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CM POINTS, CLASS NUMBERS, AND THE MAHLER

MEASURES OF x3 + y3 + 1− kxy

ZHENGYU TAO AND XUEJUN GUO

Abstract. We study the Mahler measures of the polynomial family Qk(x, y)

= x3 + y3 + 1 − kxy using the method previously developed by the authors.
An algorithm is implemented to search for complex multiplication points with
class numbers � 3, we employ these points to derive interesting formulas that
link the Mahler measures of Qk(x, y) to L-values of modular forms. As by-
products, some conjectural identities of Samart are confirmed, one of them
involves the modified Mahler measure ñ(k) introduced by Samart recently.

For k =
3
√

729± 405
√
3, we also prove an equality that expresses a 2 × 2

determinant with entries the Mahler measures of Qk(x, y) as some multiple of

the L-value of two isogenous elliptic curves over Q(
√
3).

1. Introduction

For any non-zero Laurent polynomial P ∈ C[x±1
1 , · · · , x±1

n ], the (logarithmic)
Mahler measure of P is defined by

m(P ) =
1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

log |P (eiθ1 , · · · , eiθn)|dθ1 · · · dθn.

Initiated by the insights of Deninger and Boyd, the relation between multivari-
ate Mahler measures and special values of L-functions has attracted a significant
amount of research. In [2], Deninger conjectured that

(1.1) m
(
x+

1

x
+ y +

1

y
+ 1
)

?
= L′(E, 0),

where E is the conductor 15 elliptic curve defined by the projective closure of
x + 1

x + y + 1
y + 1 = 0. Later, based on numerical experiments, Boyd [4] made

similar conjectures of the form

(1.2) m(Pk)
?
= rkL

′(Ek, 0)

for many k ∈ Z−{0,±4}, where Pk(x, y) = x+ 1
x + y+ 1

y +k, rk ∈ Q and Ek is the

elliptic curve associated to Pk(x, y) = 0. He also formulated analogous conjectures
for many other families, among which is the family

(1.3) Qk(x, y) = x3 + y3 + 1− kxy.
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2 ZHENGYU TAO AND XUEJUN GUO

Note that Qk(x, y) = 0 is the Hesse pencil of elliptic curves with Weierstrass model

(1.4) Ck : Y 2 = X3 − 27k6X2 + 216k9(k3 − 27)X − 432k12(k3 − 27)2.

The rational transformation that converts Ck to the curve Qk(x, y) = 0 is

(1.5) X =
12k4(k3 − 27)x

kx+ 3y + 3
, Y =

108k6(k3 − 27)(y − 1)

kx+ 3y + 3
.

During the period when Boyd’s work appeared, motivated by mirror symmetry
in physics, Rodriguez Villegas [10] represented m(Pk) and m(Qk) as Kronecker-
Eisenstein series. This led to the proof of (1.2) in some cases when the elliptic curves
Ek and Ck have complex multiplication (usually abbreviated as CM). Specifically,
Rodriguez Villegas proved (1.2) for the polynomials P4

√
2, P2

√
2 and Q−6.

Since the curve E in (1.1) has no CM, Rodriguez Villegas’ method doesn’t work
in this case. The question mark in equation (1.1) was finally removed by Rogers
and Zudilin [17] nearly twenty years after Deninger made his conjecture. Their
approach, now known as the Rogers-Zudilin method [9, Chapter 9], can be suc-
cessfully applied to prove a number of non-CM cases of (1.2). However, the use of
Rogers-Zudilin method relies heavily on the modular unit parametrization of ellip-
tic curves and Brunault [8] proved that there are only finitely many elliptic curves
over Q that can be parametrized by modular units. Interested readers can refer to
the tables in [5,6], where the proven cases of (1.2) related to m(Pk) and m(Qk) are
listed (whether CM or non-CM).

Although much of the current literature focuses on the study of non-CM cases,
we believe that there are still some veins to be mined in the CM cases. In our
previous work [24], we proved that when τ is a CM point (i.e., imaginary quadratic
numbers in the upper half plane H = {τ ∈ C| Im(τ ) > 0}), the degree of k = k(τ )
as an algebraic number in Rodriguez Villegas’ formula that expresses m(Pk) as
Kronecker-Eisenstein series can be bounded by the class number of the CM point
τ . This fact together with a systematic search for CM points with class numbers
� 2 enabled us to prove over twenty identities of the form

m(Pk) =
rksk
π2

L(fk, 2),

where rk ∈ Q, sk ∈ {1,
√
2,
√
3,
√
7} and fk are weight two cusp forms of levels

28, 48, 56, 64, 112, 128, 192, 256 and 448. Guided by Beilinson’s conjecture, we also
proved 5 identities connecting L-values of CM elliptic curves over real quadratic
fields to 2 × 2 determinants with m(Pk) as entries. These identities extend the
recent work [22] of Guo, Ji, Liu and Qin, in which they dealt with the case when

k = 4± 4
√
2. As an example, we provide here one of our results:

(1.6)

∣∣∣∣det(m(P12+8
√
2) m(P12−8

√
2)

m(P12−8
√
2) m(P12+8

√
2)

)∣∣∣∣ = 1024

π4
L(E12±8

√
2, 2).

The present paper is devoted to treating the polynomial family Qk(x, y). Since
a change of variables shows that m(Qk) only depends on k3 [10, §14], in the rest of
this paper, we will use the following notation introduced by Samart [7]:

m3(t) := 3m(Q 3√t) = 3m(x3 + y3 + 1− 3
√
txy).

The main difference between Pk(x, y) and Qk(x, y) is that the family Pk(x, y) is
reciprocal while Qk(x, y) is non-reciprocal, where recall that a multivariable Laurent
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polynomial P (x1, · · · , xn) is reciprocal if

P (x1, · · · , xn)

P (1/x1, · · · , 1/xn)
= xb1

1 · · ·xbn
n

for some b1, · · · , bn ∈ Z and non-reciprocal otherwise. Let KQ (resp. KP ) be the set
of k ∈ C such that Qk(x, y) (resp. Pk(x, y)) vanishes on T2 = {(x, y) ∈ C2 | |x| =
|y| = 1}. As explained in [4,6], KP ⊂ R since Pk is reciprocal, in fact KP = [−4, 4].
However, for the non-reciprocal Qk(x, y), the set KQ has non-empty interior: it is

the compact region consisting of a hypocycloid with vertices at 3, 3e
2πi
3 , 3e

4πi
3 (see

[6] for the picture). We can now state Rodriguez Villegas’ formula for m3(t):

Theorem 1.1 (Rodriguez Villegas [10, §14]). Let F ′ ⊂ H be the fundamental
domain of the congruence subgroup Γ0(3) formed by the geodesic triangle of vertices

i∞, 0, (1 + i/
√
3)/2 and its reflection along the imaginary axis. For any τ ∈ F ′, if

3
√
t(τ ) ∈ C−K◦

Q, where t(τ ) = 27 +
(
η(τ )/η(3τ )

)12
, then we have

(1.7) m3(t(τ )) =
81
√
3 Im(τ )

4π2

∑′

m,n∈Z

χ−3(n)(3mRe(τ ) + n)

|3mτ + n|4
,

where χ−3(·) =
(−3

·
)
and

∑′

m,n∈Z

means that (m,n) = (0, 0) is excluded from the

summation.

