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1. Introduction

A positive integer n is called a congruent number if it is the area of a right triangle 
with rational lengths, or equivalently if the congruent elliptic curve

En : y2 = x3 − n2x

has positive Mordell–Weil rank. Otherwise n is called a non-congruent number. Without 
loss of generality, we shall restrict attention to square-free number n throughout this 
paper.

To determine all congruent numbers and non-congruent numbers is one of long-
standing problems in number theory. Many eminent mathematicians have worked on 
this problem. For the known results on the construction of non-congruent numbers with 
arbitrarily many prime factors, see for instance, Iskra [8], Feng [1–4], Reinholz, Spearman 
and Yang [14,15] Ouyang and Zhang [11,12], Wang [21] and the recent works of Tian, 
Yuan and Zhang [10,18–20].

In order to estimate the Mordell–Weil rank r(n) of En one may use the method of 
descents, for details we refer to Silverman’s book [16, Chapter X]. We first introduce 
the notion of 2-Selmer rank, following Heath-Brown [5,6]. The number of 2-descents is 
the order of the Selmer group S(2). This is a power of 2, and will be a multiple of 4, on 
account of the rational points of order 2 on En. We shall therefore write |S(2)| = 22+s(n). 
The exponent s(n) is called the 2-Selmer rank of the elliptic curve En. Recall that 
0 ≤ r(n) ≤ s(n). Hence if s(n) = 0, then r(n) = 0. Moreover, Monsky [6, Appendix]
represented the 2-Selmer group as the kernel of a square matrix M over the finite field 
F2, and thus gave an explicit formula to compute s(n).

Based on above well-known facts, Reinholz, Spearman and Yang recently constructed 
a family of odd non-congruent numbers with all prime factors congruent to 3 modulo 8 
in [14]. Later they constructed another family of odd non-congruent numbers with one 
prime factor congruent to 1 modulo 8 and all other prime factors congruent to 3 modulo 
8 in [15]. Note that only odd non-congruent numbers were studied in [14,15].

In Section 2, we prove the following main theorem which gives both odd and even 
non-congruent numbers explicitly (see Theorems 2.1 and 2.2 for details). Our result 
generalizes the result of [14] according to Example 2.1. And the proof is also based on 
applications of the fundamental inequality r(n) ≤ s(n).

Theorem 1.1. Let g, k and l be any positive integers satisfying g ≥ k > l. Let 
p1, p2, · · · , pg be distinct primes congruent to 3 modulo 8, such that for all i > j,
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(
pj
pi

)
=
{

1, if (i, j) �= (k, l);
−1, otherwise.

Here 
( ·
·
)

denotes the Legendre symbol. Define

N odd
k,l := {n = p1p2 · · · pg} , (1)

N even
k,l :=

{
n = 2p1p2 · · · pg

∣∣ g is even
}
. (2)

If k − l is not divisible by 2, then each element of N odd
k,l ∪ N even

k,l is a non-congruent 
number.

The recent work of Tian, Yuan and Zhang [20] combining with a theorem of Smith 
[17] give a totally new approach to construct non-congruent numbers explicitly. Their 
results establish a sufficient condition for n to be non-congruent in terms of the parity 
of the analytic Tate–Shafarevich invariant L(n) defined by equation (12). The parity of 
L(n) is described by that of the genus class numbers of imaginary quadratic fields, and 
thus by the Legendre symbols given by the prime factors of n.

In Section 3, we use Tian, Yuan and Zhang’s results to prove the following theorem, 
which is the even analogue of Iskra’s theorem in [8].

Theorem 1.2. Let p1, p2, · · · , pt be distinct primes congruent to 3 modulo 8, such that (
pj

pi

)
= −1 for i > j. If t is an even positive integer, then the product n = 2p1 · · · pt is a 

non-congruent number.

This new approach is effective to find out almost all non-congruent numbers. One 
can see the examples in Subsection 3.2. In fact one may use [20] to rewrite the proof 
of Theorem 1.1 when the number of prime factors is small. However, this procedure 
will involve tedious computations of genus class numbers in the general situation with 
arbitrary number of prime factors.

2. Non-congruent numbers via Monsky’s formula

In this section, we first review some of the standard facts on Monsky’s formula for 
the 2-Selmer rank s(n) and properties of block matrices. Theorem 1.1 will be proved in 
Subsections 2.2 and 2.3.

