The non-congruent numbers via Monsky's formula

Weidong Cheng* and Xuejun Guo ${ }^{\dagger}$
Department of Mathematics, Nanjing University 22 Hankou Road, Gulou Nanjing 210093, Jiangsu, P. R. China
*chengwd@smail.nju.edu.cn †guoxj@nju.edu.cn

Received 18 September 2017
Revised 3 October 2018
Accepted 8 October 2018
Published 16 November 2018

Abstract

This paper gives some new families of non-congruent numbers with arbitrarily many prime divisors. The main idea is based on Monsky's formula for the 2-Selmer rank of congruent elliptic curves.

Keywords: Elliptic curve; non-congruent number; 2-Selmer rank; Monsky's matrix.
Mathematics Subject Classification 2010: 11G05, 11C20

1. Introduction

A positive integer n is called a congruent number if it is the area of a right triangle with rational lengths, or equivalently if the congruent elliptic curve

$$
E_{n}: y^{2}=x^{3}-n^{2} x
$$

has positive Mordell-Weil rank [9] Proposition 3.1 and Corollary 4.3]. Otherwise n is called a non-congruent number. The problem of determining which positive integers are congruent or non-congruent is one of long-standing problems in number theory. Without loss of generality we can restrict attention to square-free numbers. The famous conjecture of Birch and Swinnerton-Dyer predicts that each positive integer lying in the residue classes of 5,6 , and 7 modulo 8 should be a congruent number [18]. This paper is concerned in particular with non-congruent numbers. So in what follows, only positive integers lying in the residue classes of 1,2 , and 3 modulo 8 are involved.

There are many studies on non-congruent numbers. For the known results on non-congruent numbers with arbitrarily many prime divisors in recent years, see for instance [1-4, 8, 10, 12-15, 18, 19]. In order to estimate the Mordell-Weil rank $r(n)$ of the congruent elliptic curve E_{n} one may use the method of descents, for details we refer to Silverman's book [17, Chap. X]. We now introduce the notion of 2-Selmer
rank, following Heath-Brown [5, 6. The number of 2 -descents is the order of the Selmer group $S^{(2)}$. This is a power of 2 , and will be a multiple of 4 , on account of the rational points of order 2 on E_{n}. We shall therefore write $\left|S^{(2)}\right|=2^{2+s(n)}$. The exponent $s(n)$ is said to be 2-Selmer rank of the elliptic curve E_{n}.

The basic idea in this paper is to apply the fundamental inequality $0 \leq r(n) \leq$ $s(n)$, which implies that one can use information about $s(n)$ to say something about $r(n)$. Particularly, we see that the upper bound $s(n)=0$ implies $r(n)=0$. In [6. Appendix], Monsky described the pure 2-Selmer group as the kernel of a square matrix M over the finite field \mathbb{F}_{2}, and gave an explicit formula to compute $s(n)$. Based on these two facts, Reinholz et al. [14, 15] described two families of odd noncongruent numbers whose odd prime divisors lying in at most two residue classes modulo 8 .

In this paper, we are going to give some new families of non-congruent numbers including both odd and even cases with arbitrarily many number of prime divisors. In particular, Theorems 1.3 and 1.4 described some non-congruent numbers whose odd prime divisors lying in more than two residue classes modulo 8. Following Theorems 1.11 .4 we see that these non-congruent numbers are described by the parity of the number of odd prime divisors lying in each residue classes modulo 8.

Throughout this paper, we study the square-free positive integers given by

$$
\begin{equation*}
n=\epsilon \cdot \prod_{p_{i} \in P} p_{i} \cdot \prod_{q_{i} \in Q} q_{i} \cdot \prod_{r_{i} \in R} r_{i} \cdot \prod_{s_{i} \in S} s_{i} \tag{*}
\end{equation*}
$$

where

$$
\epsilon= \begin{cases}1 & \text { if } 2 \nmid n \\ 2 & \text { if } 2 \mid n ;\end{cases}
$$

P, Q, R, S are finite sets which consist of odd prime numbers being congruent to 1 , $3,5,7$ modulo 8 respectively; and denote their cardinality by $g_{1}:=|P|, g_{3}:=|Q|$, $g_{5}:=|R|$ and $g_{7}:=|S|$; we also suppose that the following quadratic relationships between odd prime divisors are satisfied:
(i) $\left(\frac{p_{j}}{p_{i}}\right)=-1$ for $1 \leq j<i \leq g_{1}$;
(ii) $\left(\frac{q_{j}}{q_{i}}\right)=-1$ for $1 \leq j<i \leq g_{3}$;
(iii) $\left(\frac{r_{j}}{r_{i}}\right)=-1$ for $1 \leq j<i \leq g_{5}$;
(iv) $\left(\frac{s_{j}}{s_{i}}\right)=-1$ for $1 \leq j<i \leq g_{7}$;
(v) $\left(\frac{p_{j}}{q_{i}}\right)=-1$ for $1 \leq i \leq g_{3}, 1 \leq j \leq g_{1}$;
(vi) $\left(\frac{p_{j}}{r_{i}}\right)=-1$ for $1 \leq i \leq g_{5}, 1 \leq j \leq g_{1}$;
(vii) $\left(\frac{p_{j}}{s_{i}}\right)=-1$ for $1 \leq i \leq g_{7}, 1 \leq j \leq g_{1}$;
(viii) $\left(\frac{q_{j}}{r_{i}}\right)=-1$ for $1 \leq i \leq g_{5}, 1 \leq j \leq g_{3}$;
(ix) $\left(\frac{q_{j}}{s_{i}}\right)=-1$ for $1 \leq i \leq g_{7}, 1 \leq j \leq g_{3}$;
(x) $\left(\frac{r_{j}}{s_{i}}\right)=-1$ for $1 \leq i \leq g_{7}, 1 \leq j \leq g_{5}$.

Note that the non-negative integers $g_{i}(i=1,3,5,7)$ may equal zero, which means that the corresponding odd prime divisors and quadratic relationships do not appear.

Our main results are as follows. Theorems 1.11 .4 describe the non-congruent numbers whose odd prime divisors lying in exactly one, two, three and four residue classes modulo 8 , respectively. Actually, under the assumptions of above n, especially the restrictive quadratic relationships between the odd prime divisors, our proofs show that the following theorems are the only results that can be derived by using Monsky's formula.

Theorem 1.1. Let n be a square-free positive integer defined by (*), and suppose n satisfies one of the following conditions:
(1) $g_{1}=g_{5}=g_{7}=0, \epsilon=2, g_{3} \geq 1$ and $g_{3} \equiv 0(\bmod 2)$;
(2) ([8, Theorem]) $g_{1}=g_{5}=g_{7}=0, \epsilon=1, g_{3} \geq 1$ is an positive integer;
(3) (4) Lemma 1.1(1)] and [2, Corollary of Theorem 4.2]) $g_{1}=g_{3}=g_{7}=0, \epsilon=2$ and $g_{5}=1$; or $g_{1}=g_{3}=g_{7}=0, \epsilon=2, g_{5}>1$ and $g_{5} \equiv 0(\bmod 2)$.

Then n is a non-congruent number.
Note that Theorem [1.1(2) is just the result of [8], and Theorem 1.1(1) can be seen as an even analog of it. The first case of Theorem 1.1(3) is a classical result which can be found in 4. Lemma 1.1(1)], and the second case of (3) was given in [2] Corollary of Theorem 4.2] via algebraic graph theory.

Theorem 1.2. Let n be a square-free positive integer defined by (*), and suppose it satisfies one of the following conditions:
(1) $g_{1}=g_{7}=0, \epsilon=1, g_{3} \equiv 1(\bmod 2), g_{5} \geq 1$ and $g_{5} \equiv 0(\bmod 2)$;
(2) $g_{1}=g_{7}=0, \epsilon=2, g_{3} \geq 1, g_{5} \geq 1$ and $g_{3} \equiv g_{5} \equiv 0(\bmod 2)$; or $g_{1}=g_{7}=0$, $\epsilon=2, g_{3} \geq 1, g_{3} \equiv 0(\bmod 2)$ and $g_{5}=1$;
(3) $g_{1}=g_{5}=0, \epsilon=2, g_{3} \equiv 1(\bmod 2)$ and $g_{7}=1$;
(4) ([16, Table 3.8, p. 232]) $g_{1}=g_{3}=0, \epsilon=1, g_{5}=g_{7}=1$;
(5) $g_{5}=g_{7}=0, \epsilon=1, g_{1}>1, g_{1} \equiv 0(\bmod 2)$ and $g_{3} \equiv 1(\bmod 2)$; or $g_{5}=g_{7}=$ $0, \epsilon=1, g_{1}=1$ and $g_{3} \equiv 1(\bmod 2) ;$
(6) $g_{3}=g_{7}=0, \epsilon=2, g_{1}=1$ and $g_{5} \equiv 1(\bmod 2)$; or $g_{3}=g_{7}=0, \epsilon=2$, $g_{1}>1, g_{1} \equiv 0(\bmod 2)$ and $g_{5}=1$.

Then n is a non-congruent number.
Note that Theorem [1.2(4) was first given in [16] and can be found in [4, Lemma 1.1(3)].

Theorem 1.3. Let n be a square-free positive integer defined by (*), and suppose it satisfies one of the following conditions:
(1) $g_{1}=0, \epsilon=1, g_{5}=g_{7}=1$ and $g_{3} \geq 1$ is a positive integer; or $g_{1}=0, \epsilon=1$, $g_{5} \geq 2, g_{3} \equiv g_{5} \equiv 1(\bmod 2)$ and $g_{7}=1$;
(2) $g_{1}=0, \epsilon=2, g_{3} \equiv 1(\bmod 2), g_{5} \geq 1, g_{5} \equiv 0(\bmod 2)$ and $g_{7}=1$;
(3) $g_{3}=0, \epsilon=1, g_{1} \equiv g_{5} \equiv 1(\bmod 2)$ and $g_{7}=1$;
(4) $g_{3}=0, \epsilon=2, g_{1} \equiv 1(\bmod 2)$ and $g_{5}=g_{7}=1$;
(5) $g_{5}=0, \epsilon=1, g_{1} \geq 1, g_{3} \geq 1, g_{1} \equiv g_{3} \equiv 0(\bmod 2)$ and $g_{7}=1$;
(6) $g_{5}=0, \epsilon=2, g_{1} \geq 1, g_{3} \geq 1, g_{1} \equiv g_{3} \equiv 1(\bmod 2)$ and $g_{7}=1$;
(7) $g_{7}=0, \epsilon=1, g_{1} \geq 1, g_{5} \geq 1, g_{1} \equiv g_{5} \equiv 0(\bmod 2)$ and $g_{3} \equiv 1(\bmod 2)$;
(8) $g_{7}=0, \epsilon=2, g_{1}=1, g_{3} \geq 1, g_{3} \equiv 0(\bmod 2)$ and $g_{5} \equiv 1(\bmod 2)$; or $g_{7}=0$, $\epsilon=2, g_{1} \geq 1, g_{3} \geq 1, g_{1} \equiv g_{3} \equiv 0(\bmod 2)$ and $g_{5}=1$.

Then n is a non-congruent number.
Theorem 1.4. Let n be a square-free positive integer defined by $(*)$. If $\epsilon=1, g_{1} \geq 1$, $g_{1} \equiv 0(\bmod 2), g_{3} \equiv g_{5} \equiv 1(\bmod 2)$ and $g_{7}=1 ;$ or $\epsilon=1, g_{1} \equiv g_{5} \equiv 1(\bmod 2)$, $g_{3} \geq 1, g_{3} \equiv 0(\bmod 2)$ and $g_{7}=1$. Then n is a non-congruent number.

The organization of this paper is the following. In Sec. 2 , we briefly sketch the Monsky formula for the 2 -Selmer rank $s(n)$. In Sec. 3, we setup some matrix notations and state a proposition for block determinants. Theorems 1.11.4 are proved in Sec. 4 by using Monsky's formula.

2. Monsky's Formula for Counting 2-Selmer Rank

In the appendix of Heath-Brown's paper [6, Monsky proved the following formula to compute the 2-Selmer rank $s(n)$.

Let n be a square-free positive integer with odd prime divisors $p_{1}, p_{2}, \ldots, p_{m}$. We define three diagonal $m \times m$ matrices $D_{l}=\operatorname{diag}\left(d_{i}\right)$ for $l \in\{-1, \pm 2\}$; and one $m \times m$ matrix $A=\left(a_{i j}\right)$ by
$d_{i}:=\left\{\begin{array}{ll}0 & \text { if }\left(\frac{l}{p_{i}}\right)=1, \\ 1 & \text { if }\left(\frac{l}{p_{i}}\right)=-1 ;\end{array} \quad a_{i j}:=\left\{\begin{array}{ll}0 & \text { if }\left(\frac{p_{j}}{p_{i}}\right)=1, j \neq i, \\ 1 & \text { if }\left(\frac{p_{j}}{p_{i}}\right)=-1, j \neq i ;\end{array} \quad a_{i i}:=\sum_{1 \leq j \leq m, j \neq i} a_{i j}\right.\right.$.
The Monsky matrices M_{o} and M_{e} are defined by

$$
M_{o}:=\left(\begin{array}{cc}
A+D_{2} & D_{2} \tag{2.1}\\
D_{2} & A+D_{-2}
\end{array}\right)_{2 m \times 2 m}
$$

and

$$
M_{e}:=\left(\begin{array}{cc}
D_{2} & A+D_{2} \tag{2.2}\\
A^{t}+D_{2} & D_{-1}
\end{array}\right)_{2 m \times 2 m}
$$

Here and subsequently, A^{t} denotes the transpose matrix of A. Then Monsky's formula for the 2-Selmer rank $s(n)$ says that

$$
s(n)= \begin{cases}2 m-\operatorname{rank}_{\mathbb{F}_{2}}\left(M_{o}\right) & \text { if }(2, n)=1 ; \tag{2.3}\\ 2 m-\operatorname{rank}_{\mathbb{F}_{2}}\left(M_{e}\right) & \text { if }(2, n)=2 .\end{cases}
$$

3. Matrix Notations

We now state some notations of matrix which will be used throughout the paper. Let I_{m} denote the $m \times m$ identity matrix; $\mathbf{0}_{m \times n}$ denote the zero matrix with size $m \times n$; and $\mathbf{1}_{m \times n}$ denote the $m \times n$ matrix with all entries 1 . The set of all $m \times n$ matrices over \mathbb{Z} is denoted by $\operatorname{Mat}_{m \times n}(\mathbb{Z})$, and we write it $\operatorname{Mat}_{m}(\mathbb{Z})$ when $m=n$. For abbreviation, we will omit the subscript which indicates when no confusion can arise.

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two matrices with the same size. The matrix congruence $A \equiv B(\bmod 2)$ means that $a_{i j} \equiv b_{i j}(\bmod 2)$ for any possible i and j. And we write $A \sim B$ if B can be derived from A by a combination of types I and III elementary (row or column) operations [7, Definition 2.7(i) and (iii), Chap. VII]. According to [7 Theorem 3.5(viii), Chap. VII], if $A \sim B$ then $\operatorname{det}(A) \equiv \operatorname{det}(B)(\bmod 2)$.

For block matrix notations, especially the multiplication of block matrices, we refer the reader to [11, Chap. 3]. In Sec. 4 we will frequently use the following proposition to compute the determinants of M_{o} and M_{e}.
Proposition 3.1 (Block determinants [11, (6.2.1), Chap. 6]). If A and D are square matrices, then

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)= \begin{cases}\operatorname{det}(A) \operatorname{det}\left(D-C A^{-1} B\right) & \text { if } A^{-1} \text { exists; } \\
\operatorname{det}(D) \operatorname{det}\left(A-B D^{-1} C\right) & \text { if } D^{-1} \text { exists }\end{cases}
$$

4. Proof of Main Results

In this section, we give proofs of Theorems 1.11 .4
For any square-free positive integer n, according to the fundamental inequality $0 \leq r(n) \leq s(n)$, in order to show that n is non-congruent, it is sufficient to prove the 2-Selmer rank $s(n)=0$. On account of Monsky's formula (2.3), we are reduced to proving the corresponding Monsky matrix is invertible over \mathbb{F}_{2}, i.e. the corresponding determinant is congruent to 1 modulo 2.

