DIAGONABILITY OF IDEMPOTENT MATRICES OVER APT RINGS

XUE-JUN GUO AND GUANG-TIAN SONG

Department of Mathematics, The University of Science and Technology of China, Hefei 230026 P.R.China

Abstract.

APT ring, Idempotent matrix. AMR 20B10

0. Introduction

1. Idempotent matrix

We will call R an abelian ring, if R is a ring with identity and all idempotents of R lie in the center of R.

Theorem 1 Let R be an abelian ring and A be an $n \times n$ idempotent matrix over R. If there exist invertible matrices P and Q such that PAQ is a diagonal matrix, then there is an invertible matrix U such that UAU^{-1} is a diagonal matrix.

Proof. Suppose that there exist invertible matrices P and Q such that $PAQ = diag(b_1, b_2, ..., b_n) = B$. Set $U = Q^{-1}P^{-1}$, then $(BU)^2 = BU$ and BUB = B. Therefore, if $U = [u_{ij}]$, we have $b_i = b_i u_{ii} b_i$, $b_i u_{ii}$ and $u_{ii} b_i$ are idempotents of R. Set $e = b_i u_{ii}$. Then $b_i = eb_i$ and thus $b_i = e(1 - e + b_i)$. Note that

$$(1 - e + b_i)(1 - e + eu_{ii}) = 1 - e + b_i eu_{ii} + (1 - e)(b_i + eu_{ii})$$
$$= 1 - e + e + (1 - e)b_i = 1 + (1 - e)eb_i = 1$$

and

$$(1 - e + eu_{ii})(1 - e + b_i) = 1 - e + eu_{ii}b_i + (1 - e)(b_i + eu_{ii})$$

= 1 - e + eu_{ii}b_i = 1 - e + b_iu_{ii}u_{ii}b_i
= 1 - e + b_iu_{ii}b_iu_{ii} = 1 - e + e^2 = 1
1

So $1-e+b_i$ is a unit, $b_i u_{ii}$ and b_i differ by a unit factor. Thus we may assume that Q has been adjusted so that $b_i^2 = b_i, i = 1, 2, ..., n$. The matrix equality BUB = B will now give

(a)
$$b_i u_{ii} = b_i, i = 1, 2, ..., n.$$

(b) $b_i b_j u_{ij} = 0, i \neq j, i, j = 1, 2, ..., n.$

Thus

$$BU = \begin{pmatrix} b_1 & b_1u_{12} & \cdots & b_1u_{1n} \\ b_2u_{21} & b_2 & \cdots & b_2u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_nu_{n1} & b_nu_{n2} & \cdots & b_n \end{pmatrix}$$

 Set

$$D = \begin{pmatrix} 1 & b_1 u_{12} & b_1 u_{13} & \cdots & b_1 u_{1n} \\ b_2 u_{21} & 1 & b_2 u_{23} & \cdots & b_2 u_{2n} \\ b_3 u_{31} & b_3 u_{32} & 1 & \cdots & b_3 u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_n u_{n1} & b_n u_{n2} & b_n u_{n3} & \cdots & 1 \end{pmatrix}$$

then $D^2 = 2D - I_n$, so D is invertible. Thus

$$(DP)A(DP)^{-1} = D(PAP^{-1})D^{-1} = D(PAQQ^{-1}P^{-1})D^{-1} = DBUD^{-1}$$

= diag(b₁, b₂, ..., b_n)

Q.E.D.

Recall that a commutative ring R is a PT(projective trivial) ring if every idempotent matrix over R is similar to a diagonal matrix. From the above theorem, we see that the commutativity of ring R can be weakened to all idempotents of R lie in the center of R. We call such rings APT(abel projective trivial) rings.

Theorem 2 Let R be an APT ring. Then any unimodular vector $(a_1, a_2, ..., a_n)$ in R^n is completable (i.e. can be seen as the first row of some invertible matrix).

Proof. Suppose $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ is unimodular and $\alpha_1\beta_1 + \alpha_2\beta_2 + \cdots + \alpha_n\beta_n = 1$. Set $A = (\beta_i\alpha_j)$. Then $A^2 = A$. Since R is an APT ring, there exists an invertible matrix P with $PAP^{-1} = B = diag(e_1, e_2, ..., e_n)$. Let $X = (x_1, ..., x_n) = \alpha P^{-1}$, $Y = (y_1, ..., y_n) = P\beta$, then $XY = \alpha\beta = 1$, $YX = PAP^{-1} = diag(e_1, ..., e_n)$. So α is completable iff X is completable. Since $\sum_{i=1}^n x_i y_i = 1$ and $y_i x_i = e_i, y_i x_j = 0$ $(i \neq j)$, so $y_i x_i y_i = y_i, x_i y_i x_i = x_i$. So $e_i = y_i x_i$ and $f_i = x_i y_i$ are idempotents. Since R is an abelian ring, e_i , f_i are in the center of R, $e_i = e_i^2 = y_i x_i y_i x_i = y_i f_i x_i = f_i e_i$, $f_i = f_i^2 = x_i y_i x_i y_i = f_i e_i$, so $e_i = f_i$, i.e., $x_i y_i = y_i x_i$. So $(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i) = x_i y_i x_i y_i = f_i e_i$, so $e_i = f_i$, i.e., $x_i y_i = y_i x_i$. So $(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i) = x_i y_i x_i y_i = f_i e_i$, so $e_i = f_i$, i.e., $x_i y_i = y_i x_i$.

