A CHARACTER THEORY FOR PROJECTIVE REPRESENTATIONS
OF FINITE GROUPS

CHUANGXUN CHENG

ABSTRACT. In this paper, we construct a character theory for projective representations
of finite groups and deduce some consequences of this theory. In particular, we compute
the number of distinct irreducible projective representations (up to isomorphism) of a
finite group with a given associated Schur multiplier. We also deduce properties on the
degrees of such projective representations. Consequently, for a finite group G, we obtain a
sufficient condition for H?(G,C*) = 0. We also study unitary projective representations
of compact groups and prove the Peter-Weyl theorem.

1. INTRODUCTION

Throughout this paper, except in Section |7} G is a finite group with identity element 1.

One way to study projective representations of a finite group G is to construct a repre-
sentation group G* of GG and to show that the projective representations of G correspond to
the linear representations of G*. Then we may obtain properties of projective representa-
tions of G by studying the linear representations of G*. In this paper, we study projective
representations without G*. Moreover, if we take the trivial multiplier, we recover the
properties of linear representations of finite groups. An advantage of this approach is
that we can generalize some of the results to the case of projective representations of cer-
tain infinite groups. In the last section we explain this idea and study unitary projective
representations of compact groups.

1.1. Definitions. To outline the contents of the paper, we first recall the definitions of
Schur multipliers and projective representations.

Definition 1.1. A map a : G x G — C* is called a multiplier (or a factor set or a
2-cocycle) on G if

(1) a(z,y)a(zy, z) = a(z,yz)a(y, 2) for all z,y,z € G.
(2) a(z,1) =a(l,z) =1for all z € G.

We say a multiplier is unitary if there exists a positive integer N, such that a(z,y)Y =1
for all z,y € G.

The set of all possible multipliers on G has an abelian group structure by defining the
product of two multipliers as their pointwise product. We denote this group by Z2(G, C*).
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There is a special subgroup B?(G,C*) of Z?(G,C*) consisting of multipliers a with the
form

p(zy)
p(@)p(y)’
where p1 : G — C* is an arbitrary function with p(1) = 1. An element of B%(G,CX) is
called a 2-coboundary. We denote the quotient group by H?(G,C*) = Z%(G,C*)/B?*(G,C*).
If o is an element of Z2(G,C*), we denote its image in H2(G,C*) by [a].

a(xv y) =

Definition 1.2. Let V' be an n-dimensional vector space over C (n < 00). A projective
representation of G over V is amap 7 : G — GL(V') such that 7(z)7(y) = a(z, y)r(vy) for
all z,y € G, where « is the associated multiplier. We denote this projective representation
by (m, V,a) or (m,V).

We call a projective representation of G unitary if the associated multiplier is unitary.
We call the integer n the degree of m. If a is the associated multiplier of 7w, we say that
the projective representation (m, V, «) belongs to [a].

Definition 1.3. A sub projective representation of a projective representation (m, V') is
a vector subspace W of V which is stable under G, i.e., w(g)W C W for all g € G.
A projective representation is called irreducible if there is no proper nonzero G-stable
subspace W of V.

Let (m,V,a) and (7', W, ) be two projective representations of G with the same mul-
tiplier . A linear map ¢ : V. — W is called a G-morphism or a map of projective
representations if for any g € G and v € V, ¢(n(g)v) = 7'(g)(¢(v)). Write Homg(V, W)
for the set of all G-morphisms from V to W.

Two projective representations (7, V') and (7', W) are equivalent if there exists a linear
isomorphism ¢ : V. — W and a map pu : G — C* with p(1) = 1, such that the following
diagram commutes for all g € G.

Vv 2w
(1.1) (o) | | s
V— W
%)

By Lemma 2.8 if (7, V, ) and (n/, W, 3) are equivalent, then [a] = [3].

If we fix a basis of V, then we may identify the group GL(V) and the group GL,(C).
A projective representation (m, V') gives us a homomorphism of groups 7 : G — PGL,(C).
On the other hand, for a group homomorphism 7 : G — PGL,(C), any lift 7 : G —
GL,,(C) is a projective representation with some associated multiplier «. Different lifts
may give us projective representations with different multipliers, but they belong to the
same cohomology class and all lifts are equivalent.

1.2. Contents of the paper. Fix a Schur multiplier « of G. Let (7, V, ) be a projective
representation of G over a C-vector space V with associated multiplier . In Section [2] we
show that (7, V, a) is a direct sum of irreducible projective representations (Theorem .
Then to understand the set Repg of all projective representations of G with associated
multiplier «, it suffices to understand the irreducible ones. We also prove that Schur’s
Lemma is true for projective representations (Theorem .
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For any projective representation (m,V,«) and another multiplier o/ with [o/] = [a],
we show that there exists a projective representation (7', V' '), which is equivalent to
(m,V, ). Therefore, to understand Repg, it suffices to understand Repg for some special
o/ with [¢/] = [a]. In particular, we may choose o’ to be unitary. This is the starting
point of the character theory.

Fix a unitary Schur multiplier . In Section we construct a character theory for Repg
and prove some properties of the characters. More precisely, we show that the characters
of distinct irreducible projective representations of G form an orthonormal basis of the
space H,, the space of a-class functions of G (Definition and Theorem .

In Section [4 we define the inductions of projective representations and compute the
characters of inductive projective representations.

Section [b| is the main part of this paper. We relate the projective representations
of G to C[G|,-modules, where C[G], is the twisted group algebra. By studying the
algebra C[G],, we prove that the degree of an irreducible projective representation of G
divides the order of G (Theorem . As a byproduct, we obtain a sufficient condition for
H?*(G,C*)=0 (Corollary. We also give another description of inductions of projective
representations using tensor products and prove the Frobenius reciprocity (Propositions
and . Finally, we give a criteria for the irreducibility of an inductive projective
representation (Proposition and deduce a stronger result on the degrees of irreducible
projective representations (Theorem|5.20]). In the case where G is abelian, we can describe
the degrees explicitly (Theorem

In Section @ we study the group of virtual projective characters R,(G) and prove
Artin’s theorem.

In Section |7} we study the unitary projective representations of compact groups. As
in the situation of linear representations, most properties of projective representations of
finite groups carry over to unitary projective representations of compact groups. We also
prove the Peter-Weyl Theorem (Theorem for projective representations and deduce
some consequences.

The theory of projective representations of finite groups has a long history ([9], [10]).
Some of the results in these notes have been proven and published by others. For example,
Subsection on twists of projective representations and related topics are studied in [7],
Proposition is proved in [I, Theorem 1], a special case of Theorem is proved in
[8] (see also [6]), etc. The author claims no originality of these results. See the survey
paper [3] for more discussion on the history and a more complete list of references.

Nevertheless, the treatment in these notes is different (e.g., the representation group
G* plays no role) and induces new results. The goal is to develop the theory of projective
representations of finite groups (and compact groups) by exploiting the analogy with linear
representations of finite groups (and compact groups). The readers will find out that the
structure of these notes and some arguments are similar to those in the book [II] by J. P.
Serre, which is the main source of motivations of these notes.

2. BASIC PROPERTIES

2.1. Complete reducibility.
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Lemma 2.1. Let 7 : G — GL(V)) be a projective representation of G in 'V with associated
multiplier «. Let W be a G-stable subspace of V.. Then there exists a complement W' of
W in V, such that W' is also G-stable.

Proof. Let W9 be any complement of W in V and let p be the corresponding projection

V — W. Define
O (@] 7T 1
=@ g; pom(g)”
It is easy to see that Im(p') C W. If w € W, then p'(w) = ‘—C{,' > gec™(9) opor(g) H(w) =
|Tl;| ngG w = w. Therefore, Im(p') = W and p’ is also a projection from V to W. Let W’
be the corresponding kernel of this projection. Note that

7(h)op’ om( Z g)opon(g)tx(h)7?
\G| perd
(2.1)
Z (h, g)w(hg) o poalh,g) 'w(hg) ™" = p'.
~al perd

Thus 7(g) op’ = p' onw(g). If w' € W and g € G, we have p'(w') = 0, so p/(w(g)w') =
7(g)p'(w") = 0. This shows that W’ is G-stable. O

Remark 2.2. Let V be a projective representation of G. We see that V is irreducible if V'
is not a direct sum of two projective representations except for the trivial decomposition
V =0@ V. A projective representation of degree 1 is evidently irreducible. On the other
hand, if (7, V,«) is a projective representation of degree 1, it is easy to see that « is a
2-coboundary.

One may also prove the lemma by constructing a G-invariant inner product on V. An
immediate consequence of the lemma is the following result.

Theorem 2.3. Every projective representation of G is a direct sum of irreducible projective
representations.

Proof. Let V be a projective representation of G. We prove the theorem by induction
on dim(V). If dim(V) < 1, there is nothing to prove. Suppose that dim(V) > 2. If V
is irreducible, there is nothing to prove. Otherwise, by last proposition, V = Vi3 & V,
with dim(V;) < dim(V) for i = 1,2 and V; and V; are projective representations of G. By
induction hypothesis, V; (i = 1, 2) are direct sums of irreducible projective representations,
and so the same is true for V. U

Remark 2.4. Although we can decompose a projective representation into a direct sum of
irreducible ones, the decomposition is not unique.

2.2. Complete reducibility via twisted group algebra. Let G be a finite group and
let R be a commutative ring. Fix a € Z%(G, R*) a 2-cocycle. We denote by R[G], the
a-twisted group algebra over R. This algebra has a basis (a4) indexed by the elements of
G. Each element f of R[G], can be uniquely written as

f =Y keag with kg € R

geG



and the multiplication in R[G], is given by
agap, = a(g, h)agh.

Let V be a free R-module and let 7 : G — GLg(V) be a projective representation of
G in V. For each g € G and v € V, set ayu = 7(g)v. By linearity this defines fz for
any f € R[G], and v € V. Thus V is endowed with the structure of a left R[G],-module.
Conversely, such a structure defines a projective representation of G in V' with associated
multiplier a.

To say a ring or an algebra A is semisimple is equivalent to saying that each A-module
M is semisimple, i.e., that each submodule M’ of M is a direct summand in M as an
A-module.

Proposition 2.5. If R is a field of characteristic 0, then the algebran R[G],, is semisimple.

Proof. Let M be an R[G],-module and M’ C M a submodule. Certainly, M’ is a sub
R-vector space of M and is a direct factor as an R-module. Let p : M — M’ be an
R-linear projection, define

1 _
P=a > agplag) "

geG

Then P is a projection and is R[G],-linear, which implies that M’ is a direct factor of M
as an R[G],-module. O

Remark 2.6. This proposition corresponds to the complete reducibility of projective rep-
resentations Theorem [2.3]

Corollary 2.7. If R is a field of characteristic zero, the algebran R[G|, is a product of
matriz algebras over skew fields of finite degree over R.

2.3. Some lemmas. In this subsection, we prove some basic lemmas that may help us
simplify the study of projective representations of G.

Lemma 2.8. Let (m,V,a) and (7', V', d/) be two projective representations of G. If
these two projective representations are equivalent, then o and o/ have the same image in
H?(G,C*).

Proof. By definition, there exist ¢ : V' — V' and pu : G — C*, such that

1(9)m (9)(p(v)) = ¢(m(g)v) for all g € G.
Let g, h € G, we have

u(gh)m' (gh)(p(v)) = @(m(gh)v).
On the other hand,
p(r(ghyv) = p(alg, h) ' r(g)m(h)v) = alg, h) ™ ulg)n (9)u(h)m’ (h)p(v)
= u(g)u(h)alg, h)~ (g, k)’ (gh)(p(v)).

Comparing the above two equations, we have

alg,h) ' (g,h) = u(gh)u(g)~ u(h) ",
Therefore, [a] = [o/]. O

(2.2)
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Lemma 2.9. Let (m,V,«) be a projective representation. Let o be another multiplier

such that [o] = [&/]. Then there exists a projective representation (7', V') with multiplier
/

o', such that (7, V, ) is equivalent to (7', V' o).

Proof. By assumption, we may assume that
alg,h)"1a(g,h) = pulgh)pu(g) ™ u(h) ™
for a function pu : G — C*. Then we define V' =V and 7'(g) = ¢/ (g)7(g). The identity
map V — V' =V gives us an equivalence of projective representations. U
More generally, we have the following result.
Lemma 2.10. Let a and o' be two multipliers. If [a] = [d/], then C[G]q = C[G]y -
Proof. This follows from the same argument of Lemma U

Lemma 2.11. Let (7,V,a) and (7', V', a) be two projective representations of G. Let
0 :V = V' be a G-morphism. Then the kernel of p, the image of @, and the cokernel of
@ are either O or projective representations with associated multiplier c.