It is known that t(τ ) is a Hauptmodul for Γ0(3), i.e., a generator of the function
field of the modular curve X0(3). Let τ ∈ H be a CM point. As mentioned earlier,
this means that τ is an imaginary quadratic number in H. Thus, there must exist
three uniquely determined integers a, b, c with a > 0, gcd(a, b, c) = 1 such that
aτ2 + bτ + c = 0. In this paper, we will simply write τ as [a, b, c]. Recall that for
any negative integer D with D ≡ 0 or 1 mod 4, the class number

h(D) = #{primitive binary quadratic forms with discriminant D}/ ∼,

where “∼” is the equivalence relation that identifies equivalent quadratic forms as
the same. As a slight abuse of notation, we define the class number h(τ ) of τ to
be the class number of b2 − 4ac, the discriminant of τ . According to the theory of
complex multiplication, t(τ ) are algebraic numbers if τ takes CM points. Moreover,
the algebraic degree of t(τ ) can be bounded by h(τ )h(3τ ) (see Theorem 2.2).

In [7], Samart proved a number of formulas that express the Mahler measures
of certain polynomials in two or three variables in terms of linear combinations of
L-values of multiple modular forms. For the family Qk(x, y), he proved that

(1.8) m3

(
6− 6

3
√
2 + 18

3
√
4
)
=

3

2

(
L′(f108, 0) + L′(f36, 0)− 3L′(f27, 0)

)
,

where f27(τ ) = η(3τ )2η(9τ )2 ∈ S2(Γ0(27)), f36(τ ) = η(6τ )4 ∈ S2(Γ0(36)) and

f108(τ ) =
∑

m,n∈Z

m≡±1,±2,n≡5
(mod 6)

(4m+ 3n)q4m
2+6mn+3n2

= q + 5q7 − 7q13 − q19 − 5q25 − 4q31 − q37 + 8q43 + · · ·
is the unique normalized newform in S2(Γ0(108)). Since the elliptic curve Ck has

CM when k =
3
√
6− 6 3

√
2 + 18 3

√
4 (this can be easily checked by using the SageMath

command has cm()), Theorem 1.1 should be able to resolve (1.8). Indeed, Samart
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proved (1.8) by taking τ = i
√
3

9 in (1.7). Since i
√
3

9 satisfies 27τ2 + 1, we have

h
(
i
√
3

9

)
= h(−108) = 3. Based on some numerical values of the hypergeometric

representation of m3(t), Samart also discovered the following conjectural identities:

m3

(
17766 + 14094

3
√
2 + 11178

3
√
4
) ?
=

3

2

(
L′(f108, 0) + 3L′(f36, 0)

+ 3L′(f27, 0)
)
,(1.9)

m3(α± iβ)
?
=

3

2

(
L′(f108, 0) + 3L′(f36, 0)− 6L′(f27, 0)

)
,(1.10)

m3

(
(7 +

√
5)3

4

)
?
=

1

8

(
9L′(f100, 0) + 38L′(f20, 0)

)
,(1.11)

m3

(
(7−

√
5)3

4

)
?
=

1

4

(
9L′(f100, 0)− 38L′(f20, 0)

)
,(1.12)

where

α = 17766− 7047
3
√
2− 5589

3
√
4,

β = 243
√
3(29

3
√
2− 23

3
√
4),

f20(τ ) = η(2τ )2η(10τ )2

and f100(τ ) is a cusp form of level 100. One can check that the elliptic curves Ck

related to (1.9) and (1.10) have CM, while those related to (1.11) and (1.12) have

no CM. It is also worth noting that 17766 + 14094 3
√
2 + 11178 3

√
4 and α ± iβ are

the three roots of

T 3 − 53298T 2 + 1635876T − 19683000 = 0.

In this paper, we apply the method developed in [24] to the family Qk(x, y) and
obtain the following results for k ∈ C−K◦

Q.

Theorem 1.2. The following identities are true:

m3

(
−4320− 1944

√
5
)
=

405

4π2
L(F225, 2),(1.13)

m3

(
−163296− 35640

√
21
)
=

567

4π2
L(F441, 2),(1.14)

m3

(
729 + 405

√
3
)
=

81

π2
L(F144, 2), m3

(
729− 405

√
3
)
=

324

π2
L(F̃144, 2),(1.15)

m3

(
17766 + 14094

3
√
2 + 11178

3
√
4
)
=

243

2π2
L(F108, 2),

m3(α± iβ) =
486

π2
L(F̃108, 2),

(1.16)

m3

(
−216(18964 + 13149

3
√
3 + 9117

3
√
9)
)
=

729

4π2
L(F243, 2),

m3

(
−108(37928− 13149

3
√
3(1± i

√
3)− 9117

3
√
9(1∓ i

√
3))
)

=
5103

4π2
L(F̃243, 2),

(1.17)

m3

(
6 + 3

3
√
2− 9

3
√
4± 3i

√
3(

3
√
2 + 3

3
√
4)
)
=

81

2π2
L(G108, 2),(1.18)

m3

(
96− 28

3
√
3 + 36

3
√
9± 4i

√
3(7

3
√
3 + 9

3
√
9)
)
=

243

4π2
L(G243, 2),(1.19)
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CM POINTS, CLASS NUMBERS, AND MAHLER MEASURES 5

where α, β are the same as those appearing in (1.10) and FN , F̃N , GN are normal-
ized (i.e., with leading coefficient 1) weight 2 cusp forms of the form

r
∑

m,n∈Z

χ−3(n)(lm+ sn)qam
2+bmn+cn2

in S2(Γ0(N)). We make them clear in Table 1 by listing the corresponding r, l, s,
a, b, c.

Table 1. Cusp forms in Theorem 1.2

Cusp forms r l s a b c Cusp forms r l s a b c
F108 1/2 0 1 27 0 1 F243 1/4 3 2 63 3 1

F̃108 1/8 3 4 9 6 4 F̃243 1/28 3 14 9 3 7

F144 1/2 0 1 12 0 1 F441 1/4 3 2 39 3 1

F̃144 1/2 0 1 3 0 4 G108 1/2 1 1 4 2 1

F225 1/4 3 2 21 3 1 G243 1/4 1 2 7 1 1

Since 6−6 3
√
2+18 3

√
4 and 6+3 3

√
2−9 3

√
4±3i

√
3( 3
√
2+3 3

√
4) are the three roots

of

T 3 − 18T 2 + 756T − 27000 = 0,

our result (1.18) can be seen as a supplement to Samart’s identity (1.8). Moreover,
(1.16) and some linear combinations of modular forms yield:

Corollary 1.3. The identities (1.9) and (1.10) are true.

When k =
3
√
729± 405

√
3, guided by Beilinson’s conjecture for curves over num-

ber fields, we can also prove the following result similar to (1.6).

Theorem 1.4. Consider C 3
√

729±405
√
3
as elliptic curves defined over Q(

√
3) (see

(1.4)). Then we have∣∣∣∣det(m3(729 + 405
√
3) m3(729− 405

√
3)

m3(729− 405
√
3) 4m3(729 + 405

√
3)

)∣∣∣∣ = 19683

π4
L(C 3

√
729±405

√
3
, 2)

=
243

8
L′′(C 3

√
729±405

√
3
, 0).

For k ∈ K◦
Q, the zero locus of Qk(x, y) will intersect with T2. We cannot expect

m3(k
3) to be related to L-values of modular forms or elliptic curves in this case,

since we cannot write m3(k
3) as a regulator integral over some closed path and

thus Beilinson’s conjecture does not work. In [6], Samart turned to the tempered
polynomial family

Q̃k(x, y) = y2 + (x2 − kx)y + x.