4.1. Proof of Theorem 1.1

Since the results stated in Theorem 1.1(2)-(3) are classical, we omit their proofs here. Now we give a simple proof for case (1). Note that the same method can be used to prove cases (2) and (3) as well.

In case (1), we consider the square-free positive integer $n=2 q_{1} q_{2} \cdots q_{g_{3}}$, where $q_{i} \equiv 3(\bmod 8)$ for $1 \leq i \leq g_{3}$, and satisfying $\left(\frac{q_{j}}{q_{i}}\right)=-1$ for all $1 \leq j<i \leq g_{3}$. According to the law of quadratic reciprocity, it is easy to observe that $D_{2}=D_{-1}=I_{g_{3}}$, and

$$
A=\left(\begin{array}{cccc}
0 & & & \\
1 & 1 & & \\
\vdots & \ddots & \ddots & \\
1 & \cdots & 1 & g_{3}-1
\end{array}\right) \in \operatorname{Mat}_{g_{3}}(\mathbb{Z})
$$

where the $i j$ th entries for $i<j$ lie in blank spaces which are equal to 0 .

Since n is even, we only need to consider the Monsky matrix M_{e} defined by formula (2.2). By applying Proposition 3.1, we obtain

$$
\operatorname{det}\left(M_{e}\right)=\operatorname{det}\left(I_{g_{3}}-\left(A^{t}+I_{g_{3}}\right)\left(A+I_{g_{3}}\right)\right)
$$

It is easy to compute the inner matrix $\left(A^{t}+I_{g_{3}}\right)\left(A+I_{g_{3}}\right) \equiv g_{3} \mathbf{1}_{g_{3} \times g_{3}}(\bmod 2)$, and then $\operatorname{det}\left(M_{e}\right) \equiv \operatorname{det}\left(I_{g_{3}}-g_{3} \mathbf{1}_{g_{3} \times g_{3}}\right) \equiv g_{3}+1(\bmod 2)$. It follows that $\operatorname{det}\left(M_{e}\right) \equiv 1$ $(\bmod 2)$ if and only if $g_{3} \equiv 0(\bmod 2)$. This is the desired conclusion.

4.2. Proof of Theorem 1.2

The following proof is quite similar to that of Theorem 1.1 but involves much more complicated block matrices operations.
(1) In this case, since $g_{1}=g_{7}=0$ and $\epsilon=1$, we consider the square-free positive integer $n=\prod_{i=1}^{g_{3}} q_{i} \cdot \prod_{i=1}^{g_{5}} r_{i}$ defined by $(*)$. According to the law of quadratic reciprocity, it is easy to check that $D_{-1}=\left(\begin{array}{ll}I_{g_{3}} & \\ & \mathbf{0}_{g_{5}}\end{array}\right), D_{2}=\left(\begin{array}{cc}I_{g_{3}} & \\ & I_{g_{5}}\end{array}\right)=I_{g_{3}+g_{5}}$, $D_{-2}=\left(\begin{array}{cc}\mathbf{0}_{g_{3}} & \\ & I_{g_{5}}\end{array}\right)$, and $A=\left(\begin{array}{cc}A_{11} & 1 \\ & 1\end{array} A_{22}\right)$, where

$$
\left.\begin{array}{l}
A_{11}=\left(\begin{array}{ccccc}
g_{5} & & & \\
1 & g_{5}+1 & & & \\
\vdots & \ddots & \ddots & & \\
1 & \ldots & 1 & g_{5}+g_{3}-1
\end{array}\right) \in \operatorname{Mat}_{g_{3}}(\mathbb{Z}) \\
A_{22}=\left(\begin{array}{ccccc}
g_{3}+g_{5}-1 & 1 & \cdots & 1 \\
1 & & g_{3}+g_{5}-1 & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 1 \\
1 & & & \cdots & 1
\end{array}\right) g_{3}+g_{5}-1
\end{array}\right) \in \operatorname{Mat}_{g_{5}(\mathbb{Z})} .
$$

Since n is odd, we only need to consider the Monsky matrix M_{o} defined by formula (2.1). By interchanging rows k and $g_{3}+g_{5}+k$ for all $1 \leq k \leq g_{3}+g_{5}$ in M_{o} respectively, it is easy to see that $M_{o} \sim\left(\begin{array}{cc}I_{g_{3}+g_{5}} & A+D_{-2} \\ A+D_{2} & I_{g_{3}+g_{5}}\end{array}\right)$. Thus 7, Theorem 3.5(viii), Chap. VII] and Proposition 3.1 make it obvious that

$$
\begin{equation*}
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(I_{g_{3}+g_{5}}-\left(A+D_{2}\right)\left(A+D_{-2}\right)\right) \quad(\bmod 2) \tag{4.1}
\end{equation*}
$$

In order to determine the right-hand determinant in Eq. 4.1), we first compute the inner matrix by using the block matrix multiplication (see for instance [11] Chap. 3]). That is

$$
\begin{aligned}
\left(A+D_{2}\right)\left(A+D_{-2}\right) & =\left(\begin{array}{c:c}
A_{11}+I_{g_{3}} & \mathbf{1} \\
\hdashline \mathbf{1} & A_{22}+I_{g_{5}}
\end{array}\right)\left(\begin{array}{c:c}
A_{11} & \mathbf{1} \\
\hdashline \mathbf{1} & A_{22}+I_{g_{5}}
\end{array}\right) \\
& \equiv\left(\begin{array}{c:c}
g_{5} \mathbf{1}_{g_{3}} & \left(g_{3}+g_{5}\right) \mathbf{1} \\
\hdashline g_{5} \mathbf{1} & \alpha_{22}
\end{array}\right) \quad(\bmod 2) \in \operatorname{Mat}_{g_{3}+g_{5}}(\mathbb{Z})
\end{aligned}
$$

where $\alpha_{22}=\left(g_{3}+g_{5}\right) \mathbf{1}_{g_{5}}-\left(g_{3}+g_{5}-1\right) I_{g_{5}}$, and we omit the detail. It follows that

$$
\begin{align*}
& I_{g_{3}+g_{5}}-\left(A+D_{2}\right)\left(A+D_{-2}\right) \\
& \left.\equiv\left(\begin{array}{cccc:cccc}
g_{5}+1 & g_{5} & \cdots & g_{5} & g_{3}+g_{5} & \cdots & \cdots & g_{3}+g_{5} \\
g_{5} & g_{5}+1 & \ddots & \vdots & \vdots & & & \vdots \\
\vdots & \ddots & \ddots & g_{5} & \vdots & & & \vdots \\
g_{5} & \cdots & g_{5} & g_{5}+1 & g_{3}+g_{5} & \cdots & \cdots & g_{3}+g_{5} \\
\hdashline g_{5} & \cdots & \cdots & g_{5} & 0 & g_{3}+g_{5} & \cdots & g_{3}+g_{5} \\
\vdots & & & \vdots & g_{3}+g_{5} & 0 & \ddots & \vdots \\
\vdots & & & \vdots & \vdots & \ddots & \ddots & g_{3}+g_{5} \\
g_{5} & \cdots & \cdots & g_{5} & \underbrace{g_{3}+g_{5}}_{g_{3}} \begin{array}{lll}
& \cdots & g_{3}+g_{5} \\
0
\end{array}
\end{array}\right)\right\} g_{3}(\bmod 2) . \tag{4.2}
\end{align*}
$$

Here and subsequently, we use braces to count the corresponding rows or columns, and we will omit the below ones when all diagonal blocks are square.

In order to study the determinant of $I_{g_{3}+g_{5}}-\left(A+D_{2}\right)\left(A+D_{-2}\right)$ in Eq. (4.1) modulo 2. We now perform more elementary row operations 7, Definition 2.7(i) and (iii), Chap. VII] on the left-hand matrix in Eq. (4.2) as follows.

First, we subtract all rows between row 2 and row $g_{3}+g_{5}$ by the first row, respectively. Second, we add the first row by rows between row $g_{3}+1$ and row $g_{3}+g_{5}$, and then add the first row by g_{5} times of rows between row 2 and row g_{3}, respectively. It yields a lower triangular matrix as

$$
\begin{array}{rl}
I_{g_{3}+g_{5}} & \left(A+D_{2}\right)\left(A+D_{-2}\right) \\
& \sim\left(\begin{array}{cccc:c}
\triangle & & & & \\
1 & 1 & & & \\
1 & 0 & 1 & & \\
\vdots & \vdots & \ddots & \ddots & \\
1 & 0 & \cdots & 0 & 1 \\
\hdashline 1 & 0 & \cdots & \cdots & 0
\end{array} g_{3}+g_{5}\right. \\
\vdots & \vdots \\
& \\
\vdots & \\
1 & 0
\end{array} \cdots
$$

where $\triangle=g_{5}+1+g_{5}\left(g_{3}-1\right)+g_{5}=g_{3} g_{5}+g_{5}+1$.

Now 7 Theorem $3.5($ vii $)$ and (viii), Chap. VII] gives that $\operatorname{det}\left(M_{o}\right) \equiv$ $\operatorname{det}\left(I_{g_{3}+g_{5}}-\left(A+D_{2}\right)\left(A+D_{-2}\right)\right) \equiv\left(g_{3} g_{5}+g_{5}+1\right)\left(g_{3}+g_{5}\right)^{g_{5}}(\bmod 2)$. By discussing the parity of g_{3} and g_{5}, it follows immediately that $\operatorname{det}\left(M_{e}\right) \equiv 1(\bmod 2)$ if and only if $g_{3} \equiv 1(\bmod 2)$ and $g_{5} \equiv 0(\bmod 2)$, where $g_{3} \geq 1, g_{5} \geq 1$.
(2) In this case, since $g_{1}=g_{7}=0$ and $\epsilon=2$, we consider the square-free positive integer $n=2 \prod_{i=1}^{g_{3}} q_{i} \cdot \prod_{i=1}^{g_{5}} r_{i}$ defined by $(*)$. Since n is even, we only need to consider the Monsky matrix M_{e} defined by formula (2.2), where A, D_{-1}, D_{2} are the same as the proof of Theorem 1.2 (1). Note that $D_{2}=I_{g_{3}+g_{5}}$ and by Proposition 3.1 . we get that

$$
\begin{equation*}
\operatorname{det}\left(M_{e}\right)=\operatorname{det}\left(D_{-1}-\left(A^{t}+D_{2}\right)\left(A+D_{2}\right)\right) . \tag{4.3}
\end{equation*}
$$

In order to determine the right-hand determinant modulo 2 in Eq. 4.3), we first compute the inner matrix $\left(A^{t}+D_{2}\right)\left(A+D_{2}\right)$ by applying the block matrix multiplication as before. That is

$$
\left(A^{t}+D_{2}\right)\left(A+D_{2}\right) \equiv\left(\begin{array}{c:c}
g_{3} \mathbf{1}_{g_{3}} & \left(g_{5}+1\right) \mathbf{1} \\
\hdashline\left(g_{5}+1\right) \mathbf{1} & \beta_{22}
\end{array}\right) \quad(\bmod 2) \in \operatorname{Mat}_{g_{3}+g_{5}}(\mathbb{Z})
$$

where $\beta_{22}=\left(g_{3}+g_{5}\right) \mathbf{1}_{g_{5}}-\left(g_{3}+g_{5}-1\right) I_{g_{5}}$. It follows that

$$
\begin{align*}
D_{-1}- & \left(A^{t}+D_{2}\right)\left(A+D_{2}\right) \\
& \left.\left(\begin{array}{cccc:cccc}
g_{3}+1 & g_{3} & \cdots & g_{3} & g_{5}+1 & \cdots & \cdots & g_{5}+1 \\
g_{3} & g_{3}+1 & \ddots & \vdots & \vdots & & & \vdots \\
\vdots & \ddots & \ddots & g_{3} & \vdots & & & \vdots \\
g_{3} & \cdots & g_{3} & g_{3}+1 & g_{5}+1 & \cdots & \cdots & g_{5}+1 \\
\hdashline g_{5}+1 & \cdots & \cdots & g_{5}+1 & 1 & g_{3}+g_{5} & \cdots & g_{3}+g_{5} \\
\vdots & & & \vdots & g_{3}+g_{5} & 1 & \ddots & \vdots \\
\vdots & & & \vdots & \vdots & \ddots & \ddots & g_{3}+g_{5} \\
g_{5}+1 & \cdots & \cdots & g_{5}+1 & g_{3}+g_{5} & \cdots & g_{3}+g_{5} & 1
\end{array}\right)\right\} g_{3} g_{5} \quad(\bmod 2) . \tag{4.4}
\end{align*}
$$

We now perform a finite sequence of elementary row and column operations 7 Definition 2.7(i) and (iii), Chap. VII] on the left-hand matrix in Eq. (4.4) as follows.

First of all, we add rows between row 2 and row g_{3} by the first row; and add rows between row $g_{3}+2$ and row $g_{3}+g_{5}$ by row $g_{3}+1$, respectively. This yields

$$
\begin{aligned}
& D_{-1}-\left(A^{t}+D_{2}\right)\left(A+D_{2}\right) \\
& \left.\sim\left(\begin{array}{ccccc:cccc}
g_{3}+1 & g_{3} & g_{3} & \cdots & g_{3} & g_{5}+1 & \cdots & \cdots & g_{5}+1 \\
1 & 1 & 0 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\
1 & 0 & 1 & \ddots & \vdots & \vdots & & & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 & \vdots & & & \vdots \\
1 & 0 & \cdots & 0 & 1 & \cdots & 0 & \cdots & \cdots \\
\hdashline g_{5}+1 & \cdots & \cdots & \cdots & g_{5}+1 & 1 & g_{3}+g_{5} & \cdots & g_{3}+g_{5} \\
0 & \cdots & \cdots & \cdots & 0 & g_{3}+g_{5}+1 & g_{3}+g_{5}+1 & & \\
\vdots & & & & \vdots & \vdots & & \ddots & \\
0 & \cdots & \cdots & \cdots & 0 & g_{3}+g_{5}+1 & & & g_{3}+g_{5}+1
\end{array}\right)\right\} g_{3}
\end{aligned}
$$

$(\bmod 2)$.
We use the diagonal matrices appearing in the top left and bottom right blocks to eliminate the non-zero entries on rows (respectively, columns) one and $g_{3}+1$. We add the first row by g_{3} times of rows from 2 to g_{3}; and subtract the first column by columns from 2 to g_{3}, respectively. Furthermore, we add row $g_{3}+1$ by $g_{5}+1$ times of rows from 2 to g_{3}; and add row (respectively, column) $g_{3}+1$ by rows (respectively, columns) from $g_{3}+2$ to $g_{3}+g_{5}$, respectively. We thus get

$$
\begin{aligned}
& D_{-1}-\left(A^{t}+D_{2}\right)\left(A+D_{2}\right) \\
& \left.\equiv\left(\begin{array}{ccccc:cccc}
g_{3}+1 & 0 & 0 & \cdots & 0 & 0 & g_{5}+1 & \cdots & g_{5}+1 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & \ddots & \vdots & \vdots & \vdots & & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \\
\hdashline g_{3}\left(g_{5}+1\right) & 0 & \cdots & \cdots & 0 & g_{3}\left(g_{5}+1\right)+1 & 1 & \cdots & 1 \\
0 & \cdots & \cdots & \cdots & 0 & 0 & g_{3}+g_{5}+1 & & \\
\vdots & & & & \vdots & \vdots & & \ddots & \\
0 & \cdots & \cdots & \cdots & 0 & 0 & & \\
\hdashline & & & & & & & g_{3}+g_{5}+1
\end{array}\right)\right\} g_{3}
\end{aligned}
$$

$(\bmod 2)$.

