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Abstract Let F = Q(
√

p), where p = 8t + 1 is a prime. In this paper, we prove that a special case of

Qin’s conjecture on the possible structure of the 2-primary part of K2OF up to 8-rank is a consequence

of a conjecture of Cohen and Lagarias on the existence of governing fields. We also characterize the

16-rank of K2OF , which is either 0 or 1, in terms of a certain equation between 2-adic Hilbert symbols

being satisfied or not.
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1 Introduction

Let F = Q(
√

d), d > 2 square free having k odd prime factors, K2OF the tame kernel of F . By
Theorem 1 of [2], the 2-rank of K2OF = s + k, where 2s is the number of elements of the set
{±1, ±2} that are norms of an element of F . The formulas for the 4-rank of K2OF is much
more complicated. One can see [2–4, 7, 8, 13, 14]. By Qin’s methods in [20–22, 24], one can
determine the 2n-rank of K2OF for n = 2, 3 by calculating the Legendre symbols. One can see
the explicit table of the structure of tame kernels of quadratic fields F whose discriminants have
few prime divisors in [19–24]. Qin’s method is generalized to relatively quadratic extensions
in [12]. The 4-rank density of tame kernels of quadratic fields whose discriminant have less than
3 prime divisors can be found in [5, 16–18]. One can see the explicit formulas on the 4-rank of
general quadratic number fields in [28, 29]. The 4-rank density for general quadratic fields can
be found in [9, 11].

In [24], Qin made the following conjecture.

Conjecture 1.1 (Qin) Let k ≥ 2 and n ∈ N. Given k − 1 integers r4, r8, . . . , r2ksatisfying
n ≥ r4 ≥ r8 ≥ · · · ≥ r2k ≥ 0. Then there exist infinitely many quadratic number fields
F = Q(

√
d) such that d > 0 square-free has exactly n prime divisors, any of which ≡ 1 (mod 8)

and the 2j-rank of K2OF = r2j (2 ≤ j ≤ k).
The same assertion should be true for F = Q(

√
d) with d = −d′ or d = 2d′ or d = −2d′,

where d′ > 0 has exactly n prime divisors, any of which ≡ 1 (mod 8).
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In [23], Qin proved that above conjecture is true for k = 2 and n− 1 ≥ r4 ≥ 0. In [10], it is
proved that for any finite abelian group G of exponent 8, there are infinitely many imaginary
quadratic fields E such that K2(OE)/(K2(OE))8 � G; and for any finite abelian group H of
exponent 8 with rk2H ≥ 2 + rk4H, there are infinitely many real quadratic fields F such that
K2(OF )/(K2(OF ))8 � H. Note that there is a prime divisor q of d with q ≡ 3 or 5 (mod 8),
while each prime divisors q of d should be q ≡ 1 (mod 8) in Qin’s conjecture. Hence Qin’s
conjecture remains open. We will see that when n = 1 and k = 3, Qin’s conjecture is connected
to the following long-standing conjecture in classical number theory.

Conjecture 1.2 (Cohn and Lagarias [6]) There is a field K with the property that if p1

and p2 are primes such that the Artin symbols [(K/Q)/(p1)] = [(K/Q)/(p2)], then 2i-rank of
Cl(Q(

√−p1)) = 2i-rank of Cl(Q(
√−p2)) for 1 ≤ i ≤ 4.

In [6], the smallest K with the above property is denoted by Ω4(−4). In fact, we will prove
that Conjecture 1.2 implies Qin’s conjecture 1.1 for n = 1 and k = 3 by Theorem 1 of [2].

We will briefly explain our strategy. Recall that if p ≡ 1 (mod 8) and F = Q(
√

p), then
2-rank of K2(OF ) = 3. By [27, Corollary (25.12)], the 4-rank of K2(OF ) = 1 if and only if
p = x2 +32y2 for some rational integers x, y. By the Preliminary Theorem of [1], we have that
p = x2 + 32y2 for some rational integers x, y if and only if p = e2 − 32f2 for some rational
integers e, f . For any α, β ∈ Z and prime �, let (a, β)� be the Hilbert symbol at �.

