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We improve S.-C. Chen’s result on the parity of Schur’s partition function. Let A(n)
be the number of Schur’s partitions of n, i.e., the number of partitions of n into 
distinct parts congruent to 1, 2 (mod 3). S.-C. Chen [3] shows x
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1. Introduction

Let n � 1 be an integer. A partition of n is any non-increasing sequence of natural numbers whose sum 
is n. We denote by p(n) the number of partitions for n � 1, and for convenience, let p(0) = 1.

Obviously, it is impossible to obtain an exact expression for p(n), and one seeks instead to figure out 
the asymptotic behavior of p(n) as n increases. The first breakthrough is attributed to G. H. Hardy and 
Ramanujan [7]. Twenty years later, their results were refined by Hans Rademacher [10] into the now well-
known Hardy-Ramanujan-Rademacher Asymptotic Formula,
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The symbol ωh,k admits a representation, viz.

ωh,k = exp
(
πi
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where [x] means here, as usual, the greatest integer not exceeding x. Hardy-Ramanujan-Rademacher Asymp-
totic Formula can even be used to calculate the number of partitions for any specific integers n ≥ 1. This 
result is so accurate that it was highly praised by Hardy. We briefly introduce Rademacher’s result here. 
Rademacher constructed some explicit functions Tq(n) satisfying p(n) =

∑∞
q=1 Tq(n) for all n and then 

obtained the asymptotic formula

p(n) ∼ 1
4n

√
3
eπ

√
2n/3,

by T1(n). Moreover, he got the exact error such that there are explicit constants A and B making
∣∣∣∣∣∣p(n) −

A
√
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Tq(n)

∣∣∣∣∣∣ <
B

n1/4 .

Even if the above work has been established, we have no evidence to believe that it possesses any attractive 
arithmetic properties. For example, there is no evidence that would lead us to believe that p(n) should have 
a preference to be even rather than odd. Doing a computer calculation for the first 10,000 values, we get that 
there are 5004 odd values and 4996 even values, which means that the ratio is almost 1:1. Then replacing 2 
with 3 we find that among the first 10,000 values, there are 3,313; 3,325; and 3,362 values that are congruent 
to 0, 1, and 2 modulo 3 respectively, in a ratio of roughly 1:1:1 [1]. O. Kolberg [8] has proved that p(n) is 
infinitely often even and infinitely often odd while Parkin and Shanks [9] conjectured that

�{0 ≤ n ≤ x : p(n) is even (resp. odd)} ∼ 1
2x, as x → ∞.

It could be seen that the above conjecture is extremely difficult to prove but there are still many special 
partition functions that are very attractive. The celebrated partition theorem which Schur [11] proved in 
1926 is:

Theorem 1.1 ([11]). Let A(n) denote the number of partitions of n into distinct parts ≡ 1, 2 (mod 3). Let 
A1(n) denote the number of partitions of n with minimal difference 3 between parts and such that no two 
consecutive multiples of 3 occur as parts. Then

A(n) = A1(n).

Then in 1971 Andrews [2] found the following companion to Schur’s theorem by a computer search:

Theorem 1.2 ([2]). Let A2(n) denote the number of partitions of n in the form n = e1 + e2 + · · · + eν such 
that el − el+1 ≥ 3, 2 or 5 if el ≡ 1, 2 or 3 (mod 3). Then

A(n) = A1(n) = A2(n).

A result by S.-C. Chen [3] tells us x
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. In this paper, 

we construct a powerful theorem by Gauss’ genus theory. Then by the constructed theorem, we finally cover 
and generalize Chen’s result. The final result is as follows:
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Theorem 1.3. We have

x
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2
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2. Main results

We let R(n, ax2 + bxy+ cy2) be the number of the representations of n by ax2 + bxy+ cy2 with x, y ∈ Z. 
By SageMath, we find that the reduced primitive positive definite binary quadratic forms of discriminant 
−216 are

x2 + 54y2, 2x2 + 27y2, 5x2 ± 2xy + 11y2, 7x2 ± 6xy + 9y2.