We now only need to consider the right-hand matrix in Eq. 4.5) through the following two subcases:

Case (\mathbf{i}). If $g_{3} \equiv g_{5}(\bmod 2)$. Then we have $g_{3}+g_{5} \equiv 0(\bmod 2)$ and $g_{3}\left(g_{5}+1\right) \equiv 0$ $(\bmod 2)$. This implies that

$$
D_{-1}-\left(A^{t}+D_{2}\right)\left(A+D_{2}\right) \sim\left(\begin{array}{cc:c}
g_{3}+1 & & \mathfrak{S} \\
& I_{g_{3}-1} & \cdots \\
\hdashline-\ldots-\ldots & (\bmod 2), ~
\end{array}\right.
$$

where we use \mathfrak{S} to denote the block lying in the top left corner which does not contribute to the determinant of M_{e}. So we can now return to Eq. (4.3) and get that $\operatorname{det}\left(M_{e}\right) \equiv g_{3}+1(\bmod 2)$. It is easy to see that $\operatorname{det}\left(M_{e}\right) \equiv 1(\bmod 2)$ if and only if $g_{3} \equiv g_{5} \equiv 0(\bmod 2)$ in this situation.
Case (ii). If $g_{3} \not \equiv g_{5}(\bmod 2)$. Then we must have $g_{5}=1$, otherwise the last row of the right-hand matrix in Eq. (4.5) is congruent to zero modulo 2. So we have $g_{3} \equiv 0(\bmod 2)$. It follows that $D_{-1}-\left(A^{t}+D_{2}\right)\left(A+D_{2}\right) \sim I_{g_{3}+1}(\bmod 2)$. Then it is clear that $\operatorname{det}\left(M_{e}\right) \equiv 1(\bmod 2)$.
(3) In this case, since $g_{1}=g_{5}=0$ and $\epsilon=2$, we consider the square-free positive integer $n=2 \prod_{i=1}^{g_{3}} q_{i} \cdot \prod_{i=1}^{g_{7}} s_{i}$ defined by $(*)$. By the law of quadratic reciprocity, it is easy to check that $D_{-1}=\left(\begin{array}{ll}I_{g_{3}} & \\ & I_{g_{7}}\end{array}\right)=I_{g_{3}+g_{7}}, D_{2}=\left(\begin{array}{ll}I_{g_{3}} & \\ & \mathbf{0}_{g_{7}}\end{array}\right), D_{-2}=\left(\begin{array}{ll}\mathbf{0}_{g_{3}} & \\ & I_{g_{7}}\end{array}\right)$, and $A=\left(\begin{array}{cc}A_{11} & 0 \\ 1 & A_{22}\end{array}\right)$, where

$$
\begin{aligned}
& A_{11}=\left(\begin{array}{cccc}
0 & & & \\
1 & 1 & & \\
\vdots & \ddots & \ddots & \\
1 & \ldots & 1 & g_{3}-1
\end{array}\right) \in \operatorname{Mat}_{g_{3}}(\mathbb{Z}), \\
& A_{22}=\left(\begin{array}{lccc}
g_{3} & \\
1 & g_{3}+1 & \\
\vdots & \ddots & \ddots & \\
1 & \ldots & 1 & g_{3}+g_{7}-1
\end{array}\right) \in \operatorname{Mat}_{g_{7}}(\mathbb{Z})
\end{aligned}
$$

Since n is even, we only need to consider the Monsky matrix M_{e} defined by formula (2.2). Note that $D_{-1}=I_{g_{3}+g_{7}}$ and use Proposition 3.1] again, we see that

$$
\begin{equation*}
\operatorname{det}\left(M_{e}\right)=\operatorname{det}\left(D_{2}-\left(A+D_{2}\right)\left(A^{t}+D_{2}\right)\right) \tag{4.6}
\end{equation*}
$$

In order to determine the right-hand determinant in Eq. (4.6), we first compute the inner matrix $\left(A+D_{2}\right)\left(A^{t}+D_{2}\right)$ by block matrix multiplication. That is

$$
\left(A+D_{2}\right)\left(A^{t}+D_{2}\right) \equiv\left(\begin{array}{c:c}
\mathbf{1}_{g_{3}} & \mathbf{1} \\
\hdashline \mathbf{1} & \mathbf{o}_{g_{7}}
\end{array}\right) \quad(\bmod 2) \in \operatorname{Mat}_{g_{3}+g_{7}}(\mathbb{Z})
$$

It follows that

$$
D_{2}-\left(A+D_{2}\right)\left(A^{t}+D_{2}\right) \equiv\left(\begin{array}{c:c}
\gamma_{g_{3}} & \mathbf{1} \tag{4.7}\\
\hdashline \mathbf{1} & \mathbf{0}_{g_{7}}
\end{array}\right) \quad(\bmod 2),
$$

where $\gamma_{g_{3}}=\mathbf{1}_{g_{3}}-I_{g_{3}}$. In order to make $\operatorname{det}\left(M_{e}\right) \equiv 1(\bmod 2)$, it is easy to see that there must be $g_{7}=1$, otherwise the last two rows in the right-hand matrix in Eq. (4.7) will be equal when modulo 2. So we have

$$
\begin{aligned}
D_{2}-\left(A+D_{2}\right)\left(A^{t}+D_{2}\right) & \equiv\left(\begin{array}{c:c}
\gamma_{g_{3}} & \mathbf{1}_{g_{3} \times 1} \\
\hdashline \mathbf{1}_{1 \times g_{3}} & 0
\end{array}\right) \\
& \sim\left(\begin{array}{c:c}
I_{g_{3}} & \mathbf{1}_{g_{3} \times 1} \\
\hdashline \mathbf{1}_{1 \times g_{3}} & 0
\end{array}\right) \sim\left(\begin{array}{c:c}
I_{g_{3}} & \mathbf{1}_{g_{3} \times 1} \\
\hdashline \mathbf{0}_{1 \times g_{3}} & g_{3}
\end{array}\right),
\end{aligned}
$$

where we add rows between row one and row g_{3} by row $g_{3}+1$ respectively for the first \sim, and then add row $g_{3}+1$ by the resulting rows from 1 to g_{3} for the second \sim. This implies that $\operatorname{det}\left(M_{e}\right) \equiv g_{3}(\bmod 2)$. Consequently, $\operatorname{det}\left(M_{e}\right) \equiv 1(\bmod 2)$ if and only if $g_{3} \equiv 1(\bmod 2)$ and $g_{7}=1$.

Remark 4.1. A similar discussion shows that if $g_{1}=g_{5}=0, \epsilon=1$, and n is given by $(*)$, then $\operatorname{det}\left(M_{o}\right) \equiv 0(\bmod 2)$ always holds.
(4) As we know, the result stated in case (4) is classical, see for instance 16 Table 3.8, p. 232] or [4, Lemma 1.1(3)]. Here we give a new proof for it by using Monsky's formula.

Since $g_{1}=g_{3}=0$ and $\epsilon=1$, we consider the square-free positive integer $n=\prod_{i=1}^{g_{5}} r_{i} \cdot \prod_{i=1}^{g_{7}} s_{i}$ defined by $(*)$. By the law of quadratic reciprocity, it is easy to check that $D_{-1}=\left(\begin{array}{cc}\mathbf{0}_{g_{5}} & \\ & I_{g_{7}}\end{array}\right), D_{2}=\left(\begin{array}{ll}I_{g_{5}} & \\ & \\ & 0_{g_{7}}\end{array}\right), D_{-2}=\left(\begin{array}{ll}I_{g_{5}} & \\ & I_{g_{7}}\end{array}\right)=I_{g_{5}+g_{7}}$, and $A=\left(\begin{array}{cc}A_{11} & 1 \\ 1 & A_{22}\end{array}\right)$, where

$$
\begin{aligned}
& A_{11}=\left(\begin{array}{cccc}
g_{5}+g_{7}-1 & 1 & \cdots & 1 \\
1 & g_{5}+g_{7}-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & g_{5}+g_{7}-1
\end{array}\right) \in \operatorname{Mat}_{g_{5}}(\mathbb{Z}), \\
& A_{22}=\left(\begin{array}{cccc}
g_{5} & & & \\
1 & g_{5}+1 & \\
\vdots & \ddots & \ddots & \\
1 & \cdots & 1 & g_{5}+g_{7}-1
\end{array}\right) \in \operatorname{Mat}_{g_{7}(\mathbb{Z})}
\end{aligned}
$$

Since n is odd, one only need to consider the Monsky matrix M_{o} defined by formula (2.1). First of all, we interchange rows k and $g_{5}+g_{7}+k$ for all $1 \leq k \leq g_{5}+g_{7}$ in M_{o}, respectively. It follows that $M_{o} \sim\left(\begin{array}{cc}D_{2} & A+D_{-2} \\ A+D_{2} & D_{2}\end{array}\right)$. Here we denote the right-hand matrix by $\left(\begin{array}{cc}I_{g_{5}} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)$, where $\alpha_{12}=\left(\begin{array}{l:l}0 & A_{11}+I_{g_{5}} \\ \mathbf{1}_{g_{5} \times g_{7}}\end{array}\right) \in \operatorname{Mat}_{g_{5} \times\left(g_{7}+g_{5}+g_{7}\right)}(\mathbb{Z})$, $\alpha_{21}=\alpha_{12}^{t} \in \operatorname{Mat}_{\left(g_{7}+g_{5}+g_{7}\right) \times g_{5}}(\mathbb{Z})$, and

$$
\alpha_{22}=\left(\begin{array}{c:c:c}
\mathbf{0}_{g_{7}} & \mathbf{1} & A_{22}+I_{g_{7}} \\
\hdashline \mathbf{1} & I_{5} & \cdots \cdots \cdots-- \\
\hdashline A_{22} & & \mathbf{0}_{g_{7}}
\end{array}\right) \in \operatorname{Mat}_{g_{7}+g_{5}+g_{7}}(\mathbb{Z}) .
$$

According to Proposition 3.1 we see

$$
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\alpha_{22}-\alpha_{21} \alpha_{12}\right) \quad(\bmod 2)
$$

By block matrix multiplication again, it is easy to compute that

$$
\alpha_{21} \alpha_{12} \equiv\left(\begin{array}{c:c:c}
\mathbf{0}_{g_{7}} & \mathbf{0} & \mathbf{0} \\
\hdashline \mathbf{0} & g_{5} \mathbf{1}_{g_{5}}+\left(g_{7}+1-g_{5}\right) I_{g_{5}} & \left(g_{7}+1\right) \mathbf{1} \\
\hdashline \mathbf{0} & \left(g_{7}+1\right) \mathbf{1} & g_{5} \mathbf{1}_{g_{7}}
\end{array}\right) \quad(\bmod 2) \in \operatorname{Mat}_{g_{7}+g_{5}+g_{7}}(\mathbb{Z})
$$

Then it follows that

$(\bmod 2)$.

We now only need to consider the right-hand matrix in Eq. (4.8) through the following three subcases:

Case (i). If $g_{5} \equiv g_{7}(\bmod 2)$. Then there must be $g_{5}=1$. Otherwise, if $g_{5} \geq 2$ then rows between row $g_{7}+1$ and row $g_{7}+g_{5}$ are equal when modulo 2 in the right-hand matrix in 4.8, which implies that the determinant of M_{o} is congruent to 0 modulo 2. And then we also have $g_{7} \equiv 1(\bmod 2)$ in this situation. It follows that

By comparing rows $g_{7}+g_{5}+1$ and $g_{7}+g_{5}+2$ in the right-hand matrix in Eq. (4.9), we get $g_{7}=1$, otherwise these two rows are equal when modulo 2 . Then we see that

$$
\alpha_{22}-\alpha_{21} \alpha_{12} \equiv\left(\begin{array}{c:c}
& 1 \\
\hdashline 1 & - \\
\hdashline 1 & 1
\end{array}\right) \quad(\bmod 2) .
$$

Now it is obvious that $\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\alpha_{22}-\alpha_{21} \alpha_{12}\right) \equiv 1(\bmod 2)$.
Case (ii). If $g_{5} \not \equiv g_{7}(\bmod 2)$ and $g_{7} \geq 2$. By considering the first two rows in the right-hand matrix in Eq. (4.8), there must be $g_{5} \equiv 1(\bmod 2)$, otherwise these two rows are equal when modulo 2 and thus cannot lead to $\operatorname{det}\left(M_{o}\right) \equiv 1(\bmod 2)$. But if we consider rows $g_{7}+g_{5}+1$ and $g_{7}+g_{5}+2$, then there must be $g_{5} \equiv 0(\bmod 2)$ for the same reason. This leads to a contradiction.

Case (iii). If $g_{5} \not \equiv g_{7}(\bmod 2)$ and $g_{7}=1$. Then $g_{5} \equiv 0(\bmod 2)$. It follows that the last row in the right-hand matrix in Eq. (4.8) is equal to zero when modulo 2, which also implies that $\operatorname{det}\left(M_{o}\right) \equiv 0(\bmod 2)$.

In summary, the desired conclusion is proved.
Remark 4.2. A similar discussion shows that if $g_{1}=g_{3}=0, \epsilon=2$, and n is given by $(*)$, then $\operatorname{det}\left(M_{e}\right) \equiv 0(\bmod 2)$ always holds.
(5) In this case, since $g_{5}=g_{7}=0$ and $\epsilon=1$, we consider the square-free positive integer $n=\prod_{i=1}^{g_{1}} p_{i} \cdot \prod_{i=1}^{g_{3}} q_{i}$ defined by $(*)$. By the law of quadratic reciprocity, it is easy to check that $D_{-1}=D_{2}=\left(\begin{array}{cc}\mathbf{0}_{g_{1}} & \\ & I_{g_{3}}\end{array}\right), D_{-2}=\mathbf{0}_{g_{1}+g_{3}}$, and $A=\left(\begin{array}{cc}A_{11} & 1 \\ 1 & A_{22}\end{array}\right)$,
where

$$
\left.\begin{array}{l}
A_{11}=\left(\begin{array}{cccc}
g_{1}+g_{3}-1 & 1 & \cdots & 1 \\
1 & g_{1}+g_{3}-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & & \cdots & 1
\end{array}\right) g_{1}+g_{3}-1
\end{array}\right) \in \operatorname{Mat}_{g_{1}}(\mathbb{Z}),
$$

Since n is odd, we only need to consider the Monsky matrix M_{o} defined by formula (2.1). We write M_{o} as a 4×4 block matrix

$$
M_{o}=\left(\begin{array}{c:c:c:c}
A_{11} & \mathbf{1} & \mathbf{0}_{g_{1}} & \mathbf{0} \tag{4.10}\\
\hdashline \mathbf{1} & A_{22}+I_{g_{3}} & \mathbf{0} & I_{g_{3}} \\
\hdashline \mathbf{0}_{g_{1}} & \mathbf{0} & A_{11} & \mathbf{1} \\
\hdashline \mathbf{0} & \bar{I}_{g_{3}} & \mathbf{1} & A_{22}
\end{array}\right) \in \operatorname{Mat}_{g_{1}+g_{3}+g_{1}+g_{3}}(\mathbb{Z})
$$

Now we perform elementary row and column operations on M_{o} in Eq. (4.10). First, we interchange rows k and $g_{1}+g_{3}+k$ for all $1 \leq k \leq g_{1}+g_{3}$, respectively. Second, we interchange block rows (respectively, columns) one and two to produce a block matrix whose top left corner and lower right corner are the identity matrix $I_{g_{3}}$. Then we get

$$
M_{o} \sim\left(\begin{array}{c:c:c:c}
I_{g_{3}} & \mathbf{0} & \mathbf{1} & A_{22} \tag{4.11}\\
\hdashline-\mathbf{0} & \mathbf{0}_{g_{1}} & A_{11} & \mathbf{1} \\
\hdashline \mathbf{1} & A_{11} & \mathbf{0}_{g_{1}} & \mathbf{0} \\
\hdashline \mathcal{A}_{22}+I_{g_{3}} & \mathbf{1} & \mathbf{0} & I_{g_{3}}
\end{array}\right) \in \operatorname{Mat}_{g_{3}+g_{1}+g_{1}+g_{3}}(\mathbb{Z})
$$

Here we denote the right-hand matrix in Eq. (4.11) by $\left(\begin{array}{cc}I_{g_{3}} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)$. Due to Proposition 3.1 it follows that

$$
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\alpha_{22}-\alpha_{21} \alpha_{12}\right) \quad(\bmod 2)
$$

And according to the block matrix multiplication, it is easy to compute that
$\alpha_{22}-\alpha_{21} \alpha_{12} \equiv\left(\begin{array}{c:c:c}\mathbf{0}_{g_{1}} & A_{11} & \mathbf{1} \\ \hdashline A_{11} & g_{3} \mathbf{1}_{g_{1}} & \left.g_{1}+g_{3}-1\right) \mathbf{1} \\ \hdashline \mathbf{1} & \left(g_{1}+g_{3}\right) \mathbf{1} & I_{g_{3}}\end{array}\right) \quad(\bmod 2) \in \operatorname{Mat}_{g_{1}+g_{1}+g_{3}}(\mathbb{Z})$.

