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On the 4-rank of tame kernels of quadratic
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1. Introduction and notations. Let F be a quadratic number field,
and OF the ring of integers in F . For a finite abelian group A, let r4(A) =
dimF2 A

2/A4 be the 4-rank of A. The purpose of this paper is to compute the
density of real (resp. imaginary) quadratic number fields with r4(K2OF ) = r
in the set of all real (resp. imaginary) quadratic number fields. First, we
introduce the following definition of densities.

Definition 1.1. Let D be a fundamental discriminant , i.e., the discrim-
inant of some quadratic number field. Let

gr(D) =
{

1 if r4(K2OQ(
√
D)) = r,

0 otherwise.
Then the density of real quadratic number fields F with r4(K2OF ) = r in
the set of all real quadratic number fields is

d+
r = lim

x→∞

∑
0<D<x gr(D)∑

0<D<x 1

and the density of imaginary quadratic number fields E with r4(K2OE) = r
in the set of all imaginary quadratic number fields is

d−r = lim
x→∞

∑
0<−D<x gr(D)∑

0<−D<x 1
.

The study of the 4-ranks of tame kernels of quadratic number fields has
a long history. One can find formulae for the 4-rank of K2OF in [3] and [7].
In 1995, Qin [11], [12] gave an efficient method of computing the 4-ranks
of K2OF . Later Hurrelbrink and Kolster [6] and Qin [13] gave improved
methods of computing the 4-ranks.
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The densities of 4-ranks of tame kernels of quadratic number fields have
been studied in several papers. In [8]–[9], [2], Osburn and Cheng stud-
ied the densities of real (resp. imaginary) quadratic number fields with
r4(K2OF )=r in the set of all real (resp. imaginary) quadratic number fields
with exactly t ramified primes, where t is an integer not greater than 3.
In 2007, Yin [14], [15] gave the tables of the 4-rank of K2OF , assuming
the number of odd prime factors of the discriminant of F is not greater
than 4. In [17], Yue and Yu computed the limiting densities of real (resp.
imaginary) quadratic number fields with r4(K2OF ) = r in the set of all real
(resp. imaginary) quadratic number fields with exactly t ramified primes,
as t→∞.

In Definition 1.1, the quadratic number fields are ordered by the size of
their discriminants. Since every quadratic number field can be written as
Q(
√
n), where n is a square free integer, we can also order them by the size

of n. This observation leads to the following alternative definition of the
densities.

Definition 1.2. Let D be a fundamental discriminant and

σ(D) =
{
D if D ≡ 1 mod 4,
D/4 if D ≡ 0 mod 4.

Then the density of real quadratic number fields F with r4(K2OF ) = r in
the set of all real quadratic number fields is

dr = lim
x→∞

∑
0<σ(D)<x gr(D)∑

0<σ(D)<x 1
,

and the density of imaginary quadratic number fields E with r4(K2OE) = r
in the set of all imaginary quadratic number fields is

d′r = lim
x→∞

∑
0<−σ(D)<x gr(D)∑

0<−σ(D)<x 1
.

We will prove in Section 4 that d+
r = dr and d−r = d′r. A direct corollary

is that the real (imaginary) quadratic number fields with r4(K2OF ) = r
distribute equally in different residue classes of σ(D) modulo 4. The main
result of this paper is the following theorem.

Theorem 1.3. Let r be an integer. Then

d+
0 = 0,

d+
r =

2−r(r−1)
∏∞
k=1(1− 2−k)

(1− 2−r)
∏r−1
k=1(1− 2−k)2

for r ≥ 1,

d−r = 2−r
2

∏∞
k=1(1− 2−k)∏r
k=1(1− 2−k)2

for r ≥ 0.
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Let us briefly review Yue and Yu’s results in [17]. Let n be a square free
positive integer, x a positive real number, r a nonnegative integer, and t a
positive integer. We define

At = {F = Q(
√
n) | exactly t primes ramify in E = Q(

√
−n)/Q},

At;x = {F = Q(
√
n) ∈ At | n ≤ x},

At,r;x = {F = Q(
√
n) ∈ At;x | r4(K2OF ) = r},

dt,r = lim
x→∞

|At,r;x|
|At;x|

, d∞,r = lim
t→∞

dt,r.

