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In this paper, we study the Galois action on the extended Bloch groups of 
biquadratic and dihedral number fields. We prove that if F is a biquadratic number 
field, then the index Q2(F ) in Browkin and Gangl’s formulas on the Brauer–Kuroda 
relation can only be 1 or 2. This is exactly what Browkin and Gangl predicted in 
their paper. Moreover we give the explicit criteria for Q2(F ) = 1 or 2 in terms of 
the Tate kernels. We also prove that Q2(F ) = 1 or p for any dihedral extension F/Q
whose Galois group is the dihedral group of order 2p, where p is an odd prime.
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1. Introduction

There are several different definitions of the Bloch groups in the literature. In this paper, we will use 
Suslin’s definition of the Bloch group in [17]. Although Browkin and Gangl use in [5] a different definition 
of the Bloch group from Suslin’s, these two definitions differ only in the torsion elements. Note that the 
Dilogarithm function is trivial on torsion elements. So even if we change the Bloch groups in Browkin and 
Gangl’s paper to Suslin’s Bloch groups, their results on the regulators and the Brauer–Kuroda relations 
still hold. One can see Section 2 of this paper for details.

Let E/F be a finite Galois extension of fields with the Galois group G. In 2004, Neumann introduced in 
[10] the extended Bloch groups. In 2013, Zickert defined in [20] the extended Bloch group B̂ for “free” fields 
which include number fields. He proved that there is a natural isomorphism

B̂(E) � K ind
3 E,

where K ind
3 E is the indecomposable part of K3E. Note that this isomorphism respects the Galois action.
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Levine proved that the indecomposable K3 satisfies Galois descent (Theorem 18.4 of [6])

K ind
3 F � (K ind

3 E)G,

where E/F is a finite Galois extension of fields with the Galois group G. One can see [8] and [9] for details. 
Hence the extended Bloch groups also satisfy Galois descent.

We prove that if F is a biquadratic number field, then the index Q2(F ) in Browkin and Gangl’s formulas 
(Theorem 1 of [5]) on the Brauer–Kuroda relation for K2 can only be 1 or 2 by considering the norm index of 
the extended Bloch groups for biquadratic number fields. This is exactly what Browkin and Gangl predicted 
in their paper [5].

We give an explicit method to compute the exact value of Q2(F ). In particular, we prove that if F = F1F2, 
where F1 and F2 are imaginary quadratic number fields, then Q2(F ) = 1 or 2. Our method is based on 
the study of the Tate kernels of F, F1, F2. A method of determining explicit Tate kernels of imaginary 
quadratic number fields has been developed in [14], together with [15] and [16]. The method can also be 
used to determine the Tate kernel of a number field containing an imaginary quadratic field. We give several 
examples to show the strength of this method. In Section 3 of this paper, we will show how to determine 
the Tate kernels of certain biquadratic number fields by applying the results on the Tate kernels of two 
imaginary quadratic number fields.

We also prove that Q2(F ) = 1 or p for any dihedral extension F/Q whose Galois group is the dihedral 
group of order 2p, where p is an odd prime. In [21], Zhou proved that Q2(F )|4 for bi-quadratic number 
fields and proved that Q2(F )|33 for any dihedral extension F/Q whose Galois group is the dihedral group 
of order 6.

2. The extended Bloch group and dilogarithm

Let E be a number field, E× the multiplicative group of E. Let Z[E×\{1}] be the free abelian group 
generated by

[a], a ∈ E×, a �= 1.

The Suslin (or Dupont–Sah) scissors congruence group PS(E) is the group Z[E×\{1}] modulo the sub-
group F(E) generated by

[x] − [y] + [y
x

] − [ 1 − x−1

1 − y−1 ] + [1 − x

1 − y
], x �= y ∈ Z[E×\{1}].

Let

S(E) := (E× ⊗ E×)/(x⊗ y + y ⊗ x)

with generators a ◦ b. Then Suslin’s Bloch group is defined as

BS(E) := ker(λ : PS(E) −→ S(E)), λ([x]) = x ◦ (1 − x).

