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A REMARK ON K2 OF THE RINGS OF INTEGERS
OF TOTALLY REAL NUMBER FIELDS

Xuejun Guo
Department of Mathematics, Nanjing University, Najing, China

Let F be a totally real number field with degree n = �F � �� ≥ 3. Mazur and
Urbanowicz proved that if

K2�F � ��/2���F��� (∗)
and F is not ���7 + �−1

7 � or ���9 + �−1
9 �, then F must be one of the 14 cases listed

in Mazur and Urbanowicz (1992). In this article, it is proved that 3 of these 14 cases
don’t satisfy (∗), while all the other cases satisfy (∗). Hence we find all totally real
number fields which satisfy (∗).
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1. INTRODUCTION

Let F be a totally real number field with degree �F � �� = n, �F the ring of
integers of F . The Birch–Tate conjecture states that

�K2��F �� = w2�F���F �−1���
where

w2�F� = 2
∏

l prime

lnl �

and n�l� is the largest integer n such that F contains ���ln + �−1
ln �, the maximal real

subfield of ���ln�.
This conjecture is proved in Mazur and Wiles (1984) for totally real abelian

number fields up to 2-torsion. In Kolster (1986) proved this conjecture holds if the
2-subgroup of K2��F � is elementary Abelian. Later, Wiles (1990) proved that the
Birch–Tate conjecture also gives the correct powers of 2 for totally real abelian
number fields. One can see details in Kolster’s appendix to Rognes and Weibel
(2000).
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Since �F � �� = n, there is a subgroup H0
2F of K2��F � such that the quotient

group K2��F �/H
0
2F is isomorphic to ��/2��n. One can see the definition of H0

2F in
Gras (1986). Note that this subgroup is denoted by K+

2 ��F � in Keune (1989). This
means K2��F � is at least ��/2��

n. It is very interesting to find all totally real number
fields F satisfying (∗).

Browkin and Hurrelbrink (1984) proved that there are only four real quadratic
fields satisfying (∗)

F = ��
√
2����

√
3����

√
5�� and ��

√
13��

Hurrelbrink (1982) and Kirchheimer (1981) proved that

F = ���9 + �−1
9 � and ���7 + �−1

7 �

also satisfy (∗).
If (∗) is satisfied, the Birch–Tate conjecture holds by Theorem 3.4 of Kolster

(1986). Hence one can use the Birch–Tate conjecture to compute the �K2��F ��.
Mazur and Urbanowicz (1992) proved that if a totally real number field F with
degree �F � �� = 3 is not the maximal subfield of a cyclotomic field and satisfies (∗),
then F = ��x�, where x satisfies one of the following 14 equations:

(1) x3 − x2 − 3x + 1 = 0,
(2) x3 − x2 − 4x − 1 = 0,
(3) x4 − x3 − 3x2 + x + 1 = 0,
(4) x4 − x3 − 4x2 + 4x + 1 = 0,
(5) x4 − 4x2 + x + 1 = 0,
(6) x4 − 5x2 + 5 = 0,
(7) x4 − 4x2 + 2 = 0,
(8) x5 + 2x4 − 5x3 − 2x2 + 4x − 1 = 0,
(9) x5 − 5x3 + x2 + 5x − 1 = 0,

(10) x5 − 5x3 + x2 + 3x + 1 = 0,
(11) x5 − 2x4 − 4x3 + 3x2 + 2x − 1 = 0,
(12) x5 + 3x4 − 4x3 − 5x2 + 5x − 1 = 0,
(13) x5 − 6x3 + 3x2 + 2x − 1 = 0,
(14) x5 − 2x4 − 6x3 + 3x2 + 6x − 1 = 0.

In this article, we prove that if F = ��x�, where x satisfies (4), (5), or (8),
then (∗) does not hold. In case (4), K2��F � � �/4�⊕ ��/2��3. In case (7), K2��F � �
�/5�⊕ ��/2��4. In case (8), K2��F � � �/5�⊕ ��/2��5. All the other cases satisfy
condition (∗).

In fact, although Mazur and Urbanowicz wanted to exclude the maximal real
subfields of cyclotomic fields, case (8) is just ���11 + �−1

11 �. And from case (9) to case
(14), the fields ��x� defined by the six equations are just the different embeddings
in � of a same real number field.

Note that we don’t assume Birch–Tate conjecture hold for all totally real
number fields. We use only the proved fact that odd-part of Birch–Tate conjecture
holds for all totally real number fields. As for the 2-primary part of K2��F �, we use
Theorem 3.1 of Kolster (1986) to compute the 2k-rank of K2��F �. The computations
have been performed by PARI/GP 2.2.12.
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2. DESCRIPTION OF THE COMPUTATION

In this section, the number field ��x� defined by the equation fi = 0 in case (i)
in the Introduction will be denoted by Fi. PARI/GP can compute the Galois group
of a polynomial and the value of the Dedekind zeta function of Fi at −1. By the
formula of w2�F� in the introduction, it is also easy to compute the value. In the
next, we will just list the value of w2�Fi���Fi �−1��.