Similarly, for imaginary quadratic fields, we define

Bt = {E = Q(
√
−n) | exactly t primes ramify in F = Q(

√
n)/Q},

Bt;x = {E = Q(
√
−n) ∈ Bt | n ≤ x},

Bt,r;x = {E = Q(
√
−n) ∈ Bt;x | r4(K2OE) = r},

d ′t,r = lim
x→∞

|Bt,r;x|
|Bt;x|

, d ′∞,r = lim
t→∞

dt,r.

The main result of [17] is the following theorem.

Theorem 1.4 ([17, Theorems 3.1 and 3.2]). Let r be an integer. Then

d∞,0 = 0,

d∞,r =
2−r(r−1)

∏∞
k=1(1− 2−k)

(1− 2−r)
∏r−1
k=1(1− 2−k)2

for r ≥ 1,

d ′∞,r = 2−r
2

∏∞
k=1(1− 2−k)∏r
k=1(1− 2−k)2

for r ≥ 0.

By comparing Theorem 1.3 with Theorem 1.4, one can see that

d+
r = d∞,r, d−r = d ′∞,r.

This is not accidental. It is just what happened in [4]. If you compare Theo-
rem 3 of [4] with the formulae (1.5) and (1.6) of [5], you can see the analogous
accordance. I would like to mention that Theorems 3.1 and 3.2 of [17] gave
a strong support for Theorem 1.3 above.

Sometimes it is more interesting to consider dt,r and d ′t,r than d+
r and d−r .

The reason is that some arithmetic invariants which appear in computing
dt,r and d ′t,r will disappear if one considers the natural densities d+

r and d−r .
If one considers more general number fields, e.g., the cubic cyclic number
fields, the Brauer–Manin obstruction will be involved in the computation.
We will consider this problem in another paper.

In the last section, some numerical evidence is discussed.
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2. The 4-rank of tame kernels of real quadratic number fields.
Let At, At;x, At,r;x, dt,r, d∞,r be as in Section 1. We denote the narrow
class group of F by C(F ). Let n > 2 be a square free integer, and

At,r = {F ∈ At | r4(C(E)) = r}, At,r;x = {F ∈ At,r | n ≤ x},

dr(j) = lim
x→∞

∑∞
t=1 |At,r+j;x ∩At,r;x|∑∞

t=1 |At;x|
, j = 1, 0, or −1.

Note that for any x, there are only finitely many terms in
∑∞

t=1 |At;x|.
Let N(m, k, r) be the number of m × m matrices M = (aij), over F2

with the following properties:

(i) aij 6= aji for 1 ≤ i < j ≤ k,
(ii) aij = aji when k + 1 ≤ i ≤ m and 1 ≤ j ≤ m,

(iii) rankM = r.

Let

dt,r;x =
|At,r;x|
|At;x|

, dt,r = lim
x→∞

dt,r;x, d∞,r = lim
t→∞

dt,r.

Then by Proposition 2.1 of [5],

dt,r =
∑

1≤l≤t
l odd

N(t− 1, l − 1, t− 1− r)
(
t

l

)
21−(t2+t)/2,

d∞,r =
2−r

2 ∏∞
k=1(1− 2−k)∏r

k=1(1− 2−k)2
.

Let F = Q(
√
D) and

S+(x, k, a, b) :=
∑

0<D<x
D≡amod b

2k rk4(C(F )),

S−(x, k, a, b) :=
∑

0<−D<x
−D≡amod b

2k rk4(C(F )).

Lemma 2.1. Let D be a fundamental discriminant , r a nonnegative in-
teger , n a square free integer , and F = Q(

√
D). Let

fr(D) =
{

1 if r4(C(F )) = r,
0 otherwise,

and σ(D) be as in Definition 1.2. Then

(1) lim
x→∞

∑
0<D<x fr(D)∑

0<D<x 1
= lim

x→∞

∑
0<σ(D)<x fr(D)∑

0<σ(D)<x 1
,

(2) lim
x→∞

∑
0<−D<x fr(D)∑

0<−D<x 1
= lim

x→∞

∑
0<−σ(D)<x fr(D)∑

0<−σ(D)<x 1
.