Note that m(Qk) = m(Q̃k) because (x2y)3Qk(y/x
2, 1/xy) = Q̃k(x

3, y3). When

k ∈ K◦
Q ∩ R = (−1, 3), he proved that the zero locus of Q̃k(x, y) intersects with T2

at {
(eiθ, ỹ±(eiθ)) | θ = 0,± cos−1

(
k − 1

2

)}
,
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6 ZHENGYU TAO AND XUEJUN GUO

where ỹ±(x) = −(x2 − kx)
(

1
2 ±
√

1
4 − 1

x(x−k)2

)
with the square root chosen to be

the principal branch. Clearly, one can factorize Q̃k(x, y) as (y− ỹ+(x))(y− ỹ−(x)).
Samart then introduced the modified Mahler measure

(1.20) ñ(k) := m(Q̃k)−
3

π

∫ π

cos−1( k−1
2 )

log |ỹ+(eiθ)|dθ.

This modification allowed him to interpret ñ(k) as the regulator integral over a
carefully chosen closed path on the Riemann surface associated to {(x, y) ∈ C2 |
Q̃k(x, y) = 0} for k ∈ (−1, 3). By using the modular unit parametrization for

Q̃2(x, y) = 0, he proved that

ñ(2) = −3L′(C2, 0).

Based on numerical evidences, he also made other conjectures for ñ(k) with k3 =

1, 2, · · · , 26. Observe that when k = 3
√
24, the elliptic curve

C 3√24 : Y 2 = X3 − 15552X2 − 8957952X − 1289945088

has CM. The last result of this paper is the following identity that was conjectured
by Samart in [6, Table 2].

Theorem 1.5. Let ñ(k) be Samart’s modified Mahler measure (1.20). Then we
have

ñ(
3
√
24) = −3L′(C 3√24, 0).

This paper is organized as follows. In Section 2, we briefly introduce the theory
of complex multiplication. An algorithm is designed to search for all CM points
in F ′ such that h(τ ) � 3, h(τ )h(3τ ) � 4. In Section 3, we will prove Theorem 1.2
and Corollary 1.3. A transformation formula for general theta functions is used
to verify that the modular forms in Table 1 are indeed cusp forms for Γ0(N). In

Section 4, we construct the Beilinson regulator that relates m3(729 ± 405
√
3) to

L(C 3
√

729±405
√
3
, 2). This can help us to prove Theorem 1.4. Finally, according to

Samart’s hypergeometric formula for ñ(k), we will prove Theorem 1.5.

2. CM points and the algorithm

Let E be an elliptic curve over C. Then E = C/Z⊕ Zτ for some τ ∈ H that is
unique up to an action by SL(2,Z). Recall that the j-invariant of E is defined by

j(τ ) =
1

q
+ 744 + 196884q + 21493760q2 + · · · ,

where q = e2πiτ . It is well known that E has CM if and only if τ is a CM point.
Furthermore, j(τ ) are algebraic integers of degree h(τ ) if τ takes CM points, these
algebraic integers are called singular moduli. When τ = [a, b, c] is a CM point, we
call the singular modulus j(τ ) is of discriminant b2 − 4ac. This is a convenience
borrowed from [23]. For every negative integer D with D ≡ 0 or 1 mod 4, there
are exactly h(D) different singular moduli of discriminant D which form a full
Galois orbit over Q. Let F = {τ ∈ H | −1/2 � Re(τ ) � 1/2, |τ | � 1} be the
fundamental domain of SL(2,Z). We can find h(D) CM points τ1, · · · , τh(D) ∈ F
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CM POINTS, CLASS NUMBERS, AND MAHLER MEASURES 7

with discriminant D that are in different SL(2,Z)-orbits. Then j(τ1), · · · , j(τh(D))
are all the different singular moduli of discriminant D. Moreover,

h(D)∏
i=1

(
X − j(τi)

)
is the monic polynomial in Z[X] that makes j(τ1), · · · , j(τh(D)) algebraic integers
(see, for instance, [3, 14]).

For a general congruence subgroup Γ0(N), N � 1, its modular functions also
take algebraic values at CM points under suitable conditions. Let {γ1, · · · , γr} be
a set of right coset representatives of Γ0(N) in SL(2,Z). It is known that

r =
[
SL(2,Z) : Γ0(N)

]
= N

∏
p|N

p prime

(
1 +

1

p

)
,

and there exists a polynomial ΦN (X,Y ) ∈ Z[X,Y ] (the so-called modular equation
for Γ0(N)) such that

(2.1) ΦN (X, j(τ )) =
r∏

i=1

(
X − j(Nγiτ )

)
.

Proposition 2.1 ([3, Proposition 12.7]). Let f(τ ) be a modular function for Γ0(N)
whose q-expansion has rational coefficients. Then:

(1) f(τ ) ∈ Q(j(τ ), j(Nτ )).
(2) Assume in addition that f(τ ) is holomorphic on H, and let τ0 ∈ H. If

∂ΦN

∂X

(
j(Nτ0), j(τ0)

)
�= 0,

then f(τ0) ∈ Q(j(τ0), j(Nτ0)).

In the case when N = 3, we have r = 3 · (1 + 1
3 ) = 4. Let S =

(
0 −1
1 0

)
, T =(

1 1
0 1

)
be the generators of SL(2,Z), then

(2.2) γ1 = I2 =

(
1 0
0 1

)
, γ2 = S, γ3 = ST, γ4 = ST−1

form a set of right coset representatives of Γ0(3) in SL(2,Z). These matrices can
also transform the fundamental domain F to cover F ′:

(2.3) F ′ =
4⋃

i=1

γiF .

See Figure 1 for the picture.
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F

γ2F

γ3F γ4F

Figure 1. F ′ and its covering (2.3)

Since η(τ ) = e
2πiτ
24

∞∏
n=1

(1− qn), the modular function t(τ ) = 27+
(
η(τ )/η(3τ )

)12
for Γ0(3) in Theorem 1.1 has q-expansion

t(τ ) =
1

q
+ 15 + 54q − 76q2 − 243q3 + 1188q4 + · · · ,

the coefficients are rational integers. It is also easily seen that t(τ ) is holomorphic
on H since η(τ ) has no zeros on H. Thus, we can apply Proposition 2.1 to t(τ ) and
prove the following result that is similar to [24, Theorem 2.2].

Theorem 2.2. Let τ0 ∈ H be a CM point. If j(3τ0) �= j(3γiτ0) for i = 2, 3, 4,
where γi are as in (2.2), then t(τ0) is an algebraic number with degree no more
than h(τ0)h(3τ0).

Theorem 2.2 implies that, in order to obtain some interesting CM points that
keep the degrees of t(τ ) not too high, we can search for CM points in F ′ with class
numbers relatively small. In this work, we focus our attention on CM points with
class numbers � 3 and will use them to search for t(τ ) that have degrees � 4 as
algebraic numbers. To achieve this, our first task is to determine discriminants with
some small class numbers. It is well known that for each positive integer n, only
finitely many negative discriminants D ≡ 0 or 1 mod 4 have h(D) = n. We list all
negative discriminants that have class numbers 1, 2 and 3 as follows.

h(D) = 1 ⇐⇒ D =− 3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,

− 163;

h(D) = 2 ⇐⇒ D =− 15,−20,−24,−32,−35,−36,−40,−48,−51,−52,−60,

− 64,−72,−75,−88,−91,−99,−100,−112,−115,−123,

− 147,−148,−187,−232,−235,−267,−403,−427;

h(D) = 3 ⇐⇒ D =− 23,−31,−44,−59,−76,−83,−92,−107,−108,−124,

− 139,−172,−211,−243,−268,−283,−307,−331,−379,

− 499,−547,−643,−652,−883,−907.