Denote the right-hand matrix in Eq. 4.12) by $\left(\begin{array}{l}\beta_{11} \\ \beta_{21} \\ \beta_{21} \\ I_{93}\end{array}\right)$. By Proposition 3.1 again, we see

$$
\operatorname{det}\left(\alpha_{22}-\alpha_{21} \alpha_{12}\right) \equiv \operatorname{det}\left(\beta_{11}-\beta_{12} \beta_{21}\right) \quad(\bmod 2)
$$

As before, we can compute that $\beta_{12} \beta_{21} \equiv\left(\begin{array}{cc}g_{3} \mathbf{1}_{g_{1}} & g_{3}\left(g_{1}+1\right) \mathbf{1} \\ g_{1} g_{3} \mathbf{1} & \mathbf{0}_{g_{1}}\end{array}\right)(\bmod 2) \in \operatorname{Mat}_{g_{1}+g_{1}}(\mathbb{Z})$, and

$$
\begin{aligned}
& \beta_{11}-\beta_{12} \beta_{21} \\
& \equiv\left(\begin{array}{c:c}
g_{3} \mathbf{1}_{g_{1}} & A_{11}+g_{3}\left(g_{1}+1\right) \mathbf{1} \\
\hdashline A_{11}+g_{1} g_{3} \mathbf{1} & g_{3} \mathbf{1}_{g_{1}}
\end{array}\right)
\end{aligned}
$$

We now remain to consider the following four subcases:
Case (i). If $g_{3} \equiv 0(\bmod 2)$ and $g_{1} \geq 2$. Then there must be $g_{1} \equiv 1(\bmod 2)$, otherwise the rows between row one and row g_{1} in the upper right-hand matrix in

Eq. (4.13) are equal when modulo 2. It follows that

$$
\operatorname{det}\left(\beta_{11}-\beta_{12} \beta_{21}\right) \equiv \operatorname{det}\left(\gamma_{g_{1}}\right)^{2} \equiv \operatorname{det}\left(\gamma_{g_{1}}\right) \quad(\bmod 2)
$$

where $\gamma_{g_{1}}=\mathbf{1}_{g_{1}}+I_{g_{1}} \in \operatorname{Mat}_{g_{1}}(\mathbb{Z})$. It is easy to compute that $\operatorname{det}\left(\gamma_{g_{1}}\right) \equiv g_{1}-$ $1 \equiv 0(\bmod 2)$. Thus we have $\operatorname{det}\left(M_{o}\right) \equiv 0(\bmod 2)$.

Case (ii). If $g_{3} \equiv 0(\bmod 2)$ and $g_{1}=1$. Then we see that Eq. (4.13) becomes $\beta_{11}-\beta_{12} \beta_{21} \equiv\left(\begin{array}{cc}0 & g_{1}+1 \\ g_{1}+1 & 0\end{array}\right)(\bmod 2)$. It also follows that $\operatorname{det}\left(M_{o}\right) \equiv 0(\bmod 2)$.

Case (iii). If $g_{3} \equiv 1(\bmod 2)$ and $g_{1} \geq 2$. Then there must be $g_{1} \equiv 0(\bmod 2)$ for the same reason as in case (i). It follows that

$$
\beta_{11}-\beta_{12} \beta_{21} \equiv\left(\begin{array}{c:c}
\mathbf{1}_{g_{1}} & I_{g_{1}} \\
\hdashline \gamma_{g_{1}} & \mathbf{1}_{g_{1}}
\end{array}\right) \quad(\bmod 2) \sim\left(\begin{array}{c:c}
\gamma_{g_{1}} & \mathbf{1}_{g_{1}} \\
\hdashline \mathbf{1}_{g_{1}} & I_{g_{1}}
\end{array}\right),
$$

where $\gamma_{g_{1}}$ is the same as in case (i). Using Proposition 3.1 once again, we see that $\operatorname{det}\left(\beta_{11}-\beta_{12} \beta_{21}\right) \equiv \operatorname{det}\left(\gamma_{g_{1}}-\mathbf{1}_{g_{1}} \mathbf{1}_{g_{1}}\right) \equiv \operatorname{det}\left(\gamma_{g_{1}}-g_{1} \mathbf{1}_{g_{1}}\right) \equiv \operatorname{det}\left(\gamma_{g_{1}}\right) \equiv g_{1}-1 \equiv 1$ $(\bmod 2)$. So we have $\operatorname{det}\left(M_{o}\right) \equiv 1(\bmod 2)$.

Case (iv). If $g_{3} \equiv 1(\bmod 2)$ and $g_{1}=1$. Then Eq. (4.13) becomes $\beta_{11}-\beta_{12} \beta_{21} \equiv$ $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)(\bmod 2)$. It also follows that $\operatorname{det}\left(M_{o}\right) \equiv 1(\bmod 2)$.

In summary, the desired conclusion is proved.
Remark 4.3. A similar discussion shows that if $g_{5}=g_{7}=0, \epsilon=2$, and n is given by $(*)$, then $\operatorname{det}\left(M_{e}\right) \equiv 0(\bmod 2)$ always holds.
(6) In this case, since $g_{3}=g_{7}=0$ and $\epsilon=2$, we consider the square-free positive integer $n=2 \prod_{i=1}^{g_{1}} p_{i} \cdot \prod_{i=1}^{g_{5}} r_{i}$ defined by $(*)$. By the law of quadratic reciprocity, it is easy to check that $D_{-1}=\mathbf{0}_{g_{1}+g_{5}}, D_{2}=D_{-2}=\left(\begin{array}{cc}\mathbf{0}_{g_{1}} & \\ & I_{g_{5}}\end{array}\right)$, and $A=\left(\begin{array}{cc}A_{11} & 1 \\ 1 & A_{22}\end{array}\right)$, where

$$
\begin{aligned}
& A_{11}=\left(\begin{array}{cccc}
g_{1}+g_{5}-1 & 1 & \cdots & 1 \\
1 & g_{1}+g_{5}-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & g_{1}+g_{5}-1
\end{array}\right) \in \operatorname{Mat}_{g_{1}}(\mathbb{Z}), \\
& A_{22}=\left(\begin{array}{cccc}
g_{1}+g_{5}-1 & 1 & \cdots & 1 \\
1 & g_{1}+g_{5}-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & g_{1}+g_{5}-1
\end{array}\right) \in \operatorname{Mat}_{g_{5}(\mathbb{Z}) .}
\end{aligned}
$$

Since n is even, we only need to consider the Monsky matrix M_{e} defined by formula (2.2). Note that A is symmetric, it is easy to see $\operatorname{det}\left(M_{e}\right) \equiv \operatorname{det}(A+$ $\left.D_{2}\right) \operatorname{det}\left(A^{t}+D_{2}\right) \equiv\left(\operatorname{det}\left(A+D_{2}\right)\right)^{2} \equiv \operatorname{det}\left(A+D_{2}\right)(\bmod 2)$, where

Now it is sufficient to consider the following two subcases:
Case (i). If $g_{1}=g_{5}=1$. Then $A+D_{2} \equiv\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)(\bmod 2)$. It is obvious that $\operatorname{det}\left(M_{e}\right) \equiv$ $\operatorname{det}\left(A+D_{2}\right) \equiv 1(\bmod 2)$.

Case (ii). If $g_{1}=1$ and $g_{5} \geq 2$. Then there must be $g_{5} \equiv 1(\bmod 2)$, otherwise the last g_{5} rows of $A+D_{2}$ in Eq. (4.14) are equal when modulo 2, which follows that $\operatorname{det}\left(M_{e}\right) \equiv 0(\bmod 2)$. We thus have

$$
A+D_{2} \equiv\left(\begin{array}{c:c}
1 & \mathbf{1}_{1 \times g_{5}} \\
\hdashline \mathbf{1}_{g_{5} \times 1} & \gamma_{g_{5}}
\end{array}\right) \sim\left(\begin{array}{c:c}
1 & \mathbf{1}_{1 \times g_{5}} \\
\hdashline \mathbf{0}_{g_{5} \times 1} & I_{g_{5}}
\end{array}\right) \quad(\bmod 2),
$$

where $\gamma_{g_{5}}=I_{g_{5}}+\mathbf{1}_{g_{5}}$. This implies that $\operatorname{det}\left(M_{e}\right) \equiv \operatorname{det}\left(A+D_{2}\right) \equiv 1(\bmod 2)$.
Case (iii). If $g_{1} \geq 2$. Then there must be $g_{1}+g_{5} \equiv 1(\bmod 2)$, otherwise the first g_{1} rows of $A+D_{2}$ in Eq. (4.14) are equal when modulo 2, which follows that $\operatorname{det}\left(M_{e}\right) \equiv 0(\bmod 2)$. And for the same reason, there must be $g_{5}=1$ by considering rows between row $g_{1}+1$ and row $g_{1}+g_{5}$. This implies that $g_{1} \equiv 0(\bmod 2)$. So we have

$$
A+D_{2} \equiv\left(\begin{array}{c:c}
\gamma_{g_{1}} & \mathbf{1}_{g_{1} \times 1} \\
\hdashline \mathbf{1}_{1 \times g_{1}} & 1
\end{array}\right) \sim\left(\begin{array}{c:c}
I_{g_{1}} & \mathbf{0}_{g_{1} \times 1} \\
\hdashline \mathbf{1}_{1 \times g_{1}} & 1
\end{array}\right) \quad(\bmod 2),
$$

where $\gamma_{g_{1}}=I_{g_{1}}+\mathbf{1}_{g_{1}}$. And we get that $\operatorname{det}\left(M_{e}\right) \equiv \operatorname{det}\left(A+D_{2}\right) \equiv 1(\bmod 2)$.
Remark 4.4. A similar discussion shows that if $g_{3}=g_{7}=0, \epsilon=1$, and n is given by $(*)$, then $\operatorname{det}\left(M_{e}\right) \equiv 0(\bmod 2)$ always holds.

Remark 4.5. A similar discussion shows that if $g_{3}=g_{5}=0, n$ is given by (*), then $\operatorname{det}\left(M_{e}\right) \equiv 0(\bmod 2)$ always holds.

4.3. Proof of Theorem 1.3

(1) In this case, since $g_{1}=0$ and $\epsilon=1$, we consider the square-free positive integer $n=\prod_{i=1}^{g_{3}} q_{i} \cdot \prod_{i=1}^{g_{5}} r_{i} \cdot \prod_{i=1}^{g_{7}} s_{i}$ defined by $(*)$. By the law of quadratic reciprocity, it is easy to check that

$$
\begin{gathered}
D_{2}=\left(\begin{array}{c:c:c}
I_{g_{3}} & \\
\hdashline I_{g_{5}} & \ldots \\
\hdashline 0_{g_{7}}
\end{array}\right), \quad D_{-2}=\left(\begin{array}{c:c:c}
0_{g_{3}} & \\
\hdashline & I_{g_{5}} & \cdots \\
\hdashline I_{-1} & =\left(\begin{array}{c:c}
I_{g_{3}} & \\
\hdashline 0_{g_{5}} & - \\
\hdashline
\end{array} I_{g_{7}}\right.
\end{array}\right), \quad \text { and } \quad A=\left(\begin{array}{c:c:c}
A_{11} & 1 & 0 \\
\hdashline 1 & A_{22} & 1 \\
\hdashline \mathbf{1} & \mathbf{1} & A_{33}
\end{array}\right),
\end{gathered}
$$

where

$$
\left.\begin{array}{l}
A_{11}=\left(\begin{array}{ccccc}
g_{5} & & \\
1 & g_{5}+1 & & \\
\vdots & \ddots & \ddots & \\
1 & \ldots & 1 & g_{5}+g_{3}-1
\end{array}\right) \in \operatorname{Mat}_{g_{3}}(\mathbb{Z}), \\
A_{22}=\left(\begin{array}{ccccc}
g_{1}^{\prime}-1 & 1 & \cdots & 1 \\
1 & g_{1}^{\prime}-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & g_{1}^{\prime}-1
\end{array}\right) \in \operatorname{Mat}_{g_{5}}(\mathbb{Z}), \\
A_{33}=\left(\begin{array}{cccc}
g_{3}+g_{5} & & \\
1 & g_{3}+g_{5}+1 & \\
\vdots & & \ddots & \ddots \\
1 & & \cdots & 1
\end{array}\right. \\
g_{3}+g_{5}+g_{7}-1
\end{array}\right) \in \operatorname{Mat}_{g_{7}(\mathbb{Z})} \quad l
$$

here and subsequently, we write $g_{1}^{\prime}=g_{3}+g_{5}+g_{7}$.
Since n is odd, we only need to consider the Monsky matrix M_{o} defined by formula (2.1]. First of all, we interchange rows k and $g_{1}^{\prime}+k$ for all $1 \leq k \leq g_{1}^{\prime}$. It follows that

Note that if $g_{7} \geq 2$, then we see $g_{1}^{\prime} \equiv 1(\bmod 2)$ by considering rows $g_{1}^{\prime}-1$ and g_{1}^{\prime} in the right-hand matrix in Eq. (4.15), otherwise these two rows must be equal when modulo 2 . For the same reason, we see $g_{1}^{\prime} \equiv 0(\bmod 2)$ by considering rows $2 g_{1}^{\prime}-1$ and $2 g_{1}^{\prime}$. This implies a contradiction. So there must be $g_{7}=1$.

