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Some congruences connecting quadratic class numbers
with continued fractions
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Weidong Cheng (Nanjing and Chongqing) and Xuejun Guo (Nanjing)

1. Introduction. In what follows, p always stands for a positive prime
number. Let h(−p) and h(p) be the ideal class numbers of the quadratic
number fields Q(

√
−p) and Q(

√
p) respectively. It is of interest to study the

relationships between h(−p) and h(p) modulo the powers of 2. Many results
on this topic are already known. For example, if p ≡ 3 (mod 4) is prime then
h(−p) and h(p) are odd (see [1, p. 413] and [2, p. 100, §3]). More recently,
motivated by a conjecture of Richard Guy, Lynn Chua, Benjamin Gunby,
Soohyun Park and Allen Yuan [3] proved a congruence connecting h(p) and
h(−p) with continued fractions modulo 16. Specifically, suppose that √p has
the negative continued fraction expansion

(1.1)
√
p = b0 −

1

b1 −
1

b2 − . . .

,

where bi ≥ 2 are integers for i ≥ 1, and b0 is an arbitrary integer. The
sequence {bi}i∈N is periodic from b1 on; let b1, . . . , br be its minimal period.
Define

(1.2) m(p) :=
1

3

r∑
i=1

(bi − 3).

(For a more general definition, see Definition 2.3.) In [3], the authors mainly
proved the following theorem.
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Theorem 1.1 (Chua, Gundy, Park and Yuan [3, Theorem 1.3]). If p ≡ 3
(mod 4), then

h(−p) ≡ h(p)m(p) (mod 24).(1.3)

To prove Theorem 1.1, the authors used a significant result obtained by
Hirzebruch [11, p. 241] and Zagier [24, 25] relating imaginary quadratic class
numbers to continued fractions that will be stated in Section 2.3. Note that
the congruence (1.3) does not hold modulo 25: for example, if p = 79, then
h(−79) = 5, h(79) = 3, m(79) = 7 and h(79)m(479)− h(−79) = 24.

We are going to study the same problem for p ≡ 1 (mod 4). Note that Za-
gier’s result does not work in that case. Fortunately, Hongwen Lu generalized
Zagier’s formula in the 1990s (see for example [14, 15, 17]), which enables us
to prove some congruences between h(p) and h(−p) modulo powers of 2 by
applying similar techniques to those in [3].

The main results of this paper are the following.

Main Theorem 1.2. If p ≡ 1 (mod 8), then

(1.4) h(−p) ≡ h(p)m(4p) (mod 23),

where m(4p) is an integer depending on the minimal period of the negative
regular continued fraction expansion of

√
4p as in Definition 2.3.

Main Theorem 1.3. Let p ≡ 5 (mod 8), and suppose that ε=(t+u
√
p)/2

> 1 is the (unique) fundamental unit of Q(
√
p) such that t ≡ u ≡ 0 (mod 2).

Then

(1.5) h(−p) ≡ h(p)m(4p) (mod 22),

where m(4p) is as above.

According to Table 2 in Appendix, if p = 37, then h(−37) = 2, h(37) = 1,
m(4·37) = 6 and h(37)m(4·37)−h(−37) = 22. This implies that the modulus
22 in (1.5) is optimal.

The organization of this paper is the following. In Section 2, we give some
preliminaries on continued fractions, Hirzebruch sums and Dedekind sums,
and also include an overview of the results of Don Zagier and Hongwen Lu
to make our exposition self-contained. In Section 3, we show some lemmas,
and then our main Theorems 1.2 and 1.3 are proved.

2. Preliminaries

2.1. Continued fractions and Hirzebruch sums. For the basics
about continued fraction expansions of real numbers, we refer to Hardy and
Wright [9, Chapter X] and Lu [15, Chapter 1]. For any α ∈ R, the regular
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continued fraction expansion of α is the expression

α = a0 +
1

a1 +
1

a2 + . . .

,

where ai ≥ 1 are integers for i ≥ 1, and a0 is an arbitrary integer. We then
write α = [a0; a1, a2, . . . ].

Similarly, for any α ∈ R, the negative continued fraction expansion of α
is the expression

α = b0 −
1

b1 −
1

b2 − . . .
where bi ≥ 2 are integers for i ≥ 1, and b0 is an arbitrary integer. We then
write α = [[b0; b1, b2, . . . ]]. Recall that we have used this kind of continued
fraction expansion to define m(p) in (1.2).

For irrational numbers, the transformation formula between the above
two kinds of continued fraction expansions is given below.

Proposition 2.1 (Zagier [24, pp. 177–178], or Lu [15, pp. 15–16, Lemma
1.8], or Eustis [6]). Let θ ∈ R \ Q. If θ = [a0; a1, a2, . . . ], then θ = [[a0 + 1;
τa1−1, a2+2, τa3−1, a4, τ

a5−1, a6+2, . . . ]], where τn denotes 2, . . . , 2 (n times)
for 0 ≤ n ∈ Z.

Definition 2.2. A continued fraction with elements {ai}i≥0 is said to
be periodic if there exist k and L such that al = al+k for l ≥ L. If k and L
are minimal possible, then we call aL, . . . , aL+k−1 the minimal period, and
the corresponding continued fraction is written as

[a0; a1, . . . , aL−1, aL, . . . , aL+k−1] or [[a0; a1, . . . , aL−1, aL, . . . , aL+k−1]].

A quadratic surd is an irrational root of a quadratic equation with inte-
geral coefficients. It is well-known that each irrational number has a unique
infinite continued fraction expansion. And the Euler–Lagrange theorem [9,
§10.12] says that for any irrational number α, the continued fraction expan-
sion of α is eventually periodic if and only if α is a quadratic surd.

Definition 2.3 (Lu [15, p. 154] and Chua, Gundy, Park and Yuan [3,
p. 1346, (1.2)]). Let α be a quadratic surd with regular continued fraction
expansion α = [â0; â1, . . . , âs, a1, . . . , ak], where a1, . . . , ak is the minimal
period. Define

Ψ(α) :=

{∑k
i=1(−1)i+sai if k is even,

0 if k is odd.
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We call Ψ(α) the Hirzebruch sum of α. Similarly, suppose that α has the
negative continued fraction expansion α = [[b̂0; b̂1, . . . , b̂t, b1, . . . , bl]], where
b1, . . . , bl is the minimal period. Define

m(α2) :=
1

3

l∑
j=1

(bj − 3).

The relationship between Ψ(∗) and m(∗) is the following.

Proposition 2.4. If α is a quadratic surd, then Ψ(α) = 3m(α2).

Proof. Let α = [a0; a1, . . . , as, as+1, . . . , as+k], where as+1, . . . , as+k is the
minimal period. On the one hand, from Definition 2.3 we have

Ψ(α)

=


(−1)s+1[(as+1 + as+3 + · · ·+ as+k−1)− (as+2 + as+4 + · · ·+ as+k)]

if k is even,
0 if k is odd.

On the other hand, according to Proposition 2.1, α = [[a0 +1; τa1−1, a2 +2,
τa3−1, a4 + 2, . . . ]].

We distinguish four cases:
(1) For s ≡ 0 (mod 2) and k ≡ 0 (mod 2), since as 6= as+k implies

as + 2 6= as+k + 2, we have α = [[a0 + 1; τa1−1, a2 + 2, τa3−1, a4 + 2, . . . ,

τas−1−1, as + 2, τas+1−1, as+2 + 2, . . . , τas+k−1−1, as+k + 2]]. Therefore, Defi-
nition 2.3 gives

m(α2) = 1
3 [−(as+1 − 1)− (as+3 − 1)− · · · − (as+k−1 − 1)

+ (as+2 − 1) + (as+4 − 1) + · · ·+ (as+k − 1)]

= 1
3(−1)

s+1[(as+1 + as+3 + · · ·+ as+k−1)− (as+2 + as+4 + · · ·+ as+k)]

= 1
3Ψ(α).

Here we have used the fact that (−1)s+1 = −1.
(2) For s ≡ 1 (mod 2) and k ≡ 0 (mod 2), if as ≤ as+k then α =

[[a0+1; τa1−1, a2+2, τa3−1, a4+2, . . . , as−1+2, τas−1, as+1 + 2, τas+2−1, . . . ,

as+k−1 + 2, τas+k−as−2]]. It follows that

m(α2) = 1
3 [−(as − 1)− (as+2 − 1)− (as+4 − 1)− · · · − (as+k−2 − 1)

− (as+k − as − 2) + (as+1 − 1) + (as+3 − 1) + · · ·+ (as+k−1 − 1)]

= 1
3 [(as+1 + as+3 + · · ·+ as+k−1)− (as+2 + as+4 + · · ·+ as+k)]

= 1
3(−1)

s+1[(as+1+as+3+· · ·+as+k−1)−(as+2 + as+4+· · ·+as+k)]
= 1

3Ψ(α).

Here we have used the fact that (−1)s+1 = 1.
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Similarly, if as > as+k then α = [[a0 + 1; τa1−1, a2 + 2, τa3−1, a4 + 2,

. . . , as−1 + 2, τas−as+k , τas+k−1, as+1 + 2, τas+2−1, . . . , as+k−1 + 2]]. Hence

m(α2) = 1
3 [−(as+k − 1)− (as+2 − 1)− (as+4 − 1)− · · · − (as+k−2 − 1)

+ (as+1 − 1) + (as+3 − 1) + · · ·+ (as+k−1 − 1)]

= 1
3 [(as+1 + as+3 + · · ·+ as+k−1)− (as+2 + as+4 + · · ·+ as+k)]

= 1
3Ψ(α).

(3) For s ≡ 0 (mod 2) and k ≡ 1 (mod 2), we have α=[[a0+1; τ
a1−1, a2+2,

τa3−1, a4 + 2, . . . , τas−1−1, as + 2, τas+1−1, as+2 + 2, . . . , as+k−1 + 2, τas+k−1,

as+1 + 2, τas+2−1, . . . , τas+k−1−1, as+k + 2]]. Hence

m(α2) = 1
3 [−(as+1 − 1)− (as+3 − 1)− · · · − (as+k − 1)− (as+2 − 1)

− (as+4 − 1)− · · · − (as+k−1 − 1) + (as+2 − 1) + (as+4 − 1) + · · ·
+ (as+k−1 − 1) + (as+1 − 1) + (as+3 − 1) + · · ·+ (as+k − 1)]

= 0 = 1
3Ψ(α).

(4) For s ≡ 1 (mod 2) and k ≡ 1 (mod 2), similarly to (2), if as ≤ as+k then
α = [[a0+1; τa1−1, a2+2, τa3−1, a4+2, . . . , as−1+2, τas−1, as+1 + 2, τas+2−1,

. . . , τas+k−1−1, as+k + 2, τas+1−1, as+2 + 2, . . . , as+k−1 + 2, τas+k−as−2]]; and
if as > as+k then α = [[a0 + 1; τa1−1, a2 + 2, τa3−1, a4 + 2, . . . , as−1 + 2,

τas−as+k , τas+k−1, as+1+2, τas+2−1, . . . , τas+k−1−1, as+k + 2, τas+1−1, as+2 + 2,
. . . , as+k−1 + 2]]. As in (3), in both cases, we have m(α2) = 0 = 1

3Ψ(α).