4-rank of tame kernels 139

Proof. (1) Let

S1;x =
∑

0<D<x
D≡1mod 4

1, T1,r;x =
∑

0<D<x
D≡1mod 4

fr(D),

S2;x =
∑

0<D<4x
D≡0mod 8

1, T2,r;x =
∑

0<D<4x
D≡0mod 8

fr(D),

S3;x =
∑

0<D<4x
D≡4mod 8

1, T3,r;x =
∑

0<D<4x
D≡4mod 8

fr(D).

For a fixed x, let Rx be an integer large enough, and

ar;x = T1,r;x, br;x = T2,r;x, cr;x = T3,r;x, 0 ≤ r ≤ Rx.

Then we have the following system of linear equations:

Rx∑
j=0

2−ijaj;x = S+(x, i, 1, 4),(2.1)

Rx∑
j=0

2−ijbj;x = S+(4x, i, 0, 8),(2.2)

Rx∑
j=0

2−ijcj;x = S+(4x, i, 4, 8),(2.3)

where i = 0, 1, . . . , Rx. If we consider all aj;x as indeterminates, then the
matrices of coefficients are Vandermonde matrices.

By equations (5), (7), and (9) of [4],

S+(x, i, 1, 4) ∼ S+(4x, i, 0, 8) ∼ S+(4x, i, 4, 8) as x→∞.

Hence by solving (2.1), (2.2) and (2.3), we have

ar;x ∼ br;x ∼ cr;x as x→∞,

for any fixed r. By [4, (16)],

S1;x ∼ S2;x ∼ S3;x ∼
2
π2

x as x→∞.

So if x is large enough, we have

ar;x
S1;x

≈ br;x
S2;x

≈ cr;x
S3;x

.
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Hence

lim
x→∞

∑
0<σ(D)<x fr(D)∑

0<σ(D)<x 1
= lim

x→∞

ar;x + br;x + cr;x
S1;x + S2;x + S3;x

= lim
x→∞

ar;x
S1;x

= lim
x→∞

br;x/4

S2;x/4
= lim

x→∞

cr;x/4

S3;x/4

= lim
x→∞

ar;x + br;x/4 + cr;x/4

S1;x + S2;x/4 + S3;x/4

= lim
x→∞

∑
0<D<x fr(D)∑

0<D<x 1
.

(2) can be proved by analogous arguments.

Let D, r, gr(D), d+
r , d−r be as in the introduction.

Theorem 2.2. With the above notations,

(1) dr(1) = 0 for r ≥ 0,

(2) dr(0) = (1− 2−r)
2−r

2 ∏∞
k=1(1− 2−k)∏r

k=1(1− 2−k)2
for r ≥ 0,

(3) dr(−1) = 2−r
2+r

∏∞
k=1(1− 2−k)∏r−1
k=1(1− 2−k)2

for r ≥ 1.

Proof. (1) Let

αt,r;x =
|At,r;x ∩At,r−1;x|

|At,r;x|
, αt,r = lim

x→∞
αt,r;x, α∞,r = lim

t→∞
αt,r.

By Theorem 3.1 of [16], F ∈ At,r;x ∩ At,r−1;x only if 2 is the norm of some
element in F , i.e., all primes which are ramified in F are congruent to 1
or −1 modulo 8. Since all primes are equally distributed among all residue
classes modulo 8, we have

αt,r ≤ 2−t.

By Theorem 3.2 of [16], there are other necessary conditions for

F ∈ At,r;x ∩At,r−1;x,

besides 2 ∈ NormF/Q(F ∗). Hence αt,r is strictly less than 2−t.
Let Nx be the number of square free integers up to x with exactly t

prime factors. By [5, (2.4)],

Nx ∼
1

(t− 1)!
x(log log x)t−1

log x
(as x→∞).