Proof. The statement on the kernel and image of ¢ is clear. Assume that the cokernel of
¢ is nonzero. Let v’ be an element of the cokernel of ¢. Let v € V' be a lift of v/. Then
we define 7’ : G — GL(Coker(y)) by the equation

m(g)(v') = 7'(v").
It is easy to check that the definition is independent of the choice of v' and it defines a
projective representation of G on Coker(y) with associated multiplier a. O

2.4. Schur’s Lemma.

Theorem 2.12 (Schur’s Lemma). If V and W are irreducible projective representations
of G with the same multiplier and p : V. — W s a map of projective representations, then
(1) Either ¢ is an isomorphism or ¢ = 0.
(2) If V=W, then ¢ = X\ -idy for some X € C.

Proof. The proof of this result is the same as the proof in the classical case. The first
claim follows from the fact that Ker ¢ and Im ¢ are G-stable subspaces. For the second,
since C is algebraically closed, ¢ must have an eigenvalue A € C. Therefore, p — X - idy
has a nonzero kernel. Since V is irreducible, we must have ¢ — A - idy = 0 and therefore
p=A-idy. O

We deduce some corollaries of Schur’s Lemma.

Corollary 2.13. Let (71, Vi, a) and (7, Va, ) be two irreducible projective representations
of G with the same multiplier. Let f : Vi3 — Vb be a linear map of vector spaces. Define

= o 2o mlo)

geG
Then
(1) If Vi % Vi, then f/ = 0.
(2) If Vi = V4 and m = w2, then [’ is a homothety of ratio ﬁ(%) Tr(f).



Proof. For any h € G, we have

ma(h) ' f'mi(h |G|Z7T2 “ma(g) ! fri(g)mi(h)

geG
(2.3) ]G| Z ma(g)ma(h)) " f(mi(g)mi(h))
geG
1
- ]G| gGZGm gh)~ Lim (gh) = f.

Therefore, f' : Vi — V4 is a map of projective representations. The first statement follows
from Schur’s Lemma. Assume now that (71, V1, ) = (m2, Va2, ). By Schur’s Lemma again,
f' is a homothety. Let A be the ratio of f’ Then

dim Vi - A = Tr(f Zm “Hfmg)) = Tr(f).
e v

The claim follows. O
We may write the above result in matrix form. Assume that

T1(9) = (rinji (9)),  T2(9) = (74252(9))-

The linear maps f and f’ are defined by matrices (x;,;,) and (x} . ) respectively.

7,211
Corollary 2.14. With the notation as above, we have
(1) If Vi % Vi, then

€ Z a(g,97") iz (97 )00 (9) = 0

geG

fOT’ any /L'17Z.27j17j2-
(2) If V1 = Vg and m = my, then

_ 1
|G| Z alg,g ) 17“%‘21’2(9 I)leil(g):méiTiléijl'
geG
Here § 1 ifi=j
ere 0;; =
" 0  otherwise.

Proof. By definition,

—1)-1 -1
leZl = |G| Z a(g, g 772]’2(9 )ijle‘jlil (9)-
9:31,52
The right hand side is a linear form with respect to z;,;,. In case (1), this form vanishes
for all systems of values of the x,;, . Thus the coefficients are zero. The claim follows.

In case (2), we have zj_; = Adiyi,, and

fl=A=

1
dm v, Tr(f) = Imv, Z 0o Tjoga -

J2,J1
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Therefore, we have the following equation

1 ) 1

—1y-1 -1
@ Z 04(979 ) Tiaja (g )x]éjlrjlil (g) = Ljyiy — dim V; Z (5i2i15j2j1xj2j1'
9,J1,J2 J2,J1
Comparing the coefficients of x;,;,, the claim follows. g

2.5. Direct sums, tensor products, and dual projective representations. Let
(m,V,a) and (7', V', ') be two projective representations of G. The tensor product V@V’
is a projective representation with associated multiplier a’ via

g-(we') =m7(g)(v) @7 (g)().

If a = o/, the direct sum V @& V' is a projective representation of G with associated
multiplier o via

g-(ve) =n(g)(v) &'(g)(v).
Let a be a multiplier of G. Define o* : G x G — C* by

o (z,y) = aly a7
Lemma 2.15. With the notation as above, we have

(1) o* is a multiplier.
(2) [@*] = [a] as elements in H*(G,C*).

Proof. The first claim follows from the definition. We prove the second claim. By defini-
tion,
a(z,y)a(zy, z) = a(z,yz)a(y, z) for all z,y,z € G.

1

Let y = 7" we see that

-1

alr, ') = alz, 7 2)a(z™, 2) for all 2, 2 € G.

Then let z = x, we see that
a(z,z71) = alz™t ) for all z € G.

For any z,y € GG, we have

a(z,y) = a(w,a”Na(a™ ay) ",

and

1 1 1)71.

aly e =aly L y)aly,y e

Combining the above two equations, we have

oz, 2 Haly™,y)
ozt zy)a(y, y~te—l)
= a(z,z Naly ™, yaley,y 'z

= @) p(y)p(ey) "

Here p : G — C* is defined by u(x) = a(z,z~!). We see that the difference of o and o*
is given by a 2-coboundary. The claim follows. O

a(z,y)a(y e =
(2.4)



The dual V* = Hom(V,C) of V is also a projective representation of G via
T (g) = g, g ) (g™ VI VT
Let (,) be the natural pairing of V' and V*, then we have
(m*(9)(v*),m(g)(v)) = (v*,v).

By definition,

7 (gh) = a(gh, (gh)~") " ((gh)~") = a(gh, (gh)~") " 'x(h~'g™")
25) = algh. (gh) ™) la(h g™ (w(h (g )
= a(gh, (gh) ") ta(h™ g ) alg, g Ha(h, k7 )x* (g)7* (h)

— alg, h)r* ()" ().
1

Therefore, the multiplier attached to 7* is o™ .

3. CHARACTER THEORY

In this section, we construct a character theory for unitary projective representations
of finite groups.

3.1. Unitary projective representations. Let (7, V,a) be a projective representation
of G. By definition, we have

m(g)r(g™") = alg, g (1) = alg.g7").
We cannot expect that the eigenvalues of 7(g) are algebraic integers. Nevertheless, as we

will show next, we can find another projective representation (7', V’ a’) such that it is
equivalent to (m, V,a) and 7'(g) has roots of unity as eigenvalues.

Lemma 3.1. Let « be a multiplier of G. Then there exists a unitary multiplier o/ such
that [a] = [o/].

Proof. Denote by |G| the order of G. Define 8 : G — C* by B(z) = [[,cqa(z,2). By
definition, a(z, y)a(xy, 2) = a(z,yz)a(y, z). Thus

[ ez v)a(zy, 2) = [ alz,y2)e(y, 2).

zeG zeG
Therefore B(2)(y)
6l — PAL)PAY)
a(z,y)~ = .
(@) Blay)
Let 8’ : G — C* be a map such that (8)/¢l = 8 and §/(1) = 1. Define o/ by
B'(zy)
d(z,y) = 5——2—a(r,y).
@9 = G Y
It is easy to see that o/ is a unitary multiplier and [o/] = [«]. O

Remark 3.2. From the proof of the above lemma, we see that the group H?(G,C*) is
annihilated by the order of G.
Assume that « is unitary and [o] € H?*(G,C*) has order A. Then o is a 2-coboundary,

M2y - for some function p @ G — C* with u(1) = 1. Note that

ie., at(z,y) = 1(@)u(y)
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[l oAz, y) = p(z)~1%, u(x) is a root of unity. Let A : G — C* be another func-

tion such that A = p and A(1) = 1. Let o/’ (z,y) = a(z, y) (x()A() ) Then o’ is a unitary

multiplier such that [o”'] = [a] and (a”)? = 1. In particular, o/(x, y) is an |A|-th root of
unity.

From the above discussion, every element of H?(G,C*) is represented by a function
a: G x G — {|G|-th root of unity}. Therefore H(G,C>) is a finite set.

By Lemma and Lemma every projective representation of GG is equivalent to
a unitary projective representation. Let ¢ € H?(G,C*). In order to understand the
projective representations belonging to ¢, it suffices to study the projective representations
(m, V') with associated multiplier «, for a fixed unitary multiplier o with [a] = ¢.

3.2. Definition of characters of projective representations. Let (7, V,a) be a uni-
tary projective representation. Define x, : G — C by the equation

Xr(g9) = Tr(m(g)) for all g € G.

The function x, is called the character of the projective representation (m,V,a). Note
that xr(g) is the sum of all eigenvalues of 7(g).

Remark 3.3. One can certainly define characters for all projective representations, but
some of the following properties are only true for unitary ones.

Lemma 3.4. If x is the character of a unitary projective representation (7, V, a) of degree
n, then

(1) x(1) =n

(2) x(¢g7) = a(g,g_l)x(gg. Here ~ denotes the clomplex conjugation.
hoh a(hh~
(3) x(hgh™') = WX(Q) = WX(Q) for allh,g € G.

Proof. The first claim is clear. Note that G is a finite group, any element g € G has finite
order. Let |G| be the order of G, then

In><n = 77(1) = 7T(g‘G|)
(3.1) = a(g, g a(g)m (g7 =
= a(g, 97 alg, g7 alg, 9) ()9

Since « is unitary, there exists a positive integer N, such that 7(g)Y = I,xn. The
eigenvalues of m(g) are roots of unity. Assume that A; (i = 1,---,n) are eigenvalues of
7(g), then \;1 =X, (i = 1,--- ,n) are eigenvalues of 7(g)~!. Therefore, we have

x(g™h) =Tr(n(g™")) = Tr(alg, g Hmlg) ™) = alg,g” NTrn(g) = alg, g~ )x(9)-

The second claim follows. The third claim follows from the following equation

_ a(h,h™1) - a(h,hh) -
hgh™) = ’ h h)~t = ’ h h)~
)= Gt gh ate,h ) "= GG gahg, nony TR
and the fact that similar matrices have the same eigenvalues. O

Lemma 3.5. Let V and W be two unitary projective representations of G with associated
multipliers o and o' respectively. Then
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(1) If a =&, then xvew = Xv + Xw-
(2) xvew = Xxv - Xw-
(3) xv+ =Xv.

Proof. The claims are clear. O

3.3. Orthogonality of characters. If qb and 1) are two C-valued functions on G, define
RPN
geG

This is a scalar product, i.e., it is linear in ¢, semilinear in v, and (¢, ¢) > 0 for all ¢ # 0.

Theorem 3.6. (1) If x is the character of a unitary irreducible projective represen-
tation, then (x,x) = 1.
(2) If x and X' are the characters of two nonisomorphic unitary irreducible projective
representations with the same associated multiplier o, then (x,x") = 0.

Proof. We prove this result by using Corollary Let (7, V') be an irreducible projective
representation with character x, given in matrix form 7(g) = (r;;(g9)). Then x(g9) =

> mi(g), hence

(x:x) |G’Zx

geG
‘G, Z a(g,97 ) "x(9)x(g ™)
geG
(3.2) ‘G, Z alg,g ) ’127%1-(9)273;‘(9’1)
g€G ' J
Z > alg.g) g
,J 9eG
Z dideJ
0.
The second claim follows by a similar argument. O

A character of an irreducible projective representation is called an irreducible character.
By the above theorem, the irreducible characters form an orthonormal system.

Corollary 3.7. Let (V,«) be a unitary projective representation of G with character ¢.
Suppose that V' decomposes into a direct sum of irreducible projective representations

V=W & - oW

Then, if (W, «) is an irreducible representation with character x, the number of W iso-
morphic to W is equal to the scalar product (¢, x).

Proof. Let x; be the character of W;, then ¢ = >, x;. Thus (¢,x) = > ;(xi»x).- The
theorem follows. O
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With the same notation as in last theorem, the number of W; isomorphic to W does
not depend on the chosen decomposition. This number is called the number of times that
W occurs in V.

Corollary 3.8. Two unitary projective representations with the same associated multiplier
and the same character are isomorphic.

Proof. The last corollary shows that they contain each given irreducible projective repre-
sentation the same number of times. O

The above results reduce the study of unitary projective representations with associated
multiplier « to that of their characters. If x1, ..., x; are the distinct irreducible characters
of G, and if Wy,..., W, denote the corresponding irreducible projective representations,
each projective representation V with associated multiplier « is isomorphic to a direct
sum

W = Wl@ml @--- @Vvl@ml’ m; € ZZO~

The character ¢ of W is equal to ), m;x;, and we have m; = (¢, x;). The orthogonality

relations imply
(6, 0) = mi.