In what follows, we follow the notation of [15], and use Ψ(∗) instead of
m(∗) through our proof in Section 3.

Now we list some important properties of Hirzebruch sums of real quad-
ratic surds.

Proposition 2.5. Let α be a real quadratic surd and n ∈ Z. Then

Ψ(α± n) = Ψ(α).

Proof. This follows immediately from the definitions of regular continued
fraction expansion and Hirzebruch sums.

Proposition 2.6. Let a, b, c be rational integers such that |b| ≤ a ≤ −c,
gcd(a, b, c) = 1 and d = b2 − 4ac is not a perfect square. If the fundamental
unit of Q(

√
d) has norm −1, then Ψ

(
b+
√
d

2a

)
= 0.

Proof. This follows easily from [15, Chapter 1, p. 47, Lemma 2.4]. Ac-
tually, from [15] we see that if the fundamental unit of Q(

√
d) has norm

−1 then the length of the minimal period of the regular continued fraction
expansion of b+

√
d

2a must be odd. This implies that Ψ
(
b+
√
d

2a

)
= 0.
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Proposition 2.7. For any real quadratic surd α = (u +
√
v)/w, where

u, v, w are integers such that w 6= 0 and v > 0, let α′ := (u−
√
v)/w denote

the algebraic conjugate of α. Then Ψ(α) = Ψ(−α′).

Proof. This follows easily from Herzog [10, Theorem 1] and Perron [19,
p. 56, lines 2, 3]. In fact, we only need to verify each of the 28 cases in [10,
Theorem 1, Table I]. The details are omitted.

2.2. Dedekind sums. For the basics about Dedekind sums, we refer to
Rademacher and Grosswald’s book [20].

Definition 2.8 ([20, p. 1]). The Dedekind sums are denoted by s(h, k)
and defined as follows: Let h, k be integers with gcd(h, k) = 1 and k ≥ 1;
then

s(h, k) :=

k∑
n=1

((
hn

k

))((
n

k

))
,

where

((x)) :=

{
x− [x]− 1/2 if x /∈ Z,
0 if x ∈ Z.

Here [x] denotes the greatest integer not exceeding x.

The following propositions on Dedekind sums will be used in our proof.

Proposition 2.9 (Zagier [25, p. 83, i), line 7]). Let h, k be coprime
integers with k ≥ 1. Then

s(h, k) = s(h± k, k).

Proposition 2.10 (Reciprocity Theorem, [20, p. 4, Theorem 1]). Let
h, k be coprime integers with k ≥ 1. Then

s(h, k) + s(k, h) = −1

4
+

1

12

(
h

k
+

1

hk
+
k

h

)
.

Proposition 2.11 ([20, p. 38, Theorem 4]). Let d, c be coprime integers
with c ≥ 1 odd. Then (

d

c

)
= (−1)

1
2
( c−1

2
−6cs(d,c)).

2.3. Overview of Zagier’s work. In this subsection, we describe some
of the main ideas of Zagier’s work [25], which will be used in Section 3
frequently (see also [3, Section 2.2]).

A matrix A ∈ SL(2,Z) is called hyperbolic if |Tr(A)| > 2, where Tr
denotes trace. From [25, §III, p. 86], there exists a one-to-one correspondence

(2.1) A↔ (M,V )
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between conjugacy classes of hyperbolic matrices A ∈ SL(2,Z) and equiva-
lence classes of pairs (M,V ), where M is a free Z-module of rank 2 in a real
quadratic field K, and V is an abelian group of rank 1 generated by a totally
positive unit ε ∈ K such that εM =M . Two pairs (M,V ) and (M ′, V ′) are
equivalent if M ′ = αM for some α 6= 0 in K and V ′ = V .

Namely, suppose (M,V ) is such a pair, and {β1, β2} is an oriented basis
of M (i.e., β2 > 0 and β1β

′
2 − β′1β2 > 0, where β′i denotes the algebraic

conjugate of βi for i = 1, 2). Let ε > 1 be a generator of V . Noting that
εM = M , we consider the linear transformation of multiplying by ε on M ,
and write

(2.2) εβ1 = aβ1 + bβ2, εβ2 = cβ1 + dβ2.

This gives a hyperbolic matrix A :=
(
a b
c d

)
∈ SL(2,Z). Conversely, given a

hyperbolic matrix A ∈ SL(2,Z), let w and w′ be the roots of A · x = x
such that w > w′, where A · x denotes the corresponding linear fractional
transformation on C. We choose β1 = w, β2 = 1, so M is the module
generated by w and 1. Let ε > 1 > ε′ > 0 be the eigenvalues of A, and
choose V to be generated by ε.

Each hyperbolic matrix A =
(
a b
c d

)
with c > 0 is conjugate in SL(2,Z) to

a product of the form

(2.3)
(
b1 −1
1 0

)(
b2 −1
1 0

)
· · ·
(
br −1
1 0

)
with b1, . . . , br ∈ Z, bi ≥ 2 and at least one bi > 2 (see [25, §V, pp. 91–92]).
Furthermore, r is unique and b1, . . . , br are unique up to a cyclic permutation.
We call (b1, . . . , br) the cycle associated with the matrix A. To find these bi,
let w be the larger solution to the equation A · x = x, and suppose the
negative continued fraction expansion of w is

(2.4) w = c0 −
1

c1 −
1

c2 − . . .

(ci ≥ 2 for i ≥ 1).

The sequence {ci}i∈N will be periodic from a certain index i0 on, and the
cycle (b1, . . . , br) of A is just the period of this sequence, i.e., (b1, . . . , br) is
either the minimal period in (2.4) or κ times the minimal period, depending
on whether in the pair (M,V ) corresponding to A the group V coincides with
the group of all totally positive units leaving M invariant or is a subgroup
of index κ of that group.

By Dedekind’s theorem [25, p. 83, Théorème], given A =
(
a b
c d

)
∈ SL(2,Z)

with c > 0, we define an integer
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(2.5) nA :=
a+ d

c
− 3− 12s(d, c),

where s(d, c) is the Dedekind sum defined in Definition 2.8. Note that nA was
originally defined by taking the logarithm of ∆(A · z), where ∆ is the well-
known cusp form of weight 12 on SL(2,Z). It is easy to see that nA depends
only on the conjugacy class of A, i.e., nBAB−1 = nA for any A,B ∈ SL(2,Z).
If a hyperbolic matrix A is written as a product (2.3), then [25, p. 90, Lemme]
says that

(2.6) nA =
r∑
i=1

(bi − 3).

By Definition 2.3 and Proposition 2.4, this is equivalent to

(2.7) nA = 3κm(w2) = κΨ(w),

where κ is an index depending on the choice of V as in the previous para-
graph. In our later proof, κ = 1 always holds (see the remark at the end of
this subsection).

The above analysis makes it possible to calculate nA through continuous
fractions. Actually, combining this fact with the theorems of Meyer (see
[18] or [25, pp. 86–87]), one can obtain remarkable identities expressing class
numbers in terms of continuous fractions. For example, Zagier [24, 25] proved
that if p > 3 is a prime congruent to 3 modulo 4, then

(2.8) h(−p) = 1

3

∑
I∈C

χ(I)n(I),

where C is a complete set of representatives of the narrow ideal classes of
Q(
√
p), χ is the genus character [22, pp. 60–61], and n(I) = nA with A the

matrix corresponding to the action of the fundamental unit of Q(
√
p) on

a basis of I. Note that χ(I)n(I) is independent of the choice of I ∈ C. In
particular, if h(p) = 1 in (2.8), then (2.7) gives

(2.9) h(−p) = m(p).

This formula can also be found in [11, p. 241, Proposition].

Remark. We will generally let K = Q(
√
p), M will be some free Z-

module of rank 2 in the ring OK of integers, and V will be the full group of
all totally positive units in OK which leave M invariant. This gives κ = 1
in (2.8). Actually, one can choose V = {εn+ | n ∈ Z}, where ε+ is a totally
positive fundamental unit in K. Thus we obtain a well-defined pair (M,V ).
Under the correspondence (2.1), one has to consider the linear transformation
of multiplying by ε+ on the generators of M as in (2.2), which gives rise to
a hyperbolic matrix in SL(2,Z). Furthermore, an analogue of (2.8) will be
stated in the next subsection; then the correspondence (2.1) and formula
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(2.7) show how to write the Hirzebruch sums there in terms of Dedekind
sums.

2.4. Lu’s theorem. Let d > 1 be a fundamental discriminant and OK
the ring of integers of K = Q(

√
d). For any α1, α2 ∈ OK , we denote by

[α1, α2] the free Z-module of rank 2 generated by α1 and α2, say α1Z⊕α2Z,
and by Cl(K) the ideal class group of K. The elements in Cl(K) are called
ideal classes. Throughout, we let id be the identity in Cl(K), and use capital
fraktur letters to denote ideal classes in Cl(K), e.g., A, I. For any I ∈ Cl(K),
one can always choose an integral ideal I = [a, (−b+

√
d)/2] ∈ I, where 0 <

a ∈ Z, b ∈ Z, and there exists a c ∈ Z such that d = b2−4ac, gcd(a, b, c) = 1,
and either |b| < a ≤ −c or b = a ≤ −c. Actually a can be taken to be the
minimal positive integer in I, and a, b are uniquely determined by I (see for
example, [15, p. 139], or [4, Chapter 5, §5.2 and §5.6]). All the I chosen in
this way form a complete set of representatives of ideal classes in Q(

√
d).

In [15, Chapter 6], Lu gave a new proof for the class number formula of
Hirzebruch and Zagier [24, p. 782, (9.6)]. Moreover, Lu proved three more
analogous class number formulas connecting the class numbers of imaginary
quadratic fields with Hirzebruch sums Ψ(∗). Here we list one of those formu-
las, which is essential to our proof in Section 3.

Theorem 2.12 (Lu [15, pp. 348–349, Theorem 3.3]). Let both d > 1 and
−k < −1 be the fundamental discriminants such that 4 ‖ k and gcd(d, k) = 1,
and let K = Q(

√
d). Then

24δdJh(−k)h(−dk) = w−kw−kd
∑

I∈Cl(K)

I=[a,(−b+
√
d)/2]∈I

(S1(I) + S2(I)),

where

S1(I) =
∑

4nu=k
n,u≥1

χu(a)
∑

m (mod 4n)

χ4n(am
2 + bm+ c)Ψ

(
u

4n

(
m+

b+
√
d

2a

))
,

S2(I) =
∑

4nu=k
n,u≥1

χ4u(a)
∑

m (modn)

χn(am
2 + bm+ c)

(
ηΨ

(
u

n

(
m+

b+
√
d

2a

))

− 3Ψ

(
2u

n

(
m+

b+
√
d

2a

))
+ 2Ψ

(
4u

n

(
m+

b+
√
d

2a

)))
.

