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1. Introduction

Zhi-Wei Sun made the following two conjectures in 2019.

Conjecture 1.1 ([11, Conjecture 5.1]). Let p be an odd prime. Then
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and this number is divisible by h(−p) if p ≡ 3 (mod 4), where h(−p) is the class number 
of Q(

√−p).

Conjecture 1.2 ([11, Conjecture 5.2(i)]). Let n be a positive integer. Then

det
(
tan jkπ

2n+1

)
1�j,k�n

(2n + 1)n
2

∈ Z.

Conjecture 1.1 is verified by Sun to be true for p � 29. Later, Francois Brunault 
extended the verification for all primes p � 47. In fact, det

(
cot jkπ

p

)
is closely connected 

with the famous Maillet’s determinant which was first introduced by Maillet in [7] more 
than a century ago. We will prove that Conjecture 1.1 is true. We also give the exact 
value of det

(
cot jkπ

p

)
1�j,k� p−1

2

in Section 2.

Conjecture 1.2 is somehow related with layered networks. One can see [2] and [6] for 

details. Sun guessed that the sequence sn =
det

(
tan jkπ

2n+1

)
1�j,k�n

(2n+1)
n
2

is connected with tn, the 

sequence A277445 in OEIS. Especially, he conjectured that sn = −tn if n ≡ 3 (mod 4)
and sn = tn otherwise. We will prove that both of Conjecture 1.2 and Sun’s conjecture 
on tn are true if 2n + 1 is a prime number in Section 3. We also give the exact value of 
the determinant in Conjecture 1.2 with 2n + 1 prime.

The determinants in these two conjectures are also very interesting for nonprime 
numbers. However we find that it is difficult to get the exact values of the determinants 
for nonprime numbers and quite different methods are needed. Hence we will only study 
the determinants for prime numbers. The Conjecture 5.3 of [11] is proved by Tao and 
Guo in [12] by different techniques.

The determinants of cotangent functions in Conjecture 1.1 are connected with Mail-
let’s determinant by a formula of Eisenstein. Maillet’s determinant has a rich history. 
For any integer r coprime to p, let r′ be the smallest positive integer such that rr′ ≡ 1
(mod p). For any integer x coprime to p, let R(x) be the smallest positive residue of x
modulo p. Let Mp = (R(rs′))1�r,s′� p−1

2
. Then Dp = detMp is called Maillet’s determi-

nant. In 1914, Malo computed D5 = −5, D7 = 72, D11 = 114, D13 = −135 in [8]. Malo 
conjectured that Dp = (−p) p−3

2 based on his computation. One can see page 340–342 of 
[9] for details.

In 1955, Carlitz and Olson proved in [3] that Malo’s conjecture was incorrect and gave 
the correct value up to a sign,

Dp = ±p
p−3
2 h−

p , (1.1)

where h−
p denotes the first factor of the class number of Q(ζp). They also mentioned 

that S. Chowla and A. Weil had proved the formula (1.1) several years earlier but did 
not publish their results. Although Maillet’s determinant Dp was introduced for prime p, 
one can also define Maillet’s determinant Dn for any integer n > 1. In 1984, K. Wang 
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generalized Carlitz and Olson’s formula from prime p to any positive integer m in [13]
and determined the sign in (1.1). For prime p, Wang’s formula is

Dp = −2
3−p
2

∏
χ odd

⎛⎝ p−3
2∑

a=1
aχ(a)

⎞⎠ (−p)
p−3
2 h−

p , (1.2)

where χ runs over all the odd Dirichlet characters modulo p.
Let Ap =

(
cot jkπ

p

)
1�j,k� p−1

2

. We will prove that

detAp =
(
−2
p

)
2

p−3
2 p

p−5
4 h−

p .

If p ≡ 3 (mod 4), then the imaginary quadratic field Q(
√−p) is contained in Q(ζp), 

and h−
p is divisible by h(−p) the class number of Q(

√−p).
Let Wn =

(
tan πjk

2n+1

)
1�j,k�n

. We assume that p = 2n + 1 is a prime. Let K = Q(ζp)

and X−
K the set all odd characters of conductor p. Then we will prove in Section 3 that

det(Wn)

=

⎧⎪⎨⎪⎩
2n−1p

n
2 −1h−

p

∣∣∣∏χ∈X−
K

(1 − 2χ(2))
∣∣∣ , if p ≡ 1, 3, 7 (mod 8);

−2n−1p
n
2 −1h−

p

∣∣∣∏χ∈X−
K

(1 − 2χ(2))
∣∣∣ , if p ≡ 5 (mod 8),

where the product 
∏

χ∈X−
K

(1 −2χ(2)) is explicitly calculated in Lemma 3.3. In particular, 
p−

n
2 det(Wn) ∈ Z. If p ≡ 3 (mod 4), then h(−p)|p−n

2 det(Wn).
In [6], David V. Ingerman mentioned that for a prime number p = 2n + 1, there is a 

matrix Tn = (tjk)n×n with entries among ±1 such that

2

⎛⎝ t11 · · · t1n
...