First of all, we state some notations of matrices which will be used throughout this 
section. Let Im denote the m × m identity matrix; 0m×n denote the zero matrix with 
size m ×n; and 1m×n denote the m ×n scalar matrix with all entries 1. For abbreviation, 
we may omit the subscript indicates when no confusion can arise. We say two matrices 
X = (xij) and Y = (xij) with the same size are congruent to each other, denote by 
X ≡ Y (mod 2), means that xij ≡ yij (mod 2) for any possible i and j.
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2.1. Monsky’s formula for the 2-Selmer rank

In the appendix of Heath-Brown’s paper [6], Monsky proved the following formula to 
compute the 2-Selmer rank s(n) of the congruent elliptic curve En.

Let n be a square-free positive integer with odd prime factors p1, p2, · · · , pm. We define 
three diagonal m ×m matrices Dl = diag(dii) for l ∈ {−1, ±2}; and one m ×m matrix 
A = (aij) by

dii :=

⎧⎪⎨
⎪⎩

0, if
(

l
pi

)
= 1,

1, if
(

l
pi

)
= −1;

aij :=

⎧⎪⎨
⎪⎩

0, if
(

pj

pi

)
= 1, j �= i,

1, if
(

pj

pi

)
= −1, j �= i;

aii :=
∑

1≤j≤m,j �=i

aij .

The Monsky matrices Mo and Me are defined by

Mo :=
(
A + D2 D2
D2 A + D−2

)
2m×2m

(3)

and

Me :=
(

D2 A + D2
At + D2 D−1

)
2m×2m

. (4)

Here and subsequently, At denotes the transpose matrix of A. Then Monsky’s formula
for the 2-Selmer rank s(n) says that

s(n) =
{

2m− rankF2(Mo), if (2, n) = 1;

2m− rankF2(Me), if (2, n) = 2.
(5)

In order to compute the determinants of Mo and Me, we require the following prop-
erties of block determinants, and the proofs are left to the reader.

Lemma 2.1. If A and D are square matrices, then

det
(

A 0
C D

)
= det

(
A B

0 D

)
= det(A)det(D).
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Lemma 2.2. If A and D are square matrices, then

det
(

A B

C D

)
=
{

det(A)det(D − CA−1B), if A−1 exists;
det(D)det(A−BD−1C), if D−1 exists.

2.2. Odd non-congruent numbers

The following theorem gives a new family of odd non-congruent numbers explicitly. 
It generalizes the result of [14].

Theorem 2.1. With the notation of Theorem 1.1, if k − l is not divisible by 2, then each 
element of N odd

k,l is a non-congruent number.

Note that if l = 1 and k = m is a positive even integer. Then N odd
m,1 gives exactly the 

non-congruent numbers described by Reinholz, Spearman and Yang in [14]. Moreover, it 
is easy to check that if k− l = 1, then N odd

k,l = N odd
2,1 . However, according to Example 2.1

after the proof of Theorem 2.1, we see that [14, Theorem 1] does not work for N odd
5,2 . In 

fact, it is a simple matter to construct such kind of examples when k− l ≥ 3 and g ≥ 5. 
And hence Theorem 2.1 does give new non-congruent numbers.

Proof. Given a square-free positive integer n = p1p2 · · · pg ∈ N odd
k,l . The aim is to show 

that n is non-congruent. Since 0 ≤ r(n) ≤ s(n), it is sufficient to prove that the 2-Selmer 
rank s(n) = 0. Furthermore, by Monsky’s formula (5), we are reduced to prove that the 
Monsky matrix Mo has F2-rank 2g, i.e., to prove det(Mo) ≡ 1 (mod 2).

Since pi ≡ 3(mod 8) for 1 ≤ i ≤ g, it is immediate that 
(

−1
pi

)
= −1, 

(
2
pi

)
= −1 and (

−2
pi

)
= 1. So we have D−1 = D2 = Ig and D−2 = 0g×g. And by the law of quadratic 

reciprocity, we have 
(

pj

pi

)
= − 

(
pi

pj

)
for any 1 ≤ i �= j ≤ g. Therefore we can write A as 

a 3 × 3 block matrix

A =

⎛
⎜⎝A11 A12 A13

A21 A22 A23
A31 A32 A33

⎞
⎟⎠ l − 1

k − l + 1
g − k

l−1 k−l+1 g−k

, (6)

where Aij designates the i–jth-block. Specifically, the upper triangular blocks A12, A13
and A23 are zero matrices, the lower triangular blocks A21, A31 and A32 are scalar ma-
trices with all entries 1, and

A11 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
1 1 0 · · · 0
1 1 2

. . .
...