Here I = [a, (−b+
√
d)/2] ∈ I is such that a, b, c are integers satisfying a > 0,

d = b2 − 4ac, gcd(a, b, c) = 1 and either |b| < a ≤ −c or b = a ≤ −c; such
I runs through a complete set of representatives of ideal classes in Cl(K).
Moreover, ε (resp. ε+) is the fundamental unit (resp. totally positive funda-
mental unit) of K; δd is the exponent given by ε+ = εδd; J (resp. J ′) is a
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positive integer such that εJ+ (resp. εJ ′+ ) corresponds to the least solution of
Pell’s equation x2 − dk2y2 = 4 (resp. x2 − d(k/4)2y2 = 4) in integers; w−D
is the number of roots of unity in Q(

√
−D);

η =
J

J ′
=

{
1 if d ≡ 1 (mod 8),
1 or 3 if d ≡ 5 (mod 8);

χu and χn are real primitive characters modulo u and n respectively; and
finally Ψ(∗) is a Hirzebruch sum.

Theorem 2.12 can be proved by applying the Kronecker limit formula for
real quadratic number fields with respect to the L-functions defined by

(2.10) L̃(s, χ, I) :=
∑

λ∈I/ε+, λ�0

χ(N(λ)/N(I))

(N(λ)/N(I))s
, Re(s) > 1,

and
(2.11) L̃(s, χ) :=

∑
I

L̃(s, χ, I), Re(s) > 1,

where I = [a, (−b+
√
d)/2] is an integral ideal as above, and it runs over a

complete set of representatives of the ideal class group (in a narrower sense)
of K in (2.11); χ is a Dirichlet character; λ runs over all algebraic integers
in I, and λ� 0 means that λ is totally positive; and N(∗) denotes the norm
over Q. Such Kronecker limit formulas were studied by Lu and his students
in the 1980s–1990s: see for example [13, 17, 16] and [15, Chapter 3].

For the complete proof of the above theorem, we refer the reader to
[15, pp. 358–367, Chapter 6, Section 3.4]. Two references in English are
[17, p. 1413, Theorem 8] and [14, p. 1146, Theorem 2], but there are some
differences in formulas appearing in those earlier references.

3. Proofs of main results

3.1. Some lemmas. In this subsection, we give some lemmas which will
be essential to the proof of Theorems 1.2 and 1.3.

Lemma 3.1. Let p ≡ 1 (mod 4) and K = Q(
√
p). Suppose one of the

following conditions is satisfied:

(1) p ≡ 1 (mod 8);
(2) p ≡ 5 (mod 8), and the fundamental unit of K, say ε := (t+u

√
p)/2 > 1,

satisfies t ≡ u ≡ 0 (mod 2).

Then

(3.1) h(−p) = 1

6

∑
I∈Cl(K)

I=[a,(−b+√p)/2]∈I

(S1(I) + S2(I)) ,

where
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S1(I) = χ4(c)

(
Ψ

(
b+
√
p

8a

)
− Ψ

(
4a+ b+

√
p

8a

))
+ χ4(a+ b+ c)

(
Ψ

(
2a+ b+

√
p

8a

)
− Ψ

(
−2a+ b+

√
p

8a

))
,

S2(I) = χ4(a)

(
−3Ψ

(
b+
√
p

a

)
+ 2Ψ

(
2b+ 2

√
p

a

))
,

where the notations are as in Theorem 2.12.

Proof. This is a special case of Theorem 2.12. In fact, if we take k = 4,
d = p in Theorem 2.12, then h(−k) = 1, h(−dk) = h(−p), w−k = 4 and
w−kd = 2.

Under the assumptions (1) and (2), the fundamental unit of Q(
√
p) has

norm −1 (see for example [8, p. 182, Corollary 2]), which implies δd = 2,
J = J ′ = 1, and thus η = 1 in Theorem 2.12 by [7, p. 120, Lemma 11].

Note that the real primitive character χ4 is defined by χ4(0) = χ4(2) = 0,
χ4(1) = 1, χ4(3) = −1, where s (s = 0, 1, 2, 3) denote the congruent residues
modulo 4. Since b is odd, it is easy to see that χ4(2b+c) = χ4(2+c) = −χ4(c)
and χ4(a− b+ c) = −χ4(a+ b+ c) by splitting into cases depending on the
parity of a and c. Finally, by Propositions 2.5 and 2.6, we have Ψ

(6a+b+√p
8a

)
=

Ψ
(−2a+b+√p

8a

)
and Ψ

( b+√p
2a

)
= 0.

For the remainder of this paper, for any I ∈ Cl(K), we always choose
I = [a, (−b + √p)/2] ∈ I such that a > 0, p = b2 − 4ac for some c ∈ Z,
gcd(a, b, c) = 1 and either |b| < a ≤ −c or b = a ≤ −c. Such an I is uniquely
determined by I if we choose a to be the minimal positive integer in I,
and thus a, b are uniquely determined by I. Note that I is different from
the ideals in I corresponding to the “reduced forms” with respect to real
quadratic number fields. Therefore, for any I ∈ Cl(K), we may define
(3.2) tI = tI := S1(I) + S2(I),

where S1(I), S2(I) are as in Lemma 3.1.

Lemma 3.2. In the notation above, if p ≡ 1 (mod 4), then tI = tI−1 for
any I ∈ Cl(K), where I−1 is the inverse of I in Cl(K).

Proof. For any I ∈ Cl(K), choose I = [a, (−b + √p)/2] ∈ I as before.
Then J = [a, (b +

√
p)/2] ∈ I−1 [4, p. 227, Proposition 5.2.5]. By (3.2),

tI = tI , tI−1 = tJ . So it suffices to show that tI = tJ .
Lemma 3.1 shows that

S1(J) = χ4(c)

(
Ψ

(
−b+√p

8a

)
− Ψ

(
4a− b+√p

8a

))
+ χ4(a− b+ c)

(
Ψ

(
2a− b+√p

8a

)
− Ψ

(
−2a− b+√p

8a

))
.
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From Propositions 2.5 and 2.7 we have Ψ
(−b+√p

8a

)
= Ψ

( b+√p
8a

)
, Ψ
(4a−b+√p

8a

)
=Ψ

(4a−b+√p
8a −1

)
=Ψ

(−4a−b+√p
8a

)
=Ψ

(4a+b+√p
8a

)
, Ψ
(2a−b+√p

8a

)
=Ψ

(−2a+b+√p
8a

)
,

Ψ
(−2a−b+√p

8a

)
= Ψ

(2a+b+√p
8a

)
. Recalling that χ4(a− b+ c) = −χ4(a+ b+ c)

from the proof of Lemma 3.1, we get S1(J) = S1(I).
Similarly, we obtain S2(J) = S2(I). Then substituting S1(J) and S2(J)

into (3.2) gives tJ = S1(J) + S2(J) = S1(I) + S2(I) = tI .

In what follows in this subsection, unless otherwise specified, p denotes
a prime number satisfying p ≡ 1 (mod 8).

Lemma 3.3. In the notation above, if p ≡ 1 (mod 8), then tid = 2Ψ(2
√
p),

where id denotes the identity element in Cl(K).

Proof. For K = Q(
√
p) with p ≡ 1 (mod 8), the ring OK has a Z-basis

consisting of 1 and −1+
√
p

2 . ChooseOK for the representative of id ∈ Cl(K) as
in (3.2), so a = b = 1, c = (1−p)/4. Since p ≡ 1 (mod 8), both c = (1−p)/4
and a+ b+ c are even integers, This implies that χ4(c) = χ4(a+ b+ c) = 0.
So S1(OK) = 0. Moreover, χ4(a) = χ4(1) = 1 shows that

tid = S2(OK) = −3Ψ(1 +
√
p) + 2Ψ(2 + 2

√
p).

Letting a = 1, b = 0, d = 4p and c = −p in Proposition 2.6 gives Ψ(1+√p) =
Ψ(
√
p) = 0, so tid = 2Ψ(2 + 2

√
p) = 2Ψ(2

√
p).

The analog of formula (2.9) given below follows easily from Lemmas 3.1
and 3.3.

Corollary 3.4 (Lu [15, p. 371, Example 4]). If p ≡ 1 (mod 8) is prime
and h(p) = 1, then

h(−p) = 1
3Ψ(2

√
p) = m(4p).

Lemma 3.5. In the notation above, if p ≡ 1 (mod 8), then tI ≡ tI′ (mod 8)
for any I, I′ ∈ Cl(K).

Proof. The technique used in the proof below is similar to that of [3,
Theorem 1.1]. We frequently use Zagier’s results stated in Subsection 2.3
to replace Hirzebruch sums in Lemma 3.1 by Dedekind sums. It suffices to
prove the conclusion when I′ = id ∈ Cl(K), i.e., we only need to show
that tI − tid ≡ 0 (mod 8), where tid = 2Ψ(

√
4p) by Lemma 3.3. Choose

I = [a, (−b +
√
d)/2] ∈ I as in (3.2), so tI = tI and it suffices to prove

tI − tid ≡ 0 (mod 8).
Let ε be the unique fundamental unit of K = Q(

√
p) larger than 1, and

let ε+ be the totally positive fundamental unit. Since p ≡ 1 (mod 8), we have
NK/Q(ε) = −1 and ε+ = ε2. By [5, p. 372, §3, Proposition], we can write
ε = r + s

√
p, where r and s are positive integers satisfying r ≡ 0 (mod 4)

and s ≡ 1 (mod 4). Thus ε+ = ε2 = r2 + s2p+ 2rs
√
p. From now on, we set
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ε+ = R+ S
√
p, where R = r2 + s2p ≡ 1 (mod 8) and S = 2rs ≡ 0 (mod 8).

Then NK/Q(ε+) = 1 implies R2 − pS2 = 1.
From p = b2 − 4ac ≡ 1 (mod 8), it follows that b must be odd and

thus b2 ≡ 1 (mod 8), and a and c cannot both be odd. To eliminate the
influence of the character χ4 during our proof, we divide the proof into six
cases according to the parity of a, b and c:

Case (1): a ≡ 1 (mod 4) and c ≡ 0 (mod 2);
Case (2): a ≡ 3 (mod 4) and c ≡ 0 (mod 2);
Case (3): a ≡ 0 (mod 2) and c ≡ 1 (mod 4);
Case (4): a ≡ 0 (mod 2) and c ≡ 3 (mod 4);
Case (5): a ≡ c ≡ 0 (mod 2) and a+ b+ c ≡ 1 (mod 4);
Case (6): a ≡ c ≡ 0 (mod 2) and a+ b+ c ≡ 3 (mod 4).

