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0. Introduction

1. Idempotent matrix

We will call R an abelian ring, if R is a ring with identity and all idempotents
of R lie in the center of R.

Theorem 1 Let R be an abelian ring and A be an n×n idempotent matrix
over R. If there exist invertible matrices P and Q such that PAQ is a diagonal
matrix, then there is an invertible matrix U such that UAU−1 is a diagonal
matrix.

Proof. Suppose that there exist invertible matrices P and Q such that PAQ =
diag(b1, b2, ..., bn) = B. Set U = Q−1P−1, then (BU)2 = BU and BUB = B.
Therefore, if U = [uij ], we have bi = biuiibi, biuii and uiibi are idempotents of
R. Set e = biuii. Then bi = ebi and thus bi = e(1− e + bi). Note that

(1− e + bi)(1− e + euii) = 1− e + bieuii + (1− e)(bi + euii)

= 1− e + e + (1− e)bi = 1 + (1− e)ebi = 1

and
(1− e + euii)(1− e + bi) = 1− e + euiibi + (1− e)(bi + euii)

= 1− e + euiibi = 1− e + biuiiuiibi

= 1− e + biuiibiuii = 1− e + e2 = 1
1
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So 1−e+bi is a unit, biuii and bi differ by a unit factor. Thus we may assume
that Q has been adjusted so that b2

i = bi, i = 1, 2, ..., n. The matrix equality
BUB = B will now give

(a) biuii = bi, i = 1, 2, ..., n.

(b) bibjuij = 0, i 6= j, i, j = 1, 2, ..., n.

Thus

BU =




b1 b1u12 · · · b1u1n

b2u21 b2 · · · b2u2n
...

...
. . .

...
bnun1 bnun2 · · · bn




Set

D =




1 b1u12 b1u13 · · · b1u1n

b2u21 1 b2u23 · · · b2u2n

b3u31 b3u32 1 · · · b3u3n
...

...
...

. . .
...

bnun1 bnun2 bnun3 · · · 1




then D2 = 2D − In, so D is invertible . Thus

(DP )A(DP )−1 = D(PAP−1)D−1 = D(PAQQ−1P−1)D−1 = DBUD−1

= diag(b1, b2, ..., bn)

Q.E.D.
Recall that a commutative ring R is a PT(projective trivial) ring if every

idempotent matrix over R is similar to a diagonal matrix. From the above
theorem, we see that the commutativity of ring R can be weakened to all idem-
potents of R lie in the center of R. We call such rings APT(abel projective
trivial) rings.

Theorem 2 Let R be an APT ring. Then any unimodular vector (a1, a2, ..., an)
in Rn is completable(i.e. can be seen as the first row of some invertible matrix).

Proof. Suppose α = (α1, α2, ..., αn) is unimodular and α1β1 + α2β2 + · · · +
αnβn = 1. Set A = (βiαj). Then A2 = A. Since R is an APT ring, there
exists an invertible matrix P with PAP−1 = B = diag(e1, e2, ..., en. Let X =
(x1, ..., xn) = αP−1, Y = (y1, ..., yn) = Pβ, then XY = αβ = 1, Y X =
PAP−1 = diag(e1, ..., en) . So α is completable iff X is completable. Since∑n

i=1 xiyi = 1 and yixi = ei, yixj = 0 (i 6= j), so yixiyi = yi, xiyixi = xi.
So ei = yixi and fi = xiyi are idempotents. Since R is an abelian ring, ei,
fi are in the center of R, ei = e2

i = yixiyixi = yifixi = fiei, fi = f2
i =

xiyixiyi = xieiyi = fiei, so ei = fi, i.e., xiyi = yixi. So (
∑n

i=1 xi)(
∑n

i=1 yi) =
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(
∑n

i=1 yi)(
∑n

i=1 xi) =
∑n

i=1 xiyi = 1, this means
∑n

i=1 xi is an unit of R. Let

D =




x1 x2 x3 · · · xn

−1 1 0 · · · 0
−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1




Observe that D is an elementary matrix, so D is an invertible matrix and X is
completable. This implies α is completable. Q.E.D.

The following theorem generalized Foster’s Theorem. The proof of Foster’s
Theorem in [3] can be generalized to the abelian ring.

Theorem 3. The following are equivalent for an abelian ring R:
(a) Each idempotent matrix over R is diagonalizable under a similarity trans-

formation.
(b) Each idempotent matrix over R has a charateristic vector.
Proof. Suppose that we have (a) and A be an n × n idempotent matrix.

then there is an invertible matrix Q with QAQ−1 = diag(e1, ..., en). Let α =
(1, 0, ..., 0)t, then α is both unimodular and completable. Further, QAQ−1α =
e1α. Set β = Q−1α, β is completable. Then Aβ = eiβ and β is completable.
Hence A has a characteristic vector.