Suslin proved in [17] that the order of [x] +[x−1] is at most 2, and the elements [x] +[1 −x] are independent 
of x and have order dividing 6.

For the discussion on relations between Suslin’s definition of the Bloch group and Dupont–Sah’s definition 
of the Bloch group, one can see [11], [12] and [13] for details.

In [5], Browkin and Gangl use Zagier’s definition of the Bloch group. In their paper, the “pre-Bloch” 
group PZ(E) is defined as the group Z[E×\{1}] modulo the subgroup F(E) generated by
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[x] + [y] + [ 1 − x

1 − xy
] + [1 − xy] + [ 1 − y

1 − xy
], x, y, xy ∈ Z[E×\{1}]

and the elements

[x] + [x−1] and [x] + [1 − x], x ∈ E×\{1}.

Let

Λ(E) := (E× ⊗ E×)/(x⊗ x, y ⊗−1),

with generators x ∧ y. Then Zagier’s Bloch group is defined as

BZ(E) := ker(∂ : PZ(E) −→ Λ(E)), ∂([z]) = z ∧ (1 − z).

Note that there is a natural surjective map

PS(E) −→ PZ(E),
[x] −→ [x],

whose kernel is annihilated by 6 by Lemma 5.1 of [17]. So there is a natural surjective map from BS(E)
to BZ(E), whose kernel is also annihilated by 6. This map induces an isomorphism from BS(E)/tor to 
BZ(E)/tor, where “tor” means the torsion part.

There is an exact sequence

0 −→ BS(E) −→ PS(E) −→ S(E) −→ K2E −→ 0,

where x ◦ y ∈ S(E) maps to {x, y} ∈ K2E.
For abbreviation, we will use B(E) for BS(E). In [5], Browkin and Gangl use the Bloch groups in the 

Dilogarithm function. Note that the Dilogarithm function is trivial on the torsion elements. So if we change 
their definition to Suslin’s definition of the Bloch groups, then their results on the regulators still hold. We 
will not use the exact definition of the extended Bloch group B̂(F ). One can see the details of the definition 
in [20].

Theorem 2.1 (Zickert, [20]). For every number field F , there is a natural isomorphism

λ̂ : K ind
3 F � B̂(F )

respecting the Galois actions.

Let μF be the group of roots of unity of F , and μ̃F the unique non-trivial Z/2Z extension of μF . Suslin 
proved that there is a short exact sequence

0 −→ μ̃F −→ K ind
3 F −→ B(F ) −→ 0.

Theorem 2.1 implies the following short exact sequence

0 −→ μ̃F −→ B̂(F ) −→ B(F ) −→ 0. (2.1)



X. Guo, H. Qin / Journal of Pure and Applied Algebra 222 (2018) 3968–3981 3971
Recall that the standard Bloch–Wigner function is defined as

D(z) = −Im
z∫

0

log(1 − t)dt
t

+ arg(1 − z) log |z|,

and the normalized Bloch–Wigner function is defined as

D̃(z) = 1
π
D(z).

In this paper, when we talk about the Bloch–Wigner function, we always mean the normalized one. Let z
be the complex conjugate of z. Then the Bloch–Wigner function is a real analytic function satisfying the 
identity

D̃(z) = −D̃(z).

For a number field F , the Bloch–Wigner function can be extended to a linear map

D̃ : B(F ) −→ R,

[a1] + · · · + [an] 	−→ D̃(a1) + · · · + D̃(an).

Let σ1, ..., σr2 be the complex places of F and D̃i := D̃ ◦ σi. Let D = (D̃1, ..., D̃r2). Then we get a 
dilogarithm

D : B(F ) −→ Rr2 .

The image of D is a lattice of rank r2 in Rr2 . Let R̃2(F ) be the covolume of this lattice. Let b1, ..., br2 ∈ B(F )
such that

D(b1), ..., D(br2)

is a basis of D(B(F )). Then

R̃2(F ) = | det(D̃(σi(bj)))|.