So for a fixed T , if x is large enough, then∑T−1
t=1 |At;x|
|AT ;x|

<
T !

log log x
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can be as small as we wish. Hence

dr(1) = lim
x→∞

∑∞
t=1 |At,r+1;x ∩At,r;x|∑∞

t=1 |At;x|
= lim

x→∞

∑∞
t=1 αt,r+1;x|At,r+1;x|∑∞

t=1 |At;x|

= lim
x→∞

∑∞
t=T αt,r+1;x|At,r+1;x|∑∞

t=T |At;x|
for any fixed T

≤ lim
x→∞

2−T
∑∞

t=T |At,r+1;x|∑∞
t=T |At;x|

≤ 2−T ,

which implies dr(1) = 0.
(2) Let

βt,r;x =
|At,r;x ∩At,r;x|
|At,r;x|

, βt,r = lim
x→∞

βt,r;x, β∞,r = lim
t→∞

βt,r.

By similar arguments to the proof of (1), we have

dr(0) = lim
x→∞

∑∞
t=1 |At,r;x ∩At,r;x|∑∞

t=1 |At;x|
= lim

x→∞

∑∞
t=1 βt,r;x|At,r;x|∑∞

t=1 |At;x|

= β∞,r lim
x→∞

∑∞
t=1 |At,r;x|∑∞
t=1 |At;x|

.

By [17, (3.19)],

βt,r = 1− 2t−1−r − 1
2t−1 − 1

, β∞,r = 1− 2−r.

By Theorem 3 of [4] and Lemma 2.1,

lim
x→∞

∑∞
t=1 |At,r;x|∑∞
t=1 |At;x|

=
2−r

2 ∏∞
k=1(1− 2−k)∏r

k=1(1− 2−k)2
.

Hence

dr(0) = (1− 2−r)
2−r

2 ∏∞
k=1(1− 2−k)∏r

k=1(1− 2−k)2
.

(3) Let r be a positive integer, and

γt,r−1;x =
|At,r−1;x ∩At,r;x|
|At,r−1;x|

, γt,r = lim
x→∞

γt,r;x, γ∞,r = lim
t→∞

γt,r.

By similar arguments, we have

dr(−1) = lim
x→∞

∑∞
t=1 |At,r−1;x ∩At,r;x|∑∞

t=1 |At;x|

= lim
x→∞

∑∞
t=1 γt,r−1;x|At,r−1;x|∑∞

t=1 |At;x|

= γ∞,r−1 lim
x→∞

∑∞
t=1 |At,r−1;x|∑∞
t=1 |At;x|

.
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By [17, (3.19)],
γ∞,r−1 = 2−r+1.

By Theorem 3 of [4] and Lemma 2.1,

lim
x→∞

∑∞
t=1 |At,r−1;x|∑∞
t=1 |At;x|

=
2−(r−1)2

∏∞
k=1(1− 2−k)∏r−1

k=1(1− 2−k)2
.

Hence

dr(−1) = 2−r
2+r

∏∞
k=1(1− 2−k)∏r−1
k=1(1− 2−k)2

.

Theorem 2.3. Let r be an integer. Then the density of real quadratic
number fields F with r4(K2OF ) = r in the set of all real quadratic number
fields is

d0 = 0,

dr =
2−r(r−1)

∏∞
k=1(1− 2−k)

(1− 2−r)
∏r−1
k=1(1− 2−k)2

for r ≥ 1.

Proof. By Theorems 3.1 and 4.1 of [16], we know that

dr =
{
dr(0) + dr(1) for r = 0,
dr(−1) + dr(0) + dr(1) for r ≥ 1.

Hence we get the result by Theorem 2.2.