We have the following result.

Corollary 3.9. If ¢ is the character of a unitary projective representation V', (¢, ¢) is a
positive integer and we have (¢, @) = 1 if and only if V is irreducible.

Proof. Indeed, >, m? = 1 if and only if one of the m;’s is equal to 1 and the others to
0. O

3.4. The a-regular projective representation of G. In this subsection, we study a
special projective representation: the a-regular projective representation. Fix a a unitary
multiplier of group G. The irreducible characters of G with associated multiplier « are
denoted by x1,..., X, their degrees are nq,...,n;.

Let R be the a-regular representation of G. It has a basis (eg)4ec such that R(h)(ey) =
a(h, g)eng. If h # 1, we have hg # g for all g, which shows that the diagonal entries of the
matrix R(h) are zero. In particular, Tr(R(h)) = 0. On the other hand, for h = 1, we have

Tr(R(1)) = dim R = |G]|.
Lemma 3.10. The character rg of the a-reqular projective representation is given by
ra(1) =G|, rg(h) =0 if h # 1.

Corollary 3.11. (1) Ewvery irreducible projective representation W; with associated
multiplier o is contained in the a-reqular projective representation with multiplicity
equal to its degree n;.
(2) The degrees n; satisfy the relation >, n? = |G|.
(3) If g € G s different from 1, we have ) ; n;xi(g) = 0.

Proof. For (1), the multiplicity is equal to (rg, x;). Since
1
(TG'a Xz) = ’ ‘

o 2 re(oxile) = xi(1) =,

geqG
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the result holds. From (1), rg(g) = >, nixi(g) for all g € G. The claims follow. O

The above result can be used in determining the irreducible projective representations
of a group G with associated unitary multiplier . Suppose we have constructed some
mutually nonisomorphic irreducible projective representations of degrees nq,...,n; with
associated multiplier «, in order that they be all the irreducible projective representa-
tions of G with associated multiplier «, it is necessary and sufficient that Y n? = |G|.
Furthermore, the above result has the following interesting corollary.

Corollary 3.12. Let G be a group of order n, such that n is either a prime number or
n € {6,10,14,15}. Then H?*(G,C*) = 0.

Proof. If n is a prime number, then G is a cyclic group and the corollary follows from the
formula

H*(G,C*) = (C*)/Norm(C*).

Assume now that n € {6,10,14,15}. Suppose that H?(G,C*) # 0. Then their exists a
unitary multiplier a of GG such that « is not a coboundary. By definition, there exists no
projective representation of G with degree 1 and associated multiplier . By the above

results, we have
_ 2
n= E n;
i

with n; > 2. This is impossible if n € {6,10, 14, 15}. The claim follows. O

See Corollary [5.7] for a stronger result.

3.5. The number of simple objects in Repg.

Definition 3.13. A function f: G — C is called an a-class function if for all g,h € G,

o alhhY __a(hhTh
f(hgh 1) = a(h,gh_l)a(g,h_l>f(g) o a(h,g)a(hg, h_l)

f(9)-

Let H, denote the space of a-class functions on G. The characters of projective represen-
tations belong to H,,.

Lemma 3.14. Let a be a unitary multiplier. Let f be an a-class function on G. Let
(m,V,a) be an irreducible projective representation of G. Let wy be the linear map of V
into itself defined by

mr=>_ flg)n(g).
geG
If V' is irreducible with degree n and character x, then my is a homothety of ratio A given
by

Gl

n

A= % > Fl9)x(9)

geG

O f)-
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Proof. For any h € G, we have

r(h)ymm(h)~t =Y flg)m(h)m(g)m(h)~!

geG
a(h, gh™a(g h_l)w hah=1
(3.3) —g%f NN (hgh™)
=Y f(hgh Dm(hgh™!) = 7.
geG

Therefore 7 is a map of projective representations. If V' is irreducible, by Schur’s Lemma,
7y is a homothety of ratio A. Note that

n\ = Tr(my) Zf Zf =|G|(x, f)-

geG geG

The claim follows. O

Theorem 3.15. Let « be a unitary multiplier. The characters (x;) of irreducible projective
representations in Repg form an orthonormal basis of H. In particular, the number of
irreducible projective representations with associated multiplier a (up to isomorphism) is
equal to dimc H,.

Proof. 1t suffices to show that the characters (;) generate H,. For this, it suffices to show
that every element of H, orthogonal to all the x; is zero.

Let f € H, and assume that f is orthogonal to all x;, i.e., (xs, f) = 0 for all i. For
each projective representation of G with multiplier v, put mp = 3 . f(g)m(g). Since f
is orthogonal to x;, the above lemma shows that 7y is zero as long as = is irreducible.
From the direct sum decomposition, we see that 7 is always zero. Applying this to the
a-regular projective representation R and computing the image of e; under 7y, we have

0=ms(e1) =Y f9RG() =) fl9)e,

geG geG

Therefore f(g) = 0 for all g. The theorem follows. O

The number dim¢ H, is less or equal to the number of the conjugacy classes of GG. Let

alh g‘z@l’;g(lg)h,l) =1 for all elements in Cg(g) = {h €

G | hg = gh}. If f is an a-class function on G, then we must have f(g) = 0 for g not an
a-element.

g € G. We say g is an a-element if

Lemma 3.16. (1) Let g € G. Then g is an a-element if and only if a(g, h) = a(h, g)
for all h € Cg(g).
(2) If g € G is an a-element, then so are the conjugates of g.

Proof. The first claim follows from the fact that Cg(g) is a group and the following equa-
tion

a(h,h 1) = a(h, gh ™ Ha(h™t, hgh™).
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For the second claim, first note that Cg(zgr~!) = zCq(g)z~!. By the following compu-
tation

a(z, ghz™Va(gz™!, zha™1)

-1 —1y _
a(zger™ ", xhe™") = (e, g2

a(z, gha™") a(ga™", z)a(g, ha™")

az, gr=1) alx, hz=1)

a(z, ghe™Na(ge™", x) alg, h)a(gh, 271)
a(x, gr=Ha(x, ha=1) alh,z=1)
a(z, ghrYa(g, h)a(gh, v Ha(z,z71)
a(z, gr=Ya(z, he=Ha(h,z=a(g,z~1)

we see that, if hg = gh and a(g, h) = a(h,g), then a(zgr™! zha™!) = a(zha=!, zgx™t).
The second claim follows from the first claim. O

Corollary 3.17. Let l, be the number of the conjugacy classes of G which contain «-
elements. Then dim¢c H, = [,.

3.6. Products of projective representations. Let G; and G2 be two finite groups.
Let o; € Z%(G;,C*) be a 2-cocycle of G; (i = 1,2). Then we define a map a1 X as :
G1 x Go — C* by

(o x a2)((g1,92), (h1, h2)) = a1(g1, h1)az(g2, he) for all g1, h1 € G1, g2,ha € Ga.

It is easy to check that aj; x ag € Z2(G1 x G2,C*). Let (w1, Vi, 1) and (ma, Vo, a0) be
projective representations of G1 and G5 respectively. We define a map m X w9 : G1 X Gy —
GL(V; ® Va) by

T X 7T2(<gl,gg)) = 7r1(gl) ®7r2(g2) for all g1 € Gl, g2 € GQ.

Then (7 x 72, V1 ® Vo, a1 X aig) is a projective representation of G; X G. If moreover mq
and 7y are unitary projective representations, then so is m; X ma. Let x; be the character
associated with the projective representation 7; of G; (i = 1,2), then the character y of
m X mo is given by

x((91,92)) = x1(g1) - x2(g2) for all g1 € G1, g2 € Ga.
Proposition 3.18. With the above notation,
(1) if m; is irreducible (i = 1,2), then m X 7o is an irreducible projective representation
of G1 X Go;
(2) each irreducible projective representation of G1 x Go with multiplier o = o X ag
s isomorphic to a representation w1 X mwo, where w; is an irreducible projective
representation of G; with multiplier oy (i =1,2).

Proof. We may assume that the projective representations are unitary. If m; is irreducible,

then
1

1G4l Z Ixi(gi)|* =1 for i =1,2.

9:€G;
Taking product, we have

1
= > Igne)l =1

G|
(91,92)€G1xG2
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Thus m x 79 is irreducible.
To prove (2), we show that each a-class function f on G; x Gg, which is orthogonal to
the characters of the form x1(g1)x2(g2), is zero. Suppose f is such a function, we have

> Flg1,92)x1(91)x2(g2) = 0.

Therefore,

S flg1, 92)x1 (1)) x2(g2) = 0.

92 g1
This tells us

Z f(g1,92)x1(g1) = 0.

9
So f(g1,92) = 0. The claim follows. O

By the above proposition, to understand the projective representations of G; x G2 with
associated multiplier a; X g, it suffices to understand the projective representations of
(G1 with associated multiplier a1 and the projective representations of Gy with associated
multiplier cg. On the other hand, note that there are multipliers of G; x G5 which are
not of the form a; x as. We do not obtain all projective representations of G; x G2 by
the construction in this subsection.

4. INDUCED PROJECTIVE REPRESENTATIONS

4.1. Two descriptions of induced projective representations. Fix a multiplier o
of G. Let H C G be a subgroup of G. We denote ay : H x H — C* the restriction of «.
Thus ay € Z?(H,C*). Let (p, W,ay) be a projective representation of H. Let V be the
vector space

V={f:G—W|f(hg)=alhg.g " )p(h)f(g) for all h € H,g € G}.
We define a map 7 : G — GL(V) by the equation (7(g9)f)(¢') = a(¢’,9)f(d'g).

Lemma 4.1. With the above notation, the map w defines a projective representation of
G with associated multiplier a. We write this projective representation as Indg(W).

Proof. By definition, for any f € V, g,h € G,
(m(9)(m(h)f))(g") = (g’ 9)(w(h) f)(g'g)
=alg',9)alg'g, h)f(g'gh)
= a(g', gh)a(g, h) f(g'(gh))
= a(g, h)(m(gh)f)(g').
Also (7(1)f)(¢") = f(¢’). The lemma follows. O
Lemma 4.2. For any w € W, define f, : G — W by

flg) = {p(g)w ifgeH

(4.1)

0 otherwise.
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Then for any f € V', we have

f= > 7@ ).

HzeH\G

Proof. Let g € G. Assume that g € Hy, then

(> w@ @)= Y @) )9

HzeH\G HzeH\G

(4.2) = Y algr ) fpwler)

HxeH\G

= alg,y oy ") = f(9)-
The lemma follows. Il
Define another vector space V' = @p,.c m\GWz, where W, = W as vector spaces for all

x. Fix aset {z;} of representatives of the right cosets H\G. Define a map 7’ : G — GL(V”)
by

(43) W@ (@duews,) = (o gy o)

Here 6(i) is the index such that z;g € Hxg). We define a map F : V' — V by

F((wi)w,ews,) = Y m(@; ") fu-

%

Lemma 4.3. With the above notation, (7', V') is a projective representation of G with
associated multiplier o.. Moreover, the map F is an isomorphism of projective representa-
tions.

Proof. Tt suffices to show that F' is an isomorphism of vector spaces and 7(g) o F' =
Fon'(g). It is clear that F' is injective. It is also surjective by last lemma. Write A; =
-1
a(g’zg(”)l p(miga:(;(li)). To show that 7(g) o F = F o 7'(g), it suffices to show that

alx; ,zigm;m)

Y alg.a; (o) fur = D m(@i ) g
For any y € GG, assume that ygx}l € H and ya:,gl € H. Then 6(k) = j. Note that
O alg,z; gy D fw) W) =D alg, z;y HDaly, gx; ) fu, (vgz; )
(4.4) i i
= a(g,z; aly, gz; p(ygar; w;.
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On the other hand,

(Z Tr(xi_l)fAiwé)(i))(y) = Za(y7xi_1)fAiw0(i) (yxz_l)
= a(y, xlzl)P(yv’U;?l)Akwe(k)
a(g7l‘9—(}g))

— ——p(zRgTy 0 ) We(k
a(wklaxkgwg(}g)) 6k) *

= a(y, = plyz; )

-1
alg, ;) _
———p(argz; w;
oy , TRGT; )

(4.5) = a(y, z; ey, )

-1
Cl(g,l‘- ) — _ —
-1 ’ -1 a(yxklvxkngl)p(yngl)wj
O{(I‘k axkng )
-1
a(g,a:j ) -1 -1 -1 -1
= —— —a(y, gz; oz, xpgr; )p(yge; w;
a(mkl,xkng 1) J k J j J

= a(g,z; "a(y, gz; p(ygr; w;.