$$(\sum_{i=1}^{n} y_i)(\sum_{i=1}^{n} x_i) = \sum_{i=1}^{n} x_i y_i = 1, \text{ this means } \sum_{i=1}^{n} x_i \text{ is an unit of } R. \text{ Let}$$
$$D = \begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ -1 & 1 & 0 & \cdots & 0 \\ -1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Observe that D is an elementary matrix, so D is an invertible matrix and X is completable. This implies α is completable. Q.E.D.

The following theorem generalized Foster's Theorem. The proof of Foster's Theorem in [3] can be generalized to the abelian ring.

Theorem 3. The following are equivalent for an abelian ring R:

(a) Each idempotent matrix over R is diagonalizable under a similarity transformation.

(b) Each idempotent matrix over R has a characteristic vector.

Proof. Suppose that we have (a) and A be an $n \times n$ idempotent matrix. then there is an invertible matrix Q with $QAQ^{-1} = diag(e_1, ..., e_n)$. Let $\alpha = (1, 0, ..., 0)^t$, then α is both unimodular and completable. Further, $QAQ^{-1}\alpha = e_1\alpha$. Set $\beta = Q^{-1}\alpha$, β is completable. Then $A\beta = e_i\beta$ and β is completable. Hence A has a characteristic vector.

Suppose that we have (b) and A be an $n \times n$ idempotent matrix. We will use a proof based on induction on n, the size of A. Assume that (a) is true for all idempotent matrices of size ; n. if A = 0, there is nothing to prove. Assume that $A \neq 0$. Let α be a characteristic vector of A. Setting $\beta_1 = \alpha$, Let $\beta_1, \beta_2, ..., \beta_n$ be a basis of \mathbb{R}^n . Let $A\alpha = e_1\alpha$. Employing the basis $\beta_1, \beta_2, ..., \beta_n$ of \mathbb{R}^n , the matrix A has the form

$$A_{1} = \begin{pmatrix} e_{1} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Since $A_1^2 = A_1$, we must have $e_1^2 = e_1$. Let

$$B = \begin{pmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix}$$

we have $B^2 = B$. By the induction hypothesis, the matrix B may be diagonalized under a suitable similarity transformation. Thus by a suitable change of of basis, we may assume that we have chosen a new basis $\alpha_1, \alpha_2, ..., \alpha_n$ for \mathbb{R}^n such that, relating to this basis, A has the form

$$A_{2} = \begin{pmatrix} e_{1} & b_{2} & b_{3} & \cdots & b_{n} \\ 0 & e_{2} & 0 & \cdots & 0 \\ 0 & 0 & e_{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & e_{n} \end{pmatrix}$$

Since $A_2^2 = A_2$, we have $e_1^2 = e_1,..., e_n^2 = e_n$, and $b_2(e_1 + e_2 - 1) = 0,..., b_n(e_1 + e_n - 1) = 0$. Let

$$P = \begin{pmatrix} 1 & r_2 & \cdots & r_n \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix},$$

P is invertible, we will choose suitable $r_2, r_3, ..., r_n$, such that $PA_2P^{-1} = diag(e_1, e_2, ..., e_n)$ which is satiafied if $r_i(e_i - e_1) = b_i$. Since $b_i(e_1 + e_i - 1) = 0$, so $b_i = b_i(1 - 2e_i)^2 = b_i(e_1 - e_i)(1 - 2e_i)$. So let $r_i = b_i(1 - 2e_i)$, then $PA_2P^{-1} = diag(e_1, e_2, ..., e_n)$. Q.E.D.

Next Theorem generalized Steger's Uniqueness Theorem

Theorem 4 Let R be an APT ring and A be an $n \times n$ idempotent matrix over R. Then

(a) There is an invertible matrix P with $PAP^{-1} = diag(a_1, a_2, ..., a_n)$ where a_i divides a_{i+1} for $1 \le i \le n-1$.

(b) If Q is another invertible matrix with $QAQ^{-1} = diag(b_1, b_2, ..., b_n)$ where b_i divides b_{i+1} for $1 \le i \le n-1$, then $b_i = a_i$ for $1 \le i \le n$.