3. The 4-rank of tame kernels of imaginary quadratic number
fields. Let Bt, Bt;x, Bt,r;x, d

′
t,r, d

′
∞,r be as in the introduction, and n > 2

be a square free integer. Let F = Q(
√
n) and E = Q(

√
−n), and

Bt,r = {E ∈ Bt | r4(C(F )) = r}, Bt,r;x = {E ∈ Bt,r | n ≤ x},

d ′r(j) = lim
x→∞

∑∞
t=1 |Bt,r+j;x ∩Bt,r;x|∑∞

t=1 |Bt;x|
, j = 1, 0,−1,

d′t,r;x =
|Bt,r;x|
|Bt;x|

, d′t,r = lim
x→∞

d′t,r;x, d′∞,r = lim
t→∞

d′t,r.

Theorem 3.1. With the above notations,

(1) d ′r(1) = 0 for r ≥ 0,

(2) d ′r(0) = (1− 2−r−1)
2−r

2−r∏∞
k=1(1− 2−k)∏r

k=1(1− 2−k)
∏r+1
k=1(1− 2−k)

for r ≥ 0,

(3) d ′r(−1) = 2−r
2

∏∞
k=1(1− 2−k)∏r−1

k=1(1− 2−k)
∏r
k=1(1− 2−k)

for r ≥ 1.

Proof. (1) By Theorem 4.1 of [16], 2 ∈ NormE/Q(E∗) is a necessary
condition for

r4(K2(OE)) + 1 = r4(C(F )).
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Since 2 is a norm of some element in E = Q(
√
−n) if and only if all the

prime factors of n are congruent to 1 or −1 modulo 8, the density of theses
fields will be 0 as t→∞. Hence (1) holds.

(2) Let

β′t,r;x =
|Bt,r;x ∩Bt,r;x|
|Bt,r;x|

, β′t,r = lim
x→∞

βt,r;x, β′∞,r = lim
t→∞

βt,r.

All the imaginary quadratic number fields Q(
√
−n) ∈ Bt can be divided

into three types:

n = p1 · · · pt with an even number of pi ≡ 3 mod 4, or(3.1)
n = p1 · · · pt−1 with an odd number of pi ≡ 3 mod 4, or(3.2)
n = 2p1 · · · pt−1.(3.3)

Let
B

(i)
t,x = {E = Q(

√
−n) | n satisfies (3.i)}, i = 1, 2, 3.

Then

|B(1)
t,x | ∼ |Bt,x| as x→∞,

|B(i)
t,x| = o(|Bt,x|) as x→∞, for i = 2, 3.

Hence we confine our attention to those n which satisfy (3.1).
If n satisfies (3.1), then n ≡ 1 mod 4. Furthermore, if n ≡ 5 mod 8, then

r4(K2OE) = r4(C(F ))

by Theorem 4.1 of [16]. Next we will consider the case n ≡ 1 mod 8. Let

S
(1)
t,r;x = {E ∈ Bt,r;x ∩Bt,r;x | n ≡ 1 mod 8 and 2 /∈ NormE/Q(E∗)},

T
(1)
t,r;x = {E ∈ Bt,r;x | n ≡ 1 mod 8 and 2 /∈ NormE/Q(E∗)}.

Then by [17, (3.25)], we have

lim
t→∞

lim
x→∞

|S(1)
t,r;x|

|T (1)
t,r;x|

= 1− 2−r.

Since n ≡ 1 mod 8 and n ≡ 5 mod 8 are equally likely in Bt, we have

β′∞,r =
1
2

+
1
2

(1− 2−r) = 1− 2−r−1.

Hence by similar arguments to the proof of (1), we have

d ′r(0) = lim
x→∞

∑∞
t=1 |Bt,r;x ∩Bt,r;x|∑∞

t=1 |Bt;x|
= lim

x→∞

∑∞
t=1 β

′
t,r;x|Bt,r;x|∑∞

t=1 |Bt;x|

= β′∞,r lim
x→∞

∑∞
t=1 |Bt,r;x|∑∞
t=1 |Bt;x|

.
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By Theorem 3 of [4] and Lemma 2.1,

lim
x→∞

∑∞
t=1 |Bt,r;x|∑∞
t=1 |Bt;x|

=
2−r(r+1)

∏∞
k=1(1− 2−k)∏r

k=1(1− 2−k)
∏r+1
k=1(1− 2−k)

.