In this paper, we consider square-free integers m ≡ 11 (mod 24). Note that m can not be represented by 
x2 + 54y2 or 7x2 ± 6xy + 9y2 from the arithmetic of modulo 3. Therefore Dirichlet’s theorem on binary 
quadratic forms [6, Theorem 1] shows that

R(m, 2x2 + 27y2) + 2R(m, 5x2 + 2xy + 11y2) = 2
∑
d|m

(
−216
d

)
= 2

∑
d|m

(
−6
d

)
,

where R(m, 5x2 + 2xy + 11y2) = R(m, 5x2 − 2xy + 11y2) follows from the fact that a solution (x0, y0)
to m = 5x2 + 2xy + 11y2 corresponds to a solution (x0, −y0) to m = 5x2 − 2xy + 11y2, and 

( ·
·
)

is the 
Jacobi–Kronecker symbol (for more details about this, see [3]).

Let m =
∏t

i=1 pi be the prime factorization of m. Then

R(m, 2x2 + 27y2) + 2R(m, 5x2 + 2xy + 11y2) = 2
∑
d|m

(
−6
d

)
= 2

t∏
i=1

(
1 +

(
−6
pi

))
.

It follows immediately that each arbitrary prime factor pi of m must satisfy 
(

−6
pi

)
= 1 if R(m, 5x2 + 2xy +

11y2) �= 0, hence

pi ≡ 1, 5, 7, 11 (mod 24), 1 ≤ i ≤ t, (1)

and we get

R(m, 2x2 + 27y2) + 2R(m, 5x2 + 2xy + 11y2) = 2t+1. (2)

A similar discussion for the discriminant −24 (see also [3]) tells us that

R(n, 2x2 + 3y2) + R(n, x2 + 6y2) = 2
∑
d|n

(
−6
d

)
, n ∈ N, (3)

and by considering modulo 3, we have

R(m, 2x2 + 3y2) = 2t+1. (4)

We denote by C(D) the class group (see [4, p. 45-46] for definitions) of discriminant D and let h(D)
denote the number of classes of primitive positive definite forms of discriminant D. By [12, Table 9.1], we 
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know h(−24) = 2 and 2x2 + 3y2 is the generator in C(−24).
For convenience, we write

f(x, y) = x2 + 6y2, g(x, y) = 2x2 + 3y2.

Thus we get the Dirichlet compositions (see [4] for definitions) as follows:

f(x, y)f(z, ω) = f(xz − 6yω, xω + yz)

f(x, y)g(z, ω) = g(xz − 3yω, xω + 2yz)

g(x, y)f(z, ω) = g(xz − 3yω, 2xω + yz)

g(x, y)g(z, ω) = f(2xz − 3yω, xω + yz).

(5)

In this paper, we use Gauss’ genus theory to construct a powerful theorem. Our main results are as 
follows:

Theorem 2.1. Let m ≡ 11 (mod 24) be a square-free integer. Then

R(m, 5x2 + 2xy + 11y2) ≡ 2 (mod 4),

if and only if m can be written in the following two forms:

(i) m = p1 · · · p2t1−1 · p1 · · · p2t2 · q1 · · · qt3 · q1 · · · q2t4 ;
(ii) m = p1 · · · p2t1 · p1 · · · p2t2−1 · q1 · · · qt3 · q1 · · · q2t4−1,

where p1, · · · , p2t1 ∈ S1, p1, · · · , p2t2 ∈ S2, q1, · · · , qt3 ∈ S3, q1, · · · , q2t4 ∈ S4, t1, t2, t3, t4 ∈ N (the set 
of natural numbers containing 0), and S1, S2, S3, S4 are the following four subsets of primes:

S1 = {p : p ≡ 11 (mod 24), R(p, 5x2 + 2xy + 11y2) > 0}

S2 = {p : p ≡ 5 (mod 24), R(p, 5x2 + 2xy + 11y2) > 0}

S3 = {q : q ≡ 1 (mod 24), R(q, 7x2 + 6xy + 9y2) > 0}

S4 = {q : q ≡ 7 (mod 24), R(q, 7x2 + 6xy + 9y2) > 0}.

Then by Theorem 2.1, we cover and generalize the result of S.-C. Chen [3]. The contents are as follows:

Theorem 2.2. We have

x

(log x) 11
12

	 �{0 ≤ n ≤ x : A(2n + 1) is odd} 	 x

(log x) 1
2
.

Since �{1 ≤ n ≤ x : A(n) is odd} ≥ �{0 ≤ n ≤ x−1
2 : A(2n + 1) is odd}, we have the following corollary.