Suppose that we have (b) and A be an n × n idempotent matrix. We will
use a proof based on induction on n, the size of A. Assume that (a) is true
for all idempotent matrices of size ¡ n. if A = 0, there is nothing to prove.
Assume that A 6= 0. Let α be a characteristic vector of A. Setting β1 = α, Let
β1, β2, ..., βn be a basis of Rn. Let Aα = e1α. Employing the basis β1, β2, ..., βn

of Rn, the matrix A has the form

A1 =




e1 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...
0 an2 · · · ann




Since A2
1 = A1, we must have e2

1 = e1. Let

B =




a22 a23 · · · a2n

a32 a33 · · · a3n
...

...
. . .

...
an2 an3 · · · ann




we have B2 = B. By the induction hypothesis, the matrix B may be diagonal-
ized under a suitable similarity transformation. Thus by a suitable change of
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of basis, we may assume that we have chosen a new basis α1, α2, ..., αn for Rn

such that, relating to this basis, A has the form

A2 =




e1 b2 b3 · · · bn

0 e2 0 · · · 0
0 0 e3 · · · 0
...

...
...

. . .
...

0 0 0 · · · en




Since A2
2 = A2, we have e2

1 = e1,..., e2
n = en, and b2(e1 + e2 − 1) = 0,...,

bn(e1 + en − 1) = 0. Let

P =




1 r2 · · · rn

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 ,

P is invertible, we will choose suitable r2, r3, ..., rn, such that PA2P
−1 =

diag(e1, e2, ..., en) which is satiafied if ri(ei− e1) = bi. Since bi(e1 + ei− 1) = 0,
so bi = bi(1 − 2ei)2 = bi(e1 − ei)(1 − 2ei). So let ri = bi(1 − 2ei), then
PA2P

−1 = diag(e1, e2, ..., en). Q.E.D.
Next Theorem generalized Steger’s Uniqueness Theorem
Theorem 4 Let R be an APT ring and A be an n × n idempotent matrix

over R. Then
(a) There is an invertible matrix P with PAP−1 = diag(a1, a2, ..., an) where

ai divides ai+1 for 1 ≤ i ≤ n− 1.
(b) If Q is another invertible matrix with QAQ−1 = diag(b1, b2, ..., bn) where

bi divides bi+1 for 1 ≤ i ≤ n− 1, then bi = ai for 1 ≤ i ≤ n.
Proof. Suppose that P is an invertible matrix with PAP−1 = diag(e1, ..., en),

Let a1 = 1−(1−e1)(1−e2) · · · (1−en) and xi = ei +(1−e1)(1−e2) · · · (1−en),
then a1xi = ei and I(x1, ..., xn) = R, i.e., x1, ..., xn generate R. By theorem 2,
X = (x1, ..., xn) is completable, so X is a characteristic vector. Then in a fashion
analogue to the proof of theorem 3, A is similar to diag(a1, e

′
2, ..., e

′
n), by induc-

tion on n (the size of the matrix), assume that A is similar to diag(a1, a2, ..., an)
where ai divides ai+1 for 2 ≤ i ≤ n − 1. Since a1 divides each entry of
diag(e1, ..., en), and diag(a1, a2, ..., an) is similar to diag(e1, ..., en), we have
that a1 divides a2. This completes part (a).

To show (b), observe that ar divides the products of arbitrary r entries of
diag(a1, a2, ..., an), so ar divides the products of arbitrary r entries of diag(b1, b2, ..., bn).
Since bi is idempotent and bi|bi+1, br = b1b2 · · · br, so ar|br. Similarly, br|ar.
Since ar and br are idempotents, we have ar = br, 1 ≤ r ≤ n. Q.E.D.
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Corollary 5 If R is an APT ring, then for an arbitrary projective R-module
P , there exist idempotents e1, e2, ..., en of R such that ei divides ei+1 for 1 ≤
i ≤ n− 1 and P ' Re1 ⊕Re2 ⊕ · · · ⊕Ren.

Lemma 6 If R is an APT ring, then Rm ' Rm ⊕K implies K = 0.
Proof. If Rm ' Rm ⊕ K, by Corollary 5, K ' Re1 ⊕ Re2 ⊕ · · · ⊕ Ren for

suituable idempotents e1, e2, ..., en of R. So

Rm ' Rm ⊕Re1 ⊕Re2 ⊕ · · · ⊕Ren

By the uniqueness of decomposition in Theorem 4, we know that ei = 0 for
1 ≤ i ≤ n, so K = 0. Q.E.D.

Theorem 7 If R is an APT ring, then every invertible R-R-bimodule P is a
cyclic module.

Proof. Suppose P ∈ Pic(R), then there exist idempotents e1, e2, ..., en of R
such that ei divides ei+1 for 1 ≤ i ≤ n − 1 and P ' Re1 ⊕ Re2 ⊕ · · · ⊕ Ren.
Since P is an invertible R-R-bimodule, so EndR(RP ) ' R i.e.