. . .
...

tn1 · · · tnn

⎞⎠
⎛⎜⎝sin π

2n+1
...

sin nπ
2n+1

⎞⎟⎠ =

⎛⎜⎝tan π
2n+1
...

tan nπ
2n+1

⎞⎟⎠ . (1.3)

One is tempted to ask that if

2

⎛⎝ t11 · · · t1n
...

. . .
...

tn1 · · · tnn

⎞⎠
⎛⎜⎝sin π

2n+1 · · · sin nπ
2n+1

...
. . .

...
sin nπ

2n+1 · · · sin n2π
2n+1

⎞⎟⎠ ?=

⎛⎜⎝tan π
2n+1 · · · tan nπ

2n+1
...

. . .
...

tan nπ
2n+1 · · · tan n2π

2n+1

⎞⎟⎠ .

Unfortunately, it is wrong even for n = 2,

(−1 1
1 1

)(
sin π

5 sin 2π
5

sin 2π sin 4π

)
�=

(
tan π

5 tan 2π
5

tan 2π tan 4π

)
.
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However, we can get the correct formula by a little modification,

2

⎛⎝ t11 · · · t1n
...

. . .
...

tn1 · · · tnn

⎞⎠
⎛⎜⎝d11 sin π

2n+1 · · · d1n sin nπ
2n+1

...
. . .

...
dn1 sin nπ

2n+1 · · · dnn sin n2π
2n+1

⎞⎟⎠

=

⎛⎜⎝tan π
2n+1 · · · tan nπ

2n+1
...

. . .
...

tan nπ
2n+1 · · · tan n2π

2n+1

⎞⎟⎠
⎛⎝d1

. . .
dn

⎞⎠ ,

(1.4)

where

dij =
{
−1, if i and j are all even;
1, otherwise

dj =
{
−1, if j is even;
1 otherwise.

(1.5)

Note that

det
(
dij sin ijπ

2n + 1

)
=

⎧⎨⎩−det
(
sin ijπ

2n+1

)
, if n ≡ 3 (mod 4);

det
(
sin ijπ

2n+1

)
, otherwise.

(1.6)

By comparing the determinants of LHS and the RHS of (1.4), we prove Sun’s conjecture 
of sn and tn.

2. Determinants involving cotangent functions

Recall that for θ1, θ2, · · · , θn ∈ R,

det

⎛⎜⎜⎝
sin θ1 sin θ2 . . . sin θn
sin 2θ1 sin 2θ2 . . . sin 2θn

...
...

...
sinnθ1 sinnθ2 . . . sinnθn

⎞⎟⎟⎠
=2

n(n−1)
2

n∏
k=1

sin θk

n∏
1�i<j�n

(cos θj − cos θi).

(2.1)

Let hp be the class number of Q(ζp) and h+
p the class number of the maximal subfield 

Q(ζp + ζp). Recall that h−
p h

+
p = hp.

Theorem 2.1. Let p be an odd prime. Then

detAp =
(
−2
p

)
2

p−3
2 p

p−5
4 h−

p ,

where h−
p is divisible by h(−p) if p ≡ 3 (mod 4).
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Proof. Let Bp =
(
sin 2jkπ

p

)
1�j,k� p−1

2

. By Section 3 of [3] (page 268), −BpAp = M ′
p, 

where M ′
p =

(
R(jk′) − p

2
)
1�j,k� p−1

2
. By equation (2.3) of [3], detM ′

p = −Dp

2 . Hence we 
have

detAp = (−1) p+1
2 Dp

2detBp
. (2.2)

By (2.1), we have

detBp = (−1)
(p−1)(p−3)

8 2−
p−1
2 p

p−1
4 . (2.3)

By (2.2) and (2.3), we have

detAp = (−1)
(p−1)(p−3)

8 + p+1
2 + p−3

2 2
p−3
2 p

p−5
4 h−

p

= (−1)
(p−1)(p−3)

8 2
p−3
2 p

p−5
4 h−

p

=
(
−2
p

)
2

p−3
2 p

p−5
4 h−

p .