Corollary 2.3.

�{1 ≤ n ≤ x : A(n) is odd} � x
11 .
(log x) 12
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3. Proofs

Before starting our proofs of the main theorems, there is a lemma which will be used in the proof of 
Theorem 2.1.

For the Dirichlet compositions in (5) and any square-free integers a = f(x0, y0) �= 1 or a = g(x0, y0) �= 1, 
b = f(x1, y1) �= 1 or g(x1, y1) �= 1 where 3 � xi and xi, yi ∈ N, i = 0, 1. Obviously we have the following 
cases:

f(x0, y0)f(x1, y1) = f(x2, y2), where y2 = x0y1 + y0x1;

f(x0, y0)g(x1, y1) = g(x2, y2), where y2 = x0y1 + 2y0x1;

g(x0, y0)f(x1, y1) = f(x2, y2), where y2 = 2x0y1 + y0x1;

g(x0, y0)g(x1, y1) = f(x2, y2), where y2 = x0y1 + y0x1,

or

f(x0, y0)f(x1, y1) = f(x′
2, y

′
2), where y′2 = x0y1 − y0x1;

f(x0, y0)g(x1, y1) = g(x′
2, y

′
2), where y′2 = x0y1 − 2y0x1;

g(x0, y0)f(x1, y1) = f(x′
2, y

′
2), where y′2 = 2x0y1 − y0x1;

g(x0, y0)g(x1, y1) = f(x′
2, y

′
2), where y′2 = x0y1 − y0x1.

The above y2 and y′2 are two cases of the representations of ab in the sense of absolute value.

Lemma 3.1. For any of the above cases, we have

(i) 3 | y0, 3 | y1 ⇔ 3 | y2, 3 | y′2;
(ii) 3 � y0, 3 � y1 ⇔ 3 | y2, 3 � y′2 or 3 � y2, 3 | y′2;
(iii) 3 | y0, 3 � y1 or 3 � y0, 3 | y1 ⇔ 3 � y2, 3 � y′2.

Proof of Lemma 3.1. We take the Dirichlet composition of f(x, y) and f(x, y) as an example first, i.e.,

y2 = x0y1 + y0x1, y
′
2 = x0y1 − y0x1.

The necessity of (i) is obvious. Conversely, we get that 3 | 2x0y1 = y2 + y′2 and 3 | 2y0x1 = |y2 − y′2|. Thus 
3 | yi. Note that y2y

′
2 = x2

0y
2
1 − y2

0x
2
1. Combining the facts x2

i ≡ 1 (mod 3), y2
i ≡ 1 (mod 3) and (i), the 

necessity of (ii) is proved. Conversely, we have 3 | y2y
′
2 = x2

0y
2
1 −y2

0x
2
1, i.e., y2

1 −y2
0 ≡ 0 (mod 3). By (i) again, 

the sufficiency is proved. The necessity of (iii) is proved immediately according to the fact that 3 � y2
1 − y2

0 . 
Then combining (i) and (ii), the converse holds naturally.

Note that x0y1 + 2y0x1 ≡ x0y1 − y0x1 (mod 3), x0y1 − 2y0x1 ≡ x0y1 + y0x1 (mod 3), 2x0y1 + y0x1 ≡
−x0y1 + y0x1 (mod 3) and 2x0y1 − y0x1 ≡ −x0y1 − y0x1 (mod 3). Then similar discussions tell us that the 
same conclusion holds in the remaining cases. �

Proof of Theorem 2.1. For the case that m is a prime, we have R(m, 2x2+27y2) +2R(m, 5x2+2xy+11y2) =
4 by (2). Obviously

R(m, 5x2 + 2xy + 11y2) ≡ 2 (mod 4) ⇔ R(m, 5x2 + 2xy + 11y2) > 0, (6)

i.e., m ∈ S1 and can be written as the first form in Theorem 2.1.
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For the case that m is not a prime, we deduce from (2) that

1
4R(m, 2x2 + 27y2) ≡ 1

2R(m, 5x2 + 2xy + 11y2) (mod 2),

which states that

R(m, 5x2 + 2xy + 11y2) ≡ 2 (mod 4) ⇔ R(m, 2x2 + 27y2) = 4k, where k is an odd integer. (7)

Claim 1. R(m, 2x2 + 27y2) = 4k, where k is an odd integer in this case if and only if m is of the form (i) 
or (ii) in Theorem 2.1.