Theorem 1.3 (Qin [22]) Let p be a prime such that p = e2 − 32f2 for some rational integers
e, f . Then there are rational integers X1, Y1, Z1, such that (e + 2f)Z2

1 = X2
1 + pY 2

1 . Then
the 8-rank of K2(OF ) = 1 if and only if (e, 2)2(Z1,−1)2 = 1.

If e ≡ 1 (mod 8) (which is equivalent to p ≡ 1 (mod 16)), then (e, 2)2 = 1 which im-
plies that 8-rank of K2(OF ) = 1 if and only if (Z1,−1)2 = 1. Hence (Z1,−p)2 = 1. So
there are rational integers X2, Y2, Z2 such that Z1Z

2
2 = X2

2 + pY 2
2 . In this case, we have

e ∈ NormQ(
√−2p)/Q(Q(

√−2p). Hence there are rational integers X̃, Ỹ , Z̃ such that eZ̃2 =
X̃2 + 2pỸ 2.

Our main theorem is the following.

Theorem 1.4 We use the same notations as above. If p ≡ 1 (mod 16) and 8-rank of
K2(OF ) = 1, then 16-rank of K2(OF ) = 1 if and only if

(Z2,−p)2(Z̃,−2p)2 = 1.

2 Main Results

For a real quadratic field F with discriminant D, let h(D) be the class number of F , k2(D) the
cardinality of K2(OF ).

In [25] and [26], Urbanowicz extended the Hardy–Williams congruence to a linear congruence
involving the orders of K2-groups of the integers of real quadratic fields. He proved the following
theorem. One should note that Urbanowicz’s original theorems contain many more statements.

Theorem 2.1 (Urbanowicz [27, Theorems 32, 34]) We use the notations as above. Then
(1) k2(p) ≡ 2h(−4p) + 16t (mod 32);
(2) 64|k2(p) if and only if 8|h(−4p) and (h(−4p)/8) + (h(−8p)/4) ≡ 0 (mod 4).

In the following context, F = Q(
√

p), where p = 8t + 1 is a prime.
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Theorem 2.2 We assume that there is a governing field K having the property that if p1

and p2 are primes such that the Artin symbols [(K/Q)/(p1)] = [(K/Q)/(p2)], then 2i-rank of
Cl(Q(

√−p1)) = 2i-rank of Cl(Q(
√−p2)) for 1 ≤ i ≤ 4. Then for any non-negative integer r4

and r8 satisfying 1 ≥ r4 ≥ r8 ≥ 0, there are infinitely many primes p such that
(1) p ≡ 1 (mod 8);
(2) 4-rank of K2(OF ) = r4;
(3) 8-rank of K2(OF ) = r8.

Proof By Theorem 2.1(1), we have

k2(p) ≡
⎧
⎨

⎩

2h(−4p) (mod 32), if p ≡ 1 (mod 16);

2h(−4p) + 16 (mod 32), if p ≡ 9 (mod 16).
(2.1)

By Browkin and Schinzel’s 2-rank formula of K2(OF ) in the first paragraph of Introduction, we
know that the 2-rank of K2(OF ) = 3. By [7, Corollary (25.12)], we have the following formula:

4-rank of K2(OF ) =

⎧
⎨

⎩

1, if p = x2 + 32y2 for some x, y ∈ Z;

0, otherwise.
(2.2)

Hence by Proposition 5.3 of [15], 4-rank of K2(OF ) = 1 if and only if 8|h(−4p) which implies
that there are infinitely many p such that 4-rank of K2(OF ) = 0. Hence, we only need to
consider the case when r4 = 1.

Now r2 = 3 and r4 = 1. By (2.1), we have

8-rank of K2(OF ) = 1 ⇐⇒ 32|k2(p)

⇐⇒
⎧
⎨

⎩

16|h(−4p), if p = x2 + 32y2 ≡ 1 (mod 16);

16 � h(−4p), if p = x2 + 32y2 ≡ 9 (mod 16).