By (2.1), the homomorphism D can be pulled back to B̂(F ), i.e.,

D : B̂(F ) −→ Rr2 .

By Theorem 2.1, there is a natural Galois action on B̂(F ).

3. Galois descent of the extended Bloch groups of biquadratic number fields

Let F1, F2 be two imaginary quadratic number fields and F = F1F2 be their composite. Suppose that 
Gal(F/Q) = {1, σ1, σ2, σ1σ2}, where σ1 is the identity on F2 and σ2 is the identity on F1. Since σi(Fi) = Fi

(i = 1, 2), the restriction σi ∈ Gal(Fi/Q). By abuse of notations, we will also use the symbol σi to denote 
σi, i.e., Gal(Fi/Q) = {1, σi} for i = 1, 2.

Since the indecomposable K3 satisfies Galois descent, so does the extended Bloch group B̂, i.e.,

B̂(F ) = B̂(E)G
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for any Galois extension F ⊂ E with Gal(E/F ) = G. Hence if F is a subfield of E, then B̂(F ) is a subgroup 
of B̂(E). By Theorem 18.1 of [6], for any prime �, the subgroup of the �-torsion elements of K ind

3 F is cyclic. 
In particular, the subgroup of the 2-torsion elements of B̂(Fi) is cyclic for i = 1, 2.

For a number field E with r2 pairs of complex embeddings, the rank of B̂(E) is r2. Hence

B̂(E) � cyclic group of even order ⊕ Zr2 . (3.1)

So

B̂(F1)/2B̂(F1) � (Z/2Z)2,

B̂(F2)/2B̂(F2) � (Z/2Z)2,

B̂(F )/2B̂(F ) � (Z/2Z)3.

(3.2)

We have

D : B̂(F ) −→ R2, D(b) = (D̃(b), D̃(σ1(b)),

because σ1σ2 is the complex conjugation in F .
By Galois descent:

B̂(F )〈σ2〉 = B̂(F1), B̂(F )〈σ1〉 = B̂(F2).

For j = 1, 2, we fix bj ∈ B̂(Fj) such that D(bj) generates the lattice D(B̂(Fj)). Similarly, let e1, e2 ∈ B̂(F )
satisfy: D(e1), D(e2) generate the lattice D(B̂(F )).

Since for j = 1, 2, D(B̂(Fj)) are sublattices of D(B̂(F )), and they span a sublattice of rank 2, we get

D(b1) = aD(e1) + bD(e2),

D(b2) = cD(e1) + dD(e2),
(3.3)

where a, b, c, d ∈ Z. Hence by linear algebra,

(D(B̂(F ))) : (D(B̂(F1)) + D(B̂(F2))) = |ad− bc|.

Obviously,

ej + σk(ej) ∈ B̂(F )〈σk〉 for j, k ∈ {1, 2}.

Hence

D(ej) + D(σ2(ej)) = αjD(b1) for some αj ∈ Z, j = 1, 2;

D(ej) + D(σ1(ej)) = βjD(b2) for some βj ∈ Z, j = 1, 2.
(3.4)

Here σ2(ej) = σ1σ2 · σ1(ej) = σ1(ej). Hence D(σ2(ej)) = −D(σ1(ej)). Adding two equalities of (3.4), we get

2D(ej) = αjD(b1) + βj(D(b2)), j = 1, 2. (3.5)

Since D(b1), D(b2) and D(e1), D(e2) are linear bases of R2, (3.3) and (3.5) imply that(
a b
c d

)
=

(
α1/2 β1/2
α /2 β /2

)−1

,

2 2
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hence (
a b
c d

)(
α1 β1
α2 β2

)
=

(
2 0
0 2

)
.

Consequently

ad− bc = det
(
a b
c d

)
| det

(
2 0
0 2

)
= 4.

Hence we just proved the following theorem.