Proof. Suppose that P is an invertible matrix with $PAP^{-1} = diag(e_1, ..., e_n)$, Let $a_1 = 1 - (1 - e_1)(1 - e_2) \cdots (1 - e_n)$ and $x_i = e_i + (1 - e_1)(1 - e_2) \cdots (1 - e_n)$, then $a_1x_i = e_i$ and $I(x_1, ..., x_n) = R$, i.e., $x_1, ..., x_n$ generate R. By theorem 2, $X = (x_1, ..., x_n)$ is completable, so X is a characteristic vector. Then in a fashion analogue to the proof of theorem 3, A is similar to $diag(a_1, e'_2, ..., e'_n)$, by induction on n (the size of the matrix), assume that A is similar to $diag(a_1, a_2, ..., a_n)$ where a_i divides a_{i+1} for $2 \le i \le n-1$. Since a_1 divides each entry of $diag(e_1, ..., e_n)$, and $diag(a_1, a_2, ..., a_n)$ is similar to $diag(e_1, ..., e_n)$, we have that a_1 divides a_2 . This completes part (a).

To show (b), observe that a_r divides the products of arbitrary r entries of $diag(a_1, a_2, ..., a_n)$, so a_r divides the products of arbitrary r entries of $diag(b_1, b_2, ..., b_n)$. Since b_i is idempotent and $b_i|b_{i+1}$, $b_r = b_1b_2\cdots b_r$, so $a_r|b_r$. Similarly, $b_r|a_r$. Since a_r and b_r are idempotents, we have $a_r = b_r$, $1 \le r \le n$. Q.E.D. **Corollary 5** If R is an APT ring, then for an arbitrary projective R-module P, there exist idempotents $e_1, e_2, ..., e_n$ of R such that e_i divides e_{i+1} for $1 \le i \le n-1$ and $P \simeq Re_1 \oplus Re_2 \oplus \cdots \oplus Re_n$.

Lemma 6 If R is an APT ring, then $R^m \simeq R^m \oplus K$ implies K = 0.

Proof. If $R^m \simeq R^m \oplus K$, by Corollary 5, $K \simeq Re_1 \oplus Re_2 \oplus \cdots \oplus Re_n$ for suituable idempotents $e_1, e_2, ..., e_n$ of R. So

$$R^m \simeq R^m \oplus Re_1 \oplus Re_2 \oplus \cdots \oplus Re_n$$

By the uniqueness of decomposition in Theorem 4, we know that $e_i = 0$ for $1 \le i \le n$, so K = 0. Q.E.D.

Theorem 7 If R is an APT ring, then every invertible R-R-bimodule P is a cyclic module.

Proof. Suppose $P \in Pic(R)$, then there exist idempotents $e_1, e_2, ..., e_n$ of R such that e_i divides e_{i+1} for $1 \leq i \leq n-1$ and $P \simeq Re_1 \oplus Re_2 \oplus \cdots \oplus Re_n$. Since P is an invertible R-R-bimodule, so $End_R(RP) \simeq R$ i.e.

$$R = End(Re_1 \oplus Re_2 \oplus \cdots \oplus Re_n) \simeq \bigoplus_{i,j=1}^n Hom(Re_i, Re_j) \simeq \bigoplus_{i,j=1}^n R(e_i e_j)$$

. Since e_i divides e_j for $i \leq j$, so $e_i e_j = e_j$. Since $R \otimes_R P \simeq P$, so

$$(\bigoplus_{i,i=1}^{n} Re_i e_i) \otimes (Re_1 \oplus Re_2 \oplus \dots \oplus Re_n) \simeq Re_1 \oplus Re_2 \oplus \dots \oplus Re_n$$

i.e.

$$Re_1 \oplus Re_2 \oplus \cdots \oplus Re_n \oplus Re_2 \oplus \cdots \oplus Re_n \oplus K = Re_1 \oplus Re_2 \oplus \cdots \oplus Re_n$$

for suituable projective *R*-module *K*. So $Re_2 \oplus \cdots \oplus Re_n \oplus K = 0$ and $e_2 = e_3 = \cdots = e_n = 0$. So $P \simeq Re_1$ and *P* is a cyclic module. Q.E.D.

Theorem 8 Let R be an abelian ring, N be the set of nilpotents in R, and I be an ideal in R with $I \subseteq N$. Then R/I is an APT ring, if and only if R is an APT ring.

Proof. " \Longrightarrow ". Suppose that R/I is an APT ring. Let $f : R \longrightarrow R/I$ denote the natural morphism. If r is in R, Then f(r) will be denoted by \overline{r} . The "bar" notation will also be used for all n dimensional vectors $(R)_n$ and all $n \otimes n$ matrices $M_n(R)$.

