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The 3-ranks of tame kernels of cubic cyclic number fields

by

Xuejun Guo (Nanjing)

1. Introduction. The purpose of this paper is to generalize the fol-
lowing theorem proved by Jerzy Browkin to general cubic cyclic number
fields.

Theorem 1.1 ([1, Theorem 2.4(iii)]). Let F be a cubic cyclic number

field with only one ramified prime p > 7. Then 3 |#K2OF if and only if

p ≡ 1 (mod18).

Browkin gave two proofs in [1]. The first proof is analytic and depends on
deep results by Mazur and Wiles, while the second one is algebraic, using
an exact sequence in K-theory. In this paper, combining the same exact
sequence and Gerth’s theory of the 3-class groups of cubic cyclic number
fields, we can deal with cubic cyclic number fields with arbitrarily many
ramified primes. The main theorem of this paper is Theorem 4.4. From this
theorem, one can get the 3-rank formula for general cubic cyclic number
fields. As an application, we prove the following theorem in Section 4.

Theorem 1.2. Let F be a cubic cyclic number field with only two ram-

ified primes p1, p2, where p1 < p2. Then

(1) 2 ≤ 3-rankK2OF ≤ 4 if pi ≡ 1 (mod9) for i = 1, 2;
(2) 3-rank K2OF = 0 if p1 = 3 and p2 ≡ 4 or 7 (mod9);
(3) 1 ≤ 3-rankK2OF ≤ 3 otherwise.

2. The 3-rank of the class group of a cubic cyclic number field F .

Let F be a cubic cyclic number field. Let p1, . . . , ps be all rational primes
which are ramified in F and different from 3. Then pi ≡ 1 (mod6) for
1 ≤ i ≤ s. Hence pi is split in E = Q(ζ), where ζ is a fixed primitive cube
root of unity. Suppose pi = πiπi, where πi is the conjugate of πi. We can
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further assume that πi ≡ πi (mod3), otherwise we replace πi by ζπi or ζ2πi.
Let K = EF . By Theorem 2 of [10] and Theorem 2 of [11], K = E( 3

√
β)

with
β =

π1 · · ·πs

π1 · · ·πs
ζj ,

where j = 0, 1, 2; and j = 0 if and only if 3 is not ramified in E. Let t = s
if 3 is not ramified in F , and t = s + 1 if 3 is ramified in F . Let Pi be the
prime in F above pi, i = 1, . . . , t. If t = s + 1, then Pt is the prime above 3.

Let βi = πi/πi, i = 1, . . . , s; βs+1 = ζ if 3 is ramified in F . Let Fi be the
maximal real subfield of E( 3

√
βi). Then Fi is a cubic cyclic extension of Q.

Let M = F1 · · ·Ft. Recall that the genus field of F is the maximal absolute
abelian number field containing F , which is unramified at all the finite prime
ideals of F (see page 3 of Chapter 1 of [7] for details). It is easy to see that
M is an absolute abelian number field with the degree [M : F ] = 3t−1 and
M/F is unramified. By Example 10 in Chapter 6 of [7] or Theorem 2.16 of
[2], M is the genus field of F . The Galois group Gal(M/F ) is an elementary
3-group of rank t − 1.

Let X be the group of characters of Gal(M/F ). Let SF be the 3-class
group of F . Then any element in X is also a character of SF via the Artin
maps.

Let χ1, . . . , χt−1 be a basis of X, and A = (aij)(t−1)×t be a matrix, where
aij ∈ F3 = finite field of 3 elements and

ζaij = χi(Pj), 1 ≤ i ≤ t − 1, 1 ≤ j ≤ t.

Let r be the rank of A.

Theorem 2.1 ([12, Theorem]). The 3-rank of SF is 2t − 2 − r.

Let τ be a generator of Gal(F/Q). Let C0 be the set of 3-torsion elements
in SF . Let ∆ = 1 − τ , ker∆ the kernel of

∆ : C0 → C0, x 7→ x/τ(x),

and ∆C0 the image of ∆. Then by the proof of the above theorem in [12],
one can see that the 3-rank of ker∆ is t−1 and the 3-rank of ∆C0 is t−1−r.