= a(y, ;")

The lemma follows. U
Corollary 4.4. dim¢ Ind% W = [G : H] dimc W.

4.2. The characters of induced projective representations. Let o be a unitary mul-
tiplier. The isomorphism F' allows us to compute the characters of the induced projective
representations. First, we prove the following lemma.

Lemma 4.5. Let x;, be the character of (p, W, ). Fiz an element g € G. Let r € G such
that rgr=t € H. If s € Hr, then

« 7'71
(g7 )_1)XP(7“97“_1) =

a(gvsil) -1
a(r=t,rgr l)XP(Sgs )-

a(s™1 sgs™
Proof. Write s = hr for h € H. Then

a(h,h™1)

—1y __ -1
Xplsgs ) = a(h,rgrfl)a(hrgrfljhil)xp(rgr )

To prove the lemma, it suffices to prove that

a(g, ril)a(rflhfl, hrgrilhfl)a(h, rgril)a(hrgrfl, hil)

(4.6) —a(g, T h)alh, - )a (! rgr ).

Since a(g,ra(gr=t, h1) = a(g,rth Ya(r=t, A1), it suffices to prove that

a(r L R Ha(r A7 hrgrth Ha(h, rgr Ha(hrgr=t, B

(4.7) =a(gr =, h (b, h alr~t rgr).



19

This follows from the following computation.

LHS = a(r Y, h Ya(h,rgr Ha(r " h™t hrgr*h Y a(hrgr=t, A1)
(4.8) =a(r L, A Ha(h, rgr Halrtht hrgrHa(gr—t, 7Y
=a(r LA Halr e Ra(r T rgr Ha(grt BT
= a(r_l,e)a(h_l, h)oz(r_l,rgr_l)a(gr_l, h_l) — RHS.
The lemma follows. O

Theorem 4.6. Let o be a unitary multiplier of G. Let (p, W, aurr) be a projective represen-
tation of H with character xy,. Let (m,V, ) be the projective representation of G induced
from (p, W). If xr is the character of G, then

[0 7”71 « 371
Xx(9)= Y a((%))xp(rgr_l):& > a((%))Xp(SQS_l)-

—1 —1 —1 —1
rEHNG oo, rgr seC s ~,84S
rgr*leH sgs_leH

Proof. The second equality follows from last lemma. It suffices to show the first equality.
The space V' = ®pem\gWe and 7m(g) permutes the subspaces W,. By definition, w(g)
sends Wy, to Wa, _, . where 6~1(i) is the index such that x971(i)gaci_1 € H. If971(i) # 14,
then W(9)|Wmi dose not contribute to the trace. Therefore,

X=(9)= > Trw,(r(9)lw,)

reH\G
4 9) rg'rileH
( ’ . Oé(g,’l"_l) -1
- Z alr=tr Tfl)Xp(T‘gT )
reH\G 79
'rg'r71€H
The theorem follows. O

4.3. Twists of projective representations. Assume that H is a normal subgroup of
G, then for any g € G, gHg ' = H.

Proposition 4.7. Let « be a multiplier of G. Let (p, W, ap) be a projective representation
of H. For any g € G, define p9 : H — GL(W) by
alh,g™")

——=27 7 _n(ghg™ ) forallge G,h € H.
a(g—l,ghg—l)p(g g ) f g

p?(h) =

Then (p9, W) is a projective representation of H with associated multiplier oy .

Proof. Tt suffices to show that p?(h)p?(h') = a(h, h')p?(hh'). By definition, this is equiva-
lent to

Oé(hvg_l) —1 / —1 -1 ;-1 ;) 1
(4.10) alg—T.ghg-1)PWhe™)e(l g™ )alg™, gh'g™)p(gh'g™)

=a(h, b )a(hl!,g " )a(g™", ghh'g~ p(ghh'g™h).
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Thus it suffices to show that

alh,g7! _ _ _ _ _
(411) Mﬂ(h’,g Da(g™" gh'g " alghg™, gh'g™")

=a(h,h)a(hh' g )a(g™, ghh'g™).
Note that a(ghg=t, gh’'g Ha(g™t, ghh'g™') = a(g~!, ghg Ha(hg™t,gh'g™1), it suffices
to show that
alh,g oW, g~ alhg™ gh'g™") = a(h, h)a(hh' g )alg™" gh'g ™).
This follows from the following computation.
LHS = o(lf,g~)a(h, g a(hg™" gh'g™")
(4.12) = a(h', g a(h,Wg~alg™" gh'g™")
= a(h,h)a(hh',g"a(g !, gh'g™!) = RHS.
The proposition follows. O
Proposition 4.8. With the notation as above,
(1) if p is irreducible, then p9 is irreducible;
(2) if (m,V,«) is the projective representation of G induced from (p, W), then w|pg =
Brem\ch”

Proof. For the first claim, we may assume that p is unitary. Let x?¢ be the character of p9.
Then x9(h) = c¢(h)xp(ghg™') with ¢(h) a root of unity. Therefore

O x?) = D X (h)x(h) = D xp(ghg xplghg™) = (xp xp) = 1.

heH heH
Thus pY is irreducible.
The second claim follows from the fact that W, = p*. O

5. TWISTED GROUP ALGEBRAS

5.1. The structure of C[G],. Since C is algebraically closed, each skew field or field of
finite degree over C is equal to C. Thus the twisted group algebra C[G], is a product
of matrix algebras M, (C). Let m; : G — GL(W;) be the distinct irreducible projective
representations of G with associated multiplier « (1 = 1,...,1 = [,). Let n; = dim W;.
Then the ring Endc(W;) of endomorphisms of W; is isomorphic to My, (C). The map =; :
G — GL(W;) extends by linearity to an algebra homomorphism II; : C[G], — End(W;).
We thus obtain a homomorphism
! !
II: C[G]o — [[End(W;) 2 [ ] Ma, (C).
i=1 i=1
Proposition 5.1. The homomorphism 11 defined above is an isomorphism of C-algebras.

Proof. If [o] = [f], then C[G], = C[G]3 by Lemma We may assume that « is unitary.
Since both C[G], and Hé:l M,,,(C) have the same dimension, it suffices to show that II

is surjective. Suppose otherwise, there would exist a nonzero linear form on Hi:l M,,(C)
vanishing on the image of II. This would induce a nontrivial relation on the characters of
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the projective representations m;, which contradicts to the orthogonality formulas. Thus
the claim follows. Il

Let C be the set of conjugacy classes of a-elements of G. For each ¢ € C, fix an element

ge € c. Set
-1 a(h’gc)a(h907 h_l)
€ = Z ApGg. Ay~ = Z a(h, h_l) ahgchq.
heG heG

It is easy to see that e, is an element of Cent.C|[G]|,, the center of the twisted group
algebra. By the above proposition, dimc(Cent .C[G],) = [. Thus (e.)ccc form a basis of
Cent .C[G]q.-

Remark 5.2. The definition of e. depends on the choice of the fixed element g. € ¢. Let
g. = sge.s~1 € c be another element and define

h, g.)a(hg., h ™
¢l = Z ahagéa? _ Z a(h, g)a( :%, )ahgéh—l‘

1
heaq heG a(h, h )

_ osiges™)
Then €c = m@c.

Indeed, let g = g., to see this, it suffices to prove
a(hs,g)a(hsg, b Na(gs™',s) _ a(h,sgs™a (hsgs L ha(s,gs7h)
=y .

a(hs, (hs)™1) a(h,
This follows from
a(h, sgs Ha(hsgs™, h ™ YHa(s, gs Halhs, (hs)™)
(h, s)a(hs, gs Ha(hsgs™, h™Ha(hs, (hs)™1)
a(h, s)a(hs, gs th Ha(gs™t, h Ha(hs, (hs)™)
(
(

«

(5.1)

a(hs,gs th Ha(gs™, h Ha(h,h Ha(s,sth™1)
a(hs,gsth Ha(h,h Ha(gs™, s)a(g, s th™1).

In particular, in the case « is unitary, the difference between e, and €/, is given by a root
of unity.

Proposition 5.3. The homomorphism II; maps the Cent .C[G], into the set of homoth-
eties of W; and defines an algebra homomorphism

wj : Cent .C[G], — C.
If o is unitary, f =3 cqkgaq is an element of Cent.C[Gla, then
1
Wz(f) TTZ TI"W Z ngz
gEG
Moreover, the family (w;)1<i<i defines an isomorphism of Cent .C[G], onto the algebra C'.

Proof. The claims are clear. U
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5.2. Degrees of irreducible projective representations. Let (7, V,«) be a unitary
projective representation of G with character x. Note that our « is unitary, therefore
every eigenvalue of 7(g) is a root of unity. In particular, it is an algebraic integer. Thus
the value x(g), which is the sum of the eigenvalues of 7(g), is also an algebraic integer.

Lemma 5.4. Let f =3
integers. Then f is integral over Z. (Note that this makes sense since Cent .C|[G|y is a
commutative ring.)

kgag be an element of Cent .C[G|, such that ky’s are algebraic

Proof. By Remark we may write f = > .~ kce. for some algebraic integers k.. To
show that f is integral over Z, it suffices to show that each e. is integral over Z. Let
O = Z[Im(«)]. It is contained in the ring of integers of the field Q(Im(c)) and thus is
finitely generated over Z. Note that e.eq is a linear combination with O-coefficients of the
ec’s, the subgroup R = ®.ccO - e, is a subring of Cent .C[G], and it is finitely generated
over Z. Every element in R is integral over Z. The claim follows. O

Lemma 5.5. Let (m;, Wi, «) be an irreducible unitary projective representation of G with
degree m; and character x;. Let f = deG kgay be an element of Cent .C[G|, such that

ky’s are algebraic integers. Then the number n% deG kgxi(g) is an algebraic integer.
Proof. This number is the image of f under the homomorphism

wj : Cent .C[G], — C.
As f is integral over Z, the same is true for its image under w;. O

Theorem 5.6. The degrees of the irreducible projective representations of G divide the
order of G.

Proof. 1t suffices to prove this for unitary irreducible projective representations. Let x be
the character of such a projective representation with multiplier .. First, we show that the
element 3 . a(g,97) x(g7 )ay is an element of Cent.C[G],. It suffices to show that

an(P e (9,97 X9 ag) = (XCyeq @lg, 97 x(g7 ag)an for any h € G. This is
equivalent to
a(hgh™' hg~ h™ ) T x(hgT h T ahgh ™ h) = a(g,g7") " x (g7 ek, g)

S hgh™', h)a(h, k™ Yal(g, g~ ")
5.2 1 1,1y = alhgh”, : ’
(62)  ealhgh™ hg™ h™) = o T 0T Da(h.g)

sa(hgh™ h)a(h,gh™")a(g, k™) = a(h,h " )a(h,g)  (equation (3-4)),

which is easy to see since « is a multiplier.
We may apply the above result to the element deG alg, g7~

(g7 Hay. The number

1 1 N _ G G
= kgxilg) = — > alg,g)x(g T xlg) = G =18
geG geG
is an algebraic integer. Therefore n; | |G|. The claim follows. O

Corollary 5.7. Let G be a finite group of order N. Let I¢ be the number of conjugacy
classes of G. If the equation

m
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has no solution with m € Zs1, m < ¢, n; € Z>3 and n; | N (1 < i < m), then
H?*(G,C*) =0.

Proof. This is a generalization of Corollary The proof is similar. O

If G is a group such that |G| = pq, where p, ¢ are distinct prime numbers, it is easy to
see that H2(G,C*) = 0 by the corollary.

5.3. Frobenius reciprocity. Fix a unitary 2-cocyle a € Z%(G,C*). Let H be a subgroup
of G and ayy the restriction of « on H x H. If (W, apg) is a projective representation of H,
we may consider W as a C[H|,,-module. Let W/ = ClGla®c(n),,,, W be the C[G]o-module

obtained by scalar extension from C[H],, to C[G]a.

Proposition 5.8. Let V = Indg(W). The injection W — V' extends by linearity to a
C|G]a-homomorphism i : W' — V. The homomorphism i is an isomorphism of C[G]a-
modules.