Suppose that A is an idempotent matrix in $M_n(R)$. Let $\overline{A} = f(A)$. Then \overline{A} is idempotent in R/I. So \overline{A} is similar to $diag(\overline{a}_1, \overline{a}_2, ..., \overline{a}_n)$ where \overline{a}_i divides a_{i+1} . Since $I \subseteq N$, by 27.1 in [AF], all the idempotents in R/I can be lifted modulo I. So there is an idempotent d in R such that $f(d) = \overline{a}_1$. By Theorem 3, \overline{A} has a charateristic vector $\overline{x} = (\overline{x}_1, \overline{x}_2, ..., \overline{x}_n)'$ corresponding to $\overline{a}_1 = \overline{d}$. Let x_i be in R with $f(x_i) = \overline{x}_i$, $1 \leq i \leq n$. Set $x = (x_1, x_2, ..., x_n)'$, then since x is

completable to \overline{X} in $GL_n(R/I)$ and $f: GL(R) \longrightarrow GL(R/I)$ is sujective, x is unimodular and completable. Then Ax = dx + r where $r = (r_1, r_2, ..., r_n)'$ with the r_i in I. Since $A^2 = A$ and $d^2 = d$, Ax = dAx + Ar and thus

$$Ar = (1 - d)Ax = (1 - d)(dx + r) = (1 - d)r$$

since (1-d)d = 0. Thus

$$A(x + (2d - 1)r) = Ax + (2d - 1)Ar = dx + r + (2d - 1)(1 - d)r$$
$$= dx + dr = d(x + (2d - 1)r).$$

Further, $x + (2d-1)r \equiv \overline{x} \pmod{I}$. Hence as above, x + (2d-1)r is unimodular and completable. Thus A has a characteristic vector and the proof follows from Theorem 3.

" \Leftarrow " Assume that R is an APT ring and $\overline{A} = (\overline{A})^2 = (\overline{a}_{ij}) \in M_n(R/I)$. It will suffice to show that there exist an idempotent matrix $F = (f_{ij}) \in M_n(R)$ such that $\overline{F} = \overline{A}$. If $A = (a_{ij})$ then $A^2 = A + B$ where the entries of Bare in I. Thus B is nilpotent. let k be the least natural number such that $B^k = 0$. If k=1, ther is nothing left to prove. hence, assume that k > 1and let C = A + (I - 2A)B. Then the entries of C - A are in I and, Since $AB = BA = A^3 - A^2$,

$$C^{2} = A^{2} + 2A(I - 2A)B + (I - 2A)^{2}B^{2}.$$

Therfore, $C^2 - C = B + (I - 2A)^2(B^2 - B)$. Since $(I - 2A)^2 = I + 4B$, $C^2 = C + B^2(4B - 3I)$. If we let $D = B^2(4B - 3I)$, we have $c^2 = C + D$ where the entries of D are in I and, for some natural integer l < k, $D^l = 0$. Repeating this process, we arrive in a finite number of steps at the required matrix F. Q.E.D.

Corollary 9 Let N be an ideal whose elements are nilpotent in an APT ring R and let $x_1, x_2, ..., x_k$ be indeterminates. Then $R[x_1, x_2, ..., x_n]$ is an APT ring if and only if $R/N[x_1, x_2, ..., x_k]$ is an APT ring.

sl Proof. corollary follows by observing that $N[x_1, x_2, ..., x_k]$ is the ideal of nilpotents in $R[x_1, x_2, ..., x_k]$ and that

$$R[x_1, x_2, ..., x_k]/N[x_1, x_2, ..., x_k] \simeq (R/N)[x_1, x_2, ..., x_k].$$

Q.E.D.

Theorem 10 Let R be an abelian regular ring, and for any finitely generated projective R-modules A and B, $2R \oplus A \simeq R \oplus B$ implies $R \oplus A \simeq B$, then R is an APT ring.

Proof. By Theorem 2.5 in [AG], every square matrix over R admits a diagonal reduction (i.e., there exist invertible matrix P and Q such that PAQ is a diagonal matrix). Suppose A is an idempotent matrix, by Theorem 1, A is similar to a diagonal matrix whose diagonal entries are idempotents of R. So R is an APT ring Q.E.D.

References

- [1] F.Anderson And K. Fuller, "Rings and Categories of Modules" Springer-verlag, New York/Heidelberg/Berlin, 1974.
- [2] P.Ara, K.R.Goodearl, K.C.O'Meara, E.Pardo, "Diagonalization of matrices over regular rings", *Lin.Alg.Appl.* 265, (1997)147-136.
- [3] Bernard R. McDonald, "Linear algebra over commutative rings", Marcel Dekker, 1984.
- [4] A.Steger, Diagonability of idempotent matrices, Pac.J.Math. 19 (3) (1966), 535-541.