Just like what Huber, Schultz and Ye did in [20, Algorithm 4.1], we can apply
Algorithm 2.3 to determine all CM points τ ∈ F ′ such that h(τ ) � 3, h(τ )h(3τ ) � 4.
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Algorithm 2.3. For each discriminant D listed above, perform the following op-
erations.

(1) Determine all CM points τ = [a, b, c] in F with discriminant D by solving
the system ⎧⎪⎪⎪⎨⎪⎪⎪⎩

a, b, c ∈ Z, a > 0,

gcd(a, b, c) = 1,

b2 − 4ac = D,

|b| � a � c.

(2) Use the right coset representatives (2.2) to translate these points obtained
in (1) to get a full list of CM points in F ′ with discriminant D.

(3) For each point τ obtained in (2), verify whether h(τ )h(3τ ) � 4. If it passes
this test, then output τ .

We implement Algorithm 2.3 in a Mathematica notebook. Thanks to the built-in
function DedekindEta[], t(τ ) can be calculated to any given precision. This can

help us to filter out the points that make 3
√
t(τ ) ∈ C − K◦

Q from the outputs of
Algorithm 2.3. We list these lucky ones and the corresponding numerical approxi-
mations (accurate to five decimal places) of t(τ ) in Table 2. According to Theorem
2.2, all values in Table 2 are in fact approximations of algebraic numbers with
degrees � 4.

Table 2. CM points and the numerical approximations of t(τ )

τ t(τ ) τ t(τ ) τ t(τ )
[1 ,−1 , 1 ] −216 .00000 [2, 0, 1] 100.64395 [9, 2, 1] 25.99494 + 1.63455i

[1,−1, 2] −4056.94536 [3, 2, 1] 4.00000 + 14.14213i [9,−2, 1] 25.99494− 1.63455i

[2, 1, 1] 15.01873 + 62.96451i [3,−2, 1] 4.00000− 14.14213i [3, 2, 3] −171.99494 + 323.63455i

[2,−1, 1] 15.01873− 62.96451i [1 , 0 , 3 ] 53267 .29623 [3,−2, 3] −171.99494− 323.63455i

[1,−1, 3] −33491.14467 [4 , 2 , 1 ] 15 .35188 + 11 .56864i [9, 0, 1] 28.39230

[3, 1, 1] 32.00000 + 26.53299i [4 ,−2 , 1 ] 15 .35188 − 11 .56864i [12 , 0 , 1 ] 27 .51942

[3,−1, 1] 32.00000− 26.53299i [3 , 0 , 1 ] 54 .00000 [3 , 0 , 4 ] 1430 .48057

[1,−1, 5] −885464.77774 [1, 0, 4] 286766.31332 [15, 0, 1] 27.21952

[5, 1, 1] 30.24531 + 7.39216i [4, 0, 1] 40.31662 [3, 0, 5] 3347.78047

[5,−1, 1] 30.24531− 7.39216i [5, 2, 1] 20.68502 + 7.84745i [18, 0, 1] 27.10102

[1 ,−1 , 7 ] −12288728 .98398 [5,−2, 1] 20.68502− 7.84745i [9, 0, 2] 36.89897

[7 , 1 , 1 ] 28 .49199 + 2 .87797i [1, 0, 7] 16580645.98812 [3,−3, 2] −43.68691

[7 ,−1 , 1 ] 28 .49199 − 2 .87797i [7, 0, 1] 29.99744 [3,−3, 5] −1754.59081

[1,−1, 11] −884736728.99977 [8, 2, 1] 25.50721 + 2.35941i [3 ,−3 , 7 ] −8666 .91614

[11, 1, 1] 27.37486 + 0.66585i [8,−2, 1] 25.50721− 2.35941i [3,−3, 11] −110618.99341

[11,−1, 1] 27.37486− 0.66585i [9, 1, 1] 27.72446 + 1.31876i [3 ,−3 , 13 ] −326618 .99776

[1,−1, 17] −147197952728.99999 [9,−1, 1] 27.72446− 1.31876i [3,−3, 23] −27000026.99997

[17, 1, 1] 27.06887 + 0.11984i [3, 1, 3] 260.27553 + 424.63897i [9,−9, 5] −18.97825

[17,−1, 1] 27.06887− 0.11984i [3,−1, 3] 260.27553− 424.63897i [27 , 0 , 1 ] 27 .01369

[1,−1, 41] −262537412640768728.99999 [6, 2, 1] 23.30495 + 5.19349i [9 , 6 , 4 ] −4 .50684 + 31 .29187i

[41, 1, 1] 27.00056 + 0.00098i [6,−2, 1] 23.30495− 5.19349i [9 ,−6 , 4 ] −4 .50684 − 31 .29187i

[41,−1, 1] 27.00056− 0.00098i [3, 2, 2] −39.30495 + 93.19349i [9 , 3 , 7 ] 130 .50002 + 199 .64657i

[1, 0, 1] 550.59223 [3,−2, 2] −39.30495− 93.19349i [9 ,−3 , 7 ] 130 .50002 − 199 .64657i

[2, 2, 1] −10.59223 [6, 0, 1] 31.63246

[1, 0, 2] 7243.35604 [3, 0, 2] 184.36753

In general, each CM point τ0 in Table 2 will produce an identity of the form

m3(t(τ0)) =
cτ0
π2

L(fτ0 , 2),

with fτ0 a normalized cusp form and cτ0 a real quadratic number such that c2τ0 ∈
Q. To limit the length of this paper, we only deal with those points that make
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10 ZHENGYU TAO AND XUEJUN GUO

cτ0 ∈ Q, and they are italicized in Table 2. Note that [1,−1, 1] = 1+i
√
3

2 , [3, 0, 1] =
i
√
3

3 and [27, 0, 1] = i
√
3

9 correspond to the already proven results [7, 10, 16] for

m3(−216),m3(54) and m3

(
6− 6 3

√
2 + 18 3

√
4
)
, respectively.

3. The relations with cusp forms

In order to recognize the lattice sums appearing in (1.7) as L-values of modular
forms, we need some facts about theta functions associated to lattices. Recall
that an even lattice L of rank n is the submodule Zn of Rn equipped with a non-
degenerate quadratic form

Q(X) =
1

2
XtAX, X ∈ Zn,

where A is an even matrix of rank n, that is, A is an n × n symmetric matrix
with integer entries and even integer diagonals. Obviously, this definition makes
Q(X) ∈ Z for every X ∈ Zn. The level of L is defined to be the smallest positive
integer N such that NA−1 is an even matrix. We also define L∗ = {Y ∈ Rn |
XtAY ∈ Z, ∀X ∈ Zn} to be the dual lattice of L.

Proposition 3.1 ([12, Corollary 14.3.16]). Let L be a positive definite even lattice
of even rank n, level N , and quadratic form Q(X) = 1

2X
tAX. Assume that A−1 =

(bi,j)1�i,j�n and let P (x1, · · · , xn) be a homogeneous polynomial of degree (k−n)/2
such that ΔQ(P ) = 0, where

ΔQ =
∑

1�i,j�n

bi,j
∂2

∂xi∂xj
.

Then for all Y ∈ L∗, the theta function

Θ(P,L, Y ; τ ) :=
∑

X∈Zn

P (X + Y )qQ(X+Y )

is in Mk/2(Γ(N)). In addition, if k > n, then Θ is also a cusp form.