Hence

d ′r(0) = (1− 2−r−1)
2−r

2−r∏∞
k=1(1− 2−k)∏r

k=1(1− 2−k)
∏r+1
k=1(1− 2−k)

.

(3) Let r be a positive integer, and

γ′t,r−1;x =
|Bt,r−1;x ∩Bt,r;x|
|Bt,r−1;x|

,

γ′t,r = lim
x→∞

γ′t,r;x, γ′∞,r = lim
t→∞

γ′t,r.

By similar arguments, we have

d ′r(−1) = lim
x→∞

∑∞
t=1 |Bt,r−1;x ∩Bt,r;x|∑∞

t=1 |Bt;x|
= lim

x→∞

∑∞
t=1 γ

′
t,r−1;x|Bt,r−1;x|∑∞
t=1 |Bt;x|

= γ′∞,r−1 lim
x→∞

∑∞
t=1 |Bt,r−1;x|∑∞
t=1 |Bt;x|

.

In the proof of (2), we have shown that if n ≡ 1 mod 8 and 2 /∈ NormE/Q(E∗),
then

r4(K2OE) = r4(C(F )) + 1

with probability 2−r+1 as t → ∞. Since n ≡ 1 mod 8 and n ≡ 5 mod 8 are
equally likely in Bt, we have

γ′∞,r = 2−r.

By Theorem 3 of [4] and Lemma 2.1,

lim
x→∞

∑∞
t=1 |Bt,r−1;x|∑∞
t=1 |Bt;x|

=
2−r(r−1)

∏∞
k=1(1− 2−k)∏r−1

k=1(1− 2−k)
∏r
k=1(1− 2−k)

.

Hence

d ′r(−1) = 2−r
2

∏∞
k=1(1− 2−k)∏r−1

k=1(1− 2−k)
∏r
k=1(1− 2−k)

.

Theorem 3.2. Let r be a nonnegative integer. Then the density of imag-
inary quadratic number fields E such that r4(K2OE) = r is

d−r = 2−r
2

∏∞
k=1(1− 2−k)∏r
k=1(1− 2−k)2

.

Proof. By Theorems 3.1 and 4.1 of [16],

d−r =
{
d ′r(0) + d ′r(1) for r = 0,
d ′r(−1) + d ′r(0) + d ′r(1) for r ≥ 1.

Hence we get the result by Theorem 3.1.
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4. Densities in different residue classes of σ(D) modulo 4. In
order to prove that Definition 1.1 is in accordance with Definition 1.2, we
need to study the densities of real (resp. imaginary) quadratic number fields
with r4(K2OF ) = r in the set of all real (resp. imaginary) quadratic number
fields whose discriminants are in a fixed residue class modulo 8, i.e., we will
study

dr,1 := lim
x→∞

∑
0<σ(D)<x
D≡1mod 4

gr(D)

∑
0<σ(D)<x
D≡1mod 4

1
, d′r,1 := lim

x→∞

∑
0<−σ(D)<x
D≡1mod 4

gr(D)

∑
0<−σ(D)<x
D≡1mod 4

1
,

dr,2 := lim
x→∞

∑
0<σ(D)<x

σ(D)≡2mod 4

gr(D)

∑
0<σ(D)<x
D≡2mod 4

1
, d′r,2 := lim

x→∞

∑
0<−σ(D)<x
σ(D)≡2mod 4

gr(D)

∑
0<−σ(D)<x
σ(D)≡2mod 4

1
,

dr,3 := lim
x→∞

∑
0<σ(D)<x

σ(D)≡3mod 4

gr(D)

∑
0<σ(D)<x

σ(D)≡3mod 4

1
, d′r,3 := lim

x→∞

∑
0<−σ(D)<x
σ(D)≡3mod 4

gr(D)

∑
0<−σ(D)<x
σ(D)≡3mod 4

1
.