...
...

. . . . . . 0
1 1 · · · 1 l − 2

⎞
⎟⎟⎟⎟⎟⎠ ,
(l−1)×(l−1)
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A22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l 0 0 · · · 0 1
1 l 0 · · · 0 0

1 1 l + 1
. . .

... 0
...

...
. . . . . . 0

...
1 1 · · · 1 k − 2 0
0 1 1 · · · 1 k − 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(k−l+1)×(k−l+1)

,

A33 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k 0 0 · · · 0
1 k + 1 0 · · · 0

1 1 k + 2
. . .

...
...

...
. . . . . . 0

1 1 · · · 1 g − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(g−k)×(g−k)

.

Since n is odd, we only need to consider the Monsky matrix Mo =
(A+Ig Ig

Ig A

)
. By 

performing the elementary row operations of Type I on Mo [7, Chapter VII, Definition 
2.7 (i)], i.e., interchanging rows of Mo finite times. One can change Mo into 

( Ig A

A+Ig Ig

)
. 

By [7, Chapter VII, Theorem 2.8], these operations are equivalent to multiplying finite 
number of 2g × 2g elementary matrices with determinants ±1 on the left-hand side of 
Mo. Thus there exists a square matrix L with determinant ±1 such that

LMo =
(

Ig A

A + Ig Ig

)
.

Computing the determinants on both sides of this equation. Lemma 2.2 makes it obvious 
that

det(Mo) ≡ det(Ig − (A + Ig)A) (mod 2). (7)

In order to determine the determinant of the right hand side of (7), we first need to 
compute (A + Ig)A. By the above, we write (A + Ig)A as a 3 × 3 block matrix

(αij)1≤i,j≤3,

which is partitioned conformably with A. By the multiplication law of block matrices, 
we have α11 = (A11 + Il−1)A11, α12 = 0(l−1)×(k−l+1), α13 = 0(l−1)×(g−k), α22 = (A22 +
Ik−l+1)A22, α23 = 0(k−l+1)×(g−k), and α33 = (A33 + Ig−k)A33.

The main diagonal blocks of (A + Ig)A are determined as follows. First of all, we have

α11 =

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0

∗ 1 × 2
. . .

...
...

. . . . . . 0
∗ . . . ∗ (l − 2)(l − 1)

⎞
⎟⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0

∗ 0
. . .

...
...

. . . . . . 0
∗ . . . ∗ 0

⎞
⎟⎟⎟⎟⎠ (mod 2). (8)
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Here and subsequently, we use symbols ∗ to denote the elements which do not contribute 
to the determinant of Mo. And similarly, we get that α33 is also congruent to a strictly 
lower triangular matrix modulo 2.

In order to compute α22. Let us denote by αi the row i of A22 +Ik−l+1, and denote by 
βj the column j of A22. We need to determine the i–jth-entry modulo 2 in the following 
cases.

(i) If 2 ≤ j < i ≤ k − l. Then αi = (1, . . . , 1, l + i − 1, 0, . . . , 0) and βj = (0, . . . , 0, l +
j − 2, 1, . . . , 1)t, where l + i − 1 lies in column i of αi, and l + j − 2 lies in row j of βj . 
Since l + i − 1 > l + j − 2, the i–jth-entry of α22 is equal to αi · βj = (l + i − 1) + (l +
j − 2) + (i − j − 1) = 2l + 2i − 4 ≡ 0(mod 2).

(ii) If j = 1 and 2 ≤ i ≤ k − l, then the i–1th-entry of α22 is equal to αi · β1 =
(1, . . . , 1, l + i − 1, 0, . . . , 0) · (l, 1, . . . , 1, 0)t = 2l + 2i − 3 ≡ 1(mod 2).

(iii) If i = k − l + 1 and 2 ≤ j ≤ k − l, then the (k − l + 1)–jth-entry of α22 is equal 
to αk−l+1 · βj = (0, 1, . . . , 1, k − 1)t · (0, . . . , 0, l + j − 2, 1, . . . , 1)t = 2k − 5 ≡ 1(mod 2).