It is clear from the definition that Θ(P,L, Y ; τ ) only depends on the class of Y
in L∗/Zn. Let k be an integer. Recall that the weight k slash operator

∣∣
k
is given

by

(f
∣∣
k
γ)(τ ) := (cτ + d)−kf(γτ ), ∀γ =

(
a b
c d

)
∈ SL(2,Z) and f : H → C.

For elements in Γ0(N), we also have the following transformation formula.

Proposition 3.2 ([1, Chapter IX, §4, Theorem 5]). Let the assumptions of Propo-

sition 3.1 hold. For γ =

(
a b
c d

)
∈ Γ0(N), we have(

Θ(P,L, Y ; ·)
∣∣
k/2

γ
)
(τ ) = v(d)e2πiabQ(Y )Θ(P,L, aY ; τ ),

where v(d) =
(

(−1)n/2 detA
d

)
if d > 0, and v(d) = (−1)n/2

(
(−1)n/2 detA

−d

)
if d < 0.

With these tools in hand, we can now prove the identities in Theorem 1.2. We
first deal with the cases when the class numbers are equal to 1.
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CM POINTS, CLASS NUMBERS, AND MAHLER MEASURES 11

3.1. Proofs of the cases when h(τ ) = 1.

Proof of (1.16). Since 17766 + 14094 3
√
2 + 11178 3

√
4 = 53267.29623 · · · , by exam-

ining Table 2, we observe that τ0 = [1, 0, 3] = i
√
3 seems to be the candidate such

that

(3.1) t(τ0) = 17766 + 14094
3
√
2 + 11178

3
√
4.

This can be rigorously proved by using the identity [7, §2]

(3.2) j(τ ) =
t(τ )(t(τ ) + 216)3

(t(τ )− 27)3

together with the fact that j(i
√
3) is a rational integer because h(i

√
3) = h(−12) =

1. A numerical calculation shows that j(i
√
3) = 54000, and thus (3.1) is confirmed.

It turns out that 3

√
t(i

√
3) /∈ K◦

Q since KQ∩R = [−1, 3]. Taking τ = τ0 in Theorem

1.1 then yields

m3

(
17766 + 14094

3
√
2 + 11178

3
√
4
)
=

243

4π2

∑′

m,n∈Z

χ−3(n)n

(27m2 + n2)2

=
243

2π2
L(F108, 2),

where

F108(τ ) =
1

2

∑
m,n∈Z

χ−3(n)nq
27m2+n2

=
1

2

⎛⎝ ∑
m,n∈Z

(3n+ 1)q27m
2+(3n+1)2 −

∑
m,n∈Z

(3n+ 2)q27m
2+(3n+2)2

⎞⎠
=

3

2

⎛⎝ ∑
m,n∈Z

(n+ 1
3 )q

27m3+9(n+ 1
3 )

2 −
∑

m,n∈Z

(n+ 2
3 )q

27m3+9(n+ 2
3 )

2

⎞⎠ .

Let L be the rank 2 lattice with quadratic form Q(x1, x2) = 27x2
1+9x2

2. The Gram

matrix is A =

(
54 0
0 18

)
and thus the level N = 108. We have

F108(τ ) =
3

2

(
Θ(P,L, Y1; τ )−Θ(P,L, Y2; τ )

)
,

where P (x1, x2) = x2 and Y1 = (0, 1/3)t, Y2 = (0, 2/3)t ∈ L∗. Proposition 3.1
immediately implies that F108(τ ) ∈ S2(Γ(108)). In fact, we can prove that F108(τ ) ∈
S2(Γ0(108)) by verifying

(3.3) (F108

∣∣
2
γ)(τ ) = F108(τ ), ∀γ ∈ Γ0(108).

Take γ =

(
a b
c d

)
∈ Γ0(108). We have (a, d) ≡ (±1,±1) (mod 6) because ad ≡

1 (mod 108). Also note that detA = 972 and

(
−972

d

)
=

⎧⎪⎨⎪⎩
1, if d ≡ 1 (mod 6),

−1, if d ≡ −1 (mod 6),

0, otherwise.
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12 ZHENGYU TAO AND XUEJUN GUO

If (a, d) ≡ (1, 1) (mod 6) and d > 0, then, according to Proposition 3.2, we have

(F108

∣∣
2
γ)(τ ) =

3

2

((
Θ(P,L, Y1; ·)

∣∣
2
γ
)
(τ )−

(
Θ(P,L, Y2; ·)

∣∣
2
γ
)
(τ )
)

=
3

2

(
−972

d

)(
e2πiabΘ(P,L, aY1; τ )− e8πiabΘ(P,L, aY2; τ )

)
=

3

2

(
Θ(P,L, aY1; τ )−Θ(P,L, aY2; τ )

)
=

3

2

(
Θ(P,L, Y1; τ )−Θ(P,L, Y2; τ )

)
= F108(τ ).

The fourth equality holds because Y1 − aY1, Y2 − aY2 ∈ Z2. If (a, d) ≡ (−1,−1)
(mod 6) and d > 0, we have Y2 − aY1, Y1 − aY2 ∈ Z2, thus

(F108

∣∣
2
γ)(τ ) = −3

2

(
Θ(P,L, aY1; τ )−Θ(P,L, aY2; τ )

)
= −3

2

(
Θ(P,L, Y2; τ )−Θ(P,L, Y1; τ )

)
= F108(τ ).

In the cases when (a, d) ≡ (±1,±1) (mod 6) and d < 0, (3.3) also holds because

−
(
−972

−d

)
=

{
1, if d ≡ 1 (mod 6),

−1, if d ≡ −1 (mod 6).

This completes our verification of (3.3).

To prove the identities m3(α± iβ) = 486
π2 L(F̃108, 2), we calculate that

α = 15.35188 · · · , β = 11.56864 · · · .
This time, according to Table 2, we need to prove that

t([4,±2, 1]) = t

(
∓1 + i

√
3

4

)
= α± iβ.

Indeed, this can be confirmed by the facts that h([4,±2, 1]) = h(−12) = 1 and
j([4,±2, 1]) = 54000. It follows from Theorem 1.1 that

m3(α± iβ) =
243

4π2

∑′

m,n∈Z

χ−3(n)(3m+ 4n)

(9m2 + 6mn+ 4n2)2

=
486

π2
L(F̃108, 2),

where

F̃108(τ ) =
1

8

∑
m,n∈Z

χ−3(n)(3m+ 4n)q9m
2+6mn+4n2

=
3

8

⎛⎝ ∑
m,n∈Z

(m+ 4(n+ 1
3 ))q

9m3+18m(n+ 1
3 )+36(n+ 1

3 )
2

−
∑

m,n∈Z

(m+ 4(n+ 2
3 ))q

9m3+18m(n+ 2
3 )+36(n+ 2

3 )
2

⎞⎠ .
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Similarly, we can write F̃108(τ ) as
3
8

(
Θ(P1, L1, Y1; τ )−Θ(P1, L1, Y2; τ )

)
with L1 the

level 108 lattice associated to Q1(x1, x2) = 9x2
1 + 18x1x2 + 36x2

2 and P1(x1, x2) =

x1 + 4x2. A completely parallel argument can be made to show that F̃108(τ ) ∈
S2(Γ0(108)). �

Now, we can provide a proof for Samart’s conjectural identities (1.9) and (1.10).

