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Abstract

For any number field, J.-F. Jaulent introduced a new invariant called the group of logarithmic classes in
1994. This invariant is proved to be closely related to the wild kernels of number fields. In this paper, we
show how to compute the kernel of the natural homomorphism from the group of logarithmic classes to the
group of p-ideal classes by computing the p-adic regulator which is a classical invariant in number theory.
As an application, we prove Gangl’s conjecture on 9-rank of the tame kernel of imaginary quadratic field
Q(

√−9k − 3).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The 2-primary part of the tame kernel K2OF of a quadratic number field F has been inten-
sively studied. And there are also some results concerning the p-primary part of the tame kernel
when p is odd, however there are few results on the p2-rank of the tame kernel of a number field
not containing a primitive pth root of unity.

There are some general results on the p-primary part of the tame kernel of number fields in
[18] and [13]. Based on his numerical computations, Gangl proposed in [6] some conjectures,
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which, in the case p = 3, relate the divisibility of order of the tame kernel of imaginary quadratic
number fields by 3 or 9 to the divisibility of class numbers of the same imaginary quadratic num-
ber fields by 3. There is a list of the conjectural tame kernels and the wild kernels of imaginary
quadratic number fields with discriminant larger than −5000 in [3].

In 1992, Browkin studied the p-rank of the tame kernels of quadratic number fields by the
reflection theorem in [1]. He proved two of Gangl’s conjectures. However, one of these conjec-
tures remains open, i.e., if 9 divides the cardinality of K2(OQ(

√−9k−3)), then 3 divides the class

number of Q(
√−9k − 3), where k is a positive integer and 3k + 1 is square-free.

Later in 1994, J.-F. Jaulent introduced a new invariant called the group of logarithmic classes
in [8]. The arithmetic of this logarithmic group can give some information on the wild kernels of
number fields. One can see [4,8–12] and [16] for details. Especially, Pauli and Soriano-Gafiuk
can describe the p-rank of the wild kernel of quadratic number field Q(

√
d) by the logarithmic

p-class group of the quadratic number field Q(
√−3d) without assuming Q(

√
d) contains a

primitive pth root of unity in [16].
In this paper, we use the 3-adic regulators to compute the difference between the logarithmic

3-class group and the 3-ideal class group. Our computation relies on the results of Kishi in [14].
The p-adic regulators can not give all information of the difference between the logarithmic
3-class group and the 3-ideal class group in general. However in some cases, we can determine
the kernel of the natural homomorphism from the logarithmic 3-class group to the 3-ideal class
group by the 3-adic regulator. Then by a theorem of Pauli and Soriano-Gafiuk on the wild kernel
and logarithmic class group, we can prove Gangl’s conjecture.

2. The logarithmic �-class group

In the following context, we will briefly review the definition of logarithmic �-class group and
some theorems proved in [4] and [16]. We will use the notation as in [4] and [16]. For the details
of logarithmic �-class group, one can see [4,8–12] and [16].

Let � be a prime number and Log� be the �-adic logarithm function defined in [19]. For any
prime number p, we define

deg� p =
{Log� p for p �= �;

� for p = � �= 2;
4 for p = � = 2.

For a ∈ Q×
p � pZ × F×

p × (1 + 2pZp) denote by 〈a〉 the projection of a to (1 + 2pZp). Let F

be a number field and ℘ a prime ideal of OF over p. Let F℘ be the completion of F with respect
to ℘. For any a ∈ F ∗, it is defined in [16] that

g℘(α) := Logp〈NF℘/Qp
(α)〉

[F℘ : Qp] · degp p
.

The logarithmic ramification index ẽ℘ is defined in [16] as follows. The p-part of the logarithmic
ramification index ẽ℘ is [g℘(F ∗

℘) : Zp]. For all primes q with q �= p, the q part of ẽ℘ is the q part

of the ramification index e℘ of ℘. The logarithmic inertia degree f̃℘ is defined by the relation
ẽ℘f̃℘ = e℘f℘ = deg(F℘/Qp), where f℘ is the classical inertia degree. For any place ℘, we

define degl ℘ to be f̃℘ degl p.
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For any x ∈RF = Z� ⊗Z F ∗,

ṽ℘(x) := −Logp(NF℘/Qp
(x))

degl ℘
.