Since F2� F4� F6� F7, and F8 are totally real abelian number fields, the Birch–
Tate conjecture holds. By PARI/GP, we know that w2�Fi���Fi �−1�� = 24× 1

3 � 120×
4
15 � 24× 2

3 � 32× 5
6 � 264× 20

33 , for i = 2� 4� 6� 7� 8, respectively. Hence �K2��Fi
�� =

8� 32� 16� 5× 16� 5× 32, for i = 2� 4� 6� 7� 8, respectively. Since there is a surjective
homomorphism from K2��Fi

� to ��/2���Fi���, we know that

K2��F2
� � ��/2��3�

K2��F4
� � ��/2��5 or �/4�⊕ ��/2��3�

K2��F6
� � ��/2��4�

K2��F7
� � �/5�⊕ ��/2��4�

K2��F8
� � �/5�⊕ ��/2��5�

To determine the structure of K2��F4
�, we need to compute the 2-rank of

K2��F4
�. There is a general formula for the 2-rank of K2��F � in Tate (1976):

2-rank K2��F � = r1 + g2 − 1+ 2-rank Cl��F �1/2��� (2.1)

where r1 is the number of real places of F , and g2 is the number of
dyadic places of F . By PARI/GP, we get g2�F4� = 1� 2-rank Cl��F �1/2�� = 0. So
2-rank K2��F4

�= 4. Hence K2��F4
� � �/4�⊕ ��/2��3. To make certain, one can

also use the Theorem 3.1 of Kolster (1986) to compute the 4-rank of K2��F4
�, which

is 1.
As for F1� F3� F5, they are not Galois number fields. The w2�Fi���Fi �−1�� =

24× 1
3 � 120× 2

15 � 24× 2
3 , for i = 1� 3� 5. So K2��Fi

� is a 2-group for i = 1� 3� 5. To
compute the 2-rank of K2��Fi

� by (2.1), we need to know the number of dyadic
primes of Fi, and the class group of �Fi

. We use PARI/GP to compute the
decomposition of the polynomial fi in �2�x�. In all the three cases, fi are irreducible
in �2�x�. So g2 = 1. And all of the three class groups are trivial. So the 2-rank
K2��F1

� = 3, 2-rank K2��F3
� = 4, and 2-rank K2��F5

� = 4. Next we will compute the
4-rank.

Let m be the number of dyadic primes of F , which decompose in
F�
√−1�� A�F�

√−1�/F� the 2-Sylow-subgroup of the relative S-class-group of
F�
√−1�/F , where S consists of all infinite and all dyadic primes of F . Kolster (1986)

proved that

2n-rank K2��F � = m+ 2n−1-rank A�F�
√−1�/F�/im�2A�F��� (2.2)

where 2A�E� consists of the elements of order ≤ 2 in the S-class-group of F .
The three polynomials f1�x +

√−1�f1�x −
√−1�� f3�x +

√−1�f3�x −
√−1�, and
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f5�x +
√−1�f5�x −

√−1� are all irreducible in ��x�. So they define the fields
Fi�

√−1� for i = 1� 3� and 5, respectively. By PARI/GP, we can compute m and
class number in (2.2). The result is 4-rank K2��Fi

� = 0 for i = 1� 3� 5, which implies
that (∗) holds for these 3 cases.

Using the function “factornf” in PARI/GP, we find that f9 has always a root
in ��x�/fi for 10 ≤ i ≤ 14. Hence the last 6 polynomials fi �9 ≤ i ≤ 14� essentially
define the same totally real number field. The value of �F9 at −1 is 4/3� w2�F9� =
24� g2 = 1, the class number of F9 is 1 and the class number of F9�

√−1� is 3. Hence
the K2��Fi

� = ��/2��5 for 9 ≤ i ≤ 14.
We write the above results as a theorem.

Theorem 2.1. If F is a totally real number field, then F satisfies the condition

K2�F � ��/2���F�Q�

if and only if F is one of the 13 fields (isomorphic fields are seen as the same field):
����

√
2����

√
3����

√
5����

√
13�����7 + �−1

7 �����9 + �−1
9 �, ��x�, where x satisfies

one of the following 6 equations:

(1) x3 − x2 − 3x + 1 = 0,
(2) x3 − x2 − 4x − 1 = 0,
(3) x4 − x3 − 3x2 + x + 1 = 0,
(4) x4 − 4x2 + x + 1 = 0,
(5) x4 − 5x2 + 5 = 0,
(6) x5 − 5x3 + x2 + 5x − 1 = 0.
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