We find that a solution (a, b) to m = 2x2 + 27y2 must correspond a solution (a, 3b) to m = 2x2 + 3y2. 
Hence

�{(a, b) : 2a2 + 27b2 = m, a ∈ N, b ∈ N} = �{(a′, b′) : 2a′2 + 3b′2 = m, a′ ∈ N, b′ ∈ N, 3 | b′}, (8)

which means we can explore the solutions of m = 2x2 + 3y2 that the corresponding y value is divisible by 
3 for proving the claim.

Combining the facts that the primes p ≡ 5, 11 (mod 24) can be represented by 2x2 + 3y2, the primes 
q ≡ 1, 7 (mod 24) can be represented by x2 + 6y2 [12, Table 9.1] and formula (3), we get

R(pi, 2x2 + 3y2) = 4, if pi ≡ 5, 11 (mod 24),

R(pi, x2 + 6y2) = 4, if pi ≡ 1, 7 (mod 24).

Therefore after adjusting the order of the prime factors of m, m can be written as

m = p1 · · · pi0 · pi0+1 · · · pt = (2x2
1 + 3y2

1) · · · (2x2
i0 + 3y2

i0) · (x
2
i0+1 + 6y2

i0+1) · · · (x2
t + 6y2

t ), (9)

where

pi =
{

2x2
i + 3y2

i 1 ≤ i ≤ i0,

x2
i + 6y2

i i0 < i ≤ t,
(10)

where i0 = #{pi : pi ≡ 5, 11 (mod 24)}.
It is easy to see that each arbitrary solution (x0, y0) to equation m = 2x2 + 3y2 corresponds to three 

other solutions (x0, −y0), (−x0, −y0) and (x0, −y0). We call such four solutions a class of solutions to the 
equation m = 2x2 + 3y2. Therefore the equation m = 2x2 + 3y2 has 2t − 1 classes of solutions by (4). 
Similarly, 2x2 +3y2 = pi ≡ 5, 11 (mod 24) and x2 +6y2 = pi ≡ 1, 7 (mod 24) both have a class of solutions. 
Then by (5), we know that an arbitrary class of solutions to f(x, y) = a and an arbitrary class of solutions 
to f(x, y) = b where

a | m, b | m, ab | m, a �= 1, b �= 1,

correspond to two classes of solutions to f(x, y) = ab as follows:

[(±x0)2 + 6(±y0)2] · [(±x1)2 + 6(±y1)2] = [±(x0x1 − 6y0y1)]2 + 6[±(x0y1 + y0x1)]2,

[(±x0)2 + 6(±y0)2] · [(±x1)2 + 6(±y1)2] = [±(x0x1 + 6y0y1)]2 + 6[±(x0y1 − y0x1)]2.

Similarly, we have:
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[(±x0)2 + 6(±y0)2] · [2(±x1)2 + 3(±y1)2] = 2[±(x0x1 − 3y0y1)]2 + 3[±(x0y1 + 2y0x1)]2,

[(±x0)2 + 6(±y0)2] · [2(±x1)2 + 3(±y1)2] = 2[±(x0x1 + 3y0y1)]2 + 3[±(x0y1 − 2y0x1)]2,

which corresponds to the Dirichlet composition of f(x, y) and g(x, y),

[2(±x0)2 + 3(±y0)2] · [(±x1)2 + 6(±y1)2] = 2[±(x0x1 − 3y0y1)]2 + 3[±(2x0y1 + y0x1)]2,

[2(±x0)2 + 3(±y0)2] · [(±x1)2 + 6(±y1)2] = 2[±(x0x1 + 3y0y1)]2 + 3[±(2x0y1 − y0x1)]2,

which corresponds to the Dirichlet composition of g(x, y) and f(x, y), and

[2(±x0)2 + 3(±y0)2][2(±x1)2 + 3(±y1)2] = [±(2x0x1 − 3y0y1)]2 + 6[±(x0y1 + y0x1)]2,

[2(±x0)2 + 3(±y0)2][2(±x1)2 + 3(±y1)2] = [±(2x0x1 + 3y0y1)]2 + 6[±(x0y1 − y0x1)]2,

which corresponds to the Dirichlet composition of g(x, y) and g(x, y).
We call the corresponding discussions above the composition of solutions in the process of Dirichlet 

compositions. The above discussions state that each arbitrary solution to the equation m = 2x2 + 3y2 can 
be obtained via the composition of solutions that in the process of Dirichlet compositions in formula (5)
step by step. And furthermore, the 2t+1 solutions of m = 2x2 +3y2 can be viewed as a stepwise composition 
of 4t pairs (±xi, ±yi) (1 � i � t) corresponding to the t factors pi of m to obtain.