By Theorem 1 of [10], 4h−
p is divisible by h(−p) if p ≡ 3 (mod 4). By Gauss genus 

theory, h(−p) is odd for p ≡ 3 (mod 4). Hence we have h(−p)|h−
p for p ≡ 3 (mod 4). �

Now it is easy to see that Conjecture 1.1 follows from Theorem 2.1.

3. Determinants involving tangent functions

In this section, we will assume p = 2n +1 is a prime. Let ζ = e
2πi
p be a primitive p-th 

root of unity. Let K = Q(ζ), GK = Gal(K/Q) = {σk|1 � k � p − 1}, where σk(ζ) = ζk. 
Let

XK = {χ : GK → C× | χ a group homomorphism}

and X−
K the set of all odd characters modulo p. One can interpret XK as the char-

acter group of Dirichlet characters mod p by putting χ(k) = χ(σk). For any Dirichlet 
character χ, recall that the Gauss sum is defined as

τ(χ) =
fχ∑
k=1

χf (k)e
2πik
fχ ,

where fχ is the conductor of χ and χf is the primitive Dirichlet character mod fχ
belonging to χ. For χ ∈ XK , we have fχ = p. For each a ∈ K and each χ ∈ XK , the 
χ-coordinate is defined to be
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yK(χ|a) =

∑
σ∈GK

χ(σ)σ(a)

τ(χ)
,

where χ is the inverse of χ. One should note that Girstmair use a slightly different 
definition of Gauss sum with notation T (χ) in [4] and [5]. Our notation τ(χ) is the same 
with [14].

Theorem 3.1 ([14, Lemma 5.26]). Let G be a finite abelian group and let f be a function 
on G with values in some field of characteristic 0. Then the matrix (f(στ−1))σ,τ∈G is 
diagonalizable and its eigenvalues are 

∑
σ∈G

χ(σ)f(σ), where χ ∈ Ĝ the group of characters 

of G.

Corollary 3.2. For a fixed a ∈ K, let f be the function on GK with f(σ) = σ(a). Then the 
matrix (f(στ−1))σ,τ∈GK

is diagonalizable and its eigenvalues are yK(χ|a)τ(χ), χ ∈ XK .

Lemma 3.3. Let notations be as above. We assume that the order of 2 in the multiplicative 
group (Z/pZ)∗ is �. Then

∏
χ∈X−

K

(1 − 2χ(2)) =
{

(1 − 2�) p−1
2� , if � is odd;

(1 + 2 �
2 ) p−1

� , if � is even.

In particular, p is a factor of 
∏

χ∈X−
K

(1 − 2χ(2)) and

∏
χ∈X−

K

(1 − 2χ(2)) =

⎧⎨⎩
∣∣∣∏χ∈X−

K
(1 − 2χ(2))

∣∣∣ , if p ≡ 1, 3, 5 (mod 8);

−
∣∣∣∏χ∈X−

K
(1 − 2χ(2))

∣∣∣ , if p ≡ 7 (mod 8).

Proof. If � is odd, then p|(1 − 2�) and∏
χ∈X−

K

(1 − 2χ(2))

=(1 − 2)n
l (1 − 2ζ�)

n
l · · · (1 − 2ζ�−1

� )n
l

=(1 − 2�)
p−1
2� .

If � is even then 2 �
2 ≡ −1 (mod p). Hence p|(1 + 2 �

2 ) and∏
χ∈X−

K

(1 − 2χ(2))

= (1 − 2ζ�)
p−1
�

(
1 − 2ζ3

�

) p−1
� · · ·

(
1 − 2ζ�−1

�

) p−1
�

=(1 + 2 �
2 )

p−1
� .
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Since 
∏

χ∈X−
K

(1 − 2χ(2)) is negative if and only if � is odd and p−1
2� is odd, one can see 

that 
∏

χ∈X−
K

(1 − 2χ(2)) is negative if and only if p ≡ 7 (mod 8), i.e.,

∏
χ∈X−

K

(1 − 2χ(2)) =

⎧⎨⎩
∣∣∣∏χ∈X−

K
(1 − 2χ(2))

∣∣∣ , if p ≡ 1, 3, 5 (mod 8);

−
∣∣∣∏χ∈X−

K
(1 − 2χ(2))

∣∣∣ , if p ≡ 7 (mod 8). �
The following lemma is a direct corollary of a classical result of Gauss on the sign 

of the quadratic Gauss sum. A very good reference on the history of the sign of the 
quadratic Gauss sum is M. Baker’s Math Blog [1].

Lemma 3.4 (Gauss). Let notations be as above. Then

∏
χ∈X−

K

τ(χ) = inp
n
2 .

Conjecture 1.2 follows from the following theorem.