Proof. This is a consequence of the fact that the elements x € H\G form a basis of C[G],
as a C[H]q,-module and the decomposition V' = &, W, d

Corollary 5.9. (1) If V is induced from W and if E is a C[G]y-module, then we have
a canonical isomorphism

Hompy (W, E) = Homg(V, E).

(2) Induction is transitive in the following sense. If G is a subgroup of a finite group
L and « is the restriction of a 2-cocycle in Z*(L,C*), then

Ind% (Ind$ (W)) = Indk (W).
Proof. The claims follow from the properties of tensor products. O

If f is an ap-class function on H, consider the function f’ on G defined by

oy L algs) o
f (g) - |H| ; Oé(S_l,SgS_l)f( g )

sgsfléH
We say that f is induced from f and denote it by either Ind%(f) or Ind(f).

Lemma 5.10. (1) The function Ind(f) is an a-class function on G.
(2) If f is the character of a projective representation W of H, then Ind(f) is the
character of the induced projective representation Ind(W) of G.

Proof. The second claim is Theorem The first claim follows from the fact that each
a-class function is a linear combination of characters. O

If V1 and V3 are two C[G],-modules, we set

(V1,V2)¢ = dime(Homggy, (Vi, V2)).
Proposition 5.11. (1)
Xi(i =1,2), then

If V; is a unitary projective representation of G with character

(x1,x2) = (V1,Va)g.
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(2) If ¢ is an ag-class function on H and ¢ is an a-class function on G, then

(¥, Res¢)g = (Ind ¢, ¢)g.

Proof. (1) If V1 and V4 are irreducible, the claim follows from the orthogonality formulas
for characters. In the general case, we decompose V; and V5 into direct sums of irreducible
modules and it is easy to see that the claim follows.

(2) Since « is unitary, each a-class function is a linear combination of characters of
projective representations, we may assume that v is the character of a C[H],-module W
and ¢ is the character of a C[G],-module E. Then it suffices to show that

(W,Res E)y = (Ind W, E)¢.
This is the same as
dim(Hompy (W, Res E)) = dim(Homg(Ind W, E)),
which follows from Corollary O

5.4. A criteria for the irreducibility of the induced projective representations.
Fix a multiplier « of G. Let H and L be two subgroups of G. Let p : H — GL(WW) be a
projective representation of H with multiplier a and V = Indg(W) be the corresponding
induced projective representation of G. In the following, we determine the structure of
the restriction Res¥ (V) of V to L.

Let S be a set of representatives for the double cosets L\G/H. For s € S, let Hy =
s~'Hs N L, which is a subgroup of L. Set

p(x) =

a(z, s 1) 1
—————p(sxs for x € H
a(s™1, sxs—l)p( ) 2
we thus obtain a projective representation p® : Hy — GL(W). (See for example the proof
of Proposition [4.7]) Denote this projective representation by (p*, W).

Proposition 5.12. The representation Res¢ (Ind% (W) is isomorphic to the direct sum
of the projective representations IndquS(Ws) forseS.

Proof. Write V' = @,c oW with W, = W. Let V(s) be the subspace of V' generated by
m(x)W with © € LsH. Then V = @45V (s). It is easy to see that V(s) is stable under L.
It suffices to show that V'(s) is L-isomorphic to Indqus (Ws). This follows from the identity
V(s) = @ger/m,m(x)(Ws). The proposition follows. O

We apply the above discussion to the special case L = H. For g € GG, we denote by
H, the subgroup g 'HgnN H. The projective representation p of H defines a projective
representation Resgg p by restriction to H,.

Proposition 5.13. In order that the induced projective representation V. = Indi be
irreducible, it is necessary and sufficient that the following two conditions be satisfied:
(1) W is irreducible.
(2) For each s € G — H, the two representations p* and Resgs p of Hg are disjoint,
i.e., (p°, Resgs ), =0.
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Proof. We may assume that « is unitary. In order that V be irreducible, it is the same
that (V,V)g = 1. We have

(V.V)e = (W,Res§; V)
= (W, ®semna/u Indgs (P°)H

(5.3) = Y (WIndj (p")u
s€eH\G/H

= Y (Resy p.p*)n.-
s€eH\G/H

For s = 1, we have ds := (Resgs p,p%) g, = (p,p)g > 1. In order that (V,V)g =1, it is
necessary and sufficient that d; = 1 and ds = 0 for s # 1. These are exactly conditions

(1) and (2). O

Corollary 5.14. Suppose that H is a normal subgroup of G. In order that Indgp be
irreducible, it is necessary and sufficient that p is irreducible and is not isomorphic to any
of its twists p9 for g & H.

Proof. This is clear from the proposition since Hy = H for all s € G. O

Proposition 5.15. Let A be a normal subgroup of G and w : G — GL(V') be an irreducible
projective representation of G. Then
(1) either there exists a subgroup H of G, unequal to G and containing A, and an
wrreducible projective representation p of H such that w is induced from p;
(2) or else the restriction Resgw is isotypic, i.e., it is a direct sum of isomorphic
projective representations of A.

Proof. Let V. = @&V, be the canonical decomposition of the representation 7|4 into a
direct sum of isotypic representations. For g € G, m(g) permutes the V;. Since V is
irreducible, G permutes them transitively. Let V;, be one of these. If V;, = V, then
we are in case (2). Otherwise, let H be the subgroup of G consisting of those g € G
such that 7(g)Vi, = Vi,. It is easy to see that A C H and H # G. Moreover, Vj, is
an irreducible projective representation of H and Ind% Vi, is isomorphic to V. (Indeed,
dime Homg(Ind% V;,, V) = dimgc Homg (V;,, V) > 0. Since for any s € G — H, Res{ Vj,
and Res? Vs are disjoint, Ind% V;, is irreducible.) This is case (1). The proposition
follows. OJ

5.5. Degrees of irreducible projective representations revisit. Let o be a multi-
plier of G. Let A be a normal subgroup of G. Let p : A — GL(W) be a projective
representation of A with multiplier oe. Define

Iy={geG: p?=p}.
It is easy to see that I, is a subgroup of G and A is a normal subgroup of I,,.
Lemma 5.16. For any elements g1, g2, h € G, we have
alh, (9192) " )elgs s g2hgs algr s grg2h(g192) ™)

(5.4) B T - B
=a(h, g5 alg2hgy ', g7 Dea((g192) ", g192h(g192) ).
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Proof. By definition,
a(h, gy gy Nalgy ' gr ) = alh, gy Dalhgy ' g7h),
a(gyt, 97 Ha((g192) 7, 1920 (g192) 1) = algy by gahgs tgy Halgrt, g192h(g1g2) ),
and
a(gy " g2hgy alhgy ' g t) = algahgy ', g7 Dalgy t g2hgs o),
the lemma follows. O

Lemma 5.17. Let (p, W, ) be an irreducible projective representation of A. One can
extend W to a projective representation p’ of I, with some multiplier 5 such that

(1) p'(g)p(h)p'(9)~" = p9(h) for all g € I, and h € A.
(2) p'(h) =p(h) for all h € A.
(3) p(h)p'(9) = a(h, g)p’(hg).

Proof. For any g € I, there exists a matrix p(g) such that

p(g)p(h)p(g)~" = p?(R) for all h € A.

Note that p(g192)p(h)p(g192) " = p(g1)p(g2)p(h)(p(g1)p(g2)) " (which follows from last
lemma) and p is irreducible, by Schur’s Lemma, there exists an element (g1, g2) € C*

such that p(g1)p(g92) = (91, 92)p(9192). Let {z;} be a set of right coset representatives of
Ain I,. Define

p'(hai) = a(h,zi) " p(h)p(zi),  p'(h) = p(h),
for all ¢ and h € A. It is easy to check that (p’, W) is a projective representation of I,
that satisfies the properties. O

Remark 5.18. With the notation as in the lemma, we have p’'(g)p(h) = a(g, h)p’(gh).
Indeed, since

a(gh,g " alghg™,9) = a(g™', 9)

5 =alg,g7") = alg,hg Halg™, ghg™),
we have
a(h,g Malghg™, g) = alg,h)alg™", ghg ™).
Thus
p'(9)p(h) = p?(h)p'(9)
(5:6) = a(h,g (g, ghg™")'p(ghg~ ¥’ (g
= a(h,g alg™", ghg™") ' alghg ™", g)¥' (gh)

= a(g, h)p'(gh).
Therefore, the following equations hold:
Oé(g,h) :B(g’h)v O[(hvg) :ﬁ(hag)v
where g € I, and h € A. Thus af~!is a well defined multiplier of the group I,/A.
Let @y be the quotient group I,/A. Let q be an irreducible projective representation of

Qp with associated multiplier a3 ~1. We may also consider q as a projective representation
of I, via the natural map I, — Q.
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Lemma 5.19. The projective representation Indg (p’ ®q) is an irreducible projective rep-
resentation of G with associated multiplier .

Proof. Note that the representation p’ ® q is an irreducible projective representation of I,,.
Let g € G — I,. Then (p' ® q)9]4 and (p’ ® q)|a are disjoint by the definition of I,. By
Proposition the lemma follows. O

Theorem 5.20. Let A be a normal subgroup of G. Let da be the least common multiple
of the degrees of the irreducible projective representations of A. (Note that dg | |A|.)
Then the degree of each irreducible projective representation m of G divides the number

da-(G:A).

Proof. We prove this theorem by induction on the order of G. In case (1) of Proposition
by induction, the degree of p divides d4 - (H : A). Therefore, the degree of 7 divides
(G:H)da-(H:A)=da-(G: A

In case (2) of Proposition assume that V|4 = W for an irreducible projective
representation W of A. In the above discussion, take p = W. Then I, = G, i.e., any
twist of p is isomorphic to p. We may extend W to a projective representation p’ of G
with associated multiplier 8. Define W/ = Homus (W, V) = {f : W — V | f(p(a)w) =
7(a) f(w)}. We define an action of G on W’ via the equation

(a(g)f)(w) = 7(9)f (#"(9) " w).
(1) By Lemma|5.17, p’(9) " 'p(a) = Lg))p(g_lag)p’(g)_l. One has

~ alg,glag

(a(g)f)(p(a)w) = 7(9) f(0'(9) " p(a)w)

= (o) ) Fola e (9) M)

= 7T(9)0[(;(;’‘(flg)?T(g1a9)f(10’(9)1w)

= m(a)m(9)f(p'(9) " w) = m(a)(alg).f)(w).

(5.7)

Thus q(g)f € W'.
(2) For any gi, g2 € G7

(a(g192) f)(w) = w(g192) f (P’ (9192) ' w)
(5.8) = (g1, 92) "' B(g1, g2)m(g1)7(g2) f (0 (92) "0’ (91) ')
= a(g1,92)" " B(g1,92)(a(g1)a(g2) f) (w).

Thus q is a projective representation of G’ with multiplier o371,
Consider the natural map
W @c W =V,
it is easy to check that it is an isomorphism of projective G-representations. Furthermore,
Since V is irreducible, W' is also irreducible as a projective representation of G. On the
other hand, if g € A, then q(g) acts as scalar. Thus W' has a structure as an irreducible
projective representation of G/A. Therefore, degW' | (G : A) and degV | d4(G : A). The

theorem follows. O

The same argument proves the following result.
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Theorem 5.21. Let a be a multiplier of G. Let A be a normal subgroup of G. Let d$ be
the least common multiple of the degrees of the irreducible projective representations of A
with associated multiplier a.. Then the degree of each irreducible projective representation
7 of G with multiplier o divides the number d5 - (G : A).

In particular, if « = 1 and A is an abelian normal subgroup of G, then the degree of
each irreducible representation of G divides the number (G : A).

Corollary 5.22. Let A be a cyclic normal subgroup of G. Then the degree of each irre-
ducible projective representation w of G divides the number (G : A).

Proof. Since A is cyclic, H?(G,C*) = 0. Therefore every irreducible projective represen-
tation of A is equivalent to an linear irreducible representation, which has degree 1. Thus
da = 1 and the claim follows. O

This result gives us a stronger version of Corollary and has useful applications. We
explain the idea in the following simple but nontrivial example.

Example 5.23. Let G = Ds,, be the dihedral group of order 2m. Let C), be the normal
subgroup of G generated by an element of order m. By the above corollary, the degree of
each irreducible projective representation of G divides 2. By Corollary we obtain the
fact that H?(Dap, C*) = 0 if m is odd.

