IMAGINARY QUADRATIC FIELDS WITH ONO NUMBER 3

XUEJUN GUO AND HOURONG QIN

Department of Mathematics, Nanjing University, China guoxj@nju.edu.cn, hrqin@nju.edu.cn

Abstract: In this paper, we prove that an imaginary quadratic field F has class group isomorphic to $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ if and only if the Ono number of F is 3 and F has exactly 3 ramified primes under the Extended Riemann Hypothesis (ERH). In addition, we give the list of all imaginary quadratic fields with Ono number 3.

Keywords: Ono number, ideal class group.2000 Mathematics Subject Classification: 11R11, 11R29.

1. Introduction

Let F be an imaginary quadratic field with discriminant D, and

$$f_D(x) = \begin{cases} x^2 + x + \frac{1-D}{4}, & \text{if } D \equiv 1 \mod 4\\ x^2 - \frac{D}{4}, & \text{if } D \equiv 0 \mod 4 \end{cases}$$

The Ono number p_D of F is defined as $p_D = \max\{\Omega(f_D(i)), i \in \mathbb{Z} \cap [0, \frac{-D}{4} - 1]\}$, where $\Omega(f_D(i))$ is the number of prime factors (counting multiplicity) of $f_D(i)$. One can see [7] for details. Let h_D be the class number of $\mathbb{Q}(\sqrt{D})$. Then by the Frobenius-Rabinowitch Theorem ([3, 8]), $h_D = 1$ if and only if $p_D = 1$. Sasaki proved in [12] that $h_D \ge p_D$ and $h_D = 2$ if and only if $p_D = 2$. F. Sairaiji and K. Shimizu proved some very useful inequalities between class numbers and Ono numbers in [9, 10]. J. Cohen and J. Sonn conjectured in [2] that $h_D = 3$ if and only if $p_D = 3$ and D is a prime. Their conjecture is proved to be true in [4].

We will show in this paper that the ono number is not only related to the class number, but also related to the structure of the class group. Let C_D be the class group of F, t_D the number of ramified primes in F. We will prove that $C_D \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ if and only if $p_D = 3$ and $t_D = 3$. In addition, we give the list of all imaginary quadratic fields with Ono number 3.

This work was supported by the Natural Science Foundation of Jiangsu province of China (BK 2007133).

2. Main results

We use the same notations as in Section 1. Let q_D be the smallest prime number which splits completely in $\mathbb{Q}(\sqrt{D})$. By the genus theory of Gauss, if $\mathcal{C}_D \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, then $t_D = 3$. By Theorem 2.2 of [11] (or cf. [6]), we have $p_D = 3$. Next we will prove that if $t_D = 3$ and $p_D = 3$, then $\mathcal{C}_D \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Theorem 2.1. (ERH). If $p_D = 3$, then $|D| \le 9.662 \times 10^{10}$.

Proof. Assume that $p_D = 3$. By Theorem 2.1 of [10] (cf. [5]; p.111) or Lemma 17 and Theorem 18 of [2], $|D/4| < q_D^3$. By Theorem 3.3 of [10], we have $|D| \le 10^{15}$. By Table 3 of [1], $q_D \le (1.881 \cdot \log |D| + 6.18)^2$ if $25 \le \log |D| \le 100$. So we have $|D/4| < (1.881 \cdot \log |D| + 6.18)^6$ which implies that $|D| \le 9.662 \times 10^{10}$. □

By GP/PARI, one can prove that if $|D| \leq 9.662 \times 10^{10}$, then $q_D \leq 167$. In fact, there are only two imaginary quadratic fields satisfying $|D| \leq 9.662 \times 10^{10}$ and $q_D > 157$. They are

$$q_{-30942935860} = 167,$$

$$q_{-18936628027} = 163.$$

Theorem 2.2. (ERH). If $p_D = 3$, then |D| < 18629852.

Proof. Since $q_D \leq 167$ and $|D/4| < q_D^3$ (Theorem 2.1 of [10]), we have

 $|D| < 4 \cdot 167^3 = 18629852.$

We can determine all imaginary quadratic fields with Ono number 3 with the help of computer. We give the complete list on next page. By that table, we have the following theorem.

Theorem 2.3. (ERH). The ideal class group $C_D \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ if and only if $t_D = 3$ and $p_D = 3$.

If the ideal class group $C_D \simeq \mathbb{Z}/4\mathbb{Z}$, then $t_D = 2$ by the genus theory. By Sasaki's inequality ([12]) $h_D \ge p_D$, we have $p_D = 3$ or 4. However the inverse direction is not correct, i.e., $t_D = 2$ and $p_D = 3$ or 4 do not imply that $C_D \simeq \mathbb{Z}/4\mathbb{Z}$. The last case of the table is a counterexample. In that case, $t_{-3763} = 2$ and $p_{-3763} = 3$, while $C_{-3763} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$.

In the following table, (2)(2) means $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, (4) means $\mathbb{Z}/4\mathbb{Z}$, (3) means $\mathbb{Z}/3\mathbb{Z}$ and (2)(3) means $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$.