Except above three cases, the other entries of α22 can be determined easily by applying 
the law of quadratic reciprocity. It follows that

α22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l(l + 1) 1 1 · · · 1 k + l − 1
∗ l(l + 1) 0 · · · 0 1

∗ ∗ (l + 1)(l + 2)
. . .

...
...

∗ ∗ ∗ . . . 0
...

∗ ∗ ∗ ∗ (k − 2)(k − 1) 1
k − l − 1 ∗ ∗ ∗ ∗ (k − 2)(k − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 1 k + l − 1
1 0 · · · 0 1
...

...
. . .

...
...

1 0 · · · 0 1
k − l − 1 1 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠ (mod 2).

(9)

Now substituting (8) and (9) into (7). Because det(Il−1 −α11) ≡ det(Ig−k −α33) ≡ 1
(mod 2). So Lemma 2.1 shows that

det(Mo) ≡ det(Ik−l+1 − α22) (mod 2).

By applying [7, Chapter VII, Theorem 2.8 and Theorem 3.5] to the determinant of the 
right hand side. Specifically, we add the first row (resp. the last column) by rows (resp. 
columns) from 2 to k− l in Ik−l+1−α22, which make this matrix become lower triangular 
when modulo 2. It follows that
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det(Ik−l+1 − α22) ≡det

⎛
⎜⎝ −k + l + 2 0 −2k + 2

−1 Ik−l−1 0
−2k + 2l + 2 −1 −k + l + 2

⎞
⎟⎠

≡(k − l)2 (mod 2).

In conclusion, if k − l is not divisible by 2. Then obviously det(Mo) ≡ (k − l)2 ≡ 1
(mod 2). The proof is completed. �
Example 2.1. We consider the square-free positive integer n = p1p2p3p4p5, where 
p1, p2, . . . , p5 are distinct odd primes congruent to 3 modulo 8, such that for all i > j,

(
pj
pi

)
=
{

1, if (i, j) �= (5, 2);
−1, otherwise.

Obviously, this n belongs to N odd
5,2 and consequently it is a non-congruent number by 

Theorem 2.1.
Nevertheless, one can’t determine whether or not this n is a non-congruent number by 

the result of Reinholz [14, Theorem 1]. If otherwise, then there must exist a permutation 
σ which belongs to the symmetric group S5 such that n = pσ(1)pσ(2)pσ(3)pσ(4)pσ(5)
satisfies the requirement of [14, Theorem 1]. It follows that there exists one and only 

one Legendre symbol between 
(

pσ(1)
pσ(2)

)
and 

(
pσ(1)
pσ(4)

)
which equals 1, and the other 

(
pσ(j)
pσ(i)

)
with i > j are equal to −1.

We now show that this can not happen by reduction to absurdity. First of all, if 
σ(1) = 5 or σ(2) = 5, then at least two Legendre symbols among 

(
p5

pσ(3)

)
, 
(

p5
pσ(4)

)
and (

p5
pσ(5)

)
are equal to 1. This contradicts the requirement of [14, Theorem 1]. Second, 

if σ(3) = 5 then one Legendre symbol between 
(

p5
pσ(4)

)
and 

(
p5

pσ(5)

)
equals 1, also a 

contradiction. Third, if σ(4) = 5 then σ(5) = 2, otherwise there must be 
(

p5
pσ(5)

)
= 1. 

This leads to a contradiction since then at least two Legendre symbols among 
(
pσ(1)
p2

)
, (

pσ(2)
p2

)
and 

(
pσ(3)
p2

)
equal 1. Finally, the only possibility is σ(5) = 5. This implies 

σ(1) = 2 since there exists exactly one Legendre symbol equals 1, which also contradicts 
[14, Theorem 1] because 2 � σ(5) = 5. In conclusion, we see that [14, Theorem 1] does 
not work for above n.

2.3. Even non-congruent numbers

Note that only odd non-congruent numbers were involved in [14,15]. The following 
theorem may be viewed as the even case of Theorem 2.1, which gives a new family of 
even non-congruent numbers with arbitrarily many prime factors explicitly.