Case (1). As a ≡ 1 (mod 4), c ≡ 0 (mod 2) and b ≡ 1 (mod 2), we have
χ4(a) = 1 and χ4(c) = χ4(a+ b+ c) = 0. By Lemmas 3.1 and 3.3, we have
tI = −3Ψ

( b+√p
a

)
+ 2Ψ

(2b+2
√
p

a

)
, and thus

tI − tid = −3Ψ
(
b+
√
p

a

)
+ 2Ψ

(
2b+ 2

√
p

a

)
− 2Ψ(2

√
p).(3.3)

We now show in detail how to represent the Hirzebruch sum Ψ(2
√
p)

by Dedekind sums, as the techniques used here will be applied in all other
cases. We have OK =

[1+√p
2 , 1

]
with oriented generators (i.e., 1+

√
p

2 > 0

and 1+
√
p

2 · 1′ −
(1+√p

2

)′ · 1 =
√
p > 0). Consider the action of the linear

transformation on OK via multiplication by ε+ on the basis:

ε+

(
(1 +

√
p)/2

1

)
=

(
R+ S (p− 1)S/2

2S R− S

)(
(1 +

√
p)/2

1

)
.

Consider the free Z-module M0 = [2
√
p, 1] = 2

√
pZ ⊕ Z of rank 2 with

oriented generators; it is easy to check that ε+M0 =M0. The basis transfor-
mation from OK to M0 is given by(

2
√
p

1

)
=

(
4 −2
0 1

)(
(1 +

√
p)/2

1

)
.

By linear algebra (see for example [21, p. 375, Corollary 4.73]), multiplication
by ε+ on M0 gives rise to the matrix

A0 =

(
4 −2
0 1

)(
R+ S (p− 1)S/2

2S R− S

)(
4 −2
0 1

)−1
=

(
R 2pS

S/2 R

)
.

It is clear that A0 ∈ SL(2,Z), Tr(A0) = 2R > 2, i.e., A0 is hyperbolic.
So A0 has two real fixed points in C as a linear fractional transformation.
Actually, one can verify that 2

√
p is the larger fixed point, and ε+ is the

larger eigenvalue of A0.
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This A0 can be used to represent Ψ(2√p) through Dedekind sums as
follows. By (2.5)–(2.7), noting that κ = 1 there by the choice of V , we have

(3.4) Ψ(2
√
p) = 3m(4p) = nA0 = 4R/S − 3− 12s(R,S/2).

To write Ψ
( b+√p

a

)
and Ψ

(2b+2
√
p

a

)
as Dedekind sums, we consider the

modulesM1 = [b+
√
p, a] andM2 = [2b+2

√
p, a], where the generators have

been oriented. After computations as above, we get two matrices

A1 =

(
R+ bS (p− b2)S/a
aS R− bS

)
, A2 =

(
R+ bS 2(p− b2)S/a
aS/2 R− bS

)
.

It is easy to verify that A1 and A2 are hyperbolic, their larger fixed points
are (b+√p)/a and (2b+2

√
p)/a respectively, and they have the same larger

eigenvalue ε+. From (2.5)–(2.7) again, we obtain

Ψ

(
b+
√
p

a

)
=

2R

aS
− 3− 12s(R− bS, aS),(3.5)

Ψ

(
2b+ 2

√
p

a

)
=

4R

aS
− 3− 12s(R− bS, aS/2).(3.6)

After substituting (3.4)–(3.6) into (3.3), Proposition 2.9 yields

tI − tid = −(8a− 2)R

aS
+ 9 + 24(s(R,S/2)− s(R− bS, aS/2))(3.7)

+ 36s(R− bS, aS)

= −(8a− 2)R

aS
+ 9 + 24(s(E,S/2)− s(E, aS/2))

+ 36s(E, aS),

where E = R+(a− b)S. Note that E > 0 since |b| ≤ a implies a− b ≥ 0. To
prove tI − tid ≡ 0 (mod 8), we need to make some transformations by using
the reciprocity theorem for Dedekind sums. From Proposition 2.10, we have

s(E,S/2) = −s(S/2, E)− 1

4
+

1

12

(
2E

S
+

2

ES
+

S

2E

)
,(3.8)

s(E, aS/2) = −s(aS/2, E)− 1

4
+

1

12

(
2E

aS
+

2

aES
+
aS

2E

)
,(3.9)

s(E, aS) = −s(aS,E)− 1

4
+

1

12

(
E

aS
+

1

aES
+
aS

E

)
.(3.10)

Substituting (3.8)–(3.10) into (3.7), and noting that NK/Q(ε+)=R
2−pS2

= 1, we get

(3.11) tI − tid =W1 + 24(s(aS/2, E)− s(S/2, E))− 36s(aS,E),

where
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W1 = − (8a−2)R
aS + 9 + 24

(
1
12

(
2E
S + 2

ES + S
2E −

2E
aS −

2
aES −

aS
2E

))
+ 36

(
−1

4 + 1
12

(
E
aS + 1

aES + aS
E

))
= 1

aES (−2(4a− 1)ER+ (4a− 1)E2 + (2a2 + a)S2 + 4a− 1)

= 1
aES (−(4a− 1)R2 + (2a2 + a+ (4a− 1)(a− b)2)S2 + 4a− 1)

= 1
aE (−(4a− 1)p+ 2a2 + a+ (4a− 1)(a− b)2)S.

Here we have replaced E by R + (a − b)S for the third equality, and R2

by pS2 + 1 for the last equality. Noting that a ≡ 1 (mod 4), b is odd and
p ≡ 1 (mod 8), we have −(4a− 1)p+2a2+a+(4a− 1)(a− b)2 ≡ 0 (mod 4).
And since R ≡ 1 (mod 8) and S ≡ 0 (mod 8), we have E = R+(a− b)S ≡ 1
(mod 8). Therefore W1 ≡ 0 (mod 25).

Now according to (3.11), we see that to prove tI − tid ≡ 0 (mod 8), it
suffices to show that s(aS/2, E)− s(S/2, E) ≡ 0 (mod 2) and s (aS,E) ≡ 0
(mod 2). By Proposition 2.11, we consider the following Kronecker symbols:(

aS/2

E

)
= (−1)(E−1)/4−3Es(aS/2,E) = (−1)s(aS/2,E),(3.12) (

S/2

E

)
= (−1)(E−1)/4−3Es(S/2,E) = (−1)−s(S/2,E),(3.13) (

aS

E

)
= (−1)(E−1)/4−3Es(aS,E) = (−1)s(aS,E),(3.14)

where we have used the fact that E ≡ 1 (mod 8) and (−1)−1 = −1.
Now we multiply (3.12) by (3.13). According to [12, Chapter 3] and noting

that E = R + (a − b)S ≡ 1 (mod 8), and that the odd integer a satisfies
gcd(E, a) = 1 since A1 ∈ SL(2,Z), we have

(−1)s(aS/2,E)−s(S/2,E) =

(
a

E

)
= (−1)

a−1
2

E−1
2

(
E

a

)
=

(
E

a

)
=

(
R− bS
a

)
=

(
R± S√p

a

)
=

(
ε2 (or ε′2)

a

)
= 1.

Here we have used the fact that R + S
√
p = ε+ = ε2 (resp. R − S√p =

ε′+ = ε′2), and p = b2−4ac ≡ b2 (mod a) which implies that b can be viewed
as a square root of p modulo a, thus the fifth equality holds. This implies
that s(aS/2, E)− s(S/2, E) ≡ 0 (mod 2).

Similarly, we write S = 2lS0 with 2 - S0 and l ≥ 3 in (3.14). By [12,
Chapter 3] and [12, §12.3, Theorem 3.1], noting that E ≡ 1 (mod 8) im-
plies E2 ≡ 1 (mod 16), and both a and S0 are odd integers such that
gcd(E, aS) = 1 as A1 ∈ SL(2,Z), we have



324 W. Cheng and X. Guo

(−1)s(aS,E) =

(
aS

E

)
=

(
2

E

)l
(−1)

aS0−1
2

E−1
2

(
E

aS0

)
=

(
E

aS0

)
=

(
R− bS
aS0

)
=

(
R− bS
a

)(
R− bS
S0

)
=

(
R±√pS

a

)(
R

S0

)
=

(
ε2 (or ε′2)

a

)(
R

S0

)
=

(
R

S0

)
=

(
ε2

S0

)
= 1,

where we have used the fact that S0 |S and ε2 = ε+ = R+S
√
p ≡ R (mod S)

for the ninth equality. Thus we conclude that s(aS,E) ≡ 0 (mod 2).
Combining these congruences with (3.11), we get tI − tid ≡ 0 (mod 8).

Case (2). As a ≡ 3 (mod 4), c ≡ 0 (mod 2) and b ≡ 1 (mod 2), we have
χ4(a) = −1 and χ4(c) = χ4(a+ b+ c) = 0. By Lemmas 3.1 and 3.3, we have
tI = 3Ψ

( b+√p
a

)
− 2Ψ

(2b+2
√
p

a

)
, and thus

tI − tid = 3Ψ

(
b+
√
p

a

)
− 2Ψ

(
2b+ 2

√
p

a

)
− 2Ψ(2

√
p).

By (3.4)–(3.6) and Proposition 2.9, we get

tI − tid = −(8a+ 2)R

aS
+ 3 + 24

(
s(R,S/2) + s(R− bS, aS/2)

)
− 36s(R− bS, aS)

= −(8a+ 2)R

aS
+ 3 + 24

(
s(E,S/2) + s(E, aS/2)

)
− 36s(E, aS),

where E = R+ (a− b)S > 0 as in Case (1).
By the reciprocity theorem for Dedekind sums, applying (3.8)–(3.10),

and noting that NK/Q(ε+) = R2 − pS2 = 1, we have
tI − tid =W2 − 24

(
s(aS/2, E) + s(S/2, E)

)
+ 36s(aS,E)),(3.15)

where
W2 = − (8a+2)R

aS + 3 + 24
(
−1

2 + 1
12

(
2E
S + 2

ES + S
2E + 2E

aS + 2
aES + aS

2E

))
− 36

(
−1

4 + 1
12

(
E
aS + 1

aES + aS
E

))
= − (8a+2)R

aS + 4E
S + 4

ES + S
E + E

aS + 1
aES −

2aS
E

= 1
aES

(
−(8a+ 2)RE + (4a+ 1)E2 + (a− 2a2)S2 + 4a+ 1

)
= 1

aES

(
−(4a+ 1)R2 + (a− 2a2 + (4a+ 1)(a− b)2)S2 + 4a+ 1

)
= S

aE

(
−(4a+ 1)p+ a− 2a2 + (4a+ 1)(a− b)2

)
.

Note that a ≡ 3 (mod 4), b is odd, E ≡ 1 (mod 8), and S ≡ 0 (mod 8). It
is easy to see that −(4a + 1)p + a − 2a2 + (4a + 1)(a − b)2 ≡ 0 (mod 4).
Therefore W2 ≡ 0 (mod 25).

From the proof of Case (1), we know that s(aS/2, E) + s(S/2, E) ≡
s(aS/2, E)− s(S/2, E) ≡ 0 (mod 2) and s(aS,E) ≡ 0 (mod 2) in (3.15). It
is now obvious that tI − tid ≡ 0 (mod 8).
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Case (3). As a ≡ 0 (mod 2), c ≡ 1 (mod 4) and b ≡ 1 (mod 2), we see
that χ4(a) = χ4(a + b + c) = 0 and χ4(c) = 1. By Lemmas 3.1 and 3.3, we
have tI = Ψ

( b+√p
8a

)
− Ψ

(4a+b+√p
8a

)
, and

(3.16) tI − tid = Ψ

(
b+
√
p

8a

)
− Ψ

(
4a+ b+

√
p

8a

)
− 2Ψ(2

√
p).