Assume now that m is even. Let o be a multiplier of Dy, such that [«] is nontrivial. (For
example, m = 4, H?(Dg,C*) = Z/27.) Then every irreducible projective representation
of Dg,, with multiplier @ has degree 2 and there are m/2 of them up to isomorphism.
(Note that in this case the number of conjugacy classes of G is m/2+3.) By the argument
in Theorem [5.20] all these irreducible projective representations are induced from one-
dimensional projective representations of C,, with multiplier o, .

5.6. On abelian groups. In this subsection, we assume that G is abelian. In this case,
one can say more about the degrees. First, we have the following result.

Proposition 5.24. Let G be a finite abelian group and o a fived multiplier of G. Then
all the irreducible projective representations of G with multiplier o have the same degree.
We denote this number dg.

Proof. One needs only the results in Section [3| to prove this. We may assume that o
is unitary. Let m; be an irreducible projective representation of G with multiplier a and
character y; (i = 1,2). We claim that there exists a one-dimensional linear representation®
x : G — C*, such that m & y ® 7.

Indeed, let 72 be the projective representation of G' defined by 72(g) = m2(g). Here
is the complex conjugation of x. Then the associated multiplier of 75 is @ = a~! since «
is unitary. The character of 79 is Y2. Consider the projective representation m ® wo. The
associated multiplier is a- o' = 1. Because G is abelian, there exists a one-dimensional
linear representation 7 : G — C*, such that dim¢ Homg (7,71 ® 72) > 1, i.e., the number

> r(9)x1(g)x2(9)

geG

*We do not use the word character to avoid the confusion with the characters of projective
representations.
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is a positive integer. Thus

dimc Homg (72, 7 ® 1) = Z XQ(Q)W
geG

is a positive integer. Moreover, both 7y and 7 ® m; are irreducible and thus they are
isomorphic. The claim follows. O

Remark 5.25. From the proof of the proposition, one sees that each one-dimensional linear
representation appears at most once in the space m; ® 9. The G-representation m ® 7o
is a direct sum of (d%)2 distinct one-dimensional linear representations. In particular,
d¢ < +/|G|, which is also a consequence of Corollary [3.11

In the following, we describe the number d¢ more precisely. Let a be a multiplier of
group G. Let A C G be a subgroup. We say that A is a-symmetric if a(a,b) = a(b, a) for
any a,b € A.

Lemma 5.26. If G is abelian and a-symmetric, then « is a coboundary.

Proof. Let m be any irreducible projective representation of G with multiplier «. Then by

assumption 7(a)w(b) = w(b)w(a) for any a,b € G. Therefore, each m(a) is an element of

Homg(m,m). By Schur’s Lemma, 7(a) is a scalar, say p(a). Then a(a,b) = % is a

coboundary. O
Lemma 5.27. Let A be an a-symmetric subgroup of an abelian group G. Let s € G — A.

If a(a,s) = a(s',a) for all a € A and i € Z, then the subgroup B = (A,s) is also
a-symmetric.

Proof. By definition, we have

afas’, bs))a(a, s°) = ala, bs"™)a(s', bs’),

afa,bs ™ a(b, ) = a(a, b)a(ab, s7),

afst, s7b)a(s?,b) = a(s', s a(s" b).
Thus, o o
ala,b)a(ab, s )a(s', s7)
ala, s)a(si,b)

Since a(s’,s7) = a(s?,s') for any s € G, it is easy to see that a(as’,bs?) = a(bs’,as’).
The lemma follows. O

afas’, bs?) =

Theorem 5.28. Let G be an abelian group. Let a be a fixed multiplier of G. Let A be a
mazximal a-symmetric subgroup of G. Then d& = (G : A).

Proof. Let m be an irreducible projective representation of G with multiplier «. Consider
the restriction 7|4, it is a projective representation of A with multiplier a4, which is
a coboundary. Thus 7|4 = @ierx; is a finite direct sum of one-dimensional projective
representations. Fix one x € {x;}ies and consider the projective representation V' =
Indg X- Note that here Indg is the one defined in Section {4 with respect to the multiplier
a. First, we show that V' is irreducible. By Proposition it suffices to show that y
is not isomorphic to x* for any s € G — A. Suppose that there exists s € G — A such
that x = x®. From the definition of x*, we have a(a,s™!) = a(s™!, a) for any a € A.
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Inductively, we see that a(a, s') = a(s’,a) for any a € A and i € Z. Therefore, (A, s) is an
a-symmetric subgroup, which contradicts to the assumption on A. Thus V’ is irreducible.
On the other hand,
Home(V', 7) = Homa(x, 7[4)

has a nontrivial element. So V' = 7w and degm = (G : A). The theorem follows. O

Corollary 5.29. Let o be a multiplier of an abelian group G. Then all the mazimal -
symmetric subgroups of G have the same index in G, and this number is less or equal to

V1G]

In particular, for any abelian group G and o € Z*(G,C>), there exists a subgroup A of
G with |A] > /|G| and a|a € B%(A,C*).

6. THE GROUP OF VIRTUAL PROJECTIVE CHARACTERS

In this section, we study the group of virtual projective characters. The contents are
similar to [IT, Chapter 9], where the group of usual virtual characters is studied.

6.1. Definitions and basic properties. Let G be a finite group. Fix a unitary Schur
multiplier a of G, such that o = 1 where N is the order of [a] (see Remark . Let
X1, --., X1 be the set of irreducible projective characters with multiplier . An a-class
function on G is a character of a projective representation with multiplier « if and only if
it is a linear combination of y; with non-negative coefficients. Define a group R,(G) by

Ra(G) = ZXl S D ZXZ'

An element of R, (G) is called a virtual projective character attached to . It is a subgroup
of the vector space H,,.

Define a group

Ra(G) = Ro(G) & --- & R~ (G).

Then R, is a ring. The group R(G) := R, ~(G) is the group of usual virtual characters
and it is a subring of R,(G). Note that if x (resp. 7) is an element in R, (G) (resp.
Rg3(G)) and o # 8, x + 7 has no meaning in terms of projective representations.

Let H be a subgroup of G. We also denote « the restriction of o to H x H. The
operations Ind and Res define two group homomorphisms

Ind: Ry(H) — Ro(G), Res: Ry(G) — Ry (H).
They induce two natural maps
(6.1) Ind: Ro(H) = Ra(G), Res:Ry(G) = Ruo(H).

Lemma 6.1. With the above notation,

(1) The two maps in are group homomorphisms. Moreover, the map Res is a
ring homomorphism.
(2) The image of Ind : Ry (H) — Ro(G) is an ideal of Ra(G).

Proof. The statement (1) follows easily from the definition. For (2), it suffices to show
that

Ind(7 - Res(x)) = Ind(7) - x
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for irreducible projective characters 7 € Rg(G) and x € Ro(G). Let 7 be the character of
a projective representation W of H with multiplier 3, x be the character of a projective
representation E of G with multiplier . Then the identity above is equivalent to

Ind(W ® Res(E)) 2 Ind(W) ® E.
This follows from the formula (4.3)). O

6.2. Characters of symmetric and exterior powers. Let 7 : G — GL(V) be a
projective representation of G with unitary multiplier o and character y. The tensor
product W = V®* is a pro jectlve representation of G with multiplier o*. It has two natural
subprOJectlve representations 7t : G — GL(Sym (V)) and 7% : G — GL(AItF(V)). Let
XS and y* % be the characters of 7rS and 7k " respectively. In the following, we compute the
two characters explicitly. Define

oo oo
k=0 k=0
where T is an indeterminate.

Lemma 6.2. Let g € G. Then

Sr(x)(g) = ! !

det(1 — w(g)T)’ Ar()(g) = det(1+m(g)T)

Proof. Let (\;) be the eigenvalues of 7(g). Choose a basis (e;) of V' consisting eigenvectors
of 7(g). Then (e, @ - @ e, )iy<..<i,, (resp. (e @ -+ ® €5, )iy<..<i,) is a basis of SymF V
(resp. AIt* V). Thus (A, -+ iy )iy<o<ip (vesp. (Niy -+ Niy )iy<-<iy,) are eigenvalues of
Sym* V (resp. AltF V), i.e

Z Aiy - Ay

(6 2) 11 <<
Z Aiy - Ay
11 <<l
Therefore,

det(l — (g
(6.3) = H Z ATT")

=D 0> A AT =5r(0)(9)-

k=0 1< <7‘k

The proof for Ar(x) is the same. O
Let f be a function on G. Define function W% (f) by
Ve (f)(9) = alg, g Halg, ¢*72) - alg. 9) F(4°).
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Lemma 6.3. With the above notation,

= exp Z Tk () T* k),
0o

Az (x) = exp(d_ (=) T WECOT" /).

k=1

(6.4)

Proof. We prove the lemma for Sr(x). The other case is similar. It suffices to show that
Z TR () (9)T* /k = —logdet(1 — m(g)T).
Since logdet(1 — w(g)T ) = > ;log(1 — \;T), it suffices to show that
9) =D A
This follows from the definition of ¥ () and the fact

m(9)* = alg, " Halg, ¢" %) - alg, 9)m ().

Proposition 6.4. With the above notation,

n

nxE =Y _ WEOO)XE "
k=1
n

nxh =D ()P o
k=1

(6.5)

Proof. We only prove the first equality. The other case is similar. By the above computa-
tion, we have

ZXSTk—exp Z\Ilk )T* k).

Taking derivative with respect to T on both 31des we obtain

ZkaT’“ 1= exp( Z\I;k ()T /k) nyk Ykt

(6.6) ~ ~
=D XETMY who)TH
k=0 k=1
Comparing the coefficients of 7", the proposition follows. O

Corollary 6.5. With the above notation,
(1) U2 sends Ry (G) to Ron(G).
(2) Let x be an irreducible projective character in Ry (G). If (n,|G|) =1, then Y2 (x)
is an irreducible projective character in Ron(G).
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Proof. Using induction on n, the first claim follows easily from Proposition For (2),
we see that U2 (x) is an element in Ryn(G) by (1). Therefore, to show it is an irreducible
projective character, it suffices to show that U2 (x)(1) > 0 and (Y7 (x), ¥Z(x)) = 1. By
the assumption, these two conditions hold. The claim follows. O

6.3. Artin’s theorem. For any subset H of G, let H, be the subset of H consisting of
a-elements. We have the following result, which corresponds to [11, Theorem 17].

Theorem 6.6. Let X be a family of subgroups of G. Let Indx : ®gexRao(H) — Ro(G)
be the homomorphism induced from Indg, H € X. Then the following conditions are
equivalent.
(1) G is the union of the conjugates of Hy, H € X.
(2) The cokernel of Indx : ®gexRa(H) — Ro(G) is finite.
(3) For each projective character of G in Ry (QG), there exist virtual projective charac-
ters xg € Ro(H), H € X, and a positive integer d, such that

dx = df(xu)-
HeX

Proof. The proof is the same as the proof of [I1, Theorem 17]. We give details here for
completeness. Since R, (G) is a finitely generated group, it is clear that (2)<(3). First,
we show that (2)=(1). Let S = Upex gec(9Hag ') C Ga. Every function of G with the
form ) o md%(fr) (fu € Ra(H)) vanishes outside S. If (2) is true, then each a-class
function on G vanishes outside S, which shows that S = G, i.e., (1) is true.

Conversely, suppose (1) is satisfied. To prove (2), it suffices to show that the Q-linear
map

Q®Indy : ®yexQ® Ro(H) — Q® Ru(G)

is surjective. Then it suffices to show the surjectivity of the C-linear map
Co®Indyx : DgexC® Ro(H) - C® Ry (G).

This is equivalent to the injectivity of the adjoint map
C®Resx : C® Ry(G) = ®gexC® Ry (H),

which is obvious because G, is covered by the conjugates of H, (H € X). The theorem
follows. O

Remark 6.7. Let A be the subring of C generated by |G|-th root of unity. If & = 1, then
Spec(A® R(G)) is connected in the Zariski topology (see [I1), Proposition 31]). In general,
what can we say about the map Spec(A ® R, (G)) — Spec(4A ® R(G))? We hope to come
back to this question in a future work.

7. ON COMPACT GROUPS

In this section, we study the (unitary) projective representations of compact groups.
The set up is similar as for finite groups, but there are some subtle differences and we
need to introduce some new definitions. In this section, G is a compact topological group
with identity element 1. Fix a Haar measure [,-dg on G.
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7.1. The set up.

Definition 7.1. Let S! be the unit circle in C. A continuous map a : G x G — S' is
called a multiplier (or a factor set or a 2-cocycle) on G if

(1) a(z,y)a(zy, z) = a(z,yz)aly, z) for all z,y,z € G.