Now we perform more elementary row operations on the right-hand matrix in Eq. (4.15). We add row g_{1}^{\prime} to rows between row one and row $g_{3}+g_{5}$, respectively; and add the last row to rows between row $g_{1}^{\prime}+1$ and row $g_{1}^{\prime}+g_{3}+g_{5}$, respectively. Note that $g_{1}^{\prime}=g_{3}+g_{5}+1$ and $g_{1}^{\prime}+1 \equiv g_{3}+g_{5}(\bmod 2)$. We denote the resulting matrix by $\left(\begin{array}{cc}I_{g_{3}+g_{5}} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)$, where

$$
\begin{aligned}
& \alpha_{12} \equiv\left(\begin{array}{c:c:c}
\mathbf{0} A_{11}^{t}+I_{g_{3}} & \mathbf{0} & \left(g_{3}+g_{5}+1\right) \mathbf{1} \\
\hdashline \mathbf{0} & \mathbf{0} & \left(g_{1}^{\prime}+1\right) I_{5} \\
\hdashline & \left(g_{3}+g_{5}\right) \mathbf{1}
\end{array}\right) \quad(\bmod 2), \\
& \alpha_{21}^{t} \equiv\left(\begin{array}{l:c:c}
\mathbf{0} A_{11} & \mathbf{0} & \vdots \mathbf{1} \\
\hdashline \mathbf{0} & \mathbf{0} & \left(g_{1}^{\prime}+1\right) I_{g_{5}} 1
\end{array}\right) \quad(\bmod 2),
\end{aligned}
$$

both α_{12} and α_{21}^{t} belong to $\operatorname{Mat}_{\left(g_{3}+g_{5}\right) \times\left(g_{7}+g_{3}+g_{5}+g_{7}\right)}(\mathbb{Z})$, and

$$
\alpha_{22} \equiv\left(\begin{array}{c:c:c:c}
0 & \mathbf{1} & \mathbf{1} & g_{3}+g_{5}+1 \\
\hdashline\left(g_{3}+g_{5}\right) \mathbf{1} & I_{g_{3}} & \mathbf{0} & \mathbf{0} \\
\hdashline\left(g_{3}+g_{5}+1\right) \mathbf{1} & \mathbf{0} & I_{g_{5}} & \mathbf{0} \\
\hdashline g_{3}+g_{5} & \mathbf{0} & \mathbf{0} & 0
\end{array}\right) \quad(\operatorname{lod} 2) \in \operatorname{Mat}_{g_{7}+g_{3}+g_{5}+g_{7}}(\mathbb{Z})
$$

On account of Proposition 3.1 we have

$$
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\alpha_{22}-\alpha_{21} \alpha_{12}\right) \quad(\bmod 2)
$$

It is easy to compute that

$\alpha_{22}-\alpha_{21} \alpha_{12}$				
\equiv	(-.------------	$\mathbf{1}_{1 \times g_{3}}$	$\mathbf{1}_{1 \times g_{5}}$	$g_{3}+g_{5}+1$
	$\left(g_{3}+g_{5}\right) \mathbf{1}_{g_{3} \times 1}$	$I_{g_{3}}$	0	($\left.{ }_{3}+g_{5}+1\right) \mathbf{1}_{g_{3} \times 1}$
	$\left(g_{3}+g_{5}+1\right) \mathbf{1}_{g_{5} \times 1}$	0	$g_{1}^{\prime} I_{g_{5}}$	$\left(g_{3}+g_{5}\right) \mathbf{1}_{g_{5} \times 1}$
	- $-\cdots-\cdots-\cdots-\cdots-\cdots$	+1)1 1_{1}	$\left.+g_{5}\right) \mathbf{1}_{1}$	$g_{5}-\cdots-\cdots-\cdots$

$(\bmod 2)$.

We now divide the proof into two subcases as follows:
Case (i). If $g_{5}=1$. Now add all rows between row $g_{7}+1$ and row $g_{7}+g_{3}$ to row one in the right-hand matrix in Eq. (4.16), respectively. Then each column between column $g_{7}+1$ and column $g_{7}+g_{3}$ in the resulting matrix has a unique nonzero entry. And note that $g_{3}\left(g_{3}+g_{5}+1\right)+\left(g_{3}+g_{5}+1\right) \equiv g_{3}+g_{3}^{2} \equiv 0(\bmod 2)$,
then there is also a unique non-zero entry on the first row. According to 7 Proposition 3.6, Chap. VII], by considering the expansion of $\operatorname{det}\left(\alpha_{22}-\alpha_{21} \alpha_{12}\right)$ along these special columns and the first row respectively, then we get that $\operatorname{det}\left(M_{o}\right) \equiv$ $\operatorname{det}\left(\alpha_{22}-\alpha_{21} \alpha_{12}\right) \equiv \operatorname{det}\left(\begin{array}{cc}g_{3} & g_{3}+1 \\ g_{3}+1 & 1\end{array}\right) \equiv g_{3}-\left(g_{3}+1\right)^{2} \equiv 1(\bmod 2)$. Note that the last congruence holds for any positive integer g_{3}.

Case (ii). If $g_{5} \geq 2$. We consider rows between row $g_{7}+g_{3}+1$ and row $g_{7}+g_{3}+g_{5}$ in the right-hand matrix of Eq. 4.16), which follows that $g_{1}^{\prime} \equiv 1(\bmod 2)$, otherwise these rows are equal when modulo 2 . It follows that $g_{3}+g_{5} \equiv 0(\bmod 2)$ and $g_{3} \equiv g_{5}(\bmod 2)$ since $g_{7}=1$. Then Eq. 4.16) becomes

In order to compute the determinant of the right-hand matrix, we add $g_{5}+1$ times of rows between row $g_{7}+1$ and row $g_{7}+g_{3}$ to the last row, and also add columns between column $g_{7}+g_{3}+1$ and column $g_{7}+g_{3}+g_{5}$ to the first column. Then we get a upper triangular matrix when modulo 2 and $\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\alpha_{22}-\alpha_{21} \alpha_{12}\right) \equiv$ $\operatorname{det}\left(\begin{array}{cc}g_{5} & * \\ 0 & g_{5}+g_{3}\left(g_{5}+1\right)\end{array}\right) \equiv g_{5}^{3} \equiv g_{5}(\bmod 2)$. So $\operatorname{det}\left(M_{o}\right) \equiv 1(\bmod 2)$ if and only if $g_{5} \geq 2$ and $g_{3} \equiv g_{5} \equiv 1(\bmod 2)$ in this subcase.
(2) In this case, since $g_{1}=0$ and $\epsilon=2$, we consider the square-free positive integer $n=2 \cdot \prod_{i=1}^{g_{3}} q_{i} \cdot \prod_{i=1}^{g_{5}} r_{i} \cdot \prod_{i=1}^{g_{7}} s_{i}$ defined by $(*)$. Since n is even, we only need to consider the Monsky matrix M_{e} defined by formula (2.2). Following the same notation and computational results as in the proof of Theorem 1.3 (1), we see that

$$
M_{e}=\left(\begin{array}{ccc:ccc}
I_{g_{3}} & & & A_{11}+I_{g_{3}} & \mathbf{1} & \mathbf{0} \tag{4.17}\\
& I_{g_{5}} & & \mathbf{1} & A_{22}+I_{g_{5}} & \mathbf{1} \\
\hdashline & & \mathbf{0}_{g_{7}} & \mathbf{1} & \mathbf{1} & A_{33} \\
\hdashline A_{11}^{t}+I_{g_{3}} & \mathbf{1} & \mathbf{1} & I_{g_{3}} & & \\
\mathbf{1} & A_{22}^{t}+I_{g_{5}} & \mathbf{1} & & \mathbf{0}_{g_{5}} & \\
\mathbf{0} & \mathbf{1} & A_{33}^{t} & & & I_{g_{7}}
\end{array}\right) \in \operatorname{Mat}_{2 g_{1}^{\prime}}(\mathbb{Z}),
$$

where $g_{1}^{\prime}=g_{3}+g_{5}+g_{7}$ as before.
First of all, note that there must be $g_{7} \leq 2$ by considering rows between row $g_{3}+g_{5}+1$ and row $g_{3}+g_{5}+g_{7}$ in M_{e}. Otherwise, there exist two adjacent rows being equal when modulo 2 , this implies that $\operatorname{det}\left(M_{e}\right) \equiv 0(\bmod 2)$.

We now divide the proof into subcases as follows:
Case (i). Suppose that $g_{5} \geq 2$. In order to ensure $\operatorname{det}\left(M_{e}\right) \equiv 1(\bmod 2)$, there must be $g_{1}^{\prime} \equiv 0(\bmod 2)$ by considering rows between row $g_{1}^{\prime}+g_{3}+1$ and row $g_{1}^{\prime}+g_{3}+g_{5}$ modulo 2 in Eq. (4.17). Otherwise, these rows are equal when modulo 2.

Note that if $g_{7}=2$ then $g_{3}+g_{5} \equiv 0(\bmod 2)$ and $g_{3} \equiv g_{5}(\bmod 2)$. After adding rows $2 g_{1}^{\prime}$ and $2 g_{1}^{\prime}-1$ to row g_{1}^{\prime}, we see that rows g_{1}^{\prime} and $g_{1}^{\prime}-1$ are equal when modulo 2. This implies that $\operatorname{det}\left(M_{e}\right) \equiv 0(\bmod 2)$.

Now we discuss the situation when $g_{7}=1$, which implies that $g_{3}+g_{5} \equiv$ $1(\bmod 2)$ and $g_{3} \not \equiv g_{5}(\bmod 2)$. We add rows (respectively, columns) between row (respectively, column) one and row (respectively, column) $g_{3}+g_{5}$ by row (respectively, column) g_{1}^{\prime}, respectively, in Eq. (4.17). And denote the resulting block matrix by $\left(\begin{array}{cc}I_{g_{3}+g_{5}} & \beta_{12} \\ \beta_{21} & \beta_{22}\end{array}\right)$, where $\beta_{21} \equiv \beta_{12}^{t}(\bmod 2) \in \operatorname{Mat}_{\left(g_{7}+g_{3}+g_{5}+g_{7}\right) \times\left(g_{g}+g_{5}\right)}(\mathbb{Z})$,

$$
\beta_{12} \equiv\left(\begin{array}{c:c:c}
0 & A_{11}^{t} & 0
\end{array} \mathbf{1}_{1} \quad(\bmod 2) \in \operatorname{Mat}_{\left(g_{3}+g_{5}\right) \times\left(g_{7}+g_{3}+g_{5}+g_{7}\right)}(\mathbb{Z}),\right.
$$

and

$$
\beta_{22} \equiv\left(\begin{array}{c:c:c}
0 & 1 & 1
\end{array} 1-1 .\right.
$$

According to Proposition 3.1 we see

$$
\operatorname{det}\left(M_{e}\right) \equiv \operatorname{det}\left(\beta_{22}-\beta_{21} \beta_{12}\right) \quad(\bmod 2)
$$

It is easy to compute the inner matrix

$$
\beta_{22}-\beta_{21} \beta_{12} \equiv\left(\begin{array}{c:c:c:c}
0 & \mathbf{1}_{1 \times g_{3}} & \mathbf{1}_{1 \times g_{5}} & 1 \tag{4.18}\\
\hdashline \mathbf{1}_{g_{3} \times 1} & I_{g_{3}}+g_{5} \mathbf{1}_{g_{3}} & \cdots & g_{5} \mathbf{1}_{g_{3} \times 1} \\
\hdashline \mathbf{1}_{g_{5} \times 1} & \cdots \cdots \cdots & I_{g_{5}} & \cdots \cdots \\
\hdashline 1 & g_{5} \mathbf{1}_{1 \times g_{3}} & g_{3}+1
\end{array}\right) \quad(\bmod 2) .
$$

We now perform more elementary row and column operations on the right-hand matrix in Eq. (4.18). We add all columns between column $g_{7}+g_{3}+1$ and column $g_{7}+g_{3}+g_{5}$ to column one; and add the last row to rows between row $g_{7}+1$ and row $g_{7}+g_{3}$, respectively. Remind that $g_{5}+g_{3}+1=g_{1}^{\prime} \equiv 0(\bmod 2)$. It follows that

$$
\beta_{22}-\beta_{21} \beta_{12} \sim\left(\begin{array}{c:c:c:c}
g_{5} & \mathbf{1}_{1 \times g_{3}} & \mathbf{1}_{1 \times g_{5}} & 1 \\
\hdashline I_{g_{3}} & \cdots & \cdots \\
\hdashline & \cdots \cdots \cdots & \bar{I}_{g_{5}} & \cdots \cdots \\
\hdashline 1 & g_{5} \mathbf{1}_{1 \times g_{3}} & & g_{3}+1
\end{array}\right) \quad(\bmod 2) .
$$

And then using 7, Proposition 3.6, Chap. VII], we get $\operatorname{det}\left(M_{e}\right) \equiv \operatorname{det}\left(\beta_{22}-\right.$ $\left.\beta_{21} \beta_{12}\right) \equiv \operatorname{det}\left(\begin{array}{cc}g_{5} & 1 \\ 1 & g_{3}+1\end{array}\right) \equiv g_{5}\left(g_{3}+1\right)+1(\bmod 2)$. So it is easy to see that $\operatorname{det}\left(M_{e}\right) \equiv 1(\bmod 2)$ if and only if $g_{3} \equiv 1(\bmod 2), g_{5} \geq 2$ and $g_{5} \equiv 0(\bmod 2)$. Here we have used the fact that $g_{3} \not \equiv g_{5}(\bmod 2)$ given at the beginning of this subcase.

Case (ii). Suppose that $g_{5}=1$. Now we denote M_{e} by $\left(\begin{array}{cc}I_{g_{3}+g_{5}} & \delta_{12} \\ \delta_{21} & \delta_{22}\end{array}\right)$, where $\delta_{21} \equiv$ $\delta_{12}^{t}(\bmod 2) \in \operatorname{Mat}_{\left(g_{g}+g_{5}\right) \times\left(1+g_{3}+g_{5}+1\right)}(\mathbb{Z})$,

$$
\delta_{12} \equiv\left(\begin{array}{c:c:c}
\mathbf{0} A_{11}+I_{g_{3}} & \mathbf{1} & \mathbf{0} \\
\hdashline \mathbf{0} & \mathbf{1} & g_{1} \\
\hdashline \mathbf{1}
\end{array}\right) \quad(\bmod 2) \in \operatorname{Mat}_{\left(g_{3}+g_{5}\right) \times\left(g_{7}+g_{3}+g_{5}+g_{7}\right)}(\mathbb{Z}),
$$

and

$$
\delta_{22} \equiv\left(\begin{array}{c:c:c}
0 & 1 & 1 \\
\hdashline g_{7} & A_{33} \\
\hdashline 1 & I_{g_{3}} & - \\
\hdashline A_{33}^{-} & 0 & I_{g_{7}}
\end{array}\right)(\bmod 2) \in \operatorname{Mat}_{g_{7}+g_{3}+g_{5}+g_{7}}(\mathbb{Z})
$$

By Proposition 3.1, we see $\operatorname{det}\left(M_{e}\right) \equiv \operatorname{det}\left(\delta_{22}-\delta_{21} \delta_{12}\right)(\bmod 2)$. As before, it is easy to compute the inner matrix

$$
\delta_{22}-\delta_{21} \delta_{12} \equiv\left(\begin{array}{c:c:c:c}
\mathbf{0}_{g_{7}} & \mathbf{1}_{g_{7} \times g_{3}} & \mathbf{1}_{g_{7} \times 1} & A_{33} \tag{4.19}\\
\hdashline \mathbf{1}_{g_{3} \times g_{7}} I_{g_{3}+g_{3}} \mathbf{1}_{g_{3}} & g_{7} \mathbf{1}_{g_{3} \times 1} & \mathbf{1}_{g_{3} \times g_{7}} \\
\hdashline \mathbf{1}_{1 g_{7}} & g_{7} \mathbf{1}_{1 \times g_{3}} & g_{7}+1 & g_{1}^{\prime} \mathbf{1}_{1 \times g_{7}} \\
\hdashline A_{33}^{t} & \mathbf{1}_{g_{7} \times g_{3}} & g_{1}^{\prime} \mathbf{1}_{g_{7} \times 1} & I_{g_{7}+}+\mathbf{1}_{g_{7}}
\end{array}\right) \quad(\bmod 2) .
$$

Remember that $g_{7} \leq 2$. First, if $g_{7}=1$, then $g_{1}^{\prime} \equiv g_{3}(\bmod 2)$. We see that $g_{3} \equiv 1(\bmod 2)$ by considering rows g_{1}^{\prime} and $g_{1}^{\prime}+g_{7}$ in the right-hand matrix in Eq. (4.19). Otherwise, these two rows are equal when modulo 2. However, this also causes rows one and $g_{1}^{\prime}+g_{7}$ to be equal, too. It follows that $\operatorname{det}\left(M_{e}\right) \equiv 0(\bmod 2)$ always holds.