Claim 2.

R(m, 2x2 + 27y2) = 4k, where k is an odd integer,

if and only if for all yi in formula (10), 3 � yi.

Because of equation (8), we will prove Claim 2 by exploring the solutions to m = 2x2 + 3y2.
We assume that there are t0 (t0 ∈ N) pairs (xi, yi) in formula (9) that 3 | yi while the rest of t − t0

pairs (xi, yi) satisfy 3 � yi. Then we adjust the order of pi in (9) to make the 4t0 pairs (±xi, ±yi) that 3 | yi
conduct the composition of solutions first. By Lemma 3.1 (i), we finally get 2t0+1 pairs (x, y) (x, y ∈ Z)
that satisfy y ≡ 0 (mod 3) and

2x2 + 3y2 = p1 · · · pt0 or x2 + 6y2 = p1 · · · pt0 ,

where p1, · · · , pt0 are the corresponding primes of 4t0 pairs (±xi, ±yi) we mentioned above.
Next we let the right side of above equation be multiplied one by one with the remaining t − t0 primes 

pt0+1, pt0+2, · · · , pt (that is, let the 2t0+1 pairs we have obtained with the remaining 4(t −t0) pairs (±xi, ±yi)
conduct the composition of solutions).

We know that each time the composition of solutions is performed, we can obtain twice as many pairs 
(x, y) as before. Thus, when the above process is performed n (0 � n � t − t0) times in sequence, we get 
2t0+1+n pairs (x, y). Now denote the set of 2t0+1+n pairs (x, y) as Sn, then we define

u(n) =
∑

(x,y)∈Sn, 3|y
1, v(n) =

∑
(x,y)∈Sn, 3�y

1.

Obviously,

u(0) = 2t0+1, v(0) = 0.
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Since the 4(t − t0) pairs (±xi, ±yi) corresponding to the remaining t − t0 primes pt0+1, pt0+2, · · · , pt all 
satisfy yi �≡ 0 (mod 3), by Lemma 3.1 (ii) and (iii) one can obtain that

u(1) = 0, v(1) = 2t0+2,

and moreover,

u(n) = v(n− 1), v(n) = 2u(n− 1) + v(n− 1), 1 ≤ n ≤ t− t0.

Then we immediately get that

u(t− t0) = v(t− t0 − 1) = 2u(t− t0 − 2) + v(t− t0 − 2)

= 2(v(t− t0 − 3) + u(t− t0 − 3)) + v(t− t0 − 3)

= · · ·
= 2(C1u(1) + C2v(1)) + v(1)

= C22t0+3 + 2t0+2,

(11)

where C1, C2 ∈ N+ are two constants.
Through (11) we see when there are t0 yi in formula (10) that 3 | yi, C22t0+3 + 2t0+2 solutions (x, y) out 

of 2t+1 solutions to m = 2x2 + 3y2 satisfy 3 | y. And in this case it is easy to see that R(m, 2x2 + 27y2) =
C22t0+3 +2t0+2 by (8). Hence t0 = 0, i.e., 3 � yi for all yi in formula (10) if and only if R(m, 2x2 +27y2) = 4k
with k an odd integer.