3. The 3-rank of the class group of the sextic cyclic number

field K. In last section, we chose τ as a generator of Gal(F/Q). Since
Gal(K/E) ≃ Gal(F/Q), this τ can be extended to a generator of Gal(K/E).

Let SK be the 3-class group of K, S
(τ)
K = ker(∆ : SK → SK) the group of

ambiguous ideal classes, S1−τ
K the image of ∆.

Recall that K = E( 3
√

β), where β = π1π
−1

1 · · ·πsπ
−1

s ζj . Let d be the
number of primes that ramify in K/E. Then

(3.1) d =

{

2s = 2t if 3 is not ramified in F ,

2s + 1 = 2t − 1 if 3 is ramified in F .
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Let tK be the 3-rank of S
(τ)
K . By Proposition 5.1 of [3],

(3.2) tK =

{

d − 1 if each πi ≡ 1 (modλ3),

d − 2 if some πi ≡ 4 or 7 (modλ3),

where λ = 1 − ζ.

Theorem 3.1 ([3, Theorem 3.1]). The 3-rank of SK is 2tK − sK , where

tK is the 3-rank of S
(τ)
K and sK is the 3-rank of (S

(τ)
K S1−τ

K )/S1−τ
K .

By (3.1), (3.2) and Theorem 3.1, we have

(3.3) 3-rankSK =



























4t − sK − 2 if each πi ≡ 1 (modλ3) and

3 is not ramified in F ,

4t − sK − 6 if some πi ≡ 4 or 7 (modλ3) and

3 is ramified in F ,

4t − sK − 4 otherwise.

4. The 3-rank of the tame kernel of F . Recall that C0 = {x ∈ SF |
x3 = 1}. Let C ′

0 = {x ∈ SK | x3 = 1}. Then it is easy to see that C0 is a
subgroup of C ′

0. Let σ be the nontrivial element in Gal(K/F ). We will prove
that C0 = C ′+

0 = {x ∈ C ′

0 | xσ = x}.
For any x ∈ C ′+

0 , there is an unramified prime P such that the ideal
class [P] = x by the Chebotarev density theorem. If P is inert, then x ∈ C0.
If P is split, then xxσ ∈ C0. Since x = xσ, x2 ∈ C0. Hence x−1 = x2 ∈ C0,
which implies x ∈ C0. So C0 = C ′+

0 . Let C ′−

0 = {x ∈ C ′

0 | xσ = x−1}.
Lemma 4.1. The 3-rank of C ′−

0 is equal to 3-rank SK − 3-rankSF .

Proof. By Lemma 2.1 of [4], C ′

0 = C ′+
0 ×C ′−

0 . Since 3-rankSF =3-rank C0

= 3-rankC ′+
0 and 3-rankSK = 3-rank C ′

0, we can see the 3-rank of C ′−

0 is
equal to 3-rankSK − 3-rankSF .

Let P be a 3-adic prime of K. Then P is ramified in K/F . So P is fixed
by the nontrivial element σ ∈ Gal(K/F ). Let SK,3 be the 3-class group of
OK [1/3], and S−

K,3 = {x ∈ SK,3 | xσ = x−1}.

Lemma 4.2. The 3-rank of S−

K,3 is equal to the 3-rank of C ′−

0 .

Proof. Since the 3-adic primes of K are fixed by σ, S−

K,3 = S−

K by Lemma

2.1 of [4]. Hence the 3-rank of S−

K,3 is equal to the 3-rank of S−

K , which is

equal to the 3-rank of C ′−

0 .

The following is Theorem 3.3 of [13]. Here we give a different proof.

Theorem 4.3 ([13, Theorem 3.3]).