Theorem 3.1. Let the notations be as above. Let B(F ), B(F1), B(F2) denote the torsion free quotients 
B̂(F )/B̂(F )tor, B̂(F1)/B̂(F1)tor, B̂(F2)/B̂(F2)tor respectively. And let b1, b2, e1, e2 be the corresponding 
images. Then Zb1 + Zb2 is a sublattice of Ze1 + Ze2 and the cardinality of

(Ze1 + Ze2)/(Zb1 + Zb2)

divides 4.

Define

Q2(F ) = |(Ze1 + Ze2)/(Zb1 + Zb2)| = |ad− bc|.

Note that in [21], Zhou proved a result which is equivalent to the above Theorem in the language of motivic 
cohomology.

Based on numerical computation, Browkin and Gangl conjectured in [5] that the absolute value of the 
determinant ad − bc can only be 1 or 2. We will show that Browkin and Gangl’s conjecture is true. Let E
be a number field. Recall that the Tate kernel of E is defined as

ΔE = {x ∈ E×|{−1, x} = 1 ∈ K2E}/(E×)2.

By Theorem 6.3 of [18],

ΔE � (Z/2Z)r2+1,

where r2 is the number of complex places of E.
Let E = Q(

√
d) be an imaginary quadratic field, where d < −2 is a squarefree integer. We use NE for 

the set of norms from E over Q. Note that if 2 ∈ NE, then d ∈ NQ(
√

2) by the reciprocity law for the norm 
residue symbols. And since Z[

√
2] is a principal ideal domain, we have d ∈ NZ(

√
2). Hence we can assume 

that

d = u2 − 2w2, u, w ∈ Z.

Let

γ =

⎧⎪⎪⎨⎪⎪⎩
1, if 2 /∈ NE;
1 or u +

√
d, if 2 ∈ NE, d = u2 − 2w2, d ≡ 2 or 3 (mod 4);

1 or 1
2 (u +

√
d), if 2 ∈ NE, d = u2 − 2w2, d ≡ 1 (mod 4).
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Lemma 3.2 (J. Browkin and A. Schinzel, Theorem 4 of [4]). In the notations above, the 2-torsion part of 
2K2OE is generated by the Steinberg symbols

{−1, γδ}, δ|d.

This lemma is contained in the proof of Theorem 4 of [4]. Also by proof of Theorem 4 of [4], we know 
that there is always a γδ such that ΔE is generated by 2, γδ.

On page 258 of [9], there is a short exact sequence

1 −→ K ind
3 E/(K ind

3 E)n −→ H1
et(E, μ ⊗2

n ) f−→ nK2E −→ 1

for any field E with characteristic not dividing n. Note that we only quote the middle part of Levine’s exact 
sequence.

In the following context of this section, we will consider the above short exact sequence for quadratic and 
biquadratic number fields and n = 2. By (3.3) of [18]

H1
et(E, μ ⊗2

2 ) � E×/(E×)2.

Hence the above short sequence can be rewritten as

1 −→ K ind
3 E/(K ind

3 E)2 −→ E×/(E×)2 f−→ 2K2E −→ 1,

where f(ā) = {−1, a} for a ∈ E×. Note that ker(f) is just the Tate kernel of E. Hence we get the following

K ind
3 E/(K ind

3 E)2 � ΔE ,

which implies the isomorphism

B̂(E)/2B̂(E) � ΔE . (3.6)

For any subfield F of E, there is a natural commutative diagram

B̂(E)/2B̂(E) ΔE

B̂(F )/2B̂(F ) ΔF

(3.7)

by the functoriality of cohomology groups and the extended Bloch groups.

Lemma 3.3. Let F be a field with characteristic �= 2. If 
√

2 ∈ F , then in K2F ,

{−1, 2 +
√

2} = 1.

In particular, if 2 +
√

2 /∈ F 2, then 2 +
√

2 is a non-trivial element in the Tate kernel of F .