Theorem 3.5. Let Wn =
(
tan πjk

2n+1

)
1�j,k�n

. Then

det(Wn)

=in(−1)
[
n
2
]
+n

⎛⎝ ∏
χ∈X−

K

(1 − 2χ(2))

⎞⎠ ·
∏

χ∈X−
K

B1,χ ·
∏

χ∈X−
K

τ(χ)

=

⎧⎨⎩2n−1p
n
2 −1h−

p

∣∣∣∏χ∈X−
K

(1 − 2χ(2))
∣∣∣ , if p ≡ 1, 3, 7 (mod 8);

−2n−1p
n
2 −1h−

p

∣∣∣∏χ∈X−
K

(1 − 2χ(2))
∣∣∣ , if p ≡ 5 (mod 8).

In particular, p−n
2 det(Wn) ∈ Z. If p ≡ 3 (mod 4), then h(−p)|p−n

2 det(Wn).

Proof. Let a = −1+ζ
1+ζ = i tan π

p ∈ K. Then σk(a) = i tan kπ
p and σkσ�′(a) = i tan R(k�′)π

p . 
Let f be as in Corollary 3.2 and A = (f(στ−1))σ,τ∈G. Since tan(π + x) = tan x, we 

have tan R(k�′)π
p = − tan R((p−k)�′)π

p and tan R(k�′)π
p = − tan R(k(p−�)′)π

p . We assume 

that A =
(
A1 A2
A3 A4

)
. Then it is easy to see that A is similar to 

(
2A1 0
0 0

)
by doing 

elementary similar transformation.
Let W̃n =

(
i tan πjk

2n+1

)
1�j,k�n

. For any matrix M , let ck(M) be the k-th column of M . 

Note that one can get W̃n by exchanging some columns of A1. If 1 � k1 �= k2 � n satisfy 
k1k2 ≡ 1 (mod p), then ck1(A1) = ck2(W̃n) and ck2(A1) = ck1(W̃n). If 1 � k1 �= k2 � n

satisfy k1k2 ≡ −1 (mod p), then ck1(A1) = −ck1(W̃n) and ck2(A1) = −ck2(W̃n). Let [x]
be the integral part of x ∈ R. There are exactly 

[
n−1] pairs (k1, k2) such that k1k2 ≡ ±1
2
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(mod p), 1 � k1 �= k2 � n. If p ≡ 1 (mod 4), then there is an extra k such that 1 � k � n

and k2 ≡ −1 (mod p) which implies that ck(A1) = −ck(W̃n). So we have

det(Wn) = (−i)ndet(W̃n) = (−i)n(−1)
[
n
2
]
det(A1).

Since A is similar to 
(

2A1 0
0 0

)
, det(2A1) is the product of non-zero eigenvalues of A.

By Theorem 3 of [5], there are n nonzero eigenvalues of A,

yK(χ|a)τ(χ), χ ∈ X−
K .

Hence

det(2A1) =
∏

χ∈X−
K

yK(χ|a)τ(χ) =
∏

χ∈X−
K

( ∑
σ∈GK

χ(σ)σ(a)
)
.

By Theorem 2 and Theorem 3 of [4],

yK(χ|a) = yK

(
χ|i cot π

p

)
(1 − 2χ(2))

= 2(1 − 2χ(2))B1,χ,

where

B1,χ = 1
p

2n∑
k=1

kχ(k)

is the generalized Bernoulli number attached to χ. Hence we get

det(Wn) = (−i)n(−1)
[
n
2
]
2−ndet(2A1)

= (−i)n(−1)
[
n
2
] ⎛⎝ ∏

χ∈X−
K

(1 − 2χ(2))

⎞⎠ ·
∏

χ∈X−
K

B1,χ ·
∏

χ∈X−
K

τ(χ).

By Lemma 3.3 and the analytic class number formula, Theorem 4.17 of [14], we have∏
χ∈X−

K

B1,χ
∏

χ∈X−
K

τ(χ) = (−i)n2n−1p
n
2 −1h−

p .

Hence we have

det(Wn) = (−1)
[
n
2
]
+n

⎛⎝ ∏
−

(1 − 2χ(2))

⎞⎠ 2n−1p
n
2 −1h−

p .
χ∈XK
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By Lemma 3.3 and Lemma 3.4, we have the sign of det(Wn),

det(Wn)
|det(Wn)| =

{
1, if p ≡ 1, 3, 7 (mod 8);
−1, if p ≡ 5 (mod 8).