(2.3)

We assume that there is a governing field K having the property that if p1 and p2 are primes
such that the Artin symbols [(K/Q)/(p1)] = [(K/Q)/(p2)], then 2i-rank of Cl(Q(

√−p1)) = 2i-
rank of Cl(Q(

√−p2)) for 1 ≤ i ≤ 4. If we do not put K to be the smallest one, we can assume
the 16-th primitive root of unity ζ16 ∈ K, otherwise we can add ζ16 to K. Let p1 = 41, p2 = 257.
Then p1 ≡ 9 (mod 16) and 8||h(−4p1), p2 ≡ 1 (mod 16) and 16|h(−4p2). Hence those primes
p such that [(K/Q)/(p1)] = [(K/Q)/(p)] will satisfy the following condition:

p ≡ 9 (mod 16) and 16 � h(−4p).

And those primes p such that [(K/Q)/(p2)] = [(K/Q)/(p)] will satisfy the following condition:

p ≡ 1 (mod 16) and 16|h(−4p).

Hence by Chebotarev’s density theorem, there are infinitely many primes p such that p ≡
9 (mod 16) and 16 � h(−4p), and there are also infinitely many primes p such that p ≡
1 (mod 16) and 16|h(−4p). Hence by (2.3), there are infinitely many p such that 8-rank of
K2(OF ) = 1. In fact, the density of these p is positive.

Similarly, one can prove that there are infinitely many p such that 8-rank of K2(OF ) = 0
and 4-rank of K2(OF ) = 1.

By the same argument, we can prove the following theorem for Q(
√

2p).
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Theorem 2.3 We assume that there is a governing field K having the property that if p1

and p2 are primes such that the Artin symbols [(K/Q)/(p1)] = [(K/Q)/(p2)], then 2i-rank of
Cl(Q(

√−2p1)) = 2i-rank of Cl(Q(
√−2p2)) for 1 ≤ i ≤ 4. Then for any non-negative integer

r4 and r8 satisfying 1 ≥ r4 ≥ r8 ≥ 0, there are infinitely many primes p such that
(1) p ≡ 1 (mod 8);
(2) 4-rank of K2OQ(

√
2p) = r4;

(3) 8-rank of K2OQ(
√

2p) = r8.

Proposition 2.4 Let p be a prime such that p ≡ 1 (mod 16) and 8-rank of K2(OF ) = 1. Then
16-rank of K2(OF ) = 1 if and only if 32|h(−4p) and 16|h(−8p), or 16||h(−4p) and 8||h(−8p).

Proof By Theorem 2.1(2), 64|k2(p) if and only if 8|h(−4p) and (h(−4p)/8) + (h(−8p)/4) ≡
0 (mod 4). Since we have assumed that p ≡ 1 (mod 16) and 8-rank of K2(OF ) = 1, one can
see that 64|k2(p) if and only if 32|h(−4p) and 16|h(−8p), or 16||h(−4p) and 8||h(−8p). Since
the 2-rank of K2(OF ) = 3 and 4-rank of K2(OF ) = 1, 16-rank of K2(OF ) = 1 if and only if
64|k2(p). �

Lemma 2.5 Let p be a prime such that p ≡ 1 (mod 16) and 8-rank of K2(OF ) = 1. Then
there are rational integers e, f, X1, Y1, Z1, X2, Y2, Z2 such that

⎧
⎪⎪⎨

⎪⎪⎩

p = e2 − 32f2,

(e + 2f)Z2
1 = X2

1 + pY 2
1 ,

Z1Z
2
2 = X2

2 + pY 2
2 .

Proof By the proof of Proposition 5.3(1) of [15], we know that there are rational integers
e, f, X1, Y1, Z1 such that

p = e2 − 32f2 and (e + 2f)Z2
1 = X2

1 + pY 2
1 .