Proof. In K2F , we have

{
√

2, 2 +
√

2} = {
√

2, 2 +
√

2}{
√

2, 1 −
√

2} = {
√

2, −
√

2} = 1.
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Hence

{−1, 2 +
√

2} = {−1,
√

2}{−1, 1 +
√

2}
= {

√
2,

√
2}{

√
2, 1 +

√
2}

= {
√

2, 2 +
√

2}
= 1.

So if 2 +
√

2 /∈ F 2, then 2 +
√

2 is a non-trivial element in the Tate kernel of F . �
Theorem 3.4. Let F1, F2 be two imaginary quadratic number fields, F = F1F2, F0 the real quadratic subfield 
of F . Then

Q2(F ) = 1 or 2.

We assume that the Tate kernel of Fi is generated by 2 and δi for i = 1, 2. Then Q2(F ) = 1 if and only if 
none of δ1, δ2 and δ1δ2 is trivial in the Tate kernel ΔF . Equivalently,

Q2(F ) = 1 ⇐⇒
{

ΔF is generated by 2, δ1 and δ2, if
√

2 /∈ F

ΔF is generated by 2 +
√

2, δ1 and δ2, if
√

2 ∈ F.

Proof. Since the extended Bloch group B̂ satisfies Galois descent for the biquadratic field F = F1F2, where 
F1, F2 are imaginary quadratic number fields, B̂(F1) and B̂(F2) are subgroups of B̂(F ).

By No. 5 on page 256 of [9] and Proposition 22 of [19], we know that if 
√

2 /∈ F , then

B̂(F )tor = B̂(F1)tor = B̂(F2)tor = Z/16Z
⊕

(odd part)

and if 
√

2 ∈ F , then B̂(F )tor = Z/32Z 
⊕

(odd part) and

TrF/Fi
(B̂(F )tor) = B̂(Fi)tor = Z/16Z

⊕
(odd part) (i = 1, 2),

where “Tr” is the trace map.
We use the same notations as in the proof of Theorem 3.1. By (3.5), the sublattice of D(B̂(F )) generated 

by D(b1) and D(b2) contains the sublattice generated by D(2e1) and D(2e2). If |ad − bc| = 4, then these two 
sublattices have the same covolume which implies that they are equal to each other. Hence

b1 = 2x1 + t1, b2 = 2x2 + t2

for some x1, x2 ∈ B̂(F ), and t1, t2 ∈ B̂(F )tor. In fact, one can see that t1 ∈ B̂(F1)tor and t2 ∈ B̂(F2)tor. 
Hence we can replace bi by bi − ti so that bi = 2xi for i = 1, 2. Note that this replacement will not change 
D(b1) or D(b2).

We assume further that

b1 = 2e1, b2 = 2e2.

It follows that

B̂(F )
B̂(F ) + B̂(F ) + 2B̂(F )

�
{

(Z/2Z)2, if
√

2 /∈ F ;
(Z/2Z)3, if

√
2 ∈ F.

(3.8)

1 2
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By (3.6), (3.7) and (3.8), we have

ΔF

ΔF1 + ΔF2

�
{

(Z/2Z)2, if
√

2 /∈ F ;
(Z/2Z)3, if

√
2 ∈ F,

(3.9)

where ΔF1 , ΔF2 are the images in ΔF .
Recall that the Tate kernel Δ(Fi) is generated by {2, δi} for i = 1, 2, and

ΔF � (Z/2Z)3, ΔF1 � ΔF2 � (Z/2Z)2.

Hence the above isomorphism of (3.9) implies that {2, δ1, δ2} generates a cyclic subgroup, which is isomor-
phic to Z/2Z, of Δ(F ) if 

√
2 /∈ F , and {2, δ1, δ2} generates the trivial subgroup of Δ(F ) if 

√
2 ∈ F .