Second, if $g_{7}=2$, then $g_{1}^{\prime} \equiv g_{3}+1(\bmod 2)$. We see that $g_{3} \equiv 1(\bmod 2)$ by considering the first two rows in the right-hand matrix in Eq. (4.19). Otherwise, these two rows are equal when modulo 2 . However, if we add the last two rows to the second row, then the first two rows in the resulting matrix are equal when modulo 2 , which also follows that $\operatorname{det}\left(M_{e}\right) \equiv 0(\bmod 2)$.

In summary, the desired conclusion is proved.
(3) In this case, since $g_{3}=0$ and $\epsilon=1$, we consider the square-free positive integer $n=\prod_{i=1}^{g_{1}} p_{i} \cdot \prod_{i=1}^{g_{5}} r_{i} \cdot \prod_{i=1}^{g_{7}} s_{i}$ defined by $(*)$. By the law of quadratic reciprocity, it is easy to check that

$$
\begin{aligned}
& D_{-1}=\left(\begin{array}{c:c:c}
\mathbf{0}_{g_{1}} & & - \\
\hdashline & 0_{g_{5}} & \ldots \\
\hdashline & & I_{g_{7}}
\end{array}\right), \quad \text { and } \quad A=\left(\begin{array}{c:c:c}
A_{11} & 1 & 1 \\
\hdashline 1 & 1 & 1 \\
\hdashline 1 & 1 & A_{33}
\end{array}\right) \text {, }
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{11}=\left(\begin{array}{cccc}
g_{3}^{\prime}-1 & 1 & \cdots & 1 \\
1 & g_{3}^{\prime}-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & g_{3}^{\prime}-1
\end{array}\right) \in \operatorname{Mat}_{g_{1}}(\mathbb{Z}), \\
& A_{22}=\left(\begin{array}{cccc}
g_{3}^{\prime}-1 & 1 & \cdots & 1 \\
1 & g_{3}^{\prime}-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & g_{3}^{\prime}-1
\end{array}\right) \in \operatorname{Mat}_{g_{5}}(\mathbb{Z}), \\
& A_{33}=\left(\begin{array}{cccc}
g_{1}+g_{5} & & & \\
1 & g_{1}+g_{5}+1 & \\
\vdots & & \ddots & \ddots \\
1 & \cdots & 1 & g_{1}+g_{5}+g_{7}-1
\end{array}\right)
\end{aligned}
$$

here and subsequently, we write $g_{3}^{\prime}=g_{1}+g_{5}+g_{7}$.
Since n is odd, we only need to consider the Monsky matrix M_{o} defined by formula (2.1). It is easy to see that

$$
M_{o}=\left(\begin{array}{ccc:ccc}
A_{11} & \mathbf{1} & \mathbf{1} & \mathbf{0}_{g_{1}} & & \tag{4.20}\\
\mathbf{1} & A_{22}+I_{g_{5}} & \mathbf{1} & & I_{g_{5}} & \\
\mathbf{1} & \mathbf{1} & A_{33} & & & \mathbf{0}_{g_{7}} \\
\hdashline-----------------1 & A_{11} \\
\mathbf{0}_{g_{1}} & I_{g_{5}} & & \mathbf{1} & A_{22}+I_{g_{5}} & \mathbf{1} \\
& & \mathbf{0}_{g_{7}} & \mathbf{1} & \mathbf{1} & A_{33}+I_{g_{7}}
\end{array}\right) \in \operatorname{Mat}_{2 g_{3}^{\prime}}(\mathbb{Z})
$$

Note that $g_{1} \geq 1$ and $g_{7} \geq 1$. In order to ensure $\operatorname{det}\left(M_{o}\right) \equiv 1(\bmod 2)$, we see that $g_{3}^{\prime} \equiv 1(\bmod 2)$ by considering the first row and row g_{3}^{\prime} of M_{o} in Eq. 4.20). Furthermore, suppose that $g_{7} \geq 2$, then rows $g_{3}^{\prime}-1$ and g_{3}^{\prime} are equal when modulo 2 , so there must be $g_{7}=1$. This implies that $g_{1}+g_{5} \equiv 0(\bmod 2)$ and $g_{1} \equiv g_{5}(\bmod 2)$.

We now perform elementary row and column operations on M_{o}. We adding rows between row one and row $g_{1}+g_{5}$ by row g_{3}^{\prime}; and add rows between row $g_{3}^{\prime}+1$ and row $g_{3}^{\prime}+g_{1}+g_{5}$ by row $2 g_{3}^{\prime}$, respectively. Then apply 7, Proposition 3.6, Chap. VII] to the resulting matrix finitely many times, we $\operatorname{get} \operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\begin{array}{cc}I_{g_{1}} & \mathbf{1}_{g_{1} \times 1} \\ \mathbf{1}_{1 \times g_{1}} & 0\end{array}\right) \equiv$ $g_{1}(\bmod 2)$. It follows that $\operatorname{det}\left(M_{o}\right) \equiv 1(\bmod 2)$ if and only if $g_{1} \equiv g_{5} \equiv 1(\bmod 2)$ and $g_{7}=1$.
(4) In this case, since $g_{3}=0$ and $\epsilon=2$, we consider the square-free positive integer $n=2 \cdot \prod_{i=1}^{g_{1}} p_{i} \cdot \prod_{i=1}^{g_{5}} r_{i} \cdot \prod_{i=1}^{g_{7}} s_{i}$ defined by $(*)$. Since n is even, we only need to consider the Monsky matrix M_{e} defined by formula (2.2). Following the same notation and computational results as in the proof of Theorem 1.3(3), we see

$$
M_{e}=\left(\begin{array}{ccc:ccc}
\mathbf{0}_{g_{1}} & & & A_{11} & \mathbf{1} & \mathbf{1} \tag{4.21}\\
& I_{g_{5}} & & \mathbf{1} & A_{22}+I_{g_{5}} & \mathbf{1} \\
& & \mathbf{0}_{g_{7}} & \mathbf{1} & \mathbf{1} & A_{33} \\
\hdashline A_{11}^{t} & \mathbf{1} & \mathbf{1} & \mathbf{0}_{g_{1}} & & \\
\mathbf{1} & A_{22}^{t}+I_{g_{5}} & \mathbf{1} & & \mathbf{0}_{g_{5}} & \\
\mathbf{1} & \mathbf{1} & A_{33}^{t} & & & I_{g_{7}}
\end{array}\right) \in \operatorname{Mat}_{2 g_{3}^{\prime}}(\mathbb{Z})
$$

where $g_{1}^{\prime}=g_{3}+g_{5}+g_{7}$ as before.
Note that $g_{1} \geq 1$ and $g_{7} \geq 1$. In order to ensure $\operatorname{det}\left(M_{o}\right) \equiv 1(\bmod 2)$, we get that $g_{3}^{\prime} \equiv 1(\bmod 2)$ by considering the first row and row g_{3}^{\prime} of M_{o} in 4.21). Furthermore, if $g_{5} \geq 2$ then $g_{3}^{\prime} \equiv 1(\bmod 2)$ implies that the rows between row $g_{3}^{\prime}+g_{1}+1$ and row $g_{3}^{\prime}+g_{1}+g_{5}$ are equal when modulo 2 . So we only need to consider the situation when $g_{5}=1$. This implies $g_{1}+g_{7} \equiv 0(\bmod 2)$ and $g_{1} \equiv g_{7}(\bmod 2)$.

Similarly, if $g_{7} \geq 2$, then rows g_{3}^{\prime} and $g_{3}^{\prime}-1$ are equal when modulo 2 because of $g_{3}^{\prime} \equiv 1(\bmod 2)$. So we also only need to consider the situation when $g_{7}=1$. This implies $g_{1} \equiv 1(\bmod 2)$.

We now perform elementary row and column operations on M_{e}. First, we add rows (respectively, columns) between row (respectively, column) $g_{3}^{\prime}+1$ and row (respectively, column) $g_{3}^{\prime}+g_{1}$ by row (respectively, column) $g_{3}^{\prime}+g_{1}+g_{5}$, respectively. Second, we add the last row (respectively, column) by row (respectively, column) $g_{3}^{\prime}+g_{1}+g_{5}$. And then we apply [7, Proposition 3.6, Chap. VII] to the resulting matrix finitely many times, which follows that $\operatorname{det}\left(M_{e}\right) \equiv g_{1} \operatorname{det}\left(\begin{array}{cc}1 & 1 \\ 0 & g_{1}\end{array}\right) \equiv g_{1}^{2} \equiv 1(\bmod 2)$ always holds.
(5) In this case, since $g_{5}=0$ and $\epsilon=1$, we consider the square-free positive integer $n=\prod_{i=1}^{g_{1}} p_{i} \cdot \prod_{i=1}^{g_{3}} q_{i} \cdot \prod_{i=1}^{g_{7}} s_{i}$ defined by $(*)$. By the law of quadratic reciprocity, it is easy to check that

$$
\begin{aligned}
& D_{-1}=\left(\begin{array}{c:c:c}
\mathbf{0}_{g_{1}} & & \ldots \\
\hdashline \hdashline & I_{g_{3}} & \cdots \\
\hdashline & & I_{g_{7}}
\end{array}\right), \quad \text { and } \quad A=\left(\begin{array}{c:c:c}
A_{11} & 1 & 1 \\
\hdashline 1 & 1 & 0 \\
\hdashline 1 & 1 & A_{33}
\end{array}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{11}=\left(\begin{array}{cccc}
g_{5}^{\prime}-1 & 1 & \cdots & 1 \\
1 & g_{5}^{\prime}-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & g_{5}^{\prime}-1
\end{array}\right) \in \operatorname{Mat}_{g_{1}}(\mathbb{Z}), \\
& A_{22}=\left(\begin{array}{cccc}
g_{1} & & & \\
1 & g_{1}+1 & & \\
\vdots & \ddots & \ddots & \\
1 & \cdots & 1 & g_{1}+g_{3}-1
\end{array}\right) \in \operatorname{Mat}_{g_{3}}(\mathbb{Z}), \\
& A_{33}=\left(\begin{array}{cccc}
g_{1}+g_{3} & & & \\
1 & g_{1}+g_{3}+1 & & \\
\vdots & \ddots & \ddots & \\
1 & \ldots & 1 & g_{1}+g_{3}+g_{7}-1
\end{array}\right) \in \operatorname{Mat}_{g_{7}(\mathbb{Z}),}
\end{aligned}
$$

here and subsequently, we write $g_{5}^{\prime}=g_{1}+g_{3}+g_{7}$.
Since n is odd, we only need to consider the Monsky matrix M_{o} defined by formula (2.1). That is

$$
M_{o}=\left(\begin{array}{ccc:ccc}
A_{11} & \mathbf{1} & \mathbf{1} & \mathbf{0}_{g_{1}} & & \tag{4.22}\\
\mathbf{1} & A_{22}+I_{g_{3}} & \mathbf{0} & & I_{g_{3}} & \\
\mathbf{1} & \mathbf{1} & A_{33} & & & \mathbf{0}_{g_{7}} \\
\hdashline \mathbf{0}_{g_{1}} & & & A_{11} & \mathbf{1} & \mathbf{1} \\
& I_{g_{3}} & & \mathbf{1} & A_{22} & \mathbf{0} \\
& & \mathbf{0}_{g_{7}} & \mathbf{1} & \mathbf{1} & A_{33}+I_{g_{7}}
\end{array}\right) \in \operatorname{Mat}_{2 g_{5}^{\prime}}(\mathbb{Z}) .
$$

Note that $g_{1} \geq 1$ and $g_{7} \geq 1$. In order to ensure $\operatorname{det}\left(M_{o}\right) \equiv 1(\bmod 2)$, we get that $g_{5}^{\prime} \equiv 1(\bmod 2)$ by considering row one and row g_{5}^{\prime} in M_{o}, for otherwise these two rows are equal when modulo 2 . Furthermore, if $g_{7} \geq 2$, then row g_{5}^{\prime} is equal to row $g_{5}^{\prime}-1$ when modulo 2 . So we only need to consider the situation when $g_{7}=1$. It follows that $g_{1}+g_{3} \equiv 0(\bmod 2)$ and $g_{1} \equiv g_{3}(\bmod 2)$.

We now perform elementary row and column operations on M_{o} in Eq. (4.22). We add rows between row one and row $g_{1}+g_{3}$ by row g_{5}^{\prime}; and add rows between row $g_{5}^{\prime}+1$ and row $g_{5}^{\prime}+g_{1}$ by row $2 g_{5}^{\prime}$, respectively. After this, we continue to add all columns between column one and column g_{1} to column g_{5}^{\prime}. For the resulting matrix, we use [7 Proposition 3.6, Chap. VII], and get that

$$
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\begin{array}{c:c}
A_{22}^{t} & I_{g_{3}} \tag{4.23}\\
\hdashline I_{g_{3}} & A_{22}
\end{array}\right) \equiv \operatorname{det}\left(\begin{array}{c:c}
I_{g_{3}} & A_{22} \\
\hdashline A_{22}^{t} & I_{g_{3}}
\end{array}\right) \quad(\bmod 2),
$$

where we performed type I elementary row operations for the second congruence.

As before, we compute the right-hand determinant in Eq. (4.23) by using Proposition 3.1. It is easy to compute that $A_{22}^{t} A_{22} \equiv\left(g_{1}+g_{3}+1\right) \mathbf{1}_{g_{3}} \equiv \mathbf{1}_{g_{3}}(\bmod 2)$. So Proposition 3.1 implies that $\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(I_{g_{3}}-A_{22}^{t} A_{22}\right) \equiv \operatorname{det} \gamma_{g_{3}} \equiv g_{3}-1$ $(\bmod 2)$. Now it is obvious that $\operatorname{det}\left(M_{o}\right) \equiv 1(\bmod 2)$ if and only if $g_{1} \equiv g_{3} \equiv 0$ $(\bmod 2)$ and $g_{7}=1$.
(6) In this case, since $g_{5}=0$ and $\epsilon=2$, we consider the square-free positive integer $n=2 \prod_{i=1}^{g_{1}} p_{i} \cdot \prod_{i=1}^{g_{3}} q_{i} \cdot \prod_{i=1}^{g_{7}} s_{i}$ defined by $(*)$. Since n is even, we only need to consider the Monsky matrix M_{e} defined by formula (2.2). Following the same notation and computational results as in the proof of Theorem 1.3(5), we see that

$$
M_{e}=\left(\begin{array}{ccc:ccc}
\mathbf{0}_{g_{1}} & & & A_{11} & \mathbf{1} & \mathbf{1} \tag{4.24}\\
& I_{g_{3}} & & \mathbf{1} & A_{22}+I_{g_{3}} & \mathbf{0} \\
& & \mathbf{0}_{g_{7}} & \mathbf{1} & \mathbf{1} & A_{33} \\
\hdashline-\cdots \cdots-\cdots-\cdots-\cdots \\
\hdashline A_{11}^{t} & \mathbf{1} & \mathbf{1} & \mathbf{0}_{g_{1}} & & \\
\mathbf{1} & A_{22}^{t}+I_{g_{3}} & \mathbf{1} & & I_{g_{3}} & \\
\mathbf{1} & \mathbf{0} & A_{33}^{t} & & & I_{g_{7}}
\end{array}\right) \in \operatorname{Mat}_{2 g_{5}^{\prime}}(\mathbb{Z})
$$

where $g_{5}^{\prime}=g_{1}+g_{3}+g_{7}$ as before.
Note that $g_{1} \geq 1$ and $g_{7} \geq 1$. In order to ensure $\operatorname{det}\left(M_{e}\right) \equiv 1(\bmod 2)$, we get $g_{5}^{\prime} \equiv 1(\bmod 2)$ by considering row one and row g_{5}^{\prime} in M_{e}, for otherwise these two rows are equal when modulo 2 . Furthermore, if $g_{7} \geq 2$, then row g_{5}^{\prime} is equal to row $g_{5}^{\prime}-1$ when modulo 2 . So we also only need to consider the situation when $g_{7}=1$. It follows that $g_{1}+g_{3} \equiv 0(\bmod 2)$ and $g_{1} \equiv g_{3}(\bmod 2)$.