(2) a(z,1) =a(l,z) =1forall z € G.

Remark 7.2. Note that for finite groups, the multipliers are defined using C*, not S'.
But each element ¢ € H?(G, C*) is represented by an element in Z2(G, S') (Lemma .
Therefore, the definition here does not lose the generality. The same statement is true for
pro-finite groups by [12, Chap. 1, Proposition 8|.

Definition 7.3. Let V' be an n-dimensional Hilbert vector space over C. (n is not neces-
sarily finite). A projective representation of G over V is a continuous map 7w : G — U(V)
such that 7(z)7(y) = a(z,y)nw(xy) for all z,y € G, where « is the associated multiplier,
U(V) is the set of bounded invertible linear operators from V to V. Here continuous
means that the map (g,v) — 7(g)v is a continuous map from G x V to V. We denote this
projective representation by (m,V,«a) or (m, V).

The other notions are defined in the same way as in finite group case. From the following
lemma, every projective representation with multiplier o € Z2(G, S1) is unitary and we
may and will take U(V') to be the set of unitary operators from V' to V.

Lemma 7.4. Let (m,V,«) be a projective representation of G. Then there exists a G-
invariant Hermitian inner product (,) on V, i.e., (w(g)v,7(g)w) = (v,w) for any g € G
and v,w € V.

In particular, 7(g) is unitary and the eigenvalues of w(g) have absolute value 1.

Proof. Let (,) be any Hermitian inner product on V. Given v,w € V, the function
f: g »—> ( (g)v m(g)w) is a continuous function. Hence f is integrable. Define (v, w) =
fG Jw)d g. Since « is unitary, it is easy to check that this defines a G-invariant
Hermltlan inner product. O

From now on, we assume that all projective representations are unitary.

Corollary 7.5. Every projective representation of G is completely reducible. i.e., it is a
direct sum of irreducible projective representations.

7.2. Schur’s Lemma and finite dimensional projective representations. We prove
Schur’s Lemma for projective representations of compact groups and study finite dimen-
sional projective representations. The situation is very similar to the case of linear repre-
sentations.

Lemma 7.6. Let (m1, V1) and (w2, Va) be two projective representations of G with multi-
plier a. If A € Homg(V1, Va) is a bounded linear operator, then A*Ami(g) = m1(g)A*A
for all g € G. Here A* is the adjoint of A.

Proof. This follows from
(A" Ami(g)v, w) = (Ami(g)v, Aw) = (m2(g) Av, Aw)
(7.1) = (a(g,9~ ") Av, ma(g7 ) Aw) = (a(g, g~ ") Av, Ami (g~ H)w)
= (alg.g7")mi(9)A" Av,alg, g~ 1)w> = (m1(9) A" Av, w),
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where g € G, v,w € V1. O

Lemma 7.7 (Schur’s Lemma). Let (w1, V1) and (72, Va) be two projective representations
of G with multiplier a.. Assume that w1 is irreducible and A € Homg(V1, Vo) is a nonzero
bounded linear operator. Then A(Vy) C Va is a closed subspace for my and m = 7T2|A(V1)-

Proof. By Lemma A*A € Homg(Vh,Vh). Because 7 is irreducible, we must have
A*A = A\id for some \. Indeed, for any bounded normal operator O = O* in Homg(V1, V1),
the norm closed unital x-algebra C*(O) generated by O is contained in Homg(Vi, V1).
Since O is normal, C*(0) is commutative and is isomorphic to C(c(O)) by the spectral
theorem (see for example [2, 1I1.2.3.1 Corollary].) If ¢(O) # {point}, then we can find
nonzero self-adjoint operators By and By in C*(0O) such that ByBy = B2B; = 0. Thus
(Biv, Bow) = 0 for all v,w € V;. In particular, the closed subspaces B;(V}) and Ba(V1)
are nonzero, orthogonal, G-stable. This contradicts to the irreducibility of V. Therefore,
0(0) is a point and we must have O = X - id.

Note that B = A/24 is an isometry, hence a unitary operator in Homg(Vi, A(V1)).
Since A is a multiple of an isometry, A(V}) is closed. By Lemma again, BB* €
Homg(Va, Va) and it is the orthogonal projection onto B(Vy) = A(V1). It follows that
A(V1) is G-stable and the lemma follows. O

Remark 7.8. Let (m,V,a) be a projective representation of G. Then = is irreducible if
and only if Homg(V,V) = C - idy . Indeed, it suffices to verify the only if part. Let
A € Homg(V, V). If A is normal, i.e., A* = A, the argument in Lemma shows that
A = X-idy for some A € C. For general nonzero A € Homg(V, V), applying the argument
to AA* and A*A, we have AA* = £ -idy and A*A = n-idy with ;7 € Ryg. Then £ =7
and A must be normal. The claim follows. (See [I3| Theorem 12] for the statement for
linear representations of compact groups.)

Most of the properties of projective representations of finite groups carry over to finite
dimensional projective representations of compact groups. As for the proof, one only
needs to replace ﬁ deG by deg. First, Corollaries and are true for finite
dimensional projective representations of compact groups.

Let (7, V, «) be a finite dimensional projective representation of G. Define the character
of m xx : G — C by the equation

X=(9) = Tr(w(g)) for all g € G.

Then Lemmas and Theorem carry over. We collect some other properties in
the following proposition.

Proposition 7.9. Let (w1, V1) and (72, Vo) be finite dimensional projective representations
of G with the same multiplier. Then

(1) IfXﬂ1 = Xma» then m = mo.

(2) (X Xmp)2 = dime Homg (1, m2). Here (, )2 is the scalar product defined by equa-
tion .

(3) If G is abelian, then all finite dimensional irreducible projective representations of
G with the same multiplier have the same degree.
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7.3. The Peter-Weyl theorem. From now on, we fix a multiplier a.. Let L?(G) be the
space of measurable functions on G for which [ |f(g)|*dg < co. If f € L*(G), define

1fll2 = (Jo If(9)? dg)'/2. Let L'(G) be the space of measurable functions on G for which

fG]f(g)\dg < oo. If f € LY@G), define ||f||1 = fG\f(g)|dg. Given f, f' € L*(G), define
an inner product by

(72) o) = /G f@)F () dg.

With this inner product, L?(G) is a Hilbert space. Furthermore, ff’ € L'(G) and we have
the following inequalities.

EF I < LAl f e,

[(f, )2l < [I£1l2]fll2 (Schwarz inequality).

If f:G— Candge G, define r(g)f :=ro(9)f: G— C by

(r(9)f)(g90) = (g0, 9) f(g09)

for all go € G. Tt is easy to check that r(g)f € L*(G) if f € L*(G) and r(g) is an element
in U(L?(G)). Then r : G — U(L?*(Q)) defines a unitary projective representation of G
with associated multiplier . We call it the right translation or right regular projective
representation of G on L?(G) with respect to a. It is also easy to check that () is
G-invariant, i.e.,

(7.3)

(r(9)f.r(9)f )2 = (f, [)2.

Thus (r, L2(G), ) decomposes as a direct sum of irreducible unitary projective represen-
tations by Corollary

Let (m,V,a) be a finite dimensional projective representation of G. Let (,) be a G-
invariant Hermitian inner product on V. Given v, w € V, the function f : g — (7(g)v, w)
is a matriz coefficient of w. Let A,(G) be the space spanned by all matrix coefficients of
finite dimensional irreducible projective representations of G with multiplier oe. The main
result in this subsection is the following theorem:.

Theorem 7.10 (Peter-Weyl Theorem). A, (G) is dense in L*(G).

The strategy of the proof is similar as for linear representations (see for example [5]).
First, we prove some lemmas.

Lemma 7.11. With the above notation, the functions g — a(g, g~ 1) f(g~1), g — alg, h) f(gh),
g+ a(h,g)a(h™t,h)~Lf(hg) are matriz coefficients of 7. We call them the adjoint of f,
the right translation of f, the left translation of f, respectively.

Proof. Note that
Flg™h) = (r(g v, w) = (w,m(g™ )v)
= (n(g)w, 7 (g)m(g~)v) = alg, g~ )" H{m(g)w,v).

(7.4)

This shows that g — a(g,97 1) f(g71) is a matrix coefficient. Similarly, it is easy to see
that

flgh) = a(g,h)~Hm(g)(n(h)v), w),

(75) F(hg) = alh g) " a(h~, ) (r(g)o, m(h~" ).
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The claims follow easily. O
Denote by C(G) the space of all continuous functions from G to C. It is dense in L?(G).

Lemma 7.12. Let f € L*(G). Then the map g +— r(g)f is a continuous map from G to
L*(@).

Proof. Let € > 0. Choose ¢ € C(G) such that ||f — ¢||2 < €/3. Note that G is compact,
each continuous function on G is uniformly continuous. In particular, for the function
a(g, —)¢(g—), there exists an open neighborhood U of 1 € G such that if h='h' € U, then
la(g, h)p(gh) — a(g, h')p(gh')| < €/3 for all g € G. Note that

Ir(h)f = r(W)fll2 < [Ir(R)f = r(R)oll2 + [Ir(R)¢ — r(R))ll2 + [Ir(A)¢ — r (1) fl]2
(7.6) =2|f = ¢ll2+ lIr(h)¢ — r(1)ll2

< €.

The continuity follows. O

Lemma 7.13. Let f € L*(G). For every e > 0, there exist finitely many g; € G and Borel
sets B; C G such that G is the disjoint union of the B;’s and ||r(g)f — r(g:)f||l2 < € for
all i and g; € B;.

Proof. By Lemma there exists an open neighborhood U of 1 such that ||r(g) f— f||2 <
¢ for all g € U. Note that {hU | h € G} is an open cover of G and G is compact, there
exist finitely many g1, ..., g, such that G = U ;g;U. Let B; = ¢;U — U;;llng. It is easy
to check that these objects satisfy the property in the statement. O

Lemma 7.14. Let f € L*(G) and f; € LY(G). Define F : G — C by
F(e) = [ ald.9)1(6/9)6) d
G

Then F is an element in L*(G) and it is a limit of a sequence of functions, each of which
s a finite linear combination of right translates of f.

Proof. Let € > 0. Choose g; and B; as in Lemma Set e; = [ fi(g)dg. Then

1P =Y ert@fl <Y [ 1@ lIr)f = r(o)flldg
(77) =1 =1 v

dg = .
g;/&m(g)re g= el

The lemma follows. O

For compact group G, a function f : G — C is called an «-class function if it satisfies
the equation in Definition [3.13

Lemma 7.15. Let f be any integrable function on G. Set

o “Vela. -1
Flg) = [ A D pngn ) an.

Then [’ is an a-class function on G.
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Proof. Note that

f(i™tgi) = /G ol ilgzb(hlf_(f) 9T i tgin Yy

1poi=1 i1 p =1y o (i1 s =1 —1
:/Go‘(h“ g”a(g;)if(o‘h(f)f)”’z 07Dt gy Yy an (i = i),
Then to show that f’ is an a-class function, it suffices to show that
a(i™ d)a(h, gh VHa(g, h Ha(hi, i th™1)
=a(i™Y, gi)a(g, i)a(h, h Ya(hi, i tgh ™ a(i g, i ThTh).
Since a(h,i)a(hi,i"*h™1) = a(h, h~Ha(i,i th™1), it suffices to show that
a(i™ d)a(h, gh YHa(g,h Ha(i,i th™1)
=a(i™Y, gi)a(g, i)a(h,)a(hi, i tgh ™ Ha(itgi, i tht).
This follows from the following computation.
RHS = a(i™!, gi)a(g,i)a(h, gh™Va(i,i Tgh ™ a(igi, i th™1)
a(i™, gi)a(g, i)a(h, gh™ (i, i~ gi)a(gi,i A1)
a(h, gh™ V) [a(i™, g, i~ gi)][alg, gl i~ h )]
(h,gh ™ Ha(i,i Hal(g,h Ha(i,i *h™') = LHS.
The lemma follows. 0

Lemma 7.16. Let f : G — C be an a-class function. Then f'(g) = a(g,g ) f(g1) is
also an a-class function.