If 
√

2 ∈ F , then we can assume that F1 = Q(
√
d) and F2 = Q(

√
2d), where d is a square free, odd 

and negative integer. In this case, both of the torsion parts T1 = B̂(F1)tor and T2 = B̂(F2)tor are equal to 
2T = 2B̂(F )tor. So if b1 = 2e1 and b2 = 2e2, then δ1 and δ2 are squares of F . If δ1|d, then Q(

√
δ1) is also 

a subfield of F which implies that δ1 = d. This is impossible. If δ1 = (u +
√
d)δ for d = u2 − 2w2 and δ|d, 

then F is a cyclic quartic field which contradicts the assumption that F is biquadratic.
If 
√

2 /∈ F , then we can assume that F1 = Q(
√
d1) and F2 = Q(

√
d2), where d1, d2 are negative integers. 

The assumption that b1 = 2e1 and b2 = 2e2 implies that there are x, y ∈ F such that

δ1 = 2kx2 and δ2 = 2ly2,

where k, l = 0 or 1. This assertion can be easily proved by similar arguments as in the above paragraph. 
We just prove one case as an example. If k = l = 0, then

δ1 = x2, δ2 = y2.

Hence δ2 = d1 and δ1 = d2, which implies that d1|d2 and d2|d1. This is impossible.
We have proven that

Q2(F ) = 1 or 2.

By the above argument, we can see that if 
√

2 /∈ F , then Q2(F ) = 1 if and only if

B̂(F ) = B̂(F1) + B̂(F2) + 2B̂(F ),

which means that the Tate kernel ΔF is generated by 2, δ1 and δ2. Similarly if 
√

2 ∈ F , then Q2(F ) = 1 if 
and only if ΔF is generated by 2 +

√
2, δ1 and δ2. �

For a number field E, let k2(E) = |K2OE |.

Theorem 3.5. Let F1, F2 be two imaginary quadratic number fields, F = F1F2, F0 the real quadratic subfield 
of F . Assuming the Lichtenbaum Conjecture holds for these fields, we have

k2(F ) = Q2(F )
8 k2(F0)k2(F1)k2(F2),

where Q2(F ) = 1 or 2. The sufficient and necessary condition for Q2(F ) = 1 is given in Theorem 3.4.

Proof. This follows from Theorems 3.4 and Corollary 1 of [5]. �
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In [5], Browkin and Gangl conjectured that if both of k2(F1) and k2(F2) are odd, then the index Q2(F )
in the above Theorem is 2, and otherwise it is 1. By Theorem 3.4, we can prove that there are infinitely 
many biquadratic number fields such that Q2(F ) = 2 while both of k2(F1) and k2(F2) are even.

Corollary 3.6. The index Q2(F ) = 2 in the following cases

(1) k2(F1) and k2(F2) are odd.
(2) F1 = Q(

√−p), F2 = Q(
√−q), where p and q are distinct primes such that

p ≡ q ≡ 9 (mod 16).

(3) F1 = Q(
√−p1q1), F2 = Q(

√−p2q2), where pi and qi are distinct primes such that

p1 ≡ q1 ≡ −p2 ≡ −q2 ≡ 3 (mod 8).

(4) F1 = Q(
√−pq1), F2 = Q(

√−pq2), where p and qi are distinct primes such that

p ≡ −q1 ≡ −q2 ≡ 3 (mod 8).

Proof. By Table 1 of [15] and Table 6 of [16], we know that in the first three cases, both of the Tate kernels 
of F1 and F2 are generated by 2 and −1, and in the fourth case, both of the Tate kernels of F1 and F2 are 
generated by 2 and −p. Hence δ1 = δ2 in all four cases. By Theorem 3.4, we find that Q2(F ) = 2. �
Corollary 3.7. The index Q2(F ) = 1 in the following cases

(1) F1 = Q(
√−2p1q1), F2 = Q(

√−p2q2), where pi and qi are distinct primes such that

p1 ≡ q1 ≡ p2 ≡ −q2 ≡ 3 (mod 8).

(2) F1 = Q(
√−2p1q1), F2 = Q(

√−2p2q2), where pi and qi are distinct primes such that

p1 ≡ q1 ≡ q2 ≡ −p2 ≡ 5 (mod 8).