Now Claim 2 is proved and we will prove Claim 1 by Claim 2 next.
One can find that for each arbitrary prime factor pi of m, a solution (ai, bi) to pi = 2x2 + 27y2 must 

correspond to a solution (ai, 3bi) to pi = 2x2 + 3y2 and a solution (a′i, b′i) to pi = 2x2 + 3y2 that 3 | b′i must 
correspond to a solution (a′i, b′i/3) to pi = 2x2 + 27y2. And the case is the same for equations pi = x2 + 6y2

and pi = x2 +54y2. Therefore combining the fact that 2x2 +3y2 = pi ≡ 5, 11 (mod 24) and x2 +6y2 = pi ≡
1, 7 (mod 24) both have a class of solutions, we know the condition that 3 � yi for all yi in formula (10) is 
equivalent to

R(pi, 2x2 + 27y2) = 0, if pi ≡ 5, 11 (mod 24),

R(pi, x2 + 54y2) = 0, if pi ≡ 1, 7 (mod 24),
(12)

for all the prime factors pi of m.
Next we show that formula (12) holds for all the prime factors pi of m if and only if m is of the form (i) 

or (ii) in Theorem 2.1.
First we assume all the prime factors of m satisfy formula (12). Note that the primes p ≡ 5, 11 (mod 24)

can not be represented by x2 + 54y2 or 7x2 ± 6xy + 9y2 by considering modulo 3. Thus if a prime factor 
pi ≡ 5, 11 (mod 24) of m satisfies R(pi, 2x2 + 27y2) = 0, one can get the conclusion that

R(pi, 5x2 + 2xy + 11y2) = 2,

by Dirichlet’s theorem on binary quadratic forms [6, Theorem 1]. Note that the primes q ≡ 1, 7 (mod 24)
can not be represented by 2x2 + 27y2 and 5x2 ± 2xy + 11y2 by considering modulo 3, similarly we have

R(pi, 7x2 + 6xy + 9y2) = 2,

for each arbitrary prime factor pi ≡ 1, 7 (mod 24) of m. Thus
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∀pi | m, pi ∈ S1 ∪ S2 ∪ S3 ∪ S4.

Moreover, the fact m ≡ 11 (mod 24) ensures that in this case m can only be of the two forms in Theorem 2.1.
Conversely, let m be of the form (i) or (ii) in Theorem 2.1. Then once again using Dirichlet’s theorem on 

binary quadratic forms [6, Theorem 1] and our discussions above, for the prime factors pi of m, we get

R(pi, 5x2 + 2xy + 11y2) = 2, if pi ≡ 5, 11 (mod 24),

R(pi, 7x2 + 6xy + 9y2) = 2, if pi ≡ 1, 7 (mod 24),

and furthermore, formula (12) holds for all the prime factors of m.
Finally, based on our discussions above and Claim 2, Claim 1 has been proved.
If R(m, 5x2+2xy+11y2) ≡ 2 (mod 4), we have (1) and equation (2). Hence by (6), (7) and Claim 1, m must 

be of the form (i) or (ii) in Theorem 2.1. Conversely, equation (2) also holds. Putting (6), (7) and Claim 1
together, we obtain R(m, 5x2 + 2xy + 11y2) ≡ 2 (mod 4). This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. Define S1, S2, S3 and S4 as the subsets of primes in Theorem 2.1, respectively. 
We let S = S1 ∪ S2 ∪ S3 ∪ S4 and

C = {x : x ∈ N, x is square-free , p | x ⇒ p ∈ S }.

For simplicity, we define several functions next. If n is a square-free integer, then we let

μi(n) := (−1)
∑

p|n,p∈Si
1
,

where 1 � i � 4. By [3, (8)], we have

A(2n + 1) ≡ 1
2R(24n + 11, 5x2 + 2xy + 11y2) (mod 2). (13)

Combining (13) with Theorem 2.1, we get

A

(
m + 1

12

)
≡ 1 (mod 2),

for any square-free integers m of the form (i) or (ii) in Theorem 2.1. Thus

∑
0≤n≤x

A(2n+1) odd

1 ≥
∑
m≤x

m is the form (i)

1 +
∑
m≤x

m is the form (ii)

1

=
∑

m∈C ,m≤x
μ1(m)=−1,μ2(m)=1,μ4(m)=1

1 +
∑

m∈C ,m≤x
μ1(m)=1,μ2(m)=−1,μ4(m)=−1

1.
(14)

Since the number of classes of discriminant −216 is 6, the Chebotarev density theorem [4, Theorem 9.12]
shows that the Dirichlet density of the set of primes represented by 5x2 + 2xy + 11y2 is 1

6 . Applying the 
orthogonality of Dirichlet character modulo 24, we see that the Dirichlet density of S1 is 1

6 · 1
φ(24) = 1

48 , 
where φ(·) is Euler’s totient function. Similarly, the Dirichlet density of S2, S3 and S4 are all 16 ·

1
φ(24) = 1

48 . 
Thus the Dirichlet density of S is 4 · 1

48 = 1
12 .