(ordered by the square free part of D)									
No.	-D	t_D	p_D	\mathcal{C}_D	No.	-D	t_D	p_D	\mathcal{C}_D
1	$84 = 2^2 \cdot 3 \cdot 7$	3	3	(2)(2)	27	$1012 = 2^2 \cdot 11 \cdot 23$	3	3	(2)(2)
2	23	1	3	(3)	28	283	1	3	(3)
3	$120 = 2^3 \cdot 3 \cdot 5$	3	3	(2)(2)	29	307	1	3	(3)
4	31	1	3	(3)	30	331	1	3	(3)
5	$132 = 2^2 \cdot 3 \cdot 11$	3	3	(2)(2)	31	$355 = 5 \cdot 71$	2	3	(4)
6	$168 = 2^3 \cdot 3 \cdot 7$	3	3	(2)(2)	32	379	1	3	(3)
7	$184 = 2^3 \cdot 23$	2	3	(4)	33	$435 = 3 \cdot 5 \cdot 29$	3	3	(2)(2)
8	$228 = 2^2 \cdot 3 \cdot 19$	3	3	(2)(2)	34	$483 = 3 \cdot 7 \cdot 23$	3	3	(2)(2)
9	59	1	3	(3)	35	499	1	3	(3)
10	$280 = 2^3 \cdot 5 \cdot 7$	3	3	(2)(2)	36	547	1	3	(3)
11	$292 = 2^2 \cdot 73$	2	3	(4)	37	$555 = 3 \cdot 5 \cdot 37$	3	3	(2)(2)
12	$312 = 2^3 \cdot 3 \cdot 13$	3	3	(2)(2)	38	$595 = 5 \cdot 7 \cdot 17$	3	3	(2)(2)

39

40

41

42

43

44

45

46

47

48

49

50

51

52

 $627 = 3 \cdot 11 \cdot 19$

 $715 = 5 \cdot 11 \cdot 13$

 $723 = 3 \cdot 241$

 $763 = 7 \cdot 109$

 $795 = 3 \cdot 5 \cdot 53$

 $1003 = 17 \cdot 59$

 $1243 = 11 \cdot 113$

 $1435 = 5 \cdot 7 \cdot 41$

 $1387 = 19 \cdot 73$

 $1555 = 5 \cdot 311$

 $3763 = 53 \cdot 71$

643

883

907

(2)(2)

(2)(2)

(3)

(4)

(4)

(3)

(3)

(4)

(4)

(4)

(4)

(2)(2)

(2)(3)

(2)(2)

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

3

 $\mathbf{2}$

 $\mathbf{2}$

3

1

1

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

3

 $\mathbf{2}$

 $\mathbf{2}$

 $328 = 2^3 \cdot 41$

 $340 = 2^2 \cdot 5 \cdot 17$

 $372 = 2^2 \cdot 3 \cdot 31$

 $408 = 2^3 \cdot 3 \cdot 17$

 $520 = 2^3 \cdot 5 \cdot 13$

 $532 = 2^2 \cdot 7 \cdot 19$

 $708 = 2^2 \cdot 3 \cdot 59$

 $760 = 2^3 \cdot 5 \cdot 19$

 $772 = 2^2 \cdot 193$

 $195 = 3 \cdot 5 \cdot 13$

83

107

139

211

 $\mathbf{2}$

1

3

3

3

1

3

 $\mathbf{3}$

1

3

3

 $\mathbf{2}$

3

1

3

3

3

3

3

3

3

 $\mathbf{3}$

3

3

3

3

3

3

(4)

(3)

(2)(2)

(2)(2)

(2)(2)

(2)(2)

(2)(2)

(2)(2)

(2)(2)

(2)(2)

(3)

(3)

(4)

(3)

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Table of imaginary quadratic fields with Ono number 3 (ordered by the square free part of D)

References

- E. Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), 355C380.
- [2] J. Cohen and J. Sonn, On the Ono invariants of imaginary quadratic fields, J. Number Theory 95 (2002), 259C267.

- [3] F. G. Frobenius, Über quadratische Formen, die viele Primzahlen darstellen, Sitzungsber. Königliche Akad. Wiss. Berlin (1912) 966-980.
- [4] H. Gu, D. Gu and Y. Liu, Ono invariants of imaginary quadratic fields with class number three, J. Number Theory 127 (2007), no. 2, 262-271.
- [5] H. Möller, Verallgemeinerung eines Satzes von Rabinowitsch über imaginär-quadratische Zahlkörper, J. Reine Angew. Math. 285 (1976), 100-113.
- [6] R. A. Mollin, Quadratics, CRC Press, (1995).
- [7] T. Ono, Arithmetic of algebraic groups and its applications, St. Paul's International Exchange Series Occasional Papers VI, St. Paul's university, Tokyo (1986).
- [8] G. Rabinowitch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, J. Reine Angew. Math. 142 (1913), 153-164.
- [9] F. Sairaiji and K. Shimizu, A note on Ono's numbers associated to imaginary quadratic fields, Proc. Japan Acad. 77A (2001), 29-31.
- [10] F. Sairaiji and K. Shimizu, An inequality between class numbers and Ono's numbers associated to imaginary quadratic fields, Proc. Japan Acad. 78A (2002), 105-108.
- [11] K. Shimizu, Imaginary quadratic fields whose exponents are less than or equal to 2, Math. J. Okayama Univ., 50 (2008), 85-99.
- [12] R. Sasaki, On a lower bound for the class number of an imaginary quadratic field, Proc. Japan Acad. 62A (1986), 37-39.