The group of �-ideals is defined to be

IdF,� :=
{
I =

∏
℘��

℘α℘

∣∣∣ α℘ = 0 for almost all ℘

}

in [16]. And

ĨdF,� := {I ∈ IdF,� | deg� I = 0}

is the subgroup of �-ideals of degree 0. The group

P̃rF,� :=
{
I =

∏
℘��

℘v℘(a)
∣∣∣ a ∈RF and ṽ℘(a) = 0 for any ℘|�

}

is the subgroup of principal �-ideals having logarithmic valuation 0 at all �-adic places. The
group of logarithmic �-classes is isomorphic to the quotient of the latter two:

C̃�F,� � IdF,�/ĨdF,�.

Let ℘1, . . . ,℘s be the �-adic places of F . Let C̃�(�) be the � group of logarithmic divisor
classes of degree zero:

C̃�(�) :=
{

[I ] ∈ C̃�

∣∣∣ I =
s∑

i=1

ai℘i with degF (I ) = 0

}
.

Let C�
′

be the �-group of the �-ideal classes, i.e., the �-part of C�/〈[℘1], . . . , [℘s]〉, where C� is
the ordinary class group.

Lemma 2.1. (See [4,5].) Let

θ : C̃� −→ C�′,
∑
℘

m℘℘ �→
∏
℘��

℘(1/λ℘)m℘ ,

where λ℘ is the quotient of the logarithmic valuation ṽ℘ over the ordinary valuation v℘ . The
sequence

0 −→ C̃�(�) −→ C̃�
θ−→ C�′ −→ Coker θ −→ 0

is exact.
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Let I be an ideal of a number field F . Recall that the I -units are defined to the elements in
F ∗ such that v℘(a) = 0 for any ℘ � I , where v℘ is the ordinary ℘-valuation such that v℘(π) = 1
for any uniformizer of F℘ .

Lemma 2.2. (See [4, Lemma 13], Generators and Relations of C̃�(�).) Let ℘1, . . . ,℘s be the
�-adic places of F . Assume that s > 1. Reorder the ℘i such that

v�

(
deg(℘1)

) = min
1�i�s

v�

(
deg(℘i)

)
.

Let γ1, . . . , γr be a basis of the �-units of F . Then the group C̃�(�) is given by the generators

[Ii] :=
[
℘i − deg(℘i)

deg(℘1)
℘1

]
(i = 2, . . . , s)

with relations
∑s

i=2 ṽ℘i
(γj )[Ii] = 0.

3. Computing the 3-adic regulator for a real quadratic number field Q(
√

d) with
d ≡ 1 (mod 3)

In the case 3 � d , Kishi classifies in [14] a fundamental unit ε of F = Q(
√

d) into eight types:

(i) TrF ε ≡ 0 (mod 9);
(ii) NF ε = −1, TrF ε ≡ ±1, ±2 (mod 9);

(iii) NF ε = 1, TrF ε ≡ ±1 (mod 9);
(iv) NF ε = 1, TrF ε ≡ ±2 (mod 27);
(v) NF ε = 1, TrF ε ≡ ±2 (mod 9) �≡ ±2 (mod 27);

(vi) TrF ε ≡ ±3 (mod 9);
(vii) NF ε = −1, TrF ε ≡ ±4 (mod 9);

(viii) NF ε = 1, TrF ε ≡ ±4 (mod 9).

By [14], (iii) and (viii) do not occur; (ii) and (vii) occur only when d ≡ 2 (mod 3).
The following theorem was proved by Herz in 1966. In 2000, Kishi gave another proof in

[14].

Theorem 3.1. (See [7, Theorem 6]; [14, Theorem 4.4].) Let F = Q(
√

d) be a real quadratic
number field with class number h(d). Let ε be a fundamental unit of F and let h(−3d) denote
the class number of the imaginary quadratic field F = Q(

√−3d). Then 3|h(−3d) if and only if
at least one of the following conditions holds:

(a1) NF ε = 1, TrF ε ≡ ±2 (mod 27);
(a2) TrF ε ≡ 0 (mod 9);
(a3) NF ε = −1, TrF ε ≡ ±4 (mod 9);
(b) 3|h(d).