3-rank K2OF = 3-rank SK − 3-rankSF .
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Proof. Let µ3 = {1, ζ, ζ2}. Then by Theorem 5.4 of [8], we have the exact
sequence

1 → (µ3 ⊗ SK,3)
Gal(K/F ) → K2OF /3 →

⊕

℘∈S′

µ3 → 1,

where S′ is the set of 3-adic primes of F which split completely in K. Since
all the 3-adic primes of F are ramified in K, it follows that S′ is empty.
For any x ⊗ I ∈ µ3 ⊗ SK,3, (x ⊗ I)σ = x−1 ⊗ Iσ = x ⊗ (I−1)

σ
. Hence

the 3-rank of (µ3 ⊗ SK,3)
Gal(K/F ) is equal to that of S−

K,3. By Lemma 4.2,
3-rankK2OF = 3-rank SK − 3-rank SF .

Theorem 4.4. With notations as above, we have

(4.1)

3-rank K2OF =



























2t − sK + r if each πi ≡ 1 (modλ3) and

3 is not ramified in F ,

2t − sK + r − 4 if some πi ≡ 4 or 7 (modλ3) and

3 is ramified in F ,

2t − sK + r − 2 otherwise.

Proof. This follows from Theorem 2.1, Theorem 4.3 and (3.3).

The first part of the next theorem is Theorem 2.4 of [1], and the second
part is Theorem 3.6 of [13]. Here we will give a different proof.

Theorem 4.5 (J. Browkin, H. Y. Zhou). If F is a cubic cyclic number

field with only one ramified prime p, then 3 | #K2OF if and only if p ≡ 1
(mod18). And if p ≡ 1 (mod18), then 3-rank K2OF ≤ 2.

Proof. If p > 7, the first part of this theorem is Theorem 1.1 in the
introduction. For p = 3 or 7, i.e., F = Q(ζ7 + ζ−1

7 ) or Q(ζ9 + ζ−1
9 ), see [6],

[9], or [5].

By Theorem 2.1, we have t = 1 and r = 0. Hence 3-rankK2OF > 0 if
and only if we are in the first case of (4.1). It is easy to see that for a prime
π ∈ OE , π ≡ 1 (modλ3) if and only if p = ππ ≡ 1 (mod9). We have already
seen that p is an odd prime. So p ≡ 1 (mod18), which implies 3 |#K2OF

if and only if p ≡ 1 (mod18). And if p ≡ 1 (mod18), then tK = 1 by (3.2).
Hence 3-rankK2OF ≤ 2.

Recall that the genus field of K/E is the maximal abelian extension of
E contained in the Hilbert class field of K.

Lemma 4.6. Let ζ9 be a primitive 9th root of unity , and p a rational

prime satisfying p ≡ 4 or 7 (mod9). Let F be a cubic cyclic number field

which ramifies only at 3 and p. Then
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(1) M = F (ζ9) is the genus field of K/E.

(2) SF = SK ≃ Z/3Z.

Proof. (1) First, we will prove that M/K is unramified. It is easy to see
that only 3 may be ramified in M/K. Let ζp be a primitive pth root of unity,
and F ′ the unique cubic subfield of Q(ζp). Then by Theorem 2 of [10] and
Theorem 2 of [11],

F ′(ζ) = Q(ζ, 3
√

π/π),

where π ∈ E = Q(ζ) is a prime above p and π ≡ π (mod3). By the same
theorems,

F (ζ) = Q( 3

√

ζjπ/π),

where j = 1 or 2. Hence we have

M = F (ζ9) = Q(ζ9,
3
√

π/π) = F ′(ζ9) ⊂ Q(ζ9p).

Since the ramification index of 3 in Q(ζ9p)/Q is 6, the ramification index of
3 in M/F cannot exceed 6. Hence 3 must be unramified in M/F , for the
ramification index of 3 in K/Q is 6.

By (3.2), tK = 1, which implies the genus field should be an extension
of K with degree 3. We have already seen that [M : K] = 3 and M/K is
abelian unramified. So M is the genus field of K/E.

(2) Let P2 be an ideal of K above p. Since p ≡ 4 or 7 (mod9), P2 is
inert in K(ζ9)/K. The Artin symbol

(

M/K

P2

)

is not trivial. Since M/K is an abelian unramified extension, the Artin map
(

M/K

•

)

: SK → Gal(M/K)

is surjective. Hence P2 is not principal. So sK = 1 by Theorem 4.1 of [3].
Hence 3-rank SK = 1. Since 3-rankSF ≥ 1 and 3-rankSK ≥ 3-rank SF , we
have

SF = SK ≃ Z/3Z.