Theorem 2.2. With the notation of Theorem 1.1, if k − l is not divisible by 2, then each 
element of N even

k,l is a non-congruent number.
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Proof. The proof is quite similar to that of Theorem 2.1 but involves much more com-
plicated block matrix operations. Following the notation of previous subsection, for any 
n = 2p1p2 · · · pg ∈ N even

k,l , we consider the Monsky matrix Me defined by (4). Then 
Lemma 2.2 implies that

det(Me) = det(Ig − (A + Ig)(At + Ig)), (10)

where A is given by (6).
In order to determine the determinant of the left hand side of (10), we first compute 

the g × g symmetric matrix (A + Ig)(At + Ig). We regard this matrix as a 3 × 3 block 
matrix

(βij)1≤i,j≤3,

which is partitioned conformably with A. By applying the multiplication law of block 
matrices again, it is easy to compute that β11 = (A11+Il−1)(At

11+Il−1), β21 = A21(At
11+

Il−1), β22 = A21A
t
21+(A22+Ik−l+1)(At

22+Ik−l+1), β31 = A31(At
11+Il−1), β32 = A31A

t
21+

A32(At
22+Ik−l+1), β33 = A31A

t
31+A32A

t
32+(A33+Ig−k)(At

33+Ig−k), and the symmetric 
implies that β12 = βt

21, β13 = βt
31, β23 = βt

32.
The task is now to compute the blocks βij(1 ≤ j ≤ i ≤ 3) modulo 2 in above matrix. 

Since the method is elementary, we only write down the details for β11 and β22 as below.

β11 =(A11 + Il−1)(At
11 + Il−1)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1
1 22 + 1 3 3 · · · 3
1 3 32 + 2 5 · · · 5

1 3 5 42 + 3 ∗
...

...
...

... ∗ . . . 2l − 5
1 3 5 · · · 2l − 5 (l − 1)2 + (l − 2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the i–jth-entry equals 2j − 1 for l − 1 ≥ i > j ≥ 1, and equals i2 + i − 1 for 
l− 1 ≥ i = j ≥ 1. Note that β11 is symmetric. Thus we have β11 ≡ 1(l−1)×(l−1) (mod 2).

β22 =A21A
t
21 + (A22 + Ik−l+1)(At

22 + Ik−l+1)

=(l − 1)1(k−l+1)×(k−l+1)

+

⎛
⎜⎜⎜⎜⎜⎜⎝

l + 2 l + 1 l + 1 · · · l + 1 k − 1
l + 1 (l + 1)2 + 1 l + 2 · · · l + 2 l + 1
l + 1 l + 2 (l + 2)2 + 2 ∗ l + 4 l + 3

...
... ∗

. . . ∗
...

l + 1 l + 2 l + 4 ∗ (k − 1)2 + k − l + 1 2k − l − 3
k − 1 l + 1 l + 3 · · · 2k − l − 3 (k − 1)2 + k − l + 1

⎞
⎟⎟⎟⎟⎟⎟⎠
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where the i–jth-entry of the second summand on the right hand side equals l+ 2(j − 1)
for k − l ≥ i > j ≥ 2, and equals (l + i − 1)2 + i − 1 for k − l ≥ i = j ≥ 2; and all other 
i–jth-entries for i = 1 or k − l + 1 and j = 1 or k − l + 1 are easy to be determined. It 
follows that

β22 ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 k + l

0 1 · · · 1 0
...

...
. . .

...
...

0 1 · · · 1 0
k + l 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(k−l+1)×(k−l+1)

(mod 2).

In the same manner, we see that β12 ≡ 1(l−1)×(k−l+1), β13 ≡ 1(l−1)×(g−k), β21 ≡
1(k−l+1)×(l−1), β23 ≡ 1(k−l+1)×(g−k), β31 ≡ 1(g−k)×(l−1), β32 ≡ 1(g−k)×(k−l+1), β33 ≡
1(g−k)×(g−k).

Now combining above results yields

Ig − (A + Ig)(At + Ig) ≡⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 · · · −1

−1 0
. . .

... −1...
. . .

. . . −1
−1

−1 · · · −1 0
0 0 0 · · · 0 −k − l
0 0 −1 · · · −1 0

0 −1 0
. . .

...
...−1 ...

...
. . .

. . . −1 0
−1

0 −1 · · · −1 0 0
−k − l 0 · · · 0 0 0

0 −1 · · · −1

−1 0
. . .

...−1 −1 ...
. . .