We now perform elementary row and column operations on M_{e} in Eq. (4.24). Fisrt, we add rows between row one and row $g_{1}+g_{3}$ by row g_{5}^{\prime}, and add rows between row $g_{5}^{\prime}+1$ and row $g_{5}^{\prime}+g_{1}+g_{3}$ by row $2 g_{5}^{\prime}$, respectively. Second, we add all rows (respectively, columns) between row (respectively, column) one and row (respectively, column) g_{1} to row (respectively, column) g_{5}^{\prime}. Finally, continue to add g_{1} times column $2 g_{5}^{\prime}$ to column g_{5}^{\prime}. This yields

$$
M_{e} \sim\left(\begin{array}{cc:ccc}
\mathbf{0}_{g_{1}} & & I_{g_{1}} & \mathbf{0} & \mathbf{1} \tag{4.25}\\
& I_{g_{3}} & \mathbf{0} & A_{22}^{t} & \mathbf{0} \\
& & 0 & \mathbf{0} & \mathbf{1} \\
\hdashline I_{g_{1}} & \mathbf{0} & \mathbf{0} & \mathbf{0}_{g_{1}} & \\
\mathbf{0} & A_{22} & \mathbf{1} & & I_{g_{3}} \\
\mathbf{1} & \mathbf{0} & 0 & & \\
\hline
\end{array}\right) \in \operatorname{Mat}_{2 g_{5}^{\prime}}(\mathbb{Z})
$$

For the right-hand matrix in Eq. (4.25), we use [7, Proposition 3.6, Chap. VII] finitely many times, and get that

$$
\operatorname{det}\left(M_{e}\right) \equiv \operatorname{det}\left(\begin{array}{c:c:c}
I_{g_{3}} & \mathbf{0} & A_{22}^{t} \tag{4.26}\\
\hdashline \mathbf{0} & g_{1} & \mathbf{1} \\
\hdashline A_{22} & \mathbf{1} & I_{g_{3}}
\end{array}\right) \quad(\bmod 2)
$$

As before, we use Proposition 3.1 again to compute the right-hand determinant in Eq. 4.26). It is easy to see that $\binom{A_{22}^{t}}{1}\left(\begin{array}{ll}A_{22} & \mathbf{1}\end{array}\right) \equiv\left(g_{1}+g_{3}+1\right) \mathbf{1}_{g_{3}} \equiv \mathbf{1}_{g_{3}}(\bmod 2)$. So Proposition 3.1 implies that $\operatorname{det}\left(M_{e}\right) \equiv \operatorname{det}\left(\left(\begin{array}{cc}I_{g_{3}} & 0 \\ 0 & g_{1}\end{array}\right)-\binom{A_{22}^{t}}{1}\left(\begin{array}{ll}A_{22} & 1\end{array}\right)\right) \equiv$ $\operatorname{det}\left(\begin{array}{cc}\gamma_{g_{3}} & 1 \\ 1 & 0\end{array}\right) \equiv \operatorname{det}\left(\begin{array}{cc}I_{g_{3}} & 1 \\ 0 & g_{3}\end{array}\right) \equiv g_{3}(\bmod 2)$. Now it is obvious that $\operatorname{det}\left(M_{e}\right) \equiv 1(\bmod 2)$ if and only if $g_{1} \equiv g_{3} \equiv 1(\bmod 2)$ and $g_{7}=1$.
(7) In this case, since $g_{7}=0$ and $\epsilon=1$, we consider the square-free positive integer $n=\prod_{i=1}^{g_{1}} p_{i} \cdot \prod_{i=1}^{g_{3}} q_{i} \cdot \prod_{i=1}^{g_{5}} r_{i}$ defined by $(*)$. By the law of quadratic reciprocity, it is easy to check that

$$
\begin{aligned}
& D_{2}=\left(\begin{array}{c:c:c}
0_{g_{1}} & & \\
\hdashline & I_{g_{3}} & - \\
\hdashline & I_{g_{5}}
\end{array}\right), \quad D_{-2}=\left(\begin{array}{c:c:c}
0_{g_{1}} & & \\
\hdashline \cdots & \mathbf{o}_{g_{3}} & - \\
\hdashline & & I_{g_{5}}
\end{array}\right), \\
& D_{-1}=\left(\begin{array}{c:c}
\mathbf{0}_{g_{1}} & \\
\hdashline I_{g_{3}} & - \\
\hdashline & 0_{g_{5}}
\end{array}\right), \quad \text { and } \quad A=\left(\begin{array}{c:c:c}
A_{11} & 1 & 1 \\
\hdashline 1 & A_{22} & 1 \\
\hdashline 1 & 1 & A_{33}
\end{array}\right) \text {, }
\end{aligned}
$$

where

$$
\begin{align*}
& A_{11}=\left(\begin{array}{cccc}
g_{7}^{\prime}-1 & 1 & \cdots & 1 \\
1 & g_{7}^{\prime}-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & g_{7}^{\prime}-1
\end{array}\right) \in \operatorname{Mat}_{g_{1}}(\mathbb{Z}), \\
& A_{22}=\left(\begin{array}{cccc}
g_{1}+g_{5} & & & \\
1 & g_{1}+g_{5}+1 & \\
\vdots & & \ddots & \ddots \\
1 & & \cdots & 1 \\
g_{1}+g_{5}+g_{3}-1
\end{array}\right) \in \operatorname{Mat}_{g_{3}}(\mathbb{Z}), \tag{4.27}\\
& A_{33}=\left(\begin{array}{cccc}
g_{7}^{\prime}-1 & 1 & \cdots & 1 \\
1 & g_{7}^{\prime}-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & g_{7}^{\prime}-1
\end{array}\right) \in \operatorname{Mat}_{g_{5}}(\mathbb{Z}),
\end{align*}
$$

here and subsequently, we write $g_{7}^{\prime}=g_{1}+g_{3}+g_{5}$.

Since n is odd, we only need to consider the Monsky matrix M_{o} defined by formula (2.1). That is

$$
M_{o}=\left(\begin{array}{ccc:ccc}
A_{11} & \mathbf{1} & \mathbf{1} & \mathbf{0}_{g_{1}} & & \\
\mathbf{1} & A_{22}+I_{g_{3}} & \mathbf{1} & & I_{g_{3}} & \\
\mathbf{1} & \mathbf{1} & A_{33}+I_{g_{5}} & & & I_{g_{5}} \\
\hdashline-\cdots-\cdots-\cdots-\cdots-\cdots & -\cdots-\cdots & \mathbf{0}_{g_{1}} & I_{g_{3}} & & \mathbf{1} \\
& & I_{g_{5}} & \mathbf{1} & \mathbf{1} & A_{33}+I_{g_{5}}
\end{array}\right) \in \operatorname{Mat}_{2 g_{7}^{\prime}}(\mathbb{Z})
$$

We now perform elementary row operations on M_{o} by adding the first row to rows between row 2 and row g_{7}^{\prime}, and adding row $g_{7}^{\prime}+1$ to rows between row $g_{7}^{\prime}+2$ and row $2 g_{7}^{\prime}$, respectively. It follows that $M_{o} \sim M_{o}^{\prime}:=\left(\begin{array}{cc}M_{11}^{\prime} & D_{2} \\ D_{2} & M_{22}^{\prime}\end{array}\right)(\bmod 2)$, where $M_{22}^{\prime}=M_{11}^{\prime}+D_{-1}$, and

$(\bmod 2)$.

Note that if $g_{7}^{\prime} \equiv 0(\bmod 2)$ then row $g_{1}+g_{3}+k$ is equal to row $g_{7}^{\prime}+g_{1}+g_{3}+k$ for $1 \leq k \leq g_{5}$ in M_{o}^{\prime}, which implies that $\operatorname{det}\left(M_{o}\right) \equiv 0(\bmod 2)$ since $g_{5} \geq 1$. Thus we only need to consider the situation when $g_{7}^{\prime} \equiv 1(\bmod 2)$.

Now we perform more elementary row and column operations on M_{o}^{\prime}. First, we add all rows (respectively, columns) between row (respectively, column) 2 and row (respectively, column) g_{1} to the first row (respectively, column); and add all rows (respectively, columns) between row (respectively, column) $g_{7}^{\prime}+2$ and row (respectively, column) $g_{7}^{\prime}+g_{1}$ to row (respectively, column) $g_{7}^{\prime}+1$ in M_{o}^{\prime}. Second,
we interchange rows l and $g_{7}^{\prime}+l$ for all $1 \leq l \leq g_{7}^{\prime}$. Then we get $M_{o} \sim M_{o}^{\prime} \sim M_{o}^{\prime \prime}:=$ $\left(\begin{array}{cc}D_{2} & M_{22}^{\prime \prime} \\ M_{11}^{\prime \prime} & D_{2}\end{array}\right)(\bmod 2)$, where $M_{22}^{\prime \prime}=M_{11}^{\prime \prime}+D_{-1}$, and

$(\bmod 2)$.
We denote the resulting matrix $\left(\begin{array}{cc}D_{2} & M_{22}^{\prime \prime} \\ M_{11}^{\prime \prime} & D_{2}\end{array}\right)$ by $\left(\begin{array}{cc}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & I_{g_{3}+g_{5}}\end{array}\right)$. By Proposition 3.1 we see $\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\alpha_{11}-\alpha_{12} \alpha_{21}\right)(\bmod 2)$. And according to block matrix multiplication, it is easy to compute that

$$
\begin{align*}
\alpha_{11}-\alpha_{12} \alpha_{21} & \equiv\left(\begin{array}{c:c:c:c}
\left(g_{3}+g_{5}\right) \delta_{g_{1}} & \left(g_{1}+g_{5}\right) \xi_{g_{3} \times g_{1}}^{t} & \mathbf{0} & g_{1} \delta_{g_{1}}+I_{g_{1}} \\
\hdashline \xi_{g_{3} \times g_{1}} & \cdots-\cdots & I_{g_{3}} & \mathbf{0} \\
\hdashline-\cdots & \xi_{g_{3} \times g_{1}} \\
\hdashline g_{1} \delta_{g_{1}}+I_{g_{1}} & \xi_{g_{3} \times g_{1}}^{t} & \xi_{g_{5} \times g_{1}}^{t} & \mathbf{0}_{g_{1}}
\end{array}\right) \\
& \in \operatorname{Mat}_{g_{7}^{\prime}+g_{1}}(\mathbb{Z}),
\end{align*}
$$

here and subsequently, we write $\delta_{k}=\operatorname{diag}(1,0, \ldots, 0) \in \operatorname{Mat}_{k}(\mathbb{Z})$ and $\xi_{k \times l}=$ $\left(\mathbf{1}_{k \times 1} \mathbf{0}_{k \times(l-1)}\right) \in \operatorname{Mat}_{k \times l}(\mathbb{Z})$.

We now perform elementary column operations on the right-hand matrix in Eq. (4.29). We add the first column by columns between column $g_{1}+1$ and column $g_{1}+g_{3}$, respectively; and also add column $g_{7}^{\prime}+1$ by columns between column $g_{1}+1$ and column g_{7}^{\prime}, respectively. Then we get

$$
\begin{aligned}
& \alpha_{11}-\alpha_{12} \alpha_{21}
\end{aligned}
$$

where $\kappa=g_{3}+g_{5}+g_{3}\left(g_{1}+g_{5}\right)$ and $\lambda=g_{1}+g_{3}\left(g_{1}+g_{5}\right)$. By using [7, Proposition 3.6, Chap. VII] finitely many times on the right-hand matrix, then we get $\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\begin{array}{cc}\kappa & \lambda+1 \\ g_{1}+g_{3}+1 & g_{3}+g_{5}\end{array}\right) \equiv g_{3}\left(g_{1}+1\right)(\bmod 2)$. We thus see that $\operatorname{det}\left(M_{o}\right) \equiv$ $1(\bmod 2)$ if and only if $g_{1} \equiv 0(\bmod 2), g_{3} \equiv 1(\bmod 2)$ and $g_{5} \equiv 0(\bmod 2)$.
(8) In this case, since $g_{7}=0$ and $\epsilon=2$, we consider the square-free positive integer $n=2 \cdot \prod_{i=1}^{g_{1}} p_{i} \cdot \prod_{i=1}^{g_{3}} q_{i} \cdot \prod_{i=1}^{g_{5}} r_{i}$ defined by $(*)$. Since n is even, we only need to consider the determinant of the Monsky matrix M_{e} defined by formula (2.2). Following the same notation and computational results as in the proof of Theorem 1.3(7), it is easy to see that

$$
M_{e}=\left(\begin{array}{ccc:ccc}
\mathbf{0}_{g_{1}} & & & A_{11} & \mathbf{1} & \mathbf{1} \tag{4.30}\\
& I_{g_{3}} & & \mathbf{1} & A_{22}+I_{g_{3}} & \mathbf{1} \\
\hdashline-\cdots-I_{g_{5}} & \mathbf{1} & \mathbf{1} & A_{33}+I_{g_{5}} \\
\hdashline A_{11}^{t} & \mathbf{1} & \mathbf{1} & \mathbf{0}_{g_{1}} & & \\
\mathbf{1} & A_{22}^{t}+I_{g_{3}} & \mathbf{1} & & I_{g_{3}} & \\
\mathbf{1} & \mathbf{1} & A_{33}^{t}+I_{g_{5}} & & & \mathbf{0}_{g_{5}}
\end{array}\right) \in \operatorname{Mat}_{2 g_{7}^{\prime}}(\mathbb{Z}),
$$

where $g_{7}^{\prime}=g_{1}+g_{3}+g_{5}$ as before.
We now perform elementary row operations on M_{e} by adding the first row to rows between row 2 and row g_{7}^{\prime}, and adding row $g_{7}^{\prime}+1$ to rows between row $g_{7}^{\prime}+2$ and row $2 g_{7}^{\prime}$, respectively. It follows that

$$
M_{o} \sim M_{o}^{\prime}:=\left(\begin{array}{c:c}
D_{2} & M_{12}^{\prime} \tag{4.31}\\
\hdashline M_{21}^{\prime} & D_{-1}
\end{array}\right) \quad(\bmod 2),
$$

where M_{12}^{\prime} is equal to the right-hand block matrix in Eq. (4.28), and

We now divide the proof into two subcases as below:
Case (\mathbf{i}). For $g_{7}^{\prime} \equiv 0(\bmod 2)$. Note that if $g_{1} \geq 2$ then all rows between row 2 and row g_{1} are zero rows when modulo 2 . So there must be $g_{1}=1$. We thus also have $g_{3}+g_{5} \equiv 1(\bmod 2)$ and $g_{3} \not \equiv g_{5}(\bmod 2)$.