Proof of Corollary 1.3. According to the functional equation(√
N

2π

)s

Γ(s)L(f, s) = ±
(√

N

2π

)2−s

Γ(2− s)L(f, 2− s)

for L-functions of newforms of weight 2 and level N , we have

L′(f108, 0) =
27

π2
L(f108, 2), L′(f36, 0) =

9

π2
L(f36, 2), L′(f27, 0) =

27

4π2
L(f27, 2).

Thus, one can rewrite the right-hand sides of (1.9) and (1.10) as

3

2
(L′(f108, 0) + 3L′(f36, 0) + 3L′(f27, 0))

=
81

2π2
L(f108, 2) +

81

2π2
L(f36, 2) +

243

8π2
L(f27, 2)

=
243

2π2

(
1

3
L(f108, 2) +

1

3
L(f36, 2) +

1

4
L(f27, 2)

)
,

3

2
(L′(f108, 0) + 3L′(f36, 0)− 6L′(f27, 0))

=
81

2π2
L(f108, 2) +

81

2π2
L(f36, 2)−

243

4π2
L(f27, 2)

=
486

π2

(
1

12
L(f108, 2) +

1

12
L(f36, 2)−

1

8
L(f27, 2)

)
.

By (1.16), it is hence enough to prove that

1

3
L(f108, 2) +

1

3
L(f36, 2) +

1

4
L(f27, 2) = L(F108, 2),

1

12
L(f108, 2) +

1

12
L(f36, 2)−

1

8
L(f27, 2) = L(F̃108, 2).

For this, we can first write F108(τ ) and F̃108(τ ) as

F108(τ ) =
1

3
f108(τ ) +

1

3
f36(τ ) +

1

3
f27(τ )−

4

3
f27(4τ ),

F̃108(τ ) =
1

12
f108(τ ) +

1

12
f36(τ )−

1

6
f27(τ ) +

2

3
f27(4τ )

by using the fact that the Sturm bound for M2(Γ0(108)) is 36. Then

L(F108, 2) =
1

3
L(f108, 2) +

1

3
L(f36, 2) +

1

3
L(f27, 2)−

4

3
· 1

42
L(f27, 2)

=
1

3
L(f108, 2) +

1

3
L(f36, 2) +

1

4
L(f27, 2),

L(F̃108, 2) =
1

12
L(f108, 2) +

1

12
L(f36, 2)−

1

6
L(f27, 2) +

2

3
· 1

42
L(f27, 2)

=
1

12
L(f108, 2) +

1

12
L(f36, 2)−

1

8
L(f27, 2),

as desired. �
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14 ZHENGYU TAO AND XUEJUN GUO

In the proofs of the remaining identities of Theorem 1.2, we will give the CM
points directly and omit the constructions of theta functions. They are all similar
and not hard to do.

Proof of (1.17). We just need to show that

t([1,−1, 7]) = t

(
1 + 3i

√
3

2

)
= −216(18964 + 13149

3
√
3 + 9117

3
√
9),

t([7,±1, 1]) = t

(
∓1 + 3i

√
3

14

)
= −108

(
37928− 13149

3
√
3(1± i

√
3)

− 9117
3
√
9(1∓ i

√
3)
)
.

These equalities are all the consequences of h([1,−1, 7]) = h([7,±1, 1]) = h(−27) =
1,

j([1,−1, 7]) = j([7,±1, 1]) = −12288000,

and (3.2). �

For CM points with class numbers greater than 1, the values of j(τ ) are no
longer rational integers. However, according to the theory of complex multiplication
mentioned in Section 2, these values are always determinable.

3.2. Proofs of the cases when h(τ ) = 2, 3.

Proofs of (1.13), (1.14) and (1.15). We can prove these identities by establishing
the following equalities:

t([3,−3, 7]) = t

(
3 + 5i

√
3

6

)
= −4320− 1944

√
5,(3.4)

t([3,−3, 13]) = t

(
3 + 7i

√
3

6

)
= −163296− 35640

√
21,

t([3, 0, 4]) = t

(
2i
√
3

3

)
= 729 + 405

√
3, t([12, 0, 1]) = t

(
i
√
3

6

)
= 729− 405

√
3.

Since h([3,−3, 7]) = h([3,−3, 13]) = h([3, 0, 4]) = h([12, 0, 1]) = 2, the values of
j(τ ) at these points are all algebraic integers of degree 2. In fact, we have

j([3,−3, 7]) = −327201914880 + 146329141248
√
5,(3.5)

j([3,−3, 13]) = −17424252776448000 + 3802283679744000
√
21,

j([3, 0, 4]) = 1417905000− 818626500
√
3,

j([12, 0, 1]) = 1417905000 + 818626500
√
3.

In the following, we will derive (3.4) by proving (3.5) and then using (3.2). The
others can be done in the same manner.

Note that the discriminant of τ1 = [3,−3, 7] is −75, one can choose τ2 to be the
CM point with discriminant −75 that is not in the same SL(2,Z)-orbit with τ1, for

instance, we choose τ2 = [1,−1, 19] = 1+5i
√
3

2 . Then j(τ1) and j(τ2) are all the 2
different singular moduli of discriminant −75, so the polynomial (X − j(τ1))(X −
j(τ2)) must be monic and has integer coefficients. By a numerical calculation, we
find that this polynomial should be

X2 + 654403829760X + 5209253090426880.
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Immediately, we can confirm (3.5) since j(τ1) is a root of this polynomial. �

Finally, let us handle the cases when h(τ ) = 3.

Proofs of (1.18) and (1.19). This time, the CM points [9,±6, 4] and [9,±3, 7] with
class numbers h(−108) = h(−243) = 3 should be employed. We have

t([9,±6, 4]) = t

(
∓1 + i

√
3

3

)
= 6 + 3

3
√
2− 9

3
√
4± 3i

√
3(

3
√
2 + 3

3
√
4),

because j([9,±6, 4]) = α1 ± iβ1 are the complex roots of

X3 − 151013228706000X2 + 224179462188000000X − 212 · 33 · 59 · 116 · 173,
where

α1 = 6000(8389623817− 3329424418
3
√
2− 2642565912

3
√
4),

β1 = −12000
√
3(1664712209

3
√
2− 1321282956

3
√
4).

And we have

t([9,±3, 7]) = t

(
∓1 + 3i

√
3

6

)
= 96− 28

3
√
3 + 36

3
√
9± 4i

√
3(7

3
√
3 + 9

3
√
9),

because j([9,±3, 7]) = α2 ± iβ2 are the complex roots of

X3+1855762905734664192000X2−230 ·33 ·56 ·7·29·1097·37181X+245·3·59 ·113 ·233,
where

α2 = −4096000
(
151022371885959− 52356532113152

3
√
3− 36301991826555

3
√
9
)
,

β2 = 69632000
6
√
3
(
6406233851745− 3079796006656

3
√
9
)
.

The above equalities can be verified using the same fact as used in the proofs
of (1.18) and (1.19). The difference is that algebraic numbers involved here are
cubic. �

4. Linking to the L-values of elliptic curves

The goal of this section is to prove Theorem 1.4 and Theorem 1.5. Our process
for the former is directed by Beilinson’s conjecture. Readers interested in a detailed
formulation of Beilinson’s conjecture for curves over number fields can consult [19].