Assume that a number field F has r1 real places and r2 pairs of complex places. Let r =
r1 + r2 − 1. Let σ1, . . . , σr1 , σr1+1, σr1+1, . . . , σr1+r2 , σr1+r2 be all the embeddings of F into Cp .



422 X. Guo, H. Qin / Journal of Algebra 312 (2007) 418–425
Let δi = 1 if σi is real, δi = 2 if σi is complex. Let {ε1, . . . , εr} be a basis for the units of F

modulo roots of unity. Then the p-adic regulator is defined to be

Rp(F ) = det
(
δiLogp(σiεj )

)
1�i,j�r

.

One can see §5.5 of [19] for details.
In the following context, we will assume that F = Q(

√
d) with positive d ≡ 1 (mod 3). In

this case, we have r = 1. Let ε be a fundamental unit and E the group generated by ε. Then the
p-adic regulator is

Rp(F ) = Logp(ε).

Let

E(3)2 := {
u ∈ E

∣∣ u ≡ 1
(
mod (3)2)}.

Let v3 be the ordinary valuation in C3 such that v3(3) = 1.

Remark. Although we use the same symbol E as in [14], the meaning of it is slightly different.
In [14], the E contains also the roots of unity in F . While in this paper, it contains only the free
abelian group generated by the fundamental unit ε. There is a misprint in the second table of
page 8 of [14]. In case (vii), the norm of ε should be −1.

Lemma 3.2. Let F = Q(
√

d) be a real quadratic number field with d ≡ 1 (mod 3). With notation
in the above paragraph, we have

v3
(
R3(F )

) + v3
(|E/E(3)2 |) � 2,

where |E/E(3)2 | is the cardinality of the group E/E(3)2 . Furthermore, if v3(|E/E(3)2 |) = 1, then
v3(R3(F )) = 1.

Proof. Since d ≡ 1 (mod 3), 3 splits completely in F . Choose a fundamental unit ε = 1 + a,
where a belongs to some prime ideal ℘ over 3. Since 3 splits completely, F℘ = Q3. By Lemma
5.5 of [19], v3(R3(F )) = v3(Log3(1 + a)) = v3(a).

Assume |E/E(3)2 | = n. Then (1 + a)n ∈ E(3)2 . For any x = x1 + x2
√

d ∈ F with x1, x2 ∈ Q,

let x = x1 − x2
√

d be the conjugate of x.
(1) If NF ε = εε = 1, then a = ε−1 ∈ ℘ and the conjugate a = ε−1 = ε−1(1−ε) ∈ ℘. Hence

a ∈ ℘ which implies a ∈ ℘℘ = (3). So if εn ∈ E(3)2 and NF ε = 1, then 1 + na + na2 + · · · ∈
E(3)2 . Hence na ∈ (3)2, i.e., v3(a) + v3(n) � 2. So

v3
(
R3(F )

) + v3
(|E/E(3)2 |) � 2.

Furthermore if v3(a) = 1, then 3|n is a sufficient and necessary condition to make (1 + a)n ∈
E(3)2 . So |E/E(3)2 | = 3 or 6, i.e., v3(n) = 1. If v3(a) � 2, then n = 1 or 2, i.e., v3(n) = 0. Hence
if v3(|E/E(3)2 |) = 1, then v3(R3(F )) = 1.

(2) If NF ε = εε = −1, then we have 1 + a + a + aa = −1. So

TrF ε = (1 + a) + (1 + a) = 2 + a + a = −aa ∈ (3).



X. Guo, H. Qin / Journal of Algebra 312 (2007) 418–425 423
So ε must be of type (i) or (vi) in the table in the beginning of this section.
If ε is of type (i), i.e., TrF ε ≡ 0 (mod 9), then (3)|(a) or ℘2|(a). If (3)|(a), then the proof

is the same as in (1). If ℘2|(a), then a is not a uniformizer of F℘ = Q3. Hence v3(R3(F )) =
v3(Log3(1 + a)) = v3(a) � 2.

If a is of type (vi), then by the second table in page 8 in [14], v3(|E/E(3)2 |) = 1. Since
TrF ε = −aa ≡ ±3 (mod 9), ℘|(a) but ℘2 � (a). So a is a uniformizer of F℘ = Q3. Hence
v3(R3(F )) = 1. �
Corollary 3.3. Let F = Q(

√
d) be a real quadratic number field with d ≡ 1 (mod 3). Then

v3(R3(F )) = 1 for the cases (v) and (vi) of the table in the beginning of this section and
v3(R3(F )) = 2 for the cases (i) and (iv). Then other cases do not occur.