In particular, p−n
2 det(Wn) ∈ Z. By Theorem 1 of [10], if p ≡ 3 (mod 4), then 

h(−p)|h−
p which implies that h(−p)|p−n

2 det(Wn). �
Let p = 2n + 1 be a prime number. Let Sn =

(
sin jkπ

2n+1

)
1�j,k�n

. Let tn be the n-th 

term of the sequence [6], which is the determinant of a matrix Tn = (tjk)1�j,k�n with 
entries among 0, ±1 such that

2
n∑

k=1

tjk sin kπ

2n + 1 = tan jπ

2n + 1 , 1 � j � n. (3.1)

The existence of Tn is assured for any positive integer n, e.g.,

T2 =
(
−1 1
1 1

)
, T3 =

( 1 1 −1
−1 −1 1
1 1 1

)
, T4 =

⎛⎜⎝−1 1 1 −1
−1 1 −1 1
0 0 1 0
1 1 1 1

⎞⎟⎠ . (3.2)

In fact, one can pick Tn such that its entries are among ±1, e.g., T4 can be replaced with 
the following matrix,

T̃4 =

⎛⎜⎝−1 1 1 −1
−1 1 −1 1
1 1 1 −1
1 1 1 1

⎞⎟⎠
for sin π

9 + sin 2π
9 = sin 4π

9 .

Lemma 3.6. There is an integer matrix Tn = (tjk)1�j,k�n and a diagonal matrix D =
diag(1, −1, 1, −1, · · · ) such that

2TnSn = WnD, (3.3)

where tjk = ±1 and tnj = tjn = 1 for any 1 � j � n. Furthermore,

detTn =
{
p−

n
2 detWn, if n ≡ 3 (mod 4);

−p−
n
2 detWn, otherwise.

Proof. Let ζ4n+2 = e
πi

2n+1 be a primitive (4n + 2)-th root of unity. Then

ζ4n+2 + ζ2
4n+2 + · · · + ζ2n

4n+2 = 1 + ζ4n+2 = i tan nπ
. (3.4)
1 − ζ4n+2 2n + 1
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By changing ζ4n+2 to ζk4n+2 (1 � k < 2n, 2 � k) in (3.4), we get

ζk4n+2 + ζ2k
4n+2 + · · · + ζ2kn

4n+2 =
1 + ζk4n+2
1 − ζk4n+2

= i tan
(n− k−1

2 )π
2n + 1 . (3.5)

Note that if 2|k, then ζk4n+2 + ζ2k
4n+2 + · · · + ζ2kn

4n+2 = −1. For 1 � k < 2n − 1 and 2 � k, 
by putting k = 1, 3, · · · , 2n − 1 in (3.5), we have

2n∑
k=1

sin kπ

2n + 1 = tan nπ

2n + 1 ,

2n∑
k=1

sin 3kπ
2n + 1 = tan (n− 1)π

2n + 1 ,

...
...

2n∑
k=1

sin (2n− 1)kπ
2n + 1 = tan π

2n + 1 .

(3.6)

Since for any 1 � j � 2n, 1 � k � 2n, sin jkπ
2n+1 = ± sin �π

2n+1 for some � � n, there are 
integers t′jk ∈ {1, −1}, (1 � j, k � 2n) such that

2

⎛⎝ t11 · · · t1n
...

. . .
...

tn1 · · · tnn

⎞⎠
⎛⎜⎝sin 1π

2n+1
...

sin nπ
2n+1

⎞⎟⎠ =

⎛⎜⎝tan 1π
2n+1
...

tan nπ
2n+1

⎞⎟⎠ . (3.7)

Hence we have the following identity,

n∑
k=1

tjk
(
ζk4n+2 − ζ−k

4n+2
)

= tan jπ

2n + 1 i =
ζ2j
4n+2 − 1
ζ2j
4n+2 + 1

. (3.8)

By changing ζ4n+2 to ζ�4n+2 (1 � � < 2n, 2 � �) in (3.8), we get

2
n∑

k=1

tjk sin k�π

2n + 1 = tan j�π

2n + 1 . (3.9)

Let D = diag(1, −1, 1, −1 · · · , (−1)n−1) be a diagonal n × n matrix and S′
n =(

dij sin ijπ
2n+1

)
, where dij is defined in (1.5). One can see that

2TnS
′
n = WnD.

Hence we have the following identity
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2ndet(Tn)det(S′
n) =

⎧⎨⎩(−1)n
2 det(Wn), if n is even ;

(−1)n−1
2 det(Wn), if n is odd .

(3.10)

By (1.6), (2.1) and (3.10), we have

detTn =
{
p−

n
2 detWn, if n ≡ 3 (mod 4);

−p−
n
2 detWn, otherwise. �
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