To represent the Hirzebruch sums on the right hand side of (3.16) as
Dedekind sums, we consider the modules M3 = [b +

√
p, 8a] and M4 =

[4a+b+
√
p, 8a] with oriented generators. Multiplication by ε+ onM3 andM4

gives rise to the matrices

A3 =

(
R+ bS (p−b2)S

8a

8aS R− bS

)
, A4 =

(
R+ (4a+ b)S (p−(4a+b)2)S

8a

8aS R− (4a+ b)S

)
.

It is easy to check that they are hyperbolic with larger fixed points b+
√
p

8a

and 4a+b+
√
p

8a respectively, and with the same larger eigenvalue ε+. Using
(2.5)–(2.7) again, we have

Ψ

(
b+
√
p

8a

)
=

R

4aS
− 3− 12s(R− bS, 8aS),(3.17)

Ψ

(
4a+ b+

√
p

8a

)
=

R

4aS
− 3− 12s(R− (4a+ b)S, 8aS).(3.18)

Set F1 = R+ (4a− b)S and F2 = R+ (8a− b)S. Noting that |b| ≤ a by
the choice of I, it follows that 8a− b ≥ 4a− b ≥ 0. So F1 and F2 are positive
integers. By Proposition 2.9, we have s(R,S/2) = s(F1, S/2) = s(F2, S/2),
s(R − bS, 8aS) = s(F2, 8aS), and s(R − (4a+ b)S, 8aS) = s(F1, 8aS). Sub-
stituting (3.17), (3.18) and (3.4) into (3.16), we have

(3.19) tI − tid
= 12

(
s(R− (4a+ b)S, 8aS)− s(R− bS, 8aS)

)
− 8R/S + 6 + 24s(R,S/2)

= 12
(
s(F1, 8aS) + s(F1, S/2)

)
− 12

(
s(F2, 8aS)− s(F2, S/2)

)
− 8R/S + 6.

Now Proposition 2.10 gives

s(F1, 8aS) = −s(8aS, F1)−
1

4
+

1

12

(
F1

8aS
+

1

8aSF1
+

8aS

F1

)
,(3.20)

s(F1, S/2) = −s(S/2, F1)−
1

4
+

1

12

(
2F1

S
+

2

SF1
+

S

2F1

)
,(3.21)

s(F2, 8aS) = −s(8aS, F2)−
1

4
+

1

12

(
F2

8aS
+

1

8aSF2
+

8aS

F2

)
,(3.22)

s(F2, S/2) = −s(S/2, F2)−
1

4
+

1

12

(
2F2

S
+

2

SF2
+

S

2F2

)
.(3.23)

We substitute (3.20)–(3.23) into (3.19), and notice that NK/Q(ε+) =

R2 − pS2 = 1, to obtain
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tI − tid =W3 − 12
(
s(S/2, F1) + s(8aS, F1)

)
(3.24)

− 12
(
s(S/2, F2)− s(8aS, F2)

)
,

where

W3 = −8R
S + 6 + 12

(
−1

2 + 1
12

(
F1
8aS + 1

8aSF1
+ 8aS

F1
+ 2F1

S + 2
SF1

+ S
2F1

))
−12

(
1
12

(
F2
8aS + 1

8aSF2
+ 8aS

F2
− 2F2

S −
2
SF2
− S

2F2

))
= −8R

S −
F2−F1
8aS + F2−F1

8aSF1F2
+ 8aS(F2−F1)

F1F2
+ 2(F1+F2)

S + 2(F1+F2)
SF1F2

+ S(F1+F2)
2F1F2

= 1
2SF1F2

(
−16RF1F2 − SF1F2 + S + 64a2S3

+ 4F1F2(F1 + F2) + 4(F1 + F2) + S2(F1 + F2)
)

= 1
2SF1F2

(
−8R3 − (48a− 8b+ 1)R2S

+ (320a2 − 96ab+ 8b2 − 12a+ 2b+ 2)RS2
)
+ 8R

+ (1536a3 + 32a2 − 832a2b+ 144ab2 + 12ab+ 12a

− 8b3 − b2 − 2b)S3 + (48a− 8b+ 1)S

= 1
F1F2

(
(−4p+ 160a2 − 48ab+ 4b2 − 6a+ b+ 1)RS

+ (−24ap+ 4bp− (p+ b2)/2 + 768a3 + 16a2 − 416a2b

+ 72ab2 + 6ab+ 6a− 4b3 − b)S2
)
,

where (p+ b2)/2 ∈ Z. Note that R ≡ 1 (mod 8) and S ≡ 0 (mod 8) implies
F1 ≡ F2 ≡ 1 (mod 8), and b ≡ 1 (mod 2) implies −4p+160a2−48ab+4b2−
6a+ b+ 1 ≡ 0 (mod 2). It follows that W3 ≡ 0 (mod 16). So (3.24) gives

tI − tid ≡ 12
(
s(S/2, F1) + s(8aS, F1)

)
(3.25)

− 12
(
s(S/2, F2)− s(8aS, F2)

)
(mod 16).

To prove tI − tid ≡ 0 (mod 8), we only need to show that s(S/2, F1) +
s(8aS, F1) ≡ 0 (mod 2) and s(S/2, F2)−s(8aS, F2) ≡ 0 (mod 2). By Proposi-
tion 2.11 again, we get the following equalites connecting Kronecker symbols
with Dedekind sums:(

S/2

F1

)
= (−1)(F1−1)/4−3F1s(S/2,F1) = (−1)s(S/2,F1),(3.26) (

8aS

F1

)
= (−1)(F1−1)/4−3F1s(8aS,F1) = (−1)s(8aS,F1),(3.27) (

S/2

F2

)
= (−1)(F2−1)/4−3F2s(S/2,F2) = (−1)s(S/2,F2),(3.28) (

8aS

F2

)
= (−1)(F2−1)/4−3F2s(8aS,F2) = (−1)s(8aS,F2),(3.29)

where we have used the fact that Fi ≡ 1 (mod 8) for i = 1, 2.
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As in Case (1), we now write a = 2ma0, where 2 - a0 and 0 < m ∈ Z. Note
that Fi ≡ 1 (mod 8) gives F 2

i ≡ 1 (mod 16). Multiplying (3.26) by (3.27),
according to [12, §12.3, Theorem 3.1] we have

(−1)s(S/2,F1)+s(8aS,F1)

=

(
a(2S)2

F1

)
=

(
a

F1

)
=

(
2

F1

)m
(−1)

a0−1
2

F1−1
2

(
F1

a0

)
=

(
F1

a0

)
=

(
R+ (4a− b)S

a0

)
=

(
R− bS
a0

)
=

(
R± S√p

a0

)
=

(
ε2 (or ε′2)

a0

)
= 1.

It follows that s(S/2, F1)+s(8aS, F1) ≡ 0 (mod 2). Similarly, dividing (3.29)
by (3.28), we have

(−1)s(8aS,F2)−s(S/2,F2)

=

(
16a

F2

)
=

(
a

F2

)
=

(
2

F2

)m
(−1)

a0−1
2

F2−1
2

(
F2

a0

)
=

(
F2

a0

)
=

(
R+ (8a− b)S

a0

)
=

(
R− bS
a0

)
=

(
R± S√p

a0

)
=

(
ε2 (or ε′2)

a0

)
= 1.

This implies that s(8aS, F2)− s(S/2, F2) ≡ 0 (mod 2).
Combining these congruences with (3.25) yields tI − tid ≡ 0 (mod 8).

Case (4). Here we apply (3.17)–(3.18), (3.20)–(3.23) and (3.26)–(3.29).
The only difference from Case (3) is in (3.24). We omit the details.

Case (5). As a ≡ c ≡ 0 (mod 2) and a + b + c ≡ 1 (mod 4), it follows
that χ4(a) = χ4(c) = 0 and χ4(a + b + c) = 1. By Lemmas 3.1 and 3.3, we
have tI = Ψ

(2a+b+√p
8a

)
− Ψ

(−2a+b+√p
8a

)
, and

(3.30) tI − tid = Ψ

(
2a+ b+

√
p

8a

)
− Ψ

(
−2a+ b+

√
p

8a

)
− 2Ψ(2

√
p).

As before, we first represent the Hirzebruch sums on the right hand side
of (3.30) as Dedekind sums by considering the modulesM5 = [2a+b+

√
p, 8a]

and M6 = [−2a+ b+
√
p, 8a] with oriented generators. Multiplication by ε+

on M5 and M6 gives rise to the matrices

A5 =

(
R+ (2a+ b)S (p−(2a+b)2)S

8a

8aS R− (2a+ b)S

)
,

A6 =

(
R− (2a− b)S (p−(2a−b)2)S

8a

8aS R+ (2a− b)S

)
.

It is easy to verify that they are hyperbolic, their larger fixed points are
2a+b+

√
p

8a and −2a+b+
√
p

8a respectively, and they have the same larger eigen-
value ε+. Using (2.5)–(2.7) again, we get
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Ψ

(
2a+ b+

√
p

8a

)
=

R

4aS
− 3− 12s(R− (2a+ b)S, 8aS),(3.31)

Ψ

(
−2a+ b+

√
p

8a

)
=

R

4aS
− 3− 12s(R+ (2a− b)S, 8aS).(3.32)

Let F3 = R+(2a− b)S and F4 = R+(6a− b)S. As |b| ≤ a by the choice
of I, it follows that 6a − b ≥ 2a − b ≥ 0. Therefore F3 and F4 are positive
integers. By Proposition 2.9, s(R,S/2) = s(F3, S/2) = s(R+(6a− b)S, S/2)
and s(R− (2a+ b)S, S/2) = s(F4, S/2). Substituting (3.31), (3.32) and (3.4)
into (3.30), we get

(3.33) tI − tid = 12
(
s(R+ (2a− b)S, 8aS)− s(R− (2a+ b)S, 8aS)

)
− 8R/S + 6 + 24s(R,S/2)

= 12
(
s(F3, 8aS) + s(F3, S/2)

)
− 12

(
s(F4, 8aS)− s(F4, S/2)

)
− 8R/S + 6.