. . . −1
−1 · · · −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g×g

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

l − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

k − l + 1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

g − k

︸ ︷︷ ︸
l−1

︸ ︷︷ ︸
k−l+1

︸ ︷︷ ︸
g−k

(mod 2).
(11)

We now return to determine the determinant of Ig−(A +Ig)(At+Ig) in (10) modulo 2. 
For this purpose, we need to perform a finite sequence of elementary row operations of 
type I and type III [7, Chapter VII, Definition 2.7 (i) and (iii)] on the block matrix of the 
left hand side of (11), to make it become lower triangular. This process is not difficult 
but is too long to give here, so we omit the details. The main diagonal elements of the 
final lower triangular matrix are the same as
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diag(g − 1, Il−2, k − l, k − l, IK−L−1, Ig−k) (mod 2).

Now applying Lemma 2.2 and [7, Chapter VII, Theorem 2.8 and Theorem 3.5] again, 
we see that the Monsky matrix Me has determinant

det(Me) ≡ (g − 1)(k − l)2 (mod 2).

Since g is even and k − l is not divisible by 2, it follows immediately that det(Me) ≡ 1
(mod 2), and this is the desired conclusion. �
3. New approach according to Tian, Yuan and Zhang

In this section, we use the recent work of Tian, Yuan and Zhang [20] to construct non-
congruent numbers explicitly. In [20], the authors defined an analytic Tate–Shafarevich 
invariant L(n) of En as follows:

L(n) :=

⎧⎪⎪⎨
⎪⎪⎩

(L(En, 1)/(22k(n)−2−α(n)Ωn,∞))1/2, if ords=1L(En, s) = 0;

(L′(En, 1)/(22k(n)−2−α(n)Ωn,∞Rn))1/2, if ords=1L(En, s) = 1;

0, if ords=1L(En, s) > 1.

(12)

Here

– k(n) is the number of odd prime factors of n;
– α(n) = 0 if n is even, and 1 if n is odd;
– the real period

Ωn,∞ = 2√
n

∞∫
1

dx√
x3 − x

;

– Rn is twice of the Néron–Tate height of a generator of En(Q)/En(Q)tor (in the case 
of rank one).

The main results relating to the non-congruent numbers in [20] are the following two 
theorems.

Theorem 3.1. ([20, Theorem 1.1]) Let n ≡ 1, 2, 3 (mod 8) be a positive and square-free 
integer. Then L(n) is an integer, and

L(n) ≡
∑

n=d0d1···dl

∏
i

g(di) (mod 2). (13)
di≡1 (mod 8),i>0
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Here all decompositions n = d0d1 · · · dl are non-ordered with di > 1 for all i ≥ 0. 
g(di) := #(2Cl(Q(

√
−di))) are the genus class numbers. And the right-hand side is 

considered to be 1 if n = 1.

Theorem 3.2. ([20, Corollary 1.3]) For every square-free positive integer n congruent 
to 1, 2 or 3 modulo 8, we have that L(n) is odd if and only if En(Q) is finite and 
X(En)[2∞] = 0. Moreover, when these statements hold, X(En) is finite, and its order 
is as predicted by the conjecture of Birch and Swinnerton–Dyer.

Theorem 3.2 states that if n ≡ 1, 2, 3 (mod 8) is a positive and square-free integer 
such that the analytic Tate–Shafarevich invariant L(n) is odd, then n is a non-congruent 
number. Note that if the number of prime factors of n is very small, or most of the genus 
class numbers coming from the right hand side of (13) are even. Then the parity of L(n)
is determinable. We are thus led to the following applications of [20].

3.1. Even analogue of [8]

The following theorem is an easy corollary of Theorems 3.1 and 3.2. We may view it 
as the even analogue of Iskra’s theorem in [8].

Theorem 3.3. Let p1, p2, · · · , pt be distinct primes congruent to 3 modulo 8, such that (
pj

pi

)
= −1 for i > j. If t is an even positive integer, then the product n = 2p1 · · · pt is a 

non-congruent number.

Proof. Note that the genus class number g(d) is odd if and only if the ideal class group 
Cl(Q(

√
−d)) has no nonzero element of order 4, and the 4-ranks of Cl(Q(

√
−d)) can 

be determined by studying the F2-rank of the Rédei matrices (see, for example, [13,9]). 
Based on these facts, we have

– g(2) ≡ 1 (mod 2);
– g(2pipj) ≡ g(2pipjpkpl) ≡ · · · ≡ g(n) ≡ 0 (mod 2);
– g(pipj) ≡ 1 (mod 2);
– g(pipjpkpl) ≡ g(pipjpkplpupv) ≡ · · · ≡ g(p1p2 · · · pt−1pt) ≡ 0 (mod 2).