Since p ≡ 1 (mod 16), by (2.3), we have 16|h(−4p). Hence by [15, Theorem 4.1], Z1 ∈
NormF/Q(F ) which implies that there are rational integer X2, Y2, Z2 such that

Z1Z
2
2 = X2

2 + pY 2
2 . �

Lemma 2.6 We use the same notations and assumption as in Lemma 2.5. Then
(1) 32|h(−4p) if and only if (Z2,−p)2 = 1;
(2) 16||h(−4p) if and only if (Z2,−p)2 = −1.

Proof The lemma follows from Theorem 4.1 of [15] and (2.3). �

Lemma 2.7 We use the same notations and assumption as in Lemma 2.5. Then there exist
rational integers X̃, Ỹ , Z̃ such that

eZ̃2 = X̃2 + 2pỸ 2.

(1) 16|h(−8p) if and only if (Z̃,−2p)2 = 1;
(2) 8||h(−8p) if and only if (Z̃,−2p)2 = −1.

Proof Since 2e2 = (8f)2 + 2p and the assumption that 8-rank of K2(OF ) = 1, we have that
8|h(−8p) by Proposition 5.3(3) of [15]. Hence by Theorem 4.1 of [15], e is the norm of some
element of Q(

√−2p) which implies that there exist rational integers X̃, Ỹ , Z̃ such that

eZ̃2 = X̃2 + 2pỸ 2.
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Again by Theorem 4.1 of [15], we know that 16|h(−8p) if and only if (Z̃,−2p)2 = 1. �
Now we can prove Theorem 1.4.

Proof of Theorem 1.4 By Proposition 2.4, 16-rank of K2(OF ) = 1 if and only if 32|h(−4p) and
16|h(−8p), or 16||h(−4p) and 8||h(−8p). By Lemmas 2.6 and 2.7, 32|h(−4p) and 16|h(−8p),
or 16||h(−4p) and 8||h(−8p) if and only if (Z2,−p)2(Z̃,−2p)2 = 1. �
Acknowledgements We thank the referees for their time and comments.
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29(1), 73–96 (2005)

[16] Osburn, R.: Densities of 4-ranks of K2OF . Acta Arith., 102(1), 45–54 (2002)

[17] Osburn, R., Murray, B.: Tame kernels and further 4-rank densities. J. Number Theory, 98(2), 390–406

(2003)

[18] Osburn, R.: A note on 4-rank densities. Canadian Mathematical Bulletin, 47, 431–438 (2004)

[19] Qin, H.: 2-Sylow subgroup of K2OF for real quadratic fields F . Sci. China Ser. A, 37, 1302–1313 (1994)

[20] Qin, H.: The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields. Acta Arith., 69(2),

153–169 (1995)

[21] Qin, H.: The 4-rank of K2(O) for real quadratic fields F . Acta Arith., 72(4), 323–333 (1995)

[22] Qin, H.: Tame kernels and Tate kernels of quadratic number fields. J. Reine Angew. Math., 530, 105–144

(2001)

[23] Qin, H.: The structure of the tame kernels of quadratic number fields. I. Acta Arith., 113(3), 203–240

(2004)

[24] Qin, H.: The 2-Sylow subgroup of K2 for number fields F. J. Algebra, 284, 494–519 (2005)

[25] Urbanowicz, J.: Connections between B2,χ for even quadratic characters χ and class numbers of appropriate

imaginary quadratic fields (I). Compos. Math., 75, 247–270 (1990)

[26] Urbanowicz, J.: Connections between B2,χ for even quadratic characters χ and class numbers of appropriate

imaginary quadratic fields (II). Compos. Math., 75, 271–285 (1990)



812 Cheng X. Y. and Guo X. J.

[27] Urbanowicz, J., Williams, K. S.: Congruences for L-functions, Kluwer Academic Publisher, Dor-

drecht/Boston/London, 2001

[28] Yin, X., Qin, H., Zhu, Q.: The structure of the tame kernels of quadratic number fields. II. Acta Arith.,

116(3), 217–262 (2005)

[29] Yin, X., Qin, H., Zhu, Q.: The structure of the tame kernels of quadratic number fields. III. Comm. Algebra,

36(3), 1012–1033 (2008)