R = End(Re1 ⊕Re2 ⊕ · · · ⊕Ren) ' ⊕n
i,j=1Hom(Rei, Rej) ' ⊕n

i,j=1R(eiej)

. Since ei divides ej for i ≤ j, so eiej = ej . Since R⊗R P ' P , so

(⊕n
i,j=1Reiej)⊗ (Re1 ⊕Re2 ⊕ · · · ⊕Ren) ' Re1 ⊕Re2 ⊕ · · · ⊕Ren

i.e.

Re1 ⊕Re2 ⊕ · · · ⊕Ren ⊕Re2 ⊕ · · · ⊕Ren ⊕K = Re1 ⊕Re2 ⊕ · · · ⊕Ren

for suituable projective R-module K. So Re2 ⊕ · · · ⊕ Ren ⊕ K = 0 and e2 =
e3 = · · · = en = 0. So P ' Re1 and P is a cyclic module. Q.E.D.

Theorem 8 Let R be an abelian ring, N be the set of nilpotents in R, and
I be an ideal in R with I ⊆ N . Then R/I is an APT ring, if and only if R is
an APT ring.

Proof. “=⇒”. Suppose that R/I is an APT ring. Let f : R −→ R/I
denote the natural morphism. If r is in R, Then f(r) will be denoted by r. The
“bar” notation will also be used for all n dimensional vectors (R)n and all n⊗n
matrices Mn(R).

Suppose that A is an idempotent matrix in Mn(R). Let A = f(A). Then
A is idempotent in R/I. So A is similar to diag(a1, a2, ..., an) where ai divides
ai+1. Since I ⊆ N , by 27.1 in [AF], all the idempotents in R/I can be lifted
modulo I. So there is an idempotent d in R such that f(d) = a1. By Theorem
3, A has a charateristic vector x = (x1, x2, ..., xn)

′
corresponding to a1 = d. Let

xi be in R with f(xi) = xi, 1 ≤ i ≤ n. Set x = (x1, x2, ..., xn)
′
, then since x is



6 XUE-JUN GUO AND GUANG-TIAN SONG

completable to X in GLn(R/I) and f : GL(R) −→ GL(R/I) is sujective, x is
unimodular and completable. Then Ax = dx+ r where r = (r1, r2, ..., rn)

′
with

the ri in I. Since A2 = A and d2 = d, Ax = dAx + Ar and thus

Ar = (1− d)Ax = (1− d)(dx + r) = (1− d)r

since (1− d)d = 0. Thus

A(x + (2d− 1)r) = Ax + (2d− 1)Ar = dx + r + (2d− 1)(1− d)r

= dx + dr = d(x + (2d− 1)r).

Further, x + (2d− 1)r ≡ x(modI). Hence as above, x + (2d− 1)r is unimodular
and completable. Thus A has a characteristic vector and the proof follows from
Theorem 3.

“⇐=” Assume that R is an APT ring and A = (A)2 = (aij) ∈ Mn(R/I). It
will suffice to show that there exist an idempotent matrix F = (fij) ∈ Mn(R)
such that F = A. If A = (aij) then A2 = A + B where the entries of B
are in I. Thus B is nilpotent. let kbe the least natural number such that
Bk = 0. If k=1, ther is nothing left to prove. hence, assume that k > 1
and let C = A + (I − 2A)B. Then teh entries of C − A are in I and, Since
AB = BA = A3 −A2,

C2 = A2 + 2A(I − 2A)B + (I − 2A)2B2.

Therfore, C2 − C = B + (I − 2A)2(B2 − B). Since (I − 2A)2 = I + 4B,
C2 = C + B2(4B − 3I). If we let D = B2(4B − 3I), we have c2 = C + D
where the entries of D are in I and, for some natural integer l < k, Dl = 0.
Repeating this process, we arrive in a finite number of steps at the required
matrix F . Q.E.D.

Corollary 9 Let N be an ideal whose elements are nilpotent in an APT
ring R and let x1, x2, ..., xk be indeterminates. Then R[x1, x2, ..., xn] is an APT
ring if and only if R/N)[x1, x2, ..., xk] is an APT ring.

sl Proof. corollary follows by observing that N [x1, x2, ..., xk] is the ideal of
nilpotents in R[x1, x2, ..., xk] and that

R[x1, x2, ..., xk]/N [x1, x2, ..., xk] ' (R/N)[x1, x2, ..., xk].

Q.E.D.
Theorem 10 Let R be an abelian regular ring, and for any finitely generated

projective R-modules A and B, 2R⊕A ' R⊕B implies R⊕A ' B, then R is
an APT ring.

Proof. By Theorem 2.5 in [AG], every square matrix over R admits a diag-
onal reduction (i.e., there exist invertible matrix P and Q such that PAQ is
a diagonal matrix). Suppose A is an idempotent matrix, by Theorem 1, A is
similar to a diagonal matrix whose diagonal entries are idempotents of R. So
R is an APT ring Q.E.D.
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