It is naturally an abelian category.

Definition 6.5. Let M be a weak patching system. The patched module of M is the S∞

module

P(M ) = lim←−aU(M /a),

where the inverse limit is taken over all open ideals of S∞. We may treat P as a functor

from wP to the category of S∞-modules.

Remark 6.6. If R is a weak patching algebra and M is a weak patching R-module, then

P(R) inherits a natural S∞-algebra structure, and P(M ) inherits a natural P(R)-

module structure.

In the above definition, the ultraproduct essentially plays the role of the pigeonhole

principal in the classical Taylor-Wiles-Kisin construction (cf. Proposition 4.1), with the

simplification that it is not necessary to explicitly define a patching datum before making

the construction. Indeed, if one were to define patching data for the Mn/a’s, then the

machinery of ultraproducts would ensure that the patching data for U(M /a) would agree

with that of Mn/a for infinitely many n. Proposition 4.1 then can be rephrased as follows.

Proposition 6.7. let R be a weak patching algebra, M be an MCM patching R-module.

Then

(1) P(R) is a finite type S∞-algebra, and P(M ) is a finitely generated free S∞-

module.

(2) The structure map S∞ →P(R) is injective, and thus dim P(R) = dimS∞.

(3) The module P(M ) is maximal Cohen-Macaulay over P(R), and ($, z1, . . . , zd)

is a regular sequence for P(M ).

Proposition 6.8. let R be a weak patching algebra, M be an MCM residual patching

R-module. Then

(1) P(R)/($) is a finite type S∞-algebra, and P(M ) is a finitely generated free

S∞-module.

(2) The structure map S∞ → P(R)/($) is injective, and thus dim P(R)/($) =

dimS∞.
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(3) The module P(M ) is maximal Cohen-Macaulay over P(R)/($), and (z1, . . . , zd)

is a regular sequence for P(M ).

Proposition 6.9. Let n = (z1, . . . , zd) ⊂ S∞ as above. Let R0 be a finite type O-algebra,

M0 be a finitely generated R0-module. If, for each n ≥ 1, there are isomorphisms Rn/n ∼=
R0 of O-algebras and Mn/n ∼= M0 of Rn/n ∼= R0-modules, then we have P(R)/n ∼= R0

as O-algebras and P(M )/n ∼= M0 as P(R)/n ∼= R0-modules.

From the set up of Proposition 6.7, there is very little we can conclude about the

ring P(R). However in practice one generally takes the rings Rn to be quotients of a

fixed ring R∞ of the same dimension as S∞. Thus we define a cover of a weak patching

algebra R = {Rn}n≥1 to be a pair (R∞, {ϕn}n≥1), where R∞ is a complete, topologically

finitely generated O-algebra of Krull dimension dimS∞, and ϕn : R∞ → Rn is a surjective

O-algebra homomorphism for each n. It is straightforward to show the following (cf. [57]).

Proposition 6.10. If (R∞, {ϕn}n≥1) is a cover of a weak patching algebra R, then the

ϕn’s induce a natural continuous surjection ϕ∞ : R∞ →P(R).

Using the fact [91, Lemma 0AAD] (which says that if f : A � B is a surjection of

noetherian local rings, then a B-module M is Cohen-Macaulay as an A-module if and

only if it is Cohen-Macaulay as a B-module), combining Propositions 6.7, 6.8, and 6.10,

we have the following result.

Corollary 6.11. Let R be a weak patching algebra and let (R∞, {ϕn}n≥1) be a cover of

R. If M is an MCM patching R-module, then P(M ) is a maximal Cohen-Macaulay

R∞-module. If M is an MCM residual patching R-module, then P(M ) is a maximal

Cohen-Macaulay R∞/($)-module.

If P were an exact functor, then we could patch objects with respect to certain

filtration. However, this is not true in general.

Example 6.12. Assume that S∞/In is $-torsion free for all n and let M = {S∞/In}n≥1.

Define ϕ = {ϕn}n≥1 : M → M by ϕn(x) = $nx. Then φ : M → M is injective,

P(M ) = S∞, and P(ϕ) : S∞ → S∞ is the zero map.

Nevertheless we have the following weaker statement.

Lemma 6.13. Then functor P(−) is right exact. If

0→ A → B → C → 0
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is an exact sequence of weak patching systems, then

0→P(A )→P(B)→P(C )→ 0

is exact, provided that either:

• C is MCM, or

• A , B, and C are all residual weak patching systems, and C is MCM residual.

Proof. Let Ab be the category of abelian groups. For any countable directed set I, let

finAbI be the category of inverse systems of finite abelian groups indexed by I.

Let (Ai, fji : Aj → Ai) be an object in finAbI . Since Ai is finite and {Im fji}j≥i is a

decreasing sequence of subgroups of Ai, there is a j ≥ i for which Im fki = Im fji for all

k ≥ j. I.e. the inverse system (Ai, fji : Aj → Ai) satisfies the Mittag-Leffler condition.

Assume that we have an exact sequence of weak patching systems

0→ A → B → C → 0.

For any a ⊂ S∞, the sequence

A /a→ B/a→ C /a→ 0

is exact. By the exactness of U(−), we obtain the exact sequence

U(A /a)→ U(B/a)→ U(C /a)→ 0,

hence an exact sequence of inverse systems

(U(A /a))a → (U(B/a))a → (U(C /a))a → 0.

Note that there are only countably many open ideals of S∞, and U(A /a), U(B/a), and

U(C /a) are all finite. Taking inverse limits preserves exactness, i.e. the sequence

P(A )→P(B)→P(C )→ 0

is exact. The functor P(−) is right exact.

Now assume that one of the further conditions of the lemma holds. Write A =

{An}n≥1, B = {Bn}n≥1, C = {Cn}n≥1. Let In = AnnS∞ Cn (so that either In = In or In
for all n ≥ 1), we have, for all n� 0, an exact sequence of S∞-modules

0→ An → Bn → Cn → 0,

and Cn is a free S∞/In-module. It follows that

Tor
S∞/In
1 (Cn, S∞/a) = 0
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for all a ⊂ S∞. Therefore,

0→ An/a→ Bn/a→ Cn/a→ 0

is exact for all n� 0. Then it is easy to see that the sequence

0→P(A )→P(B)→P(C )→ 0

is exact. �

We have the following useful consequence.

Corollary 6.14. Let V be a residual weak patching system with a filtration

0 = V 0 ⊂ V 1 ⊂ · · · ⊂ V r = V

by residual weak patching systems V k. For k = 1, . . . , r, let M k = V k/V k−1. Assume

that the M k’s are all MCM residual. Then P(V ) has a filtration

0 = P(V 0) ⊂P(V 1) ⊂ · · · ⊂P(V r) = P(V )

with P(M k) = P(V k)/P(V k−1) for all k = 1, . . . , r.
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Mat. Obšč. 12 (1963), 389-412.
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