First, for simplicity, we denote the elliptic curve

C 3
√

729+405
√
3
:Y 2=X3−1062882(26+15

√
3)X2+18596183472(23859+13775

√
3)X

−488038239039168(3650401 + 2107560
√
3)

as C directly. It is defined over K = Q(
√
3), and the non-trivial element σ ∈

Gal(K/Q) converts C to the curve Cσ := C 3
√

729−405
√
3
. Since C has j-invariant

1417905000 − 818626500
√
3, conductor norm 36 and torsion structure Z/2Z. One

can search in LMFDB [21] and find that C is isomorphic over K to the ellip-
tic curve with LMFDB label 2.2.12.1-36.1-a3. Its L-function L(C, s) with label
4-72e2-1.1-c1e2-0-2 can be written as

L(C, s) = L(f36, s)L(f144, s),
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16 ZHENGYU TAO AND XUEJUN GUO

where

f36(τ ) = η(6τ )4 = q − 4q7 + 2q13 + 8q19 − 5q25 − 4q31 − 10q37 + 8q43 + 9q49

+ 14q61 + · · · ,

f144(τ ) =
η(12τ )12

η(6τ )4η(24τ )4
= q + 4q7 + 2q13 − 8q19 − 5q25 + 4q31 − 10q37 − 8q43

+ 9q49 + · · · .

Moreover, C is a Q-curve, i.e., it is isogenous over K to Cσ, the only Galois conju-
gate of C. In fact, there is an isogeny φ : C → Cσ defined over K with kernel{

O,
(
39366(362 + 209

√
3), 0
)
,

(
78732(265 + 153

√
3),±38263752

√
3388314 + 1956244

√
3

)}
.

Thus, we have L(Cσ, s) = L(C, s) since two isogenous elliptic curves over a number
field have the same L-function [11]. By using Vélu’s formula [15, Theorem 12.16],
one can write out this isogeny explicitly:

φ : (X,Y ) �→
(

Xφ3(X)

4φ1(X)φ2(X)2
,

−Y φ4(X)

8φ1(X)2φ2(X)3

)
,

where

φ1(X) = X − 39366
(
362 + 209

√
3
)
, φ2(X) = X − 78732

(
265 + 153

√
3
)
,

φ3(X) =
(
1351− 780

√
3
)
X3 + 629856

(
45− 26

√
3
)
X2 + 86782189536

(
3 +

√
3
)
X

− 3904305912313344
(
362 + 209

√
3
)
,

φ4(X) =
(
70226− 40545

√
3
)
X5 + 78732

(
698− 403

√
3
)
X4

− 24794911296
(
82− 49

√
3
)
X3 − 1952152956156672

(
425 + 246

√
3
)
X2

+ 153696906544127099904
(
56089 + 32383

√
3
)
X

− 12100864846032214829641728
(
2672279 + 1542841

√
3
)
.

We can also obtain an isogeny φσ : Cσ → C by applying σ to the coefficients of φ.
Some (complicated) algebraic calculations imply that

φ ◦ φσ = [4], φ∗ωCσ = −(52 + 30
√
3)ωC ,

where ωC and ωCσ are the invariant differentials of C and Cσ defined by dX
2Y ,

respectively.
Recall that for a pair of meromorphic functions f, g on the Riemann surface

C(C) or Cσ(C), there is a classical differential form

η(f, g) = log |f |d arg g − log |g|d arg f.

To construct regulator integrals that relate to m3(729 ± 405
√
3) and match them

with Beilinson’s conjecture, we need to find a pair of rational functions f, g on C
that are defined over K (this is for some K-theoretical considerations). Since the
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inverse of (1.5) is

x =
−18k2X

3k3X + Y − 36k9 + 972k6
, y = 1− 2Y

3k3X + Y − 36k9 + 972k6
,

the functions f = x3, g = y on C are defined over K. From now on, we fix this pair
of f, g.

Next, we construct the integral paths of η(f, g) and η(fσ, gσ). Let

u±(x) =
3

√
−1− x3 +

√
x6 − (106± 60

√
3)x3 + 1,

where
√
· and 3

√
· are chosen to be the principal branches, i.e.,

√
reiθ =

√
re

iθ
2 ,

3
√
reiθ = 3

√
re

iθ
3 , for r ∈ R�0, θ ∈ (−π, π].

We can factorize x3+y3+1− 3
√
729± 405

√
3xy as (y−y±1 (x))(y−y±2 (x))(y−y±3 (x)),

where

y±1 (x) =
(3±

√
3)x

u±(x)
+

u±(x)
3
√
2

,

y±2 (x) = e
4πi
3
(3±

√
3)x

u±(x)
+ e

2πi
3
u±(x)

3
√
2

,

y±3 (x) = e
2πi
3
(3±

√
3)x

u±(x)
+ e

4πi
3
u±(x)

3
√
2

.

One can check that

{θ ∈ [−π, π] | |y±1 (eiθ)| � 1} = (−2π/3, 2π/3],

{θ ∈ [0, 2π] | |y±2 (eiθ)| � 1} = (2π/3, 2π],

{θ ∈ [0, 2π] | |y±3 (eiθ)| � 1} = (0, 4π/3].

Let

γ±
1 = {(eiθ, y±1 (eiθ)) | −2π/3 < θ � 2π/3},

γ±
2 = {(eiθ, y±2 (eiθ)) | 2π/3 < θ � 2π},

γ±
3 = {(eiθ, y±3 (eiθ)) | 0 < θ � 4π/3}.

Some calculations show that the boundary points of γ±
1 , γ±

2 and γ±
3 are

(e−
2πi
3 , r±e−

πi
3 ), (e

2πi
3 , r±e

πi
3 ), (1,−r±),

where r+ =
3
√
20 + 12

√
3, r− = 3

√
6
√
3 + 9

2 (
√
6−

√
2)− 7. Thus γ± = γ±

1 ∪γ±
2 ∪γ±

3

are continuous closed paths on the Riemann surfaces{
(x, y) ∈ C2

∣∣∣ x3 + y3 + 1− 3

√
729± 405

√
3xy = 0

}
.

The paths of y±1 (eiθ), y±2 (e
iθ) and y±3 (eiθ) are shown in Figure 2 to illustrate this.

We define the positive orientations of γ± in terms of eiθ running counterclockwise
and regard them also as closed paths on C(C) and Cσ(C) via (1.5). Since complex
conjugation reverses the orientations of γ±, we have γ+ ∈ H1(C(C),Z)− and γ− ∈
H1(C

σ(C),Z)−.
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y+1

y+2

y+3

y−1

y−2

y−3

Figure 2. The paths of y±1 (e
iθ), y±2 (e

iθ) and y±3 (e
iθ) on C

After completing all these preparations, Beilinson’s conjecture then predicts that
the regulator

(4.1)

∣∣∣∣∣det
(

1
2π

∫
γ+ η(f, g) 1

2π

∫
γ− η(fσ, gσ)

1
2π

∫
γ+ η(φ∗fσ, φ∗gσ) 1

2π

∫
γ− η((φ∗fσ)σ, (φ∗gσ)σ)

)∣∣∣∣∣
should be some rational multiple of 1

π4L(C, 2). By Jensen’s formula, we can calcu-
late that

1

2π

∫
γ+

η(f, g) =
1

2π

∫
γ+

η(x3, y)

=
1

2π

∫
γ+

log |x3| Im
(
dy

y

)
− log |y| Im

(
dx3

x3

)
= − 3

2π

∫
γ+

log |y| Im
(
dx

x

)
= − 3

2π

(∫ 2π
3

− 2π
3

log |y+1 (eiθ)|dθ +
∫ 2π

2π
3

log |y+2 (eiθ)|dθ

+

∫ 4π
3

0

log |y+3 (eiθ)|dθ
)

= −m3(729 + 405
√
3).