Theorem 4.7. Let F be a cubic cyclic number field with only two ram-

ified primes p1, p2, where p1 < p2. Then

(1) 2 ≤ 3-rankK2OF ≤ 4 if pi ≡ 1 (mod9) for i = 1, 2;
(2) 3-rank K2OF = 0 if p1 = 3 and p2 ≡ 4 or 7 (mod9);
(3) 1 ≤ 3-rankK2OF ≤ 3 otherwise.

Proof. (1) If pi ≡ 1 (mod9), i = 1, 2, then t = 2, tK = 3, sK ≤ tK . By
the discussion following Theorem 2.1, r ≤ 1. By the first case of (4.1) in



394 X. J. Guo

Theorem 4.4,

(4.2) 5 ≥ 3-rankK2OF = 2t − sK + r ≥ 1 + r ≥ 1,

and 3-rankK2OF = 1 if and only if sK = 3 and r = 0.

If sK = 3, then by Corollary 3.2 of [3],

SK = S
(τ)
K ≃ Z/3Z.

Hence S1−τ
K is trivial. However, r = 0 if and only if S1−τ

F ≃ Z/3Z, which

contradicts the triviality of S1−τ
K . So 3-rankK2OF ≥ 2.

Let P1, P2 be two primes in K such that Pi | pi, i = 1, 2; and ℘1, ℘2 two
primes in F such that ℘i | pi, i = 1, 2. Recall that r is the rank of the matrix
A defined in Section 2. Let M be the genus field of K/E, and N the genus
field of F . Then [M : K] = 33 and [N : F ] = 3. Let χ be the generator of the
group of characters of Gal(N/F ). Via the Artin maps, χ is also a character
of SF . Then

A = (χ(℘1) χ(℘2)).

Let N ′ = N(ζ). Then N ′ ⊂ M . If r = 1, without loss of generality we
can assume that χ(℘1) 6= 1. So ℘1 is not principal, which implies that P1 is
not principal. Let

x1 = π1/π1,

where π1 ∈ E such that π1π1 = p1 and π1 ≡ π1 (mod3). Then N ′ =
K( 3

√
x1). By Theorem 4.1 of [3], there are x2, x3 ∈ K such that M =

K( 3
√

x1, 3
√

x2, 3
√

x3). Since χ(℘1) 6= 1, ℘1 is inert in N . Hence P1 is inert
in N ′, which implies that the Artin symbol

(

K( 3
√

x1)/K

P1

)

is not trivial. So sK ≥ 1.

By (4.2), 3-rankK2OF = 5 if and only if sK = 0 and r = 1, which is
impossible by the last paragraph. Hence 3-rank K2OF ≤ 4.

(2) If p1 = 3 and p2 ≡ 4 or 7 (mod9), then t = 2, tK = sK = r = 1
by Lemma 4.6. Hence 3-rank K2OF = 0 by the second case of (4.1) in
Theorem 4.4.

(3) If p1 = 3 and p2 ≡ 1 (mod9), or p1 ≡ 1 (mod9) and p2 ≡ 4 or 7
(mod9), then t = tK =2 by (3.1) and (3.2). By Theorem 4.4, 3-rankK2OF

= 2 − sK + r. Since sK ≤ tK = 2, we have 3-rank K2OF = 0 if and only if
sK = 2 and r = 0. We will prove that this is impossible. If sK = 0, then by
Corollary 3.2 of [3], the class group SK ≃ Z/3Z ⊕ Z/3Z. Since the 3-rank
of SF is also 2, SF ≃ Z/3Z. However if r = 0, then S1−τ

F ≃ Z/3Z, which
contradicts sK = 0. Hence 3-rank K2OF > 0. Since r ≤ t − 1 = 1, the
inequality 3-rankK2OF ≤ 3 is obvious.
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