In the proof of Theorem 2.2 in Section 2, we have used [17, (3.19)] to get
β∞,r and γ∞,r. However, equation (3.19) is proved in [17] only for σ(D) ≡
3 mod 4. We will show that the other cases can be omitted in the proof of
Theorem 2.2. Note that for any field F = Q(

√
n) ∈ At, the corresponding

imaginary quadratic field E = Q(
√
−n) has exactly t ramified primes. Hence

either

n = p1 · · · pt with an odd number of pi ≡ 3 mod 4, or(4.1)
n = p1 · · · pt−1 with an even number of pi ≡ 3 mod 4, or(4.2)
n = 2p1 · · · pt−1.(4.3)

Let Ni;x denote the number of n < x satisfying (4.i) (i = 1, 2, 3). Then
N2;x = o(|At,x|) and N3;x = o(|At,x|) by [5, (2.4), (2.5)]. Hence in order to
get βt,r and γt,r, we need to consider only those n satisfying (4.1).

Similar things happen in the proof of Theorem 3.1. However, in that
proof, we confine our attention to the cases n ≡ 1 mod 4. So in Sections 2
and 3, we have proved that

dr = dr,3,(4.4)
d′r = d′r,1.(4.5)
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Theorem 4.1. With the above notations,

(1) dr = dr,1 = dr,2 = dr,3,
(2) d′r = d′r,1 = d′r,2 = d′r,3.

Proof. (1) By the well known counting formulae for fundamental dis-
criminants (cf. [4, (16)]),∑

0<σ(D)<x
D≡1mod 4

1 ∼
∑

0<σ(D)<x
σ(D)≡2mod 4

1 ∼
∑

0<σ(D)<x
σ(D)≡3mod 4

1 ∼ 2
π2

x as x→∞.

So dr = (dr,1+dr,2+dr,3)/3. Hence by (4.4), it is sufficient to prove dr = dr,2.
Let n be a square free integer, F = Q(

√
n), E = Q(

√
−n), and

A
(2)
t = {F | n≡ 2 mod 4, and exactly t primes ramify in E = Q(

√
−n)/Q},

A
(2)
t,r = {F ∈ A(2)

t | r4(C(E)) = r},

A
(2)
t;x = {F ∈ A(2)

t | n < x},

A
(2)
t,r;x= {F ∈ A(2)

t;x | r4(C(F )) = r},

A
(2)
t,r;x= {F ∈ A(2)

t;x | r4(K2OF ) = r}.
By the definition of dr,2, we know that

(4.6) dr,2 = lim
x→∞

∑∞
t=1 |A

(2)
t,r;x|∑∞

t=1 |A
(2)
t;x |

.

By similar arguments to the proof of Theorem 2.2, the fields with −1, 2
or −2 in NormF/Q(F ∗) can be omitted when x and t are both large enough.

Assume n = p1 · · · pt−1pt, where p1, . . . , pt−1 are different odd primes and
pt = 2. Let M ′E be the (t−1)×t matrix obtained from the Rédei matrix ME

by deleting the tth row (cf. [16] and [17] for details), Y = (y1, . . . , yt)T and
B = (b1, . . . , bt−1)T , where bj ∈ {0, 1} with

(
2
pj

)
= (−1)bj , j = 1, . . . , t − 1.

Recall that rank(ME) = rank(M ′E) and

r4(C(E)) = t− 1− rank(M ′E).

By Theorem 3.2 in [16],

r4(K2OF ) = r4(C(E)) + 1

if and only if the system of equations M ′EY = B is solvable. Since all primes
are equally distributed in the residue classes of ±1,±3 modulo 8, the proba-
bility of r4(K2OF ) = r4(C(E))+1 is 2−r in the set A(2)

t,r , as t→∞. By (4.6)
and Theorem 2.2, we have

d0,2 = lim
x→∞

∑∞
t=1 |A

(2)
t,0;x ∩A

(2)
t,0;x|∑∞

t=1 |A
(2)
t;x |

= 0.
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If r > 0, we have

dr,2 = lim
x→∞

∑∞
t=1(|A(2)

t,r;x ∩A
(2)
t,r+1;x|+ |A

(2)
t,r;x ∩A

(2)
t,r;x|+ |A

(2)
t,r;x ∩A

(2)
t,r−1;x|)∑∞

t=1 |A
(2)
t;x |

.