Similarly, we have 1
2π

∫
γ− η(fσ, gσ) = −m3(729− 405

√
3) and

1

2π

∫
γ+

η(φ∗fσ, φ∗gσ) =
1

2π

∫
φ∗γ+

η(fσ, gσ),

1

2π

∫
γ−

η((φ∗fσ)σ, (φ∗gσ)σ) =
1

2π

∫
γ−

η((φσ)∗f, (φσ)∗g)

=
1

2π

∫
(φσ)∗γ−

η(f, g).
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Thus, in order to work out the second row of (4.1), we should determine the push-
forward of the paths γ+ and γ− by φ and φσ.

Lemma 4.1. We have φ∗γ
+ = −γ− ∈ H1(C

σ(C),Z)− and (φσ)∗γ
− = −4γ+ ∈

H1(C(C),Z)−.

Proof. Again, we can prove this by “numerical method”. By (1.5), the invariant
differential of Ck can be written as

dX

2Y
=

1 + y − x(3x2−ky)
kx−3y2

6k2(y − 1)(kx+ 3y + 3)
dx.

This enables us to calculate numerically (by using Mathematica) the integrations of
ωC and ωCσ along γ+ and γ−:

(4.2)

∫
γ+

ωC ≈ 0.000735163130i,

∫
γ−

ωCσ ≈ 0.076428679590i.

Comparing these values with the real and complex periods of the lattices corre-
sponding to C and Cσ calculated by SageMath, we find that γ+ and γ− are in fact
generators of H1(C(C),Z)− and H1(C

σ(C),Z)−, respectively. Thus, there must
exist integers a, b ∈ Z such that φ∗γ

+ = aγ−, (φσ)∗γ
− = bγ+. Since φ ◦ φσ = [4],

we also have ab = 4. Moreover, one can calculate that

(4.3)

∫
φ∗γ+

ωCσ =

∫
γ+

φ∗ωCσ = −(52 + 30
√
3)

∫
γ+

ωC ≈ −0.076428679590i.

Comparing (4.2) and (4.3), we immediately observe that a = −1 and thus b =
−4. �

According to Lemma 4.1, the regulator (4.1) equals∣∣∣∣det(m3(729 + 405
√
3) m3(729− 405

√
3)

m3(729− 405
√
3) 4m3(729 + 405

√
3)

)∣∣∣∣ .
Proof of Theorem 1.4. Since the Sturm bound for M2(Γ0(144)) is 48, we can prove
that

F144(τ ) =
1

2
f36(τ )−2f36(4τ )+

1

2
f144(τ ), F̃144(τ ) = −1

4
f36(τ )+f36(4τ )+

1

4
f144(τ ).

And thus

L(F144, 2) =
3

8
L(f36, 2) +

1

2
L(f144, 2), L(F̃144, 2) = − 3

16
L(f36, 2) +

1

4
L(f144, 2).

By (1.15), we have

4m3(729 + 405
√
3)2 −m3(729− 405

√
3)2

= 4

(
81

π2

(
3

8
L(f36, 2) +

1

2
L(f144, 2)

))2

−
(
324

π2

(
− 3

16
L(f36, 2) +

1

4
L(f144, 2)

))2

=
19683

π4
L(f36, 2)L(f144, 2)

=
19683

π4
L(C, 2)

=
243

8
L′′(C, 0),

where the last equality follows by the functional equation of L(C, s). �
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Finally, let us prove Theorem 1.5. To achieve this, we need the following hyper-
geometric formula for ñ(k) proved by Samart.

Theorem 4.2 ([6, Theorem 1]). Let ñ(k) be the modified Mahler measure (1.20).
Then for k ∈ (−1, 3)− {0}, the following identity is true:

ñ(k) =
4

1− 3 sgn(k)
Re

(
log k − 2

k3
4F3

(4
3 ,

5
3 , 1, 1

2, 2, 2

∣∣∣∣ 27k3
))

.

For k ∈ C−K◦
Q, we also have [16, Theorem 3.1]

(4.4) m(Qk) = Re

(
log k − 2

k3
4F3

(4
3 ,

5
3 , 1, 1

2, 2, 2

∣∣∣∣ 27k3
))

.

Proof of Theorem 1.5. Since t(τ ) is a Hauptmodul for Γ0(3), the map τ �→ t(τ ) is
a biholomorphic mapping form the genus zero Riemann surface X0(3) to P1(C).
Also, it is known from [10, §14] that t

(
± 1

2 + i
2
√
3

)
= 0. Thus, we have

t(τ ) �= 0, ∀τ ∈ F ′ −
{
±1

2
+

i

2
√
3

}
.

By Rodriguez Villegas’ formula (1.7) and the above hypergeometric formula (4.4),
the equation

Re

(
log t(τ )

3
− 2

t(τ )
4F3

(4
3 ,

5
3 , 1, 1

2, 2, 2

∣∣∣∣ 27

t(τ )

))
=

27
√
3 Im(τ )

4π2

∑′

m,n∈Z

χ−3(n)(3mRe(τ ) + n)

|3mτ + n|4

holds on some open set of F ′. Since both sides of the above equation are harmonic
on F ′◦, they must coincide for every τ ∈ F ′ −

{
± 1

2 + i
2
√
3

}
. Hence, according

to Theorem 4.2, we just proved that for τ ∈ F ′ with 3
√
t(τ ) ∈ (−1, 3) − {0}, the

following formula for ñ(k) holds:

(4.5) ñ( 3
√
t(τ )) =

27
√
3 Im(τ )(

1− 3 sgn( 3
√
t(τ ))

)
π2

∑′

m,n∈Z

χ−3(n)(3mRe(τ ) + n)

|3mτ + n|4
.

Now, we are back to our familiar track. From the outputs of Algorithm 2.3, we
find that t([9, 3, 1]) = t

(
− 1

6 +
i

2
√
3

)
= 24. Note that this point is not listed in Table

2, because we only listed in Table 2 those points that make 3
√
t(τ ) ∈ C − K◦

Q. By

(4.5), we immediately obtain that

ñ(
3
√
24) = − 81

4π2
L(f27, 2) = −3L′(f27, 0),

where f27(τ ) = 1
6

∑
m,n∈Z

χ−3(n)(m + 2n)qm
2+mn+n2

= η(3τ )2η(9τ )2 is the unique

normalized cusp form in M2(Γ0(27)). This is exactly the newform that corresponds
to C 3√24 which is isomorphic over Q to the elliptic curve with LMFDB label 27.a1.

�
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5. Some remarks

Our approach was originally inspired by the work [20] of Huber, Schultz and
Ye on 1/π-series. In fact, Q. He and Ye have already proved in [18] all formulas
conjectured by Samart in [7] that involve the Mahler measure of the trivariate
Laurent polynomial (

x+
1

x

)2(
y +

1

y

)2
(1 + z)3

z2
− s.

They also suggested that Samart’s conjectural identities associated to(
x+

1

x

)(
y +

1

y

)(
z +

1

z

)
+
√
s and x4 + y4 + z4 + 1− 4

√
sxyz

might be proved using their method. Moreover, in [13], Fei expressed the Mahler
measures of 23 families of Laurent polynomials in terms of Kronecker-Eisenstein
series. There seems to be a huge number of identities that can be proved. Finally,
it will be interesting if one could prove an identity that relates a 3 × 3 or higher
order determinant with Mahler measures as entries to the L-value of an elliptic
curve.
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