(7.8)

(7.9)

(7.10)

I
Q

Proof. One needs to show that
h,h~!
f'(hgh™") = o )

a(h,gh=t)a(g, h1)

f(9)-

This is equivalent to

a(hgh™ hg'h Ha(h,g 'h™ (g~ ,h™Y) _ a(h,hHalg,g7")
alh,h=1) ~ a(h,gh YHa(g,h1)
Note that
alhgh™' hg~ h™a(h, g 'h™ Halg™, h~Ha(h, gh™ a(g, A1)
=a(hgh™", h)a(hg,g~"h™ > (97" A~ 1) <h gh™"alg, k™)
(7.11) :a<hgh ' h)alhg, g~ a(h, h™a(h, g)a(hg, h™")
=a(h,h~Ya(h, g)alhg, g~ H[a(hg, h~ )alhgh™", h)]
:a(h,h Ya(g, g Halh, h™h).
The lemma follows. Il

Lemma 7.17. Let f: G — C be an a-class function. Then

f(htg) _  flgh™)
a(h,h=lg)  algh—1,h)’
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Proof. Since gh™' = h(h~g)h~!, it suffices to prove
a(h,h™1) a(gh™', h)

a(hhTgh Na(h-Tg,h 1) ~ alh,h-ig)

Note that
7.12) algh ', ma(h, h tgh Ha(h g, h™h)
=a(h,h tg)a(htgh ™ R)a(h g, h™) = a(h, h tg)a(h™L, h).
The lemma follows. O

With the above preparation, now we can prove Theorem

Proof of Theorem[7.10. Let A,(G) be the closure of A,(G) in L?(G). Since A, (G) is
stable under the operations in Lemma A (G) is also stable under those operations.

Suppose that A,(G) # L*(G). Then .AOJ(G)L # {0} and it is stable under the operations

1
in Lemma [7.11} Let fy € Ay(G) and fy # 0. Fix U an open neighborhood of 1. Let Iy
be the characteristic function on U, |U| the Haar measure of U, and

folg) = U] /G (g, 90)Iu(90) fo(gg0) d go.

Since Iy, fo € L?(G), by Schwarz inequality, we see that fi; is continuous. Furthermore,
Jo =limy_,1y fu in L?*(G). Because fo # 0, there exist U such that fiy # 0. Since A, (G)
is G-stable by right translation and the right translation of G on L?(G) is unitary, .Aoé(G)l

is also G-stable. Hence linear combinations of right translates of fy belong to .Aa(G)J_.

By Lemma , fu € An(G)". In particular, ./éla(Cr‘)L contains a nonzero continuous
function. Let f; be such a function. We may assume that fi(1) € R — {0}. Define

« Da -1
fa(9) = /G (h’ﬁhj)h_(lg)’h )fl(hghfl)dh.

By Lemma f2 is an a-class function. It is easy to see that fo is continuous and f2(1) €
R —{0}. Moreover, for any f’ € A.(G), f"(9) = a(h™t, g)a(h,h ") ta(h~tg, h)f (h'gh)
is also an element in A,(G) by Lemma Note that

(fo f')2 = /G (o) P9 dg

o a(h, gh Ha(g, h™1) I
B /G/G o pn  Jilheh Nf(g)dhdg

o “1NVa(h—1 -1 -
:/G/G (h,h O?()h(:_l)gh,h )f1(g)f’(h‘lgh)dhdg

- | [ r@ @ agan-o

L .
Thus fo € Ao(G) . Define f3(9) = fa(g) + alg,g7")f2(¢g71). Then f3 is in Au(G)
and is an a-class function by Lemma Moreover, it is easy to check that f3(g) =

(7.13)

1
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alg,97") f3(971). Define
K(g.h) = fs(gh™ )a(gh™", h)™!
Since
alhg™, g)a(gh™, h) = a(hg™", gh™)a(l,h) = a(hg™!,gh™"),
one gets K(g,h) = K(h,g). Define
- [ K(msmyan

Then T is a nonzero self-adjoint Hilbert-Schmidt operator on L?(G). Hence T has a
nonzero real eigenvalue vy and the eigenspace V,, C L?(G) is finite dimensional (see for
example [2, 1.8.4.1 and 1.8.5.5].) Let f € V,,. Then

(T(r(90)))(9) = / K (g, 91)(g1. 90) f (9190) d gy

/Kg 9190 D195, 90) f(91) d g

a(g19g9 ,go
/ f3(99097 ol " ) —f(g1)da
(99097 ', 9195 %)

/ f3(99091 Mf(gl)dgl
a(g9097 ", 1)

:/GK(ggo,m)a(g,go)f(m)dgl

= a(g,90)(Tf)(g990) = v(r(90) f)(9)-

The eigenspace V, is stable under right translation. Now 7 : G — U(V) is a finite
dimensional unitary projective representation of G' with multiplier . Let W C V,, be an
irreducible sub projective representation and {ei,...,e,} an orthonormal basis of W with

(7.14)

respect to 7. Then g — (r(g)ei, e;)2 = [ a(go, 9)ei(g09)e;j(go) d go is a matrix coefficient
—_—l
in Ao (G). Since f3 € Ay(G) ", we have

0—/ f3(g </ go,g)ej(gog)ej(go)dgo> dg
(o
/(/f3 90 '9)a(g0.95 " 9)e ()dg>6](g0)dgo

/ </ f3(95 " 9) (g0, 95 g)e;(go)dgo)ej(,q)dg

=/< fS(ggo1)a(9901790)€j(90)d90>€j(9)d9(Lemma
G G

- [rep@e@as = e e

Hence v = 0, which is a contradiction. Therefore, we must have A, (G) = L*(G). O

(7.15)
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7.4. Some corollaries. In the following we deduce some consequences of Theorem [7.10]

7.4.1. Unitary irreducible projective representations are finite dimensional.

Lemma 7.18. Let (w1, V1) and (w2, Va2) be two irreducible projective representations of G
with multiplier a. Assume that Vi and Va are separable Hilbert spaces (not necessarily

finite dimensional). Fix orthonormal bases {62}221 for Vi and let ri, = (m;(g)el, ei) be the
matriz coefficients. If w1 % m, then

/Ga(g,g‘l)_lrb(g)riz(g‘l) dg=0,
foralll1 <i,5 <dp andl <k, <dg,.
Proof. The proof is similar to the proof of Corollary For any bounded linear operator
B: Vi — Vs, define A = fG 72(g)Bm1(g9) ' dg. Then A € Homg(Vi, Vo). If w1 2 ma, then
A =0 by Lemman Take B = B;; such that B;j(v) = (v, e})ei. Then
[ ata.a™) oyt dg
= [ ata.g) mla)e). el mala ek ) dg

- /G (b (g™ el) (malg)ed ) d g

(7.16)
= [ mata™)et e mael)ed) d
- [ (el mla) Tellerdg
= [ (e .malo) By (o)t el)edrdg = (e, 4el) =0
The proposition follows. O

Proposition 7.19. Every irreducible projective representation of G is finite dimensional.

Proof. Let m be an irreducible projective representation of G with orthonormal basis
{ef}?ﬁl. For each p finite dimensional irreducible unitary projective representation of

G, fix an orthonormal basis {ef ?i 1- Suppose that d; = co. From Lemma we have
0= [ (ota)ef.eh)(atog™) mla)ef D) dg

(7.17)
- /G<p<9>e§, ef)(ep,alg, g7 ) Tr(g)ef) dg

for all finite dimensional p and 1 < 4,5 < d,. Since the functions <p(g)e§ ,e) are dense in
L*(G) by Theorem we must have (€], a(g,g7')"In(g)eT) = 0 for all [, k. Therefore
m = 0, which is a contradiction. The proposition follows. O

Denote by @a the set of isomorphism classes of finite dimensional irreducible projective
representations of G with multiplier a. Fix an element (p,V),) for each class and denote
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by d, the degree of p. Then every projective representation m of G' with multiplier o
decomposes as ™ = @ .5 m, - p for some my, € Zzo U {o0}.

7.4.2. Trace formula twisted by o and decomposition of L?>(G). Let G be a unimodular
group (not necessarily compact) and I' C G a discrete normal subgroup such that T'\G is
compact. Let a € Z?(I'\G, S!) be a unitary multiplier. We may view « as an element in
Z%(@, SY) via the natural projection Gx G — I'\G xI'\G. The right regular representation
ro of G with respect to o over L?(I'\G) is defined by

(ra(h)(f))(9) = alg, h) f(gh).
Let ¢ € C(G) with compact support. Define R(¢) : L>(I'\G) — L*(T\G) b

/¢> a(z, 9)f(xg dg—/qbﬂf 'g)a(z,z'g)f(g)dg.

It is easy to check that this is well defined. Note that we may write R(¢) = [, ¢(g)ra(g)dg.
Thus R(¢) sends each irreducible component of (rq, L*(T\G), @) to itself. Moreover,

= [ o ga a9 ) dg
(7.18) y .
N /r\G > oz yg)alz,a yvg) f9)dg = Ky(z,9)f(9)dyg,

o= NG

where Ky(z,9) =>_ cr d(z7tyg)a(z, x71yg). Then R(¢) is of trace class and

Tr(R(¢)) = G Ky(z,x)dzx = /F\G Zgb(x_l’yz)a(x,:c—lyx) dz.
yel

(See for example [4, Lemma 4.1].) Let o be the set of conjugacy classes of I'. For each class
in o, fix an element v and denote this conjugacy class by o,. If v is an element of a group H,
denote by H” the centralizer of v in H. With the above notation, 0, = {671y | § € T7\T'}.

Therefore
= / qu(x*lfyx)oz(x,:c*lvx)dx
G

yel’
—Z Z e o yor)ax, 276 ) d
0y 6€DI\I F\G
= o(z™ yz)a(z, z yz) d o
(7.19 3 f 0t et ™)

- Z /GW\G (/M\GW ¢($71y717y1’)a(fc,Jfly*l’yya:) dy) dx
- ZVOI(FW\GW)/ oz yz)a(x, z 7 ya) d .

G\G

The following result corresponds to Corollary and Proposition in finite group
case.
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Proposition 7.20. Let G be a compact group. Consider L>(G) as a unitary projective
representation of G via r. Then

(r, L(G),0) = @) po%.
pEGa

Proof. For G compact, by Proposition we know that

(7", LZ(G)? Oé) = @pgéamp P
for some m, € Z>q U {oo}. Applying the above discussion to I' = {1}, we obtain

= > m,-Te(p(9)),
pEGa

for ¢ € C(G). Here p(¢) = R(¢)|,. In particular, if we take ¢ = X, where x, is the
character of m € G, then we have

Zmp /Xp 9)X(9 dg—mw

peGa

The proposition follows. O

Remark 7.21. One may construct explicit projections for this decomposition as in [IT,
Chap. 2, Prop. 8.

7.4.3. On non-abelian Fourier analysis. Let w € L*(G). Since p € @a is unitary, we have
r7i(g) = a(g, gfl) 1 (g™ D). By Corollary [2.14] (for compact groups) and Theorem

the family {d rt j e, 18 an orthonormal basis for L?(G). Thus we may write
1/2
v = Z cpwdp/ T
]
Then

dp
I3 =" D lepisl®

e =1
Proposition 7.22. If € L*(G), then
16115 =D dp-Tr(pupy) = > dy- llpyllas.
peaa peaa
Here ||M||gs = Zw m?j for a matriz M = (my;) of finite rank; py, = sz/)(g)p(g)_1 dg.

Proof. With the above notation, the claim follows from

o= [ v

(7.20)
= d}/Q/Gw(g)@(g) ¢f)dg = dY*(pyel, ) = dY%[py]i.
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7.4.4. The space of a-class functions. Let H, be the closed subspace of L?(G) consisting
of square-integrable a-class functions. Let x, be the character of the projective represen-

tation p € @a. We have the following result corresponds to Theorem [3.15|in finite group
case.

Proposition 7.23. The characters (x,) form an orthonormal basis of H,.

peéa
Proof. Let f be an a-class function on G. Let (7, V, «) be an irreducible projective repre-
sentation of G. Let m; be the linear map of V' into itself defined by 7y = [ f(g9)7(g)dg.

Argue as in Lemma [3.14] 7 is a map of projective representations. By Schur’s Lemma,
7y is a homothety of ratio A given by

A= /Gf(g)xw(g) dg = (Xr: 2

Now to prove the proposition, it suffices to show that every element of H, orthogonal
to all the x, is zero. Let f € H, with (x,, f)2 = 0 for all p € Go. The above discussion
shows that 7y is zero as long as 7 is irreducible. From the direct sum decomposition,
we see that 7y is always zero. Applying this to the a-regular projective representation
(r, L*(G@)) we obtain

(7.21) | F@awaitea ds = | FaTgate.a gwin)dg =0

for all ¥ € L?(G) and € G. Then it is easy to see that f is the zero function. The

proposition follows. O
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