Now Proposition 2.10 gives

s(F3, 8aS) = −s(8aS, F3)−
1

4
+

1

12

(
F3

8aS
+

1

8aSF3
+

8aS

F3

)
,(3.34)

s(F3, S/2) = −s(S/2, F3)−
1

4
+

1

12

(
2F3

S
+

2

SF3
+

S

2F3

)
,(3.35)

s(F4, 8aS) = −s(8aS, F4)−
1

4
+

1

12

(
F4

8aS
+

1

8aSF4
+

8aS

F4

)
,(3.36)

s(F4, S/2) = −s(S/2, F4)−
1

4
+

1

12

(
2F4

S
+

2

SF4
+

S

2F4

)
.(3.37)

Substituting (3.34)–(3.37) into (3.33), and noticing that NK/Q(ε+) =

R2 − pS2 = 1, we get

tI − tid =W5 − 12
(
s(8aS, F3) + s(S/2, F3)

)
(3.38)

+ 12
(
s(8aS, F4)− s(S/2, F4)

)
,

where

W5 = −8R
S + 6 + 12

(
−1

2 + 1
12

(
F3
8aS + 1

8aSF3
+ 8aS

F3
+ 2F3

S + 2
SF3

+ S
2F3

))
− 12

(
1
12

(
F4
8aS + 1

8aSF4
+ 8aS

F4
− 2F4

S −
2
SF4
− S

2F4

))
= −8R

S + F3−F4
8aS + F4−F3

8aSF3F4
+ 8aS(F4−F3)

F3F4

+
2(F3 + F4)

S
+

2(F3 + F4)

SF3F4
+
S(F3 + F4)

2F3F4

= 1
2SF3F4

(
−8R3 + (−32a+ 8b− 1)R2S

+ (160a2 − 64ab+ 8b2 − 8a+ 2b+ 2)RS2 + 8R+ (32a− 8b+ 1)S

+ (384a3 − 352a2b+ 96ab2 − 8b3 + 52a2 + 8ab+ 8a− b2 − 2b)S3
)
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= 1
F3F4

(
(−4p+ 160a2 − 64ab+ 8b2 − 8a+ 2b+ 2)RS

+ (−16ap+ 4bp+ 192a3 − 176a2b+ 48ab2 − 4b3 + 26a2

+ 4ab+ 4a− b− (p+ b2)/2)S2
)
,

with (p + b2)/2 ∈ Z. Note that R ≡ 1 (mod 8) and S ≡ 0 (mod 8) implies
F3 ≡ F4 ≡ 1 (mod 8). And −4p + 160a2 − 64ab + 8b2 − 8a + 2b + 2 ≡
0 (mod 4) since b is odd. It follows that W5 ≡ 0 (mod 32). Then (3.38)
gives

tI − tid ≡ −12
(
s(8aS, F3) + s(S/2, F3)

)
(3.39)

+ 12
(
s(8aS, F4)− s(S/2, F4)

)
(mod 32).

To prove tI − tid ≡ 0 (mod 8), we only need to show that s(8aS, F3) +
s(S/2, F3) ≡ 0 (mod 2) and s(8aS, F4)− s(S/2, F4) ≡ 0 (mod 2). By Propo-
sition 2.11 again, we obtain the following equalities connecting Kronecker
symbols with Dedekind sums:(

8aS

F3

)
= (−1)(F3−1)/4−3F3s(8aS,F3) = (−1)s(8aS,F3),(3.40)

(
S/2

F3

)
= (−1)(F3−1)/4−3F3s(S/2,F3) = (−1)s(S/2,F3),(3.41)

(
8aS

F4

)
= (−1)(F4−1)/4−3F4s(8aS,F4) = (−1)s(8aS,F4),(3.42)

(
S/2

F4

)
= (−1)(F4−1)/4−3F4s(S/2,F4) = (−1)s(S/2,F4),(3.43)

where we have used the fact that Fi ≡ 1 (mod 8) for i = 3, 4.
As in Case (1), we now write a = 2na0, where 2 - a0 and 0 < n ∈ Z. Note

that F3 ≡ 1 (mod 8) implies F 2
3 ≡ 1 (mod 16). Multiplying (3.40) by (3.41),

and applying [12, §12.3, Theorem 3.1], we see that

(−1)s(8aS,F3)+s(S/2,F3) =

(
a(2S)2

F3

)
=

(
a

F3

)
=

(
2

F3

)n
(−1)

a0−1
2

F3−1
2

(
F3

a0

)

=

(
F3

a0

)
=

(
R+ (2a− b)S

a0

)
=

(
R− bS
a0

)

=

(
R± S√p

a0

)
=

(
ε2 (or ε′2)

a0

)
= 1.

It follows that s(8aS, F3)+s(S/2, F3) ≡ 0 (mod 2). Similarly, dividing (3.42)
by (3.43), we have
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(−1)s(8aS,F4)−s(S/2,F4) =

(
16a

F4

)
=

(
a

F4

)
=

(
2

F4

)n
(−1)

a0−1
2

F4−1
2

(
F4

a0

)
=

(
F4

a0

)
=

(
R+ (6a− b)S

a0

)
=

(
R− bS
a0

)

=

(
R± S√p

a0

)
=

(
ε2 (or ε′2)

a0

)
= 1.

This gives s(8aS, F4)− s(S/2, F4) ≡ 0 (mod 2).
Combining these congruences with (3.39) yields tI − tid ≡ 0 (mod 8).

Case (6). Here we apply (3.31)–(3.32), (3.34)–(3.37) and (3.40)–(3.43).
The only difference from Case (5) is in (3.38). We omit the details.

3.2. Proof of Theorem 1.2. Now we use Lemmas 3.1–3.5 to prove
Theorem 1.2. Since p ≡ 1 (mod 4), the ideal class number h(p) ofK = Q(

√
p)

satisfies h(p) ≡ 1 (mod 2) (see for example [8, p. 182, Corollary 2] or [2,
p. 100, §3]). We split the ideal class group Cl(K) into three disjoint parts:
(3.44) Cl(K) = {id} ∪ C ∪ C−1,
where C is taken to be the subset of Cl(K)\{id} consisting of all I ∈ C such
that I−1 /∈ C, and C−1 = {I−1 | I ∈ C}. Then id /∈ C ∪ C−1, C ∩ C−1 = ∅
and |C−1| = |C| = 1

2(h(p)− 1).
From Proposition 2.4 we know m(4p) = 1

3Ψ(2
√
p). On account of Lem-

ma 3.1 and the partition in (3.44), we have

h(−p)− h(p)m(4p)

=
1

6

∑
I∈Cl(K)

tI −
∑

I∈Cl(K)

m(4p) =
1

6

∑
I∈Cl(K)

(tI − 2Ψ(2
√
p))

=
1

6

(
tid − 2Ψ(2

√
p) +

∑
I∈C

(tI − 2Ψ(2
√
p)) +

∑
I∈C−1

(tI − 2Ψ(2
√
p))
)

=
1

6

∑
I∈C

(tI − tid) +
1

6

∑
I∈C

(tI−1 − tid) =
1

3

∑
I∈C

(tI − tid),

where we have applied Lemmas 3.3 and 3.2 for the last two equalities re-
spectively. Finally, we deduce from Lemma 3.5 that h(−p)− h(p)m(4p) ≡ 0
(mod 8). This completes the proof.

3.3. More lemmas. In this subsection, we give some more lemmas
which will be used in the proof of Theorem 1.3. For the remainder of this
section, we always let p ≡ 5 (mod 8) be a prime number and K = Q(

√
p).

Suppose that ε = (t + u
√
p)/2 > 1 is the minimal fundamental unit of K

such that t ≡ u ≡ 0 (mod 2), and let ε+ = (T + U
√
p)/2 be the totally

positive fundamental unit of K. Then ε+ = ε2 still holds.
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Lemma 3.6. In the notation above, we have 4 ‖ t, 2 ‖u, 8 ‖U and T ≡ 2
(mod 8), where 2l ‖u means that 2l | u and 2l+1 - u.

Proof. According to [23, p. 241], we see that 4 ‖ t and 2 ‖u. Further-
more, as ε+ = ε2 = 1

4(t
2 + pu2 + 2tu

√
p), we have T = 1

2(t
2 + pu2) and

U = tu. Since p ≡ 5 (mod 8), the lemma follows. Although the proof is
trivial, the consequences of this lemma are of major importance for our later
proof.

Similarly to the proof of Lemma 3.3, one can show

Corollary 3.7 (Lu [15, p. 371, Example 5]). In the notation above,
tid = 2Ψ(2

√
p) + 2χ(c)

(
Ψ
(1+√p

8

)
− Ψ

(3+√p
8

))
.

Lemma 3.8. In the notation above, tid ≡ 2Ψ(2
√
p) (mod 8).

Proof. By Corollary 3.7, it suffices to prove that Ψ
(1+√p

8

)
− Ψ

(3+√p
8

)
≡

0 (mod 4). For i = 1, 2, set βi = (bi +
√
p)/8, where b1 = 1 and b2 = 3.

For each i, consider the rank 2 free Z-module Mi = [bi +
√
p, 8] contained

in OK . Then there exists a hyperbolic matrix Ai given by ε+
(
bi+
√
p

8

)
=

Ai
(
bi+
√
p

8

)
.

Note that OK = [(1 +
√
p)/2, 1], ε+

(
(1+
√
p)/2

1

)
=
( (T+U)/2 ((p−1)U)/4

U (T−U)/2

)(
(1+
√
p)/2

1

)
, and

(
bi+
√
p

8

)
=
(
2 bi−1
0 8

)(
(1+
√
p)/2

1

)
. By linear algebra (see for

example [21, p. 375, Corollary 4.73]), multiplication by ε+ on the generators
of Mi gives rise to the matrix

Ai =

(
2 bi − 1

0 8

)(
(T + U)/2 (p− 1)U/4

U (T − U)/2

)(
2 bi − 1

0 8

)−1
=

(
(T + biU)/2 (p− b2i )U/16

4U (T − biU)/2

)
.

Obviously, tr(Ai) = T = (t2 + pu2)/2 > 2; det(Ai) = (T 2 − pU2)/4 = 1;
and 2 | p− b2i , 2 |T ± biU , thus Ai ∈ SL(2,Z) is hyperbolic. And it is easy to
verify that the larger fixed point of Ai is

(
2 bi−1
0 8

)1+√p
2 =

bi+
√
p

8 = βi, and
the larger eigenvalue of Ai is

T+U
√
p

2 = ε+.
Hence we may write the Hirzebruch sums as Dedekind sums according

to (2.5)–(2.7). It follows that

Ψ(βi) =
T

4U
− 3− 12s

(
T − biU

2
, 4U

)
.(3.45)

Note that Ai ∈ SL(2,Z) implies gcd
(
T−biU

2 , 4U
)
= gcd

(T+(8−bi)U
2 , 4U

)
= 1.

By Propositions 2.9 and 2.10, we have s
(
T−biU

2 , 4U
)
= s
(T+(8−bi)U

2 , 4U
)
=

−s
(
4U, T+(8−bi)U

2

)
− 1

4+
1
12

(T+(8−bi)U
8U + 1

2U(T+(8−bi)U)+
8U

T+(8−bi)U
)
. It is easy
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to compute that

(3.46) Ψ(w1)− Ψ(w2) = 12

(
s

(
T + 5U

2
, 4U

)
− s
(
T + 7U

2
, 4U

))
=
−T 2 − 12TU + 29U2 + 4

4(T + 7U)(T + 5U)
+ 12

(
s

(
4U,

T + 7U

2

)
− s
(
4U,

T + 5U

2

))
.