Here i, j, k, l, u, v are distinct integers belong to {1, 2, · · · , t}.
This implies that to study the parity of the right hand side of congruence (13), we 

only need to consider the decompositions of n with the form n = 2 · d1 · d2 · · · dl, where 
each di has exactly two odd prime factors. The number of such decompositions is equal 
to

(
t
2
)(

t−2
2
)
· · ·

(4
2
)

t .

( 2 )!
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By induction on t, it is easy to check that this number is congruent to 1 modulo 2.
Now apply Theorems 3.1 and 3.2, we have L(n) ≡ g(2) ·

∏
i,j g(pipj) ·

(t
2
)(t−2

2
)
···
(4
2
)

( t
2 )! ≡ 1

(mod 2). This completes the proof. �
3.2. More examples

The following examples show that by applying the results of [20]. One may find out 
almost all of the non-congruent numbers with small number of prime factors.

Example 3.1. Let n = p1p2p3 be a square-free positive integer such that pi ≡ 3 (mod 8)
for 1 ≤ i ≤ 3. If the triple 

[(
p1
p2

)
,
(

p1
p3

)
,
(

p2
p3

)]
belongs to

{[1, 1, 1], [1, 1,−1], [1,−1,−1], [−1, 1, 1], [−1,−1, 1], [−1,−1,−1]}.

Then n is a non-congruent number.

Proof. Note that n = p1p2p3 = p1 ·p2p3 = p2 ·p1p3 = p3 ·p1p2. Theorem 3.1 implies that

L(n) ≡ g(p1p2p3) + g(p1)g(p2p3) + g(p2)g(p1p3) + g(p3)g(p1p2) (mod 2). (14)

Now we only need to verify the parities of the genus class numbers on the right hand 
side of (14) one by one.

Since n = p1p2p3 ≡ 3 (mod 8), we consider the Rédei matrix

R(1) =

⎛
⎜⎝ (p1, d)p1 (p1, d)p2 (p1, d)p3

(p2, d)p1 (p2, d)p2 (p2, d)p3

(p3, d)p1 (p3, d)p2 (p3, d)p3

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎝

(
p2p3
p1

) (
p1
p2

) (
p1
p3

)
(

p2
p1

) (
p1p3
p2

) (
p2
p3

)
(

p3
p1

) (
p3
p2

) (
p1p2
p3

)

⎞
⎟⎟⎟⎟⎠ ,

(15)

where d = −p1p2p3, and (p, d)q denotes the Hilbert symbol for primes p and q. It is easy 

to check that only when the triple 
[(

p1
p2

)
,
(

p1
p3

)
,
(

p2
p3

)]
takes value from the following 

set

{[1, 1, 1], [1, 1,−1], [1,−1,−1], [−1, 1, 1], [−1,−1, 1], [−1,−1,−1]}.

Then the F2-rank of R(1) is equal to 1. By Rédei’s formula for the 4-rank of Cl(Q(
√
d))

[9, Theorem 3.1], we have rk4(Cl(Q(
√
d)) = 1. It follows that the g(p1p2p3) ≡ 0 (mod 2).
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By similar computations, we see that g(p1) ≡ g(p2) ≡ g(p3) ≡ g(p1p2) ≡ g(p1p3) ≡
g(p2p3) ≡ 1 (mod 2). Now substituting these congruences back to (14), it follows that 
L(n) ≡ 1 (mod 2). This completes the proof. �

Similar argument applies to the situation of 4 prime factors. The proof of the following 
example will be omitted.

Example 3.2. Let n = p1p2p3p4 be a square-free positive integer such that pi ≡ 3 (mod 8)
for 1 ≤ i ≤ 4. Denote by α =

(
p1
p2

)(
p3
p4

)
, β =

(
p1
p3

)(
p2
p4

)
and γ =

(
p1
p4

)(
p2
p3

)
. Then in 

the following cases, n is a non-congruent number:

(i) α = β = γ = 1;
(ii) α = β = 1, γ = −1;
(iii) α = 1, β = γ = −1;
(iv) α = −1, β = γ = 1;
(v) α = β = −1, γ = 1;
(vi) α = β = γ = −1.
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