We perform elementary column and row operations on the right-hand matrix in Eq. (4.31). First, we add the first column to columns between column $g_{1}+1$ and column g_{7}^{\prime}, and add column $g_{7}^{\prime}+1$ to columns between column $g_{7}^{\prime}+2$ and column $2 g_{7}^{\prime}$, respectively. Second, we add row $g_{7}^{\prime}+g_{1}+g_{3}+k$ to row $g_{1}+g_{3}+k$ for all $1 \leq k \leq g_{5}$, respectively. And then by applying [7, Proposition 3.6, Chap. VII] to the resulting matrix finitely many times, we get

$$
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\begin{array}{c:c}
I_{g_{3}} & A_{22}^{t} \\
\hdashline A_{22} & I_{g_{3}}
\end{array}\right) \quad(\bmod 2),
$$

where A_{22} was given by Eq. (4.27) for $g_{1}=1$.
Now Proposition 3.1 implies that

$$
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(I_{g_{3}}-A_{22}^{t} A_{22}\right) \quad(\bmod 2)
$$

It is easy to compute that $A_{22}^{t} A_{22} \equiv\left(g_{3}+g_{5}\right) \mathbf{1}_{g_{3}} \equiv \mathbf{1}_{g_{3}}(\bmod 2)$, and $\operatorname{det}\left(M_{o}\right) \equiv$ $g_{3}-1(\bmod 2)$. So we get $\operatorname{det}\left(M_{o}\right) \equiv 1(\bmod 2)$ if and only if $g_{3} \equiv 0(\bmod 2)$, and thus $g_{5} \equiv 1(\bmod 2)$.

Case (ii). For $g_{7}^{\prime} \equiv 1(\bmod 2)$. Note that rows from $g_{7}^{\prime}+g_{1}+g_{3}+1$ to $2 g_{7}^{\prime}$ are equal when modulo 2 in this situation, which implies that $g_{5}=1$. Otherwise $\operatorname{det}\left(M_{o}\right) \equiv 0$ $(\bmod 2)$ follows. So we also have $g_{1}+g_{3} \equiv 0(\bmod 2)$ and $g_{1} \equiv g_{3}(\bmod 2)$.

Similarly, we perform elementary row and column operations on the right-hand matrix in Eq. (4.31) under the assumption that $g_{7}^{\prime} \equiv 1(\bmod 2)$. First, we add the last row (respectively, column) to rows (respectively, columns) between row (respectively, column) $g_{7}^{\prime}+2$ and row (respectively, column) $g_{7}^{\prime}+g_{1}+g_{3}$, respectively. Second, we add all rows (respectively, columns) between row (respectively, column) $g_{7}^{\prime}+2$ and row (respectively, column) $g_{7}^{\prime}+g_{1}$ to row (respectively, column) $g_{7}^{\prime}+1$. Third, we add row (respectively, column) g_{7}^{\prime} to row (respectively, column) $g_{7}^{\prime}+1$. Finally, add row (respectively, column) $g_{7}^{\prime}+1$ to rows (respectively, columns) between row (respectively, column) $g_{1}+1$ and row (respectively, column) $g_{1}+g_{3}$, respectively. Also apply [7. Proposition 3.6, Chap. VII] to the resulting matrix finitely many times, we get

$$
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\begin{array}{c:c}
\gamma_{g_{3}} & A_{22}^{t} \\
\hdashline A_{22} & I_{g_{3}}
\end{array}\right) \quad(\bmod 2),
$$

where A_{22} was given by Eq. (4.27) for $g_{5}=1$, and $\gamma_{g_{3}}=I_{g_{3}}+\mathbf{1}_{g_{3}}$. Now use Proposition 3.1 again, it follows that

$$
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\gamma_{g_{3}}-A_{22}^{t} A_{22}\right) \quad(\bmod 2)
$$

It is easy to compute that $A_{22}^{t} A_{22} \equiv\left(g_{7}^{\prime}+1\right) \mathbf{1}_{g_{3}} \equiv 0(\bmod 2)$, and $\operatorname{det}\left(M_{o}\right) \equiv$ $\operatorname{det}\left(\gamma_{g_{3}}\right) \equiv g_{3}-1(\bmod 2)$. Thus we get that $\operatorname{det}\left(M_{o}\right) \equiv 1(\bmod 2)$ if and only if $g_{1} \equiv g_{3} \equiv 0(\bmod 2)$.

In summary, the desired conclusion is proved.

4.4. Proof of Theorem 1.4

In this case, since $\epsilon=1$, we consider the square-free positive integer $n=\prod_{i=1}^{g_{1}} p_{i}$. $\prod_{i=1}^{g_{3}} q_{i} \cdot \prod_{i=1}^{g_{5}} r_{i} \cdot \prod_{i=1}^{g_{7}} s_{i}$ defined by $(*)$. By the law of quadratic reciprocity, it is easy to check that

where

$$
\begin{aligned}
& A_{11}=\left(\begin{array}{cccc}
g-1 & 1 & \cdots & 1 \\
1 & g-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & g-1
\end{array}\right) \in \operatorname{Mat}_{g_{1}}(\mathbb{Z}), \\
& A_{22}=\left(\begin{array}{ccccc}
g_{1}+g_{5} & \\
1 & g_{1}+g_{5}+1 & \\
\vdots & & \ddots & \ddots & g_{1}+g_{5}+g_{3}-1
\end{array}\right) \in \operatorname{Mat}_{g_{3}}(\mathbb{Z}), \\
& A_{33}
\end{aligned}=\left(\begin{array}{cccc}
g-1 & 1 & \cdots & 1 \\
1 & g-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & g-1
\end{array}\right) \in \operatorname{Mat}_{g_{5}}(\mathbb{Z}),
$$

here and subsequently, we write $g=g_{1}+g_{3}+g_{5}+g_{7}$ and $g_{7}^{\prime}=g-g_{7}$.

Since n is odd, we only need to consider the Monsky matrix M_{o} defined by formula (2.1). By interchanging rows k and $g+k$ for all $1 \leq k \leq g$ in M_{o}, it is easy to see that

$$
\begin{align*}
M_{o} \sim & \left(\begin{array}{cccc:cccc}
\mathbf{0}_{g_{1}} & & & & A_{11} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
& I_{g_{3}} & & & \mathbf{1} & A_{22} & \mathbf{1} & \mathbf{0} \\
& & I_{g_{5}} & & \mathbf{1} & \mathbf{1} & A_{33}+I_{g_{5}} & \mathbf{1} \\
\hdashline \cdots \cdots \cdots & \mathbf{0}_{g_{7}} & \mathbf{1} & \mathbf{1} & \mathbf{1} & A_{44}+I_{g_{7}} \\
\hdashline A_{11} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0}_{g_{1}} & & \\
\mathbf{1} & A_{22}+I_{g_{3}} & \mathbf{1} & \mathbf{0} & & I_{g_{5}} & & \\
\mathbf{1} & \mathbf{1} & A_{33}+I_{g_{5}} & \mathbf{1} & & & I_{g_{5}} & \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & A_{44} & & & & \mathbf{0}_{g_{7}}
\end{array}\right) \\
& \in \operatorname{Mat}_{2 g}(\mathbb{Z}) . \tag{4.32}
\end{align*}
$$

Note that $g_{1} \geq 1, g_{7} \geq 1$ and $g_{7}^{\prime}+g_{7}=g$. By considering rows $g+1$ and $2 g$, we get $g \equiv 1(\bmod 2)$, otherwise these two rows are equal when modulo 2 . Furthermore, since $g \equiv 1(\bmod 2)$ implies $g_{7}^{\prime}+g_{7}-1 \equiv 0(\bmod 2)$, we have $g_{7}=1$, otherwise rows $2 g$ and $2 g-1$ are equal when modulo 2 . And then $g_{7}^{\prime}=g_{1}+g_{3}+g_{5} \equiv 0(\bmod 2)$ holds.

We now perform more elementary row and column operations on the righthand matrix in Eq. (4.32). First, we add row g to rows between row one and row $g_{1}+g_{3}+g_{5}$; and add row $2 g$ to rows between row $g+1$ and row $g+g_{1}+g_{3}+g_{5}$, respectively. Second, add all columns between column one and column g_{1} to column g; and add all columns between column $g+g_{1}+g_{3}+1$ and column $g+g_{1}+g_{3}+g_{5}$ to column g, respectively. Finally, add column $2 g$ to columns between column $g+g_{1}+1$ to column $g+g_{1}+g_{3}$, respectively. Then we get

$$
M_{o} \sim\left(\begin{array}{ccc:cccc}
\mathbf{0}_{g_{1}} & & & & I_{g_{1}} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} \\
& I_{g_{3}} & & & \mathbf{0} & A_{22} & \mathbf{0} \\
\mathbf{1} & \mathbf{1} \\
& & I_{g_{5}} & & \mathbf{0} & \mathbf{0} & \mathbf{0}_{g_{5}} \\
\mathbf{0} \\
& & & g_{5} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\hdashline---\cdots & 1 \\
\hdashline \bar{I}_{g_{1}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}_{g_{1}} & & \\
\mathbf{0} & A_{22}^{t} & \mathbf{0} & \mathbf{0} & & I_{g_{5}} & \\
\mathbf{0} & \mathbf{0} & \mathbf{0}_{g_{5}} & \mathbf{0} & & & I_{g_{5}} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & g_{1} & & & \\
\mathbf{0}_{g_{7}}
\end{array}\right) \in \operatorname{Mat}_{2 g}(\mathbb{Z}) .
$$

According to [7] Proposition 3.6, Chap. VII], we have

$$
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\begin{array}{c:c:c:c}
I_{g_{3}} & & A_{22} & \mathbf{1} \tag{4.33}\\
\hdashline \cdots & g_{5} & \boldsymbol{0} & 1 \\
\hdashline A_{22}^{t} & \boldsymbol{0} & I_{g_{3}} & \\
\hdashline \mathbf{1} & g_{1} & & 0
\end{array}\right) \quad(\bmod 2) .
$$

We denote the right-hand matrix in (4.33) by $\left(\begin{array}{ll}I_{g_{3}} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)$. Then Proposition 3.1 implies that

$$
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\alpha_{22}-\alpha_{21} \alpha_{12}\right) \quad(\bmod 2)
$$

By using block matrix multiplication and noting that $g_{7}^{\prime}+1 \equiv 1(\bmod 2)$, it is easy to compute that

$$
\alpha_{21} \alpha_{12} \equiv\left(\begin{array}{c:c:c}
0 & \mathbf{0} & 0 \\
\hdashline 0 & \mathbf{1}_{g_{3}} & \mathbf{1} \\
\hdashline 0 & \mathbf{1} & g_{3}
\end{array}\right) \quad(\bmod 2),
$$

and

$$
\alpha_{22}-\alpha_{21} \alpha_{12} \equiv\left(\begin{array}{c:c:c}
g_{5} & \mathbf{0} & 1 \tag{4.34}\\
\hdashline \mathbf{0} & I_{g_{3}}+\mathbf{1}_{g_{3}} & \mathbf{1} \\
\hdashline g_{1} & \mathbf{1} & g_{3}
\end{array}\right) \quad(\bmod 2)
$$

Now we still perform elementary row operations on the right-hand matrix in Eq. (4.34). First, we add the last row to rows between row 2 and row $g_{3}+1$ respectively, then the central block becomes $I_{g_{3}}$. Second, we add all rows between row 2 and row $g_{3}+1$ to the last row. And then apply [7, Proposition 3.6, Chap. VII] to the resulting matrix, we get

$$
\operatorname{det}\left(M_{o}\right) \equiv \operatorname{det}\left(\begin{array}{ll}
g_{5} & 1 \\
\mu & \nu
\end{array}\right) \quad(\bmod 2)
$$

where $\mu=g_{1}\left(g_{3}+1\right)$ and $\nu=g_{3}+g_{3}\left(g_{3}+1\right) \equiv g_{3}(\bmod 2)$. Then it is easy to compute that $\operatorname{det}\left(M_{o}\right) \equiv g_{1}+g_{1} g_{3}+g_{3} g_{5}(\bmod 2)$. By discussing the parity of g_{1}, g_{3} and g_{5}, we see that $\operatorname{det}\left(M_{e}\right) \equiv 1(\bmod 2)$ if and only if $g_{1} \equiv 0(\bmod 2)$ and $g_{3} \equiv g_{5} \equiv 1(\bmod 2)$, or $g_{1} \equiv g_{5} \equiv 1(\bmod 2)$ and $g_{3} \equiv 0(\bmod 2)$.

Remark 4.6. A similar discussion shows that if n is defined by $(*)$ and $\epsilon=2$, then $\operatorname{det}\left(M_{e}\right) \equiv 0(\bmod 2)$ always holds.

Acknowledgments

The authors thank the referees for their careful reading of the manuscript and many valuable suggestions that helped improving the presentation of this paper.

This work was supported by National Natural Science Foundation of China (Grant Nos. 11571163 and 11631009). The first author was also supported by Postgraduate Research \& Practice Innovation Program of Jiangsu Province (Grant No. KYZZ16_0035).

References

[1] K. Feng, Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture, Acta Arith. 75(1) (1996) 71-83.

- [2] K. Feng and M. Xiong, On elliptic curves $y^{2}=x^{3}-n^{2} x$ with rank zero, J. Number Theory 109(1) (2004) 1-26.
- [3] K. Feng and Y. Xue, New series of odd non-congruent numbers, Sci. China Ser. A 49(11) (2006) 1642-1654.
[4] K. Feng and Y. Xue, Constructing new non-congruent numbers by graph theory, in Number Theory, Series on Number Theory and its Applications, Vol. 2 (World Scientific, Hackensack, NJ, 2007), pp. 24-38.
- [5] D. R. Heath-Brown, The size of Selmer groups for the congruent number problem, Invent. Math. 111(1) (1993) 171-195.
[6] D. R. Heath-Brown, The size of Selmer groups for the congruent number problem, II, Invent. Math. 118(2) (1994) 331-370, with an appendix by P. Monsky.
[7] T. W. Hungerford, Algebra, Graduate Texts in Mathematics, Vol. 73 (Springer, New York, 1980), Reprint of the 1974 original.
- [8] B. Iskra, Non-congruent numbers with arbitrarily many prime factors congruent to 3 modulo 8, Proc. Japan Acad. Ser. A Math. Sci. 72(7) (1996) 168-169.
[9] A. W. Knapp, Elliptic Curves, Mathematical Notes, Vol. 40 (Princeton University Press, Princeton, NJ, 1992).
[10] D. Li and Y. Tian, On the Birch-Swinnerton-Dyer conjecture of elliptic curves $E_{D}: y^{2}=x^{3}-D^{2} x$, Acta Math. Sin. (Engl. Ser.) 16(2) (2000) 229-236.
[11] C. Meyer, Matrix Analysis and Applied Linear Algebra (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000), With 1 CD-ROM (Windows, Macintosh and UNIX) and a solutions manual, iv +171 pp .
- [12] Y. Ouyang and S. Zhang, On non-congruent numbers with 1 modulo 4 prime factors, Sci. China Math. 57(3) (2014) 649-658.
- [13] Y. Ouyang and S. Zhang, On second 2-descent and non-congruent numbers, Acta Arith. 170(4) (2015) 343-360.
- [14] L. Reinholz, B. K. Spearman and Q. Yang, Families of non-congruent numbers with arbitrarily many prime factors, J. Number Theory 133(1) (2013) 318-327.
- [15] L. Reinholz, B. K. Spearman and Q. Yang, On the prime factors of non-congruent numbers, Colloq. Math. 138(2) (2015) 271-282.
[16] P. Serf, Congruent numbers and elliptic curves, in Computational Number Theory (de Gruyter, Berlin, 1991), pp. 227-238.
[17] J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd edn., Graduate Texts in Mathematics, Vol. 106 (Springer, Dordrecht, 2009).
- [18] Y. Tian, X. Yuan and S.-W. Zhang, Genus periods, genus points and congruent number problem, Asian J. Math. 21(4) (2017) 721-773.
- [19] Z. Wang, Congruent elliptic curves with nontrivial Shafarevich-Tate groups, Sci. China Math. 59(11) (2016) 2145-2166.