Now we determine the right hand side of (3.46) modulo 4. Applying
Lemma 3.6 and recalling that N(ε+) =

1
4(T

2 − pU2) = 1, i.e. T 2 = pU2 + 4,
it is easy to see that the numerator −T 2−12TU+29U2+4 is (−p+29)U2−
12TU ≡ 0 (mod 64). And the denominator satisfies 16 ‖ 4(T + 7U)(T + 5U)

for the same reason. Thus −T
2−12TU+29U2+4

4(T+7U)(T+5U) ≡ 0 (mod 4) in (3.46).
Furthermore, by Lemma 3.6, it is easy to verify that T+5U

2 ≥ 1, T+7U
2 ≥ 1,

T+5U
2 ≡ 1 (mod 8) and T+7U

2 ≡ 1 (mod 8). Set L = 1
4(T + 5U)(T + 7U);

then L ≡ 1 (mod 8). By Proposition 2.11, we get(
4U

(T + 5U)/2

)
=(−1)

T+5U
2 −1

4
−3T+5U

2
s(4U,T+5U

2
)=(−1)−s(4U,

T+5U
2

)+
T+5U

2 −1

4 ,(
4U

(T + 7U)/2

)
=(−1)

T+7U
2 −1

4
−3T+7U

2
s(4U,T+7U

2
)=(−1)s(4U,

T+7U
2

)−
T+7U

2 −1

4 .

Multiplying the two symbols, we conclude that

(3.47)
(
4U

L

)
=

(
U

L

)
= (−1)s(4U,

T+7U
2

)−s(4U,T+5U
2

),

where we have used the fact that (−1)
T+7U

2 −1

4
−

T+5U
2 −1

4 = (−1)−U/4 = 1.
Now applying [12, §12.3, Theorem 3.1] and writing U = 23U0 with U0 ≡ 1

(mod 2), we get
(
U
L

)
=
(
2
L

)3
(−1)

U0−1
2

L−1
2

(
L
U0

)
=
(
2
L

)( (T/2)2
U0

)
= (−1)

L2−1
8

= 1, where we have used the fact that L ≡ 1 (mod 8). So (3.47) becomes

(−1)s(4U,
T+7U

2
)−s(4U,T+5U

2
) = 1,

which implies that

(3.48) s

(
4U,

T + 7U

2

)
− s
(
4U,

T + 5U

2

)
≡ 0 (mod 2).

Now substituting (3.48) into (3.46), we easily obtain Ψ
(1+√p

8

)
−Ψ

(3+√p
8

)
≡

0 (mod 4).

Lemma 3.9. In the notation above, tI ≡ tI′ (mod 4) for any I, I′ in
Cl(K).

Proof. As in the proof of Lemma 3.5, it suffices to prove that tI− tid ≡ 0
(mod 4), where tid is given by Corollary 3.7 and Lemma 3.8. Take I =[
a, −b+

√
d

2

]
∈ I as before. Then tI = tI and it is sufficient to prove that

tI − tid ≡ 0 (mod 4). Note that we have actually proved that S1(id) ≡
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0 (mod 4) in Lemma 3.8, so it remains to show that S1(I)+S2(I)−S2(id) ≡
0 (mod 4).

Set βi =
bi+
√
p

8a for 3 ≤ i ≤ 6 and b3 = b, b4 = 4a + b, b5 = 2a + b, b6 =
6a+b. Consider the free Z-moduleMi = [bi+

√
p, 8a], and let Ai be the matrix

given by multiplication by ε+ on Mi. Since
(
bi+
√
p

8a

)
=
(
2 bi−1
0 8a

)(
(1+
√
p)/2

1

)
,

we have

Ai =

(
2 bi − 1

0 8a

)(T+U
2

(p−1)U
4

U T−U
2

)(
2 bi − 1

0 8a

)−1
=

(T+biU
2

(p−b2i )U
16a

4aU T−biU
2

)
,

where the intermediate matrix
( (T+U)/2 ((p−1)U)/4

U (T−U)/2

)
comes from the second

paragraph of the proof of Lemma 3.8. Obviously, tr(Ai) = T = (t2 + pu2)/2
> 2; det(Ai) = (T 2 − pU2)/4 = 1; and p = b2 − 4ac implies 2a | p− b2i , and
note that 8 ‖U , thus Ai ∈ SL(2,Z) is hyperbolic. Furthermore, it is easy to
verify that the larger fixed point of Ai is

(
2 bi−1
0 8a

)1+√p
2 =

bi+
√
p

8a = βi, and
the larger eigenvalue of Ai is

T+U
√
p

2 = ε+.

Similarly, define β7 =
b+
√
p

a , β8 =
2b+2

√
p

a , β9 =
√
p, β0 = 2

√
p; and con-

sider the Z-modulesM7 = [b+
√
p, a],M8 = [2b+2

√
p, a],M9 = [

√
p, 1],M0 =

[2
√
p, 1]. Let Ai be the matrix given by multiplication by ε+ on Mi for

i ∈ {7, 8, 9, 0}. Since
(
b+
√
p

a

)
=
(
2 b−1
0 a

)(
(1+
√
p)/2

1

)
,
(
2b+2

√
p

a

)
=
(
4 2b−2
0 a

)(
(1+
√
p)/2

1

)
,
(√

p
1

)
=
(
2 −1
0 1

)(
(1+
√
p)/2

1

)
, and

(
2
√
p

1

)
=
(
4 −2
0 1

)(
(1+
√
p)/2

1

)
, we

have

A7 =

(
2 b− 1

0 a

)(T+U
2

(p−1)U
4

U T−U
2

)(
2 b− 1

0 a

)−1
=

(T+bU
2

(p−b2)U
2a

aU
2

T−bU
2

)
,

A8 =

(
4 2b− 2

0 a

)(T+U
2

(p−1)U
4

U T−U
2

)(
4 2b− 2

0 a

)−1
=

(T+bU
2

(p−b2)U
a

aU
4

T−bU
2

)
,

A9 =

(
2 −1
0 1

)(T+U
2

(p−1)U
4

U T−U
2

)(
2 −1
0 1

)−1
=

(
T/2 pU/2

U/2 T/2

)
,

A0 =

(
4 −2
0 1

)(T+U
2

(p−1)U
4

U T−U
2

)(
4 −2
0 1

)−1
=

(
T/2 pU

U/4 T/2

)
.

It is easy to verify that A7, A8, A9, A0 are hyperbolic matrices in SL(2,Z),
their larger fixed points are β7, β8, β9, β0 respectively, and they have the same
larger eigenvalue ε+.

We now use the above hyperbolic matrices to represent Hirzebruch sums
as Dedekind sums. In what follows, let Xi = T + (8a − bi)U for 3 ≤ i ≤ 6
and Y = T + (a− b)U . Then Lemma 3.6 implies that Xi ≡ Y ≡ 2 (mod 8).



334 W. Cheng and X. Guo

According to (2.5)–(2.7) and Proposition 2.9, we see that

Ψ(βi) =
T

4aU
− 3− 12s

(
T − biU

2
, 4aU

)
(3.49)

=
T

4aU
− 3− 12s(Xi/2, 4aU) for 3 ≤ i ≤ 6,

where Xi/2 = 1
2(T + (8a− bi)U) > 0 and 4aU > 0 since |b| ≤ a ≤ −c, with

gcd(Xi/2, 4aU) = 1 since Ai ∈ SL(2,Z). Similarly,

Ψ(β7) =
2T

aU
− 3− 12s(Y/2, aU/2),(3.50)

Ψ(β8) =
4T

aU
− 3− 12s(Y/2, aU/4),(3.51)

Ψ(β9) =
2T

U
− 3− 12s(Y/2, U/2),(3.52)

Ψ(β0) =
4T

U
− 3− 12s(Y/2, U/4).(3.53)

By Proposition 2.10, we get

s(Xi/2, 4aU) = −1

4
+

1

12

(
Xi

8aU
+

1

2aUXi
+

8aU

Xi

)
− s(4aU,Xi/2),(3.54)

s(Y/2, aU/2) = −1

4
+

1

12

(
Y

aU
+

4

aUY
+
aU

Y

)
− s(aU/2, Y/2),(3.55)

s(Y/2, aU/4) = −1

4
+

1

12

(
2Y

aU
+

8

aUY
+
aU

2Y

)
− s(aU/4, Y/2),(3.56)

s(Y/2, U/2) = −1

4
+

1

12

(
Y

U
+

4

UY
+
U

Y

)
− s(U/2, Y/2),(3.57)

s(Y/2, U/4) = −1

4
+

1

12

(
2Y

U
+

8

UY
+

U

2Y

)
− s(U/4, Y/2).(3.58)

Having disposed of these preliminary computations, we can now return
to the proof of the lemma. To show the congruence S1(I)+S2(I)−S2(id) ≡ 0
(mod 4), it will be necessary to divide the proof into the following two steps.

Step I. S1(I) ≡ 0 (mod 4).

From (3.49) and (3.54) we have
Ψ(β3)− Ψ(β4) = 12

(
s(X4/2, 4aU)− s(X3/2, 4aU)

)
(3.59)

= 12
(
s(4aU,X3/2)− s(4aU,X4/2)

)
+ V34,

where
V34 =

X4
8aU + 1

2aUX4
+ 8aU

X4
− X3

8aU −
1

2aUX3
− 8aU

X3
= 1

2 + 2
X3X4

+ 32a2U2

X3X4

= 1
2X3X4

(
4− T 2 − 2(6a− b)TU + (64a2 − (4a− b)(8a− b))U2

)
= 1

2X3X4

(
−pU2 − 2(6a− b)TU + (64a2 − (4a− b)(8a− b))U2

)
.
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Here we have used X3 = T+(8a−b)U , X4 = T+(4a−b)U and T 2−pU2 = 4.
Lemma 3.6 makes it obvious that 22 ‖X3X4 and−pU2−2(6a−b)TU+(64a2−
(4a− b)(8a− b))U2 ≡ 0 (mod 25). It follows that V34 ≡ 0 (mod 4).

In the same manner we can see that
Ψ(β5)− Ψ(β6) = 12

(
s(4aU,X5/2)− s(4aU,X6/2)

)
+ V56,(3.60)

where X5 = T + (6a− b)U , X6 = T + (2a− b)U , and V56 = 1
2X5X6

(−pU2 −
2(4a− b)TU + (64a2 − (2a− b)(6a− b))U2) ≡ 0 (mod 4).

Note that χ4(c), χ4(a + b + c) ∈ {0,±1}. Lemma 3.1 says that to show
S1(I) ≡ 0 (mod 4), we only need to prove that
(3.61) Ψ(β3)− Ψ(β4) ≡ Ψ(β5)− Ψ(β6) ≡ 0 (mod 4).

From(3.59)and(3.60) it is sufficient toprove thats
(
4aU,X3/2

)
−s(4aU,X4/2)

≡ s(4aU,X5/2)− s(4aU,X6/2) ≡ 0 (mod 2).
First of all, by Proposition 2.11,(

4aU

X3/2

)
= (−1)

1
4
(X3/2−1)− 3

2
X3s(4aU,X3/2)(3.62)

= (−1)
1
4
(X3/2−1)−s(4aU,X3/2) = (−1)

1
4
(1−X3/2)+s(4aU,X3/2),

where we have used the fact that X3 ≡ 2 (mod 8) for the second equality
and (−1)−1 = −1 for the third equality. For the same reason,

(3.63)
(

4aU

X4/2

)
= (−1)

1
4
(X4/2−1)−s(4aU,X4/2).