Proof. By Table 6 of [16], we know that in the first case δ1 = −1, δ2 = −p2 and in the second case δ1 = −1, 
δ2 = p2. Hence in both cases, we have

ΔF =< 2, δ1, δ2 > .

Hence the index Q2(F ) = 1. �
Theorem 3.8. Let F1 = Q(

√
−d1), F2 = Q(

√
−d2) be two distinct imaginary quadratic number fields such 

that d1/d2 �= 2 or 1/2. Assume that

ΔF1 =< 2, δ1(u +
√
−d1) >, ΔF2 =< 2, δ2 >,

where |δi| is a divisor of di for i = 1, 2. If δ2 �= −d1 or −d1/2, then

ΔF =< 2, δ1(u +
√

−d1), δ2 >,

which implies that the index Q2(F ) = 1.
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Proof. By our assumption 
√

2 /∈ F = F1F2 and δ2 �= −d1 or −d1/2, hence 2, δ1(u +
√
−d1) and δ2 are linearly 

independent in ΔF . Hence ΔF =< 2, δ1(u +
√
−d1), δ2 > which implies that the index Q2(F ) = 1. �

Corollary 3.9. Let F1 = Q(
√−p), F2 = Q(

√−q), where p and q are distinct primes such that

p ≡ 9 (mod 16), q ≡ 7 (mod 8),

and F = F1F2. Then

ΔF =< 2, −1, u +
√
−q >

and the index Q2(F ) = 1.

Proof. This result follows from the above Theorem and Table 1 of [15]. �
One should note that there are many other cases such that Q2(F ) = 1 or 2 by the tables of [14], [15]

and [16].

Example 3.10.

(1) F = Q(
√
−6, 

√
−15), F1 = Q(

√
−6), F2 = Q(

√
−15). In this case, ΔF1 =< 2, −1 > and ΔF2 =

< 2, −3 > by Table 6 of [16]. Since 2 × (−3) is a square in F , < 2, −1, −3 >=< 2, −1 >�= ΔF . So 
Q2(F ) = 2. In Example 9 of [5], Browkin and Gangl proved that Q2(F ) ≥ 2.

(2) F = Q(
√
−1, 

√
−33), F1 = Q(

√
−1), F2 = Q(

√
−33). In this case, ΔF1 =< 2, 

√
−1 > and ΔF2 =

< 2, −1 > by Table 6 of [16]. Since −1 is a square in F , < 2, 
√
−1, −1 >=< 2, 

√
−1 >�= ΔF . So 

Q2(F ) = 2. In Example 9 of [5], Browkin and Gangl also suggested that Q2(F ) = 2.
(3) F = Q(

√
−1, 

√
−123), F1 = Q(

√
−1), F2 = Q(

√
−123). We have ΔF1 =< 2, 

√
−1 > and ΔF2 =

< 2, −1 > by Table 6 of [16]. This is also an example discussed in [5]. By the same argument, we can 
show that Q2(F ) = 2.

4. Galois descent of the extended Bloch groups of dihedral number fields

In this section, we will use the same notations as in [5]. Let F be any Galois extension of Q with the 
Galois group G = D2p, where p is an odd prime and D2p is the dihedral group of order 2p. We assume that 
F is not real. Then F has a unique quadratic subfield F0, and p subfields F1, ..., Fp of degree p. We assume 
furthermore that Fp is fixed by the complex conjugation.

Let B̂F = Z + T , B̂F0 = Z0 + T0, B̂F1 = Z1 + T1 and B̂Fp
= Zp + Tp, where Z0, Z1, Zp, Z are free 

Z-modules and T0, T1, Tp, T are finite cyclic groups. Let Z0, Z1, Zp, Z be the images of Z0, Z1, Zp, Z
in the quotients B̂F0/T0, B̂F1/T1, B̂Fp

/Tp, B̂F /T respectively. By Section 10 of [5], the sub-lattice

Z0 + Z1 + Zp

is of maximal rank in Z. Let

Q2(F ) = #Z/(Z0 + Z1 + Zp).