Since F ∈ A(2)
t,r;x ∩A

(2)
t,r−1;x only if 2 ∈ NormF/Q(F ∗), we have

lim
x→∞

∑∞
t=1 |A

(2)
t,r;x ∩A

(2)
t,r+1;x|∑∞

t=1 |A
(2)
t;x |

= 0.

Hence

dr,2 = lim
x→∞

∑∞
t=1(|A(2)

t,r;x ∩A
(2)
t,r;x|+ |A

(2)
t,r;x ∩A

(2)
t,r−1;x|)∑∞

t=1 |A
(2)
t;x |

= (1− 2−r) lim
x→∞

∑∞
t=1 |A

(2)
t,r;x|∑∞

t=1 |A
(2)
t;x |

+ 2−r+1 lim
x→∞

∑∞
t=1 |A

(2)
t,r−1;x|∑∞

t=1 |A
(2)
t;x |

= (1− 2−r)
2−r

2 ∏∞
k=1(1− 2−k)∏r

k=1(1− 2−k)2
+ 2−r+1 2−(r−1)2

∏∞
k=1(1− 2−k)∏r−1

k=1(1− 2−k)2

=
2−r(r−1)

∏∞
k=1(1− 2−k)

(1− 2−r)
∏r−1
k=1(1− 2−k)2

= dr.

The proof of (2) is parallel to that of (1).

From Theorem 3.1, one can easily get the following corollary.

Corollary 4.2. The densities defined in Definition 1.1 are in accor-
dance with those in Definition 1.2.

5. The numerical evidence. In [10], Osburn and Murray, gave ta-
bles of the densities of real (resp. imaginary) quadratic number fields with
r4(K2OF ) = 0, 1, 2, 3, in the set of real (resp. imaginary) quadratic number
fields Q(

√
n) (resp. Q(

√
−n)) satisfying n ≤ 106. In Table 7 of [10], the

density of real quadratic number fields with r4(K2OF ) = 0 in the set of real
quadratic number fields Q(

√
n) satisfying n < 106 is 23.1284%. However, by

Theorem 2.2, this density should be 0 as n→∞.
Why is the difference so large? The reason is that 106 is not large enough.

In our proof, we throw away some parts which do not affect the densities as
t→∞. However, if the number of prime factors of n is not large, these dis-
carded parts in fact contribute a lot to the densities. For example, we remove
all the fields satisfying 2 ∈ NormF/Q(F ∗). If there are exactly two ramified
primes in F , we have thus thrown away 25% cases, for 2 ∈ NormF/Q(F ∗) if
and only if every prime factor of n is congruent to 1 or −1 modulo 8. How-
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ever, the average number of prime factors of square free positive integers
less than 106 is only about 2.6.

If one checks Table 5 of [10], one can see that the density of real quadratic
number fields with r4(K2OF ) = 0 in the set of real quadratic number fields
Q(
√
n) satisfying n = pqr ≤ 106 is only 6.827%, where p, q, r are different

odd primes. In Tables I, II and III of [14], this density is very close to 0 if
one considers those n with exactly four odd prime factors.

Similar things happen for imaginary quadratic number fields. By The-
orem 3.2, this density should be about 28.88% as n → ∞. However, in
Table of [1], there are much more imaginary quadratic number fields E with
r4(K2OE) = 0 (about 84%) than with r4(K2OE) > 0 in the set of imaginary
quadratic number fields whose discriminant is greater than −5000. However,
if n is extended to 106, the density of imaginary quadratic number fields E
with r4(K2OE) = 0 is about 62% by Table 8 in [10].

Furthermore, if one looks at the Table in [15], one can see that the density
of imaginary quadratic number fields E with r4(K2OE) = 0 is apparently
less than 50% in the set of imaginary quadratic number fields Q(

√
−n) where

n has exactly four odd prime factors.
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