Now we multiply the Kronecker symbols in (3.62) and (3.63). By Lemma
3.6, we write T = 23T ′ + 2, U = 23U ′, where U ′ is an odd integer. Set
D′ = 1

4X3X4 = 1
4(T

2 + 2(6a − b)TU + (4a − b)(8a − b)U2); it is easy to
check that D′ ≡ 1 (mod 8). And note that a is odd for otherwise p will be
congruent to 1 modulo 8. On the one hand, from [12, §12.3, Theorem 3.1]

we have
(
4aU
D′

)
= (−1)

aU′−1
2

D′−1
2

(
D′

aU ′

)(
2
D′

)5
=
( (T−bU)/2

aU ′

)2( 2
D′

)5
=
(

2
D′

)
=

(−1)
D′2−1

8 = 1, where we have used the fact that aU ′ | aU for the second
equality. On the other hand, we get (−1)(X4−X3)/8+s(4aU,X3/2)−s(4aU,X4/2) =
(−1)s(4aU,X3/2)−s(4aU,X4/2). Combining these, we obtain

(−1)s(4aU,X3/2)−s(4aU,X4/2) = 1.

It is immediate that

(3.64) s(4aU,X3/2)− s(4aU,X4/2) ≡ 0 (mod 2).

Secondly, by similar considerations,(
4aU

X5/2

)
= (−1)

1
4
(1−X5/2)+s(4aU,X5/2),(

4aU

X6/2

)
= (−1)

1
4
(X6/2−1)−s(4aU,X6/2).
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Let D′′ = 1
4X5X6 =

1
4(T

2 + 2(4a− b)TU + (2a− b)(6a− b)U2); it is easy to
check that D′′ ≡ 1 (mod 8). Multiplying the above two symbols and applying
[12, §12.3, Theorem 3.1], we get

(−1)s(4aU,X5/2)−s(4aU,X6/2) =

(
4aU

D′′

)
= (−1)

aU′−1
2

D′′−1
2

(
D′′

aU ′

)(
2

D′′

)5

=

(
(T − bU)/2

aU ′

)2( 2

D′′

)5

=

(
2

D′′

)
= 1,

where we have used the fact that aU ′ | aU for the third equality. Hence

(3.65) s(4aU,X5/2)− s(4aU,X6/2) ≡ 0 (mod 2).

Combining (3.64) and (3.65) we conclude that S1(I) ≡ 0 (mod 4).

Step II. S2(I)− S2(id) ≡ 0 (mod 4).

Since S2(I) − S2(id) = χ4(a)(−3Ψ(β7) + 2Ψ(β8)) + 3Ψ(β9) − 2Ψ(β0) =
2(χ4(a)Ψ(β8)−Ψ(β0))− 3(χ4(a)Ψ(β7)−Ψ(β9)), it is sufficient to prove that
χ4(a)Ψ(β8)−Ψ(β0) ≡ Ψ(β8)−Ψ(β0) ≡ 0 (mod 2) and χ4(a)Ψ(β7)−Ψ(β9) ≡ 0
(mod 4).

From (3.51) and (3.53), and applying (3.56) and (3.58), we have

Ψ(β8)− Ψ(β0) =
4(1− a)T

aU
− 12

(
s(Y/2, aU/4)− s(Y/2, U/4)

)
(3.66)

= V80 + 12
(
s(aU/4, Y/2)− s(U/4, Y/2)

)
,

where

V80 =
4(1−a)T
aU −

(
2Y
aU + 8

aUY + aU
2Y −

2Y
U −

8
UY −

U
2Y

)
= 1−a

2aUY (8TY − 4Y 2 − 16 + aU2) = 1−a
2aUY

(
4T 2 − 16 + (a− 4(a− b)2)U2

)
= (1−a)U

2aY (4p+ a− 4(a− b)2).

Here we have used the fact that T 2 − pU2 = 4 for the last equality. Note
that (1− a)/2 ∈ Z, 2 ‖Y, 23 ‖U . It follows that V80 ≡ 0 (mod 4).

By Proposition 2.11, and noting that Y ≡ 2 (mod 8) implies that Y/2 ≡ 1
(mod 4), we have(
aU/4

Y/2

)
= (−1)

1
4
(Y/2−1)+s(aU/4,Y/2),

(
U/4

Y/2

)
= (−1)

1
4
(Y/2−1)−s(U/4,Y/2).

Multiplying the above two symbols yields

(−1)s(aU/4,Y/2)−s(U/4,Y/2) =
(
a(U/4)2

Y/2

)
=

(
a

Y/2

)
= (−1)

Y/2−1
2
·a−1

2

(
Y/2

a

)
=

(
(T + (a− b)U)/2

a

)
=

(
(T + bU)/2

a

)
=

(
ε2(or ε′2)

a

)
= 1.
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Here we have used the quadratic reciprocity law for the third equality, and
for the sixth equality the fact that p = b2− 4ac ≡ 5 (mod 8) implies a, b are
odd and one can assert that b ≡ ±√p (mod a). Hence
(3.67) s(aU/4, Y/2)− s(U/4, Y/2) ≡ 0 (mod 2).

Combining this with (3.66) we get Ψ(β8)− Ψ(β0) ≡ 0 (mod 2).
To prove that χ4(a)Ψ(β7)− Ψ(β9) ≡ 0 (mod 4), we only handle the case

of χ4(a) = 1 because almost the same considerations apply to χ4(a) = −1.
So assume χ4(a) = 1. From (3.50) and (3.52), and applying (3.55) and

(3.57), we have

Ψ(β7)− Ψ(β9) =
2(1− a)T

aU
+ 12

(
s(Y/2, U/2)− s(Y/2, aU/2)

)
(3.68)

= V79 + 12
(
s(aU/2, Y/2)− s(U/2, Y/2)

)
,

where
V79 =

2(1−a)T
aU +

(
Y
U + 4

UY + U
Y −

Y
aU −

4
aUY −

aU
Y

)
= 1−a

aUY (2TY − Y
2 − 4 + aU2)

= 1−a
aUY (T

2 − 4 + (a− (a− b)2)U2) = (1−a)U
aY (p+ a− (a− b)2).

Here we have used the fact that T 2 − pU2 = 4 for the last equality. Note
that a, b are odd, 2 ‖Y and 23 ‖U . It follows that V79 ≡ 0 (mod 4).

By Proposition 2.11 again, we have(
aU/2

Y/2

)
= (−1)

1
4
(Y/2−1)+s(aU/2,Y/2),

(
U/2

Y/2

)
= (−1)

1
4
(Y/2−1)−s(U/2,Y/2).

Multiplyingtheabove twosymbolsyields (−1)s(aU/2,Y/2)−s(U/2,Y/2)=
(a(U/4)2

Y/2

)
=
(

a
Y/2

)
= 1. Here we have directly used the computational result in the pre-

vious case for the last equality. Hence
(3.69) s(aU/2, Y/2)− s(U/2, Y/2) ≡ 0 (mod 2).

Combining this with (3.68) we get Ψ(β7)− Ψ(β9) ≡ 0 (mod 4).
In summary, we have proved that tI − tid ≡ 0 (mod 4). This completes

the proof.

3.4. Proof of Theorem 1.3. The proof of Theorem 1.3 is quite similar
to that of Theorem 1.2: we only need to replace Lemmas 3.3 and 3.5 by
Lemmas 3.8 and 3.9 respectively. The details are omitted.

4. Remarks. Finally, for prime p ≡ 1 (mod 8), one may conjecture a
slightly stronger congruence than Theorem 1.2, say

h(−p) ≡ h(p)m(4p) (mod 24).

We have checked this congruence in Appendix for p ≤ 7001 by numerical
methods. However, from Table 1 it is clear that h(−p) ≡ h(p)m(4p) (mod 25)
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is not valid anymore. For example, if p = 401 then h(−401) = 20, h(401) = 5
and m(4 · 401) = 20. We see that h(401)m(4 · 401)− h(−401) = 24 · 5, This
shows that 24 is the largest possible modulus in Theorem 1.2 .

Similarly, it would be very interesting to find out whether the congruence
(1.5) in Theorem 1.3 is true for all primes p ≡ 5 (mod 8).

5. Appendix. In the following two tables, we list the factorizations of
h(−p) − h(p)m(4p) for p ≡ 1 (mod 8) (p ≤ 7001) and p ≡ 5 (mod 8)
(p ≤ 500) respectively. The data from left to right are the prime number p,
the class numbers h(−p) and h(p), m(4p), and the prime factorization of
h(−p)− h(p)m(4p).

Table 1. Factorizations of h(−p)− h(p)m(4p) for p ≡ 1 (mod 8) and p ≤ 7001. We omit
the cases when h(p) = 1 since Corollary 3.4 implies that h(−p) = m(4p).

p h(−p) h(p) m(4p) h(p)m(4p)− h(−p)
257 16 3 16 25

401 20 5 20 24 · 5
761 40 3 24 25

1009 20 7 28 24 · 11
1129 16 9 32 24 · 17
1297 12 11 36 27 · 3
1489 20 3 28 26

1601 56 7 40 25 · 7
2081 60 5 44 25 · 5
2089 44 3 36 26

2153 32 5 48 24 · 13
2713 24 3 24 24 · 3
2777 40 3 56 27

2857 20 3 44 24 · 7
3121 40 5 40 25 · 5
3137 56 9 56 26 · 7
3889 36 3 44 25 · 3
4001 72 3 56 25 · 3
4409 68 9 68 25 · 17
4441 56 5 72 24 · 19
4481 64 3 64 27

4649 88 3 104 25 · 7
4729 40 3 56 27

5081 116 3 76 24 · 7
5273 40 7 72 24 · 29
5281 52 3 108 24 · 17
5297 72 3 72 24 · 32
5417 72 7 72 24 · 33
5521 60 9 76 24 · 3 · 13
6113 68 5 84 25 · 11
6481 56 5 40 24 · 32
7001 56 1 56 0
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Table 2. Factorizations of h(−p)− h(p)m(4p) for p ≡ 5 (mod 8) and p ≤ 500

p h(−p) h(p) m(4p) h(p)m(4p)− h(−p)
5 2 1 2 0
13 2 1 2 0
29 6 1 6 0
37 2 1 6 22

53 6 1 6 0
61 6 1 6 0
101 14 1 10 −22
109 6 1 6 0
149 14 1 14 0
157 6 1 6 0
173 14 1 14 0
181 10 1 6 −22
197 10 1 14 22

229 10 3 14 25

269 22 1 18 −22
277 6 1 6 0
293 18 1 18 0
317 10 1 10 0
349 14 1 26 22 · 3
373 10 1 14 22

389 22 1 18 0
397 6 1 6 0
421 10 1 10 0
461 30 1 30 0
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