Lemma 4.1. Let notations be as above. Then

Q2(F )|2p−1p.
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Proof. It is not hard to prove this lemma using the same argument as in the proof of Theorem 3.1. We omit 
details of the proof. �
Lemma 4.2. Let notations be as above. Then

Q2(F )|pp.

Proof. Suppose that Gal(F/F0) = {1, τ, ..., τp−1}, Gal(F/F1) = {1, σ}, Gal(F/F2) = {1, στp−1}, ..., 
Gal(F/Fp) = {1, στ}. Then we have the following identity

(1 + σ)(−(p− 1)τ − (p− 2)τ2 − · · · − τp−1)

+ (1 + στ)(p + (p− 1)τ + · · · + τp−1)

=p + σ + στ + · · · + στp−1.

(4.1)

For any x ∈ B̂(F ), put

x1 =(−(p− 1)τ − (p− 2)τ2 − · · · − τp−1)(x),
x2 =(p + (p− 1)τ + · · · + τp−1)(x),
x3 =(1 + τ + · · · + τp−1)(x).

Then

TrF/F0(x) = x3 = (1 + τ + · · · + τp−1)(x),
T rF/F1(x1) = (1 + σ)(x1) = (1 + σ)(−(p− 1)τ − (p− 2)τ2 − · · · − τp−1)(x),
T rF/Fp

(x2) = (1 + στ)(x2) = (1 + στ)(p + (p− 1)τ + · · · + τp−1)(x).

By the equality (4.1), we have

px + TrF/Q(x) = TrF/F1(x1) + TrF/Fp
(x2) + TrF/F0(x). (4.2)

Let x be the image of x in Z. Then (4.2) shows that

px ∈ Z0 + Z1 + Zp ⊂ Z,

which implies that the exponent of

Z/(Z0 + Z1 + Zp)

is 1 or p. �
Combining Lemmas 4.1 and 4.2, we have the following theorem.

Theorem 4.3. Let notations be as above. Then

Q2(F )|p.

By Corollary 2 of Section 10 of [5] and using the same argument as in the proof of Theorem 3.4, we have 
the following Theorem.
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Theorem 4.4. With notations as above. We assume that w2(F ) = 24 and the Lichtenbaum Conjecture holds 
for the fields in this section. Then we have

k2(F ) = Q2(F )
4p k2(F0)k2(F1)2,

where Q2(F )|p.

In [21], Zhou proved that for p = 3, Q2(F )|33.

Theorem 4.5. Let F0 = Q(
√
−3), F3 = Q( 3

√
n) a pure cubic field and F = F0F3. Then there are infinitely 

many n such that the index Q2(F ) = 1.

Proof. It suffices to prove that there are infinitely many n such that

K ind
3 F0/((K ind

3 F0)3TrF/F0(K
ind
3 F )) � Z/3Z⊕ Z/3Z.

By Theorem 4.1 and Corollary 4.3 of [7],

K ind
3 F0/((K ind

3 F0)3TrF/F0(K
ind
3 F )) � D

(2)
F0

/(NF/F0D
(2)
F (F×

0 )3),

where D(2)
F0

, D(2)
F are the classical Tate kernels,

D
(2)
F = {x ∈ F×|{ζ3, x} = 1 ∈ K2F}/(F×)3.

Hutchinson pointed out in [7] that Corollary 4.3 of [7] is firstly proven by Assim and Movahhedi in [3]. One 
can also see the generalization of this result in [1] and [2].

Note that the capitulation kernel HF0 is trivial since K2(OF0) has no 3-primary part. Hence Corollary 3.11 
of [3] applies. One can see the details of capitulation kernel HF0 in [3]. Now the Theorem follows from 
Corollary 3.11 of [3] and Chebotarev’s density theorem. �
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