We define
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h(x) =
∑

m∈C ,m≤x

1,

and

h1(x) =
∑

m∈C ,m≤x
μ1(m)=1

1, h−1(x) =
∑

m∈C ,m≤x
μ1(m)=−1

1,

where h(x) = h1(x) + h−1(x) obviously. A classical result of Wirsing [13] on multiplicative functions (see 
also [5, Proposition 4]) tells us that

h(x) = Ch
x

(log x) 11
12

+ o

(
x

(log x) 11
12

)
, (15)

where constant Ch > 0, as x → ∞.
Note that h1(x) ≥ 0, h−1(x) ≥ 0. We deduce from (15) that

h1(x) = Ch1

x

(log x) 11
12

+ o

(
x

(log x) 11
12

)
, h−1(x) = Ch−1

x

(log x) 11
12

+ o

(
x

(log x) 11
12

)
,

where there are three possible cases of Ch1 and Ch−1 as follows:

(1) Ch1 > 0, Ch−1 > 0 and Ch1 + Ch−1 = Ch;
(2) Ch1 = Ch, Ch−1 = 0;
(3) Ch1 = 0, Ch−1 = Ch.

We find that

h1(x) =
∑

m∈C ,m≤x
11|m,μ1(m)=1

1 +
∑

m∈C ,m≤x
11�m,μ1(m)=1

1

=
∑

m∈C ,m≤ x
11

11�m,μ1(m)=−1

1 +
∑

m∈C ,m≤11x
11|m,μ1(m)=−1

1

≤
∑

m∈C ,m≤ x
11

μ1(m)=−1

1 +
∑

m∈C ,m≤11x
μ1(m)=−1

1

= h−1

( x

11

)
+ h−1(11x).

(16)

Similarly, we have

h−1(x) ≤ h1

( x

11

)
+ h1(11x). (17)

Therefore case (1) holds because case (2) and case (3) are absurd to the inequality (16) and inequality (17), 
respectively, i.e.,

∑
m∈C ,m≤x

1 = h−1(x) = Ch−1

x

(log x) 11
12

+ o

(
x

(log x) 11
12

)
,

μ1(m)=−1
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where constant Ch−1 > 0, as x → ∞. Then we write h1(x) above still as h(x). In a similar way, we construct 
the new functions h1(x) and h−1(x) as follows:

h1(x) =
∑

m∈C ,m≤x
μ1(m)=−1, μ2(m)=1

1, h−1(x) =
∑

m∈C ,m≤x
μ1(m)=−1, μ2(m)=−1

1,

where h1(x) + h−1(x) = h(x) and

h1(x) ≤ h−1(
x

5 ) + h−1(5x),

h−1(x) ≤ h1(
x

5 ) + h1(5x).

Similarly, we get

∑
m∈C ,m≤x

μ1(m)=−1, μ2(m)=1

1 = h1(x) = C0
x

(log x) 11
12

+ o

(
x

(log x) 11
12

)
,

where constant C0 > 0, as x → ∞. Continuously through similar discussions, we can get

∑
m∈C ,m≤x

μ1(m)=−1,μ2(m)=1,μ4(m)=1

1 = C1
x

(log x) 11
12

+ o

(
x

(log x) 11
12

)
,

and

∑
m∈C ,m≤x

μ1(m)=1,μ2(m)=−1,μ4(m)=−1

1 = C2
x

(log x) 11
12

+ o

(
x

(log x) 11
12

)
,

where constants C1 > 0, C2 > 0, as x → ∞. Then by (14) we finally get

∑
0≤n≤x

A(2n+1) odd

1 � x

(log x) 11
12
.

Combining the upper bound [3, Theorem 1.1] with the above inequality, we complete the proof of Theo-
rem 2.2. �

Remark 3.2. Obviously, Theorem 2.1 can also be used to discuss the case that m is not a square-free integer, 
i.e., the primes that appear in form (i) and (ii) in Theorem 2.1 can be the same. This allows one to obtain 
more integers n ∈ N that satisfy A(2n + 1) is odd. Therefore one may be able to further raise the lower 
bound of �{0 ≤ n ≤ x : A(2n + 1) is odd } and obtain a more accurate asymptotic.
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