Proof. It follows from Lemma 3.2 and the third table in the page 8 in [14]. �
4. The wild kernels WK2(F ) of quadratic number fields

Let F be a number field. The tame kernel K2OF is the kernel of the tame symbols and the
wild kernel WK2(F ) is defined to be the kernel of the norm residue symbols. One can see [15]
for details.

Lemma 4.1. (See [16, Example 5].) If � = 3 and F = Q(
√

d) with d ∈ Z square-free, then

3-rank WK2(F ) = 3-rank C̃�Q(
√−3d).

Lemma 4.2. (See [2, Table 1].) The index iF := (K2(OF ) : WK2(F )) always divides 6. And 3
divides iF if and only if d ≡ −3 (mod 9), d �= −3.

Let F = Q(
√

3k + 1) be a real quadratic number field. Then 3 splits completely in F . Let ℘1
and ℘2 be the primes over 3. Then F℘i

= Q3, where i = 1 or 2. Let ℘ be ℘1 or ℘2.
With notation in Section 2, we have

g℘

(
F ∗

℘

) := Log3〈NF℘/Q3(F
∗
℘)〉

[F℘ : Q3] · deg3 3
= Log3〈Q∗

3〉
deg3 3

= Z3.

By definition, ẽ℘ = [g℘(F ∗
℘) : Z3] = 1. Since ẽ℘f̃℘ = e℘f℘ = deg(F℘/Qp) = 1, we have

f̃℘ = 1. Hence deg3 ℘ = f̃℘ deg3 3 = 3. So for any x ∈ RF = Z3 ⊗Z F ∗,

ṽ℘(x) := −Log3(NF℘/Q3(x))

deg3 ℘
= −Log3(x)

3
.

By Lemma 2.2, the group C̃�(�) is generated by one generator I = [℘2 − ℘1]. This generator
satisfies three relations. One of these three relations is

ṽ℘(ε)[I ] = 0.
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Since

ṽ℘(ε) = −Log3(ε)

3
= −R3(F )

3
,

by the proof of Lemma 3.2, we have the following lemma.

Lemma 4.3. Let F = Q(
√

3k + 1) be a real quadratic field and ε a fundamental unit of F . Then
if v3(R3(F )) = 1, then v3(̃v℘(ε)) = 0. Hence if v3(R3(F )) = 1, then C̃�(�) is trivial for � = 3.

Theorem 4.4. Let F = Q(
√−9k − 3) be an imaginary quadratic number field. If 9 divides the

cardinality of K2(OF ), then 3 divides the class number of F .

Proof. If 9 divides the cardinality of K2(OF ), there are two possible cases, one is the 9-rank of
K2(OF ) greater than 0, another is the 3-rank of K2(OF ) greater than 1.

(1) If the 3-rank of K2(OF ) is greater than 1, then 3 divides the class number of F by Theo-
rem 5.6 of [1].

(2) If the 9-rank of K2(OF ) and the 3-rank of K2(OF ) are both 1, then the 3-rank of WK2(F )

is 1 by Lemma 4.2. By Lemma 4.1, this implies the 3-rank of C̃�Q(
√

3k+1) is 1.

The fundamental unit of Q(
√

3k + 1) can be one of cases (i), (iv), (v), (vi) of the table in
the beginning of Section 3. If it is (i) or (iv), then 3 divides the class number of F by Theo-
rem 3.1. If it is (v) or (vi), then by Corollary 3.3, v3(R3(Q(

√
3k + 1))) = 1. Hence by Lemma 4.3,

C̃�(�)Q(
√

3k+1) is trivial. So there is an injective homomorphism from C̃�Q(
√

3k+1) to C�
′
Q(

√
3k+1)

by Lemma 2.1 for Q(
√

3k + 1). So the 3-rank of C�
′
Q(

√
3k+1)

is positive. Hence 3 divides the

class number of Q(
√

3k + 1).
By the reflection theorem of Scholz [17]:

3-rank C�Q(
√−9k−3) � 3-rank C�Q(

√
3k+1) > 0.

So 3 divides the class number of F . �
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